Office de la Proprieté Canadian CA 2480459 C 2010/01/19

Intellectuelle Intellectual Property
du Canada Office (11)(21) 2 480 459
Un organisme An agency of _ 12) BREVET CANADIEN
'Industrie Canada ndustry Canada
CANADIAN PATENT
13) C
(86) Date de dépét PCT/PCT Filing Date: 2003/03/26 (51) Cl.Int./Int.Cl. GO6F 17/30(2006.01),
(87) Date publication PCT/PCT Publication Date: 2003/10/23 GO6F 9/445(2000.01)
(45) Date de délivrance/lssue Date: 2010/01/19 (72) g‘;iﬁgr;j'g‘éegtﬁgo T ous.
(85) Entree phase nationale/National Entry: 2004/09/24 KUMAR, RAJ ,US; | |
(86) N° demande PCT/PCT Application No.: US 2003/009407 CREIGHTON, JONATHAN, US;
o o SRIVASTAVA, ALOK, US;
(87) N° publication PCT/PCT Publication No.: 2003/083093 JOSHI SAMEER US
(30) Priorités/Priorities: 2002/04/08 (US60/370,963); (73) Propriétaire/Owner
2002/04/12 (US60/372,186); 2002/09/23 (US10/253,088) ORACLE INTERNATIONAL CORPORATION US

(74) Agent: SMITHS IP

(54) Titre : REPERTOIRE DE VALEURS CLES PERSISTANTES A ARCHITECTURE FONCTIONNELLE POUR
ABSTRACTION DE STOCKAGE PHYSIQUE

(54) Title: PERSISTENT KEY-VALUE REPOSITORY WITH A PLUGGABLE ARCHITECTURE TO ABSTRACT
PHYSICAL STORAGE

CLUSTER 100
‘ NODE 102 NODE 104
I — I
CLIENT 106 | ‘ CLIENT 108 i CLIENT 110 | COMPONENT174

............ .'::::::::::::::uI::::::Z::::::::::::::::..-i1212221111211f€€€;:;2ZZ'"‘1
EAPLAYERJ_LZ l API1120 API1130 | J: | API1140 l
eecececcnns 1.8 eeeeeeeeees. setease e bTEETEETE T T b e eens R hbi i e . :
eeenenn- eeeeeeeeeens % SUUUTUUURUUURUURUIN | OO N
' SERVICE : * T 1 |
'ABSTRACTION | *|SVC ABST 122 ¢ SVC ABST 132 . |l SVC ABST 142| . |
LAYER 114 : x ok e
T [T -] """""""""""" E
............ ‘1...'0....!....-L;..---.I..-.O.ﬂt..OQ-..:- -E.........C.0.......-..'.... :
RE | imessacing | b — |3 —
+AND CACHE : | MSG 124 | :: MSG 134 CACHEJ_S_&I: :I MSG 144 ‘ CACHE 148 ||
‘LAYER 116 : '] 8 :
-------------- bbb hlvebb bbbl S SRR L { P bbb bbbt £

-------------- t-::y---ccccccocccuocn
COMPONENT 170 /('STORAGE :
+ ABSTRACTION lPLUG N 152 | |PLUG-N 1541 |s
COMPONENT 172 * LAYER 150 s
.. .l‘

STORAGE
SUB-SYSTEMS 160
(57) Abréegée/Abstract:

A system and techniques are described for managing key-value pairs using an architecture that does not restrict its users to any
specific platform or storage subsystem. According to one aspect of the invention, the repository is portable in that the architecture

o
SSonEeAN S f
.l.!.\‘\-c.c..--.
- h.l‘s_ .\I {\A '
J & "'.

C an ad a http:/opic.ge.ca + Ottawa-Hull K1A 0C9 - atip.://eipo.ge.ca OPIC ' CTIPO
OPIC - CIPO 191 SRR

CA 2480459 C 2010/01/19

anen 2 480 459
13) C

(57) Abrege(suite)/Abstract(continued):
need not change based on the environment and platform in which the repository is used. Rather, the portion of the architecture that

IS platform-specific Is limited to plug-ins at a storage abstraction layer of the repository. The plug-ins expose the same storage
abstraction Interface to the other layers of the repository, but are implemented to interact with different platforms and storage

subsystems. Consequently, In response to being ported from one platform to another, the repository may simply change the plug-in
to Invoke for persistent storage operations.

CA 02480459 2004-09-24

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property

Organization

International Burcau

(43) International Publication Date

23 October 2003 (23.10.2003)

(51) International Patent Classification’: GOoF 17/30,

9/445

(21) International Application Number:

(22) International Filing Date: 26

PCT/US2003/009407

March 2003 (26.03.2003)

(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:
60/370,963 8 April 2002 (08.04.2002) US
60/372,186 12 April 2002 (12.04.2002) US
10/253,088 23 September 2002 (23.09.2002) US

(71) Applicant: ORACLE INTERNATIONAL CORPORA-

TION [US/US]; M/S 50P7, 500
Shores, CA 94065 (US).

Oracle Parkway, Redwood

(72) Inventors: CHATTERJEE, Surojit; 1451 Beach Park
Boulevard, Apt. 1205, Foster City, CA 94404 (US). KU-

MAR, Raj; 305 - 78th Street #

woO 2003/088093 A3 IO O O 1 0 A O A0

2R, Brooklyn, NY 11209

(US). CREIGHTON, Jonathan; 3263 Kempton Avenue,
Oakland, CA 94611 (US). SRIVASTAVA, Alok; 37389

(74)

(81)

(84)

(10) International Publication Number

WO 2003/088093 A3

Wedgewood Street, Newark, CA 94560 (US). JOSHI,
Sameer; 4231 Norwalk Drive #EE210, San Jose, CA
95129 (US).

Agent: HICKMAN, Brian; Hickman Palermo Truong &
Becker Llp, 1600 Willow Street, San Jose, CA 95125 (US).

Designated States (national): AE, AG, AL, AM, AT, AU,
A7, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, 1.C,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,
SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VN, YU,
ZA, 7ZM, 7ZW.

Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (Al, BE, BG, CH, CY, CZ, DE, DK, EL,
ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO,
SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM,
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

with international search report

[Continued on next page]

(54) Title: KEY-VALUE REPOSITORY WITH A PLUGGABLE ARCHITECTURE

«ABSTRACTION
COMPONENT172 {LAYER 150

CLUSTER 100
NODE 102 NODE 104
... f’—’/.
Feevsncancmcsonmrmmmnannanna= ol R L R L TR PR Plemcancanmeacncennenan-ne
:APLAYER 142 | + | API20 | i AP1130 : AP1140
oooooooooooo l-.f.Q¢¢..o.-....':-:c-d.....0...--..-..----'-J‘-.----&--.-..-.-....'.-' »
eenemeaaans R ¥
» SERVICE - X
ABSTRACTION | X
LAYER 114 : s
fpevsoaanacsves p-: -------------- rs
HE | :wessacing | @ ¥
»AND CACHE :
‘LAYER 116 ;
............ .1.,.-............us.........-.---.--...-..
/ et s m s smsesacne tancsepnesinatagsoasnuwm
COMPONENT 170

(57) Abstract: A system and techniques are described for managing key-value pairs using an architecture that does not restrict its
users to any specific platform or storage subsystem. According to one aspect of the invention, the repository is portable in that
the architecture need not change based on the environment and platform in which the repository is used. Rather, the portion of the
architecture that is platform-specific is limited to plug-ins at a storage abstraction layer of the repository. The plug-ins expose the
same storage abstraction interface to the other layers of the repository, but are implemented to interact with different platforms and
storage subsystems. Consequently, in response to being ported from one platform to another, the repository may simply change the
plug-in to invoke for persistent storage operations.

CA 02480459 2004-09-24

WO 2003/088093 A3 IHIHHHA!H AR 10 IR 1 A A

— before the expiration of the time limit for amending the For two-letter codes and other abbreviations, refer to the "Guid-
claims and to be republished in the event of receipt of ance Notes on Codes and Abbreviations” appearing at the begin-
amendments ning of each regular issue of the PCT Gagzette.

(88) Date of publication of the international search report:
25 March 2004

CA 02480459 2009-03-06

PERSISTENT KEY-VALUE REPOSITORY WITH A PLUGGABLE
ARCHITECTURE TO ABSTRACT PHYSICAL STORAGE

FIELD QF THE INVENTION
The present invention relates to data repositories and, more specifically, to

repositories for storing key-value pairs.

BACKGROUND OF THE INVENTION

Many types of information are commonly stored in the form of key-value pairs,
~ where the "key"” portion of the pair is a label, and the "value" portion of the pair provides
a value associated with the label. For example, information about the configuration of a
computer system may include the following key-value pair: ("memory”, S12M) to
indicate that the amount of dynamic memorjf in the computer system 1s 5312 megabytes.

Typically, a software program or system that needs to store large amounts of key-
value pairs will include a repository for storing the information, and include logic for
managing the repository. When such repositories are used for storing configuration data, .
the repositories are often referred to as registries.

When each program or system that requires a key-value pair repository
implements and manages its own repository, the result is a proliferation of proprietary
repositories and a massive duplication of work. To address this problem, key-value pair
repository designers can expose an application programming interface (API) to their
repository to allow certain third-party applications to make use of their repository. For
example, an operating system may allow third-party applications designed for the
operating system to store key-value pairs in the repository that is managed by the

operating system.

Unfortunately, such "open" repositories do not provide a general solution because

they are typically tied to a specific platform or storage subsystem, and are therefore not

CA 02480459 2004-09-24
WO 03/088093 PCT/US03/09407

portable or useable as general-purpose key-value pair repositories. Because they are
designed using certain assumptions about the environment and platform in which they

will be used, they are generally not available for use by applications or systems that do

not conform to those assumptions.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention 1s 1llustrated by way of example, and not by way of
limitation, in the figures of the accompanying drawings and in which like reference
numerals refer to similar elements and 1n which:

FIG. 1 1s a block diagram of a key-value pair repository according to an
embodiment of the invention; and

FIG. 2 1s a block diagram of a computer system upon which embodiments of the

invention may be implemented.

DETAILED DESCRIPTION OF THE INVENTION

A method and system for providing cluster-wide access to a shared, key-value pair
repository 1s described. In the following description, for the purposes of explanation,
numerous specific details are set forth in order to provide a thorough understanding of the
present invention. It will be apparent, however, that the present invention may be
practiced without these specific details. In other instances, well-known structures and
devices are shown in block diagram form in order to avoid unnecessarily obscuring the

present invention.

FUNCTIONAL OVERVIEW

Techniques are provided for managing key-value pairs using an architecture that
does not restrict its users to any specific platform or storage subsystem. According to one
aspect, the repository 1s portable in that the architecture need not change based on the
environment and platform in which the repository is used. Rather, the portion of the
architecture that is platform-specific is limited to plug-ins at a storage abstraction layer of
the repository. Each of the plug-ins exposes the same storage abstraction interface to the
other layers ot the repository, but 1s implemented to interact with a different platform or
storage subsystem than the other plug-ins.

In addition, the pluggable nature of the architecture results in cross-platform

portability. For example, the repository may be used on any number of popular Operating
System/Hardware combinations, such as Solaris/Sun, AIX/IBM, HPUX/HP,

Ko

CA 02480459 2004-09-24
WO 03/088093 PCT/US03/09407

Windows/Dell, etc. Consequently, in response to being ported from one platform to
another, the repository may simply change the plug-in to invoke for persistent storage
operations.

According to one aspect, performance of the repository is enhanced by
maintaining a master cache of key-value pair information, and local caches of key-value
pair information. According to one embodiment, a single local cache is managed on each
node, where the client associated with the cache on any given node is not dictated by the
repository. For example, the cache for a node may be associated with the client on that
node that will most heavily use the repository, by causing that client to make the

appropriate calls to the repository.

SYSTEM OVERVIEW
Reterring to FIG. 1, 1t 1s a block diagram illustrating a system for providing

cluster-wide access to a shared, key-value pair repository 118, according to an
embodiment of the invention. Specifically, FIG. 1 illustrates a cluster 100 that includes
two nodes 102 and 104. A two-node cluster embodiment is shown to simplify the
description of the system. However, the invention and techniques described herein are
not limited to clusters having any particular number of nodes.

The term "cluster” 1s used herein to refer to any set of nodes that are able to
communicate with each other. A cluster may include, for example, a group of networked
computers. In some situations, clusters are managed as a unit by cluster management
software. Cluster management software 1s an example of a software system that could
make use of key-value pair repository 118. Specifically, cluster management software
may use key-value pair repository 118 as a cluster registry, to store information about the
configuration of the cluster that is managed by the cluster management software. It
should be noted, however, that cluster management software is merely one example of a
chent that might make use of repository 118. The present invention is not limited to any
particular type of client. Rather, in many situations, numerous disparate types of clients
will use repository 118.

Referring again to FIG. 1, node 102 includes two clients 106, 108 of repository
118, while node 104 includes one client 110 of repository 118. Clients 106, 108 and 110
are referred to as "clients" because they request services of the repository 118 in order to
manage the key-value pairs in which they are interested. Clients 106, 108 and 110

generally represent any form of software program that requires storage of key-value pairs,

and are not limited to any particular type of software program.

_3-

CA 02480459 2004-09-24
WO 03/088093 PCT/US03/09407

In the embodiment illustrated in FIG. 1, repository 118 includes several layers of
functionality. Specifically, repository 118 includes an API layer 112, a service
abstraction layer 114, a messaging and cache layer 116, a storage abstraction layer 150,
and storage subsystems 160. In general, API layer 112 presents a common interface to all
clients 106, 108 and 110 through which clients can make calls to store, access and
manage key-value pairs in repository 118. As shall be described 1n greater detail
hereafter, routines within API layer 112 expose to clients 106, 108 and 110 an interface
that is independent of the actual storage subsystem 160 that 1s ultimately used to durably
store the key-value pairs.

Service abstraction layer 114 includes routines that determine how to process calls
received by the routines at API layer 112. Messaging and cache layer 116 includes
routines that may be called by components of repository 118 to communicate with other
components of repository 118. In addition, messaging and cache layer 116 includes
routines for managing a cache of key-value pairs, so that all requests made by a client do
not result 1n accesses to storage subsystems 160.

Storage abstraction layer 150 includes plug-ins 152 and 154. Each plug-in
exposes the same storage access API to the routines in layers 114 and 116. However, the
routines that implement the common storage API differ from plug-in to plug-in based on
the type of storage subsystem associated with the plug-in. Storage subsystems 160
represent any form of durable storage system that 1s able to store key-value pairs.

Each of these layers shall be described 1n greater detail hereafter.

MASTER AND CACHING COMPONENTS

According to one embodiment, one component of repository 118 is designated as
the master component. The routines in the messaging and cache layer 116 of the master
component have exclusive access to the storage abstraction layer 150. The master
component also manages a master cache of information from repository 118. In the
embodiment illustrated in FIG. 1, component 174 1s the master component.
Consequently, the routines 1n the messaging and cache layer 116 of component 174
manage a master cache 148, and have exclusive access to plug-ins 152 and 154 that reside
at the storage abstraction layer 150.

Each node 1n the cluster also includes a single "caching component”. The caching
component for a node maintains a cache of information from the repository 118. The

client associated with the caching component is referred to herein as the "caching-level

CA 02480459 2004-09-24
WO 03/088093 PCT/US03/09407

client". According to one embodiment, the master component 1s the caching component

for the node on which the master component resides.

In the illustrated embodiment, component 172 is the caching component for node
102, and as such manages a cache 138. Client 108, which 1s associated with component
172, 1s the caching-level client for node 102. Component 170, which also resides on node
102, 1s not a caching component and therefore does not maintain its own cache of
information from repository 118.

According to one embodiment, a client establishes 1ts associated component as a
caching component based on information passed to repository 118 through calls made by
the client to routines in API layer 112. For example, client 108 may establish itself as the
caching-level client for node 102 by making the appropriate call into API 130. The call
may pass to API 130 a value that indicates that component 172 is to be the caching
component for node 102.

Because the caching-level client generally has faster access to the cache managed
by the caching component, it 1s preferable for the caching-level client on the particular
node to be the chient that uses the repository 118 most heavily. For example, client 106
and client 108 may represent two different kinds of clients, where client 108 makes heavy
use of repository 118 and client 106 uses repository 118 rarely. Under these
circumstances, client 108 would be selected as the caching level client. Client 108 could
then be designed to make the appropriate calls to component 172 to cause component 172
to be the caching component for node 102.

According to an alternative embodiment, the actual repository use of clients on
node 102 may be monitored, and the component that is using repository 118 most heavily
may be dynamically selected as the caching component. In such an embodiment, routines
may even be provided for dynamically passing the caching responsibility from one
component to another, based on the changing access patterns of the clients that are
assoclated with the components.

Various techniques may be used to manage the cache when write operations are
performed against the repository. For example, one embodiment may use a "write-
through" approach to maintaining the cache during write operations. The present
invention 1s not limited to any particular approach to managing caches during write
operations.

In the embodiment 1llustrated in FIG. 1, cluster 100 has a single master
component 174 with rights to interact with storage abstraction layer 150. Because

abstraction layer 150 1s accessed from a single master component 174, various problems

_5.-

CA 02480459 2004-09-24
WO 03/088093 PCT/US03/09407

associated with resource sharing and concurrency control may be avoided. However,
alternative embodiments may include a plurality of master components with rights to
directly interact with storage abstraction layer 150. Various concurrency control
techniques may be used to avoid potentially harmful interactions in such a system. For
example, the namespace of the keys may be partitioned, where each master component 1s
assigned one of the namespace partitions. Under such an embodiment, each master
component may be allowed to access storage abstraction layer 150 only for operations

involving keys that fall within the namespace partition assigned to the master component.

THE API LAYER

Chents that wish to use repository 118 to manage key-value pairs do so by making
calls to routines in API layer 112. According to one embodiment, the routines in API
layer 112 expose interfaces for all operations supported by repository 118. In one
embodiment, the routines in API layer 112 perform parameter validation and error
checking. If calls made to the routines in API layer 112 pass the tests performed at API
layer 112, then the calls are passed down to the appropriate routines in the service
abstraction layer 114.

The routines of API layer 112 may be provided to the developers of such clients in
the form of a code library. The developers may then include, in their clients, code that
makes calls to the routines in the code library. The code library may then be statically
linked with the client code at the time the client code is compiled, or dynamically linked
to the client code at runtime.

According to one embodiment, the interface exposed by API layer 112 may
include interfaces for multiple programming languages. For example, API layer 112 may
expose both a JAVA API for use by clients written in or compatible with the JAVA
programming language, and a "C" language API for use by clients written in or
compatible with the C programming language.

According to one alternative embodiment, API layer 112 exposes only a C
language interface, and repository 118 includes one or more additional modules for
making calls into API layer 112 based on calls received from clients written in other
languages. Such modules effectively transform calls from the clients in one language to
calls in the language supported by the interface exposed by API layer 112. For example,
such a module may expose the JAV A-based repository API to Java-based clients, and

then use JNI Wrappers to convert calls made through the JAV A-based repository API

CA 02480459 2004-09-24
WO 03/088093 PCT/US03/09407

into calls made by the module into the "C" based repository interface exposed by API

layer 112.

THE SERVICE ABSTRACTION LAYER

The service abstraction layer 114 determines how to process calls made from
clients. A vanety of factors may determine how any given call is handled. Such factors
" include, for example, the identity of the client making the call, the access mode applicable
to the call, and the type of operation requested by the call. Access modes shall be
described in greater detail below.

Depending on these factors, the routines 1n the service abstraction layer 114 may
access a local cache, access a master cache, or make a call to a messaging routine in
messaging and cache layer 116 to send a request to a different component of the
repository 118. If the called routine in the service abstraction layer 114 is not in a
caching component or master component, then the called routine in the service
abstraction layer 114 calls a routine in the messaging and cache layer 116 to pass request
on to the local caching component.

If the called routine in the service abstraction layer 114 is in a caching component,
then the called routine in the service abstraction layer 114 checks the local cache to see if
the cache contains information to answer the request. If the local cache does not contain
information to answer the request, then the called routine in the service abstraction layer
114 calls a routine 1n the messaging and cache layer 116 to pass the request on to the
master component.

If the called routine in the service abstraction layer 114 is in the master
component, then the called routine 1n the service abstraction layer 114 checks the master
cache to see 1f the cache contains information to answer the request. If the master cache
does not contain information to answer the request, then the called routine in the service
abstraction layer 114 calls a routine in the messaging and cache layer 116 to invoke the
appropriate plug-in at the storage abstraction layer 150 to retrieve the information from
durable storage on one of the storage subsystems 160.

According to one embodiment, all calls made from routines in the service
abstraction layer 114 to messaging routines in messaging and cache layer 116 are
stateless. In such an embodiment, each message that the service abstraction layer 114
sends through messaging routines within the messaging and cache layer 116 contains all

the necessary information to perform the desired operation.

CA 02480459 2004-09-24
WO 03/088093 PCT/US03/09407

According to one embodiment, routines in the service abstraction layer 114 of
caching components and the master component have the responsibility of authenticating
clients. During the authentication operation, the routines determine whether or not the
client is "trusted". Clients that are not "trusted" are not allowed to perform certain types

of operations.

THE MESSAGING AND CACHE LAYER

The messaging and cache layer 116 includes routines for accessing and managing
a cache, and routines for communicating with other components of repository 118.
According to one embodiment, the caching routines are only used by one component in
each node. Other components on the node use the cache indirectly by forwarding
requests to the component that 1s managing the cache.

According to one embodiment, how a caching routine satisfies a request is
completely transparent to the routine that calls a caching routine. Specifically, upon
receiving the request, the caching routine checks the cache that it manages. If the cache
contains the information required to satisfy the request, then the caching routine retrieves
the information from the cache and provides the information to the calling routine.
However, 1f the cache does not contain the information required to satisfy the request,
then the caching routine obtains the required information by other means. For example, if
the caching routine belongs to a caching component, then the caching routine may call a
messaging routine to request the required information from the master component. If the
caching routine belongs to the master component, then the caching routine may call the
appropriate storage abstraction layer plug-in to retrieve the requested information from a
storage subsystem. The caching routine may cause the information to be stored in the
cache that it manages, in addition to providing the requested information back to the
calling routine.

According to one embodiment, the messaging routines in the messaging and cache
layer 116 are configured to send requests in network byte order, at least when the
messages must traverse a platform boundary within a cluster. For example, assume that
node 102 1s running on a first platform, and node 104 is running a second platform. In
such a scenario, the messaging routines in node 102 send messages to the messaging
routines on node 104 in network byte order. Similarly, the messaging routines on node
104 send messages to the messaging routines on node 102 in network byte order. By

sending messages across platform boundaries in network byte order, the messages sent by

CA 02480459 2004-09-24
WO 03/088093 PCT/US03/09407

senders can be accurately reconstructed by recipients that reside on different platforms

than the senders.

THE STORAGE ABSTRACTION LAYER

According to one embodiment, routines provided in the storage abstraction layer
150 completely abstract what kind of backend storage 1s being used to durably store the
key-value pair information managed by repository 118. For example, both plug-in 152
and plug-in 154 expose an identical interface to the caching routines in messaging and
cache layer 116 of the master component 174, even though plug-in 152 may be designed
to operate with a completely different storage subsystem than plug-in 154. While plug-
ins 152 and 154 expose the same interface to the caching routines, the logic of the
routines that implement the interface may be completely different, based on what kind of
backend storage the plug-in 1s designed to interact with.

Significantly, because all of the platform-specific logic 1s contained in the plug-ins
at the storage abstraction layer 150, the routines at all other layers of repository 118 are
not platform-specific or storage subsystem specific. Consequently, clients that use
repository 118 are effectively insulated from platform-specific design details, making
both the clients and the upper-layer components of repository 118 portable across
platforms.

Because storage abstraction layer 150 1s implemented using one or more plug-ins
that expose a common interface, repository 118 is not limited to any particular backend
subsystem or platform. Any subsystem or platform capable of providing the functionality
assoclated with the exposed common interface may be used. Such backend platforms
may include, but are not limited to, LDAP, MSCS, shared raw devices, raw devices
and/or private file system files within a shared-nothing cluster, Cluster File Systems
(CFS) and distributed configuration repositories.

When repository 118 1s requested to perform an operation that requires access to
key-value pairs on persistent storage, a call is made (typically from a caching routine in
the messaging and cache layer of the master component) to storage abstraction layer 150.
According to one embodiment, repository 118 selects the specific plug-in to call based on
one or more of a variety of possible factors. For example, repository 118 may include an
environment variable whose value may be set by an administrator, where the value of the
environment variable indicates which type of storage subsystem is to be used for
persistently storing the data managed by repository 118. Alternatively, repository 118

may include discovery logic that detects which storage subsystems are available to a

9.

CA 02480459 2004-09-24
WO 03/088093 PCT/US03/09407

particular installation of repository 118. If only one type of subsystem is available, then
the plug-in associated with that type of subsystem is selected. If several types are
available, then repository 118 may select among the available types based on various
other considerations. These consideration‘s may include but are not limited to storage
capacity or available free space 1n the storage sub-systems 160. Once selected, the
appropriate plug-in may be dynamically loaded into volatile memory, and routines within
the plug-in may be called.

Because each plug-in 1s designed to interact with a different type of backend
storage system, the selection of the plug-in determines the nature of the back-end
platform on which the key-value pairs managed by the repository 118 are persistently
stored. For example, if the target key-value pairs are to be located on a shared storage
device, a routine 1n plug-in 152 may be called. If the target key-value pairs are to be
managed within a storage subsystem managed by an LDAP server, then a corresponding
routine 1n plug-in 154 may be called. According to one embodiment, the called routine
name, and the parameters of the call, are the same in both instances, because the
interfaces exposed by plug-ins 152 and 154 are identical, thereby making the nature of the
storage-subsystems 160 transparent to clients 106, 108, and 110 and routines in the upper
layers of repository 118.

The interface exposed by the storage abstraction layer 150 allows processes
external to the storage abstraction layer 150 to make calls through the interface to routines
in the storage abstraction layer 150 to perform the various functions required of
repository 118. In one embodiment, repository 118 supports node-dependent keys.
Specifically, multiple clients (clients 106 and 108 on node 102, and client 110 on node
104) of repository 118 may each want to store a key-value pair, where the key name used
by each client 1s the same, but the value used by each client on different nodes for that
key name may be different. For example, each client may want to store the key-value
pair "backgroundcolor"=X, where X may be any one of blue, green or purple. Using
node-dependent keys, repository 118 will separately store the values for
“backgroundcolor™ for each client, depending upon the node on which the client happens
to be running. For the current example, clients 106 and 108 on node 102 will see the
same value for the backgroundcolor key, but the client 110 on node 104 will see a

different value for the same backgroundcolor key.

_10-

CA 02480459 2004-09-24
WO 03/088093 PCT/US03/09407

EXEMPLARY REQUEST SEQUENCE

According to one embodiment, requests for information managed by repository
118 are processed by first checking the cache that resides on the same node as the
requestor. If the information is not in the local node cache, then the master cache 1s
checked. If the information is not in the master cache, then a call 1s made to the storage
abstraction layer 150 to retrieve the information from durable storage.

For example, assume that client 106 requires a certain key-value pair that is
managed by repository 118, and that does not currently reside in any cache. According to
one embodiment, the operation of retrieving that key-value pair for client 106 would
proceed as follows:

Initially, client 106 calls a routine (API 120) in the API layer 112 to request a read
of the desired key-value pair. API 120 sends the request to a routine (SVC ABST 122) in
the service abstraction layer 114. SVC ABST 122 determines how to handle the request.
In the present example, SVC ABST 122 determines that the request should be forwarded
to the cache that 1s local to node 102. Since component 170 is not the caching component
of node 102, forwarding the request to the cache involves component 170 communicating
with another component 172. To accomplish this communication, the request is passed to
a routine (MSG 124) in the messaging and cache layer 116 of component 170.

MSG 124 communicates the request to a routine (MSG 134) at the messaging and
cache layer 116 of caching component 172. MSG 134 passes the request up to a routine
(SVC ABST 132) 1n the service abstraction layer 114 of caching component 172. SVC
ABST 132 determines that cache 138 should be inspected to determine whether it
contains the requested information. SVC ABST 132 makes the appropriate call to a
routine in the messaging and cache layer 116.

When the information 1s not found in the local cache 138, a message is sent from
MSG 134 to a routine (MSG 144) in the messaging and cache layer 116 of the master
component 174. MSG 144 passes the request up to a routine (SVC ABST 142) in the
service abstraction layer 114 of master component 174. SVC ABST 142 determines that
master cache 148 should be inspected to determine whether it contains the requested
information. SVC ABST 142 makes the appropriate call to a routine in the messaging
and cache layer 116.

When the information is not found in the master cache 148, a message is sent to
the appropriate plug-n (e.g. plug-in 152) at the storage abstraction layer 150. The plug-in
152 causes the requested information to be retrieved into cache 148 from persistent

storage on one of storage subsystems 160. MSG 144 then returns the call from MSG 134

-11-

CA 02480459 2004-09-24
WO 03/088093 PCT/US03/09407

by passing back the requested information. MSG 134 causes the information to be stored
in cache 138, and returns the call from MSG 124 by passing back the requested
information.

MSG 124 passes the information back to SVC ABST 122, which in turn passes
the information back to API 120. Finally, API 120 delivers the requested information to
chent 106.

Because the requested information was stored in cache 138, subsequent requests
for the same information by any clients on node 102 may be handled by retrieving the
data from cache 138. Because the requested information was stored in master cache 148,
subsequent requests for the same information by clients on nodes that do not have the

information cached locally may be handled by retrieving the data from master cache 148.

ACCESS MODES

According to one embodiment, the routines provided at the API layer 112 may be
accessed 1n any one of four access modes. A client may indicate a particular access mode
to a routine 1n the API layer 112 by, for example, passing to the routine a parameter value
that indicates the mode. Rather than pass such a parameter with each call to the API layer
112, the first call made by a client to the API layer 112 may specify the desired mode to
an "Initialization routine”. The initialization routine may pass a handle back to the client,
which the client then uses to make all future calls to API layer 112. The handle may be
associated with data that indicates the access mode of the client. Consequently, passing
the handle 1n all subsequent calls effectively informs the routines that process the
subsequent calls about the access mode that should be used in servicing those calls.

According to one embodiment, different modules of the same client may access
repository 118 in different access modes. For example, a first module within client 108
may access repository 118 in read-only mode, while another module within client 108
accesses repository 118 in caching access mode. Similarly, a client may transition from
one access mode to another access mode by making the appropriate calls into API layer
112.

The access mode that a particular client requests is dictated by the role of the
client and/or the type of operation that the client intends to perform. According to one
embodiment, the modes supported by repository 118 include an installation mode, a read-
only access mode, a caching access mode, and a default access mode.

Installation mode: 1nstallation mode is the mode used by a client (typically a

repository installation program) to perform the operations of creating or re-creating a

-12-

CA 02480459 2004-09-24
WO 03/088093 PCT/US03/09407

repository. According to one embodiment, installation mode can be held by only one
client at a time, and excludes all other clients from performing any repository operations.

Read-only access mode: by requesting read-only access mode, a client indicates
that it will only be performing read-only operations. When performing operations for a
client 1in read-only access mode, all of the concurrency control logic within repository 118
1s disabled/circumvented. Consequently, operations can generally be performed faster,
and with less overhead, than if performed in modes that allow write operations. Read-
only access mode may be concurrently shared by multiple clients, since read operations
do not generally cause access conflicts with other read operations.

According to one embodiment, repository 118 uses cluster configuration software
to perform some of the concurrency control during operations within repository 118.
Such cluster configuration software may also use repository 118 to store boot-up
information for cluster 100. In such an embodiment, the cluster configuration software
uses read-only access mode to access the cluster configuration information while cluster
100 1s being booted up, to ensure that the concurrency control routines of the cluster
configuration software will not be executed until the cluster configuration software is
itself fully initialized.

Caching access mode: caching access mode is the mode used by a client to
establish the component used by the client as the caching component for a node. For
example, component 172 1s established as the caching component of node 102 in response
to client 108 1nitializing component 172 in caching access mode. When client 108 makes
a call to initialize component 172, resources may be allocated for cache 138. When read
operations are performed in caching access mode, the routines within service abstraction
layer 114 invoke caching routines in messaging and cache layer 116 to search for required
information within cache 138.

Detfault access mode: default access mode is the mode used by clients that (1) are
not associated with the caching component, and (2) are not performing an operation that
requires installation or read-only access modes. When performing operations in default
access mode, routines 1n the service abstraction layer 114 use messaging routines in
messaging and cache layer 116 to forward read requests to the local caching component.

According to one embodiment, clients are able to transition from one mode to
another. Such a transition may be initiated, for example, by passing a different access
mode parameter value in subsequent calls to routines in the API layer that was passed in
previous calls to routines in the API layer. According to yet another embodiment,

ditferent threads or modules of a single client process may use different access modes.

13-

CA 02480459 2004-09-24
WO 03/088093 PCT/US03/09407

For example, all calls in a first module of a client may pass one access mode value to API
layer routines to obtain one access mode, while all calls in a second module of the same

client may pass a different access mode value to the API layer routines to obtain a

different access mode.

HARDWARE OVERVIEW

Figure 2 1s a block diagram that 1llustrates a computer system 200 upon which an
embodiment of the invention may be implemented. Computer system 200 includes a bus
202 or other communication mechanism for communicating information, and a processor
204 coupled with bus 202 for processing information. Computer system 200 also
includes a main memory 206, such as a random access memory (RAM) or other dynamic
storage device, coupled to bus 202 for storing information and instructions to be executed
by processor 204. Main memory 206 also may be used for storing temporary variables or
other intermediate information during execution of instructions to be executed by
processor 204. Computer system 200 further includes a read only memory (ROM) 208 or
other static storage device coupled to bus 202 for storing static information and
instructions for processor 204. A storage device 210, such as a magnetic disk or optical
disk, 1s provided and coupled to bus 202 for storing information and instructions.

Computer system 200 may be coupled via bus 202 to a display 212, such as a
cathode ray tube (CRT), for displaying information to a computer user. An input device
214, including alphanumeric and other keys, 1s coupled to bus 202 for communicating
information and command selections to processor 204. Another type of user input device
1s cursor control 216, such as a mouse, a trackball, or cursor direction keys for
communicating direction information and command selections to processor 204 and for
controlling cursor movement on display 212. This input device typically has two degrees
of freedom 1n two axes, a first axis (e.g., X) and a second axis (e.g., y), that allows the
device to specify positions in a plane.

The mvention 1s related to the use of computer system 200 for implementing the
techniques described herein. According to one embodiment of the invention, those
techniques are performed by computer system 200 in response to processor 204 executing
one or more sequences of one or more instructions contained in main memory 206. Such
Instructions may be read into main memory 206 from another computer-readable
medium, such as storage device 210. Execution of the sequences of instructions
contamned in main memory 206 causes processor 204 to perform the process steps

described herein. In alternative embodiments, hard-wired circuitry may be used in place

_14-

CA 02480459 2004-09-24
WO 03/088093 PCT/US03/09407

of or in combination with software instructions to implement the invention. Thus,
embodiments of the invention are not limited to any specific combination of hardware
circuitry and software.

The term “computer-readable medium” as used herein refers to any medium that
participates in providing instructions to processor 204 for execution. Such a medium may
take many forms, including but not limited to, non-volatile media, volatile media, and
transmission media. Non-volatile media includes, for example, optical or magnetic disks,
such as storage device 210. Volatile media includes dynamic memory, such as main
memory 206. Transmission media includes coaxial cables, copper wire and fiber optics,
including the wires that comprise bus 202. Transmission media can also take the form of
acoustic or hght waves, such as those generated during radio-wave and infra-red data
communications.

Common forms of computer-readable media include, for example, a floppy disk, a
flexible disk, hard disk, magnetic tape, or any other magnetic medium, a CD-ROM, any
other optical medium, punchcards, papertape, any other physical medium with patterns of
holes, a RAM, a PROM, and EPROM, a FLASH-EPROM, any other memory chip or
cartridge, a carrier wave as described hereinafter, or any other medium from which a
computer can read.

Various forms of computer readable media may be involved in carrying one or
more sequences of one or more mstructions to processor 204 for execution. For example,
the instructions may 1nitially be carried on a magnetic disk of a remote computer. The
remote computer can load the instructions into its dynamic memory and send the
instructions over a telephone line using a modem. A modem local to computer system
200 can receive the data on the telephone line and use an infra-red transmitter to convert
the data to an infra-red signal. An infra-red detector can receive the data carried in the
infra-red signal and appropriate circuitry can place the data on bus 202. Bus 202 carries
the data to main memory 206, from which processor 204 retrieves and executes the
instructions. The instructions received by main memory 206 may optionally be stored on
storage device 210 either before or after execution by processor 204.

Computer system 200 also includes a communication interface 218 coupled to bus
202. Communication interface 218 provides a two-way data communication coupling to
a network link 220 that is connected to a local network 222. For example,
communication interface 218 may be an integrated services digital network (ISDN) card
or a modem to provide a data communication connection to a corresponding type of

telephone line. As another example, communication interface 218 may be a local area

-15-

CA 02480459 2004-09-24
WO 03/088093 PCT/US03/09407

network (LAN) card to provide a data communication connection to a compatible LAN.
Wireless links may also be implemented. In any such implementation, communication
interface 218 sends and receives electrical, electromagnetic or optical signals that carry
digital data streams representing various types of information.

Network link 220 typically provides data communication through one or more
networks to other data devices. For example, network link 220 may provide a connection
through local network 222 to a host computer 224 or to data equipment operated by an
Internet Service Provider (ISP) 226. ISP 226 in turn provides data communication
services through the world wide packet data communication network now commonly
referred to as the “Internet” 228. Local network 222 and Internet 228 both use electrical,
electromagnetic or optical signals that carry digital data streams. The signals through the
various networks and the signals on network link 220 and through communication
interface 218, which carry the digital data to and from computer system 200, are
exemplary forms of carrier waves transporting the information.

Computer system 200 can send messages and receive data, including program
code, through the network(s), network link 220 and communication interface 218. In the
Internet example, a server 230 might transmit a requested code for an application program
through Internet 228, ISP 226, local network 222 and communication interface 218.

The received code may be executed by processor 204 as it is received, and/or
stored 1n storage device 210, or other non-volatile storage for later execution. In this
manner, computer system 200 may obtain application code in the form of a carrier wave.

In the foregoing specification, the invention has been described with reference to
specific embodiments thereof. It will, however, be evident that various modifications and
changes may be made thereto without departing from the broader spirit and scope of the
invention. The specification and drawings are, accordingly, to be regarded in an

1llustrative rather than a restrictive sense.

-16-

10

15

20

25

30

CA 02480459 2009-03-06

CLAIMS

What is claimed is:

1.

A method for storing key-value pairs, the method comprising:

exposing, al an application programming layer, a repository interface
through which clients may make calls to store and access key-value pair

information in a repository;

receiving, through said repository interface, at a first component on a first
node, from a client on the first node, a request to perform an operation,

wherein the first component is associated with the first client;

subsequent to receiving the request at the first component, determining that
the first component has been designated as a caching component for the

first node:

subsequent to determining that the first component has not been designated
as a caching component for the first node, determining that a second
component on the first node has been designated as a caching component
for the first node, wherein the second component is associated with a

second client on the first node;

subsequent to determining that the second component has been designated
as a caching component for the first node, determining, at the second
component, that information required by said request 1s not contained in a

local cache on the first node:

subsequent to determining that the information required by said request is
not contained in the local cache on the first node, determining that a third

component on a second node has been designated as a master component,
17

10

15

20

25

30

CA 02480459 2009-03-06

wherein the second node is separate from the first node, wherein the third

component is associated with a third client on the second node;

subsequent to determining that the third component has been designated as
the master component, performing the following steps at the third

component:

servicing calls made through said repository interface by
calling one of a plurality of plug-ins through a common

interface of a storage abstraction layer;

determining which particular plug-in of said plurality of plug-
ins corresponds to a type of storage subsystem to access

during execution of said operation;

dynamically loading the particular plug-in that corresponds to

said type of storage subsystem; and

performing said operation by making one or more calls

through said common interface to said particular plug-in;

wherein each plug-in of said plurality of plug-ins exposes said
common interface for accessing durably stored key-value pair

information;

wherein each plug-in of said plurality of plug-ins i1s designed
to interact with a particular type of storage subsystem In

response to calls made through said common interface; and

wherein the storage subsystem with which each plug-in

interacts is a different type of storage subsystem than the

18

10

15

20

25

CA 02480459 2009-03-06

storage subsystem with which each other of said plurality of

plug-ins interacts.

The method of claim 1, further comprising the steps of:

designating the third component of said repository as the master

component;
receiving, at components spread across a plurality of nodes of a cluster,
calls through said repository interface from clients residing on said plurality

of nodes;

directing all calls that require access to persistent storage to said master

component;
wherein the master component is the only component of said repository

permitted to perform the step of calling plug-ins through said common

interface.

The method of claim 1, further comprising the steps of:

prior to making a call through said common interface for said information

required by said request, searching for said information in a master cache.

The method of claim 3, wherein:

the first client resides on the first node and the master cache resides on the

second node; and

19

10

15

20

23

CA 02480459 2009-03-06

the method further comprises the step of, prior to searching for said
information in said master cache, searching for said information on the local

cache on said first node.

The method of Claim 4 wherein:
the first node includes a plurality of components of said repository;
the method further comprises the steps of:

establishing only one component of said plurality of components as

the caching component;
wherein said first component is not said caching component; and
causing a message to be sent from said first component to said

caching component to cause said caching component to search said

local cache for said information.

The method of Claim 1 further comprising the steps of:

creating a code library that contains routines that implement said repository

interface;

linking said code library to client code to allow routines in said client code

to use said repository by calling said routines in said code library.

The method of Claim 1 further comprising the steps of:

20

10

15

20

25

30

CA 02480459 2009-03-06

receiving a call from a client through a routine that implements a portion of

said repository interface; and

based on a value of a parameter in said call, determining whether to
establish a component of said repository that is associated with said client

as a caching component responsible for managing a cache for said

repository.

8. A tangible computer-readable medium having recorded thereon instructions
for storing key-value pairs, the instructions which when executed by one or more

processors, cause the following steps to be performed:

exposing, at an application programming layer, a repository interface
through which clients may make calls to store and access key-value pair

information in a repository;

receiving, through said repository interface, at a first component on a first
node, from a client on the first node, a request to perform an operation,

wherein the first component is associated with the first client;

subsequent to receiving the request at the first component, determining that
the first component has not been designated as a caching component for the

first node;

subsequent to determining that the first component has not been designated
as a caching component for the first node, determining that a second
component on the first node has been designated as a caching component
for the first node, wherein the second component is associated with a

second client on the first node:

21

10

15

20

25

CA 02480459 2009-03-06

subsequent to determining that the second component has been designated
as a caching component for the first node, determining, at the second
component, that information required by said request is not contained in a

local cache on the first node;

subsequent to determining that the information required by said request is
not contained in the local cache on the first node, determining that a third
component on a second node has been designated as a master component,
wherein the second node is separate from the first node, wherein the third

component 1s associated with a third client on the second node;

in response to determining that the third component has been designated as
the master component, performing the following steps at the third

component:

servicing calls made through said repository interface by
calling one of a plurality of plug-ins through a common

interface of a storage abstraction layer;
determining which particular plug-in of said plurality of plug-
ins corresponds to a type of storage subsystem to access

during execution of said operation;

dynamically loading the particular plug-in that corresponds to
said type of storage subsystem; and

performing said operation by making one or more calls

through said common interface to said particular plug-in;

22

CA 02480459 2009-03-06

wherein each plug-in of said plurality of plug-ins exposes said
common interface for accessing durably stored key-value pair

information;

S wherein each plug-in of said plurality of plug-ins is designed
to interact with a particular type of storage subsystem 1n

response to calls made through said common interface; and

wherein the storage subsystem with which each plug-in
10 interacts is a different type of storage subsystem than the
storage subsystem with which each other of said plurality of

plug-ins interacts.

9. The tangible computer-readable medium of Claim 8, wherein the steps

15 further comprising of:

designating the third component of said repository as a the master

component;

20 receiving, at components spread across a plurality of nodes of a cluster,
calls through said repository interface from clients residing on said plurality

of nodes:

directing all calls that require access to persistent storage to said master

25 component;

wherein the master component is the only component of said repository
permitted to perform the step of calling plug-ins through said common

interface.

30

23

10.

CA 02480459 2009-03-06

The tangible computer-readable medium of Claim 8, wherein the steps

further comprising of:

11.

10

15

12.

20

25

30

prior t0 making a call through said common interface for said information

required by said request, searching for said information in a master cache.

The tangible computer-readable medium of Claim 10 wherein:

the first client resides on the first node and the master cache resides on the

second node; and

the steps further comprising of, prior to searching for said information in

said master cache, searching for said information on the local cache on said

first node.

The tangible computer-readable medium of Claim 11 wherein:
the first node includes a plurality of components of said repository;

the steps further comprising of:

establishing only one component of said plurality of

components as a the caching component;

wherein said first component 1s not said caching component;

and

causing a message to be sent from said first component to said
caching component to cause said caching component to

search said local cache for said information.

24

CA 02480459 2009-03-06

13. The tangible computer-readable medium of Claim 8, wherein the steps

further comprising of:

5 creating a code library that contains routines that implement said repository

interface;

linking said code library to client code to allow routines in said client code

to use said repository by calling said routines in said code library.
10

14. The tangible computer-readable medium of Claim 8, wherein the steps
further comprising of:

receiving a call from a client through a routine that implements a portion of

15 said repository interface; and
based on a value of a parameter in said call, determining whether to establish a

component of said repository that is associated with said client as a caching

component responsible for managing a cache for said repository.

25

CA 02480459 2004-09-24

PCT/US03/09407

WO 03/088093

m \\l\.\llllllll.!lllll’/

P51 NFONd | | ¢S5 NIFONTd

3T IHOVD N
L | ZFT 1s8Y AS m

LV ININOJINOD Hzm_._o

euo.ﬁmooz

e &6 » 8.
..-...‘.-..

09) SIW3LSAS-ENS
1OVH01S

05T ¥3AVT:
NOILOYYLSEY:

JOV401S,

CLLIN3INOdWOD
0Z1 LNINOdIWOD

P - F S
m . m LIAREINAE
| ET 3HOVO | FET OSW [+ | FCT OSW | i | JHOVO ONV:
: : : ONIOVSSIN;
: 7€ 1S8Y OAS » o | TCT 1SAY OAS|+ | NOILOVHLSEY.
: . : ERIIERE
l.lll|llluuuuulnl....._.-..c....ls.lu..ao..oonooounno-.olo..oouoo....lll
" TETIdY 2| TCNdY | & | 70T w3Avidy:

gk Setbebutifuiielfuiuipauiiuipeeiiuibuiiiiutbels B lufigegiegiugigginfiguginfiebotie ettty

801 LN3ITD 907 LN3ITD

¢01 300N

001 ¥31SN19

WE

CA 02480459 2004-09-24

PCT/US03/09407

WO 03/088093

8

/

/

0¢¢

INI]

AdOML3N

JA20100

AdOMLIN

0¢¢
4dAY3S

0l¢
J9IAdd

3OVd015

JOV44dLNI
NOILVOINNWIWNOD

oNg

¥0¢
d055300dd

90¢
AJONWIN

NIVIA

91¢
T1041INOD

d054dN?

j214
J0IA30 LNdNI

4 Y
AV 1dSId

¢ 9l

CLUSTER 100

e

' SERVICE

+ABSTRACTION
: LAYER 114

.MESSAGING
:AND CACHE

COMPONENT 170

NODE 102 NODE 104

—_— e |

| l CLIENT 110 l COMPONENT 174
B ‘..?E'.E.”.T.l.‘l.& —
§IITIIIIIIINI sfrITIITTITIIIITIIINN L LLLLLLLLIEE T
E l API120 | i AP1130 | 5 Jg | API1140 I T
rosTTITe eI dutecccetTTETI I T I T e o ns R R R R I S e e E e T N
e, XTSI 1 | AR |
: X HIE R :
¢ |SVC ABST 122 |4 ¢ SVC ABST 132 lE SVCABST 142 & |:
B owvevevevenms v e |
N S S .'.].5. :
; | MSG 124 | & MSG 134 |I CACHE 138 |3 I MSG 144 ‘ CACHE 148 |{:
.............. e
/(.STORAGE ;
+ ABSTRACTION IPLUG IN 152 PLUG-IN J_5A| '
COMPONENT 172 :LAYER 150 E
.. .I‘

STORAGE
SUB-SYSTEMS 160

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - abstract
	Page 4 - abstract
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - claims
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - claims
	Page 26 - claims
	Page 27 - claims
	Page 28 - claims
	Page 29 - claims
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - abstract drawing

