

**(19) World Intellectual Property Organization
International Bureau**

A standard linear barcode is located at the bottom of the page, spanning most of the width. It is used for document tracking and identification.

(43) International Publication Date
29 January 2009 (29.01.2009)

PCT

(10) International Publication Number
WO 2009/015258 A1

(51) International Patent Classification:
C08G 18/28 (2006.01) C09D 175/00 (2006.01)

AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW

(21) International Application Number: PCT/US2008/070977

(22) International Filing Date: 24 July 2008 (24.07.2008)

(25) Filing Language: English

(26) Publication Language: English

(36) Priority Data: 11/828,642 26 July 2007 (26.07.2007) US

(71) **Applicant: 3M INNOVATIVE PROPERTIES COMPANY [US/US]; 3M Center, Post Office Box 33427, Saint Paul, Minnesota 55133-3427 (US).**

(72) **Inventor:** **QIU, Zai-Ming**; 3M Center, Post Office Box 33427, Saint Paul, Minnesota 55133-3427 (US).

(74) **Agents:** KOKKO, Kent S., et al.; 3M Center, Office of Intellectual Property Counsel, Post Office Box 33427, Saint Paul, Minnesota 55133-3427 (US).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM.

(84) Designated States (*unless otherwise indicated, for every kind of regional protection available*): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

- *as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii))*
- *as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(iii))*

Published:

— *with international search report*

(54) Title: FLUOROCHEMICAL URETHANE COMPOUNDS HAVING PENDENT SILYL GROUPS

(57) Abstract: Fluorochemical urethane compounds and coating compositions derived therefrom are described. The compounds and compositions may be used in treating substrates, in particular substrates having a hard surface such as plastics, ceramics or glass, to render them water, oil, stain, and soil repellent.

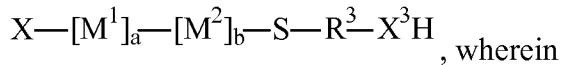
Fluorochemical Urethane Compounds Having Pendent Silyl Groups

Field of the Invention

The present disclosure relates to fluorochemical urethane compounds and coating compositions derived therefrom, which may be used in treating substrates, in particular substrates having a hard surface such as plastics, ceramics or glass, to render them abrasive resistant and durable water, oil, stain, and soil repellent for easy cleaning.

Background

Although many fluorinated compositions are known in the art for treating substrates to render them oil and water repellent, there continues to be a desire to provide further improved compositions for the treatment of substrates, in particular substrates having a hard surface such as plastics, ceramics, glass and stone, in order to render them water-repellent, oil-repellent, and easy to clean. There is also a need for treating glass and plastic as a hard surface, particularly in the optical field, in order to render them durably abrasive-, chemical- and solvent- resistant and stain-, dirt- and dust- resistant.


Desirably, such compositions and methods employing them can yield coatings that have improved properties. In particular, it would be desirable to improve the durability of the coating, including an improved abrasion resistance of the coating. Furthermore, improving the ease of cleaning of such substrates while using less detergents, water or manual labor, is not only a desire by the end consumer, but has also a positive impact on the environment. Also, it is desired that the coatings show particularly good chemical and solvent resistance. The compositions should be conveniently applied in an easy and safe way and are compatible with existing manufacturing methods. Preferably, the compositions will fit easily into the manufacturing processes that are practiced to produce the substrates to be treated.

Summary

The present disclosure provides fluorochemical urethane compounds comprising the reaction product of:

- a) a polyisocyanate,
- b) an isocyanate-reactive perfluoropolyether compound,

c) an oligomer of the formula:

X is H, or the residue of an initiator,

⁵ M¹ is the residue of a (meth)acrylate monomer having a pendent silyl group,

M² is the residue of (meth)acrylate ester monomer,

¹⁰ R³ is a divalent alkylene or arylene group, or combinations thereof, said alkylene groups optionally containing one or more catenary oxygen atoms; and

X³ is -O-, -S-, or -NR⁴-, where R⁴ is H or C₁-C₄ alkyl;

a is at least 2, b may be 0 and a+b is 2-20, preferably a is at least 3; and

d) optionally an isocyanate-reactive silane compound.

The fluorochemical urethane compounds can provide durable, abrasion resistant coatings for a number of substrates. The number of silane functional groups can be varied as a function of the oligomer component and/or the optional an isocyanate-reactive silane compound for better control of the compatibility (e.g. with solvents and/or substrates), and/or the coating quality resulting in low surface energy and cleanability performance. Further, the ratio of the hydrocarbon segment to fluorochemical segments may be varied by controlling the molecular weight of the oligomer and/or incorporating (meth)acrylate ester groups into the oligomer

²⁰ Unless otherwise stated, the following terms used in the specification and claims have the meanings given below:

"Alkyl" means a linear or branched, cyclic or acyclic, saturated monovalent hydrocarbon radical having from one to about twelve carbon atoms, e.g., methyl, ethyl, 1-propyl, 2-propyl, pentyl, and the like.

"Acryloyl" means an acrylate, thioacrylate or acrylamide.

²⁵ "Alkylene" means a linear saturated divalent hydrocarbon radical having from one to about twelve carbon atoms or a branched saturated divalent hydrocarbon radical having from three to about twelve carbon atoms, e.g., methylene, ethylene, propylene, 2-methylpropylene, pentylene, hexylene, and the like.

"Alkoxy" means an alkyl having a terminal oxygen atom, e.g. CH₃-O-, C₂H₅-O-, and the like.

"Aralkylene" means an alkylene radical defined above with an aromatic group attached to the alkylene radical, e.g., benzyl, 1-naphthylethyl, and the like.

"Cured chemical composition" means that the chemical composition is dried or solvent has evaporated from the chemical composition from ambient temperature or higher until dryness. The composition may further be crosslinked as result of siloxane bonds formed between the urethane compounds.

5 "Nucleophilic perfluoropolyether compound" means a compound having one or two nucleophilic, isocyanate-reactive functional groups, such as a hydroxyl group or an amine group, and a perfluoroxyalkyl or perfluoroxyalkylene group, e.g. $C_2F_5O(C_2F_4O)_3CF_2CONHC_2H_4OH$, and the like.

10 "Fluorochemical urethane compounds" refers to compounds of Formula I, and will include those having urethane linkages per se, or alternatively urea and/or thiourea linkages.

"Hard substrate" means any rigid material that maintains its shape, e.g., glass, ceramic, concrete, natural stone, wood, metals, plastics, and the like.

15 "Hard-coat layer" means a layer or coating that is located on the external surface of an object, which layer or coating has been designed to at least protect the object from abrasion;

"(meth)acrylate" refers to both methacrylate and acrylate.

20 "Oligomer" means a polymer molecule consisting of only a few, i.e. up to an average of 20, but preferably up to an average of 10, repeating (polymerized) or repeatable units.

"Oxyalkoxy" has essentially the meaning given above for alkoxy except that one or more oxygen atoms may be present in the alkyl chain and the total number of carbon atoms present may be up to 50, e.g. $CH_3CH_2OCH_2CH_2O-$, $C_4H_9OCH_2CH_2OCH_2CH_2O-$, $CH_3O(CH_2CH_2O)_{1-100}H$, and the like.

25 "Oxyalkyl" has essentially the meaning given above for alkyl except that one or more oxygen heteroatoms may be present in the alkyl chain, these heteroatoms being separated from each other by at least one carbon, e.g., $CH_3CH_2OCH_2CH_2-$, $CH_3CH_2OCH_2CH_2OCH(CH_3)CH_2-$, $C_4F_9CH_2OCH_2CH_2-$, and the like.

30 "Oxyalkylene" has essentially the meaning given above for alkylene except that one or more oxygen heteroatoms may be present in the alkylene chain, these heteroatoms being separated from each other by at least one carbon, e.g., $-CH_2OCH_2O-$, $-CH_2CH_2OCH_2CH_2-$, $-CH_2CH_2OCH_2CH_2CH_2-$, and the like.

"Halo" means fluoro, chloro, bromo, or iodo, preferably fluoro and chloro.

"Perfluoroalkyl" has essentially the meaning given above for "alkyl" except that all or essentially all of the hydrogen atoms of the alkyl radical are replaced by fluorine atoms and the number of carbon atoms is from 1 to about 12, e.g. perfluoropropyl, perfluorobutyl, perfluoroctyl, and the like.

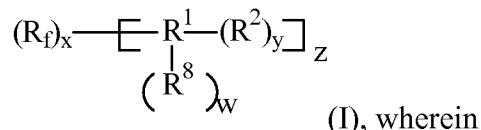
5 "Perfluoroalkylene" has essentially the meaning given above for "alkylene" except that all or essentially all of the hydrogen atoms of the alkylene radical are replaced by fluorine atoms, e.g., perfluoropropylene, perfluorobutylene, perfluoroctylene, and the like

10 "Perfluoroxyalkyl" has essentially the meaning given above for "oxyalkyl" except that all or essentially all of the hydrogen atoms of the oxyalkyl radical are replaced by fluorine atoms and the number of carbon atoms is from 3 to about 100, e.g. $\text{CF}_3\text{CF}_2\text{OCF}_2\text{CF}_2-$, $\text{CF}_3\text{CF}_2\text{O}(\text{CF}_2\text{CF}_2\text{O})_3\text{CF}_2\text{CF}_2-$, $\text{C}_3\text{F}_7\text{O}(\text{CF}(\text{CF}_3)\text{CF}_2\text{O})_s\text{CF}(\text{CF}_3)\text{CF}_2-$, where s is (for example) from about 1 to about 50, and the like.

15 "Perfluoroxyalkylene" has essentially the meaning given above for "oxyalkylene" except that all or essentially all of the hydrogen atoms of the oxyalkylene radical are replaced by fluorine atoms, and the number of carbon atoms is from 3 to about 100, e.g., $-\text{CF}_2\text{OCF}_2-$, or $-\text{[CF}_2\text{-CF}_2\text{-O]}_r\text{-[CF}(\text{CF}_3)\text{-CF}_2\text{-O]}_s-$; wherein r and s are (for example) integers of 1 to 50.

20 "Perfluorinated group" means an organic group wherein all or essentially all of the carbon bonded hydrogen atoms are replaced with fluorine atoms, e.g. perfluoroalkyl, perfluoroxyalkyl, and the like.

25 "Polyfunctional isocyanate compound" or "polyisocyanate" means a compound containing an average of greater than one, preferably two or more isocyanate groups, $-\text{-NCO}$, attached to a multivalent organic group, e.g. hexamethylene diisocyanate, the biuret and isocyanurate of hexamethylene diisocyanate, and the like.


“Residue” means that part of the original organic molecule remaining after reaction. For example, the residue of hexamethylene diisocyanate is $-\text{C}_6\text{H}_{12}-$.

It is to be understood that the recitation of numerical ranges by endpoints includes all numbers and fractions subsumed within that range (e.g. 1 to 3 includes 1, 1.5, 2, 2.75, and 3, as mixture of compounds result.

Detailed description

The present invention provides fluorochemical urethane compounds comprising the reaction product of a polyisocyanate, an isocyanate-reactive perfluoropolyether compound; an isocyanate-reactive oligomer derived from ethylenically unsaturated monomer units having pendent silyl groups preferably a (meth)acrylate oligomer; and optionally a nucleophilic, isocyanate-reactive silane compound.

In some embodiments the disclosure provides fluorochemical urethane compounds of the formula:

R_f is a monovalent perfluoroxyalkyl-containing group or a divalent perfluoroxyalkylene-containing group,

R^1 is the residue of a polyisocyanate,

R^2 is a silane-containing (meth)acrylate oligomer,

R^8 is the residue of a an isocyanate-reactive silane compound,

w is 0, 1 or 2, x and y are each independently at least 1, and z is 1 or 2.

The disclosure also provides a coating composition of the fluorochemical urethane compounds of Formula I and a solvent. For certain hardcoat applications, where the coating must be more durable and abrasion resistant, the coating composition may further comprise silicone hardcoats, such as silica containing silsesquioxanes.

In one embodiment, the disclosure provides a coating composition comprising the compound of Formula I, a solvent, and optionally water and an acid. In another embodiment, the coating composition comprises an aqueous suspension or dispersion of the compounds. To achieve good durability for many substrates, such as ceramics, the compositions of the present disclosure preferably include water. Thus the present disclosure provides a method of coating comprising the steps of providing contacting a substrate with a coating composition comprising the compound of Formula I and a solvent. The coating composition may further comprise water and an acid. In one embodiment the method comprises contacting a substrate with a coating composition comprising the silane of Formula I and a solvent, and subsequently contacting the substrate with an aqueous acid.

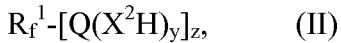
Polyisocyanate compounds useful in preparing the fluorochemical compounds of the present disclosure comprise isocyanate radicals attached to the multivalent organic group (R¹, the “residue” of a polyisocyanate)) that can comprise a multivalent aliphatic, alicyclic, or aromatic moiety; or a multivalent aliphatic, alicyclic or aromatic moiety attached to a biuret, an isocyanurate, or a uretdione, or mixtures thereof. Preferred polyfunctional isocyanate compounds contain an average of at least two isocyanate (-NCO) radicals. Compounds containing at least two -NCO radicals are preferably comprised of di- or trivalent aliphatic, alicyclic, araliphatic, or aromatic groups to which the -NCO radicals are attached. Aliphatic di- or trivalent groups are preferred.

Representative examples of suitable polyisocyanate compounds include isocyanate functional derivatives of the polyisocyanate compounds as defined herein. Examples of derivatives include, but are not limited to, those selected from the group consisting of ureas, biurets, allophanates, dimers and trimers (such as uretdiones and isocyanurates) of isocyanate compounds, and mixtures thereof. Any suitable organic polyisocyanate, such as an aliphatic, alicyclic, araliphatic, or aromatic polyisocyanate, may be used either singly or in mixtures of two or more.

The aliphatic polyisocyanate compounds generally provide better light stability than the aromatic compounds. Aromatic polyisocyanate compounds, on the other hand, are generally more economical and reactive toward nucleophiles than are aliphatic polyisocyanate compounds. Suitable aromatic polyisocyanate compounds include, but are not limited to, those selected from the group consisting of 2,4-toluene diisocyanate (TDI), 2,6-toluene diisocyanate, an adduct of TDI with trimethylolpropane (available as DesmodurTM CB from Bayer Corporation, Pittsburgh, Pa.), the isocyanurate trimer of TDI (available as DesmodurTM IL from Bayer Corporation, Pittsburgh, Pa.), diphenylmethane 4,4'-diisocyanate (MDI), diphenylmethane 2,4'-diisocyanate, 1,5-diisocyanato-naphthalene, 1,4-phenylene diisocyanate, 1,3-phenylene diisocyanate, 1-methyoxy-2,4-phenylene diisocyanate, 1-chlorophenyl-2,4-diisocyanate, and mixtures thereof.

Examples of useful alicyclic polyisocyanate compounds include, but are not limited to, those selected from the group consisting of dicyclohexylmethane diisocyanate (H₁₂ MDI, commercially available as DesmodurTM available from Bayer Corporation, Pittsburgh, Pa.), 4,4'-isopropyl-bis(cyclohexylisocyanate), isophorone diisocyanate (IPDI), cyclobutane-1,3-diisocyanate, cyclohexane 1,3-diisocyanate, cyclohexane 1,4-diisocyanate

(CHDI), 1,4-cyclohexanebis(methylene isocyanate) (BDI), dimmer acid diisocyanate (available from Bayer), 1,3-bis(isocyanatomethyl)cyclohexane (H₆ XDI), 3-isocyanatomethyl-3,5,5-trimethylcyclohexyl isocyanate, and mixtures thereof.

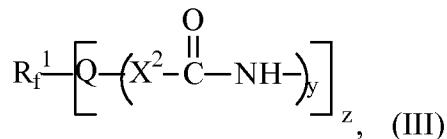

Examples of useful aliphatic polyisocyanate compounds include, but are not limited to, those selected from the group consisting of tetramethylene 1,4-diisocyanate, hexamethylene 1,4-diisocyanate, hexamethylene 1,6-diisocyanate (HDI), octamethylene 1,8-diisocyanate, 1,12-diisocyanatododecane, 2,2,4-trimethyl-hexamethylene diisocyanate (TMDI), 2-methyl-1,5-pentamethylene diisocyanate, dimer diisocyanate, the urea of hexamethylene diisocyanate, the biuret of hexamethylene 1,6-diisocyanate (HDI) (DesmodurTM N-100 and N-3200 from Bayer Corporation, Pittsburgh, Pa.), the isocyanurate of HDI (available as DesmodurTM N-3300 and DesmodurTM N-3600 from Bayer Corporation, Pittsburgh, Pa.), a blend of the isocyanurate of HDI and the uretdione of HDI (available as DesmodureTM N-3400 available from Bayer Corporation, Pittsburgh, Pa.), and mixtures thereof.

Examples of useful araliphatic polyisocyanates include, but are not limited to, those selected from the group consisting of m-tetramethyl xylylene diisocyanate (m-TMXDI), p-tetramethyl xylylene diisocyanate (p-TMXDI), 1,4-xylylene diisocyanate (XDI), 1,3-xylylene diisocyanate, p-(1-isocyanatoethyl)phenyl isocyanate, m-(3-isocyanatobutyl)phenyl isocyanate, 4-(2-isocyanatocyclohexyl-methyl)phenyl isocyanate, and mixtures thereof.

Preferred polyisocyanates, in general, include those selected from the group consisting of tetramethylene 1,4-diisocyanate, hexamethylene 1,4-diisocyanate, hexamethylene 1,6-diisocyanate (HDI), octamethylene 1,8-diisocyanate, 1,12-diisocyanatododecane, and the like, and mixtures thereof. Fluorochemical compositions of the present disclosure comprising compounds or oligomers made with preferred polyisocyanates impart both high water and hexadecane receding dynamic contact angles. High water receding dynamic contact angle together with high hexadecane receding dynamic contact angle is typically predictive of good water-repellency and oil-repellency properties.

The fluorochemical urethane comprises, in part, the reaction product of a nucleophilic perfluoropolyether compound having a mono- or difunctional perfluorinated

group, and at least one nucleophilic, isocyanate-reactive functional group. Such compounds include those of the formula:



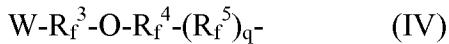
where

5 R_f^1 is a monovalent perfluoroxyalkyl group (where z is 1), or a divalent perfluoroxyalkylene group (where z is 2),
 Q is a covalent bond, or a polyvalent alkylene group of valency $y+1$, said alkylene optionally containing one or more catenary (in-chain) nitrogen or oxygen atoms, and optionally containing one or more sulfonamide, carboxamido, or carboxy functional groups;

10 X^2H is an isocyanate-reactive group, wherein X^2 is selected from $-O-$, $-NR^4-$, or $-S-$, where R^4 is H or C_1-C_4 alkyl,
 y is 1 or 2, and
 z is 1 or 2.

15 With respect to Formulas I and II, the reaction between the nucleophilic fluoroochemical compound (II) and an isocyanate group of a polyisocyanate produces a urea- or urethane-linked fluorine-containing group. Thus R_f of Formula I is of the Formula III.

20 where


R_f^1 is a monovalent perfluoroalkyl or a perfluoroxyalkyl group (where z is 1), or a divalent perfluoroalkylene or a perfluoroxyalkylene group (where z is 2),
 Q is a covalent bond, or a polyvalent alkylene group of valency $y+1$, said alkylene optionally containing one or more catenary (in-chain) nitrogen or oxygen atoms, and optionally containing one or more sulfonamide, carboxamido, or carboxy functional groups;

25 X^2 is $-O-$, $-NR^4-$, or $-S-$, where R^4 is H or C_1-C_4 alkyl,
 y is 1 or 2, and
 z is 1 or 2.

The R_f^1 groups of Formula I to III can contain straight chain, or branched chain or perfluorooxyalkylene or perfluorooxyalkyl groups or any combination thereof. The R_f^1 groups can be mono- or divalent and fully-fluorinated groups are generally preferred, but hydrogen or other halo atoms can also be present as substituents, provided that no more than one atom of either is present for every two carbon atoms.

It is additionally preferred that any R_f^1 group contain at least about 40% fluorine by weight, more preferably at least about 50% fluorine by weight. The terminal portion of the monovalent R_f^1 group is generally fully-fluorinated, preferably containing at least three fluorine atoms, e.g., CF_3- , CF_3CF_2- , $CF_3CF_2CF_2-$, $(CF_3)_2N-$, $(CF_3)_2CF-$, SF_5CF_2- .

Useful perfluorooxyalkyl and perfluorooxyalkylene R_f^1 groups correspond to the formula:

wherein

W is F for monovalent perfluorooxyalkyl, and an open valence ("") for divalent perfluorooxyalkylene

R_f^3 represents a perfluoroalkylene group, R_f^4 represents a perfluoroalkyleneoxy group consisting of perfluoroalkyleneoxy groups having 1, 2, 3 or 4 carbon atoms or a mixture of such perfluoroalkyleneoxy groups, R_f^5 represents a perfluoroalkylene group and q is 0 or 1. The perfluoroalkylene groups R_f^3 and R_f^5 in formula (IV) may be linear or branched and may comprise 1 to 10 carbon atoms, preferably 1 to 6 carbon atoms. A typical monovalent perfluoroalkyl group is $CF_3-CF_2-CF_2-$ and a typical divalent perfluoroalkylene is $-CF_2-CF_2-CF_2-$, $-CF_2-$ or $-CF(CF_3)CF_2-$. Examples of perfluoroalkyleneoxy groups R_f^4 include: $-CF_2-CF_2-O-$, $-CF(CF_3)-CF_2-O-$, $-CF_2-CF(CF_3)-O-$, $-CF_2-CF_2-CF_2-O-$, $-CF_2-O-$, $-CF(CF_3)-O-$, and $-CF_2-CF_2-CF_2-CF_2-O-$.

The perfluoroalkyleneoxy group R_f^4 may be comprised of the same perfluorooxyalkylene units or of a mixture of different perfluorooxyalkylene units. When the perfluorooxyalkylene group is composed of different perfluoroalkylene oxy units, they can be present in a random configuration, alternating configuration or they can be present as blocks. Typical examples of perfluorinated poly(oxyalkylene) groups include:

$-[CF_2-CF_2-O]_r-$; $-[CF(CF_3)-CF_2-O]_s-$; $-[CF_2CF_2-O]_t-[CF_2O]_t-$, $-[CF_2CF_2CF_2CF_2-O]_u$ and $-[CF_2-CF_2-O]_r-[CF(CF_3)-CF_2-O]_s-$; wherein each of r, s, t and u each are integers of 1 to

50, preferably 2 to 25. A preferred perfluoroxyalkyl group that corresponds to formula (IV) is $\text{CF}_3\text{-CF}_2\text{-CF}_2\text{-O-}[\text{CF}(\text{CF}_3)\text{-CF}_2\text{O}]_s\text{-CF}(\text{CF}_3)\text{CF}_2$ - wherein s is an integer of 2 to 25.

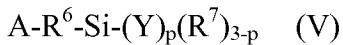
5 Perfluoroxyalkyl and perfluoroxyalkylene compounds can be obtained by oligomerization of hexafluoropropylene oxide that results in a terminal carbonyl fluoride group. This carbonyl fluoride may be converted into an acid, ester or alcohol by reactions well known to those skilled in the art. The carbonyl fluoride or acid, ester or alcohol derived therefrom may then be reacted further to introduce the desired isocyanate reactive groups according to known procedures.

10 With respect to Formula I to III, where y or z is 1, fluorochemical monofunctional compounds, preferably monoalcohols and monoamines are contemplated. Representative examples of useful fluorochemical monofunctional compounds include the following:

$_{36}\text{CF}(\text{CF}_3)\text{C}(\text{O})\text{N}(\text{H})\text{CH}_2\text{CH}_2\text{OH}$ and the like, and mixtures thereof. If desired, other isocyanate-reactive functional groups may be used in place of those depicted.

15 With respect to Formula I to II, where y or z is 2, fluorinated polyols are preferred. Representative examples of suitable fluorinated polyols include $\text{R}_f^1\text{SO}_2\text{N}(\text{CH}_2\text{CH}_2\text{OH})_2$, $\text{R}_f^1\text{OC}_6\text{H}_4\text{SO}_2\text{N}(\text{CH}_2\text{CH}_2\text{OH})_2$; $\text{R}_f^1\text{SO}_2\text{N}(\text{R}')\text{CH}_2\text{CH}(\text{OH})\text{CH}_2\text{OH}$; $\text{R}_f^1\text{CH}_2\text{CON}(\text{CH}_2\text{CH}_2\text{OH})_2$; $\text{CF}_3\text{CF}_2(\text{OCF}_2\text{CF}_2)_3\text{OCF}_2\text{CON}(\text{CH}_3)\text{CH}_2\text{CH}(\text{OH})\text{CH}_2\text{OH}$; $\text{R}_f^1\text{OCH}_2\text{CH}(\text{OH})\text{CH}_2\text{OH}$; $\text{R}_f^1\text{CH}_2\text{CH}_2\text{SC}_3\text{H}_6\text{OCH}_2\text{CH}(\text{OH})\text{CH}_2\text{OH}$; $\text{R}_f^1\text{CH}_2\text{CH}_2\text{SC}_3\text{H}_6\text{CH}(\text{CH}_2\text{OH})_2$; $\text{R}_f^1\text{CH}_2\text{CH}_2\text{SCH}_2\text{CH}(\text{OH})\text{CH}_2\text{OH}$; $\text{R}_f^1\text{CH}_2\text{CH}_2\text{SCH}(\text{CH}_2\text{OH})\text{CH}_2\text{CH}_2\text{OH}$; $\text{R}_f^1\text{CH}_2\text{CH}_2\text{CH}_2\text{SCH}_2\text{CH}(\text{OH})\text{CH}_2\text{OH}$; $\text{R}_f^1\text{CH}_2\text{CH}_2\text{CH}_2\text{OCH}_2\text{CH}(\text{OH})\text{CH}_2\text{OH}$; $\text{R}_f^1\text{CH}_2\text{CH}_2\text{CH}_2\text{OC}_2\text{H}_4\text{OCH}_2\text{CH}(\text{OH})\text{CH}_2\text{OH}$; $\text{R}_f^1\text{CH}_2\text{CH}_2(\text{CH}_3)\text{OCH}_2\text{CH}(\text{OH})\text{CH}_2\text{OH}$; $\text{R}_f^1(\text{CH}_2)_4\text{SC}_3\text{H}_6\text{CH}(\text{CH}_2\text{OH})\text{CH}_2\text{OH}$; $\text{R}_f^1(\text{CH}_2)_4\text{SCH}_2\text{CH}(\text{CH}_2\text{OH})_2$; $\text{R}_f^1(\text{CH}_2)_4\text{SC}_3\text{H}_6\text{OCH}_2\text{CH}(\text{OH})\text{CH}_2\text{OH}$; $\text{R}_f^1\text{CH}_2\text{CH}(\text{C}_4\text{H}_9)\text{SCH}_2\text{CH}(\text{OH})\text{CH}_2\text{OH}$; $\text{R}_f^1\text{CH}_2\text{OCH}_2\text{CH}(\text{OH})\text{CH}_2\text{OH}$; $\text{R}_f^1\text{CH}_2\text{CH}(\text{OH})\text{CH}_2\text{SCH}_2\text{CH}_2\text{OH}$; $\text{R}_f^1\text{CH}_2\text{CH}(\text{OH})\text{CH}_2\text{SCH}_2\text{CH}_2\text{OH}$; $\text{R}_f^1\text{CH}_2\text{CH}(\text{OH})\text{CH}_2\text{OCH}_2\text{CH}_2\text{OH}$; $\text{R}_f^1\text{CH}_2\text{CH}(\text{OH})\text{CH}_2\text{OH}$; $\text{R}_f^1\text{R}''\text{SCH}(\text{R}''\text{OH})\text{CH}(\text{R}''\text{OH})\text{SR}''\text{R}_f^1$; $(\text{R}_f^1\text{CH}_2\text{CH}_2\text{SCH}_2\text{CH}_2\text{SCH}_2)_2\text{C}(\text{CH}_2\text{OH})_2$; $((\text{CF}_3)_2\text{CFO}(\text{CF}_2)_2(\text{CH}_2)_2\text{SCH}_2)_2\text{C}(\text{CH}_2\text{OH})_2$; $(\text{R}_f^1\text{R}''\text{SCH}_2)_2\text{C}(\text{CH}_2\text{OH})_2$; 1,4-bis(1-hydroxy-1,1-dihydroperfluoroethoxyethoxy)perfluoro-n-butane ($\text{HOCH}_2\text{CF}_2\text{OC}_2\text{F}_4\text{O}(\text{CF}_2)_4\text{OC}_2\text{F}_4\text{OCF}_2\text{CH}_2\text{OH}$); 1,4-bis(1-hydroxy-1,1-dihydroperfluoropropoxy)perfluoro-n-butane ($\text{HOCH}_2\text{CF}_2\text{CF}_2\text{O}(\text{CF}_2)_4\text{OCF}_2\text{CF}_2\text{CH}_2\text{OH}$);

fluorinated oxetane polyols made by the ring-opening polymerization of fluorinated oxetane such as Poly-3-Fox™ (available from Omnova Solutions, Inc., Akron Ohio); polyetheralcohols prepared by ring opening addition polymerization of a fluorinated organic group substituted epoxide with a compound containing at least two hydroxyl groups as described in U.S. Pat. No. 4,508,916 (Newell et al); and perfluoropolyether diols such as Fomblin™ ZDOL ($\text{HOCH}_2\text{CF}_2\text{O}(\text{CF}_2\text{O})_{8-12}(\text{CF}_2\text{CF}_2\text{O})_{8-12}\text{CF}_2\text{CH}_2\text{OH}$, available from Ausimont) and its derivatives; wherein R_f^1 is a perfluoroxyalkyl group having 3 to about 50 carbon atoms with all perfluorocarbon chains present having 6 or fewer carbon atoms, or mixtures thereof; R' is alkyl of 1 to 4 carbon atoms; R'' is branched or straight chain alkylene of 1 to 12 carbon atoms, alkylthio-alkylene of 2 to 12 carbon atoms, alkylene-oxyalkylene of 2 to 12 carbon atoms, or alkylene iminoalkylene of 2 to 12 carbon atoms, where the nitrogen atom contains as a third substituent hydrogen or alkyl of 1 to 6 carbon atoms; and R''' is a straight or branched chain alkylene of 1 to 12 carbon atoms or an alkylene-polyoxyalkylene of formula $\text{C}_r\text{H}_{2r}(\text{OC}_s\text{H}_{2s})_t$ where r is 1-12, s is 2-6, and t is 1-40.


Preferred fluorinated polyols include fluorinated oxetane polyols made by the ring-opening polymerization of fluorinated oxetane such as Poly-3-Fox™ (available from Omnova Solutions, Inc., Akron Ohio); polyetheralcohols prepared by ring opening addition polymerization of a fluorinated organic group substituted epoxide with a compound containing at least two hydroxyl groups as described in U.S. Pat. No. 4,508,916 (Newell et al); perfluoropolyether diols such as Fomblin™ ZDOL ($\text{HOCH}_2\text{CF}_2\text{O}(\text{CF}_2\text{O})_{8-12}(\text{CF}_2\text{CF}_2\text{O})_{8-12}\text{CF}_2\text{CH}_2\text{OH}$ and $\text{HOCH}_2\text{CH}_2\text{OCH}_2\text{CF}_2\text{O}(\text{CF}_2\text{O})_{8-12}(\text{CF}_2\text{CF}_2\text{O})_{8-12}\text{CF}_2\text{CH}_2\text{CH}_2\text{OH}$, available from Ausimont); 1,4-bis(1-hydroxy-1,1-dihydroperfluoroethoxyethoxy)perfluoro-n-butane ($(\text{HOCH}_2\text{CF}_2\text{OC}_2\text{F}_4\text{O}(\text{CF}_2)_4\text{OC}_2\text{F}_4\text{OCF}_2\text{CH}_2\text{OH})$; and 1,4-bis(1-hydroxy-1,1-dihydroperfluoropropoxy)perfluoro-n-butane ($(\text{HOCH}_2\text{CF}_2\text{CF}_2\text{O}(\text{CF}_2)_4\text{OCF}_2\text{CF}_2\text{CH}_2\text{OH})$ and $\text{CF}_3\text{CF}_2\text{CF}_2\text{O}-(\text{CF}(\text{CF}_3)\text{CF}_2\text{O})_n-\text{CF}(\text{CF}_3)-$, wherein n is an integer of 3 to 25. This perfluorinated polyether group can be derived from an oligomerization of hexafluoropropylene oxide. Such perfluorinated polyether groups are preferred in particular because of their benign environmental properties.

The fluorochemical urethane comprises, in part, the reaction product of an oligomer derived from ethylenically-unsaturated monomer units having pendent silyl

groups (“silane monomers”), the oligomer further having at least one terminal, nucleophilic, isocyanate-reactive functional group. The oligomer has 2-20 repeat units, a carbon-carbon backbone, and is derived from a) ethylenically unsaturated monomer units, preferably (meth)acryloyl monomer units having pendent silyl groups, and b) optionally ethylenically unsaturated monomer units, preferably (meth)acryloyl monomer units having pendent alkyl groups with or without other functional group for coating quality and performance modification, depending on the substrates. The optional functional groups on the (meth)acryloyl monomer units may include, for example, hydroxy, carboxy, thiol, amino functional groups.

The molecular weight and the number of repeat units in the oligomer are controlled by the mole ratio of the monomer units and the chain transfer agent (having an isocyanate-reactive functional group) during the oligomerization. The number of the repeat units of the monomer having with pendent silane group in the oligomer may be adjusted to correspond to the molecule weight of R_f for having fluorochemical urethane (I) to provide balanced solubility, compatibility, coating quality and crosslink degree for optimized performance from the coating.

Preferred silane monomers include those with the following formula:

wherein:

A is an ethylenically unsaturated polymerizable group, including vinyl, allyl, vinyloxy, allyloxy, and (meth)acryloyl,

R^6 is a covalent bond or a divalent hydrocarbon bridging group of valence In one embodiment R^6 is a polyvalent hydrocarbon bridging group of about 1 to 20 carbon atoms, including alkylene and arylene and combinations thereof, optionally including in the backbone 1 to 5 moieties selected from the group consisting of -O-, -C(O)-, -S-, -SO₂- and -NR⁴- groups (and combinations thereof such as -C(O)-O-), wherein R⁴ is hydrogen, or a C₁-C₄ alkyl group. In another embodiment, R^6 is a poly(alkylene oxide) moiety of the formula -(OCH₂CH₂-)_n(OCH₂CH(R⁷))_m-, where wherein n is at least 5, m may be 0, and preferably at least 1, and the mole ratio of n:m is at least 2:1 (preferably at least 3:1).

Preferably, R^6 is a divalent alkylene.

Y is a hydrolysable group,

R⁷ is a monovalent alkyl or aryl group,

p is 1, 2 or 3, preferably 3.

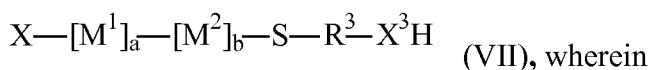
Useful silane monomers include, for example, 3-(methacryloyloxy)propyltrimethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-acryloyloxypropyltriethoxysilane, 3-(methacryloyloxy)propyltriethoxysilane, 3-(methacryloyloxy)propylmethyldimethoxysilane, 3-(acryloyloxypropyl)methyldimethoxysilane, 3-(methacryloyloxy)propyldimethylethoxysilane, 3-(methacryloyloxy)propyldiethylethoxysilane, vinyldimethylethoxysilane, vinylmethyldiethoxysilane, vinyltriacetoxysilane, vinyltriethoxysilane, vinyltriisopropoxysilane, vinyltrimethoxysilane, vinyltriphenoxysilane, vinyltri-t-butoxysilane, vinyltris-isobutoxysilane, vinyltriisopropenoxy silane, vinyltris(2-methoxyethoxy)silane, and mixtures thereof.

The optional (meth)acrylate ester monomer useful in preparing the oligomer is a monomeric (meth)acrylic ester of a non-tertiary alcohol, which alcohol contains from 1 to 20 carbon atoms and preferably an average of from 4 to 12 carbon atoms, optional with other functional groups.

Examples of monomers suitable for use as the acrylate ester monomer include the esters of either acrylic acid or methacrylic acid with non-tertiary alcohols such as ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 1-pentanol, 2-pentanol, 3-pentanol, 2-methyl-1-butanol, 1-hexanol, 2-hexanol, 2-methyl-1-pentanol, 3-methyl-1-pentanol, 2-ethyl-1-butanol, 3,5,5-trimethyl-1-hexanol, 3-heptanol, 1-octanol, 2-octanol, isoctylalcohol, 2-ethyl-1-hexanol, 1-decanol, 1-dodecanol, 1-tridecanol, 1-tetradecanol, mono-alkyl terminated polyethylene glycol and polypropylene glycol and the like. In some embodiments, the preferred acrylate ester monomer is the ester of acrylic acid with butyl alcohol or isoctyl alcohol, or a combination thereof, although combinations of two or more different acrylate ester monomer are suitable.

Representative examples of functionalized acrylate monomers suitable for use as the acrylate ester monomer include 2-(dimethylamino)ethyl methacrylate, 2-(dimethylamino)ethyl acrylate, 2-(diethylamino)ethyl methacrylate, 2-(diethylamino)ethyl acrylate, 2-(diisopropylamino)ethyl methacrylate, N-(acryloxyethyl) succinimide, 2-(1-aziridinyl)- ethyl methacrylate, glycidyl acrylate, glycidyl methacrylate, 2-hydroxyethyl methacrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl methacrylate, 2-ethoxyethyl

methacrylate, 2-(2-ethoxyethoxy)ethyl acrylate, 2-(methacryloxy)ethyl acetoacetate and 2-allyloxyethyl acrylate, or a combination thereof.


The monomers are polymerized in the presence of a functionalized chain transfer agent to control the molecular weight and the number of repeat units. The chains transfer agent generally has at least one mercapto group (-SH) and at least one nucleophilic, isocyanate-reactive functional group, including hydroxy-, amino and/or mercapto groups. The hydroxy- or amino-functionalized chain transfer agents useful in the preparation of the fluorochemical oligomer preferably correspond to the following formula:

HS-R³-X³-H (VI), wherein:

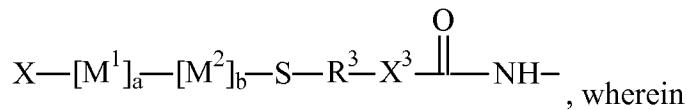
R³ is a polyvalent alkylene or arylene groups, or combinations thereof, said alkylene groups optionally containing one or more catenary oxygen atoms; and X³ is -O, or -NR⁴-, where R⁴ is H or C₁-C₄ alkyl

Useful functionalized chain transfer agents include those selected from 2-mercptoethanol, 3-mercpto-2-butanol, 3-mercpto-2-propanol, 3-mercpto-1-propanol, 3-mercpto-1,2-propanediol, 2,3-dimercaptopropanol, 4-mercpto-1-butanol, 6-mercpto-1-hexanol, 8-mercpto-1-octanol, 11-mercpto-1-undecanol, 16-mercpto-1-hexadecanol, hydroxyethyl thioglycolate, 2-hydroxyethyl 3-mercaptopropionate, 1-(9-mercaptoponyl)-3,6,9-trioxaundecan-11-ol, (11-mercaptoundecyl)tri(ethylene glycol, 2-[2-(2-mercptoethoxy)ethoxy]ethanol, and 2-(butylamino)ethanethiol. A single compound or a mixture of different chain transfer agents may be used. The preferred chain transfer agent is 2-mercptoethanol.

In some embodiments the oligomers are of the formula:

X is H, or the residue of an initiator,

M¹ is the residue of a an ethylenically unsaturated monomer, preferably a (meth)acryloyl monomer, having a pendent silyl group,


M² is the residue of (meth)acrylate ester monomer,

R³ is a divalent alkylene or arylene groups, or combinations thereof, said alkylene groups optionally containing one or more catenary oxygen atoms;

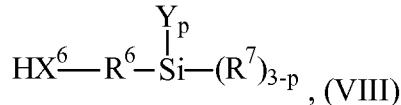
a is at least 2 and b may be 0, preferably a is at least 3, and a+b is 3 to 20; and

X³ is -O-, or -NR⁴-, where R⁴ is H or C₁-C₄ alkyl. It will be understood that a and b may be non-integral values, as a mixture of oligomers typically results.

With respect to Formulas I and VII, R² is of the formula:

X is H, or the residue of an initiator,

M¹ is the residue of a (meth)acrylate monomer having a pendent silyl group,


5 M² is the residue of (meth)acrylate ester monomer,

R³ is a divalent alkylene or arylene groups, or combinations thereof, said alkylene groups optionally containing one or more catenary oxygen atoms; and

X³ is -O-, -S- or -NR⁴-, where R⁴ is H or C₁-C₄ alkyl.

In order to prepare the functionalized fluorochemical oligomer, a free- radical initiator is normally present. Such free-radical initiators are known in the art and include azo compounds, such as azobisisobutyronitrile (AIBN) and azobis(2-cyanovaleric acid) and the like, hydroperoxides such as cumene, t-butyl, and t-amyl hydroperoxide, dialkyl peroxides such as di-t-butyl and dicumylperoxide, peroxyesters such as t-butylperbenzoate and di-t-butylperoxy phtalate, diacylperoxides such as benzoyl peroxide and lauroyl peroxide.

The fluorochemical urethane may comprise, in part, the reaction product of the polyisocyanate with a nucleophilic silane compound represented by the general formula:

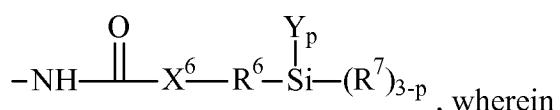
wherein

20 X⁶ is -O-, -S- or -NR⁵-, where R⁵ is H, C₁-C₄ alkyl or -R⁶-Si(Y_p)(R⁷)_{3-p},

R⁶ is a divalent alkylene group, said alkylene groups optionally containing one or more catenary oxygen atoms;

Y is a hydrolysable group,

R⁷ is a monovalent alkyl or aryl group,


25 p is 1, 2 or 3, preferably 3. Preferably the nucleophilic silane compounds are aminosilanes.

Some aminosilanes useful in the practice of this disclosure are described in U.S. Pat. No. 4,378,250 and include aminoethyltriethoxysilane, β -aminoethyltrimethoxysilane, β -aminoethyltriethoxysilane, β -aminoethyltributoxysilane, β -aminoethyltripropoxysilane, α -amino-ethyltrimethoxysilane, α -aminoethyltriethoxysilane, γ -

aminopropyltrimethoxysilane, γ -aminopropyltrimethoxysilane, γ -aminopropyltriethoxysilane, γ -aminopropyltributoxysilane, γ -aminopropyltripropoxysilane, β -aminopropyltrimethoxysilane, β -aminopropyltriethoxysilane, β -aminopropyltributoxysilane, α -aminopropyltrimethoxysilane, α -aminopropyltriethoxysilane, α -aminopropyltributoxysilane,

5 Minor amounts (< 20 mole percent) of catenary nitrogen-containing aminosilanes may also be used, including those described in U.S. 4,378,250. N-(β -aminoethyl)- β -aminoethyltrimethoxysilane, N-(β -aminoethyl)- β -aminoethyltriethoxysilane, N-(β -aminoethyl)- β -aminoethyltripropoxysilane, N-(β -aminoethyl)- α -aminoethyltrimethoxysilane, N-(β -aminoethyl)- α -aminoethyltriethoxysilane, N-(β -aminoethyl)- α -aminoethyltripropoxysilane, N-(β -aminoethyl)- β -aminopropyltrimethoxysilane, N-(β -aminoethyl)- γ -aminopropyltriethoxysilane, N-(β -aminoethyl)- γ -aminopropyltripropoxysilane, N-(β -aminoethyl)- β -aminopropyltriethoxysilane, N-(β -aminoethyl)- β -aminopropyltripropoxysilane, N-(γ -aminopropyl)- β -aminoethyltrimethoxysilane, N-(γ -aminopropyl)- β -aminoethyltriethoxysilane, N-(γ -aminopropyl)- β -aminoethyltripropoxysilane, N-methylaminopropyltrimethoxysilane, β -aminopropylmethyl diethoxysilane, and γ -diethylene triaminepropyltriethoxysilane.

10 15 20 25 30 With respect to Formulas I and VII, R⁸ is of the formula:

X⁶ is -O-, -S- or -NR⁵-, where R⁵ is H, C₁-C₄ alkyl or -R⁶-Si(Y_p)(R⁷)_{3-p},

R⁶ is a divalent alkylene group, said alkylene groups optionally containing one or more catenary oxygen atoms;

Y is a hydrolysable group,

R⁷ is a monovalent alkyl or aryl group, and p is 1, 2 or 3.

It will be understood that in the presence of water or moisture, the Y groups may hydrolyzed to -OH groups, leading to reaction with a substrate surface with -OH group or self-crosslink by dehydration to form siloxane linkages. Bonds thus formed, particularly

Si-O-Si bonds, are water resistant and can provide enhanced durability of the stain-release properties imparted by the chemical compositions of the present disclosure

5 The fluorochemical compounds can be made by simple blending of the nucleophilic oligomer(s) VII, nucleophilic perfluoropolyether compound(s) II, optionally the nucleophilic silane compounds VIII, and the polyisocyanate compound(s), to produce a urethane compound of Formula I.

10 In general, the polyisocyanate, the nucleophilic perfluoropolyether compound(s) II, a catalyst and a solvent are charged to a dry reaction vessel under nitrogen. The reaction mixture is heated, with a sufficient mixing, at a temperature, and for a time sufficient for the reaction to occur. Then, the pre-prepared nucleophilic oligomer(s) with curable silane VII, was added, optionally with the nucleophilic silane compounds VIII, and the reaction was continued until all reactive isocyanate functional group was consumed. Progress of the reaction can be determined by monitoring the disappearance of the isocyanate peak in the IR at $\sim 2100\text{ cm}^{-1}$.

15 Depending on reaction conditions (e.g., reaction temperature and/or polyisocyanate used), a catalyst level of up to about 0.5 percent by weight of the reaction mixture may be used to effect the condensation reactions with the isocyanates, but typically about 0.00005 to about 0.5 percent by weight may be used, 0.02 to 0.1 percent by weight being preferred. In general, if the nucleophilic group is an amine group, a catalyst is not necessary.

20 Suitable catalysts include, but are not limited to, tertiary amine and tin compounds. Examples of useful tin compounds include tin II and tin IV salts such as stannous octoate, dibutyltin dilaurate, dibutyltin diacetate, dibutyltin di-2-ethylhexanoate, and dibutyltinoxide. Examples of useful tertiary amine compounds include triethylamine, tributylamine, triethylenediamine, tripropylamine, bis(dimethylaminoethyl) ether, morpholine compounds such as ethyl morpholine, and 2,2'-dimorpholinodiethyl ether, 1,4-diazabicyclo[2.2.2]octane (DABCO, Aldrich Chemical Co., Milwaukee, Wis.), and 1,8-diazabicyclo[5.4.0.]undec-7-ene (DBU, Aldrich Chemical Co., Milwaukee, Wis.). Tin compounds are preferred. If an acid catalyst is used, it is preferably removed from the product or neutralized after the reaction. It has been found that the presence of the catalyst 25 may deleteriously affect the contact angle performance.

30 The nucleophilic perfluoropolyether compound $R_f^1-Q(X^2H)_z$ (II), is used in an amount of 1 to about 50% molar equivalent to the total available isocyanate functional

groups. The nucleophilic oligomer (VII) is used in an amount of 33 to about 90% equivalent of the total available isocyanate functional groups. The nucleophilic silane compound (VIII) is used in an amount of 0 to about 33% (preferably 1 to 10%) equivalent of the total available isocyanate functional groups.

5 The disclosure also provides a coating composition of the fluorochemical urethane compounds of Formula I and a solvent. For certain hardcoat applications, where the coating need be more durable and abrasion resistant, the coating composition may further comprise silicone hardcoat, such as silsesquioxane based hardcoats.

10 Compositions according to the present disclosure may be coated on a substrate, with or without a primer coating, and at least partially cured to provide a coated article. In some embodiments, the polymerized coating may form a protective coating that provides at least one of abrasive resistance, mar resistance, graffiti resistance, stain resistance, adhesive release, low refractive index, weatherable and water- and oil- repellency, or the combination of more than one performance. Coated articles according to the present 15 disclosure include, for example, eyeglass lenses, face masks, respirators, mirrors, windows, adhesive release liners, and anti-graffiti films.

20 Suitable substrates include, for example, glass (e.g., windows and optical elements such as, for example, lenses and mirrors), ceramic (e.g., ceramic tile), cement, stone, painted surfaces (e.g., automobile body panels, boat surfaces), metal (e.g., architectural 25 columns), paper (e.g., adhesive release liners), cardboard (e.g., food containers), thermosets, thermoplastics (e.g., polycarbonate, acrylics, polyolefins, polyurethanes, polyesters, polyamides, polyimides, phenolic resins, cellulose diacetate, cellulose triacetate, polystyrene, and styrene-acrylonitrile copolymers), and combinations thereof. The substrate may be a film, sheet, or it may have some other form. The substrate may comprise a transparent or translucent display element, optionally having a ceramer hardcoat thereon.

25 In some embodiments, a coating composition comprising a mixture of the fluorochemical urethane compounds and a solvent is provided. The coating compositions of the present disclosure comprise solvent suspensions, dispersions or solutions of the fluorochemical compounds of the present disclosure. When applied as coatings, the 30 coating compositions impart oil- and water-repellency properties, and/or stain-release and stain-resistance characteristics to any of a wide variety of substrates.

A coating prepared from the coating composition that includes compounds of Formula I includes the compounds *per se*, as well as siloxane derivatives resulting from bonding to the surface of a preselected substrate and intermolecular crosslinking by siloxane formation. The coatings can also include unreacted or uncondensed “Si-Y” groups. The composition may further contain non-silane materials such as oligomeric perfluoroxyalkyl monohydrides, starting materials and perfluoroxyalkyl alcohols and esters.

Although the inventors do not wish to be bound by theory, compounds of the above Formula I are believed to undergo a condensation reaction with the substrate surface to form a siloxane layer via hydrolysis or displacement of the hydrolysable “Y” groups of Formula I. In this context, “siloxane” refers to -Si-O-Si- bonds to which are attached to compounds of Formula I. In the presence of water, the “Y” groups will undergo hydrolysis to “Si-OH” groups, and further condensation to siloxanes.

The fluorochemical compounds can be dissolved, suspended, or dispersed in a variety of solvents to form coating compositions suitable for use in coating onto a substrate. Generally, the solvent solutions can contain from about 0.1 to about 50 percent, or even up to about 90 percent, by weight based on the total weight of the solid components. Coating compositions preferably contain from about 0.1 to about 10 weight percent fluorochemical urethane compounds, based on the total solids. Preferably the amount of fluorochemical urethane compounds used in the coating is about 0.1 to about 5 weight percent, most preferably from about 0.2 to about 1 weight percent, of the total solids. Suitable solvents include alcohols, esters, ethers, amides, ketones, hydrocarbons, hydrofluorocarbons, hydrofluoroethers, chlorohydrocarbons, chlorocarbons, and mixtures thereof.

For ease of manufacturing and for reasons of cost, the compositions of the present disclosure can be prepared shortly before use by diluting a concentrate of one or more of the compounds of Formula I. The concentrate will generally comprise a concentrated solution of the fluorochemical urethane in an organic solvent. The concentrate should be stable for several weeks, preferably at least 1 month, more preferably at least 3 months. It has been found that the compounds can be readily dissolved in an organic solvent at high concentrations.

The coating compositions of this disclosure optionally contain silsesquioxanes, for the preparation of hardcoat compositions. The silsesquioxanes may be blended with the coating composition, or alternatively and coating of the compounds of Formula I may be coated on a previously applied coating of the silsesquioxanes. Useful silsesquioxanes 5 include e.g., condensates of trialkoxysilanes (or hydrolysates thereof) and colloidal silica; co-condensates of diorganooxysilanes (or hydrosylates thereof) of the formula $R^{10}Si(OR^{11})_2$ with trialkoxysilanes (or hydrosylates thereof) and colloidal silica; and mixtures thereof. The condensates and co-condensates are of the formula $R^{10}SiO_{3/2}$ where 10 each R^{10} is an alkyl group of 1 to 6 carbon atoms or an aryl group and R^{11} represents an alkyl radical with 1 to 4 carbon atoms. Preferred silsesquioxanes are neutral or anionic silsesquioxanes, prior to addition to the composition.

A useful method of making the silsesquioxane-based hard-coat compositions includes hydrolysis of the alkoxy silanes in the presence of colloidal silica dispersion and in a mixture of water and alcoholic solvents. The colloidal silica dispersions preferably 15 have a particle size from 5 nm to 150 nm, or even from 10 nm to 30 nm. Useful colloidal silica dispersions are commercially available under a variety of trade designations from E. I. duPont and Nalco Chemical including the LUDOX trade designation from E. I. duPont de Nemours and Co., Inc. (Wilmington, Delaware) and the NALCO trade designation from Nalco Chemical Co. (Oak Brook, Illinois). Useful silsesquioxanes can be made by a 20 variety of techniques including the techniques described in U.S. Patents. 3,986,997 (Clark), 4,624,870 (Anthony) and 5,411,807 (Patel et al.). The silsesquioxane-based hard-coat composition is present in the hard-coat composition in an amount of from about 90 % by weight to about 99.9 % by weight based on the total solids of the hard-coat composition.

Another useful method of preparing a silsesquioxane-based hard-coat composition 25 includes adding hydrolysable silane to a mixture of colloidal silica dispersion, water and optionally materials such as surface active agent and organic water-miscible solvent, while agitating the mixture under acidic or basic conditions. The exact amount of silane that can be added depends on the substituent R and whether an anionic or cationic surface-active 30 agent is used. Co-condensates of the silsesquioxanes in which the units can be present in block or random distribution are formed by the simultaneous hydrolysis of the silanes. The amount of tetraorganosilanes (including, e.g., tetraalkoxysilanes and hydrosylates thereof

(e.g. tetraalkoxysilanes of the formula Si(OH)_4 , and oligomers thereof) present is less than 10% by weight, less than 5% by weight, or even less than about 2% by weight based on the solids of the silsesquioxane-based hard-coat composition. After hydrolysis is complete, the product may be diluted with additional solvent and additives may be added including, 5 e.g., UV absorbers, buffers (e.g., methyltriacetoxysilane (e.g., for silsesquioxane-based hard-coat compositions that are made with basic colloidal silica), antioxidants, cure catalysts (e.g., amine carboxylates such as ethylamine carboxylate, and quaternary ammonium carboxylates such as benzyltrimethylammonium acetate), and combinations thereof.

10 Silanes useful in preparing the silsesquioxane-based hard coat compositions include, e.g., methyltrimethoxysilane, methyltriethoxysilane, methyltriisopropoxyoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, propyltrimethoxysilane, isobutyltrimethoxysilane, isobutyltriethoxysilane, 2-ethylbutyltriethoxysilane, 2-ethylbutoxytriethoxysilane, and combinations thereof.

15 Commercially available silicone hardcoat compositions that may be used in the present disclosure include SHC-1200TM, SHC-5020TM and AS4000TM hardcoats from GE Bayer Silicones, Waterford, NY.

20 The composition may be applied to the substrate by conventional techniques such as, for example, spraying, knife coating, notch coating, reverse roll coating, gravure coating, dip coating, bar coating, flood coating, dip coating or spin coating. The composition may be applied to any thickness to provide the desired level of water, oil, stain, and soil repellency. Typically, the composition is applied to the substrate as a relatively thin layer resulting in a dried cured layer having a thickness in a range of from about 40 nm to about 60 nm, although thinner and thicker (e.g., having a thickness up to 25 100 micrometers or more) layers may also be used. Next, any optional solvent is typically at least partially removed (e.g., using a forced air oven), and the composition is then at least partially cured to form a durable coating.

25 A preferred coating method for application of a fluorochemical urethane silane of the present disclosure includes dip coating. A substrate to be coated can typically be contacted with the treating composition at room temperature (typically, about 20 to about 25°C). Alternatively, the mixture can be applied to substrates that are preheated at a temperature of for example between 60 and 150°C. This is of particular interest for

industrial production, where e.g. ceramic tiles can be treated immediately after the baking oven at the end of the production line. Following application, the treated substrate can be dried and cured at ambient or elevated temperature, e.g. at 40 to 300°C and for a time sufficient to dry. The process may also require a polishing step to remove excess material.

5 The present disclosure provides a protective coating on substrate that is relatively durable, and more resistant to contamination and easier to clean than the substrate surface itself. The present disclosure provides in one embodiment a method and composition for use in preparing a coated article comprising a substrate, preferably a hard substrate, and an antisoiling coating of greater than a monolayer (which is typically greater than about 15
10 Angstroms thick deposited thereon. Preferably an antisoiling coating of the present disclosure is at least about 20 Angstroms thick, and more preferably, at least about 30 Angstroms thick. Generally, the thickness of the coating is less than 10 micrometers, preferably less than 5 micrometers. The coating material is typically present in an amount that does not substantially change the appearance and optical characteristics of the article.
15

EXAMPLES

Objects and advantages of this disclosure are further illustrated by the following examples, but the particular materials and amounts thereof recited in these examples, as well as other conditions and details, should not be construed to unduly limit this
20 disclosure. These examples are merely for illustrative purposes only and are not meant to be limiting on the scope of the appended claims.

25 All parts, percentages, ratios, etc. in the examples and the rest of the specification are by weight, unless noted otherwise. Solvents and other reagents used were obtained from Aldrich Chemical Company, Milwaukee, WI unless otherwise noted.

Test Methods

IR Spectroscopy (IR)

30 IR spectra are run on a Thermo-Nicolet, Avatar 370 FTIR, obtainable from Thermo Electron Corporation, Waltham, MA.

Contact Angle Measurement:

The coated panels (described below) were rinsed for 1 minute by hand agitation in isopropanol before being subjected to measurement of water and hexadecane contact angles. Measurements were made using as-received reagent-grade hexadecane (Aldrich) and deionized water filtered through a filtration system obtained from Millipore Corporation (Billerica, MA), on a video contact angle analyzer available as product number VCA-2500XE from AST Products (Billerica, MA). Reported values are the averages of measurements on at least three drops measured on the right and the left sides of the drops. Drop volumes were 5 μ L for static measurements and 1-3 μ L for advancing and receding contact angles.

Marker Repellent Test:

This test was used to measure the ink repellency of the coatings. Coated plaques were prepared as described above. A line was drawn across the surface of a coated plaque using a SharpieTM Fine Point, Series 30000 permanent marker, Vis-à-vis Permanent Overhead Project Pen or KING SIZE Permanent Marker (available from Sanford, a division of Newell Rubbermaid). The samples were rated for appearance and for the ability to repel markers as indicated below:

Ink Repellency Test Ratings	
Ranking	Description
1	Ink beaded in dot
2	Ink beaded in short line
3	Some beading
4	Little beading
5	No beading

Solvent Resistant Test:

On the coated and cured film, an ~0.5 inch (~1.27 cm) diameter drop of solvent (as indicated below) was applied to the coated surface. The appearance of the coating was visually rated and recorded after the solvent was evaporated to dry at room temperature. In the Tables, "C" is for Clear (no change of the coating appearance). Then, the Marker Repellent Test was conducted over the solvent dried spot using a SharpieTM Fine Point, Series 30000 permanent marker and the samples were rated from 1 to 5 according to the scale above. Reported values are the average of three time ratings.

Steel Wool Durability Test

The abrasion resistance of the coated substrates was tested perpendicular to the coating direction by use of a mechanical device capable of oscillating a steel wool sheet adhered to a stylus across the film's surface. The stylus oscillated over a 90 mm wide 5 sweep width at a rate of 315 mm/sec (3.5 wipes/sec) wherein a "wipe" is defined as a single travel of 90 mm. The stylus had a flat, cylindrical base geometry with a diameter of 3.2 cm. The stylus was designed to enable attachment of additional weights to increase the force exerted by the steel wool normal to the film's surface. The samples are tested at a 400g load for 50 wipes. The #0000 steel wool sheets are "Magic Sand-Sanding Sheets" 10 (Hut Products, Fulton, Missouri). The #0000 has a specified grit equivalency of 600-1200 grit sandpaper. The 3.2 cm steel wool discs are die cut from the sanding sheets and adhered to the 3.2 cm stylus base with 3M Brand Scotch Permanent Adhesive Transfer tape (3M, St. Paul, Minnesota). The appearance of the coating is visionally rated 15 (scratched or not) after the durability test. The contact angles were measured on the wear track after the steel wool abrasion, and on an area of the plaque adjacent to the wear track that is not affected by the steel wool track (i.e., before steel wool testing). The contact angle measurements are made using the "Contact Angle Measurement" measurement. Unless otherwise noted, the data is reported based on an average of three measurements. 20 Three drops are placed on each plaque. The contact angle is measured on the right and left sides of each drop.

Cleaning Tissue Durability Test

The coated polycarbonates were cleaned with Sight Savers Pre-moistened Lens Cleaning Tissue (Bausch & Lomb), back and forth for one hundred times, unless 25 specifically noted. Then, the cleaned area was dried and tested with Sharpie marker, and rated according to Marker Repellent Test.

Materials:

Unless otherwise noted, as used in the examples:

"HFPO-" refers to the end group $F(CF(CF_3)CF_2O)_aCF(CF_3)-$ of the methyl ester 30 $F(CF(CF_3)CF_2O)_aCF(CF_3)C(O)OCH_3$, with an average molecular weight >1000 g/mol,

can be prepared according to the method reported in U.S. Pat. No. 3,250,808 (Moore et al.).

HFPO-C(O)N(H)CH₂CH₂OH (**HFPO-OH or HFPO**) was prepared by a procedure similar to that described in U.S. 7,094,829 (Audenaert et al.).

5 “A-174” is CH₂=C(CH₃)C(O)OCH₂CH₂CH₂Si(OCH₃)₃, available from Union Carbide. DesmodurTM N-100 polyisocyanate - a triisocyanate-functional biuret derived from reacting 3 moles of 1,6-hexamethylene diisocyanate with 1 mole of water (available from Bayer Polymers LLC, of Pittsburgh, Pennsylvania).

10 DesmodurTM N-3300 Isocyanate - a triisocyanate-functional isocyanurate derived from trimerizing 3 moles of 1,6-hexamethylene diisocyanate (available from Bayer Polymers LLC, of Pittsburgh, Pennsylvania).

“IPDI” is Isophonone diisocyanate, 98% (MW = 222.29), obtained from Aldrich.

“APTMS” is aminopropyltrimethoxysilane, obtained from Sigma-Aldrich of Milwaukee, WI.

15 “SHP 401 Primer”, is a ~2% solution of poly(methyl methacrylate) obtained from GE Silicones of Waterford, NY.

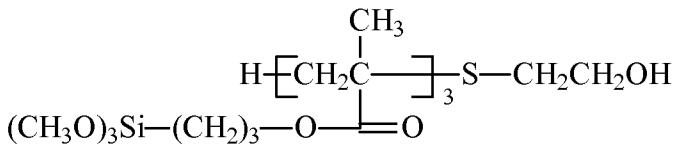
“DBTDL” is di-n-butyl dilaurate, obtained from Aldrich.

Polycarbonate plaques used in the testing were molded by Minnesota Mold & Engineering, Vadnais Heights, MN from GE Lexan 101, from GE, Mount Vernon, IN.

20 Glass Micro Slides used in the testing are No. 2947; 75x50 mm Plane, from Corning Glass Works, Scientific Glassware Dept., Corning, NY 14830.

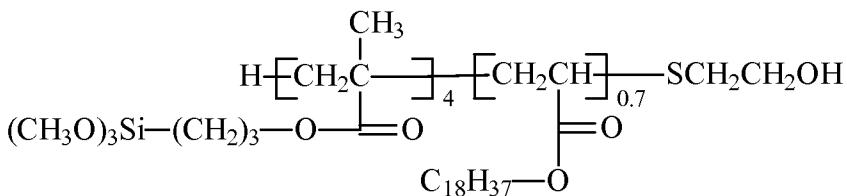
“SH-1” is GE SHC1200TM Optical Grade Abrasion-Resistant Silicone Hard Coat, obtained from GE Silicones of Waterford, NY.

“SH-2” is GE SHC 5020TM Abrasion-Resistant Silicone Hard Coat, obtained from GE Silicones of Waterford, NY.


“SH-3” is GE AS4000TM Weatherable Abrasion-Resistant Silicone Hard Coat, obtained from GE Silicones of Waterford, NY.

“TEOS” is tetraethoxysilane, available from Aldrich.

“Vazo-67” is 2,2'-azobis(2-methylbutyronitrile), commercially available from DuPont


30 Chemical Company, Wilmington, DE.

Preparation of SAO-1 Silane Acrylate Oligomer Alcohol :

5 An 8 oz (~237 mL) bottle was charged with 14.90 g A-174 (MW=248.4, 60 mmol),
1.56g HSCH₂CH₂OH (MW = 78, 20 mmol), 38.4 g ethyl acetate and 0.3g Vazo-67. After
bubbling the solution with nitrogen for 1 minute, the sealed bottle was polymerized in a
70°C oil bath with a magnetic stirring for 24 hours, which gave a clear solution having
30% solids. From FTIR analysis, no CH₂=CMeC(O)- signal was observed, indicating the
10 completed oligomerization(average molecular weight = 822):

Preparation of SAO-2, Silane Acrylate Oligomer Alcohol :

15 An 8 oz (~237 mL) bottle was charged with 39.74 g A-174 (MW=248.4, 160 mmol), 8.70g octadecyl acrylate (MW = 324, 26.8 mmol), 3.12 g HSCH₂CH₂OH (MW = 78, 40 mmol), 103.3 g ethyl acetate and 10.g Vazo-67. After bubbling the solution with nitrogen for 1 minute, the sealed bottle was polymerized in a 70°C oil bath with a 20 magnetic stirring for 10 hours. Additional 0.70 g Vazo-67 was added and the oligomerization was continued for another 14 hours, which gave a clear solution having 33% solids. From FTIR analysis, no CH₂=CMeC(O)- signal was observed, indicating the completed oligomerization (average molecular weight = 1294).

25 Preparation of perfluoropolyether urethanes:

FA-1, HFPO-OH/N100/SAO-1/APTMS (in 1/3/1/1 equivalent ratio):

An 8 Oz (~237 mL) bottle was charged with 5.73 g N100 (EW=190, 30 mmol), 13.14 g HFPO-OH (MW = 1314, 10 mmol), 27.4 g 30% SAO-1 (8.22g solid, 10 mmol), 49.5 g EtOAc solvent and 5 drops of DBTDL catalyst. The sealed bottle was reacted at

70°C oil bath with a magnetic stirring for 4 hours. Then, 2.21 g APTMS (10 mmol) was added at room temperature, and the mixture was reacted at room temperature for 0.5 hour, followed by reaction at 70°C for another 4 hours. A 30% solids clear solution in was obtained. From FTIR analysis, no unreacted –NCO signal was observed, indicating the completed reaction.

5 FA-2, HFPO-OH/N3300/SAO-1/APTMS (in 1/3/1/1 equivalent ratio):

FA-2 was prepared by similar procedure to FA-1, with 5.76 g N3300 in replacement of N100.

10

FA-3, HFPO-OH/N100/SAO-2 (in 1/3/2 equivalent ratio):

An 8 Oz (~237 mL) bottle was charged with 2.93 g N100 (EW=190, 15.34 meq), 6.71 g HFPO-OH (MW = 1314, 5.1 meq), 38.90g 33% SAO-2 (12.99 g solid, 10 meq OH), 22.5 g ethyl acetate and 4 drops of DBTDL catalyst. The sealed bottle was reacted at 70°C oil bath with a magnetic stirring for 8 hours. From FTIR analysis, no unreacted –NCO signal was observed, indicating the completed reaction.

15

FA-4, HFPO-OH/N100/SAO-2 (in 0.70/3/2.25 equivalent ratio):

An 8 Oz (~237 mL) bottle was charged with 2.55 g N100 (EW=190, 13.35 meq NCO), 4.20 g HFPO-OH (MW = 1344, 3.12 meq), 38.90g 33% SAO-2 (12.99 g solid, 10 meq OH), 20 g EtOAc solvent and 4 drops of DBTDL catalyst. The sealed bottle was reacted at 70°C oil bath with a magnetic stirring for 8 hours. From FTIR analysis, no unreacted –NCO signal was observed, indicating the completed reaction.

25

FA-5, HFPO-OH/IPDI/SAO-2 (in 1/2/1 equivalent ratio):

An 8 Oz (~237 mL) bottle was charged with 2.04 g IPDI (MW=222.29, 9.17 mmol), 12.05g HFPO-OH (MW = 1344, 9.17 mmol), 33 g MEK solvent and 4 drops of DBTDL catalyst. The sealed bottle was reacted at 70°C oil bath with a magnetic stirring for 2 hours giving a clear solution. Then, 36.0g 33% SAO-2 (11.88 g solid, 9.17 mmol) was added at room temperature, and the mixture was reacted at 70°C for another 4 hours. From FTIR analysis, no unreacted –NCO signal was observed, indicating the completed reaction.

Coating on Polycarbonate (PC):

A polycarbonate substrate (10 cm by 10 cm) was coated with hard-coat coating compositions using the dip coating process. Primer (SHP 401) and silicone hardcoats (SH-1, SH-2 and SH-3) were used as received. The 30% fluorochemical additive solutions in ethyl acetate were first diluted to 0.5% with methanol, then added to ~18% SHC1200 hardcoat at 0.3% to 0.5% by weight. To form the coatings, each polycarbonate plaque was first immersed into a solution of SHP 401 primer at a rate of 90 cm per minute. Once the entire substrate was immersed in the primer, the substrate was removed from the primer at a rate of 90 cm per minute and was allowed to air dry at room temperature for 10 minutes. The dried substrate was then immersed into a solution of silicone hardcoat or a solution of silicone hardcoat containing 0.3 ~ 0.5 weight percent of a fluorinated urethane acrylate silane oligomer (unless otherwise noted), at a rate of 90 cm per minute and withdrawn at a rate of 19 cm per minute, air dried at room temperature for 20 minutes and finally heated in an oven for 30 minutes at 130 °C.

The coated, cured polycarbonate plaques were tested for coating quality and marker repellency on coated polycarbonate as shown in Table 1. The coating quality was determined visually. Those that were defect-free coatings were rated excellent, and those with minor defects were rated good.

Table 1: Coating Quality and Marker Repellent Test

Formulation No#	Formulation	Coating Quality	Marker Repellent		
			Sharpie	Vis-à-Vis	King Size
1	0.3% FA-1 in SH-1	Excellent	1	1	3
2	0.5% FA-1 in SH-1	Good	1	1	1
3	0.3% FA-1 in SH-2	Excellent	1	1	1
4	0.3% FA-1 in SH-3	Excellent	1	1	1
5	0.3% FA-2 in SH-1	Excellent	1	2	3
6	0.5% FA-2 in SH-1	Good	1	1	1
7	0.3% FA-3 in SH-1	Excellent	1	1	1
8	0.5% FA-3 in SH-1	Good	1	1	1
9	0.3% FA-4 in SH-1	Excellent	1	1	2
10	0.5% FA-4 in SH-1	Excellent	1	1	1
11	0.3% FA-5 in SH-2	Excellent	1	1	1
12	0.3% FA-5 in SH-3	Excellent	1	1	1
C-1	PC (no coating)	Excellent	5	5	5
C-2	SH-1	Excellent	5	5	5

Formulation No#	Formulation	Coating Quality	Marker Repellent		
			Sharpie	Vis-à-Vis	King Size
C-3	SH-2	Excellent	5	5	5
C-4	SH-3	Excellent	5	5	5

From Table 1, all these fluorinated urethane acrylate silane oligomers have good compatibility with silicone hardcoats, and provided good repellency to different markers, indicating the low surface energy and low adhesion for stain and paint.

5

Table 2 shows the advancing (Adv), receding (Rec), and static contact angle data from the coated plaques of Table 1. The reported data are an average of at least two measurements.

Table 2: Water and hexadecane (HD) contact angle measurements.

Formulation No#	Formulation	H₂O			HD		
		Adv	Rec	Static	Adv	Rec	Static
1	0.3% FA-1 in SH-1	108	84	106	73	63	71
2	0.5% FA-1 in SH-1	114	83	106	72	63	70
3	0.3% FA-1 in SH-2	111	68	102	69	56	67
4	0.3% FA-1 in SH-3	119	75	111	73	57	71
5	0.3% FA-2 in SH-1	111	76	109	72	53	70
7	0.3% FA-3 in SH-1	109	78	106	70	43	67
9	0.3% FA-4 in SH-1	105	84	104	64	42	61
11	0.3% FA-5 in SH-2	114	75	105	73	57	71
12	0.3% FA-5 in SH-3	118	76	106	76	50	74

10

Table 3: solvent resistant performance from the coated plaques of Table 1.

Formulation No#	IPA	Toluene	MIBK	Acetone	EtOAc	MEK	DMF
1	C/1	C/1	C/1	C/1	C/1	C/1	C/1
3	C/1	C/1	C/1	C/1	C/1	C/1	C/1
4	C/1	C/1	C/1	C/1	C/1	C/1	C/1
5	C/1	C/1	C/1	C/1	C/1	C/1	C/1
7	C/1	C/1	C/1	C/1	C/1	C/1	C/1
8	C/1	C/1	C/1	C/1	C/1	C/1	C/1
9	C/1	C/1	C/1	C/1	C/1	C/1	C/1
11	C/1	C/1	C/1	C/1	C/1	C/1	C/1
12	C/1	C/1	C/1	C/1	C/1	C/1	C/1
C-2	C/5	C/5	C/5	C/5	C/5	C/5	C/5

The coated polycarbonates were cleaned with Savers Pre-moistened Lens Cleaning Tissue (Bausch & Lomb), back and forth for one hundred times. Then, the cleaned part was dried

15

and tested with Sharpie marker, and the rating results are recorded in Table 4, which shows no effect on the marker repellent after cleaning 100 times with IPA contained Lens Cleaning Tissue.

5

Table 4: Durability with Sight SaversTM Lens Cleaning Tissue

Formulation No#	Coating Appearance	Repellent to Sharpie, Rating
1	No change	Yes, 1
2	No change	Yes, 1
3	No change	Yes, 1
4	No change	Yes, 1
5	No change	Yes, 1
7	No change	Yes, 1
8	No change	Yes, 1
9	No change	Yes, 1
10	No change	Yes, 1

The results after steel wool test (50 wipes at 400g load) are summarized in Table 5. In comparison with the results before Steel Wool test, these hardcoats showed good durability to steel wool abrasion.

10

Table 5: Durability with Steel Wool Test

Formulation No#	Coating Surface	Sharpie Repellent	After Steel wool Test	
			<u>H₂O</u> Adv/Rec/Static	<u>HD</u> Adv/Rec/Static
1	No scratch	Yes	108/73/104	72/60/69
3	No scratch	Yes	108/74/106	66/50/63
4	No scratch	Yes	98/71/98	70/53/69
5	No scratch	Yes	110/70/105	71/54/70
7	No scratch	Yes	96/68/90	71/49/63
9	No scratch	Yes	104/69/101	66/39/66
11	No scratch	Yes	101/72/100	69/49/68
12	No scratch	Yes	116/81/108	73/59/70

15

Coating on Poly(methyl methacrylate) sheet, PMMA:

By using similar coating process for polycarbonate, the silicone hardcoats with fluorochemical additives were coated on poly(methyl methacrylate) sheet and cured, except no primer was needed. Representative results are shown in Table 6 (formulations, coating quality and marker repellent) and Table 7 (contact angles).

Table 6: Coating Quality and Marker Repellent Test

Formulation No#	Formulation	Coating Quality	Marker Repellent		
			Sharpie	Vis-à-Vis	King Size
1	0.3% FA-1 in SH-1	Fair	1	1	1
3	0.3% FA-1 in SH-2	Excellent	1	3	2
5	0.3% FA-2 in SH-1	Fair	1	1	2
7	0.3% FA-3 in SH-1	Good	2	1	3
9	0.3% FA-4 in SH-1	Excellent	2	1	2
12	0.3% FA-5 in SH-3	Excellent	1	2	2
C-2	HS-1 (No FA)	Good	5	5	5
C-5	PMMA	N/A	5	5	5

5 Table 7: Contact Angles

Formulation No#	Formulation (FA)	H ₂ O			HD		
		Adv	Rec	Static	Adv	Rec	Static
1	0.3% FA-1 in SH-1	120	80	107	69	60	68
3	0.3% FA-1 in SH-2	105	78	99	56	38	54
5	0.3% FA-2 in SH-1	117	78	109	71	53	69
7	0.3% FA-3 in SH-1	108	74	101	67	39	63
9	0.3% FA-4 in SH-1	109	78	104	63	34	61
12	0.3% FA-5 in SH-3	115	79	104	63	33	63

Solvent resistance test results were summarized in Table 8.

10 Table 8: Solvent Resistance Performance

Formulation No#	IPA	Toluene	MIBK	Acetone	EtOAc	MEK	DMF
1	C/1	C/1	C/1	C/1	C/1	C/1	C/1
3	C/1	C/1	C/1	C/1	C/1	C/1	C/1
5	C/1	C/1	C/1	C/1	C/1	C/1	C/1
7	C/1	C/1	C/1	C/1	C/1	C/1	C/1
9	C/1	C/1	C/1	C/1	C/1	C/1	C/1
12	C/1	C/1	C/1	C/1	C/1	C/1	C/1
Control-2	C/5	C/5	C/5	C/5	C/5	C/5	C/5

The coated poly(methyl methacrylate) (PMMA) sheets were cleaned with Savers Pre-moistened Lens Cleaning Tissue (Bausch & Lomb), back and forth for one hundred times. After drying, the cleaned area was dried and tested with Sharpie marker, and the rating results are recorded in Table 9.

15

Table 9: Durability with Sight Savers Lens Cleaning Tissue

Formulation No#	Formulation	Coating Appearance	Sharpie Repellent, Rating
1	0.3% FA-1 in SH-1	No change	Yes, 1
5	0.3% FA-2 in SH-1	No change	Yes, 1
7	0.3% FA-3 in SH-1	No change	Yes, 1
9	0.3% FA-4 in SH-1	No change	Yes, 1

The coated polycarbonates were test with Steel Wool by 1.25 inch stylus, rubbed 50 times at 400g weight. The results after steel wool test were summarized in Table 10, in comparison with that before Steel wool test from Table 7.

Table 10: Durability with Steel Wool Test

Formulation No#	Coating Surface	Sharpie Repellent	Contact Angle (Adv/Rec/Static) After Steel wool Test	
			<u>H₂O</u>	<u>HD</u>
1	No scratch	Yes	109/75/101	72/57/71
5	No scratch	Yes	112/76/108	68/51/70
7	No scratch	Yes	97/70/92	64/36/62
9	No scratch	Yes	105/71/102	63/34/63

Coating on Glass:

Selected formulations of silicone hardcoat with fluorochemical additives (0.3% by weight) were dip-coated on glass by similar process as before. After dip-coated, the glass slides were cured at 100°C for 10 minutes. The representative contact angle data from the coated glass are summarized in Table 11.

Table 11: Contact Angles

Formulation No#	Coating Quality	Repellent to Sharpie	<u>H₂O</u>			<u>HD</u>		
			Adv	Rec	Static	Adv	Rec	Static
1	OK	4	115	70	105	75	68	70
7	OK	4	111	73	103	65	40	61
9	OK	4	106	73	101	63	37	58

Although reasonable water and oil contact angle results were obtained, the coating generally showed fair marker repellent and durability. It was found that the marker repellent and durability could be improved when more additive was used with thinner coating. Table 12 summarized the corresponding marker repellent and contact angles from representative coating formulations of SH-1 with different amount of FA-1 at different coating concentration.

5 Table 12: Contact Angles and Marker Repellent Test

Formulation No#	Formulation	Coating %*	Coating Quality	H2O Adv/Rec/Static	HD Adv/Rec/Static	Marker Repellent**
13	0.3% FA-1 in SH-1	9.00%	Excellent	105 76 101	49 36 48	4/4/3
14	0.9% FA-1 in SH-1	9.00%	Excellent	113 69 107	73 54 71	2/1/1
15	1.7% FA-1 in SH-1	9.00%	Excellent	111 72 106	71 55 69	1/1/1
16	0.3% FA-1 in SH-1	4.50%	Excellent	100 74 91	45 32 44	5/4/3
17	3.8 % FA-1 in SH-1	4.50%	Excellent	110 75 99	72 54 70	1/1/1
18	7.3 % FA-1 in SH-1	4.50%	Excellent	112 73 102	68 52 68	1/1/1
19	10 % FA-1 in SH-1	4.50%	Excellent	106 77 101	71 53 70	1/1/1

10 *: Diluted with methanol; **: the order of marker repellent, Sharpie/Vis-à-vis/KingSize.

15 For general application, the curing at room temperature provides good performance of the coated substrates. Coating on glass with 2% coating solutions and cured at room temperature for 24 hours was conducted. The coated glasses were evaluated showed good durability. No coating appearance change was observed after 20 times wipe with Surpass facial tissue (Kimberly-Clark) durability test. Table 13 summarized the contact angle data before and after durability test.

Table 13: Durability and Contact Angle

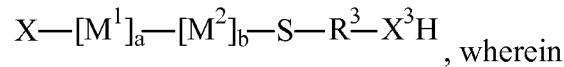
Formulation No#	Formulation (2%)	Before wipe			After wipe		
		<u>H₂O</u>			<u>H₂O</u>		
		Adv	Rec	Static	Adv	Rec	Static
C-2	SH-1	98	64	94	44	27	43
20	5% FA-1 in SH-1	117	65	104	110	48	103
21	7% FA-1 in SH-1	116	62	102	107	47	100
22	9% FA-1 in SH-1	116	59	105	108	45	101
23	11% FA-1 in SH-1	113	60	102	95	35	89
24	13% FA-1 in SH-1	115	43	107	106	37	99
25	16% FA-1 in SH-1	115	59	105	113	48	103
26	20% FA-1 in SH-1	112	55	106	78	44	73

5 Fluorochemical urethane silanes, FA-1 and FA-4 (diluted with MEK to 1%), were also formulated with 1% HCl-H₂O catalyst, with and without TEOS (1% in MEK), and dip-coated on cleaned glass slides, and cured at room temperature for 24 hours. The measured static contact angles were summarized in Table 14.

Table 14: Contact Angles

Formulation No#	Formulation*	Curing Conditions	Static <u>H₂O</u> Contact Angle	Static <u>HD</u> Contact Angle
27	FA-1/HCl-H ₂ O (1/1 by weight)	RT 24 hours	85	71
28	FA-4 /HCl-H ₂ O (1/1 by weight)	90°C 30 min.	90	42
29	FA-4 /HCl-H ₂ O (5/1 by weight)	RT 24 hours	94	55
30	FA-1/TEOS/HCl-H ₂ O (1/4/1 by weight)	RT 24 hours	96	71
31	FA-4/TEOS/HCl-H ₂ O (1/4/1 by weight)	RT 24 hours	83	34

*: FA-1, FA-4 and TEOS were diluted with MEK to 1% solution; HCl-H₂O was 1% HCl in water; The formulated coating solution was standing at room temperature for half hour before dip-coating.


Claims

1. A fluorochemical urethane comprising the reaction product of:

5 a) a polyisocyanate,

b) an isocyanate-reactive perfluoropolyether compound,

c) an oligomer of the formula

X is H, or the residue of an initiator,

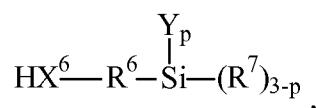
10 M¹ is the residue of a (meth)acrylate monomer having a pendent

silyl group,

M² is the residue of (meth)acrylate ester monomer,

15 R³ is a divalent alkylene or arylene groups, or combinations thereof, said alkylene groups optionally containing one or more catenary oxygen atoms; and

X³ is -O-, -S- or -NR⁴-, where R⁴ is H or C₁-C₄ alkyl;


a is at least 2, b may be 0 and a+b is 2-20, and

20 d) optionally an isocyanate-reactive compound.

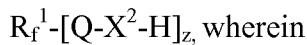
2. The fluorochemical urethane of claim 1 comprising a isocyanate-reactive

silane compound.

3. The fluorochemical urethane of claim 2 wherein said isocyanate-reactive silane is of the formula:

25 wherein

X⁶ is -O-, -S- or -NR⁵-, where R⁵ is H, C₁-C₄ alkyl or -R⁶-Si(Y_p)(R⁷)_{3-p};


R⁶ is a divalent alkylene group, said alkylene groups optionally containing one or more catenary oxygen atoms;

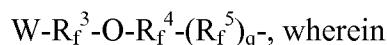
Y is a hydrolysable group,

30 R⁷ is a monovalent alkyl or aryl group,

p is 1, 2 or 3.

4. The fluorochemical urethane of claim 1 wherein said isocyanate-reactive perfluoropolyether compound is of the formula:

5 R_f^1 is a monovalent perfluorooxyalkyl group or a divalent perfluorooxyalkylene group,


Q is a covalent bond, or a polyvalent alkylene group of valency z , said alkylene optionally containing one or more catenary oxygen atoms,

X^2 is $-O-$, $-NR^4-$ or $-S-$, where R^4 is H or C_1-C_4 alkyl,

10 z is 1 or 2.

5. The fluorochemical urethane of claim 4 wherein R_f^1 is a monovalent perfluorooxyalkyl group, or a divalent a perfluorooxyalkylene group comprising one or more perfluorinated repeating units selected from the group consisting of $-(C_nF_{2n}O)-$, $-(CF(Z)O)-$, $-(CF(Z)C_nF_{2n}O)-$, $-(C_nF_{2n}CF(Z)O)-$, $-(CF_2CF(Z)O)-$, and combinations thereof, wherein n is 1 to 4 and Z is a perfluoroalkyl group, a perfluoroalkoxy group, or perfluorooxyalkyl group.

6. The fluorochemical urethane of claim 4 wherein R_f^1 comprises a group of 20 the formula

W is F for monovalent perfluorooxyalkyl, and an open valence ("-'") for divalent perfluorooxyalkylene;

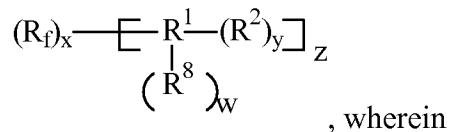
25 R_f^3 represents a perfluoroalkylene group,

R_f^4 represents a perfluoroalkyleneoxy group consisting of perfluorooxyalkylene groups having 1, 2, 3 or 4 carbon atoms or a mixture of such perfluorooxyalkylene groups,

R_f^5 represents a perfluoroalkylene group, and

q is 0 or 1.

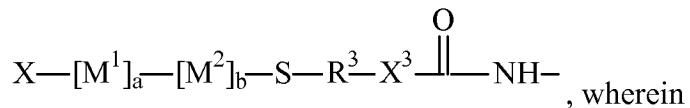
30 7. The fluorochemical urethane of claim 4 wherein said perfluorooxyalkylene group is selected from one or more of $-[CF_2-CF_2-O]_r-$; $-[CF(CF_3)-CF_2-O]_s-$; $-[CF_2CF_2-O]_r-$


[CF₂O]_r, -[CF₂CF₂CF₂CF₂-O]_u and -[CF₂-CF₂-O]_s-[CF(CF₃)-CF₂-O]_t-; wherein each of r, s, t and u are each integers of 1 to 50.

8. The fluorochemical urethane of claim 4 wherein R_f¹ comprises a
5 monovalent perfluoroxyalkylene group and z is 1.

9. The fluorochemical urethane of claim 1 wherein the molar ratio of silane groups to -NH-C(O)-X³- groups is greater than 1:1, wherein X³ is -O-, -S- or -NR⁴-, where R⁴ is H or C₁-C₄ alkyl.

10. The fluorochemical urethane of claim 1 wherein 5 to 50 mole percent of the isocyanate groups are reacted with said perfluoropolyether compound and 50 to 95 mole percent of the isocyanate groups are reacted with said oligomer.


15. 11. A fluorochemical compound of the formula:

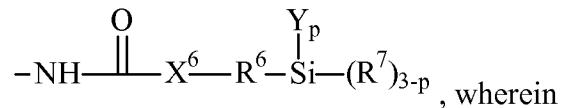
R_f is a monovalent perfluoroxyalkyl-containing group or a divalent perfluoroxyalkylene-containing group,

20 R¹ is the residue of a polyisocyanate,
R² is a silane-containing (meth)acrylate oligomer,
R⁸ is the residue of an isocyanate-reactive silane compound,
w may be 0, x and y are each independently at least 1, and z is 1 or 2.

25. 12. The compound of claim 11 wherein R² is of the formula:

X is H, or the residue of an initiator,

M¹ is the residue of a (meth)acrylate monomer having a pendent silyl group,


M^2 is the residue of (meth)acrylate ester monomer,

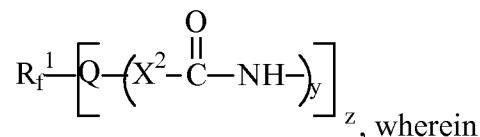
R^3 is a polyvalent alkylene or arylene groups, or combinations thereof, said alkylene groups optionally containing one or more catenary oxygen atoms; and

X^3 is $-O-$, $-S-$ or $-NR^4-$, where R^4 is H or C_1-C_4 alkyl.

5

13. The fluorochemical compound of claim 11 wherein R^8 is of the formula:

X^6 is $-O-$, $-S-$ or $-NR^5-$, where R^5 is H, C_1-C_4 alkyl or $-R^6-Si(Y_p)(R^7)_{3-p}$,


R^6 is a divalent alkylene group, said alkylene groups optionally containing one or more catenary oxygen atoms;

10

Y is a hydrolysable group,

R^7 is a monovalent alkyl or aryl group, and p is 1, 2 or 3.

14. The fluorochemical compound of claim 11 wherein $(R_f)_x$ is of the formula:

15

R_f^1 is a monovalent perfluoroxyalkyl group or a divalent perfluoroxyalkylene group,

Q is a covalent bond, or a polyvalent alkylene group of valency z , said alkylene optionally containing one or more catenary oxygen atoms,

20

X^2 is $-O-$, $-NR^4-$ or $-S-$, where R^4 is H or C_1-C_4 alkyl,

z is 1 or 2.

15. A coating composition comprising at least one compound of claim 1 and a solvent.

25

16. The coating composition of claim 15 further comprising a silicone hardcoat.

17. The coating composition of claim 16 comprising 95 to 99.8 % silicone hardcoat and 0.2 to 5% fluorochemical urethane, based on the total solids.

18. A substrate having a cured coating of a compound of claim 1 thereon.

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2008/070977

A. CLASSIFICATION OF SUBJECT MATTER
INV. C08G18/28 C09D175/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
C08G C09D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO 98/51724 A (MINNESOTA MINING & MFG [US]; ALLEWAERT KATHY E M L A [BE]; DAMS RUDOLF) 19 November 1998 (1998-11-19) HT0-4, HT0-5, FC-11, FC-12	1-18
A	WO 2006/102383 A (3M INNOVATIVE PROPERTIES CO [US]) 28 September 2006 (2006-09-28) Preparation No. 20	1-18
A	WO 2006/071567 A (3M INNOVATIVE PROPERTIES CO [US]) 6 July 2006 (2006-07-06) examples 20,42,80	1-18
A	WO 2005/030891 A (DU PONT [US]; GRAHAM WILLIAM FRANK [US]; ANTON DOUGLAS ROBERT [US]; JO) 7 April 2005 (2005-04-07) page 23, line 25 – page 27, line 9	1-18

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

- *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *&* document member of the same patent family

Date of the actual completion of the international search	Date of mailing of the international search report
3 September 2008	03/11/2008
Name and mailing address of the ISA/ European Patent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016	Authorized officer Lanz, Sandra

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2008/070977

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO 9851724	A 19-11-1998	AU	7485598 A	08-12-1998
		AU	7487698 A	08-12-1998
		AU	7487998 A	08-12-1998
		BR	9808768 A	01-08-2000
		BR	9808774 A	05-09-2000
		BR	9808778 A	01-08-2000
		CN	1255929 A	07-06-2000
		CN	1255930 A	07-06-2000
		CN	1255931 A	07-06-2000
		DE	69801323 D1	13-09-2001
		DE	69801323 T2	25-07-2002
		DE	69802395 D1	13-12-2001
		DE	69802395 T2	11-07-2002
		DE	69807684 D1	10-10-2002
		DE	69807684 T2	05-06-2003
		JP	2001525871 T	11-12-2001
		JP	2001525874 T	11-12-2001
		JP	2002504938 T	12-02-2002
		WO	9851723 A1	19-11-1998
		WO	9851725 A1	19-11-1998
WO 2006102383	A 28-09-2006	CN	101146840 A	19-03-2008
		EP	1866355 A1	19-12-2007
		KR	20070114190 A	29-11-2007
		US	2006216524 A1	28-09-2006
		US	2006216500 A1	28-09-2006
WO 2006071567	A 06-07-2006	CN	101090918 A	19-12-2007
		EP	1831268 A1	12-09-2007
		JP	2008525619 T	17-07-2008
		KR	20070100768 A	11-10-2007
		US	2006142519 A1	29-06-2006
		US	2008132132 A1	05-06-2008
WO 2005030891	A 07-04-2005	EP	1664222 A1	07-06-2006
		JP	2007505742 T	15-03-2007
		US	2008131595 A1	05-06-2008
		US	2005064202 A1	24-03-2005