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A computer method manages risk in multiple-parameter physical
systems performing interrelated activities, where at least one of such
activities is risk-related in that it may have an outcome level which
may fall outside of boundary limits. The method establishes a course
of action for the physical systems that facilitates preventing any outcome
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in computer memory (45), develops in computer memory a multitude of
candidate strategies (75) that satisfy these limits, describes the strategies
in computer memory in formats of muitidimensional outcome and regret
matrices and jointly applies to such matrices multiple optimization criteria.
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COMPUTER AIDED RISK EMENT IN LTIPLE - PARAMETER

PHYSICAL SYSTEMS

Field of the Invention
This invention relates to computer aided management

of risk in multiple-parameter physical systems having one
or more risk-related activities and more particularly,
although in its broader aspects not exclusively, to
computer aided management of risks arising from decisions
made under conditions of uncertainty.

Background of the Invention

A need for risk management decisions arises in a
broad range of technological, industrial, and financial
areas. Typical examples include operation of
manufacturing, storage, and transportation facilities in
an industrial logistics system, control of product mix at
a factory, deployment of industrial equipment, electrical
engineering and mechanical engineering problems,
inventory control, advertising campaign management in a
marketing program, and management of a portfolio of
financial assets, to name just a few.

As an example, consider the problem of efficient
lighting in a commercial facility. The facility owner
has to provide the required lighting conditions in the
building. He would like to install state-of-the-art
lighting systems and controls in order to curb energy
consumption at this facility. The state-of-the-art
equipment commands a premium price, mitigated however by
rebate incentives from the local utility company. At the
same time, the owner would like to minimize the cost of
the lighting devices that are necessary to provide the
required lighting conditions.

In this example, the owner calculates the operating
costs of lighting the facility with different types of
devices, based upon data provided by the manufacturers.
These data usually correspond to power factor at the
facility being equal to 1.0. Real world conditions
introduce a variability of power distribution to that
facility that reduces the power factor and affects the
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operation of the selected equipment and, therefore, its
operating costs. Such conditions induce a consideration
of auxiliary devices that restore the power factor at the
facility to unity.

The risk management decision in the facility owner's
problem is to find a combination of the quantity and
quality of lighting devices, controls, and auxiliary
devices that minimizes the payback period but still
affords protection from the twofold risks of both
exceeding the planned operating costs and underachieving
the desired lighting conditions. The decision should
contain these risks within some acceptable limits.

To demonstrate the universality of the need for risk
management decisions, consider next a problem of
efficient distribution of products by an industrial
manufacturing company. The distribution system starts
with the company factories that manufacture the products
and ends with buyers (such as wholesalers) who order the
products. The system includes a network of distribution
centers and warehouses, as well as transportation
facilities to move the products. All of these may belong
to the company, or may simply be used by it. All
facilities of the system (namely, the factories, the
digstribution centers, the warehouses, and the
transportation vehicles) are characterized by their
production, throughput, or storage capacities.

Similarly, use of all these facilities invokes their
associated costs. If the distribution system is not
limited to a single country, costs and prices may need to
be expressed in different currencies. Manufacturing,
transportation, loading and unloading, and handling the
products at warehouses - all of these procedures require
resources and time.

Demand depends on product prices which, in turn, may
be related to cumulative product costs at the buyers'
locations. It also depends on the behavior of
competitors, which is determined partly by the company's
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own pricing and other policies, and partly on other
factors, largely unknown.

Any inability to meet the buyers' demand, and to do
it on time, involves explicit or implicit economic
penalties. Similarly, penalties arise if the company
procures work force, equipment, and materials to meet its
planned production targets, and then has to change its
plans, causing mismatches.

The values of all parameters of the distribution
system, including its technologies, the needed production
and transportation time, the required resources and
capacities, demand, prices and costs, currency conversion
rates, and penalties (especially implicit penalties), are
not known exactly. They may also change over time. The
values for these parameters can only be estimated or
forecast. The risk management part of the efficient
distribution problem is to find a combination of
technologies, production targets, inventory levels, and
transportation flow at all stages of the distribution
system during the planning period, as well as of product
selling prices and levels of demand to be satisfied, so
that no production, warehousing, or transportation
capacity constraints are exceeded and total profits are
maximized, while the risks of insufficient profits or
losses, penalties, foreign exchange rate changes, or
unmet demand and broken schedules are kept within
acceptable limits.

Finally, let us consider a financial portfolio
management problem. For simplicity, assume that the
portfolio may include only fixed income securities of
different maturities but of one general type, such as
bonds issued by the United States Treasury. The
portfolio does not include corporate and municipal bonds,
stocks, financial instruments in currencies other than U.
S. dollars, mortgage-based securities, or derivative
financial instruments, such as options.

In this last example, the portfoclio manager has
exact data about the composition of his portfolio, that
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is, about the face value of portfolio bonds, by issues.
The manager also knows all characteristics of each
existing Treasury bond issue, both present and not
present in the current portfolio. These characteristics
include the issue's date of maturity, coupon or discount
rate, the schedule of coupon payments, the coupon
interest that has accrued on the issue from the time of
the last coupon payment, the transaction costs on
acquiring or selling the bond, callability, and the
availability of the issue for purchase.

In this example, the manager also knows the latest
bond market quotes on bid and ask prices for all existing
Treasury issues, although these quotes may differ from
the real execution prices of bond trading. This
difference may exist even if the bond is traded
(purchased or sold) at this very moment, especially for
bonds not actively traded in the market. However, both
the bid and ask quotes and the execution prices for each
bond issue depend upon the supply/demand relationship for
that issue, which changes all the time. Therefore, if a
bond is purchased or sold not immediately but later, this
relationship may change drastically, entailing the
corresponding price changes. For any time in the future,
the portfolio manager does not know in what direction and
how much prices will change for any issue. Moreover,
changing bond prices affect not only new trades: the
worth of the whole portfolio is regularly re-evaluated
(marked-to-market) at current prices.

In this example, the portfolio manager wants to
maximize portfolio returns. However, he also has to
carry out certain obligations to the portfolio owners
(investors). Perhaps the most important obligation is to
make scheduled payments to investors - either some
contractually specified amounts, amounts that stand for
the returns on investment and repayment of the investment
principal, or amounts that symbolically represent
advances on the investment returns that are expected in
the future.
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Besides these payments, the portfolio will have in
the future some other cash inflows and outflows. The
inflows are mostly new investments in the portfolio,
coupon payments from the Treasury on the portfolio bonds,
and the principals of the portfolio bonds that have
matured. The main outflows are the withdrawals by the
investors from the portfolio and the administrative costs
of portfolio management. While the coupon payments fully
depend on the composition of the portfolio and the
management costs can be anticipated with sufficient
accuracy, both the new portfolio investments and
portfolio withdrawals can at best be "educated guesses."

The portfolio can trade bonds, i.e., sell the bonds
currently in the portfolio and, using these funds
together with new inflows, purchase some other bonds.

The permitted portfolio trading activities are
restricted by a number of laws, rules and constraints of
fiduciary, regulatory, tax, and other origin. There may
be constraints on borrowing, margin trading and other
leveraging of the portfolio funds, short sales, and so
on. One of the main constraints is a fiduciary
requirement that commonly obliges the manager to preserve
the principal capital of the portfolio, that is, to
protect the portfolio against unacceptable risks.

The portfolio manager can base his portfolio
decisions either solely on the latest bond market quotes
which he knows, or on a combination of these quotes and
future bond prices that can be expected for some moment
of time yet to come.

The risk management problem of the portfolio manager
is to find a planned combination of bond trades so that
all constraints on the portfolio activities are met and
the portfolio returns are maximized, while the portfolio
funds are protected against losses that would exceed the
acceptable risk limits.

These three examples demonstrate the extreme
complexity of making risk management decisions. Still,
thegse are relatively simple situations - real life
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decision-making in financial and industrial business
organizations can be much more complicated. For
instance, the financial portfolio in the last example
could include not only Treasury bonds, but also corporate
and municipal bonds, stocks, futures, options, financial
instruments in other currencies, and other types of
securities.

It should be noted that the risk management problems
discussed above are real physical problems arising in
real physical systems. (A portfolio of fixed income
gecurities is also a physical system - a set of physical
bonds.) While it is true that this invention represents
significant quantitative aspects of these physical
problems by mathematical models, the purpose of these
models is to make decisions about target values which are
then used in the physical world to construct or operate
physical systems. Typical prior art examples of such
mathematical models for making decisions about physical
systems are the use of linear programming (LP) for
efficient resource allocation or for optimizing system
operational parameters, the use of scenario optimization
for the management of a portfolio of financial options,
and the use of mathematical equations to construct radio
antennas or to control rubber-molding operations.

Moreover, the mathematical models used in this
invention are, as a rule, too complicated for application
in reasonable time without a computer. Therefore, their
use involves changing the physical condition of the
computer memory, thus virtually creating a new state of
the computer.

To exercise risk management, it is first necessary
to define "risk."

Every decision in any of the areas listed above,
such as electrical engineering, industrial logistics, and
portfolio management, involves, on the one hand, a
specific allocation of resources and, on the other hand,
specific outcomes from different activities of the

physical system. These results may be as diverse as
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costs or profits, returns on financial portfolios,
quality of products, the composition of product mix,
consumption of electricity, penalties for broken
gchedules or unsatisfied demand, or the amount and
chemical composition of waste water. The values of some
of these results are of gpecial concern to decision-
makers (DMs), who consider such results undesirable or
even potentially dangerous and want them either to stay
within some boundary limits (which may or may not be
known in advance), or to be as low or as high as
possible. The systems activities that are subject to
special concern will be called "risk-related activities."

Qutcomes in risk-related activities depend both on
the targets to be achieved and on the allocation of
resources within the physical system. In general, it is
this dependency that is described by a mathematical
model. As a rule, the parameter values of the dependency
relationship in the system, or of the mathematical model,
are not known with certainty and can, at best, be
estimated or forecast, and often just guessed. Even if
they are forecast, it is still hardly ever, if at all,
possible to obtain a reliable forecast, especially for
the long term. The consequences of a decision about the
allocation of resources in a physical system are,
therefore, uncertain and involve the possibility of
unexpected and, possibly, undesirable or even dangerous
outcomes.

"Risk" is defined here as a magnitude of outcome
levels of undesirable or potentially dangerous activities
that have fallen outside the relevant boundary limits.
Risk management, then, is the capability to estimate, to
avoid, to control or to reduce the extent of such
occasions and reduce the probability of their
occurrence. "Risk" can be defined in many ways, both
absolute and relative, and this invention can be applied
in the framework of any of these definitions. The exact
definition of risk is here irrelevant, so, for

simplicity, only one definition is used.
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To understand the need for the present invention,
consider the current state-of-the-art both in the general
area of decision-making and, specifically, in risk
management.

Roughly, from the time the computer era began - that
ig, in the late 1940s and early 19508 - great advances
were made in two fields important to decision-making:
Operations Research/Management Science (OR/MS) and
Decision Science (DS). OR/MS primarily deals with
optimization models, while DS analyzes alternative
strategies under uncertainty and selects one candidate
strategy over all others.

A rational, natural and customary way to make a
decision is to recognize the uncertainty of the future
and the lack of knowledge about the present, to represent
the uncertainty and lack of knowledge through scenarios,
and to consider the outcomes - possibly in many
activities - under each scenario, given a course of
action or strategy. Arranging information about these
outcomes into an "outcome matrix" is a good technique for
systematic analysis of the data. This is the basic
approach of classical DS, which starts from an outcome
matrix, or, more specifically, often from a "payoff
matrix" - a special case where all outcomes are
quantified and are of the same type, such as profit.

However, this assumes that scenarios, candidate
strategies, and "strategy versus scenario" outcomes are
specified beforehand. Thus, classical DS in effect is
"passive" - it withdraws itself from tasks that
constitute 95 to 99 percent, or even more, of the total
effort. Instead of addressing the whole real world
problem of making a decision, DS limits itself to the
last, and often the easiest, part of the process.

In contrast, OR/MS uses "active" optimization
models. These models address the main part of the
decision-making problem not covered by DS: they formulate
a plan or a strategy. Using mathematical equations and

inequalities, the models define a region of feasible
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solutions (i.e., solutions that do not violate those
equations and inequalities) and find in that region a
solution that is "the best" from the point of view of one
or more criteria of optimality.

The most widely used optimization model is an LP
model. It is also the basis for and a major component of
all other more sophisticated mathematical programming
models, such as integer or non-linear programming models.
It defines a set of interrelated activities and a set of
constraints on the level of each activity, as well as on
the levels of some specified linear functions of these
activities. The LP model also defines the "objective
function" as the total sum of the net benefits (benefits
minus expenses) of activities, which also is a linear
function of activity levels. The solution of an LP model
is based on a single criterion: finding the allocation of
resources to maximize the value of the objective
function. One method of solving an LP model is described
by United States Patent No. 4,744,026 to Robert J.
Vanderbei, United States Patent No. 4,744,027 to David A.
Bayer et al., and United States Patent No. 4,744,028 to
Narendra K. Karmarkar, all issued May 10, 1988.

When applied correctly, LP models have many valuable
advantages. The models can integrate, connect,
coordinate, balance, and jointly analyze different
factors, operations, and territorial or functional parts
of a physical system. They can find hidden opportunities
for improvement and are easy to set up, although this
simplicity can sometimes be very deceptive. They can
also derive plans from the initial data, without the need
of losing time and effort on intermediate-analyses, and
thus increase the speed of decision-making.

LP models became invaluable tools for dealing with
"closed" decision-making problems, problems that exclude
any significant deviations from the status quo in
important decisions. In the petroleum industry, which
began to apply LP in the late 1940s, mathematical
programming concepts penetrated all facets of short-term
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business planning, from supply, distribution and refinery
planning to product blending and process control.
Scheduling of Air Force planes was a triumphal
application of sophisticated, large-scale integer LP
models during the 1991 Gulf War.

Conventional optimization techniques have never been
successful, however, in dealing with "open" problems that
predominate in long-term and strategic planning. This is
because prudence and moderation, the two crucial
components of mature decision-making and risk management,
are not among the advantages of optimization models. LP
models seek extremes and are stopped only by such model
constraints as equations or inequalities. Even a
minuscule alteration of input data, well within the
margin of possible error, may cause a change of solution.
Moreover, the solution always switches from one extreme
to another, so that the resulting change can be
disproportionately large. Therefore, solutions of LP
models are inherently unstable; they introduce an
additional risk component of their own.

Instability of solutions causes three major
difficulties in applying such models. The first such
difficulty comes from uncertainty. A model may provide
valid results only if the model data are sufficiently
accurate (which means the modeler must have adequate
knowledge of both the present and the future), or if the
major decisions in the optimal solution remain
sufficiently stable as data varies regarding the possible
actions and their consequences. Second, LP models have a
simplistic, well defined, one-dimensional goal, while the
DMs' goals usually are more diverse, conflicting, and
ambiguous. Third, by definition, the models are
incomplete and they may omit important factors,
considerations, and constraints, such as long-term
considerations in a short-term model.

In other words, LP models fully confirm an
observation of Oscar Morgenstern ("On the Accuracy of
Economic Observations," Princeton University Press, 1950,
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p. 45) that "... every type of numerical observation,
based upon a mathematically formulated model, imposes
restrictions upon the data. If these restrictions cannot
be met, the operations become impossible, even if the
underlying model should be free from objections."

Remedies have been proposed to deal with some of
these drawbacks. For example, stochastic programming
(SP), an important mathematical programming extension of
LP, is intended to deal with uncertainty. To a certain
degree, SP performs this function, but it offers only an
implicit and limited protection against risk attendant to
uncertainty. Its risk protection is valid only in a
statistical sense: if its optimal solution is repeatedly
implemented a very large number of times, it will
eventually prove the best. However, with a few
exceptions, the decision-making situations are either
unique and non-repetitive or are repeated only a small
number of times. If a harmful or adverse situation
happens during one of those times, the losses resulting
from the "optimal" decision may never be recouped.

Also important, SP does not offer choices to the
decision-makers: it constructs a single solution and
declares it to be the optimum. SP therefore deprives
them of enormous advantages coming from the use of
outcome and regret matrices and DS criteria.

However, the crucial point is that SP usually is
simply inappropriate as a basis for making complex
decisions in the relevant fields. In "Risk, Uncertainty
and Profit," by F. H. Knight, University of Chicago
Press, 1921, a clear distinction is made between
"insurable risk" and "non-insurable uncertainty." In
that approach, insurable risk is said to exist when the
probabilities of outcomes are known exactly and are
derived on an objective basis; that is, they are
calculable on the basis of relative frequencies or
similar data. Non-insurable uncertainty exists in the
absence of objective and known probabilities.
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At the same time, probabilities are considered to be
calculable and adequate only for "repetitive phenomena of
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a standardized variety such as occur in games of chance,
in actuarial science, in genetics, and in statistical
mechanics." ("Decision Analysis - Introductory Lectures
on Choice under Uncertainty" by Howard Raiffa, Addison
Wesley, 1970, p. 274). 1In contrast, the decision-making
problems to be addressed by SP deal with complex
economic, financial, technical and social phenomena,
which, as indicated above, are non-repetitive. At best,
the probabilities related to these phenomena include
subjective judgments and more or less educated guesses.
In these problems, probabilities are the least reliable
part of the input data.

Recognizing this need in probabilities of future
events, a leading practitioner of SP states, for
instance, in the United States Patent No. 5,148,365 to
Ron S. Dembo, issued September 15, 1992, that "For those
of skill in the art of portfolio management, the
probability of the various scenarios can be guesstimated
with reasonable accuracy based on experience" (column 8,
lines 56-59). Notably, the author does not even mention
objective probabilities which, as indicated above, are
the precondition for proper applications of SP. He would
be quite satisfied with the "guesstimated" probabilities,
subjectively assumed by the portfolio managers.

However, even these lowered data demands cannot be
met. Those "of skill in the art of portfolio management"
disagree with the author's high evaluation of their
capabilities and consider it to be little but wishful
thinking. A leading financial forecaster writes: "To be
sure, most forecasters' expectations do not work out at
all. For instance, in June 1990, 88% of economists
predicted continued economic expansion for at least a
year. A month later, the worst recession in a decade
began. As merely the latest example, a June 1394 survey
of 29 of the country's most influential money managers
showed that all of them expected the long bond yield to
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remain below 8% during the rest of last year. It was
above 8% three months later. Evidence of the failure of
conventional forecasting methods is more than anecdotal.
According to The Wall Street Journal, a study of its own
surveys since 1982 of the country's top economists
reveals that in the aggregate, these acknowledged experts
predicted accurately the direction (forget the extent) of
interest rates only 25% of the time, which is half the
success rate that would be produced purely by guessing."
(Robert R. Prechter, "At the Crest of the Tidal Wave,"
New Classics Library, 1995, pp. 19-20). The latest
surveys provide similar results. (The Wall Street
Journal, August 6, 1996, p. Al5).

Moreover, if the applications of SP are

controversial even when they involve just the insurable
risk, because the "optimal" strategies do not
sufficiently protect from risk, then, under uncertainty,
when the objective probabilities are not known, this
method becomes even more controversial. Therefore the SP
procedure has to be based on a combination of two
implicit premises. The first assumes that there exists
an objective optimum under uncertainty, that it can be
found by objective methods, and that it is just a matter
of technique to find that optimum - namely, a matter of
applying the correct model and getting correct data. The
first premise also assumes that these techniques have
been sufficiently attained in modeling and solving the
problem under consideration. The second premise concedes
that the optimum may indeed be subject to qualifications,
such as the personal risk attitude and subjective
preferences of the decision-maker, but assumes that these
still can be incorporated into the SP model on the basis,
say, of prior observations of the DMs' behavior and
attitude, and that, again, these requirements are met in
the problem under consideration.

The first assumption has been proven wrong. Both
the authoritative "Games and Decisions" by R. Duncan Luce
and Howard Raiffa, John Wiley & Sons, 1957, pp. 274-303
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and 324-326, and later literature, such as "Decision
Making under Risk and Uncertainty: New Models and
Empirical Findings" ed. by John Geweke, Kluwer Academic
Publishers, Dordrecht, the Netherlands, 1992, pp. 1-10,
show that, even in the simplest case of a two-dimensional
payoff matrix and a single decision outcome to be
considered, such as profit, there are several DS criteria
for decision-making under uncertainty - that is, methods
for comparing and selecting strategies. (For instance,
DMs can base their choice on the average profit, the best
case profit, the worst case profit, and some combination
of the above.) None of the known or even conceivable
criteria of DS is perfect or "the best." Each has
faults, such as violations of transitivity, that are
revealed under some specific conditions. Thus, even in
the simplest case, it is impossible to make the best
decision under uncertainty in a general, unique,
objective, and theoretically correct manner.

The second assumption is unrealistic, at least in
the foreseeable future. As shown, for example, in the
above cited "Decision Making under Risk and Uncertainty:
New Models and Empirical Findings" pp. 11-16, the
existing theories of personal choice under uncertainty,
such as the expected utility theory, are still evolving.
They cannot yet deal successfully even with some quite
simple but paradoxical decision-making situations. If
and when this process successfully ends and some
comprehensive and consistent decision theory, both
normative and descriptive, becomes a reality, its
vattitude extracting" procedures still are likely to be
lengthy, cumbersome, imprecise, and impractical, not
suitable for real life decision-making, especially in
complex business situations that require reasonably quick
decisions. (The expected utility theory lays claims only
to normative correctness but not to a good descriptive
characterization of choice under risk and uncertainty.
Therefore, it is doubtful that the theory can provide a
satisfactory "attitude extracting.")
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The "robust optimization" (RO) approach described,
for instance, in "Robust Optimization of Large-Scale
Systems" by J. M. Mulvey, R. J Vanderbei and S. A.
Zenios, Operations Research, v. 43 (1995), No. 2, pp.
264-281, is an extension of SP and has some advantages
over SP: it allows solutions that are relatively stable
(that is, the optimal solutions under different scenarios
remain closer to each other than under SP). Also, RO is
multicriterial and allows tradecffs between several
criteria of optimality. However, similarly to SP, RO
still relies on scenario probabilities being objectively
known. (In the quoted article, the authors circumvent
this crucial issue by simply mentioning, in passing, on
p. 265 "the probability of the scenario." They do not
explain how they succeeded in obtaining these
probabilities and whether these are objective or not.)
Moreover, even if these unrealistic expectations are met,
RO would again offer only long run, "statistical"
protection from risk, while its short-term results may be
disastrous. Although, by changing the weights of
different criteria, RO can form several strategies, it
neither constructs payoff or outcome matrices nor applies
them for comparison and selection of the best strategy.
Also, RO does not use clustering and therefore has to
solve models with enormous numbers of scenarios.

Finally, too much importance is attached to meeting the
initial constraints of the model (see later).

All above considerations about OR/MS and its tools
refer to the first part of the decision-making process,
namely, to the formation of candidate strategies. As for
the second part (selection of a strategy), this is the
province of DS. It was indicated above that there are
several DS criteria for decision-making under
uncertainty. Most of them are based on the "strategy
versus scenario" payoff values for a strategy - either on
individual values, such as the best payoff and the worst
payoff of a strategy, or on values derived from
individual payoffs, such as the average payoff. Three
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best, most comprehensive and sophisticated criteria of
payoff type are the optimism-pessimism index (OP)
criterion, the partial ignorance (PI) criterion, and the
modified insufficient reason (IR) criterion. These three
criteria, which are previously known, provide the basis
for new methods of this invention.

All three are "synthetic" criteria, which means that
they are guite general and include as special cases
other, simpler criteria. For instance, both minimax and
maximin payoffs are special cases of all three criteria,
the expected payoff is a special case of the PI
criterion, etc. The synthetic criteria perform an
extremely important role: they minimize the negative
impact of absence or lack of knowledge about
probabilities of future events and their combinations
(scenarios) .

As mentioned before, probabilities are the least
reliable part of input data, and decision analysis under
risk and uncertainty cannot therefore generally dispense
with subjective judgments, including judgments on
probabilities. The goal is to minimize both the impact
of these judgments and the effort required to form them.
It is especially important to arrange the introduction
and use of probabilities and other judgments in a manner
least detrimental to successful decision-making, which
means to postpone their use until the latest possible
stage of analysis.

Fortunately, probabilities do not have to be used at
the initial stages of the analysis, as is done in SP,
decision tree methods, and so on. They also can be
compressed into a very few parameters that estimate the
overall degree of uncertainty. Furthermore, data
requirements can be made less stringent by allowing the
values of these parameters to fall within broad
intervals, rather than correspond to a single value.
Synthetic criteria meet all these requirements.

All new methods are also synthetic and therefore
have the same advantages. However, these methods
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additionally combine OP, PI and IR with the concept of
"regret" introduced into Decision Science by Savage in
"The theory of statistical decision," Journal of the
American Statigtical Association, 46 (1951), pp. 55-67.
Regret is basically a cost of uncertainty; it is derived
from the payoff matrix and characterizes the risk, or
regret, or opportunity lost because of choosing a wrong
strategy. Regret may also be defined as the potential
for reducing risk by switching strategies. See
calculation of regret by Egq. (7). In some special
connotations, but not in this invention, "regret" is
defined as the difference between a given benchmark, such
as the performance of the stock market, and the actual or
projected results. In previous state-of-the-art Decision
Science methods, regret has been used only in simple non-
synthetic criteria, such as average regret or minimax
regret (see, for instance, J. R. Buck, "Economic Risk
Decisions in Engineering and Management," Iowa State
Universgity Press, 1989, pp. 313-334). To the best of my
knowledge, the comprehensive OP, PI and IR criteria have
not been applied to regret; it is done for the first time
in this invention.

In addition, the new regret-based synthetic methods
naturally give rise to decision formulas and graphs that
use and expand the concept of "efficient frontier" (see
later). The proposed new methods are invaluable for
finding desirable limits on tightening the discretionary
constraints.

A crucial difficulty in applying DS is that none of
strategy selection criteria is "the best" under all
circumstances. This opens the way to combining criteria
- another method of this invention.

The need to deal jointly with the totality of
complicated decision-making issues such as uncertainty,
the multiple criteria involved in real world decision-
making, and the incompleteness of mathematical models,
creates additional difficulties. Especially crucial is
incompleteness: it cannot be eliminated in principle,
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since the only complete model of a reality is the reality
itself. '

This analysis shows that both general approaches to
decision-making (OR/MS and DS) have serious flaws if used
as mutually exclusive tools, as is the current practice.
Let us see how these general considerations are reflected
in the specific field of risk management.

Both the theory and practice of risk management are
most advanced in the financial industry, therefore we
begin our survey there, although the issues and
techniques that are specific to managing portfolio risks
are not directly addressed in this patent application.

Modern Portfolio Theory constructs the efficient
frontier - the risk/return curve, which defines a
portfolio with the highest expected return for a given
level of risk, or the lowest level of risk for a given
level of expected return. In other words, it attempts to
"optimize" a portfolio, to find the best tradeoff between
expected return and expected risk. What is "the best" is
determined by the subjective risk attitude of the
decision-maker. However, in practice this approach is
"passive": it does not form portfolios but ranks only
"external" portfolios that are developed outside the
system. Moreover, the weakest link of this approach is
its inability to evaluate and manage risk sufficiently
well. Depending on market conditions, the forecast
levels of risk may prove to be good or bad approximations
of reality.

Until the early 1980s, risk management in financial
institutions was mainly limited to the use of
Asset/Liability Models (ALM). That methodology estimates
future earnings under a number of probable scenarios of
economic and financial conditions, projects future cash
flows for one or more candidate investment strategies,
derives final assets and liabilities resulting from each
strategy under each scenario, and presents the estimated
returns for all "strategy versus scenario" combinations
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in the format of a payoff matrix. ALM thus follows the
approach of DS, but its implementation has serious flaws.

ALM was primarily intended for such institutions as
commercial banks, where both assets and liabilities were
relatively illiquid and were priced on an accrual basis.
ALM is based, however, upon a false assumption that gains
or losses occur when they accrue. To find out returns,
ALM needs simulation over long periods, until most
portfolio transactions mature. Trading items, which must
be marked-to-market, are treated separately, and it is
difficult to arrange hedging between trading and accrual
items. For that purpose, "proxy values" (that is,
approximations to market values) have to be estimated for
accrual items. ALM also has other faults. Again, one of
these is that ALM is passive - it provides no means for
devising a good investment strategy and evaluates only
"external" candidate portfolios. A second fault is that
AIM is not capable of dealing with a large number of
scenarios that might be needed because long-term
scenarios are not accurate. The accumulation of all
these faults is worrisome.
| Unfortunately, during the past two decades several
trends have evolved that made risk management in finance
both more difficult and more necessary. Some of the most
important of these trends are:

(a) Securitization of financial instruments,
increase of their liquidity, wide use of more volatile
instruments, such as derivatives and especially options,
and moving from accrual accounting to frequent
revaluation and marking-to-market of positions;

(b) Increased volatility of financial markets, which
is due to their globalization, advances in information
technology, and growth of mutual funds, especially those
specializing in emerging markets;

(c) Increased trading, and especially the
institutional trading for an institution's own account;

and
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(d) Emphasis on performance, which as a rule can be
improved only by assuming higher risks, that sometimes
lead to rogue trading, fraud, and eventual financial
disasters.

These trends cause concern about risk control among
both the institutional managers and regulators. Two risk
evaluation methodologies have been developed to meet
these concerns. Value-at-Risk (VAR) considers risk that
arises from random market movements, while Stress Testing
deals with risk of the worst-case scenarios. Both
methods have their advantages and disadvantages, and they
are best applicable under different circumstances.

The VAR method assumes that rate and price movements
of financial instruments can be described in a
statistical fashion. If VAR is applied at times when
this assumption is correct and the markets are
statistically stable, the method provides an estimate of
the loss that is expected to occur no more than, say, 5
percent of the time.

However, VAR depends heavily on estimates of
volatilities and correlations that are derived either
from historical data or from the values "implied" in
current market prices. The trouble is that when a market
collapses or makes a sharp move, that is, when we really
need the risk control method to work, all these estimates
become irrelevant, because actual volatilities greatly
exceed the estimated values - by at least several
multiples.

The Stress Testing method uses defined scenarios,
including those for unstable markets. The scenarios can
be simulated on the basis of both market conditions for
selected periods in the past and "educated guesses."

This method provides more information of the expected
portfolio performance, but it is computationally
demanding even for a sharply restricted number of
scenarios.

These two methods can be used in combination,

benefiting from the advantages of each. Their joint use
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does not overcome, however, their common fault: both
methods are "passive" in that they do not necessarily
generate good portfolios but rather only evaluate
portfolios constructed elsewhere. Both methods, and
especially their combination, can be used as a prelude to
"optimizing" portfolios, as defined above.

There are attempts to provide a combination of
portfolio optimization with risk management by SP. The
trouble with these attempts is that SP protects from risk
(and only from "insurable risk") only in a stable market,
where historical statistical parameters are valid.

To sum up, no methods used in portfolio management
are quite satisfactory or provide good risk management.

Ooutside the finance industry, both the theory and
practice of risk management are much less advanced. A
number of large companies follow the approach of scenario
planning, which can serve as a foundation to risk
management. As currently used, however, this methodology
as a rule is wrongly focused on the definition of
scenarios, rather than on rigorous development of
candidate strategies, and especially compromise
strategies.

At the same time, the business world has become more
volatile. Uncertainty has become the rule rather than
exception, and it too often brings unpleasant surprises.
As in finance, this makes risk management both more
difficult and more necessary.

A common factor in all current practice is that,
when dealing with multiple-parameter physical systems,
effective risk management escalates quickly in complexity
until it is literally beyond the capacity of the human
mind to handle on any basis other than that of an
educated guess or a "rule of thumb." The existing
computational approaches are also inadequate. Moreover,
many of them, such as LP models, increase risk by adding
a risk element of their own. There is, therefore, a real
and continuing need for tools that will aid in valid risk

management .
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Summary of the Invention

This invention deals with decisions about the future
activities of physical systems that have potentially
dangerous, risk-related activities. "Risk" is defined
here as a magnitude of outcome levels of these activities
that have fallen outside some boundary limits, which may
be either predetermined, or determined in the process of
making the decision, or both. This invention provides
new techniques in five broad directions.

First, whatever model (used herein in the broad
gsense of encompassing a formula or a method as well) is
used to make the decisions, as a rule it is not always
completely reliable for selecting the best decision.

Such a model may, however, be used for an easier task -
gcreening out bad and risky decisions. For that purpose,
the model has to be complemented by adding explicit risk-
limiting constraints based on specific boundary limits.
The "risk-limiting constraints" are defined here as
either mathematical equations and inequalities that, once
added to the model, eliminate or reduce outcomes falling
outside the boundary limits, or other means (such as high
fines and penalties) that play the same role of limiting
the risky outcomes.

Second, the risk-limiting constraints in this
invention are of two different types - predetermined
constraints and discretionary constraints. Predetermined
constraints are based upon generally recognized safety
and regulatory considerations, notions about the
tolerable level of the enterprise’'s profitability, and so
on. After these constraints are met, this invention
introduces discretionary constraints during the
computational process of strategy formation - to find,
analyze and fine-tune tradeoffs and to construct
alternative candidate strategies. As a rule,
predetermined constraints refer to the whole model, but
discretionary constraints are usually imposed on outcome
levels of specific risk-related activities under specific
gcenarios. While the predetermined constraints may be
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used in other models, discretionary constraints are
unique to this invention.

Third, as a rule, the addition of risk-limiting
constraints makes the expanded model more complex and
thus necessitates the use of computers in finding the
solutions of the expanded models in a reasonable time.
State-of-the-art optimization methods currently available
for solving these complicated models, when applied
without due attention to risk, are insufficient and often
counterproductive, because any such method tends to add a
substantial risk component of its own. This invention
provides new ways of dealing with that complexity in
constructing candidate strategies (a "strategy" is a set
or a sequence of possible decisions). These new ways
include the use of multiple single-scenario optimization
models, as well as both single and multiple multiscenario
models.

Fourth, the special structure of the multiscenario
models, combined with the use of a relatively small
number of strategic variables and with the understanding
that a good solution must be good for worst scenarios,
leads to the development through this invention of a
novel, highly efficient and quickly converging
decomposition method for solving large mathematical
programming models.

Fifth, decision-making usually comprises two stages:
construction of candidate strategies and selection of one
of them, to be implemented in the physical system or
systems. This invention provides techniques to deal
jointly with the whole decision-making process - not only
with the first stage, but also with the second stage. At
the second stage, these techniques provide new methods of
comparing and selecting strategies. They also deal with
group decisions, multicriterion decisions, qualitative
attributes, and outcomes in multiple risk-related
activities.

Broadly, the invention takes the form of a computer
method for managing risk in multiple parameter physical
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systems performing interrelated activities, where at
least one activity is risk-related in that it has outcome
levels that may fall outside boundary limits. Such
boundary limits may be predetermined. The method
specifically helps manage risk by establishing a course
of action (strategy) for the physical systems preventing
any outcome levels for the risk related activities from
falling outside these boundary limits. The method
assumes the existence of both boundary limits and a
decision-making model that defines, under some set of
criteria, the best solution of the model and the
desirable levels of the activities of the physical
systems in that solution. The initial model may be
stored in computer memory either directly in its
computational form, or in its symbolic, mathematical
form. In the latter instance, the model is converted
into a computational model in computer memory by
replacing symbols with numbers (i.e., the values of
parameters) .

In its simplest forms, the invention assumes
certainty. That is, the value of each parameter, both of
the systems and of the decision-making model that is
needed to determine that solution, is known. Boundary
limits may be generated outside the model.

From one aspect, the method of the invention
comprises the steps of finding a set of satisfiable
boundary limits and developing in computer memory a
multitude of feasible candidate strategies that satisfy
the boundary limits, finding the values of outcomes of
the risk-related activities for each feasible candidate
strategy under relevant conditions by storing and solving
a model of the physical systems in computer memory,
identifying candidate strategies from the outcomes of the
risk-related activities and recording such outcomes in
computer memory, and jointly applying in computer memory
multiple optimization criteria to the outcomes of the
candidate strategies to aid decision-makers in selecting
an implementable strategy.
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From another aspect, the method of the invention
comprises the steps of finding a set of satisfiable
boundary limits and developing in computer memory a
multitude of feasible candidate strategies that satisfy
the boundary limits by computer methods that use risk-
limiting constraints, finding the values of outcomes of
the risk-related activities for each feasible candidate
strategy under relevant conditions by storing and solving
a model of the physical systems in computer memory,
identifying the candidate strategies from the outcomes of
the risk-related activities and recording such outcomes
in computer memory, jointly applying multiple
optimization criteria in computer memory to outcomes of
all candidate strategies to exclude candidate strategies
which are inferior to others under the criteria, and
jointly applying multiple optimization criteria in
computer memory to outcomes of remaining candidate
strategies to aid decision-makers in selecting an
implementable strategy.

From yet another aspect, the method of the invention
comprises the steps of storing the initial decision-
making model in computer memory (the model including the
known values for each needed parameter of the physical
gystems), producing a solution of the initial model in
computer memory, deriving from the solution of the
initial model the levels of outcomes for risk-related
activities, and comparing these levels with boundary
limits.

If some preliminary boundary limits are violated,
the next step of the invention is to modify the decision-
making model so that it explicitly includes risk-limiting
constraints that eliminate or minimize these violations.
If there exists no "feasible" solution, herein defined as
one in which all preliminary boundary limits are
simultaneously met, at least some of the boundary limits
are changed. After such a change, the expanded initial
model with added risk-limiting constraints - based on
both earlier solutions of the model and changed boundary
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limits - is solved again, and its outcomes in risk-
related activities are compared anew with the boundary
limits. This process continues iteratively until a
feasible solution is obtained.

After that, a similar procedure is used to obtain a
"gatisfactory" solution, which meets both predetermined
and discretionary constraints.

In distinction from the customary mathematical
programming, where initial model constraints are
considered "sacred" and have to be fully met, this
invention admits the possibility of inaccurate data being
used in formation of almost any constraints. (The
"predetermined" constraints based on valid rules and
regulations may be an exception.) After all, even if a
model cannot find a feasible solution, real life as a
rule still finds it, showing that the model is wrong.
Therefore this invention does not necessarily battle
infeasibilities, as done in standard mathematical
programming or Robust Optimization, but instead prefers
to analyze and change the constraints, whenever
appropriate and necessary, to find realistic feasible
solutions.

A key feature of the invention is that it aids in
risk management under conditions of uncertainty. In such
a situation, at least one parameter of a physical system
has a plurality of different possible values. From this
aspect of the invention, the method aids in risk
management under uncertainty through the use of
scenarios. A "scenario" is here defined as a
respectively different combination of values of all
needed systems parameters, with each combination
including a variation in the value of some uncertain
(i.e., multiple value) parameter. The decision model
under uncertainty from the very beginning includes risk-
limiting constraints that stem from predetermined
boundary limits on risk-related activities.

From this aspect of the invention, the method
comprises the steps of storing a decision model of the
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gsystems in computer memory, the model including the
values for parameters of each physical system and at
least one of the parameters having a plurality of
possible values because of uncertainty; producing
solutions of the model in computer memory for a plurality
of scenarios; and deriving from the solutions of the
model the outcome levels for the risk-related activities
of each of the used scenarios.

If, for some scenarios, there exists no feasible
solution in which all boundary limits on risk-related
activities are met simultaneously, the set of limits may
be changed. After such a change is made, the model is
applied again with modified risk-limiting constraints
that are based on changed limits.

From yet another important aspect of the invention,
the computer method aids in risk management under
uncertainty by using scenarios via either single-scenario
models or multiscenario models that have scenario
submodels. (A single-scenario model may be considered as
a special case of a multiscenario model, where it also is
a single submodel.) Either way, the method of this
invention is to develop candidate strategies - sets of
numerical values for outcomes of a relatively small
number of key (i.e., strategic) variables that correspond
to either the most important or immediate and irrevocable
decigsions. In both instances, the method also focuses on
an "outcome matrix" - a three-dimensional array of
outcomes of risk-related activities, systematically
arranged in a "scenario versus strategy versus risk-
related activity" format. (The number of dimensions may
be greater than three.) A "regret matrix" derived from
the "outcome matrix" plays a no less important role.

The compressed, highly aggregated results
accumulated in the outcome and regret matrices serve two
main purposes. First, they allow easy generation of a
major category of risk-limiting constraints and therefore
help to form and modify the candidate strategies.
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Second, they permit the strategies to be analyzed and
compared.

When single-scenario models are used, the method of
the invention generates strategies from a multitude of
solutions of single-scenario models. It produces
solutions that are both "feasible" (defined as meeting
all predetermined boundary limits) and "satisfactory" (as
explained before, defined as meeting the "discretionary"
limits that are imposed during the computational process
of strategy formation). The method then constructs the
candidate strategies by classifying the values of
strategic variables in each scenario solution into
specific segments. Finally, it adapts the strategies to
conditions of all scenarios and places the resulting
outcomes into the corresponding cells of the outcome
matrix.

When multiscenario models are used, the method
stores an initial multiscenario model of the systems in
computer memory. The initial model includes parameters
for each physical system, with at least one parameter
being uncertain in having a plurality of different
possible values. The multiscenario model comprises
interconnected scenario submodels for each scenario, each
submodel being filled in computer memory by the values of
parameters from the corresponding scenario. The
multiscenario model produces a compromise solution that
takes into account all scenario submodels, as well as
probabilities of scenarios, and includes a solution for
each of these submodels. The method derives the outcome
levels of the risk-related activities for the respective
scenarios from solutions of the submodels.

If the decision-makers are not satisfied with the
outcome levels for some risk-related activities under
some scenarios, or want to find and explore some
tradeoffs, the method of the invention adds
"discretionary" risk-limiting constraints to the initial
multiscenario model and produces solutions to the
expanded model with these risk-limiting constraints that
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move the solution in the desired direction. This
addition of discretionary risk-limiting constraints is
equivalent to overriding the original scenario
probabilities, which are the least reliable element of
input information.

From another aspect of the invention, the
discretionary risk-limiting constraints can be added to
the initial multiscenario model consecutively, in an
iterative manner. The invention thus allows the outcome
levels of risk-related activities to be brought within
acceptable limits on a step-by-step basis.

From yet another aspect of the invention, if the
numbers of either scenarios or candidate strategies are
too large and require an excessive computational effort,
each of these numbers can be reduced to an acceptable
level - either by clustering "individual" scenarios or
strategies into "typical" scenarios or strategies,
respectively, or by using some other basis for grouping
scenarios, such as existing functional or statistical
relationships. In distinction from the usual
applications of clustering, where errors arising from
incorrect composition of clusters are difficult to find
and eliminate, this invention, when dealing with doubtful
cases of assigning individual scenarios or strategies to
groups, can "uncluster" them fully or partially and
consider, whenever necessary, either the "individual"
entities instead of "typical" ones or reclustered
"typical" entities.

From yet another aspect of the invention, the method
may also deal with a large number of scenarios and with
the difficulty of solving the resulting large-scale
optimization models. Instead of finding the solution of
one large-scale multiscenario problem that covers S
scenarios, the method in turn solves many smaller
multidimensional models of a size that can be easily
handled - e.g., S/10 of ten-scenario models. This method
of the invention combines the advantages of solving small
models with the possibility of finding compromise
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strategies, well adjusted to combinations of diverse
conditions. It also introduces new limiting constraints,
which are based on the values of strategic variables in
solutions of multiscenario problems formed for groups of
worst scenarios. This method is a relatively complex
aspect of the invention, but is also particularly
effective for dealing with very large and complicated
problems.

By changing the composition of scenario groups
covered by each multiscenario model and by fine-tuning
the discretionary risk-limiting constraints imposed on
the models, the invention permits finding good candidate
strategies in a mere fraction of the time needed for such
computations in existing state-of-the-art methods.

As for methods that deal with selection of the
candidate strategy to be implemented in physical systems,
another aspect of the invention is to provide three new
synthetic regret-based methods.

From yet another aspect of the invention, these
methods are presented in an analytical and graphic
framework of newly developed "efficient frontier
(regret) ."”

Another aspect of the invention involves
simultaneous use of multiple weights, or conversion
coefficients, to simplify either the outcome and regret
matrices or the process of decision-making. Simplifying
the outcome or regret matrix may mean it is converted
from three or more dimensions to two dimensions, or that
qualitative parameters are converted into quantitative
values. Simplifying the process of decision-making may
mean that multiple criteria are amalgamated into a single
criterion, or that the opinions of different members of
the decision-making group are made commensurable.
Similarly to other mathematical methods, such
simplification is often not reliable. Therefore, as in
the stage of constructing the strategy, conversion
techniques are primarily used to screen out bad and risky
strategies, rather than to select "the best" strategy.
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Moreover, the invention combines the conversion feature
with imposing (at the strategy construction stage) risk-
limiting constraints, which stabilize and moderate the
decisions.

The invention may be more fully understood from the
following detailed description of several specific
examples, considered in the light of the accompanying
drawings and the appended claims. In flow charts,
parenthetical numbers are keyed to similarly numbered
mathematical models in the detailed description text.
Brief Description of the Drawings

FIG. 1 is a flow chart of a computer method, in
accordance with the invention, for managing risk under
conditions of certainty;

FIG. 2 is part of a flow chart of a computer method,
in accordance with the invention, for managing risk under
conditions of uncertainty, using single-scenario LP
models;

FIG. 3 is a continuation of the flow charts in FIG.
2 and FIG. 5;

FIG. 4 is a flow chart of a computer method, in

accordance with the invention, for managing risk under

uncertainty, using a single multiscenario LP model;

FIG. 5 is a flow chart of a computer method, in
accordance with the invention, for managing risk under
uncertainty, using single-scenario LP models jointly with
clustering individual scenarios into typical scenarios;

FIG. 6 is a flow chart of a computer method, in
accordance with the invention, for managing risk under
uncertainty with the use of multiple multiscenario LP
models;

FIG. 6A an extension of the flow chart in FIG. 6;

FIG. 6B is another extension of the flow chart in
FIG. 6;

FIG. 7 illustrates a two-dimensional payoff matrix
for a four-strategy, six scenario problem;

FIG. 8 illustrates a two-dimensional regret matrix
for the same four-strategy, six scenario problem;
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FIG. 9 is a decision graph (OPR efficient frontier)
for the OPR method of comparing the candidate strategies;

FIG. 10 is a decision graph (PIR efficient frontier)
for the PIR method of comparing the candidate strategies;

FIG. 11 is a decision graph (MIRR efficient
frontier) for the MIRR method of comparing the candidate
strategies; and

FIG. 12 is an extension of the flow charts of FIGS.
3, 4, and 6B illustrating selection of strategies.
Detailed Degcription

It is believed useful, at this point, to provide an
overall view of the invention before discussing details
and the figures.

This invention is a hybrid, an ensemble of two major
directions in methods of decision-making, those of OR/MS
and those of DS. The two technologies complement each
other and are critical to each other's success. The
invention uses the improved tools of DS for the selection
of the strategy, but it also uses OR/MS optimization
models for formation of candidate strategies and for
filling in the outcome matrix. Moreover, the
optimization models are used in such a way that, instead
if increasing risk, they reduce it. Realizing that
mathematical models are never completely reliable in real
world decision-making, and that optimization models are
especially vulnerable because of their introduction of an
additional risk component of their own, the invention
uses optimization primarily to screen out bad and risky
strategies, rather than to construct and select "the
best" strategy. This simple but powerful technique helps
to deal successfully with very complicated, previously
unsolvable problems. But this approach also turns out to
be the essence, indeed, the very goal of risk management.

This invention uses techniques of prior art in OR/MS
and DS, but uses them in different framework and for
different purposes.

First, the primary tool of this invention is the
explicit addition to the main model (or a formula or a
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method) of multiple risk-limiting constraints. Most of
the explicit additional constraints are of a "cutting
plane" type, well-known in the prior art. These
constraints were first introduced into mathematical
programming by Ralph E. Gomory in "Outline of an
algorithm for integer solutions to linear programs, "
Bulletin of the American Mathematical Society, v. 64
(1958), pp. 275-278. Up to the present, cutting
hyperplane constraints have been used to cut off non-
integer portions of the region of feasible solutions and
some other similar purposes, but in this invention
gimilar constraints instead cut off portions of the
feagsible solution region that are too risky, where the
unacceptable outcomes are located, leaving for further
optimization only a truncated portion of the region where
the risks are acceptable. The invention may also use
such forms of risk-limiting constraints as fines and
penalties that perform the same role, namely, they limit
the possibility of undesirable outcomes, but in a weaker
(non-mandatory) form. More specifically, while the risk-
limiting constraints in the form of equations and
inequalities set the absolute limits (boundaries) of
outcomes in risk-related activities that cannot be
exceeded in the LP model solution, the constraints in the
form of fines and penalties adversely affect the movement
toward or over the boundaries, but do not categorically
forbid it.

The risk-limiting constraints, including fines and
penalties, can be added to the LP model in any order and
way desired. If they are added iteratively, one by one
or in groups, starting from different outcome levels for
various risk-related activities, the resulting truncated
feasible regions may differ, as differ the solutions of
the evolving models. This procedure leads to the
generation of different candidate strategies, with
diverse acceptable tradeoff combinations of outcome
levels in various risk-related activities.



10

15

20

25

30

35

WO 98/13776 PCT/US97/16446

34

Optimization models are full of constraints of both
types, but these predominantly are either constraints on
the available capacities and other resources, or
constraints on meeting the given production targets, or
"balancing" equations that balance inputs and outputs in
gspace and in time. In contrast, risk-limiting
constraints are constraints on results.

In turn, risk-limiting constraints on results can be
classified in two categories; both can be of the
equation-inequality type and of the fine-penalty type.
The first category is "predetermined" constraints that,
for instance, prohibit too great amount of waste water to
be generated at a plant. These constraints are based on
established norms, laws, and regulations that are known
in advance. The constraints of the second category are
not known in advance: they are based on computational
results attained for the models.

In spite of the obvious advantages of adding
explicit risk-limiting constraints of the second
category, only one source is known to apply them,
although in their simplest embryonic form. In "The uses
of previous experience in reaching statistical
decisions," Annals of Mathematical Statistics, 23, 396-
407, 1952, Hodges and Lehmann suggest finding a decision
that minimizes the maximum possible risk; let this
maximum risk value be C. Then the level of "maximum
tolerable risk" is chosen that is lower than C. The use
of maximum tolerable risk as an auxiliary criterion in
selecting a best strategy is tantamount to imposing a
single and simple risk-limiting constraint of the second
category.

This invention not only widely uses multiple risk-
limiting constraints of the second category, it also
introduces a new type of such constraints, namely,
constraints on results of individual risk-related
activities under individual scenarios or groups of
gscenarios. The constraints are mostly discretionary and
allow the user to find and analyze best tradeoffs. The
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constraints of this category can be easily applied only
in multiscenario optimization models specific for this
invention that come next. This explains why such
constraints have not been used previously.

Second, this invention uses multistage,
multiscenario LP models that include the risk-limiting
constraints above. Similar but simpler models are
utilized in stochastic programming. However, the
multiscenario models make a novel and extremely effective
combination with risk-limiting constraints.

Third, this invention constructs alternative
strategies, tests their performance under different
scenarios, evaluates the risk associated with each
strategy, and tailors each candidate strategy to the risk
attitude and personal preferences of DMs.

For that purposes, this invention introduces two
concepts, "strategic variables" and "candidate strategy."”
"Strategic variables" originate from optimization models,
such as LP models described above; they usually are a
small subset of variables selected from the whole set of
the variables of the model. Strategic variables are the
key decision variables, especially the variables
associated with immediate and irrevocable decisions, that
should keep their values stable or even constant under
different conditions (scenarios). For instance, in the
distribution problem described above, the subset of
strategic variables may be limited to the production
targets at all industrial enterprises of the system. All
other quantities to be determined, such as inventory
levels or transportation flows, correspond to less
important, non-strategic variables of the model. If the

~number of strategic variables in a problem is K, then a

set of values of all K strategic variables contained
within the same segment defines a "candidate strategy."
The strategic variables used in the present
invention are partly similar to the "first-stage
variables" in two-stage and multistage stochastic LP
models; see, for instance, Chapter 16 in Harvey M.
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Wagner, "Principles of Operations Research," Prentice-
Hall, Inc., Englewood Cliffs, NJ, 1969, pp. 657-668 and
678-684. However, strategic variables are different from
the first stage variables. They do not necessarily
belong to the first stage. Furthermore, there is no
concept in OR/MS similar to the "candidate strategy,"
where the strategy is defined not by the total solution
of an LP model, but rather by the values of a small
subset of a model's variables.

Fourth, this invention focuses on a relatively small
number of strategic variables, instead of all variables
of the computational model used, and scenario submodels
of the multiscenario model are connected only through
values of strategic variables. Combined with an
understanding that a good solution of a multiscenario
model must also be good under the worst scenarios, this
feature brings about unexpected but crucial computational
benefits. This invention offers a novel, highly
efficient and quickly converging decomposition method, in
which the boundary limits on the values of strategic
variables are derived from solutions of worst scenario
submodels, and then extended to all other scenarios.

Fifth, this invention introduces novel, synthetic
regret-based methods, or optimality criteria of DS, for
comparing candidate strategies. They are accompanied
also by a novel, "regret-based efficient frontier," which
is developed both in analytical and graphic form.

The definition of efficient frontier in Portfolio
Theory has been given earlier; in this invention,
efficient frontier is defined differently, as the set of
strategies that are the best for the full range of
expectations, from the optimistic to the pessimistic end.

It should be pointed out that these methods can, as
a practical matter, be executed only on a computer,
because they are used within a complex computer-based
framework with multiple interconnected criteria and

decision graphs, and in some (especially financial)
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applications may have to be repeated a large number of
times.

Sixth, this invention combines the multitude of
jointly used diverse DS criteria by means of conversion
coefficients, or weights. Obviously, the values of these
coefficients can be known at best approximately.
Therefore the joint use of many criteria is considered
not as a final and conclusive step, but just as one of
many ways to analyze and compare strategies.

Weighting diverse optimality criteria in
multicriterion models to merge them into a single
criterion model, such as LP, is a technique well known in
state-of-the-art methods. Weighting such disparate model
results as, e.g., waste water and financial loss, may
also have been used before. This invention introduces a
new element to the weighting approach, whereby several
values of the weights are used simultaneously, which is
achieved by increasing the number of scenarios.

This invention has several major components. It:

(a) Adds risk-limiting constraints (which include
equations, inequalities, fines, and penalties) to the
main decision-making formula or model for decision-making
both under certainty and uncertainty;

(b) Offers a method of risk protection and
management by imposing risk-limiting constraints that are
not only more reliable but also simpler than those
generated by state-of-the-art methods and therefore can
be added to the main model or formula by people not
skillful in the art of modeling;

(c) Develops compromise candidate strategies on the
basis of either multiple single-scenario, or single
multiscenario, or multiple multiscenario mathematical
programming models, all with additional risk-limiting
constraints;

(d) Solves extremely large multiscenario
mathematical programming models by a novel decomposition
method that efficiently uses the information derived from
solutions of submodels for worst scenarios;
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(e) Develops multiple scenarios and multiple
candidate strategies; groups and clusters scenarios and
strategies, whenever this is necessary because of the
computational effort involved; and declusters, reclusters
and regroups the scenarios and strategies whenever these
operations can improve the analytic and decision support
capabilities of the method;

(f) Presents the "strategy versus scenario" results
in the format of two multidimensional matrices, an
outcome matrix and a regret matrix, and then applies
different methods and criteria of DS, including special
methods of this invention, to help, first, in screening
out the worst strategies, and second, in selecting a
strategy;

(g) Uses special synthetic methods for selecting a
strategy based upon comparing the potential reduction of
risk (regret) with the sacrifices needed to achieve that
risk reduction, as well as upon weighting the outcomes
achieved under different criteria;

(h) Compares the candidate strategies in an
analytical and graphical framework of "efficient frontier
(regret), " which not only provides excellent help in
decision-making, but also minimizes the negative impact
of uncertainty;

(i) Simultaneously applies several values of weights
to combine: diverse optimality criteria; model outcomes
in different risk-related activities; opinions and
attitudes of different decision-makers; and different
qualitative characteristics.

In FIG. 1, a flow chart illustrating application of
the invention to the management of risk under conditions
of certainty begins with step 11, in which an initial
symbolic model of the physical systems of interest is
stored in computer memory. From there, the method moves
through step 13, in which parameter values are entered in
memory, to step 15, in which boundary limits which are
not to be exceeded are entered in memory. From step 15,
the method moves through step 17, in which a
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computational model of the physical systems is generated
in computer memory, to'step 19, in which the
computational model is solved. From step 19, the method
moves through step 21, where I is the number of times the
computational model has been solved and is initially set
equal to 1, to step 23, where outcome levels of the
various activities of the physical systems are obtained.

In FIG. 1, the illustrated method moves from step 23
to decision point 25, where the outcome levels from step
23 are compared with the boundary limits entered in step
15. If the answer at decision point 25 is yes (i.e., all
outcome levels are within boundary limits), the method
moves to and terminates in step 27, in which the boundary
limits are implemented in the physical system or systems.
If the answer at decision point 25 is no (i.e., at least
one outcome level is outside of the boundary limits), the
method moves to decision point 29, where it is determined
whether or not I is still equal to 1. If the answer at
decision point 29 is yes (i.e., the model has only been
solved once), the method moves to step 31, in which risk-
limiting constraints triggered by the solution in step 19
are added to the computational model. The next step is
then step 33, in which the expanded model is solved.
Following step 33, the method moves to step 35, in which
I is incremented by 1 to indicate that the model has been
solved another time (e.g., for a second solution, I = 2).
The method then moves back to step 23, where outcome
levels are obtained.

After step 23, the method moves again to decision
point 25, where it terminates in step 27 if the answer is
yes and moves to decision point 29 if the answer is no.
If the answer at decision point 29 is no (as it will be
if I is greater than 1), there will be no feasible
solution unless the boundary limits are modified, so the
method moves to step 37, in which one or more of the
boundary limits are modified. Following step 37, the
method moves to step 39, in which the risk-limiting
constraints added to the model at step 31 are modified.
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From step 39, the method proceeds to step 33, in which
the expanded model is solved again.

As explained in the "Background" section of this
specification, decision-making problems and situations
usually are very complicated. Unable to deal properly
with all complexities, humans make decisions following
some approximate "rules of thumb" that may produce both
good and bad decisions. The most glaring common flaw of
most "rule of thumb" decisions is insufficient attention
to risk.

A main premise of this invention is that, in order
to protect and insure physical systems from risk,
decision-makers (DMs) must explicitly limit the outcome
levels of risk-related activities, usually in the form of
risk-limiting constraints. This brings about two
important consequences. First, the addition of
constraints transforms even simple models into more
complicated versions, which cannot be solved in
reasonable time without computers. Second, the state-of-
the-art optimization models currently used in these
complicated decision-making situations, when applied
without due attention to risk, are insufficient and often
counterproductive, because any optimization model adds a
substantial risk component of its own. This invention
provides the techniques necessary for overcoming such
difficulties.

As a rule, both these consequences are true even in
the relatively simple case of decision-making under
certainty. Consider a physical system under certainty,
where DMs know the exact single value of each system
parameter that is needed to determine the future behavior
of the system under different conditions and, therefore,
to make a decision. The system performs interrelated
activities. Some of them are risk-related, that is, the
outcome levels for these activities may fall outside some
predetermined boundary limits, and that causes concern
for DMs. The decisions to be made about the system
specify the planned levels for some, but not all,
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activities, such as the utilization of limited or costly
regsources, or the outputs of some products. Because of
the complexity of both internal and external connections,
relationships, and reactions of the system, the outcomes
of other activities, including the risk-related ones, are
not obvious. These other outcomes are determined by a
special model of the system. The unique set of outcome
values for all activities of the system, defined by the
model on the basis of the decisions to be made, is called
"a solution." The model also includes a set of criteria
that determine which solution is "the best," that is,
which one to choose for implementation among many
candidate decisions. The model thus not only describes
the physical system, but also assists in decision-making.

Suppose that, using the model of the system, DMs
made a decision and determined all outcomes coming from
that decision. Suppose also that, after comparing the
outcome levels for risk-related activities with the
predetermined boundary limits, DMs discovered that some
outcomes fall outside these limits. As a rule, as
indicated in the "Background" section, the only way to
guarantee meeting all limits is then to explicitly append
to the initial model the additional risk-limiting
constraints, usually in the form of equations and
inequalities.

This rule has an exception. Suppose that we have a
simple system, such as choosing an appliance like a
washing machine. The model of the system is also
extremely simple: it is just a list of "attribute
packages" that assigns to each type and make of machine
the relevant values of performance attributes, such as
features, quality, price, and service levels. The
selection procedure is just compiling a list of machines
that have the desired attributes ("capacity no less than
..., guality no less than ..., etc.") and then choosing
from that list the lowest price machine. Let the risk-
related activity be the monthly cost of energy, which was
not included among the attributes, and the DMs want this
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cost not to exceed x dollars. DMs can avoid here using
the model with an explicitly added risk-limiting
constraint in the form of an equation or inequality, such
as "monthly energy cost no more than $x," in two ways:
either this item is added to the attributes and then the
list of machines is further purged by removing all
machines that do not meet this criterion; or, if a
machine's monthly energy bill is $y and y > x, the
selection is performed not on the price of the machine,
but on the total of price plus fine, where the fine may
depend on the value of (y - x}.

If the model of the system is more complex than just
a list of "attribute packages," so that the risk-limiting
constraints in the form of equations or inequalities must
be added to the model explicitly, the resulting model
becomes one of a "constrained optimization" mathematical
programming type, which as a rule can be solved in
reasonable time only on a computer. There are various
versions of mathematical programming, such as linear
programming (LP), non-linear programming, integer
programming and so on. For simplicity, this discussion
will not go beyond LP, but the arguments and conclusions
do not depend on which type of optimization model is
used.

Suppose that, prior to addition of risk-limiting
equations and inequalities, the decision-support LP model
is described, in matrix notation, by (1), which contains
expressions (1.0) through (1.2):

Find a (n x 1) vector X to

Maximize ZD = CIX (1.0)
subject to AX = B (1.1)
and X 2 0. (1.2)

Superscript T

represents a matrix transposition
operation. Model (1) comprises: a vector X of variables
x[q) (g =1, ... , n) that define the levels of
activities g of the physical system; m equations (1.1)
imposed on limited resources, product outputs, and

interconnections between activities q; n non-negativity
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conditions (1.2) on variables x[q]; and an objective
function ZD - a scalar product of two vectors C and X of
dimension n defined by (1.0). The value of ZD is the
difference between benefits and costs; it is to be

maximized.

All components of vector C = (c[qg]) and (m x 1)
vector B = (b[p]) and of (m x n) matrix A = [alp]lq]] (p
=1, ... ,mjg=1, ..., n) are calculated on the basis

of values of parameters of the physical system and stored
in the computer memory. Variables x[q] correspond to
levels of activities q (that is, scale of operations or
output of products or use of resources) of n
interconnected activities g. Eguations (1.1) are m
linear equations with coefficients alpl[g] on n variables
x{gq]. These equations have right-hand sides b(p].
Equations (1.1) connect levels of operations or specify
the output of products or limit the use of resources for
activities g. In the exceptionally simple case of an
appliance described above, there are no equations (1.1),
som= 0. Objective function (1.0) is a linear function
of variables x(q].

As mentioned before, the last R of n activities of
the physical system (j =n - R+ 1, ... , n) are risk-
related activities that are of special concern to the
DMs. The values of the corresponding variables x[j]
determine levels of these activities, such as the outputs
of some dangerous by-products. For simplicity, here and
in subsequent models (3) and (4) assume that the
predetermined boundary limits for these R activities are
one-sided, that is, the outcome for an activity is
limited by only one upper boundary - say, it should be no
greater than this boundary limit.

Again, if DMs have solved model (1) and have
obtained the values of outcomes for all risk-related
activities, and if all outcomes are no greater than the
corresponding boundary limits, then the decision based on
that solution is acceptable to DMs, and the computations

can be stopped. However, if at least one outcome exceeds
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the boundary limit for the corresponding activities, then
the model (1) must be expanded into the model (1A), which
contains expressions (1.0A) through (1.53):

Find (n x 1) vector X and (R x 1) vectors W and Y

to
Maximize 2D = CTX - FIY (1.0A)
subject to AX = B, (1.13)
XR + W - Y = BL, (1.2A)
X = 0, (1.31)
W= 0, (1.41)
and Y = O, (1.5A)

where: Xp is an (R x 1) vector of outcomes (where Xy is a
subset of the set x) for risk-related activities, which
are the last R of n activities; BL is an (R x 1) vector
of boundary limits for the same set of activities; W and
Y are, respectively, (R x 1) vectors of zero priced
"glack variables" and highly fined "artificial variables"
that transform risk-limiting inequalities into equations;
and F is a (1 x R) vector of fines f[q] (g =N - R + 1,
... , n) that is imposed on the excessive portions y[q]
of outcomes that exceed the boundary limits BL[g] (g = n
-R+1, ..., n). Equations (1.2A) are R risk-limiting
inequalities transformed into equalities by adding slack
variables W and subtracting artificial variables Y, while
(1.47A) and (1.5A) are non-negativity conditions for these
variables. The transformation of model (1) into model
(1A) can be performed either all at once for all R risk-
related activities, or iteratively, adding equations
(1.22) only for those activities where the outcomes in
the previous solution exceed the boundary limits.

It is important to notice that, even if model (1) is
simple enough to be solved manually (for instance, if the
number m of "structural" equations (1.1) that describe
the physical system equals zero), model (1A) still
becomes an LP model, sufficiently complicated to be
solved in a reasonable time only on a computer.

It is also important that DMs cannot be sure that
the values of the predetermined boundary limits BL[q] (g
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=n-R+ 1, ... , n) are correct or correspond to real
capabilities of the physical system, especially if these
values do not allow for obtaining a feasible solution of
model (1A), that is, a solution where all outcomes are
within the boundary limits and therefore Y = 0.
Therefore DMs' actions may include modifying the values
of these limits.

The method of DMs' behavior in finding the solution
for a physical system under certainty can easily be
followed on the flow chart of FIG. 1. After formulating
the initial symbolic model (1) and storing it in computer
memory together with the values of the relevant
parameters and boundary limits, DMs:

generate the computational model (1) - steps 11 -
17;

solve model (1) by any appropriate means and, if
model (1) is an LP model, by any appropriate computer LP
system - step 19;

record in the computer memory the values of outcomes
obtained from the optimal solution of model (1) for each
of R risk-related activities - step 23;

compare the outcome with the boundary limit for each
risk-related activity and decide whether the obtained set
of outcomes is fully acceptable for all such activities -
gstep 25;

if this set of outcomes is fully acceptable, the
method is completed - step 27;

otherwise, DMs add to model (1) risk-limiting
constraints, transform it into model (1A) - step 31, and
solve model (1A) by any appropriate computer LP system -
step 33;

again, compare the outcome with the boundary limit
for each risk-related activity and decide whether the
obtained set of outcomes is fully acceptable for all such
activities - step 25;

if the set of outcomes is acceptable, the method is
completed - step 27;
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otherwise, modify the boundary limits and the
corresponding risk-limiting constraints and solve the
resulting model (1A) - steps 37, 39, and 33; and

continue the procedure of modification of boundary
limits until an acceptable solution of model (1A) is
found, which completes the method - steps 37, 39, and 33.

In FIG. 2, a flow chart illustrates a method
applying the invention to the management of risk under
conditions of uncertainty by using SSLP (single-scenario
linear programming) models. The method begins with step
41, in which an initjial symbolic SSLP model (3) is stored
in computer memory. Next, the method moves to step 43,
in which the parameter values for S different scenarios
are entered into computer memory. After step 43, the
method moves to step 45, in which any predetermined
boundary limits for the various outcome values are
entered. Following that, step 47 enters value segments
for K different strategic variables. Step 49 forms S
gcenarios, each made up of a different combination of the
certain parameters with a value for each uncertain
parameter. After step 49 comes step 51, which sets H
equal to 1 to indicate the index of the first of the S
different scenarios, where H is the index number of the
scenario being tested.

In FIG. 2, the illustrated method next moves to step
53, where a computational model (3) is generated in
computer memory for scenario H. After that comes step
§5, where the computational model for scenario H is
solved, and step 57, which obtains outcome levels from
the solution of scenario H. Following step 57, a
decision point 59 determines whether or not the solution
is feasible (i.e., whether all its outcome levels are
simultaneously achievable). If the answer is yes, the
method moves to decision point 61, which determines
whether or not the outcomes are all satisfactory. If the
answer is no, the method moves to step 63, which adds or
modifies discretionary constraints to the model in

computer memory to limit unsatisfactory outcomes. Next,
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step 65 sets H equal to 1 to indicate that the method
begins again with scenario 1. The method returns then to
step 53 to generate a modified or expanded computational
model for scenario H = 1.

If the answer at decision point 59 is no, the method
moves to step 67 to modify the predetermined boundary
limits. Next, the method moves to step 69, modifying any
previously entered risk-limiting constraints that are
included into model (3) in computer memory.

If the answer at decision point 61 is yes, the
method moves to decision point 71 to determine whether H
is equal to S, where S is the total number of scenarios
being tested. If H is not equal to S (that is, less than
S), the method moves to step 73, where H is incremented
by 1, and back to step 53 to generate the computational
model (3).

If the answer at decision point 71 is yes, the
method moves to the flow chart in FIG. 3, which begins
with step 74 and moves to step 75 to find the values of K
strategic variables in S scenario solutions, where K is
the total number of strategic variables. In FIG. 3, the
method then moves to step 77, which classifies values of
K strategic variables in S solutions into predetermined
segments. From step 77, the method moves first to step
79, which defines NST candidate strategies, where NST is
the total number of candidate strategies, and then to
step 81, which sets I and J both equal to zero, where I
is the index of the strategy being tested (the range of I
is from 1 to NST) and J is a count of the strategies
which have already been tested and accepted. From there,
the method moves to step 83, which sets the scenario
index H equal to zero.

From step 83 in FIG. 3, the method moves first to
step 85, which increments I by 1, and then to step 87,
which formulates strategy definition constraints for
strategy I. The next step in the method is step 89,
which increments H by 1. From step 89, the method moves
first to step 91, which adds a model (3) for scenario H
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to form a computational model (3A), and then to step 93,
which solves this model for scenario H. After step 93
comes decision point 95, where it is determined whether
or not a solution to the computational model (3A) is
feasible in the sense that it meets all predetermined
boundary limits on risk-related activities.

If the answer at decision point 95 is no, the method
moves to decision point 97, where it is determined
whether H is equal to S. If the answer is no, the method
returns to step 83. If the answer is yes, the method
proceeds to decision point 99, where it is determined
whether I is equal to NST. If the answer is no, the
method again returns to step 83. If the answer is yes,
the method proceeds first to step 101, which is the
strategy selection process illustrated in FIG. 12, and
then to final step 103, which implements the selected
strategy in the physical system or systems.

If the answer at decision point 95 in FIG. 3 is yes,
the method moves to decision point 105, which determines
whether H is equal to S. If the answer at decision point
105 is no, the method returns to step 89. If the answer
is yes, the method moves to step 107, which increments J
by 1. From step 107, the method moves first to step 109,
which defines candidate strategy J, and then to step 111,
which fills "strategy J" columns of a matrix of outcomes.
From step 111, the method proceeds to decision point 113,
which determines whether I is equal to NST. If the
answer is no, the method returns to step 83. If the
answer is yes, the method goes on to step 101 and, from
there, to final step 103.

Two difficulties (i.e., the complication of a
decision-support model and the insufficiency of currently
used approaches to applying optimization models) involved
in making decisions about physical systems are outlined
in the beginning of this detailed description. They are
even more important if the system is under uncertainty,

that is, when some parameters of the system are not known
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exactly and therefore may be represented by not one value
but rather by a multitude of different possible values.

Suppose we are to make decisions about a physical
gystem with multiple parameters that performs n
interrelated activities. Some of these activities are
use of resources, manufacturing of products, storage or
transportation activities, and so on. Let R (n > R = 1)
of these n activities be potentially dangerous, risk-
related activities. The decisions to be made are about
the planned levels of these n activities; each of these
levels must be non-negative. The decisions will be based
on the values of multiple parameters of the physical
system. Due to uncertainty, G (G = 1) of these
parameters have glg] > 1 values (q = 1,..., G); each of
the remaining parameters has only one value. The maximum
number MS of all respectively different combinations of
possible values of all parameters of the physical system
is given by (2):

G
MS = 7 gli]; (2)
i=1
where the symbol 7 is used to denote "product of."

Each of these respectively different combinations of
possible values of all parameters of the system we will
call a "scenario." Then we can form S (1 < S s MS)
scenarios and store these scenarios in computer memory.

To construct candidate strategies, the method of
this invention uses an LP model, which in the general
case is a multiscenario linear programming model (MSLP)
that has LS scenarios, where LS may vary from one to S.
If LS < S, then, to cover all S scenarios of the
problem, the method runs multiple MSLP models, each
having up to LS scenario submodels. The greater the
portion of S covered by LS, the more effective is the
method. However, sometimes, due to the size of the LP
problem, LS has to be small.

In an extreme case, when LS = 1, MSLP becomes a
single-scenario LP (SSLP - single-scenario linear
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programming) model. Suppose that, given one scenario H,
the computer generates for that scenario H an SSLP model.
This model has, however, a major distinction f£rom model
(1). As mentioned before, the last R of n activities g
of the physical system (g =n - R + 1,..., n) are risk-
related activities that are of special concern to DMs;
the values of the corresponding variables x[j] [H] define
levels of these activities, that is, for instance, the
output of some dangerous by-products under scenario H.
Decision-making under uncertainty involves more
operations than decision-making under certainty, and it
is very likely that, at some operation, risk-limiting
constraints for predetermined boundary limits in R risk-
related activities would be included in the decision
model. Model (3), which, from the very beginning,
includes these consgtraints and thus is similar to model
(1A), should therefore serve as the principal model, both
symbolic and computational.

For each scenario H, H = 1,...S, model (3) in matrix
notation contains expressions (3.0) through (3.5):

Find (n x 1) vector XI[H]
and (R x 1) vectors W[H] and Y[H] to
Maximize 2ZM = 1.0 x ZS[H]

-1.0x c(HT x[H] - FT Y[H]  (3.0)
subject to A[HIX[H] = B[H], (3.1)
XR[H] + W[H} - Y[H] = BL, {3.2)

X[H] = O, (3.3)

W[H] = 0O, (3.4)

and Y[W] = 0. {3.5)

Superscript T represents a matrix transposition
operation. Model (3) comprises a column vector X[H] of
variables XI[g)J[H] (g = 1,..., n) that define the level of
activities g of the system under scenario H; Xgi[H] is an
(R x 1) vector of outcomes (where Xp is a subset of the
set X) for risk-related activities, which are the last R
of n activities; BL is an (R x 1) vector of boundary
limits for the same set of activities, and these limits
are invariant of scenarios; W[H] and Y[H] are,
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respectively, (R x 1) vectors of zero priced "slack
variables" and highly fined "artificial variables" that
transform risk-limiting inequalities into equations; and
F is an (1 x R) vector of fines F[g] (g =n - R + 1,

, n), also invariant of scenarios, that is imposed on the
excessive portions yl[qg] [H] of outcomes that exceed the
boundary limits BL[g] (Q =n - R + 1, ... , n). An
objective function ZS[(H] is defined by (3.0). The value
of the objective function ZS[KH], which is the difference
between benefits and costs, is to be maximized.

Equations (3.2) are R risk-limiting inequalities
transformed into equations by adding slack variables W[H]
and subtracting artificial variables Y[H], while (3.4)
and (3.5) are non-negativity conditions for these
variables. 1Inequalities (3.3) guarantee non-negativity
conditions for variables XI[H].

All components of (1 x n) vector C[H] = (clq] (H])
and of (m x 1) vector B[H] = (b[p][H]) and of (m x n)
matrix A[H] = [alpl[qg]l(H]) (p=1,.., m; q =1,..., n) are

calculated and stored in the computer memory on the basis
of values of all parameters of the physical system in
scenario H. Variables x{[q] [H] correspond to decisions
that, under scenario H, define levels of activities (that
is, scale of operations or output of products or use of
resources) in n interconnected activities g. Equations
(3.1) are m linear equations with coefficients alp] [g] [H]
on n variables x[q] [H]. These equations have right-hand
sides blp] [H]. Equations (3.1) connect levels of
operations or limit the output of products and use of
resources in activities g. Objective function (3.0) is a
linear function of variables x(p] [H].

In addition to developing scenarios, the method of
this invention develops candidate strategies. To define
a strategy, DMs select, out of large number n of
variables x[q] [H] of the SSLP model, a small number K, X
being substantially less than n, of key (or strategic)
decision variables, say, first K variables x[ql] [H] (q =
1,..., K). These K strategic variables are the same for
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all scenarios and for all SSLP scenario models. They
correspond to the most important decisions or to
important immediate and irrevocable decisions. A
candidate strategy I (I = 1,..., NST) is then defined as
a vector of length K of numerical values for K strategic
variables, with NST being the expected number of
candidate strategies to be obtained from classification
of the values of K strategic variables into segments.

The centerpiece of the structure of this invention
is the "outcome matrix" (OM), which is a three-
dimensional array of outcomes of risk-related activities,
systematized in the "strategy versus scenario versus
risk-related activity" format. The dimensions on the
three corresponding axes are NST x S x R, where NST is
the number of strategies, S is the number of scenarios,
and R is the number of risk-related activities, so we
must reserve in computer memory the necessary space for
such an array, as well as for the regret matrix derived
from the outcome matrix. (The number of dimensions may
be greater than three.)

The compressed, highly aggregated results
accumulated in the outcome and regret matrices serve two
main purposes. First, they allow easy generation of non-
predetermined, discretionary risk-limiting constraints
and therefore help to form and modify candidate
strategies. Second, they allow the strategies to be
analyzed and compared.

If SSLPs are used, this method has to generate
strategies from S solutions of SSLP models. In
comparison with using an MSLP, this may be a drawback,
because compromise strategies resulting from MSLP tend to
fit diverse conditions better. Also, the values of
strategic variables in multiple solutions of an SSLP tend
to differ somewhat, even if these solutions are close, so
strategies have to be defined not by exact values of
variables, but by value segments where they belong. 1In
using the method with an SSLP, DMs expect that S, the
number of scenarios, is sufficiently large, so at least
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one of S solutions will generate a good candidate
strategy. ‘

The method of constructing candidate strategies and
filling in the outcome matrix via SSLP models comprises
three parts. First, it finds both feasible and
satisfactory solutions of models (3). (The difference
between "feasible" and "satisfactory" is defined here as
follows. A "feasible" solution meets all predetermined
boundary limits on risk-related activities, which are
identical for all scenarios. A "satisfactory" solution
meets the predetermined limit, but also meets additional,
"discretionary" limits on individual outcomes of specific
risk-related activities under some specific scenarios, if
DMs find these outcomes excessive or wish to find and
explore a tradeoff.) Second, it splits the total value
range for each of K strategic variables into one or more
segments, assigns the values of these variables in each
solution of an SSLP scenario model to the relevant
segments, and then forms multiple candidate strategies
based on different combinations of these segments that
have occurred in S solutions. Finally, the method
adjusts the candidate strategies to diverse conditions of
all S scenarios and records the outcomes in the format of
an outcome matrix.

The first part of the method of using SSLP in
forming the strategies for a physical system under
uncertainty can easily be followed on the flow chart of
FIG. 2. After generating the initial symbolic model (3)
and storing it in the computer memory together with the
values of the relevant parameters, predetermined boundary
limits, and value segments for strategic variables, DMs:

form S scenarios - step 49;

in turn, formulate the computational SSLP model (3)
for each H (H = 1,..., S), which includes R risk-limiting
constraints for all risk-related activities - step 53;

solve the model by any appropriate computer LP
system -~ step 55;
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record in the computer memory the values of outcomes
obtained in the optimal solutions of model (3) for each
scenario H and for each of R risk-related activities -
step 57;

if a feasible solution of (3) is not obtainable for
at least one H, it means that some predetermined boundary
limits are too tight, so modify the boundary limits and
the corresponding risk-limiting constraints and start
solving again the resulting models (3) - steps 67 and 69;

continue the procedure of modification of boundary
limits until feasible solutions of models (3) are found
for all H - steps 51 to 59, 67 and 69;

decide whether the obtained set of outcomes is not
yet fully satisfactory for all such activities under all
conditions, that is, whether these outcomes, although all
within the boundary limits, should not be further
rdiscretionally® limited for some specific scenarios and
gsome specific activities - steps 61, 63, and 65;

if so, add the desirable "discretionary" limits and
the corresponding risk-limiting constraints and solve
again those of the resulting models (3) for the relevant
scenarios and continue the procedure of adding or
modifying the discretionary limits until satisfactory
solutions of models (3) are found for all relevant
scenarios - steps 53 to 61, 63 and 65; and

obtain solutions of models (3) with the final set of
discretionary constraints for all S scenarios - steps 53
to 61, 71 and 73.

The second and third parts of the method of using
SSLP in forming the strategies for a physical system
under uncertainty can easily be followed on the flow
chart of FIG. 3. After finding the values of K strategic
variables in all S solutions of scenario models (3} and
classifying these values in each solution by placing them
in the value segments they belong to, DMs:

define each set of segments for K variables
encountered in at least one solution as a candidate
strategy, forming NST (NST = 1) candidate strategies,
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where NST is already not an expected but known number of
strategies - steps 75, 77, and 79;

add "strategy definition" constraints (3.6) to model
(3), in turn forming models (3A) for each of the
candidate strategies I (I = 1, ... , NST) and for each
scenario H, with each of the models (3A) consisting of
expressions (3.0) through (3.6):

LB[I] s XK[H] s UB[I], (3.6)
where XK[H] is a vector of strategic variables (where
XK[H] is a subset of the set X[H]), while LB[I] and UB[I]
are lower bounds and upper bounds for the relevant value
segments, respectively, for strategy I (I =1, ... , NST)
- steps 83, 85, 87, 89, and 91;

for each candidate strategy I, solve S scenario
models (3A) - step 93; and

if all S solutions are feasible, consider strategy I
a viable candidate J and fill its outcomes for R risk-
related activities and for S scenarios into the
corresponding columns of the outcome matrix - steps 95,
105, 107, 109, and 111;

otherwise, switch to analyzing the next candidate
strategy (I + 1) - step 97.

After completing the procedures displayed in FIG. 2
and FIG. 3, the method with SSLP proceeds to the strategy
selection procedure to be described later in connection
with FIG. 12.

To construct candidate strategies and to fill in the
outcome matrix via an MSLP model, this invention uses a
different method. The MSLP model generates not a
multitude of solutions, but a single solution that is a
compromise for diverse scenarios. However, similar to
SSLP (3), from the very beginning, MSLP (4) also includes
risk-limiting constraints for the predetermined boundary
limits.

The MSLP model (4) contains expressions (4.0)
through (4.8), where SN = S xn, SR = 8 x R, and
SK = S x K:
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Find (SN x 1) vector X, X = (Xy, ... , XS),
and (SR x 1) vectors
XR, XR = (XRl, e XRS),
W, W= (W), ..., Wg),
5 Y, Y= (Yy, ..., Yg),
and (SK x 1) vectors
XK, XK = (XKl, cee XKS),
XKP, XKP = (XKpl, e XKpS),
and XKM, XKM = (XKml, e XKmS), to
S
Maximize 2ZM = I ulH] ZS[H] =
H=1
S
= = uld] (CIHITxy - Flyyp (4.0)
15 H=1
subject to A[H]Xy = B[H], (H=1,..., S) (4.1)
XRH + WH - YH = BL, (H =1, . S) (4.2)
Xy = 0, (H=1,..., 8) (4.3)
Wy = 0, (H=1,..., 8) (4.4)
20 Yy 2 0, (H=1,..., S)  (4.5)
XKy - XK, + XKPy - XKMy = 0, (H=2,..., S) (4.6)
0 s XKpy s UB, (H = 2,..., S) (4.7)

0 = XKmH < UB. (H=2,..., 8) (4.8)
In effect, the MSLP model (4) consists of S

25 submodels (4.1) - (4.5) for S scenarios H and of K(S - 1)

nintersubmodel" parts (4.6) - (4.8). The submodels are
paired with the corresponding summands ZS[H] of the
objective function ZM described by (4.0). The submodels
H correspond to SSLP (3) with the values of components of

30 their vectors C[H] and B{H] and matrices A[H] derived in

the computer from the values of physical system
parameters taken from the corresponding scenario H.
Summands ZS[H] are weighted by coefficients (based on
scenario probabilities) u[H] of the corresponding

35 scenarios H.

In model (4): X is an (SN x 1) vector of activity
levels for n activities under S scenarios; XR is an (NR x
1) vector of outcomes (where XR is a subset of the set X)
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for risk-related activities, which are the last R of N
activities, under S scenarios; BL is an (NR x 1) vector
of upper boundary limits for the same set of activities,
invariant of scenarios; W and Y are, respectively, (NR x
1) vectors of "slack variables" and "artificial
variables" that transform risk-limiting inequalities into
equations under S scenarios; and F is an (1 x NR) vector
of fines f[q] (g =n - R + 1, ... , n) that are imposed
on the excessive portions y[q] [H] of outcomes that exceed
the boundary limits bl[g] (g =n - R + 1, ... , n).
Equations (4.2) are NR risk-limiting inequalities
transformed into equalities by adding slack variables W
and subtracting artificial variables Y, while (4.3),

(4.4) and (4.5) are the non-negativity conditions for
variables XR, W and Y. The NK-dimensional vector XK
(where XK is a subset of the set X) represents the values
of K strategic variables under S scenarios, and equations
(4.6) provide for the values of the K key variables being
within close proximity of each other under all S
scenarios H of the MSLP model (4). Variables XKP and XKM
characterize the "intersubmodel" differences between the
values of strategic variables. Inequalities (4.7) and
(4.8) provide for, on the one hand, the non-negativity of
these variables and, on the other hand, the allowed upper
bounds (UB) on their values. These bounds may differ
between strategic variables, but are assumed here to be
invariant of both of these variables and scenarios.

FIG. 4 is a flow chart of a method, in accordance
with the invention, for using MSLP to form strategies.
The method begins with step 115, which stores an initial
symbolic MSLP model (4) in computer memory. It continues
with step 117, which enters parameter values for S
scenarios. Next comes step 119, in which predetermined
boundary limits are entered into memory, and step 121, in
which scenarios are formed. Following that comes step
123, which stores in memory a computational MSLP model
(4), and step 125, which sets J equal to zero. 1In step
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127, the MSLP model is solved, after which J is
incremented by 1 in step 129.

After step 129 comes step 131, which defines
candidate strategy J, and step 133, which records
outcomes in computer memory. From there, the method
moves to step 135, which compares outcomes with any
predetermined and discretionary boundary limits, and
decision point 137, which determines whether or not the
strategy is completely acceptable. If the answer is yes,
the method moves directly to final step 139, in which the
selected strategy is implemented in the physical system
or systems. If the answer is no, the method moves to
decision point 141, which determines whether or not a
gsufficient number of new candidate strategies has been
selected. If the answer is yes, the method moves to step
151, which is the strategy selection process which will
be described later and illustrated in FIG. 12. If the
answer is no, the method moves to step 143, which adds or
changes discretionary constraints on outcomes, and from
there to step 145, which solves the expanded model (4An)
with discretionary constraints on outcomes.

Following step 145, the method moves to decision
point 147, which tests the feasibility of the model
solution. If the answer is no, the method returns to
step 143. If the answer is yes, the method moves to step
149, which fills "strategy J" columns of an outcome
matrix, and then back to step 129.

The method of using MSLP for formation of strategies
can be easily followed on the flow chart of FIG. 4.

After forming initial symbolic model (4), entering the
values of parameters, and predetermined boundary limits,
forming scenarios, and forming and storing the
computational MSLP model (4) in steps 115, 117, 119, 121,
and 123, DMs:

golve the MSLP model (4) by any appropriate computer
LP system - step 127;

define the vector of values of key variables in the
optimal solution of (4) as Strategy J - step 131;
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record in the computer memory the values of
outcomes, defined as O[H} [J)[r] (H=1,..., S; r=1,...,
R), obtained in the optimal solution of Strategy J in
submodels H of (4) for each of R risk-related activities
r - step 133;

compare, for each (H, r) pair (H=1,..., 8; r =
1,..., R), O[H][J][r] with references, targets and
predetermined or discretionary limits, and deciding
whether the obtained set of O[H] [J] [r] is fully
acceptable for all H and r - step 135;

if this set of O[H] [J] [r], under all H and r (H =
1,..., S; r=1,..., R), is both fully acceptable and
superior to any other known strategy, the method stops
the further development of candidate strategies and goes
to implementation of strategy J - step 139;

otherwise, DMs consider whether they have enough
candidate strategies for their selection of a strategy -
decision point 141;

if they have, go to the "select strategy" process
(see FIG. 12, which will be described later) and to
strategy implementation - step 151; )

otherwise, transform in the computer memory the MSLP
model (4) into model (4A), appending to it discretionary
risk-limiting constraints and other modifications that
restrict all values of O[H] [J] [r] to acceptable
discretionary limits imposed for individual scenarios and
activities, or modifying such already existing
constraints, to obtain a new strategy (J + 1) with
different outcomes O[H] [J+1] [r] - step 143;

solve the MSLP model (4A) with discretionary risk-
limiting constraints on the outcomes of risk-related
activities by any appropriate computer LP system - step
145;

check whether the resulting solution of MSLP (4A)
with discretionary constraints generates a feasible
candidate strategy - decision point 147; and

if it does, fill the "Strategy J" columns of all
two-dimensional "scenario vs. strategy" S x NST
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submatrices r (r = 1,..., R) of OM with O[H] [J] [r] and

proceed to constructing strategy (J + 1) - step 149;
otherwise, return to adding or changing

discretionary constraints on outcomes - step 143.

In spite of new, efficient approaches to dealing
with complexity of decision-making that are incorporated
in this invention, the number of scenarios or strategies
still may turn out to be too large for solving the
problem with available computer resources in the required
time. In that case, each of these numbers can be reduced
by grouping. There are two major forms of such grouping.
One is "clustering," a well-known technique for grouping
similar objects. The second is using the existing and
known functional or statistical relationships between
objects.

Every method of clustering has its drawbacks. Using
any specific method may lead to allocation of objects to
the wrong clusters. In usual applications of clustering,
such errors are difficult to find and eliminate. This
invention is different: although it may perfectly well
deal with object groups, it is especially interested in
the "worst" scenarios and strategies. Therefore both
objects with ambiguous cluster allocation and the worst
objects of clusters can be separated and treated as
individual entities - either from the very beginning or
upon obtaining computational results. At some stages of
the method, clusters or other groups that deserve special
attention can be completely "unclustered," and later
clustered again, in old or new combinations.

In FIG. 5, the method begins with step 153, in which
an initial symbolic SSLP model (3) is stored in computer
memory. Next comes step 155, in which parameter values
for S scenarios are entered, and then step 157, in which
predetermined boundary limits are entered. Then, step
159 enters value segments for K strategic variables, and
step 161 groups or regroups S individual scenarios into T
typical scenarios. From there, step 163 sets H equal to
1.
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Next in FIG. 5 comes step 165, which generates in
computer memory a computational model for scenario H.
From there, step 167 solves the computational model for
scenario H and step 169 obtains and records outcome
levels in memory. Following step 169 comes decision
point 171, which determines whether or not the recorded
solution is feasible. If the answer is yes, decision
point 173 determines whether all outcomes are
satisfactory. If the answer is no, the method moves to
step 175, which adds or modifies discretionary
constraints limiting unsatisfactory outcomes, to step
177, which sets H equal to 1, and back to step 165 for
further computational model generation.

If the answer at decision point 173 in FIG. 5 is
yes, the method moves to decision point 179, which
determines whether or not H is equal to T. If the answer
is no, the method moves to step 181, which increments H
by 1 and returns to computational model generation step
165. If the answer at decision point 171 is no, the
method moves to step 183, which modifies at least one of
the predetermined boundary limits, to step 185, which
modifies the risk-limiting constraints, and back to step
163, which sets H to 1. Finally, if the answer at
decision point 179 is yes, the method moves to decision
point 187, which determines whether regrouping is
desired. If the answer is yes, the method returns to
step 161. If the answer is no, the method goes to step
189, which returns to step 75 in FIG. 3.

The method for finding the solution for a physical
gsystem under uncertainty via the use of SSLP models with
clustering can easily be followed on the flow chart of
FIG. 5. It can be seen that the flow chart in FIG. 5 is
almost identical to the flow chart in FIG. 2. The
exception is that the "FORM S SCENARIOS" stage is
replaced by the "GROUP OR REGROUP 'INDIVIDUAL' INTO
'TYPICAL' SCENARIOS" (step 161), so that one method loop

returns to that operation.
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Another approach to solving decision-making problems
where the number of scenarios is too large to cover with
a single MSLP model (4) is by solving many MSLP models
(4) of smaller size. Let the total number of scenarios
equal S and let the largest MSLP model (4) that can be
solved in acceptable time have WS scenarios. For
simplicity, let also NUMS

S/WS be an integer. The
method of solving the problem by this technique can be
followed easily on the flow chart of FIG. 6.

In FIG. 6, the method begins with step 191, in which
an initial symbolic MSLP model (4) is stored in computer
memory. Next, the method moves through step 193, in
which parameter values for S scenarios are entered into
memory, step 195, in which predetermined boundary limits
are entered into memory, and step 197, in which S
gscenarios are formed. Next, step 199 clusters S
scenarios into T groups of WS scenarios. From there,
step 201 sets J equal to zero, where J is as defined
heretofore.

From step 201 in FIG. 6, the method moves to step
203, setting H equal to 1, where H is an index of the
scenario group being tested, and to step 205, which
generates a computational MSLP model (4) or (4A) for
group H. After step 205 comes step 207, which solves the
model (4) or (4A) for group H, and step 209, which
obtains and records outcome levels. After step 209 comes
decision point 211, which determines whether or not the
solution is feasible. If the answer is yes, the method
moves to decision point 213, which determines whether all
outcomes are satisfactory. If the answer there is yes,
the method moves to decision point 215, which determines
whether or not H is equal to T. If the answer at
decision point 215 is no, the method moves to step 217,
which increments H by 1, and proceeds back to model
generation step 205. If the answer at decision point 211
is no, the method moves to step 221 to modify the
predetermined boundary limits and to step 222 to modify
the risk-limiting constraints before returning to step
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203, setting H equal to 1. If the answer at decision
point 213 is no, the method goes to step 219, to add or
modify "discretionary" constraints limiting
unsatisfactory outcomes, to step 220, setting H equal to
1, and back to step 205.

In FIG. 6, if the answer at decision point 215 is
yes, the method moves through step 216 to FIG. 6A, which
begins with step 218 and moves to step 223, choosing the
WS worst scenarios. Also necessary for completion of the
method illustrated in FIG. 6 are point A, which comes
from step 227 in FIG. 6A and point B, which comes from
step 229 in FIG. 6A.

From FIG. 6, a yes answer at decision point 215
connects to step 223 in FIG. 6A, in which the WS worst
gscenarios are selected. PFrom there in FIG. 6A, the
method moves to step 224, forming an MSLP model (4) for
WS scenarios. Next, step 225 solves the model and moves
to decision point 227 to determine whether or not the
golution is feasible. If the answer is no, the method
moves to point A and back to step 221 in FIG. 6. If the
answer is yes, the method moves to decision point 229 to
determine whether or not all outcomes are satisfactory.
If the answer is no, the method moves to point B and back
to step 219 in FIG. 6. If the answer is yes, the method
moves to step 231 to obtain the values of K strategic
variables.

From step 231, the method in FIG. 6A moves to step
233, where J is incremented by one. From there, it moves
to step 239 to define strategy J and formulate "strategy
definition" constraints for strategy J. From step 239,
the method moves to step 241, where H is incremented by
1, to step 243, where a model (4) for group H is added to
the strategy definition constraints for strategy J, and
to step 245, where the model (4B) for group H is solved.
From step 245, the method moves to decision point 247 to
test whether or not the solution is feasible. If the
answer is yes, the method moves to decision point 249 to
determine whether or not H is equal to T. If the answer
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at decision point 249 is yes, the method moves to point C
and thence to FIG. 6B in a manner which will be described
later. If the answer at decision point 249 is no, the
method moves back to step 241 in FIG. 6A.

If the answer at decision point 247 is no, the
method in FIG. 6A moves to step 251, where J is
decremented by 1. From step 251, the method moves to
step 253, which modifies predetermined or "discretionary"
restraints on outcomes, and to step 255, which sets H
equal to 1. From step 255, the method moves back to step
224, to form an expanded MSLP model for WS scenarios.

In FIG. 6B, step 257 is driven from point C, which
comes from a yes answer at decision point 249 in FIG. 6A.
After step 257, step 259 fills the "Strategy J" columns
of an outcome matrix. From there, the method moves to
decision point 261 to determine whether or not to call a
halt to the generation of new candidate strategies. A
yes answer leads to step 263, which is the "select
strategy" process yet to be described in connection with
FIG. 12. Following step 263, the method comes to an end
with step 265, which implements the selected strategy in
the physical system or systems.

A no answer at decision point 261 in FIG. 6B causes
the method to move to step 267, which changes the
composition of the group of WS scenarios. From there,
the method moves to point D, which goes to step 255 in
FIG. 6A.

Similarly to the method above that uses an SSLP
model (3), the method currently being described consists
of three parts. First, it clusters S scenarios into NUMS
groups of WS scenarios each, forms model (4) for each
group, finds a solution of that model (4) that is both
feagible and acceptable, and obtains and records the
values of outcomes of all risk-related activities.
Second, the method selects a group of WS scenarios that
are the worst in some outcomes, and repeats the above
procedure for that "worst group" - that is, forms model
(4) for the group, f£inds a solution of that model (4)
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that is both feasible and acceptable, and obtains and
records the values of outcomes of all risk-related
activities. The method also obtains the values of
strategic variables in the solution of model (4) and
defines the corresponding candidate strategy. Finally,
the method adjusts the candidate strategy to diverse
conditions of NUMS scenario groups (that is, of all S
scenarios) and records the outcomes in the format of an
outcome matrix. This process can be repeated to form as
many candidate strategies as desired, starting from
different scenario groups and different discretionary
constraints.

In the first part, as illustrated in FIG. 6, after
forming the initial symbolic model (4), entering the
values of parameters, predetermined boundary limits, and
value segments for strategic variables, DMs:

form S scenarios - step 197;

split S scenarios into T groups, each comprised of
WS scenarios - step 199;

for each of these groups, in turn, generate and
store computational MSLP model (4) and solve model (4) by
any appropriate computer LP system - steps 205 and 207;

if any of T solutions of computational MSLP models
(4) is infeasible, modify the values of predetermined
boundary limits and the corresponding risk-limiting
constraints, and solve all T models (4) again - steps
211, 221, 222, 205, and 207;

obtain and record the values of outcomes - step 209;
and

if, for some scenarios and some activities, the
outcomes are not considered satisfactory, impose or
modify (for the scenario groups and activities involved)
additional "discretionary" risk-limiting constraints and
solve computational models (4A) again for the relevant
scenario groups - steps 219, 220, 205, and 207.

In the second part, as illustrated in FIGS. 6 and
6A, when all outcomes for all scenario groups are
satisfactory, DMs:
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form a new scenario group from WS scenarios where
the outcomes are the worst, form an MSLP model (4) for
that group and solve the model by any appropriate
computer LP system 1 - steps 223, 224, and 225;

again, check whether the solution is feasible and,
if not, modify the predetermined limits - steps 227, 221,
and 222;

if desirable, modify the discretionary constraints
and obtain both feasible and satisfactory solution -
steps 229, 219, 205, and 207;

obtain and record the values of outcomes, including
the values of strategic variables - steps 209 and 231;
and

formulate "strategy definition" constraints - step
239.

In this part of the method, screening out of bad
solutions is accomplished by a combination of three types
of constraints: constraints based upon predetermined
boundary limits, discretionary constraints, and "strategy
definition" constraints that limit the values of
strategic variables.

In the third part, model (4) for each of T groups of
WS scenarios is, in turn, added to "strategy definition"
constraints to form model (4B) for that group.
Computational models (4B) are solved in turn for all T
groups. The values of outcomes in risk-related
activities for all S scenarios are obtained from these
solutions and fill the columns for the current strategy
in the outcome matrix. The method starts a new candidate
strategy by changing either the discretionary constraints
or the "worst scenario" group.

As indicated above, this method is a complex part of
the invention, but it is also the best for dealing with
very large and complicated problems. Even if the size of
a problem is so large that no more than two scenarios can
be put into an MSLP, its capacity to find compromise
solutions, along with its ability to form many
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combinations of scenarios, permits a sharp improvement in
the quality of strategies.

This concludes the section of the "Detailed
Description" about aspects of the invention related to
formulating and solving LP models in constructing
candidate strategies. The next part refers to methods of
selecting a strategy to be implemented in the physical
system.

Most state-of-the-art methods of selecting a
strategy on the basis of a payoff (outcome) matrix are
described in the previously quoted "Games and Solutions,"
Chapter 13. This invention offers three new methods
described below. State-of-the-art computer methods refer
to two-dimensional payoff matrices that contain "strategy
versus scenario" outcomes. Two-dimensional matrices are
sufficient if there is only one risk-related activity,
such as the financial results of a project.

FIG. 7 demonstrates such a two-dimensional payoff
matrix for a four-strategy, six-scenario problem. The
single risk-related activity is here the cost of a supply
chain production and distribution plan, which is
developed by using MSLP models (4) and (4A) in a real
world problem. The matrix entries are the costs of the
strategy under different "strategy versus scenario"
combinations (in dollars).

In addition to the true payoff matrix shown in the
first six lines and four columns of cost numbers, FIG. 7
contains four aggregate cost results (BEST COST, WORST
COST, EXPECTED COST, and EXPECTED IR COST) for each
strategy, and one aggregate (BEST SCENARIO COST) for each
scenario. IR stands here for "insufficient reason"; this
term is explained below. EXPECTED COST is computed by
Eg. (5) and EXPECTED IR COST by Eg. (6):
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S
EXPECTED COST (J) = £ ul[HJO[H][J}; (5)
H=1
S
EXPECTED IR COST (J) = (Z O[H]II[J]) / S; (6)
H=1

where O[H] [J] is the cost payoff for strategy J under
scenario H, ul[H] is the probability of scenario H, and S
is the number of scenarios.

In payoff-based criteria, four strategy cost results
are used for comparing the strategies, screening out the
worst strategies, and, finally, selecting the best one.
The best scenario results are used for computing the
regret matrix.

For any "strategy versus scenario" combination,
regret is computed by Eq. (7):

REGRET [H] [J] = BESTI[H] - O[H] [J], (7)
where: BEST(H) is the BEST SCENARIO COST for scenario H
and O[H] [J] is the payoff for strateqgy J under scenario
H.

For payoffs of FIG. 7, the regret matrix is shown in
FIG. 8. In each scenario row, at least one entry (for
the strategy that is the best under that scenario) equals
zero. For any other strategy, REGRET is the amount of
opportunity lost because the strategy, if selected, turns
out not to be the best under scenario H. Again, in
addition to the true regret matrix in the first six lines
and four columns of regret numbers, FIG. 8 contains four
aggregate regret results for each strategy. EXPECTED
REGRET is computed by Eqg. (8) and EXPECTED IR REGRET by
Eg. (9):

S
EXPECTED REGRET (J) = £ u[HIREGRET([H] [J]; (8)
H=1
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S
EXPECTED IR REGRET (J) = (I REGRETI[H] [J]) / S (9)
H=1
where REGRET[H] [J] is regret for strategy J under
scenario H, ul[H] is the probability of scenario H, and S
is the number of scenarios.

Three new regret-based methods to be introduced in
this invention are:

(a) OPR - The Optimism-Pessimism Index (Regret)
Criterion;

(b) PIR - The Partial Ignorance (Regret) Criterion;

(c) MIRR - The Modified Insufficient Reason (Regret)
Criterion.

The previously known payoff-based counterparts for
these methods are:

For OPR - OP, or The Optimism-Pessimism Index
Criterion;

For PIR - PI, or The Partial Ignorance Criterion;

For MIRR - MIR, or The Modified Insufficient Reason
Criterion.

For all three methods and their known counterparts,
the general methodology has many common points. It is as
follows.

If decision-makers (DMs) are very pessimistic, they
can compare the strategies just on the basis of their
worst results, which are WORST COST for the payoff
methods and WORST REGRET for the regret methods. This
corresponds to previously known "minimax payoff" and
"minimax regret" criteria, respectively. In other words,
DMs choose the strategy that has the best WORST and thus
try to protect themselves against disastrous outcomes.

If DMs are very optimistic, they can compare the
strategies just on the basis of their best results, which
are BEST COST for the payoff methods and BEST REGRET for
the regret methods. This corresponds to previously known

"maximax payoff" or "maximax regret" criteria,
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respectively. In other words, DMs choose the strategy
that has the best BEST.

Decision Science offers the previously known
synthetic OP ("optimism-pessimism index") criterion to
retain the flexibility of DMs' and their ability to
change the selection criteria at will, depending on their
judgment of the conditions of a specific problem. The OP
criterion is applicable to payoffs only. The
corresponding new method of this invention, OPR, is
applicable to regrets only.

Both criteria consider as unreliable any information
on scenario probabilities, and therefore compare
strategies J only on the basis of BEST (COST or REGRET,
respectively), WORST (COST or REGRET, respectively), and
an "optimism-pessimism index" ALPHA. ALPHA incorporates
both objective knowledge, including the existing
forecasts, and subjective judgment of DMs.

The first new method involves the OPR
criterion, which is:
Select J that minimizes

ZOPR(J, ALPHA) = (1 - ALPHA) * BEST REGRET(J) +

ALPHA * WORST REGRET(J),

0 s ALPHA <=1 (J=1,..., NST), (10)
where the value of ALPHA is specified by the user and NST
is the number of strategies. ZOPR(ALPHA) is here the
expected regret for strategy J if probability ALPHA is
assigned to the scenario that is the worst for J,
probability
(1 - ALPHA) to the best scenario, and zero probabilities
to all other scenarios. The previously known OP
criterion is similar, with ZOPR replaced by ZOP and
REGRET replaced by COST.

The extreme value of ALPHA = 1 corresponds to the
pessimistic outlook of minimax regret, while ALPHA = 0
corresponds to the optimistic outlook of maximax. Since
an arbitrary choice of a specific value of ALPHA does not
inspire confidence, a set of different values of ALPHA
can be used. The values of ZOPR(J, ALPHA) under varying
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values of ALPHA, as they are described by (10), can be
represented by a straight-line segment on the (0,1)
interval; see FIG. 9.

FIG. 9 is a decision graph illustrating the
optimism-pessimism index (regret) for strategies B, C,
and D using the OPR criterion. The ordinate is regret,
measured in dollars, and the abscissa is ALPHA, measured
from zero to unity. Strategy A is omitted, since it is
obviously much worse. In FIG. 9, the ZOPR line for
gtrategy B is:

ZOPR (B, ALPHA) = (1 - ALPHA) * 0 + ALPHA * 10,008.
The Z0PR line for strategy C is:
ZOPR(C, ALPHA) = (1 - ALPHA) * 4,950 + ALPHA * 6,541.

These two lines intersect at the value of ALPHA
where the ZOPRs for both strategies are equal, or at
ALPHA = 0.5881. This means that if DMs consider the
probability of the best scenarios (which, for both
strategy B and strategy C, happen to be scenarios 1 and
5) as less than 0.5881, they should select strategy B
because it has, up to that value of ALPHA, smaller values
of ZOPR. On the other hand, if they are pessimistic and
consider ALPHA closer to 1, they should select strategy
C.

FIG. 9 presents the "OPR efficient frontier" for
this example. The efficient frontier is the set of best
strategies on the [0, 1] range. It comprises two bold
straight-line segments: from (0, 0) to (0.5881, 5,886)
and from (0.5881, 5,886) to (1.0, 6,541). Each strategy
on the efficient frontier is characterized by a
subinterval of the [0, 1] range where this strategy is
the optimal choice. The efficient frontier incorporates
valuable information about the relative merits and
demerits of any strategy:

The composition of the subset of strategies that
form the efficient frontier.

The width of the subinterval supporting each
optimal strategy.
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The order of optimal strategies from the
optimistic end of the [0, 1] interval to the pessimistic
end.

- The difference between the regrets for the best
strategy and other strategies, which shows the possible
impairment of results in choosing a non-optimal strategy.

The OPR efficient frontier consists of two
strategies, B and C. The "optimistic part" of the [0, 1]
interval, where strategy B is optimal, has a width of
0.5881, while strategy C is optimal on a 0.4119
subinterval. At ALPHA = 0.5, the difference between the
regrets of C and B equals 742, while at ALPHA = 0.7 it
equals -942.

The second new method involves the PIR criterion,
very similar to the OPR criterion. The PIR criterion is,
however, more cautious: while leaving intact the
"pegsimistic end" - that is, WORST REGRET(J) - of the
straight-line segment that represents strategy J, it
replaces the "optimistic end" by the EXPECTED REGRET[J].
The PIR criterion is:

Select J that minimizes

ZPIR(J, ALPHA) = (1 - ALPHA) * EXPECTED REGRET(J) +

ALPHA * WORST REGRET(J),

0 < ALPHA s 1 (J=1,..., NST), (11)
where the value of ALPHA is again specified by the user.
(The previously known PI criterion is gimilar, with ZPIR
replaced by ZPI and REGRET replaced by COST.)

The extreme value of ALPHA = 1 again corresponds to
the pessimistic outlook of minimax regret, while ALPHA =
0 corresponds to a more optimistic outlook of expected
regret. In other words, DMs do not want to be carried
away by overly rosy expectations of potential BEST
REGRET; they therefore lower their expectations and
assume that the best they can hope for is EXPECTED
REGRET. At the same time, the real regret can be much
lower, down to WORST REGRET. The more reliable the
forecast scenario probabilities, the closer DMs can move
toward the simple expected regret criterion by decreasing
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the value of ALPHA. In contrast, the less DMs trust the
information available, the more they should be inclined
to be conservative. At ALPHA = 1, the PIR method is
again reduced to the pessimistic minimax regret
criterion.

The values of ZPIR(J, ALPHA) under varying values of
ALPHA, as they are described by Eq. (11), can be
represented by a straight-line segment on the (0,1)
interval; see FIG. 10, which is a graph of PIR efficient
frontier. FIG. 10 is a decision graph illustrating the
partial ignorance index (regret) for strategies B, C, and
D using the PIR criterion. The ordinate is regret,
measured in dollars, and the abscissa is ALPHA, measured
from zero to unity.

FIG. 10 also depicts only strategies B, C, and D.

In FIG. 10, the 2PIR line for strategy B is:
ZPIR(B, ALPHA) = (1 - ALPHA) * 2,742
+ ALPHA * 10,008.

The ZPIR line for strategy C is:

ZPIR(C, ALPHA) = (1 - ALPHA) * 5,754 + ALPHA * 6,541.

These two lines intersect at the value of ALPHA =
0.4649 where ZPIRs for both strategies are equal. If the
probability of the best scenarios is less than 0.4649,
strategy B should be selected, otherwise - strategy C.
Since the PIR criterion is more realistic than OPR, the
area of an optimistic choice of a strategy becomes more
narrow.

The third method involves the MIRR criterion used
when the information on scenario probabilities is either
absent or quite unreliable. In such cases, there is no
sufficient reason to consider that the scenarios are not
equally likely to occur, so the probability of each
gscenario is assumed to be 1/S, where S is . the number of
scenarios. With EXPECTED IR REGRET computed by Eqg. (9),
the MIRR criterion is quite similar to the PIR criterion.
The MIRR criterion is:

Select J that minimizes
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ZIRR(J, ALPHA) = (1 - ALPHA) * EXPECTED IR REGRET(J) +
ALPHA * WORST REGRET (J),
0 < ALPHA = 1 (J=1,..., NST). (12)

The straight-line ZIRR segments based on Egqg. (12) are
shown in FIG. 11, which is a graph of MIRR efficient
frontier. This time, the intersection of lines for
strategy B and strategy C is at 0.3552. FIG. 11 is a
decision graph illustrating modified insufficient reason
(regret) for strategies B, C, and D using the MIRR
criterion. The ordinate is regret, measured in dollars,
and the abscissa is ALPHA, measured from zero to unity.

The three new regret-based methods of this invention
allow much more sophisticated and sharp analysis in
comparing and selecting strategies. This is demonstrated
in the example depicted in FIGS. 7 through 11. The cost
matrix in FIG. 7 has been generated in an attempt to
reduce the riskiness of evolving candidate strategies -
first strategy A, then B, then C. Strategy A is very
risky. Compromise strategy B is generated by using model
(4) and the corresponding multiscenario model. The next
step is intended to reduce the high costs encountered
under scenarios 2 and 4 - even at the price of increasing
costs under other scenarios. Imposing the needed
discretionary constraints achieves that goal and obtains
strategy C. Repeating this procedure with tighter
discretionary constraints further reduces the costs under
the two worst scenarios. It therefore seems that
strategy D is less risky than strategy C, which in turn
is less risky than strategy B. The cost results more or
less confirm that impression: in moving from strategy C
to strategy D, worst costs decrease by 5,268, while the
expected costs rise only 3,347 (see FIG. 7).

Analysis of the regret results and of the regret-
based efficient frontiers of FIGS. 9 through 11, however,
brings one to a completely different conclusion. The
regret outcomes for strategy D under scenarios 2 and 4
indeed become the best. However, the price paid is too
steep: regrets under the other four scenarios exceed
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10,400 and under two of them come to around 12,000.
Correspondingly, as can be seen, for instance, in FIG.
10, strategy D is much worse than either strategy B or
strategy C. Such incisive analysis is not possible when
only previously known DS methods are used. The regret-
based criteria are therefore invaluable in determining
desirable limits on tightening discretionary constraints.

To simplify and possibly improve the use of outcome
and regret matrices in decision-making, the following
difficulties (in addition to introducing new and improved
DS criteria) have to be overcome:

First, if, in addition to the outcomes of a first
risk-related activity, such as cost, the problem has to
deal with the outcomes of a second risk-related activity,
such as the output of a dangerous by-product, a second
two-dimensional outcome matrix results. The method thus
generates a three-dimensional array of two matrices. The
outcome matrix may also have more than three dimensions -
for instance, if the outcomes are classified by the
causes of uncertainty.

These multidimensional matrices have to be
transformed into two-dimensional ones where the state-of-
the-art methods of Decision Science can be applied.

Second, decisions are often made not by a single
decision-maker, but by a group whose members may have
different priorities and criteria for selecting a
strategy.

Third, some tables of the outcome matrix may be
filled in not with numerical wvalues, but rather with
qualitative characteristics such as "good" or
"convenient."”

Fourth, there are several state-of-the-art and new
criteria of Decision Science for selecting a strategy.
They may give conflicting answers.

This invention provides techniques for dealing with
all these and similar difficulties. The key is in
weighting the matrix entries. For instance, in
converting a three-dimensional matrix into a two-
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dimensional one, one risk-related activity, such as the
financial results, is given priority as the main
activity. The outcomes in all other risk-related
activities are converted into the additional outcomes of
the main activity by multiplying them by conversion
coefficients, or weights. The values of these
coefficients are not likely to be known with accuracy.
Consequently, several different values are used
simultaneously for each conversion coefficient, so the
number of scenarios considered in the matrix increases
proportionately.

The strategy selection method illustrated by the
flow chart in FIG. 12 beging with step 269, where the
purpose of the steps that follow is to process an outcome
matrix and exclude strategies with unsatisfactory
outcomes in any activity. From step 269, the method
moves to decision point 271, where it is determined
whether NUMDIM (the number of dimensions of the matrix)
is greater than 2. If the answer is no, the method
proceeds to decision point 273, where it is determined
whether NUMGR (the number of members of the decision
making group) is greater than 1. If the answer there is
no, the method proceeds to step 275, where it is
determined whether NUMQ (the number of types of
qualitative characteristics that have to be transformed
into quantitative values) is greater than zero.

If the answer at decision point 271 in FIG. 12 is
yes, the method moves to step 289 to specify weights WD
and to step 291 to expand the matrix to matrix-D. From
step 291, the method moves to decision point 273. If the
answer at decision point 273 in FIG. 12 is yes, the
method moves to step 285, where weights WG are specified,
and to step 287, where the matrix is expanded to matrix-
G.

If the answer at decision point 275 in FIG. 12 is
no, the method moves to step 277 to specify weights WC
and to step 279 to expand the matrix to matrix-C. If the
answer at decision point 275 is yes, the method moves to
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step 293 to specify weights WQ and to step 295 to expand
the matrix to matrix-Q.

Finally in FIG. 12, the method moves from step 279
to step 281 and applies Decision Science criteria to
exclude the worst strategies and to step 283 to use risk
attitude and the subjective considerations of DMs,
together with Decision Science criteria, to select the
right strategy.

The method of processing the outcome matrix or the
criteria for selecting a strategy by weighting can easily
be followed on the flow chart of FIG. 12. After studying
the payoff matrix and excluding those strategies that
have unsatisfactory outcomes in any scenario or any
activity, DMs:

determine NUMDIM, the number of dimensions of the
matrix; NUMGR, the number of members of the decision-
making group; and NUMQ, the number of types of
qualitative characteristics that have to be transformed
into quantitative values - steps 271, 273, and 275;

if NUMDIM > 2, NUMGR > 1, and NUMQ > 0, develop a
set of conversion weights for each of the respective
transformations of the outcome matrix, as well as weights
for different criteria for selection of a strategy -
steps 285, 289, 293, and 277;

use the weights to expand the outcome matrix as
desired (MATRIX-D is the initial matrix after its
transformation into a two-dimensional matrix; MATRIX-G is
the matrix after group member differences are taken into
account, MATRIX-Q takes into account qualitative results;
and MATRIX-C smooths over the differences between
different DS criteria) - steps 291, 287, 295, and 279;
and

apply the criteria of Decision Science, as well as
considerations of risk attitude and subjective
preferences of DMs, to select a strategy on the basis of
both the original outcome matrix and its expanded version
- steps 281 and 283.
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It is to be understood that the embodiments of the
invention which have been described are illustrative.
Numerous other arrangements and modifications may be
readily devised by those skilled in the art without
departing from the spirit and scope of the invention.
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Clajims:

1. A computer method for managing risk in multiple
parameter physical systems performing interrelated
activities, at least one of such activities being
designated as a risk-related activity and having an
outcome level which may fall outside of boundary limits,
said method establishing a course of action (strategy)
for said physical systems preventing any outcome levels
for said risk-related activities from falling outside of
said boundary limits and comprising the steps of:

(1) finding a set of satisfiable boundary
limits (11-15) and developing (17-21, 25-29, 37) in
computer memory a multitude of feasible candidate
strategies that satisfy said boundary limits;

(2) finding the values of outcomes (23, 35) of
said risk-related activities for each said feasible
candidate strategy under relevant conditions by storing
(17) and solving (19) a model of said physical systems in
said computer memory;

(3) identifying candidate strategies from said
outcomes of said risk-related activities and recording
said outcomes in said computer memory; and

(4) jointly applying in said computer memory
multiple optimization criteria to said outcomes of said
candidate strategies to aid decision-makers in selecting
an implementable strategy.

2. A computer method for managing risk in multiple
parameter physical systems performing interrelated
activities, at least one of such activities being
designated as a risk-related activity and having an
outcome level which may fall outside of boundary limits,
said method establishing a course of action (strategy)
for said physical systems preventing any outcome levels
for said risk-related activities from falling outside of
said boundary limits and comprising the steps of:

(1) finding a set of satisfiable boundary
limits (11-15) and developing (17-21, 25-29, 37) in
computer memory a multitude of feasible candidate



10

15

20

25

30

35

WO 98/13776 PCT/US97/16446

80

strategies that satisfy said boundary limits by
computational methods that use risk-limiting constraints
(31-33, 39);

(2) finding the values (23-35) of outcomes of
said risk-related activities for each feasible candidate
strategy under relevant conditions by storing (17)and
solving (19) a model of said physical systems in said
computer memory;

(3) identifying said candidate strategies from
said outcomes of said risk-related activities and
recording said outcomes in said computer memory;

(4) jointly applying multiple optimization
criteria in said computer memory to outcomes of all
candidate strategies to exclude candidate strategies
which are inferior to others under said criteria; and

(5) jointly applying multiple optimization
criteria in said computer memory to outcomes of remaining
candidate strategies to aid decision-makers in selecting
an implementable strategy.

3. A computer method for managing risk in multiple
parameter physical systems performing interrelated
activities, at least one of such activities being
designated as a risk-related activity and having an
outcome level which may fall outside of boundary limits,
said method developing a course of action (strategy) for
said physical systems preventing any outcome levels for
said risk-related activities from falling outside of said
boundary limits and comprising the steps of:

(1) storing an initial model (11-17) of said
gystems in computer memory, said model including values
for parameters of each of said physical systems;

(2) producing a solution (19) of said initial
model in said computer memory;

(3) deriving from said solution of said initial
model a set of outcome levels (21-23) for said risk-
related activities;

(4) comparing said set of outcome levels (25-
29) for said risk-related activities with said boundary
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limits and, if any of said boundary limits are violated,
then deriving at least one risk-limiting derivative
constraint from such comparison;

(5) expanding said initial model in said
computer memory by adding said risk-limiting derivative
constraints (31) to said initial model in said computer
memory; and

(6) producing a solution (33) of said expanded
model with said added risk-limiting derivative
constraints in said computer memory.

4. The computer risk management method of claim 3
where said risk-limiting derivative constraints are in
the form of mathematical equations and inequalities.

5. The computer risk management method of claim 3
where said risk-limiting derivative constraints are in
the form of fines and penalties.

6. A computer method for managing risk in multiple
parameter physical systems performing interrelated
activities, at least one of such activities being
designated as a risk-related activity and having an
outcome level which may fall outside of boundary limits,
said method developing a course of action (strategy) for
said physical systems preventing any of said outcome
levels for said risk-related activities from falling
outside of said boundary limits and comprising the steps
of:

(1) storing an initial model (11-17) of said
systems in said computer memory, said model including
both a set of decision variables and values for
parameters of each of said physical systems, where
strategic variables are a subset of said decision
variables and where a strategy consists of a set of
values specified for all said strategic variables;

(2) producing a solution (19) of said initial
model in said computer memory;

(3) deriving from said solution of said initial
model a set of ocutcome levels (21-23) for said risk-
related activities;
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(4) comparing said set of outcome levels (25-
29) for said risk-related activities with said boundary
limits and, if the outcome level of at least one said
risk-related activity falls outside said boundary limits
for that activity, then deriving at least one risk-
limiting derivative constraint from such comparison;

(5) expanding said initial model in said
computer memory by adding said risk-limiting derivative
constraints (31) to said initial model in said computer
memory ;

(6) producing a solution (33) of said expanded
model with said added risk-limiting derivative
constraints in said computer memory; and

(7) identifying a strategy for said physical
systems from the values of said strategic variables in
said solution of said expanded model.

7. The computer risk management method of claim 6
in which said computational model of said physical
gystems is used to locate regions and groups of risky
decisions and strategies and to cut off said regions and
groups by adding to said model derivative constraints.

8. A computer method for managing risk under
certainty in multiple parameter physical systems
performing interrelated activities, at least one of such
activities being designated as a risk-related activity
and having an outcome level which may fall outside of
boundary limits, said method developing a course of
action (strategy) for said physical systems preventing
any of said outcome levels for risk-related activities
from falling outside of said boundary limits and
comprising the steps of:

(1) storing an initial model (11-17) of said
gsystems in computer memory, said model including values
for parameters of each of said physical systems;

(2) producing a solution (19) of said initial
model in said computer memory;
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(3) deriving from said solution of said initial
model a set of outcome levels (21-23) for said risk-
related activities;

(4) comparing said set of outcome levels (25-
29) for said risk-related activities with said boundary
limits;

(5) if the outcome of at least one said risk-
related activity falls outside said boundary limits for
that activity, then forming a set of risk-limiting
derivative constraints for all of said boundary limits;

(6) expanding said initial model in said
computer memory by adding said set of risk-limiting
derivative constraints (31) to said initial model in said
computer memory;

(7) producing a solution (33) of said expanded
model with said set of added risk-limiting derivative
constraints in said computer memory;

(8) deriving from said solution (23, 35) of
said expanded model a set of outcome levels for said
risk-related activities;

(9) comparing said set of outcome levels (25-
29) for said risk-related activities with said boundary
limits;

(10) changing said expanded model by changing
some of said boundary limits (37) and changing said risk-
limiting derivative constraints (39) for said changed
boundary limits;

(11) producing a solution (33) of said changed
model with said changed risk-limiting derivative
constraints in said computer memory;

(12) deriving from said solution of said
changed model a set of outcome levels (23, 35) for said
risk-related activities;

(13) repeating steps (9) through (12) (23-25,
29-39) until no outcome level of any of said risk-related
activities falls outside said boundary limits for that
activity; and
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(14) identifying a strategy (27) for said
physical systems from the values of said strategic
variables in said solution of said changed model.

9. A computer method for managing risk in multiple
parameter physical systems performing interrelated
activities, at least one of such activities being
designated as a risk-related activity and having an
outcome level which may fall outside of boundary limits,
said method developing a course of action (strategy) for
said physical systems preventing any of said outcome
levels for said risk-related activities from falling
outside of said boundary limits and comprising the steps
of:

(1) storing an initial model (11-17) of said
systems in said computer memory, said model including
both a set of decision variables and values for
parameters of each of said physical systems, where
strategic variables are a subset of said decision
variables and where a strategy consists of a set of
values specified for all said strategic variables;

(2) producing a solution (19) of said initial
model in said computer memory;

(3) deriving from said solution of said initial
model a set of outcome levels (23) for said risk-related
activities;

(4) comparing said set of outcome levels (25-
29) for said risk-related activities with said boundary
limits and, if the outcome level of at least one said
risk-related activity falls outside said boundary limits
for that activity, then deriving at least one risk-
limiting derivative constraint from such comparison;

(5) expanding said initial model (31) in said
computer memory by adding said risk-limiting derivative
constraints to said initial model in said computer
memory;

(6) producing a solution (33) of said expanded
model with said added risk-limiting derivative
constraints in said computer memory;
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(7) deriving from said solution (23, 35)of said
expanded model a new set of outcome levels for said risk-
related activities;

(8) deriving from said solution of said
expanded model a discretionary boundary limit (31) for at
least one said risk-related activity;

(9) comparing said new set of outcome levels
(25-29) with said set of discretionary boundary limits
and deriving at least one additional discretionary risk-
limiting constraint from such comparison;

(10) further expanding said expanded model (31,
17-39) in said computer memory by adding said
discretionary risk-limiting constraints to said expanded
model in said computer memory;

(11) producing a solution (33) of said further
expanded model with said discretionary risk-limiting
constraints in said computer memory;

(12) repeating steps (7) through (11) (23-25,
29-39) until said solution of said further expanded model
is satisfactory to decision-makers; and

(13) identifying a strategy (27) for said
physical systems from the values of said strategic
variables in said solution of said expanded model.

10. A computer method for managing risk in multiple
parameter physical systems performing interrelated
activities, at least one of such activities being
designated as a risk-related activity and having an
outcome level which may fall outside of boundary limits,
said method developing a course of action (strategy) for
said physical systems preventing any of said outcome
levels for said risk-related activities from falling
outside of said boundary limits and comprising the steps
of:

(1) storing an initial symbolic mathematical
model (11) of said systems in said computer memory, said
model including a set of decision variables, where
strategic variables are a subset of said decision
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variables and where a strategy consists of a set of
values specified for said strategic variables;

(2) entering values for parameters (13-15) of
each of said physical systems into said computer memory;
(3) converting said initial symbolic
mathematical model into an initial computational model
(17) in said computer memory by replacing symbols with

numbers;

(4) producing a solution (19) of said initial
model in said computer memory;

(5) deriving from said solution of said initial
model a set of outcome levels (21-23) for said risk-
related activities;

(6) comparing said set of outcome levels (25)
for said risk-related activities with said boundary
limits and, if the outcome level of at least one said
risk-related activity falls outside said boundary limits
for that activity, then deriving at least one risk-
limiting derivative constraint from such comparison;

(7) expanding said initial model in said
computer memory by adding (31, 37-39) said risk-limiting
derivative constraints to said initial model in said
computer memory;

(8) producing a solution (33) of said expanded
model with said added risk-limiting derivative
constraints in said computer memory; and

(9) identifying a strategy (27) for said
physical systems from the values of said strategic
variables in said solution of said expanded model.

11. A computer method for managing risk under
uncertainty in multiple parameter physical systems
performing interrelated activities, at least one of such
activities being designated as a risk-related activity
and having outcome levels which may fall outside of
boundary limits, said systems having parameters with
certain values and at least one parameter with uncertain
values, said method developing a course of action
(strategy) for said physical systems preventing any of
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said outcome levels for said risk-related activities from
falling outside of said boundary limits and comprising
the steps of:

(1) storing an initial model (115-119) of said
systems in computer memory, said model including both a
gset of decision variables and values for parameters of
each of said physical systems, where strategic variables
are a subset of said decision variables and where a
strategy consists of a set of values specified for said
strategic variables, at least one of said parameters
having a plurality of different possible values because
of uncertainty;

(2) producing solutions (121-127) of said
initial model in said computer memory for a plurality of
respectively different combinations of said parameters,
where each of said different combinations includes a
respectively different one of said possible values;

(3) deriving from said solutions of said
initial model a set of outcome levels (133) for said
risk-related activities for each of said different
combinations;

(4) comparing said set of outcome levels (135)
for said risk-related activities with said boundary
limits and, if any of said boundary limits are violated,
then deriving at least one risk-limiting derivative
constraint from such comparison;

(5) expanding said model (143) in said computer
memory by adding said risk-limiting derivative
constraints to said model in said computer memory;

(6) producing solutions (145) of said expanded
model with said added risk-limiting derivative
constraints in said computer memory;

(7) repeating iteratively steps (3) through (6)
(129-137, 141-147) until solutions for all said different
combinations of possible values are satisfactory for
decision-makers;
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(8) identifying a strategy (139) for said
physical systems from the values of said strategic
variables in said solution of said expanded model; and

(9) recording outcome levels (149) in said
computer memory for all scenario versus strategy versus
risk-related activity combinations into an outcome
matrix.

12. The computer risk management method of claim 11
which includes the additional step of:

(10) deriving from entries in said outcome
matrix all scenario versus strategy versus risk-related
activity combinations of regret values and forming a
regret matrix (FIG. 8) in said computer memory, where
regret values, for each risk-related activity, are
computed by the equation

REGRET [H] [J] = BESTI[H] - O[H] [J],
where BEST[H] is the best scenario outcome for scenario H
and O[H] [J] is the outcome for strategy J under scenario
H.

13. The computer risk management method of claim 12
in which each said candidate strategy is described in a
multidimensional format by the outcome and regret values
for said risk-related activities, such
multidimensionality taking into consideration factors
including the multiplicity of scenarios, risk-related
activities, and causes of uncertainty, and which aids in
selection of a strategy on the basis of such
multidimensional description.

14. The computer risk management method of claim 12
in which both of said matrices have n dimensions, where n
is an integer greater than one.

15. A computer method for managing risk under
uncertainty in multiple parameter physical systems
performing interrelated activities, at least one of such
activities being designated as a risk-related activity
and having an outcome level which may fall outside of
boundary limits, said systems having parameters with
certain values and at least one parameter with uncertain
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values, said method developing a course of action
(strategy) for said physical systems preventing any of
said outcome levels for said risk-related activities from
falling outside of said boundary limits and comprising
the steps of:

(1) storing an initial model (115-119) of said
systems in computer memory, said initial model including
values for parameters of each of said physical systems,
at least one of said parameters being uncertain in that
it has a plurality of different possible values because
of uncertainty, and said model comprising interconnected
submodels for a plurality of respectively different
combinations of said parameters, where each of said
different combinations is a respectively different
scenario which includes a respectively different one of
said possible values;

(2) entering values for each of said certain
parameters (119) into all of said scenario submodels in
said computer memory;

(3) entering a respectively different one of
said possible values (121-123) for said uncertain
parameters into each of said scenario submodels in said
computer memory;

(4) producing a solution (127) of said model in
said computer memory, said solution including a
subsolution for each of said scenario submodels;

(5) deriving from said subsolutions for each of
said scenario submodels respective outcome levels (133)
for said risk-related activities for each said scenario;

(6) comparing said set of outcome levels (135)
for said risk-related activities from each of said
scenario submodels with said boundary limits and, if any
of said boundary limits are violated, then deriving at
least one risk-limiting derivative constraint from such
comparison;

(7) expanding at least some of said scenario
submodels (143) in said computer memory by adding said
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risk-limiting derivative constraints to such expanded
submodels;

(8) producing solutions of said expanded
submodels (145) with said added risk-limiting derivative
constraints in said computer memory;

(9) repeating iteratively steps (5) through (8)
(133-137, 141-147) until said solutions for all said
different scenarios are satisfactory for decision-makers;
and

(10) identifying a strategy (131) for said
physical systems from the values of said strategic
variables in said solution of said expanded model.

16. The computer risk management method of claim 15
in which said discretionary limits are imposed on said
outcome and regret levels of said risk-related activities
under specified individual scenarios or scenario groups
in said solutions of said computational model.

17. A computer method for managing risk under
uncertainty in multiple parameter physical systems
performing interrelated activities, at least one of such
activities being designated as a risk-related activity
and having an outcome level which may fall outside of
boundary limits, said systems having parameters with
certain values and at least one parameter with uncertain
values, said method developing a course of action
(strategy) for said physical systems preventing any of
said outcome levels for said risk-related activities from
falling outside of said boundary limits, said method
comprising the steps of:

(1) storing an initial model (41-45) of said
physical systems in computer memory, said model including
both a set of decision variables and values for
parameters of each of said physical systems, at least one
of said parameters being uncertain in that it has a
plurality of different possible values because of
uncertainty, and said model comprising single-scenario
computational models (49-53) for each respectfully
different combination of said parameters and each of said
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different combinations is a scenario, said single-
scenario computational models including constraints
arising from predetermined boundary limits, and strategic
variables are similar subsets of decision variables in
each of said single-scenario computational models, where
the possible range of values for each said strategic
variable is divided into segments (47), and where a
strategy consists of a set of segments for specified
values of said strategic variables;

(2) producing solutions (55) of said single-
scenario computational models in said computer memory for
all scenarios, deriving from said solutions of said
initial model a set of said outcome levels (57) for said
rigsk-related activities for each of said scenarios, and
comparing said outcome levels (59) for said risk-related
activities with said boundary limits;

(3) if at least one of said scenario solutions
is infeasible, in that at least one outcome falls outside
predetermined boundary limits for a risk-related
activity, then modifying said boundary limits (67) until
all said scenario solutions become feasible;

(4) additionally imposing discretionary
constraints on outcome levels (63) of said risk-related
activities in specified single-scenario computational
models and modifying said discretionary constraints until
all of them are satisfied under all said scenarios;

(5) analyzing the satisfactory solutions (75)
of said single-scenario computational models for all
scenarios, finding the segments into which the values of
each strategic variable in each said scenario solution
fall (77), and forming a candidate strategy (79) for each
subset of said solutions that has the same combination of
strategic variables in specific segments over the whole
set of said strategic variables, while subsets of
solutions with respectively different combinations form
different candidate strategies;

(6) forming strategy definition constraints
(87) for a candidate strategy, where said strategy
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definition constraints ensure that the value of each
strategic variable falls into a specified segment, adding
said strategy definition constraints (91) in said
computer memory in turn to said single-scenario
computational models for all of said scenarios, and
generating solutions (93) in said computer memory for all
of said expanded single-scenario computational models;

(7) if at least one solution of said single-
scenario computational models is infeasible, then
excluding said candidate strategy (97) from further
consideration;

(8) if said candidate strategy remains viable,
then recording outcome levels (109-111) for all scenario
versus strategy versus risk-related activity combinations
into an outcome matrix; and

(9) repeating steps (6) through (8) (87-97,
109-111) for the whole set of candidate strategies formed
in step (5).

18. The computer method of claim 17 in which a
plurality of said scenarios are grouped (161) before
forming single-scenario computational models in said
computer memory and in which single-scenario
computational models in said computer memory are formed
only for said grouped scenarios (165).

19. The computer method of claim 18 in which a
respectively different plurality of scenarios and single-
scenario computational models formed therefrom are
regrouped (161) iteratively in said computer memory.

20. A computer method for managing risk under
uncertainty in multiple parameter physical systems
performing interrelated activities, at least one of such
activities being designated as a risk-related activity
and having an outcome level which may fall outside of
boundary limits, said systems having parameters with
certain values and at least one parameter with uncertain
values, said method developing a course of action
(strategy) for said physical systems preventing any of
said outcome levels for said risk-related activities from
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falling outside of said boundary limits and comprising
the steps of:

(1) storing an initial model (115-123) of said
physical systems in computer memory, said model including
both a set of decision variables and values for
parameters of each of said physical systems, at least one
of said parameters being uncertain in that it has a
plurality of different possible values because of
uncertainty, said model being a multiscenario
computational model that comprises interconnected
submodels for each respectively different combination of
said parameters and each of said different combinations
is a scenario, said scenario submodels including
constraints arising from said predetermined boundary
limits and strategic variables are similar subsets for
each scenario of said decision variables of said scenario
submodels, where the possible range of values for each
said strategic variable is divided into segments, where a
strategy consists of a set of segments for specified
values of said strategic variables, and where under each
scenario the values of each strategic variable fall into

the same segment;

(2) producing a solution (127) of said
multiscenario computational model in said computer
memory, said solution comprising scenario subsolutions
for all scenario submodels, deriving from said solutions
of said submodels a set of outcome levels for said risk-
related activities for each of said scenarios, and
comparing said outcome levels for said risk-related
activities with said boundary limits;

(3) if at least one of said scenario
subsolutions is infeasible in that at least one outcome
falls outside said predetermined boundary limits for a
risk-related activity in said scenario, then modifying
said boundary limits until all of said scenario
subsolutions become feasible;

(4) additionally imposing discretionary
constraints (143) on outcome levels of said risk-related
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activities in specified scenario submodels and modifying
said discretionary constraints until all of them are
satisfied in all of said scenario submodels;

(5) analyzing satisfactory solutions of said
scenario submodels for all scenarios, finding segments
into which the values of each strategic variable fall,
and forming a candidate strategy (131) that reflects the
combination of strategic variables in specific segments
obtained over the whole set of strategic variables;

(6) recording outcome levels (133, 149) for all
scenario versus strategy versus risk-related activity
combinations into an outcome matrix;

(7) modifying said discretionary constraints on
outcome levels (143) for specified risk-related
activities and scenarios to obtain another feasible and
satisfactory candidate strategy; and

(8) repeating steps (5) through (7) (131-137,
143-149) until a sufficient number of candidate
strategies is obtained.

21. The computer method of claim 20 in which a
plurality of said scenarios are grouped (161) before
forming scenario submodels in said multiscenario
computational model in said computer memory and in which
scenario submodels in said computer memory are formed
only for said grouped scenarios.

22. The computer method of claim 21 in which a
respectively different plurality of said scenarios and
scenario submodels formed therefrom are regrouped (161)
iteratively in said computer memory.

23. A computer method for managing risk under
uncertainty in multiple parameter physical systems
performing interrelated activities, at least one of such
activities being designated as a risk-related activity
and having an outcome level which may fall outside of
boundary limits, said systems having parameters with
certain values and at least one parameter with uncertain
values, said method developing a course of action
(strategy) for said physical systems preventing any of
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said outcome levels for said risk-related activities from
falling outside of said boundary limits and comprising
the steps of:

(1) storing an initial model (191-195) of said
physical systems in computer memory, said model including
both a set of decision variables and values for
parameters of each of said physical systems, at least one
of said parameters being uncertain in that it has a
plurality of different possible values because of
uncertainty, and said model being a computational model
that comprises multiple group multiscenario models for a
multitude of groups of each respectively different
combination of said parameters, where each of said
different combinations is a scenario and each of said
multiple groups comprises a plurality of said scenarios,
said group multiscenario models including constraints
arising from predetermined boundary limits, and strategic
variables are similar subsets of decision variables for
each of said group multiscenario models, where the
possible range of values for each strategic variable is
divided into segments, and where a strategy consists of a
gset of segments for specified values of said strategic
variables;

(2) grouping respective pluralities of
scenarios into scenario groups (199);

(3) forming a respective group multiscenario
computational model (205) for each scenario group;

(4) producing solutions of said group
multiscenario computational models (207) in said computer
memory, said solutions comprising scenario subsolutions
for all scenario submodels, deriving from said solutions
of said submodels a set of said outcome levels (209) for
said risk-related activities for each of said scenarios,
and comparing said outcome levels (211) for said risk-
related activities with said boundary limits;

(5) if at least one of said scenario
subsolutions is infeasible in that at least one outcome
falls outside said predetermined boundary limits for a
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risk-related activity in its scenario, then modifying
(221) said boundary limits until all said scenario
subsolutions become feasible;

(6) additionally imposing discretionary
constraints (219) on outcome levels of said risk-related
activities in specified scenario submodels and modifying
said discretionary constraints until all of them are
satisfied in all of said scenario submodels;

(7) repeating steps (3) through (6) (205-222)
for the whole set of scenario groups;

(8) analyzing said satisfactory solutions of
said scenario submodels for all said scenarios, finding
which of said scenarios have worst outcomes (223),
forming a new scenario group with the worst outcomes,
forming a new group multiscenario computational model
(224) for that group and producing a solution (225) of
said new multiscenario computational model;

(9) if at least one of said scenario
subsolutions in said new model is infeasible, then repeat
steps (5) and (6) (219-221) for the new group
multiscenario computational model;

(10) analyzing into which segments said values
of each strategic variable fall (231), and forming a
candidate strategy (239) that reflects the obtained
combination of strategic variable in specific segments
over the whole set of said strategic variables;

(11) forming strategy definition constraints
(239) for said candidate strategy;

(12) adding said strategy definition
constraints to the group multiscenario computational
model (243) for the initial scenario group and solving
the resulting group multiscenario computational model;

(13) if at least one of said scenario
subsolutions is infeasible, then screening out said
candidate strategy (247, 251-255), modifying the
composition of the worst scenario group, and returning to
step (8);
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(14) recording outcome levels (257-259) for all
scenario versus strategy versus risk-related activity
combinations for all scenarios of said scenario group
into an outcome matrix;

(15) repeating steps (11) through (14) (239-
259) for the whole set of said scenario groups; and

(16) repeating steps (8) through (15) (223-259)
until a plurality of candidate strategies are obtained.

24. The computer method of claim 23 in which a
plurality of said scenarios are grouped (161) before
forming scenario submodels in said multiscenario
computational models in said computer memory and in which
scenario submodels in said computer memory are formed
only for said grouped scenarios.

25. The computer method of claim 24 in which a
respectively different plurality of said scenarios and
scenario submodels formed therefrom are regrouped (161)
iteratively in said computer memory.

26. A computer method for managing risk under
uncertainty in multiple parameter physical systems
performing interrelated activities, at least one of such
activities being designated as a risk-related activity
and having an outcome level which may fall outside of
boundary limits, said systems having parameters with
certain values and at least one parameter with uncertain
values, said method developing a course of action
(strategy) for said physical systems preventing any of
said outcome levels for said risk-related activities from
falling outside of said boundary limits and comprising
the steps of:

(1) storing an initial model (191-195) of said
physical systems in computer memory, said model including
both a set of decision variables and values for
parameters of each of said physical systems, at least omne
of said parameters being uncertain in that it has a
plurality of different possible values because of
uncertainty, and said model being a computational model
that comprises multiple group multiscenario models for a
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multitude of groups of each respectively different
combination of said parameters, where each of said
different combinations is a scenario and each of said
multiple groups comprises a plurality of said scenarios,
said group multiscenario models including constraints
arising from predetermined boundary limits, and strategic
variables are similar subsets of decision variables for
each of said group multiscenario models, where the
possible range of values for each strategic variable is
divided into segments, and where a strategy consists of a
set of segments for specified values of said strategic
variables;

(2) grouping respective pluralities of
scenarios into scenario groups (199);

(3) forming a respective multiscenario
computational model (205) for each scenario group;

(4) producing solutions of said multiscenario
computational models (207) in said computer memory, said
solutions comprising scenario subsolutions for all
scenario submodels, deriving from said solutions of said
submodels a set of said outcome levels (209) for said
risk-related activities for each of said scenarios, and
comparing said outcome levels (211) for said risk-related
activities with said boundary limits;

(5) if at least one of said scenario
subsolutions is infeasible in that at least one outcome
falls outside said predetermined boundary limits for a
risk-related activity in its scenario, then modifying
(221) said boundary limits until all said scenario
subsolutions become feasible;

(6) additionally imposing discretionary
constraints (219) on outcome levels of said risk-related
activities in specified scenario submodels and modifying
said discretionary constraints until all of them are
satisfied in all of said scenario submodels;

(7) repeating steps (3) through (6) (205-232)
for the whole set of scenario groups;
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(8) analyzing said satisfactory solutions of
said scenario submodels for all said scenarios, finding
which of said scenarios have worst outcomes (233),
forming a new scenario group with the worst outcomes,
forming a new multiscenario computational model (234) for
that group and producing a solution (225) of said new
multiscenario computational model;

(9) if at least one of said scenario
subsolutions is infeasible, then repeat steps (5) and (6)
(219-221) for the new multiscenario computational model;

(10) analyzing into which segments said values
of each strategic variable fall (231), and forming a
candidate strategy (239) that reflects the obtained
combination of strategic variable in specific segments
over the whole set of said strategic variables;

(11) forming strategy definition constraints
(239) for said candidate strategy;

(12) adding said strategy definition
constraints (243) to the multiscenario computational
model for the initial scenario group and solving the
resulting multiscenario computational model;

(13) if at least one of said scenario
subsolutions is infeasible, then screening out said
candidate strategy (247, 251-255), modifying the
composition of the worst scenario group, and returning to
gstep (8);

(14) recording outcome levels (257-259) for all
scenario versus strategy versus risk-related activity
combinations for all scenarios of said scenario group
into an outcome matrix;

(15) repeating steps (11) through {14) (239-
259) for the whole set of said scenario groups, where
tightening of said strategy definition constraints is
derived from solutions of said group multiscenario models
for worst scenario groups and is used as a decomposition
method to solve the large underlying overall
multiscenario model; and
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(16) repeating steps (8) through (15) (223-259)
until a plurality of candidate strategies are obtained.

27. The computer risk management method of claim 12
in which the simultaneous application of a multitude of
conversion weights and coefficients to combine and
converse entries of outcome and regret matrices is used
(269-279, 285-295) as an approximation technique to deal
with multidimensionality of matrices, multiple optimality
criteria, and qualitative outcomes.

28. The computer risk management method of claim 6
in which comparison of said candidate strategies is based
on three jointly used regret-based synthetic criteria for
two-dimensional outcome (payoff) and regret matrices:

(a) OPR - The Optimism-Pessimism Index (Regret)
Criterion (FIG. 9);

(b) PIR - The Partial Ignorance (Regret) Criterion
(FIG. 10); and

(c) MIRR - The Modified Insufficient Reason (Regret)
Criterion (FIG. 11), where

said OPR criterion is:

Select J that minimizes

ZOPR (J,ALPHA) = (1 - ALPHA) * BEST REGRET (J) +>
ALPHA * WORST REGRET(J),
0 w ALPHA p 1 (J=1,...,NST}, (1)

the value of ALPHA is specified by the user and NST is
the number of strategies; BEST REGRET(J) and WORST
REGRET(J) are the best and worst values of regret for
strategy J; and regret in Eq. (1) is computed by Eq. (2):
REGRET [H] [J] = BEST[H] - PAYOFF[H] [J], (2)
where BEST(H) is the best payoff for any strategy under
scenario H and PAYOFF[H] [J} is the payoff for strategy J
under scenario H;
said PIR criterion is:
Select J that minimizes
ZPIR (J,ALPHA) = (1 - ALPHA) * EXPECTED REGRET (J) +
ALPHA * WORST REGRET(J),
0 4 ALPHA pu 1 (J=1,..., NST), (3)
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the value of ALPHA is again specified by the user, and
EXPECTED REGRET(J) is computed by Eq. (4):
S
EXPECTED REGRET (J) = & ulH]REGRET[H] [J], (4)
H=1
REGRET [H] [J] is regret for strategy J under scenario H,
u[H] is the probability of scenario H, and S is the
number of scenarios; and
said MIRR criterion is:
Select J that minimizes
ZIRR (J,ALPHA) = (1 - ALPHA) * EXPECTED IR REGRET (J)

ALPHA * WORST REGRET (J),

0 p ALPHA pui1l 1 (J=1,...,NST), (5)
the value of ALPHA is again specified by the user, and
EXPECTED IR REGRET(J) is computed by Eg. (6):

S
EXPECTED IR REGRET(J) = (8 REGRET[H] [J])/S. (6)
H=1
29. The computer risk management method of claim 28
in which comparison of said strategies is based on three
jointly used regret-based "efficient frontier" methods
(FIGS. 8, 9, 10) which are respectively based on said
OPR, PIR and MIRR synthetic criteria for two-dimensional
regret matrices; said efficient frontier is the set of
best strategies on the [0, 1] range of probability ALPHA;
said OPR efficient frontier comprises straight-line
gsegments defined by Eqg. (1), said PIR efficient frontier
comprises straight-line segments defined by Eq. (3), and
said MIRR efficient frontier comprises straight-line
segments defined by Eq. (5), respectively;
where each strategy on the efficient frontier
is characterized by a subinterval of the [0, 1] range on
which this strategy is the optimal choice, and the
efficient frontier incorporates significant information
about the relative merits and demerits of any strategy:
the composition of the subset of strategies that
form the efficient frontier;
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the width of the subinterval supporting each
optimal strategy;
the order of optimal strategies from the
optimistic end of the [0, 1] interval to the pessimistic
5 end; and
the difference between the regrets for the best
strategy and other strategies, which shows the possible
impairment of results in choosing a non-optimal strategy.
30. The computer risk management method of claim 29
10 in which the three OPR, PIR and MIRR synthetic criteria
(FIGS. 8, 9, 10) for said two-dimensional regret matrices
and the three regret-based OPR, PIR and MIRR '"efficient
frontier" methods are jointly used to find desirable
limits on the tightening of discretionary boundaries and
15 associated discretionary constraints.
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