(54) Title: ANASTOMOTIC STRUCTURE FOR BLOOD VESSELS USING A SELF-EXPANDABLE MATERIAL OR STRUCTURE, AND ANASTOMOSIS METHOD FOR BLOOD VESSELS USING SAME

(57) Abstract: The present invention relates to an anastomotic structure for blood vessels using a self-expandable material or structure, and to an anastomosis method for blood vessels using same, and more particularly, to an anastomotic structure for blood vessels using a self-expandable material or structure, which is self-expandable in response to external stimulation and which is removable after a procedure, and to an anastomosis method for blood vessels using same.

(57) 요약서: 본 발명은 자가 평창성을 가지는 물질 또는 구조를 이용한 혈관 문합용 구조물 및 이를 이용한 혈관 문합 방법에 관한 것으로, 더욱 상세하게는 외부의 자극에 의해 자가 평창성을 가지는 구조물 시출 후 세가가 가능한 물질 또는 구조를 이용한 일정 형태의 혈관 문합용 구조물 및 이를 이용한 혈관 문합 방법에 관한 것이다.
명세서
발명의 명칭: 자가 평창성을 가지는 물질 또는 구조를 이용한 혈관
문합용 구조물 및 이를 이용한 혈관 문합 방법

기술분야
본 발명은 자가 평창성을 가지는 물질 또는 구조를 이용한 혈관 문합용 구조물
및 이를 이용한 혈관 문합 방법에 관한 것으로, 더욱 상세하게는 외부의 자극에
의해 자가 평창성을 가지며 시술 후 재가 가능한 물질 또는 구조를 이용한
일정 형태의 혈관 문합용 구조물 및 이를 이용한 혈관 문합 방법에 관한 것이다.

배경기술
혈관 문합술, 특히 미세 혈관 문합술은 여러 형태의 수술에서 적용되고 있으며,
특히 상형이나 신장이식, 간 이식 등과 같은 장기 이식에서 필수적인 수술
방법이다. 현재 운동 부족과 식생활의 서구화 등으로 인하여 혈관이 좁아지거나
기의 박막으로써 발생하는 소위 혈관폐쇄 질환은 해마다 늘어나고 있다. 이러한
폐쇄 혈관 또는 거의 폐쇄된 혈관을 치료하는 방법으로는 수술에 의한 방법이
종종 채택되고 있다. 이 수술에 의한 방법으로 혈관이 혈관에는 문제가
되고 있는 혈관부분을 잘라낸 다음에 잘라진 혈관들을 문합하는 소위 단부 대
단부 문합(end-to-end anastomosis) 방법이다. 이때 잘라낸 혈관 부분이 너무
길거나 문제가 되고 있는 혈관부분을 우회(bypass)하기 위해서 간 혈관이
필요하면 보통 다리경맥을 절단하여 활용한다.

혈관의 단면은 주로 내층(intima), 중간층(media) 및 외층(adventitia)으로
구성되어 있는데, 두 혈관을 문합할 경우에 반드시 내층은 내층끼리 밀착시켜서
문합하여야 한다. 상기와 같은 심장의 혈관폐쇄질환의 치료뿐만 아니라
피판이전수술에 의한 재건수술이나 절단된 혈관의 문합수술 시에 미세수술
전문의사가 직접 문합사(suture)를 사용하여 현미경이나 고배율 확대경으로
수술시야를 확보하고 수작업/manual에 의해 임히 부합하는 방법이 사용되고
있기 때문에 이러한 문합수술은 고도로 숙련된 전문의사에 의해서만 시행될 수
있고, 또 많은 시간과 노력이 필요로 한다. 특히, 심장과 같이 연속적으로 주기적
박동이 진행되고 있는 부위의 혈관을 임히 부합하여 문합하는 것은 상당히
어려운 일이다. 따라서 심장수술 시에는 적어도 3시간 이상 동안 인위적으로
심장 심비를 일으켜 심장의 박동을 정지시키는 과정이 필요하다.

따라서 이러한 문합사(suture)를 사용하여 임히 본태 혈관을 직접 문합하는
 것을 피하기 위해 몇몇의 혈관문합장치들이 고안되었다. 그 중, 혈관의 단부 대
단부 방식의 문합을 용이하게 시행할 수 있도록 하는 장치로 미국 특히
제3,774,615호, 미국특허 제4,214,586호 그리고 미국특허 제4,917,087호 등이
있고, 이미 상품화되어 있는 예로는 미국 Synovis Micro Companies Alliance사의
미세혈관 문합용 케플러(microvascular anastomotic coupler)가 있다.
[5] 림(Drahoslav Lim)의 2명은 미국특허 제3,774,615호에서 단절된 혈관을 수술하지 않고 문합하는 장치를 제시(disclosed) 하였는데 이 장치는 혈관이 문합되는 부위에서 혈관들을 완전히 고정시키지 않고, 절단된 두 혈관 주변들을 돌아가면서 골고루 접착시킬 수 있어서 한쪽의 혈관을 두 개의 혈관주변에 접착시킬 수 있었다. 단점은 단순히 림의 상시 접착시각의 것만으로 접착시킬 수 없으며, 단절된 부분이 서로 만나는 부위의 단위이거가 너무 작기 때문에 문합이 제대로 이루어지지 않고 혈액이 측 가동성이 있다.

[7] 월쉬(David J. Walsh)의 3명은 미국특허 제4,917,087호에서 고정된 관 모양(tubular shape)으로 된 혈관 문합장치를 제시하였는데 이 장치는 단부 대 단부(end-to-end) 또는 단부 대 측부(end-to-side) 문합에 사용할 수 있지만 두 혈관의 직경이 같은 경우에만 사용할 수 있으며, 내층과 내층의 문합 후 내층부분과 관련 고정하는 혈액 압력으로 두어어어야하려는 경향이 있는데 이에 대해 효율적이지 못하다. 따라서 상기와 같이 몇몇 혈관 문합 장치들이 제시되었음에도 불구하고 혈관 문합 수술은 아직도 전문의사가 농합사로 직접 문합하는 방식으로 수술이 시행되고 있다.

[8] 이러한 배경 하에서, 본 발명자들은 매우 미세한 혈관에 대한 혈관정적 수술시 이비 혈액이 빠져 형태가 없어진 혈관을 복원하는 과정은 매우 혼들고 시간이 많이 소요되며 완성 후에도 구멍이 작아지는 등의 수술 결과에 대하여 불만족스러운 문제점을 해결하고자 예의 노력한 결과, 외부의 자극에 의해 자가 폐창성을 가지며 시술 후 재기능 가능한 물질 또는 구조를 이용하여 일정 형태의 혈관 문합용 구조물을 제작하고 이를 이용하여 보다 용이하게 혈관 문합을 수행할 수 있음을 확인함으로써 본 발명을 완성하였다.

발명의 상세한 설명

기술적 과제

[10] 본 발명의 목적은 원통형 구조물로 자가 폐창성을 가지는 물질을 포함하는 혈관 문합용 구조물을 제공하고자 하는 것이다.

[12] 본 발명의 또 다른 목적은 폐창성을 가지는 물질이 투입되는 주입관 및 상기 주입관의 임측단으로부터 연장되는 한쌍의 신축 부재를 포함하는 혈관 문합용 구조물을 제공하고자 하는 것이다.

본 발명의 또 다른 목적은 자가 확장형 고분자 고리 및 상기 자가 확장형 고리에 연결된 실을 포함하는 혈관 문합용 구조물을 제공하고자 하는 것이다.

본 발명의 또 다른 목적은 상기 혈관 문합용 구조물을 이용하여 혈관 문합을 수행하는 방법을 제공하는 것이다.

과제 해결 수단

상기 과제를 해결하기 위해, 본 발명은 일 구형에서 직경이 0.5 내지 5 mm이고 길이가 10 내지 60 mm인 원통형 구조물로,

상기 구조물은 평창성을 가지는 물질을 포함하는,

혈관 문합용 구조물을 제공한다.

본 발명에서 사용하는 용어 '혈관 문합용 구조물은 혈관 문합 시술을 용이하게 수행할 수 있도록 혈관을 고정하거나 또는 절단된 혈관의 양쪽 단부 혈관 직경을 평창시켜 주는 구조물을 의미한다.

본 발명에서, 상기 원통형 구조의 혈관 문합용 구조물은 절라진 혈관의 양쪽 단부 사이에서 혈관 내경에 위치하도록 배치된 후 외부에서 처리되는 평창체에 의해 외부상으로 자가 평창되어 혈관을 고정할 수 있고 혈관 단부의 봉합 이후 상기 혈관 문합용 구조물을 용해시킬 수 있는 용매를 처리하여 제거가 가능한 것을 특징으로 한다. 즉, 상기 원통형 구조의 혈관 문합용 구조물은 자가 평창되어 압력에 의해 혈관을 고정하여 혈관 문합 시술을 보다 용이하게 보조해주며 복합을 할 수 있다.

상기 혈관 문합용 구조물을 제거하기 전에 수행되는 혈관 봉합은 혈관 단부 전체 내지 절반에 걸쳐 수행되는 것이 바람직하다.

본 발명에서 사용하는 용어 '평창성은 외부의 특정 자극에 의해 스스로 평창하는 성질을 의미한다.

상기 평창성을 가지는 물질은 전분일 수 있으며, 이에 제한되는 것은 아니다.

또한, 본 발명에서 사용하는 용어 '평창체는 평창성을 부여하기 위한 외부 자극 물질을 의미한다.

상기 평창체는 석염수일 수 있으며, 이에 제한되는 것은 아니다.

상기 혈관 문합용 구조물을 용해시킬 수 있는 용매는 석염수일 수 있으며, 이에 제한되는 것은 아니다.

상기 혈관 문합용 구조물을 용해시킬 수 있는 용매는 혈관 문합 이후 주사기를 통해 외부로부터 혈관 내경에 위치한 혈관 문합용 구조물에 처리될 수 있다. 이러한 용매의 처리로 혈관 문합용 구조물이 용해되어 봉합된 혈관에서 제거될
수 있다.

[34] 또한, 본 발명은 하기 단계를 포함하는 혈관 문합 방법을 제공한다.
[35] 1) 직경이 0.5 mm 이상 길이가 10 mm 이상의 원통형 구조물로, 상기
구조물은 자가 팽창성을 가지는 물질을 포함하는, 혈관 문합용 구조물을 절라진
혈관의 양쪽 단부 사이에서 혈관 내경에 위치하도록 배치하는 단계;
[36] 2) 상기 배치된 혈관 문합용 구조물에 팽창제를 처리하여 혈관 문합용
구조물을 방사상으로 자가 팽창하도록 유도하는 단계;
[37] 3) 상기 자가 팽창된 혈관 문합용 구조물 상에서 혈관의 양쪽 단부를
접근시키는 단계;
[38] 4) 상기 접근된 혈관 양쪽 단부를 봉합하는 단계; 및
[39] 5) 상기 봉합된 혈관 내부에 위치한 혈관 문합용 구조물에 상기 혈관 문합용
구조물을 용해시킬 수 있는 용매를 처리하여 상기 혈관 문합용 구조물을
제거하는 단계.
[40]
[41] 상기 혈관 문합용 구조물을 제거하기 전에 수행되는 혈관 단부의 봉합은 혈관
단부 전체 내지 전체에 걸쳐 수행될 수 있다.
[42] 상기 혈관 단부의 봉합을 전체에 걸쳐 수행하지 않은 경우, 6) 상기 혈관 양쪽
단부의 봉합을 마무리 하는 단계를 추가로 포함한다.
[43] 상기 단계 1은, 직경이 0.5 mm 이상 길이가 10 mm 이상의 원통형
구조물로, 상기 구조물은 자가 팽창성을 가지는 물질을 포함하는, 혈관 문합용
구조물을 절라진 혈관의 양쪽 단부 사이에서 혈관 내경에 위치하도록 배치하는
단계로서, 자가 팽창되어 압력에 의해 혈관을 고정하여 혈관 문합 시술을 보다
용이하게 보호해주는 역할을 하는 상기 원통형 구조물의 혈관 문합용 구조물을
절라진 혈관의 양쪽 단부 사이에서 혈관 내경에 위치하도록 배치시키는
단계이다.
[44] 상기 단계 2는, 상기 배치된 혈관 문합용 구조물에 팽창제를 처리하여 혈관
문합용 구조물을 방사상으로 자가 팽창하도록 유도하는 단계로서, 혈관을
고정하기 위하여 혈관 문합용 구조물을 혈관 내벽을 향하는 방사상의 방향으로
자가 팽창시키는 단계이다.
[45] 상기 단계 3은, 상기 자가 팽창된 혈관 문합용 구조물 상에서 혈관의 양쪽
단부를 접근시키는 단계로서, 혈관 단부의 봉합을 위하여 자가 팽창된 혈관
문합용 구조물 상에서 혈관의 양쪽 단부를 접근시키는 단계이다.
[46] 상기 단계 3은, 상기 자가 팽창된 혈관 문합용 구조물 상에서 혈관의 양쪽
단부를 접근시키는 단계로서, 혈관 단부의 봉합을 위하여 자가 팽창된 혈관
문합용 구조물 상에서 혈관의 양쪽 단부를 접근시키는 단계이다.
상기 단계 4는, 상기 접근된 혈관 양쪽 단부를 봉합하는 단계로서, 통상의 봉합 방법을 통해 혈관 단부의 봉합을 수행하는 단계이다.

상기 단계 5는, 상기 봉합된 혈관 내부에 위치한 혈관 문합용 구조물에 상기 혈관 문합용 구조물을 용해시킬 수 있는 용매를 처리하여 상기 혈관 문합용 구조물을 제거하는 단계로서, 혈관 단부의 봉합 이후 혈관 문합용 구조물을 제거하는 단계이다.

상기 단계 6은, 상기 혈관 양쪽 단부의 봉합을 마무리 하는 단계로서, 혈관 단부의 봉합이 정체에 걸쳐 수행되지 않은 경우 남은 봉합 부위를 마저 봉합하여 봉합 시술을 마무리하는 단계이다.

상기 자가 팽창성을 가지는 물질, 팽창제, 혈관 문합용 구조물을 용해시킬 수 있는 용매, 혈관 문합용 구조물을 용해시킬 수 있는 용매의 처리 방법은 상기 혈관 문합용 구조물에서 설명한 바와 동일하다.

또한, 본 발명은 다른 일 구현예로서
직경이 0.5 내지 5 mm이고 길이가 10 내지 60 mm인 자가 확장형 와이어, 및
상기 자가 확장형 와이어에 연결된 실을 포함하는,
혈관 문합용 구조물을 제공한다.
본 발명에서 사용하는 용어 '자가 확장형 와이어'는 혈관에 거치시 자발적으로 혈관 구경에 맞게 확장되어 혈관을 지지하는 구조물을 의미한다.
본 발명에서, 상기 자가 확장형 와이어는 일반 혈관의 양쪽 단부 사이에서 혈관 내경에 위치하도록 배치된 후 방사상으로 확장되어 혈관을 고정할 수 있고 혈관 단부의 봉합 이후 상기 와이어에 연결된 실을 외부에서 잡아당겨 제거가 가능한 것을 특징으로 한다. 즉, 상기 혈관 문합용 구조물은 와이어의 확장을 통하여 압력에 의해 혈관을 고정하여 혈관 문합 시술을 보다 용이하게 보조해주는 역할을 할 수 있다.
상기 혈관 문합용 구조물을 제거하기 전에 수행되는 혈관 봉합은 혈관 단부 전체 내지 절반에 걸쳐 수행되는 것이 바람직하다.
상기 자가 확장형 와이어의 소재는 혈관에 손상을 주지 않는 물질 중에서 선택될 수 있으며, 구체적으로 니티놀(nitinol)일 수 있으며, 이에 제한되는 것은 아니다.
상기 실의 소재는 니티놀(nitinol)일 수 있으며, 이에 제한되는 것은 아니다.
또한, 본 발명은 하기 단계를 포함하는 혈관 문합 방법을 제공한다.
1) 직경이 0.5 내지 5 mm이고 길이가 10 내지 60 mm인 자가 확장형 와이어; 및 상기 자가 확장형 와이어에 연결된 실을 포함하는, 혈관 문합용 구조물은 상기 자가 확장형 와이어가 잘라진 혈관의 양쪽 단부 사이에서 혈관 내경에 위치하고 상기 자가확장형 와이어에 연결된 실이 혈관 외부에 위치하도록 배치하는 단계;
2) 상기 배치된 자가 확장형 와이어를 방사상으로 확장하도록 유도하는 단계;
3) 상기 확장된 와이어 상에서 혈관의 양쪽 단부를 접근시키는 단계;
4) 상기 접근된 혈관 양쪽 단부를 통합하는 단계; 및
5) 상기 통합된 혈관 외부에 위치한 실을 외부에서 잡아당겨 상기 와이어를 제거하는 단계.

상기 확장형 와이어를 제거하기 전에 수행되는 혈관 단부의 통합은 혈관 단부 전체 내지 절반에 걸쳐 수행될 수 있다.

상기 혈관 단부의 통합을 전체에 걸쳐 수행하지 않은 경우, 6) 상기 혈관 양쪽 단부의 통합을 마무리 하는 단계를 추가로 포함한다.

상기 단계 1은, 직경이 0.5 내지 5 mm이고 길이가 10 내지 60 mm인 자가 확장형 와이어; 및 상기 자가 확장형 와이어에 연결된 실을 포함하는, 혈관 문합용 구조물을 상기 자가 확장형 와이어가 잘라진 혈관의 양쪽 단부 사이에서 혈관 내경에 위치하고 상기 자가 확장형 와이어에 연결된 실이 혈관 외부에 위치하도록 배치하는 단계로서, 일정 크기의 자가 확장형 와이어를 잘라진 혈관의 양쪽 단부 사이에서 혈관 내경에 위치시키고 상기 자가 확장형 와이어에 연결된 실을 혈관 외부에 위치시키도록 배치하는 단계이다.

상기 단계 2는, 상기 배치된 자가 확장형 와이어를 방사상으로 확장하도록 유도하는 단계로서, 혈관 내경을 최대한으로 평창시켜 압력에 의해 혈관을 고정시킬 수 있도록 상기 자가 확장형 와이어를 방사상으로 확장시키는 단계이다.

상기 단계 3은, 상기 확장된 와이어 상에서 혈관의 양쪽 단부를 접근시키는 단계로서, 혈관 단부의 통합을 위하여 확장된 와이어 상에서 혈관의 양쪽 단부를 접근시키는 단계이다.

상기 단계 4는, 상기 접근된 혈관 양쪽 단부를 통합하는 단계로서, 통상의 통합 방법을 통해 혈관 단부의 통합을 수행하는 단계이다.

상기 단계 5는, 상기 통합된 혈관 외부에 위치한 실을 외부에서 잡아당겨 상기 와이어를 제거하는 단계로서, 혈관 단부의 통합 이후 와이어에 연결된 실을
장아담겨 와이어를 제거하는 단계이다. 당겨진 와이어 달은 미리 거치된 설을 통한 통로를 통해 현관에 손상없이 제거된다. 이때 당겨지는 와이어 양에 의한 현관 손상이 없도록 와이어의 구조는 외부에 연결된 왕통 속을 통해 줄 хр에 수축되도록 구성되며 현관 손상이 없도록 와이어의 표면을 코팅 처리한다.

상기 단계 6은, 상기 혼합 망각 단부의 통합을 마무리 하는 단계로서, 혼합 단부의 통합이 전체에 걸쳐 수행되지 않은 경우 남은 통합 부위를 다시 통합하여 통합 시술을 마무리하는 단계이다.

상기 자가 확장형 와이어 및 실의 소재는 상기 혼합 문함용 구조물에서 설명한 바와 동일하다.

또한, 본 발명은 또 다른 일 구현예로서

평창성을 가지는 물질이 투입되는 주입관; 및

상기 주입관의 일측단으로부터 연장되는 한쌍의 신축 부재를 포함하는,

혼합 문함용 구조물을 제공한다.

상기 혼합 문함용 구조물은 혼합 문함시 상기 한쌍의 신축 부재 내부에 평창성을 가지는 물질을 충전시킴으로써 상기 한쌍의 신축 부재를 평창시켜 혼합을 고정하기 위해 사용된다.

즉, 본 발명에서는 상기 한쌍의 신축 부재가 절라진 혼합의 양쪽 단부 사이에서 혼합 내경에 위치하도록 배치된 후 주입관을 통해 투입되는 평창성을 가지는 물질에 의해 방사상으로 평창되어 혼합을 고정할 수 있고, 혼합 단부의 통합 이후 상기 한쌍의 신축 부재 내부에 충전된 평창성용 가지는 물질을 주입관을 통해 상기 한쌍의 신축 부재 내부로부터 제거한 다음 상기 주입관을 외부에서 잡아당겨 제거가 가능한 것을 특징으로 한다. 즉, 상기 혼합 문함용 구조물은 신축 부재 내부에 평창성을 가지는 물질을 충전시켜 확장시킴으로써 혼합을 고정하여 혼합 문함 시술을 보다 용이하게 보조해주는 역할을 할 수 있다.

상기 혼합 문함용 구조물을 제거하기 전에 수행되는 혼합 봉합은 혼합 단부 전체 내지 절반에 걸쳐 수행되는 것이 바람직하다.

본 발명에서 사용하는 용어 '주입관'은 외부에서 상기 신축 부재 내부에 평창성을 가지는 물질을 투입할 수 있는 통로를 구비한 관을 의미한다.

본 발명에서 사용하는 용어 '신축 부재'는 늘어나고 줄어드는 성질을 가지는 부재를 의미한다. 구체적으로, 상기 신축 부재는 내부에 충전된 평창성을 가지는 물질이 평창함에 따라 충분히 늘어날 수 있고 이후 상기 평창성을 가지는 물질이
제거되며 따라 줄어들 수 있는 성질을 가지는 부재이다.
[110] 상기 신축 부재의 소재는 합성고무, 폴리에틸렌 또는 이의 조합일 수 있으며, 이에 제한되는 것은 아니다.

[111] 또한, 상기 발명 문합용 구조물을 신축 부재에 형성되는 돌기부를 추가로 포함할 수 있다.

[112] 본 발명에서 사용하는 용어 '돌기부'는 뚜렷하게 내밀거나 도드라진 형상의 부위를 의미한다.

[113] 본 발명에서 사용할 수 있는 평창성을 가지는 물질은 석염수, 공기 또는 이의 조합일 수 있으며, 이에 제한되는 것은 아니다.

[114] 또한, 본 발명은 하기 단계를 포함하는 발명 문합 방법을 제공한다.

[115] 1) 평창성을 가지는 물질이 투입되는 주입관; 및 상기 주입관의 일측단으로부터 연장되는 한쌍의 신축 부재를 포함하는, 발명 문합용 구조물을 상기 한쌍의 신축 부재가 걸라진 발명의 양쪽 단부 사이에서 발명 내경에 위치하고 상기 주입관이 발명 외부에 위치하도록 배치하는 단계;

[116] 2) 상기 배치된 발명 문합용 구조물의 주입관을 통해 평창성을 가지는 물질을 주입하여 상기 한쌍의 신축 부재 내부에 평창성을 가지는 물질을 팽피 상기 한쌍의 신축 부재가 방사상으로 확장되도록 유도하는 단계;

[117] 3) 상기 확장된 한쌍의 신축 부재 상에서 발명의 양쪽 단부를 접근시키는 단계;

[118] 4) 상기 접근된 발명 양쪽 단부를 통합하는 단계; 및

[119] 5) 상기 한쌍의 신축 부재 내부에 공간된 평창성을 가지는 물질을 제거하는 단계; 및

[120] 6) 상기 주입관을 외부에서 잡아당겨 상기 신축 부재를 제거하는 단계.

[121] 상기 발명 문합용 구조물을 제거하기 전에 수행되는 발명 단부의 통합은 발명 단부 전체 내지 접연에 걸쳐 수행될 수 있다.

[122] 상기 발명 단부의 통합을 전체에 걸쳐 수행하지 않은 경우, 7) 상기 발명 양쪽 단부의 통합을 마무리 하는 단계를 추가로 포함한다.

[123] 상기 단계 1은, 평창성을 가지는 물질이 투입되는 주입관; 및 상기 주입관의 일측단으로부터 연장되는 한쌍의 신축 부재를 포함하는, 발명 문합용 구조물을 상기 한쌍의 신축 부재가 걸라진 발명의 양쪽 단부 사이에서 발명 내경에 위치하고 상기 주입관이 발명 외부에 위치하도록 배치하는 단계로서, 한쌍의 신축 부재는 걸라진 발명의 양쪽 단부 사이에서 발명 내경에 위치시키고 평창성을 가지는 물질이 투입되는 주입관은 발명 외부에 위치시키도록
배치하는 단계이다.

상기 단계 2는, 상기 배치된 혈관 문합용 구조물의 주입관을 통해 평창성을 가지는 물질을 주입하여 상기 한양의 신축 부재 내부에 평창성을 가지는 물질을 체위 상기 한양의 신축 부재가 방사상으로 확장되도록 유도하는 단계로서, 주입관을 통해 외부로부터 평창성을 가지는 물질을 투입하여 양쪽 신축 부재 내부에 평창성을 가지는 물질을 체위 상기 한양의 신축 부재를 방사상으로 확장시키는 방법을 고정하는 단계이다.

상기 단계 3은, 상기 확장된 한양의 신축 부재 상에서 혈관의 양쪽 단부를 접근시키는 단계로서, 혈관 단부의 봉합을 위하여 확장된 한양의 신축 부재 상에서 혈관의 양쪽 단부를 접근시키는 단계이다.

상기 단계 4는, 상기 접근된 혈관 양쪽 단부를 봉합하는 단계로서, 통상의 봉합 방법을 통해 혈관 단부의 봉합을 수행하는 단계이다.

상기 단계 5는, 상기 한양의 신축 부재 내부에 충전된 평창성을 가지는 물질을 제거하는 단계로서, 혈관 단부의 봉합 이후 신축 부재 내부에 충전된 평창성을 가지는 물질을 제거하는 단계이다.

상기 단계 6은, 상기 주입관을 외부에서 잡아당겨 상기 평창성을 가지는 물질이 제거된 한양의 신축 부재를 제거하는 단계로서, 평창성을 가지는 물질을 제거한 후 수축된 상기 신축 부재를 제거하는 단계이다.

상기 단계 7은, 상기 혈관 양쪽 단부의 봉합을 마무리 하는 단계로서, 혈관 단부의 봉합이 전체에 걸쳐 수행되지 않은 경우 남은 봉합 부위를 마저 봉합하여 봉합 시술을 마무리하는 단계이다.

상기 신축 부재의 소재 및 평창성을 가지는 물질은 상기 혈관 문합용 구조물에서 설명한 바와 동일하다.

또한, 본 발명은 다른 일 구현례로서, 장축의 길이가 3 내지 10 mm이고 단축의 길이가 0.5 내지 3 mm이고 높이가 0.5 내지 3 mm인 타원기둥형 구조물로, 상기 타원기둥형 구조물은 평창성을 가지는 물질을 포함하는, 혈관 문합용 구조물로 제공한다.

본 발명에서, 상기 타원기둥형 구조의 혈관 문합용 구조물은 주입관을 통해
잘라진 혈관의 양쪽 단부로 삽입되어 혈관 내경에 위치하도록 배치된 후
외부에서 처리되는 팽창제에 의해 팽창되어 혈관의 직경을 변형시켜주며 혈관
단부 봉합의 마지막 단계에서 외부로 제거가 가능한 것을 특징으로 한다.
즉, 상기 타원기둥형 구조의 혈관 문합용 구조물은 혈관 내부에서 팽창되어 압력에
의해 혈관 내경을 일정하게 유지하여 혈관 문합 시술을 보다 용이하게
보조해주며 역할을 할 수 있다.

[151] 상기 혈관 문합용 구조물을 제거하기 전에 수행되는 혈관 봉합은 혈관 단부 70
내지 85%에 걸쳐 수행되는 것이 바람직하다.

[152] 본 발명에서 사용하는 용어 '팽창성'은 외부의 특정 자극에 의해 스스로
팽창하는 성질을 의미한다.

[153] 상기 팽창성은 가지는 물질은 비스코스 레이온일 수 있으며, 이에 제한되는
것은 아니다. 바람직하기로, 상기 비스코스 레이온은 압축된 형태일 수 있다.

[154] 또한, 본 발명에서 사용하는 용어 '팽창성'은 팽창성을 부여하기 위한 외부 자극
물질을 의미한다.

[155] 상기 팽창성은 적절수일 수 있으며, 이에 제한되는 것은 아니다.

[156] 상기 혈관 문합용 구조물을 외부로 제거할 수 있는 방법은 구조물의 일부를
외부에서 잠아당겨 제거할 수 있으며, 이에 제한되는 것은 아니다.

[158] 1) 잘라진 혈관의 양쪽 단부 각각에 내경은 0.5 내지 3 mm이고 길이는 20 내지
40 mm인 원통형 구조물의 주입관을 가는 단계;

[159] 2) 장축의 길이가 3 내지 10 mm이고 단축의 길이가 0.5 내지 3 mm이고 높이가
0.5 내지 3 mm인 타원기둥형의 구조물로 상기 타원기둥형의 구조물은 팽창성을
가지는 물질을 포함하는 혈관 문합용 구조물로, 상기 단계 1)의 원통형 구조물의
주입관을 통해 잘라진 혈관의 양측 단부 사이에서 혈관 내경에 위치하도록
배치하는 단계;

[160] 3) 상기 배치된 혈관 문합용 구조물에 팽창제를 처리하여 혈관 문합용
구조물을 팽창하도록 유도하는 단계;

[161] 4) 상기 팽창된 혈관 문합용 구조물상에서 혈관의 양측 단부를 접근시키는
단계;

[162] 5) 상기 접근된 혈관 양쪽 단부를 70 내지 85% 봉합하는 단계;

[163] 6) 상기 봉합된 혈관 내부에 위치한 혈관 문합용 구조물의 특정부분을 잡아
혈관 외부로 끌어내어 상기 혈관 문합용 구조물을 제거하는 단계; 및

[164] 7) 상기 혈관 문합용 구조물을 제거하고 난 뒤, 봉합하지 않은 나머지 잘라진
혈관의 단부를 봉합하는 단계.
상기 혈관 문합용 구조물을 제거하기 전이 수행되는 혈관 단부의 봉합은 혈관 단부의 70 내지 85%에 걸쳐 수행될 수 있다.

상기 단계 1은, 잘라진 혈관의 양쪽 단부 각각에 내경은 0.5 내지 3 mm이고 길이는 20 내지 40 mm인 원통형 구조물의 주입관을 가우는 단계로서, 타원기둥형의 구조물인 혈관 문합용 구조물을 혈관 내부에 위치시킬 수 있는 원통형 구조물로서, 상기 구조물의 내경은 1 내지 3 mm이고 길이는 20 내지 40 mm인 원통형 구조물의 주입관을 혈관 내부에 위치시켜, 혈관 문합용 구조물이 잘라진 혈관의 양쪽 단부의 혈관 내경에 위치하도록 길을 만들어 주는 단계이다.

본 발명에서 사용하는 용어 "주입관"은 외부에서 상기 혈관 문합용 구조물들을 혈관 내부로 투입할 수 있는 통로를 확보해주고, 자가 확장성 또는 평창성을 가진 구조물의 확장 또는 평창을 억제하여 원하는 위치에서 확장 또는 평창을 시킬 수 있도록 보조해주는 역할을 하는 관을 의미한다.

상기 주입관의 소재는 고분자, 바람직하기로 생체적합성을 지닌 합성 고분자일 수 있으며, 이에 제한되는 것은 아니다.

상기 단계 2는, 장축의 길이가 3 내지 10 mm이고 단축의 길이가 0.5 내지 3 mm이고 높이가 0.5 내지 3 mm인 타원기둥형의 구조물로 상기 타원기둥형의 구조물은 평창성을 가지는 물질을 포함하는 혈관 문합용 구조물로, 상기 단계 1의 원통형 구조물의 주입관을 통해 잘라진 혈관의 양쪽 단부 사이에서 혈관 내경에 위치하도록 배치하는 단계로서, 상기 배치된 주입관을 통하여 일정 크기를 갖는 타원기둥형의 구조물인 혈관 문합용 구조물을 잘라진 혈관 단부의 내경에 위치하도록 배치하는 단계이다.

상기 단계 3은, 상기 배치된 혈관 문합용 구조물에 평창제를 처리하여 혈관 문합용 구조물을 평창하도록 유도하는 단계로서, 혈관 내경을 고정하기 위하여 혈관 문합용 구조물을 혈관 내벽으로 향하는 압력이 나타나도록 평창시키는 단계이다.

상기 단계 4는, 상기 평창된 혈관 문합용 구조물 상에서 혈관의 양쪽 단부를 접근시키는 단계로서, 혈관 단부의 봉합을 위하여 평창된 혈관 문합용 구조물을 상에서 혈관의 양쪽 단부를 접근시키는 단계이다.

상기 단계 5는, 상기 접근된 혈관 양쪽 단부를 70 내지 85% 봉합하는 단계로서, 상기 접근된 혈관 양쪽 단부의 일정 부분을 봉합하는 단계이다.

상기 단계 6은, 상기 봉합된 혈관 내부에 위치한 혈관 문합용 구조물의
특정부분을 잡아 혈관 외부로 채어 넣어 상기 혈관 문합용 구조물을 제거하는 단계로서, 상기 70 내지 85% 봉합된 혈관의 내부에 위치한 혈관 문합용 구조물의 특정부분을 잡아 혈관 외부로 채어 넣어 혈관 문합용 구조물을 제거하는 단계이다.

상기 단계 7은, 상기 혈관 문합용 구조물을 제거하고 난 뒤, 봉합하지 않은 나머지 잔여 혈관의 단부를 봉합하는 단계로서, 상기 혈관 양쪽 단부의 봉합을 마무리하는 단계이다.

상기 평창성을 가지는 물질을 혈관 내부에 위치시킬 수 있도록 길을 만들어주는 주입관, 평창성을 가지는 물질, 평창제는 상기 혈관 문합용 구조물에서 설명한 바와 동일하다.

또한, 본 발명은 다른 일 구현에로서
직경이 0.5 내지 3 mm이고 길이가 0.7 내지 1.7 mm인 자가 확장형 고리; 및 상기 자가 확장형 고리에 연결된 실을 포함하는,
혈관 문합용 구조물을 제공한다.

본 발명에서 사용하는 용어 '자가 확장형 고리'는 혈관에 위치시 자발적으로 혈관 구경에 맞게 확장되어 혈관을 지지하는 구조물을 의미한다.
본 발명에서, 상기 자가 확장형 고리는 잔여 혈관의 양쪽 단부 사이에서 혈관 내경에 위치하도록 배치된 후 방사상으로 확장되어 혈관을 고정할 수 있고 혈관 단부의 봉합 이후 상기 고리에 연결된 실을 외부에서 잡아당겨 제거가 가능한 것을 특징으로 한다. 즉, 상기 혈관 문합용 구조물은 고리의 확장을 통해 압력에 의해 혈관을 고정하여 혈관 문합 시술을 보다 용이하게 보조해주는 역할을 할 수 있다.
상기 혈관 문합용 구조물을 제거하기 전에 수행되는 혈관 봉합은 혈관 단부의 70 내지 85%에 걸쳐 수행되는 것이 바람직하다.
상기 자가 확장형 고리의 소재는 혈관에 손상을 주지 않으며 생체적합성이 뛰어난 물질 중에서 선택될 수 있으며, 고분자 계열의 물질을 사용할 수 있으며, 구체적으로 PLLA(poly(L-lactic acid)), PLGA(poly(D,L-lactic-co-glycolic acid)), PMMA(poly methyl methacrylate), PHEMA(poly hydroxethyl methacrylate), PU(polyurethane), PE(polyethylene), 또는 이의 조합일 수 있으며, 이에 제한되는 것은 아니다.
상기 실의 소재는 합성 고분자일 수 있으며, 이에 제한되는 것은 아니다.
구체적으로, 실의 소재는 프로렌(prolene)(Ethicon, USA)일 수 있으며, 이에 제한되는 것은 아니다.
또한, 본 발명은 하기 단계를 포함하는 혈관 문합 방법을 제공한다.
1) 잘라진 혈관의 양쪽 단부 각각에 내경은 0.5 내지 3 mm이고 길이는 20 내지 40 mm인 원통형 구조물을 주입관을 하우는 단계.

2) 적정이 0.5 내지 3 mm이고 길이가 0.7 내지 1.7 mm인 자가 확장형 고리: 및 상기 자가 확장형 고리에 연결된 실을 포함하는 혈관 문합용 구조물을, 잘라진 혈관의 양쪽 단부 사이에서 혈관 내경에 위치시키고 상기 자가 확장형 고리에 연결된 실이 혈관 외부에 위치하도록 배치하는 단계.

3) 상기 배치된 혈관 문합용 구조물에서 주입관을 제거하여 혈관 내부의 적정위치에서 자가 확장형 고리가 방사상으로 확장하도록 유도하는 단계.

4) 상기 확장된 고리 상에서 혈관의 양쪽 단부를 접근시키는 단계.

5) 상기 접근된 혈관 양쪽 단부를 70 내지 85% 통합하는 단계.

6) 상기 통합된 혈관 외부에 위치한 실을 외부에서 잡아당겨 상기 고리를 혈관 외부로 제거하는 단계: 및

7) 상기 자가 확장형 고리를 제거하고 난 뒤, 잘라진 혈관의 통합하지 않은 나머지 단부를 통합하는 단계.

상기 자가 확장형 고리를 제거하기 전에 수행되는 혈관 단부의 통합은 혈관 단부의 70 내지 85%에 걸쳐 수행될 수 있다.

상기 단계 1은, 잘라진 혈관의 양쪽 단부 각각에 내경은 0.5 내지 3 mm이고 길이는 20 내지 40 mm인 원통형 구조물을 주입관을 하우는 단계로서, 자가 확장형 고리의 구조물을 내부에 위치시키도록 원통형 구조물의 주입관을 잘라진 혈관의 양쪽 단부의 혈관 내경에 위치시켜 길을 만들어 주는 단계이다.

본 발명에서 사용하는 용어 '주입관'은 외부에서 상기 혈관 문합용 구조물을 혈관 내부로 두입할 수 있는 통로를 확보해주고, 자가 확장성 또는 평창성을 가진 구조물의 확장 또는 평창을 억제하여 원하는 위치에서 확장 또는 평창을 시킬 수 있도록 보조해주는 역할을 하는 관을 의미한다.

상기 주입관의 소재는 고분자, 바람직하기로 생체적합성을 지닌 합성 고분자일 수 있으며, 이에 제한되는 것은 아니다.

상기 단계 2는, 적정이 0.5 내지 3 mm이고 길이가 0.7 내지 1.7 mm인 자가 확장형 고리: 및 상기 자가 확장형 고리에 연결된 실을 포함하는 혈관 문합용 구조물은, 잘라진 혈관의 양쪽 단부 사이에서 혈관 내경에 위치시키고 상기 자가 확장형 고리에 연결된 실이 혈관 외부에 위치하도록 배치하는 단계로서, 상기 배치된 주입관을 통하여, 자가 확장형 고리: 및 상기 자가 확장형 고리에 연결된 실을 포함하는 혈관 문합용 구조물은, 상기 자가 확장형 고리가 잘라진 혈관의 양쪽 단부 사이에서 혈관 내경에 위치하여 내경을 고정 및 유지하도록 하고 상기 자가 확장형 고리에 연결된 실이 혈관 외부에 위치하도록 배치하는 단계이다.
상기 단계 3은, 상기 배치된 혈관 문합용 구조물에서 주입관을 제거하여 혈관 내부의 적정위치에서 자가 확장형 고리가 방사상으로 확장하도록 유도하는 단계로서, 자가 확장형 고리의 확장을 억제해주는 역할을 하고 있는 주입관을 제거하여 혈관 내경을 최대한으로 평창시켜 압력에 의해 혈관을 고정시킬 수 있도록 상기 자가 확장형 고리를 방사상으로 확장시키는 단계이다.

상기 단계 4는, 상기 확장된 고리 상에서 혈관의 양쪽 단부를 접근시키는 단계로서, 혈관 단부의 통합을 위하여 확장된 고리 상에서 혈관의 양쪽 단부를 접근시키는 단계이다.

상기 단계 5는, 상기 접근된 혈관 양쪽 단부를 70 내지 85% 통합하는 단계로서, 통상의 통합 방법을 통해 혈관 단부의 70 내지 85% 통합을 수행하는 단계이다.

상기 단계 6은, 상기 통합된 혈관 외부에 위치한 실을 외부에서 잠아당겨 상기 고리를 혈관 외부로 제거하는 단계로서, 혈관 단부의 일부 통합 이후 고리를 연결된 실을 잠아당겨 고리를 제거하는 단계이다.

향기 단계 6에서, 당겨진 고리는 미리 격리된 실이 형성하는 동로를 통해 혈관에 손상 없이 제거된다. 이때 당겨지는 고리에 의한 혈관 손상이 없도록 고리의 구조는 원통형에서 한쪽이 개방되는 끝 형으로 설계되며 혈관 손상이 없도록 각 개방되는 끝 부분은 등글게 처리한다.

상기 단계 7은, 상기 자가 확장형 고리를 제거하고 난 뒤, 잘라진 혈관의 통합하지 않은 나머지 단부를 통합하는 단계로서, 상기 혈관 양쪽 단부의 통합을 마무리하는 단계이다.

상기 자가 확장형 고리 및 실의 소재는 상기 혈관 문합용 구조물에서 설명한 바와 동일하다.

또한, 본 발명은 다른 일 구현예로서

내경이 0.5 내지 5 mm이고 길이가 5 내지 50 mm인 원통형 구조물로, 생분해성을 지니는 구조물;

상기 생분해성을 지니는 구조물의 내경에 인접하여 위치하여 생분해성을 지니는 구조물을 방사상으로 평창시키는 신축 부재; 및

상기 신축 부재로부터 연장되는 구조로서 평창성을 가지는 물질로 추입되는 주입관을 포함하는,

혈관 문합용 구조물을 제공한다.

본 발명에서 사용하는 용어 '생분해성'은 생체 내에서 일정 기간 내에 분해될 수
있는 물질을 의미한다.

[237] 본 발명에서 상기 생분해성을 지니는 구조물의 재료로는 PLGA(poly(D,L-lactic-co-glycolic acid)) 등을 예로 들 수 있으며, 이에 제한되는 것은 아니다.

[238] 본 발명에서, 상기 생분해성을 지니는 구조물은 잘라진 혈관의 양측 단부 사이에서 혈관 내경에 위치하도록 배치된 후 신속 부재에 의해 발사상으로 평창되어 혈관을 고정할 수 있고 혈관 단부의 봉합 이후 생체내에 위치하도록 그대로 유지하여도 일정 시간 이후 생분해될 수 있다는 것을 특징으로 한다. 또한, 상기 생분해성을 지니는 구조물은 일정 크기의 내경을 이루고 있어 혈관 단부의 봉합 이후 혈관 내부에 위치하여도 혈액의 흐름을 방해하지 않는다. 즉, 상기 생분해성을 지니는 구조물은 신속 부재의 도움으로 평창되어 압력에 의해 혈관을 고정하여 혈관 문합 시술을 보다 용이하게 보조해주는 역할을 할 수 있다.

[239]

[240] 본 발명에서 사용하는 용어 '신속 부재'는 상기 생분해성을 지니는 구조물의 내경에 인접하여 위치하고 외부로부터 주입관을 통하여 투입되는 평창성을 가지는 물질을 통해 생분해성을 지니는 구조물로 방사상으로 평창시키기 위한 구조물로 의미한다.

[241] 본 발명에서 사용하는 용어 '신속 부재'는 늘어나고 줄어드는 성질을 가지는 부재를 의미한다. 구체적으로, 상기 신속 부재는 내부에 충전된 평창성을 가지는 물질이 평창함에 따라 충분히 늘어날 수 있고 이후 상기 평창성을 가지는 물질이 재거됨에 따라 줄어들 수 있는 성질을 가지는 부재이다.

[242] 상기 신속 부재의 소재는 합성고무, 폴리에틸렌 또는 이의 조합일 수 있으며, 이에 제한되는 것은 아니다.

[243] 본 발명에서 사용하는 용어 '주입관'은 외부에서 상기 신속 부재 내부에 평창성을 가지는 물질을 투입할 수 있는 통로를 구비한 관을 의미한다.

[244] 본 발명에서 사용하는 용어 '평창성을 가지는 물질'은 신속 부재 내부에 충전되어 신속 부재를 평창시킬 수 있는 물질을 의미한다. 구체적으로, 본 발명에서 사용할 수 있는 평창성을 가지는 물질로는 물, 공기, CO₂, 또는 이의 조합을 예로 들 수 있으며, 이에 제한되는 것은 아니다.

[245]

[246] 또한, 본 발명은 하기 단계를 포함하는 혈관 문합 방법을 제공한다.

[247] 1) 잘라진 혈관의 양쪽 단부 각각 내경이 0.5 mm 내지 5 mm이고 길이가 5 내지 50 mm인 원통형 구조물로, 생분해성을 지니는 구조물; 상기 생분해성을 지니는 구조물의 내경에 인접하여 위치하여 생분해성을 지니는 구조물로 방사상으로 평창시키는 신속 부재; 및 상기 신속 부재로부터 연장되는 구조로서 평창성을 가지는 물질이 투입되는 주입관을 포함하는, 혈관 문합용 구조물로, 잘라진 혈관의 양쪽 단부 사이에서 혈관 내경에 위치시키고 상기 주입관이 혈관 외부에
위치하도록 배치하는 단계;

[248] 2) 상기 배치된 헬판 문합용 구조물의 주입관을 통해 평창성을 가지는 물질을 주입하여 상기 신축 부재 내부에 평창성을 가지는 물질을 채워 상기 신축 부재가 방사상으로 확장되도록 유도하여 상기 생분해성을 지니는 구조물이 확장되도록 유도하는 단계;

[249] 3) 상기 확장된 생분해성을 지니는 구조물 상에서 헬판의 양쪽 단부를 접근시키는 단계;

[250] 4) 상기 접근된 헬판 양쪽 단부를 70 내지 85% 봉합하는 단계;

[251] 5) 상기 봉합된 헬판 외부에 위치한 주입관을 통해 신축 부재 내부의 평창성을 가지는 물질을 제거하여 신축 부재를 초기 상태의 크기로 되돌리는 단계;

[252] 6) 상기 봉합된 헬판 외부에 위치한 주입관을 외부에서 잡아당기 상기 신축 부재를 헬판 외부로 제거하는 단계; 및

[253] 7) 상기 신축 부재를 제거하고 난 뒤, 잘라진 헬판의 봉합하지 않은 나머지 단부를 봉합하는 단계.

[254] 상기 신축 부재를 제거하기 전에 수행되는 헬판 단부의 봉합은 헬판 단부의 70 내지 85%에 걸쳐 수행될 수 있다.

[255] 상기 단계 1은, 잘라진 헬판의 양쪽 단부 각각에 내경이 0.5 내지 5 mm이고 길이가 5 내지 50 mm인 원통형 구조물로, 생분해성을 지니는 구조물; 상기 생분해성을 지니는 구조물의 내경에 인접하여 위치하여 생분해성을 지니는 구조물은 방사상으로 평창시키는 신축 부재; 및 상기 신축 부재로부터 연장되는 구조물로서 평창성을 가지는 물질을 투입하는 주입관을 포함하는, 헬판 문합용 구조물은, 잘라진 헬판의 양쪽 단부 사이에서 헬판 내경에 위치시키고 상기 주입관이 헬판 외부에 위치하도록 배치하는 단계로서, 생분해성 구조물과 이의 내경에 인접하여 위치한 신축 부재를 헬판 내부에 위치시키는 단계이다.

[256] 상기 단계 2는, 상기 배치된 헬판 문합용 구조물의 주입관을 통해 평창성을 가지는 물질을 주입하여 상기 신축 부재 내부에 평창성을 가지는 물질을 채워 상기 신축 부재가 방사상으로 확장되도록 유도하여 헬판 문합용 구조물이 확장되도록 유도하는 단계로서, 신축 부재 내부에 평창성을 가지는 물질을 충진하여 신축 부재를 확장시킴으로써 결과적으로 생분해성을 지니는 구조물이 확장시키는 단계이다.

[257] 상기 단계 3은, 상기 확장된 생분해성을 지니는 구조물 상에서 헬판의 양쪽 단부를 접근시키는 단계로서, 헬판 단부의 봉합을 위하여 확장된 생분해성을 지니는 구조물 상에서 헬판의 양쪽 단부를 접근시키는 단계이다.

[258]
상기 단계 4는, 상기 접근된 혈관 양쪽 단부를 70 내지 85% 봉합하는 단계로서, 동상의 봉합 방법을 통해 혈관 단부의 70 내지 85% 봉합을 수행하는 단계이다.

상기 단계 5는, 상기 봉합된 혈관 외부에 위치한 주입관을 통해 신축 부재 내부의 평창성을 가지는 물질을 제거하여 신축 부재를 초기 상태의 크기로 되돌리는 단계로서, 신축 부재의 제거를 용이하게 하기 위하여 신축 부재 내부의 평창성을 가지는 물질을 제거하는 단계이다.

상기 단계 6은, 상기 봉합된 혈관 외부에 위치한 주입관을 외부에서 잠아당겨 상기 신축 부재를 혈관 외부로 제거하는 단계로서, 혈관 단부의 일부 봉합 이후 신축 부재에 연결된 주입관을 잠아당겨 신축 부재를 제거하는 단계이다.

상기 단계 7은, 상기 신축 부재를 제거하고 난 뒤, 잘라진 혈관의 봉합하지 않은 나머지 단부를 봉합하는 단계로서, 상기 혈관 양쪽 단부의 봉합을 마무리하는 단계이다.

상기 생분해성을 지니는 구조물의 재료, 신축 부재의 재료, 및 평창성을 가지는 물질은 상기 혈관 문합용 구조물에서 설명한 바와 동일하다.

발명의 효과

본 발명은 외부의 자극에 의해 자가 평창성을 가지며 시술 후 제거가 가능한 물질 또는 구조물의 형성을 이용하여 일정 형태의 혈관 문합용 구조물을 제공할 수 있으며, 상기 혈관 문합용 구조물은 잘라진 혈관의 양쪽 단부 사이에서 혈관 내경에 위치하도록 배치시킨 후 일정한 외부 자극을 가하여 상기 혈관 문합용 구조물은 평창 또는 확장시켜 혈관을 고정함으로써 혈관 단부를 보다 쉽게 봉합하여 혈관 문합 시술을 보다 용이하게 수행할 수 있는 효과를 가진다.

도면의 간단한 설명

도 1은 본 발명의 일 구현예에 해당하는 혈관 문합용 구조물 및 이를 사용하여 혈관 문합을 실시하는 과정을 도시한 그림이다.

도 2는 본 발명의 다른 일 구현예에 해당하는 혈관 문합용 구조물 및 이를 사용하여 혈관 문합을 실시하는 과정을 도시한 그림이다.

도 3은 본 발명의 또 다른 일 구현예에 해당하는 혈관 문합용 구조물 및 이를 사용하여 혈관 문합을 실시하는 과정을 도시한 그림이다.

도 4는 본 발명의 일 구현예에 해당하는 혈관 문합용 구조물 및 이를 사용하여 혈관 문합을 실시하는 과정을 도시한 그림이다.

도 5는 본 발명의 일 구현예에 해당하는 혈관 문합용 구조물 및 이를 사용하여 혈관 문합을 실시하는 과정을 도시한 그림이다.

도 6는 본 발명의 일 구현예에 해당하는 혈관 문합용 구조물 및 이를 사용하여
혈관 문합을 실시하는 과정을 도시한 간략도이다.
발병의 실시를 위한 최선의 형태

[279] 이하, 본 발병을 실시하여 보다 상세하게 설명한다. 그러나 이들 실시에는 본 발병을 예시적으로 설명하기 위한 것으로 본 발병의 범위가 이들 실시에 한정되는 것은 아니다.

[280] 실시에 1: 본 발병 혈관 문합용 구조물을 이용한 혈관 문합

[281] 도 1에 도시된 바와 같은 방법으로 본 발병 혈관 문합용 구조물을 이용하여 혈관 문합을 실시하였다.

[282] 먼저, 직경이 5 mm이고 길이가 20 mm인 원통형 구조물로, 자가 폐장성을 가지는 물질을 포함하는 혈관 문합용 구조물(1)을 장착한 혈관(내경 크기: 5 mm, 백서의 대퇴동맥)의 양쪽 단부(2, 2') 사이에서 혈관 내경에 위치하도록 배치하였다. 상기 배치된 혈관 문합용 구조물(1)에 폐장제로서 전문 원통형 구조물(직경: 2 mm, 길이: 20 mm)을 처리하여 혈관 문합용 구조물을 방사상으로 자가 폐장하도록 유도하였다.

[283] 혈관 내경 최대치까지 자가 폐장이 완료되면 상기 자가 폐장된 혈관 문합용 구조물(1) 상에서 혈관의 양쪽 단부(2, 2')를 접근시켰다. 이후 상기 접근된 혈관 양쪽 단부를봉합장(3)로서 프로렌(prolene)(Ethicon, USA)을 이용하여 봉합하였다.

[284] 봉합을 완료한 후, 상기 봉합된 혈관 내부에 위치한 혈관 문합용 구조물에 상기 혈관 문합용 구조물을 용해시킬 수 있는 용액으로 생리시험수를 10 ml의 양으로 주사기(4)를 통하여 처리하여 상기 혈관 문합용 구조물을 제거하여 혈관 문합을 완료하였다.

[285] 실시에 2: 본 발병 혈관 문합용 구조물을 이용한 혈관 문합

[286] 도 2에 도시된 바와 같은 방법으로 본 발병 혈관 문합용 구조물을 이용하여 혈관 문합을 실시하였다.

[287] 직경이 3 mm이고 길이가 20 mm인 자가 폐장형 와이어(5) 및 상기 자가 폐장형 와이어에 연결된 실(6)을 포함하는, 혈관 문합용 구조물로 상기 자가 폐장형 와이어(5)가 장착된 혈관(내경 크기: 5 mm, 백서의 대퇴동맥)의 양쪽 단부(7, 7') 사이에서 혈관 내경에 위치하고 상기 자가 폐장형 와이어(5)에 연결된 실(6)이 혈관 외부에 위치하도록 배치하였다. 상기 배치된 자가 폐장형 와이어(5)를 방사상으로 확장하도록 유도하였다.

[288] 혈관 내경 최대치까지 확장이 완료되면 상기 자가 확장된 와이어(5) 상에서 혈관의 양쪽 단부(7, 7')를 접근시켰다. 이후 상기 접근된 혈관 양쪽 단부(7, 7')를 봉합장(3)로서 프로렌(prolene)(Ethicon, USA)을 이용하여 봉합하였다.

[289] 봉합을 전체 혈관 단부의 70%에 달하도록 완료한 후, 상기 봉합된 혈관 외부에
위치한 실(6)을 외부에서 잡아당겨 상기 와이어(5)를 제거하였다.

[292] 이후 상기 혈관 양쪽 단부(7, 7')의 묶음을 마무리하여 혈관 문합을 완료하였다.

[293]

[294] 실시에 3: 본 발명 혈관 문합용 구조물을 이용한 혈관 문합

[295] 도 3에 도시된 바와 같은 방법으로 본 발명 혈관 문합용 구조물을 이용하여 혈관 문합을 실시하였다.

[296] 평창성을 가지는 물질이 투입되는 주입관(9); 및 상기 주입관(9)의 일측단으로부터 연장되는 한장의 신축 부재(10, 10')를 포함하는, 혈관 문합용 구조물은 상기 한장의 신축 부재(10, 10')가 잘라진 혈관 내경 크기: 5 mm, 백서의 대퇴동맥)의 양쪽 단부(13, 13') 사이에서 혈관 내경에 위치하고 상기 주입관(9)이 혈관 외부에 위치하도록 배치하였다. 상기 배치된 혈관 문합용 구조물의 주입관(9)을 통해 평창성을 가지는 물질(11, 11')으로서 식염수를 주입하여 상기 한장의 신축 부재 내부에 평창성을 가지는 물질(11, 11')인 식염수를 채워 상기 한장의 신축 부재(10, 10')의 방사상으로 확장되도록 유도하였다.

[297] 혈관 내경 최대치까지 확장이 완료되면 상기 확장된 한장의 신축 부재(10, 10') 상에서 혈관의 양쪽 단부(13, 13')를 접근시켰다. 이후 상기 접근된 혈관 양쪽 단부(13, 13')를 봉합자(3)로서 프로렌(prolene)(Ethicon, USA)을 이용하여 봉합하였다.

[298] 봉합을 완료한 후, 상기 한장의 신축 부재 내부에 충전된 평창성을 가지는 물질(11, 11')을 주입관(9)을 통해 제거하였다.

[299] 이후 상기 주입관(9)을 외부에서 잡아당겨 상기 평창성을 가지는 물질(11, 11')이 제거된 한장의 신축 부재(10, 10')을 제거하여 혈관 문합을 완료하였다.

[300]

[301] 실시에 4: 본 발명 혈관 문합용 구조물을 이용한 혈관 문합

[302] 도 4에 도시된 바와 같은 방법으로 본 발명 혈관 문합용 구조물을 이용하여 혈관 문합을 실시하였다.

[303] 먼저, 외경이 1.8 mm이고 내경이 1.2 mm이고 길이가 3.3 mm이고 한쪽 단부(17)는 사선형인 주입관(16)을 잘라진 혈관의 양쪽 단부 각각(18, 18')을 통해 혈관 내경에 삽입하였다. 이때 주입관의 내부에는 장축의 길이가 3 내지 10 mm이고 단축의 길이가 0.5 내지 3 mm이고 높이가 0.5 내지 3 mm인 타원기둥형 구조물로, 평창성을 가지는 물질 또는 구조를 포함하는 혈관 문합용 구조물(19)을 위치시켰다. 혈관 단부 외부로 드러나 있는 상기 주입관(16)의 한쪽 단부를 통해 밀개를 이용하여 타원기둥형 구조물(19)을 혈관의 내부에 위치하도록 밀어주고 평창제로서 생리식염수를 2 ml의 양으로 주사기(21)를 통하여 처리하여 타원기둥형 구조물을 평창하도록 유도하였다.

[304] 혈관 내경 최대치까지 평창이 완료되면 상기 평창된 혈관 문합용 구조물(19') 상에서 혈관의 양쪽 단부(18, 18')를 접근시켰다. 이후 상기 접근된 혈관 양쪽 단부를 봉합자(22)로서 프로렌(prolene)(Ethicon, USA)을 이용하여 단부의 75%를
통합하였다.

이 후, 상기 통합된 혈관 내부에 위치한 확장된 혈관 문합용 구조물(19)에 연결된 실(20)을 잠아당겨 구조물을 제거하고 통합하지 않은 나머지 25%의 단부를 통합하였다.

실시예 5: 본 발명 혈관 문합용 구조물을 이용한 혈관 문합

도 5에 도시된 바와 같은 방법으로 본 발명 혈관 문합용 구조물을 이용하여 혈관 문합을 실시하였다.

먼저, 직경이 3 mm이고 길이가 3.3 mm이고 한쪽 단부(23)는 사선행인 주입관(24)을 겹치며 혈관의 양쪽 단부 각각(25, 25')를 통해 겹치며 혈관(내경 크기: 5 mm, 외지의 대퇴동맥)의 양쪽 단부(25, 25') 내경에 삽입하였다. 직경이 3 mm이고 길이가 1.7 mm인 자가 확장형 고리(26) 및 상기 자가 확장형 고리에 연결된 실(27)을 포함하는, 혈관 문합용 구조물이 주입관의 내부에 위치하였다. 혈관 단부 외부로 드러나 있는 상기 주입관(24)의 한쪽 단부를 통해 밀개를 이용하여 상기 자가 확장형 고리(26)를 혈관의 내부에 위치하도록 밀어주고 이때 상기 자가 확장형 고리에 연결된 실(27)은 혈관 단부의 외부에 위치하도록 배치하였다. 상기 혈관 내부에 배치된 주입관(24)에서 상기 자가 확장형 고리(26)가 벗겨나오면 확장형 고리(26)의 평창력을 억제하던 주입관(24)의 압력이 제거되면서 상기 자가 확장형 고리(26)가 방사상으로 확장되도록 유도하였다. 혈관 내경 최대치까지 확장이 완료되면 상기 자가 확장된 고리(26) 상에서 혈관의 양쪽 단부(25, 25')를 접근시켰다. 이후 상기 접근된 혈관의 양쪽 단부(25, 25')를 통합사(28)로서 프로렌(prolene)(Ethicon, USA)을 이용하여 통합하였다. 통합을 전체 혈관 단부의 85%에 달하도록 완료한 후, 상기 통합된 혈관 외부에 위치한 실(27)을 외부에서 잠아당겨 상기 확장된 고리(26')를 제거하였다.

이후 상기 혈관 양쪽 단부(25, 25')의 통합을 마무리하여 혈관 문합을 완료하였다.

실시예 6: 본 발명 혈관 문합용 구조물을 이용한 혈관 문합

도 6에 도시된 바와 같은 방법으로 본 발명 혈관 문합용 구조물을 이용하여 혈관 문합을 실시하였다.

잘라진 혈관의 양쪽 단부 각각에 내경이 0.5 내지 5 mm이고 길이가 5 내지 50 mm인 원통형 구조물로, 생분해성을 지니는 구조물(29); 상기 생분해성을 지니는 구조물의 내경에 절단하여 위치하여 생분해성을 지니는 구조물들을 방사상으로 평창시키는 신축 부분(30); 및 상기 신축 부분부터 연장되는 구조로서 평창성을 가지는 물질이 투입되는 주입관(31)을 포함하는, 혈관 문합용 구조물을, 잘라진 혈관의 양쪽 단부(32, 32') 사이에서 혈관 내경에 위치시키고 상기 주입관이 혈관 외부에 위치하도록 배치하였다. 상기 배치된 혈관 문합용
구조물의 주입관을 통해 펑황성을 가지는 물질로서 공기를 주입하여 상기 신축 무제가 방사상으로 확장되도록 유도하여 상기 생분해성을 지니는 구조물이 확장되도록 유도하였다. 상기 확장된 생분해성을 지니는 구조물(29) 상에서 혈관의 양쪽 단부(32, 32')를 접근시켰다. 상기 접근된 혈관 양쪽 단부를 70 내지 85% 통합하였다. 이후 상기 통합된 혈관 외부에 위치한 주입관(31)을 통해 확장된 신축 무제(30') 내부의 공기를 제거하여 신축 무제를 조기 상태의 크기로 되돌렸다. 상기 통합된 혈관 외부에 위치한 주입관을 외부에서 잡아당겨 상기 신축 무제(30)를 혈관 외부로 제거하였다. 상기 신축 무제를 제거하고 난 뒤, 펑황된 생분해성 구조물(29)이 혈관 내경에 위치한 상태로 통합사(33)를 이용하여 혈관 양쪽 단부를 통합하여 혈관 문합을 완료하였다.
청구범위

[청구항 1] 직경이 0.5 내지 5 mm이고 길이가 10 내지 60 mm인 원통형 구조물로, 상기 구조물은 자가 평창성을 가지는 물질을 포함하는, 혈관 문합용 구조물.

[청구항 2] 제1항에 있어서, 상기 혈관 문합용 구조물은 길라진 혈관의 양쪽 단부 사이에서 혈관 내경에 위치하도록 배치된 후 외부에서 처리되는 평창제에 의해 방사상으로 자가 평창되어 혈관을 고정할 수 있고 혈관 단부의 붕합 이후 상기 혈관 문합용 구조물을 용해시킬 수 있는 용매를 처리하여 제거가 가능한 것을 특징으로 하는, 혈관 문합용 구조물.

[청구항 3] 제2항에 있어서, 상기 혈관 문합용 구조물을 제거하기 전에 수행되는 혈관 붕합은 혈관 단부 전체 내지 절반에 걸쳐 수행되는 것을 특징으로 하는, 혈관 문합용 구조물.

[청구항 4] 제1항에 있어서, 상기 자가 평창성을 가지는 물질은 전분인 것을 특징으로 하는, 혈관 문합용 구조물.

[청구항 5] 제2항에 있어서, 상기 평창제는 식염수인 것을 특징으로 하는, 혈관 문합용 구조물.

[청구항 6] 제2항에 있어서, 상기 혈관 문합용 구조물을 용해시킬 수 있는 용매는 식염수인 것을 특징으로 하는, 혈관 문합용 구조물.

[청구항 7] 직경이 0.5 내지 5 mm이고 길이가 10 내지 60 mm인 자가 확장형 와이어; 및 상기 자가 확장형 와이어에 연결된 실을 포함하는, 혈관 문합용 구조물.

[청구항 8] 제7항에 있어서, 상기 자가 확장형 와이어는 길라진 혈관의 양쪽 단부 사이에서 혈관 내경에 위치하도록 배치된 후 방사상으로 확장되어 혈관을 고정할 수 있고 혈관 단부의 붕합 이후 상기 와이어에 연결된 실을 외부에서 잠아당겨 제거가 가능한 것을 특징으로 하는, 혈관 문합용 구조물.

[청구항 9] 제8항에 있어서, 상기 자가 확장형 와이어를 제거하기 전에 수행되는 혈관 붕합은 혈관 단부 전체 내지 절반에 걸쳐 수행되는 것을 특징으로 하는, 혈관 문합용 구조물.

[청구항 10] 제7항에 있어서, 상기 자가 확장형 와이어의 소재는 니티놀(nitinol)인 것을 특징으로 하는, 혈관 문합용 구조물.

[청구항 11] 제7항에 있어서, 상기 실의 소재는 니티놀(nitinol)인 것을 특징으로 하는, 혈관 문합용 구조물.

[청구항 12] 평창성을 가지는 물질이 투입되는 주입관; 및 상기 주입관의 일측단으로부터 연결되는 한쌍의 신축 부재를 포함하는, 혈관 문합용 구조물.
[청구항 13] 제12항에 있어서, 상기 한정의 신축 부재는 잘라진 혈관의 양쪽 단부 사이에서 혈관 내경에 위치하도록 배치된 후 주입관을 통해 투입되는 평장성을 가지는 물질에 의해 방사상으로 평장되어 혈관을 고정할 수 있고, 혈관 단부의 보합 이후 상기 한정의 신축 부재 내부에 충진된 평장성을 가지는 물질을 주입관을 통해 상기 한정의 신축 부재 내부로부터 제거한 다음 상기 주입관을 외부에서 잠아당기 제거가 가능한 것을 특징으로 하는, 혈관 문합용 구조물.

[청구항 14] 제13항에 있어서, 상기 혈관 문합용 구조물을 제거하기 전에 수행되는 혈관 봉합은 혈관 단부 전체 내지 절반에 걸쳐 수행되는 것을 특징으로 하는, 혈관 문합용 구조물.

[청구항 15] 제12항에 있어서, 상기 신축 부재의 소재는 합성고무, 폴리에틸렌 또는 이의 조합인 것을 특징으로 하는, 혈관 문합용 구조물.

[청구항 16] 제12항에 있어서, 상기 평장성을 가지는 물질은 식염수, 공기 또는 이의 조합인 것을 특징으로 하는, 혈관 문합용 구조물.

[청구항 17] 장축의 길이가 3 내지 10 mm이고 단축의 길이가 0.5 내지 3 mm이고 높이가 0.5 내지 3 mm인 타원기둥형 구조물로, 상기 타원기둥형 구조물은 평장성을 가지는 물질을 포함하며, 혈관 문합용 구조물.

[청구항 18] 제17항에 있어서, 상기 평장성을 가지는 물질은 비스코스 레이온인, 혈관 문합용 구조물.

[청구항 19] 제17항에 있어서, 상기 평장체는 식염수인, 혈관 문합용 구조물.

[청구항 20] 직경이 0.5 내지 3 mm이고 길이가 0.7 내지 1.7 mm인 자가 확장형 고리; 및 상기 자가 확장형 고리에 연결된 실을 포함하는, 혈관 문합용 구조물.

[청구항 21] 제20항에 있어서, 상기 자가 확장형 고리의 소재는 PLLA(poly(L-lactic acid)), PLGA(poly(D,L-lactic-co-glycolic acid)), PMMA(poly methyl methacrylate), PHEMA(poly hydroxethyl methacrylate), PU(polyurethane), PE(polyethylene), 또는 이의 조합인, 혈관 문합용 구조물.

[청구항 22] 제20항에 있어서, 상기 실의 소재는 프로렌(prolene)인, 혈관 문합용 구조물.

[청구항 23] 내경이 0.5 내지 5 mm이고 길이가 5 내지 50 mm인 원통형 구조물로, 생분해성을 지니는 구조물; 상기 생분해성을 지니는 구조물의 내경에 인접하여 위치하여 생분해성을 지니는 구조물은 방사상으로 평창시키는 신축 부재; 및 상기 신축 부재로부터 연장되는 구조로서 평창성을 가지는 물질이 투입되는 주입관을 포함하는, 혈관 문합용 구조물.
[청구항 24] 제23항에 있어서, 상기 생물해성지를 지니는 구조물의 재료는 PLGA(poly(D,L-lactic-co-glycolic acid))인, 혈관 문합용 구조물.

[청구항 26] 제23항에 있어서, 상기 평창성을 가지는 물질은 물, 공기, CO₂, 또는 이의 조합인, 혈관 문합용 구조물.
A. CLASSIFICATION OF SUBJECT MATTER

A61B 17/11(2006.01)i, A61B 17/04(2006.01)i, A61L 17/00(2006.01)i, A61L 31/04(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
A61B 17/11; A61M 29/00; A61F 2/86; A61F 2/06; A61M 25/00

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean Utility models and applications for Utility models: IPC as above
Japanese Utility models and applications for Utility models: IPC as above

Electronic database consulted during the international search (name of database and, where practicable, search terms used)
eKOMPASS (KIPU internal) & Keywords: self-expandable, blood vessel, anastomosis

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>JP 2010-273936 A (TTI ELLEBEAU INC) 09 December 2010 See abstract; paragraphs [0008]-[0018]; claims 1, 2.</td>
<td>1-26</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

See patent family annex.

Date of the actual completion of the international search
08 MARCH 2013 (08.03.2013)

Date of mailing of the international search report
11 MARCH 2013 (11.03.2013)

Name and mailing address of the ISA/KR
Korean Intellectual Property Office
Government Complex-Daejeon, 139 Seomun-ro, Daejeon 302-701,
Republic of Korea
Facsimile No. 82-42-472-7140

Authorized officer

Telephone No.
<table>
<thead>
<tr>
<th>Box No. II</th>
<th>Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:</td>
</tr>
<tr>
<td>1. ☐ Claims Nos.:</td>
<td>because they relate to subject matter not required to be searched by this Authority, namely:</td>
</tr>
<tr>
<td></td>
<td>2. ☐ Claims Nos.:</td>
</tr>
<tr>
<td>3. ☐ Claims Nos.:</td>
<td>because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Box No. III</th>
<th>Observations where unity of invention is lacking (Continuation of item 3 of first sheet)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>This International Searching Authority found multiple inventions in this international application, as follows:</td>
</tr>
<tr>
<td></td>
<td>Claims 1-6 pertain to a structure for vascular anastomoses comprising a self-expandable material.</td>
</tr>
<tr>
<td></td>
<td>Claims 7-11 pertain to a structure for vascular anastomoses comprising a self-expandable wire.</td>
</tr>
<tr>
<td></td>
<td>Claims 12-16 pertain to a structure for vascular anastomoses comprising an injection tube into which the self-expandable material is injected.</td>
</tr>
<tr>
<td></td>
<td>Claims 17-22 pertain to a structure for vascular anastomoses in which a cylindroid-shaped structure comprises the self-expandable material.</td>
</tr>
<tr>
<td></td>
<td>Claims 23-26 pertain to a structure for vascular anastomoses which comprises a biodegradable structure, an expandable member, and the injection tube.</td>
</tr>
<tr>
<td>1. ☐ As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.</td>
<td></td>
</tr>
<tr>
<td>2. ☒ As all searchable claims could be searched without effort justifying additional fees, this Authority did not invite payment of additional fees.</td>
<td></td>
</tr>
<tr>
<td>3. ☐ As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:</td>
<td></td>
</tr>
<tr>
<td>4. ☐ No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:</td>
<td></td>
</tr>
</tbody>
</table>

Remark on Protest

☐ The additional search fees were accompanied by the applicant’s protest and, where applicable, the payment of a protest fee.

☐ The additional search fees were accompanied by the applicant’s protest but the applicable protest fee was not paid within the time limit specified in the invitation.

☐ No protest accompanied the payment of additional search fees.
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>JP 2010-273936 A</td>
<td>09.12.2010</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2001-49146 A1</td>
<td>08.10.2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2402101 A1</td>
<td>04.10.2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2402101 C</td>
<td>02.01.2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1213704 C0</td>
<td>10.08.2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1358482 A0</td>
<td>17.07.2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1267988 A1</td>
<td>02.01.2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6468303 B1</td>
<td>22.10.2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 01-72367 A1</td>
<td>04.10.2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1301139 A0</td>
<td>27.06.2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 04-143749 B2</td>
<td>03.09.2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 06077296A A</td>
<td>20.06.2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2006-0271163 A1</td>
<td>30.11.2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2007-0112412 A1</td>
<td>17.05.2007</td>
</tr>
</tbody>
</table>
A. 발명이 속하는 기술분야(국제특허분류(IPC))

A61B 17/11(2006.01)i, A61B 17/04(2006.01)i, A61L 17/00(2006.01)i, A61L 31/04(2006.01)i

B. 조사된 분야

조사된 최초문헌(국제특허분류를 기재)
A61B 17/11; A61M 29/00; A61F 2/86; A61F 2/06; A61M 25/00

조사된 기술분야에 속하는 최초문헌 이외의 문헌
한국특허등록공보 및 한국공개등록공보: 조사된 최초문헌에 기재된 IPC
일본특허등록공보 및 일본공개등록공보: 조사된 최초문헌에 기재된 IPC

국제보고에 이용된 전산 데이터베이스(데이터베이스의 명칭 및 검색어(해당하는 경우))
cOMPASS(특허청 내부 검색시스템) & 키워드: 자기 팽창, 열관, 문합

C. 관련 문헌

<table>
<thead>
<tr>
<th>카테고리*</th>
<th>인용문헌 명 및 관련 구절(해당하는 경우)의 기재</th>
<th>관련 청구항</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>JP 2010-273936 A (TTI ELLEBEAU INC) 2010.12.09 1-26</td>
<td></td>
</tr>
<tr>
<td></td>
<td>요약: [0008] - [0018]: 정구형 1, 2 참조.</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>KR 10-2003-0053468 A (에이지에이 메디칼 코스트레이션) 2003.06.28 1-26</td>
<td></td>
</tr>
<tr>
<td></td>
<td>요약; 4페이지, 13라인-7페이지, 10라인 참조.</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>KR 10-2001-0041603 A (에이지에이 메디칼 코스트레이션) 2001.05.25 1-26</td>
<td></td>
</tr>
<tr>
<td></td>
<td>요약; 2페이지, 56라인-3페이지, 36라인; 정구형 1 참조.</td>
<td></td>
</tr>
</tbody>
</table>

 проверьте предмет можно включать в список.

* 인용된 문헌의 특별 카테고리:
“A” 특별한 관련이 없는 것으로 보이는 일반적인 기술수준을 정의한 문헌

“E” 국제특허분류보다 빠른 공개일 또는 우선일을 가지거나 국제특허일 이후에 공개된 출원 또는 특허문헌

“L” 우선권 주장에 의문을 제기하는 문헌 또는 다른 인용문헌의 공개일 또는 다른 특별한 이슈(기술을 설명)를 밝히기 위하여 인용된 문헌

“O” 구두 게시, 사용, 전시 또는 기타 수단을 언급하고 있는 문헌

“P” 우선일 이후에 공개되었으나 국제특허일 이전에 공개된 문헌

“T” 국제특허일 또는 우선일 후에 공개된 문헌으로, 출원과 상충하지 않으며 발명의 기초가 되는 원리나 이론을 이해하기 위해 인용된 문헌

“X” 특별한 관련이 있는 문헌, 해당 문헌 하나만으로 청구항 발명의 성 구성을 결정할 수 없는 것으로 본다.

“Y” 특별한 관련이 있는 문헌, 해당 문헌이 하나 이상의 다른 문헌과 조합하는 경우로 그 조합이 당업자에게 자명한 경우 청구항 발명은 전문성이 없는 것으로 본다.

“&” 동일한 특허등록문헌에 속하는 문헌

국제조사의 실제 완료일
2013년 03월 08일 (08.03.2013)

국제조사보고서 발송일
2013년 03월 11일 (11.03.2013)

ISA/KR의 명칭 및 우편주소
대한민국 특허청
(302-701) 대전광역시 서구 정신로 189, 4동 (문산동, 정부대전청사)
전화번호 82-42-472-7140

서식 PCT/ISA/210 (두 번째 요지) (2009년 7월)
제2기재한 일부 청구항을 조사할 수 없는 경우의 의견(첫 번째 용지의 2의 계속)

PCT 제17조(2)(a)의 규정에 따라 다음과 같은 이유로 일부 청구항에 대하여 본 국제조사보고서가 작성되지 아니하였습니다.
1. □ 청구항:
 이 청구항은 본 기관이 조사할 필요가 없는 대상에 관련됩니다. 즉,

2. □ 청구항:
 이 청구항은 유효한 국제조사를 수행할 수 없음을 정도로 소정의 요건을 충족하지 아니하는 국제출원의 부분과 관련됩니다. 구체적으로는,

3. □ 청구항:
 이 청구항은 종속청구항이나 PCT규칙 6.4(a)의 두 번째 및 세 번째 문장의 규정에 따라 작성되어 있지 않습니다.

제3기재한 발명의 단일성이 거절된 경우의 의견(첫 번째 용지의 3의 계속)

본 국제조사기관은 본 국제출원에 다음과 같이 다수의 발명이 있다고 북났다.
 청구항 1-6은 자가 평창성을 가지는 물질을 포함하는 혈관 문합용 구조물에 관한 것이고,
 청구항 7-11은 자가 평창성 유인회를 포함하는 혈관 문합용 구조물에 관한 것이며,
 청구항 12-16은 자가 평창성을 가지는 물질이 투입되는 주입관을 포함하는 혈관 문합용 구조물에 관한 것이고,
 청구항 17-22는 타원계기형 구조물의 평창성을 가지는 물질을 포함하는 혈관 문합용 구조물에 관한 것이며,
 청구항 23-26은 생분해성을 지니는 구조물, 신축제한, 주입관을 포함하는 혈관 문합용 구조물에 관한 것이다.

1. □ 출원인이 모든 추가수수료를 기간 내에 납부하였으므로, 본 국제조사보고서는 모든 조사 가능한 청구항을 대상으로 합니다.

2. □ 추가수수료 납부를 요구하지 않고도 모든 조사 가능한 청구항을 조사할 수 있었으므로, 본 기관은 추가수수료 납부를 요구하지 아니하였습니다.

3. □ 출원인이 추가수수료의 일부만을 기간 내에 납부하였으므로, 본 국제조사보고서는 수수료가 납부된 청구항만을 대상으로 합니다. 구체적인 청구항은 아래와 같습니다.

4. □ 출원인이 기간 내에 추가수수료를 납부하지 아니하였습니다. 따라서 본 국제조사보고서는 청구범위에 처음 기재된 발명에 한정되어 있으며, 해당 청구항은 아래와 같습니다.

이의신청에 관한 기재

□ 출원인의 이의신청 및 이의신청료 납부(해당하는 경우)와 함께 추가수수료가 납부되었습니다.
□ 출원인의 이의신청과 함께 추가수수료가 납부되었으나 이의신청료가 보정요구서에 명시된 기간 내에 납부되지 아니하였습니다.
□ 이의신청 없이 추가수수료가 납부되었습니다.

사식 PCT/ISA/210 (첫 번째 용지의 계속(2)) (2009년 7월)
<table>
<thead>
<tr>
<th>국제조사보고서에서 인용된 특허문헌</th>
<th>공개일</th>
<th>대응특허문헌</th>
<th>공개일</th>
</tr>
</thead>
<tbody>
<tr>
<td>JP 2010-273936 A</td>
<td>2010.12.09</td>
<td>없음</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2001-49146 A1</td>
<td>2001.10.08</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2402101 A1</td>
<td>2001.10.04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2402101 C</td>
<td>2007.01.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1217304 C0</td>
<td>2005.08.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1358462 A0</td>
<td>2002.07.17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 12670088 A1</td>
<td>2003.01.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6463033 B1</td>
<td>2002.10.22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 01-732667 A1</td>
<td>2001.10.04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1301139 A0</td>
<td>2001.06.27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1059893 B1</td>
<td>2005.09.14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 04-143749 B2</td>
<td>2006.09.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2002-505147 A</td>
<td>2002.02.19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 06077290 A</td>
<td>2000.06.20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2002-0145452 B1</td>
<td>2002.10.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2006-0271163 A1</td>
<td>2006.11.30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2007-0112412 A1</td>
<td>2007.05.17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6531190 B1</td>
<td>2001.12.18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 99-44536 A1</td>
<td>1999.09.10</td>
</tr>
</tbody>
</table>