wo 2011/049936 A2 I 0K 0 OO A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

oo LN
(19) World Intellectual Property Organization /g [} 1M1 AN A0 00100 OO0 O
nternational Bureau V,&) |
(43) International Publication Date \.;J Ik) (10) International Publication Number
28 April 2011 (28.04.2011) WO 2011/049936 A2

(51) International Patent Classification: Not classified Chicago, IL 60657 (US). EDWARDS, Nathan [US/US];
Rd., Hilton Head Isl 29928 .
(21) International Application Number: 29 Governors Rd., Hilton Head Island, SC 29928 (US)

PCT/US2010/053172 (74) Agent: WILLIAMS, Daniel, P.; Mcdonnell Boehnen
Hulbert & Berghoff LLP, 300 South Wacker Drive, Suite

(22) International Filing Date: .
19 October 2010 (19.10.2010) 3100, Chicago, IL 60606 (US).

(81) Designated States (unless otherwise indicated, for every

(25) Filing Language: English kind of national protection available): AE, AG, AL, AM,
(26) Publication Language: English AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
(30) Priority Data: DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
61/253,324 20 October 2009 (20.10.2009) UsS HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
61/253,315 20 October 2009 (20.10.2009) UsS KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
61/263,300 20 November 2009 (20.11.2009) UsS ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
61/312,003 9 March 2010 (09.03.2010) UsS NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
61/318,685 29 March 2010 (29.03.2010) UsS SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
61/320,061 1 ApI’il 2010 (01.04.2010) UsS TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
61/393,313 14 October 2010 (14.10.2010) us
12/905,709 15 October 2010 (15.10.2010) US (84) Designated States (unless otherwise indicated, for every
12/905,726 15 October 2010 (15.10.2010) Us kind of regional protection available). ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG,
(71) Applicant (for all designated States except US): TRAD- ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
ING TECHNOLOGIES INTERNATIONAL, INC. TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
[US/US], 222 South Riverside Plaza, Suite 1100, Chica- EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
go, IL. 60606 (US). LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SL SK,
SM, TR), OAPI (BF, BJ, CF, CG, CL CM, GA, GN, GQ,

(72) Inventors; and
(75) Inventors/Applicants (for US only): LANE, Richard GW, ML, MR, NE, SN, TD, TG).
[US/US]; 1130 W. Armitage Ave., Unit 3, Chicago, IL Published:
60614 (US). UNETICH, Michael [US/US]; 2657 N.))))
Geneva Terrace, Chicago, IL 60614 (US). LIDOR, — without international search report and to be republished
Daniel [US/US], 3120 N. Southport Ave., Apt. 2F, upon receipt of that report (Rule 48.2(g))

(54) Title: USER-DEFINED ALGORITHM ELECTRONIC TRADING

(57) Abstract: Certain embodiments reduce the risks of traditionally programmed algorithms such as syntax errors, unclear logic,
and the need for a non-trader programmer to develop the algorithm as specified by a trader by reducing or eliminating the writing
of programming code by a user. Certain embodiments provide building block buttons and an algorithm area to define an algo-
rithm. Certain embodiments provide live evaluation of an expression as the algorithm is being detined. Certain embodiments pro-
vide a design canvas area and blocks for designing an algorithm. Certain embodiments provide live feedback for blocks as the al-
gorithm is being designed. Certain embodiments provide for initiating placement of an order to be managed by a selected user-de-
fined trading algorithm from a value axis and for displaying working orders being managed by ditferent user-detfined trading algo-
rithms on the value axis. Certain embodiments provide a ranking tool.

WO 2011/049936 PCT/US2010/053172

CROSS REFERENCE TO RELATED APPLICATIONS

[0001] This application claims the benefit of U.S. Provisional Application No. 61/253,315,
entitled “Trading Application with Futures Ranking and Order Tool, Price Level Indicator
Tool, and Market Change Audio Indicator Tool”, filed October 20, 2009; U.S. Provisional
Application No. 61/253,324, entitled “System and Method for Building User-Defined
Algorithms for Electronic Trading Exchange”, filed October 20, 2009; U.S. Provisional
Application No. 61/263,300, entitled “System and Method for Building User-Defined
Algorithms for Electronic Trading Exchange”, filed November 20, 2009; U.S. Provisional
Application No. 61/312,003, entitled “System and Method for Launching Automated
Trading Applications”, filed March 9, 2010; U.S. Provisional Application No. 61/318,685,
entitled “System and Method for Virtualizing User-Defined Algorithms for Electronic
Trading Exchange”, filed March 29, 2010; U.S. Provisional Application No. 61/320,061,
entitled “System and Method for Automating Feedback-Based User-Defined Algorithms for
Electronic Trading Exchange”, filed April 1, 2010; U.S. Provisional Application No.
61/393,313, entitled “User-Defined Algorithm Electronic Trading”, filed October 14, 2010;
U.S. Non-Provisional Application No. 12/905,709, entitled “User-Defined Algorithm
Electronic Trading”, filed October 15, 2010; and U.S. Non-Provisional Application No.
12/905,726, entitled “Virtualizing for User-Defined Algorithm Electronic Trading”, filed
October 15, 2010. Each of these applications is herein incorporated by reference in its

entirety.

WO 2011/049936 PCT/US2010/053172

BACKGROUND

[0002] The presently described technology is directed towards electronic trading systems.
More particularly, certain embodiments are directed towards user-defined algorithm

electronic trading.

[0003] An clectronic trading system generally includes a client device in communication
with an electronic exchange that may serve as a host for the client device. Typically, the
electronic trading system provides for electronically matching orders to buy and sell
tradeable objects to be traded. A tradeable object is an item that may be traded. Stocks,
options, futures contracts, securities, and commodities are a few examples of tradeable

objects.

[0004] The electronic exchange transmits market data to the client device. The market data
may include, for example, price data, market depth data, last traded quantity data, data
related to a market for the tradeable object, and/or combinations thereof. The client device

receives market data from the electronic exchange.

[0005] In some electronic trading systems, a client device receives and processes market
data without displaying the market data on a display device. For example, a “black-box”
algorithmic trading system may run automatically and without displaying market data.
However, in other electronic trading systems, the client device displays processed market
data on a display device. The client device may include software that creates a trading
screen. In general, a trading screen enables a user to participate in an electronic trading
session. For example, a trading screen may enable a user to view market data, submit a
trade order to the electronic exchange, obtain a market quote, monitor a position, and/or

combinations thereof.

[0006] In some electronic trading systems, the client device sends trade orders to the
clectronic exchange. However, in other electronic trading systems, other devices, such as
server side devices, are responsible for sending the one or more trade orders to the
electronic exchange. Upon receiving a trade order, the electronic exchange enters the trade
order into an exchange order book and attempts to match quantity of the trade order with
quantity of one or more contra-side trade orders. By way of example, a sell order is contra-

side to a buy order with the same price. Similarly, a buy order is contra-side to a sell order

WO 2011/049936 PCT/US2010/053172

with the same price. Unmatched quantity of a trade order is held in the exchange order
book until quantity of a trade order is matched by the electronic exchange. Unmatched
quantity of a trade order may also be removed from the order book when a trade order is
cancelled, either by the client device or electronic exchange. Upon matching quantity of the
trade order, the electronic exchange may send a confirmation to the client device that the

quantity of the trade order was matched.

[0007] Electronic exchanges have made it possible for an increasing number of participants
to be active in a market at any given time. The increase in the number of potential market
participants has advantageously led to, among other things, a more competitive market and
greater liquidity. In a competitive environment, like electronic trading, where every second
or a fraction of second counts in intercepting trading opportunities, it is desirable to offer
tools that help a participant effectively compete in the marketplace or even give an edge

over others.

[0008] Some current systems include algorithmic trading systems which may allow for
quicker evaluation and reaction to changes in market information. However, such systems
typically require skilled programmers to develop the trading algorithms, take days (or even
months) to test and debug, and the development and debugging process must be repeated
when a trader decides on a different approach or desires a modification to the algorithm’s

logic.

WO 2011/049936 PCT/US2010/053172

SUMMARY

[0009] The embodiments described herein include, but are not limited to, various devices,

systems, methods, and computer program products.

[0010] Certain embodiments provide building block buttons and an algorithm area to define
an algorithm. Certain embodiments allow for adjusting both the parameters and the logic of
an algorithm rapidly, even during a single trading session. Certain embodiments provide
live evaluation of an expression as the algorithm is being defined. Certain embodiments
reduce the risks of traditionally programmed algorithms such as syntax errors, unclear logic,
and the need for a non-trader programmer to develop the algorithm as specified by a trader
by reducing or eliminating the writing of programming code by a user. Certain
embodiments provide a single application for building, debugging, and simulating (with real
market data) an algorithm all at the same time. In addition, the single application may also

provide for initiating the placement of orders using the algorithm.

[0011] Certain embodiments provide a design canvas area and blocks for designing an
algorithm. Certain embodiments provide blocks with complex functionality for use in an
algorithm. Certain embodiments provide for grouping blocks placed in the design canvas
area. Certain embodiments provide for virtualized group blocks enabling dynamic
instantiation of portions of an algorithm to handle particular discrete events. Certain
embodiments allow for adjusting both the parameters and the logic of an algorithm rapidly,
even during a single trading session. Certain embodiments provide live feedback for blocks
as the algorithm is being designed. Certain embodiments provide safety features to reduce
potential errors when an algorithm is designed. Certain embodiments provide for operation
of some or all portions of an algorithm when a connection between a client device and an
algorithm server is broken. Certain embodiments reduce the risks of traditionally
programmed algorithms such as syntax errors, unclear logic, and the need for a non-trader
programmer to develop the algorithm as specified by a trader by reducing or eliminating the
writing of programming code by a user. Certain embodiments provide a single application
for building, debugging, and simulating (with real market data) an algorithm all at the same
time. In addition, the single application may also provide for initiating the placement of

orders using the algorithm.

WO 2011/049936 PCT/US2010/053172

[0012] Certain embodiments provide for initiating placement of an order to be managed by
an algorithm selected as an order type. Certain embodiments provide for initiating
placement of an order to be managed by a selected user-defined trading algorithm from a
value axis. Certain embodiments provide for changing a variable for an algorithm while the
algorithm is managing an order. Certain embodiments provide for manually modifying an
order being managed by an algorithm. Certain embodiments provide for assigning to an
unmanaged order an algorithm to manage the order. Certain embodiments provide for
displaying working orders being managed by different user-defined trading algorithms on a

value axis.

[0013] Certain embodiments provide a ranking tool. Certain embodiments provide for
display of a ranking of selected tradeable objects to be used for order placement. Certain
embodiments provide for selecting an execution strategy for initiating order(s) based on the

ranking.

[0014] Other embodiments are described below. In addition, modifications may be made to

the described embodiments without departing from the spirit or scope of the inventions.

WO 2011/049936 PCT/US2010/053172

BRIEF DESCRIPTION OF THE DRAWINGS

[0015] Example embodiments are described herein with reference to the following

drawings.

[0016] FIG. 1 illustrates a block diagram of an electronic trading system in which certain

embodiments may be employed.
[0017] FIG. 2A illustrates a trading interface according to certain embodiments.

[0018] FIG. 2B illustrates an instrument selection interface according to certain

embodiments.

[0019] FIGs. 2C-21 illustrate building a definition for an algorithm in a trading interface

according to certain embodiments.
[0020] FIG. 2] illustrates a trading interface according to certain embodiments.

[0021] FIG. 3A illustrates a block diagram of an electronic trading system in which certain

embodiments may be employed.
[0022] FIG. 3B illustrates a trading interface according to certain embodiments.

[0023] FIG. 3C illustrates examples of blocks that may be used in the trading interface

according to certain embodiments.

[0024] FIGs. 3D-1 through 3D-7 illustrate example programming code generated according

to certain embodiments.

[0025] FIGs. 3E-R illustrate trading interfaces according to certain embodiments.
[0026] FIGs. 4A-4F illustrate trading interfaces according to certain embodiments.
[0027] FIG. 5 illustrates a ranking tool according to certain embodiments.

[0028] FIG. 6 illustrates a block diagram of a computing device according to certain

embodiments.

[0029] The foregoing summary, as well as the following detailed description, will be better

understood when read in conjunction with the drawings which show certain embodiments.

6

WO 2011/049936 PCT/US2010/053172

The drawings are for the purpose of illustrating certain embodiments, but it should be
understood that the present inventions are not limited to the arrangements and

instrumentality shown in the drawings.

WO 2011/049936 PCT/US2010/053172

DETAILED DESCRIPTION

I. Example Electronic Trading System

[0030] FIG. 1 illustrates a block diagram of an electronic trading system 100 in which
certain embodiments may be employed. The system 100 includes a client device 110, a
gateway 120, and an electronic exchange 130. The client device 110 is in communication

with the gateway 120. The gateway 120 is in communication with the exchange 130.

[0031] As used herein, the phrase “in communication with” may include in direct

communication and indirect communication through one or more intermediary components.

[0032] In operation, the client device 110 may send orders to buy or sell tradeable objects at
the exchange 130. For example, a user may utilize the client device 110 to send the orders.
The orders are sent through the gateway 120 to the exchange 130. In addition, market data
is sent from the exchange 130 through the gateway 120 to the client device 110. The user
may also utilize the client device 110 to monitor this market data and base a decision to

send an order for a tradeable object on the market data.

[0033] A tradeable object is anything which can be traded with a quantity and/or a price.
For example, financial products such as stocks, options, bonds, futures, currency, warrants,
funds derivatives, securities, commodities, traded events, goods, and collections and/or
combinations of these may be tradeable objects. A tradeable object may be “real” or
“synthetic.” A real tradeable object includes products that are listed by an exchange. A
synthetic tradeable object includes products that are defined by the user and are not listed by
an exchange. For example, a synthetic tradeable object may include a combination of real
(or other synthetic) products such as a synthetic spread created by a trader utilizing a client

device 110.

[0034] The client device 110 may include one or more electronic computing platforms such
as a hand-held device, laptop, desktop computer, workstation with a single or multi-core
processor, server with multiple processors, and/or cluster of computers, for example. For
example, while logically represented as a single device, client device 110 may include a
trading terminal in communication with a server, where collectively the trading terminal and

the server are the client device 110. The trading terminal may provide a trading screen to a

WO 2011/049936 PCT/US2010/053172

user and may communicate commands to the server for further processing of the user’s

inputs through the trading screen, such as placing orders.

[0035] The client device 110 is generally owned, operated, controlled, programmed by,
configured by, or otherwise used by a user. As used herein, the phrase “user” may include,
but is not limited to, a human (for example, a trader) or an electronic trading device (for
example, including a processor and memory or an algorithmic trading system). One or
more users may be involved in the ownership, operation, control, programming,

configuration, or other use, for example.

[0036] The client device 110 may include one or more trading applications. The trading
application(s) may, for example, process market data by arranging and displaying the
market data in trading and charting windows. The market data may be received from
exchange 130, for example. As another example, the market data may be received from a
simulation environment that provides historical data and/or simulates an exchange but does
not effectuate real-world trades. This processing may be based on user preferences, for
example. The trading application(s) may include an automated trading tool such as an
automated spread trading tool, for example. The one or more trading applications may be
distributed across one or more of the computing devices of the client device 110. For
example, certain components of a trading application may be executed on a trading
workstation and other components of the trading application may be executed on a server in

communication with the workstation.

[0037] The client device 110 may include an electronic trading workstation, a portable
trading device, an algorithmic trading system such as a “black box” or “grey box” system,
an embedded trading system, and/or an automated trading tool, for example. For example,
the client device 110 may be a computing system running a copy of X TRADER®), an
electronic trading platform provided by Trading Technologies International, Inc. of
Chicago, Illinois. As another example, the client device 110 may be a computing device
running an automated trading tool such as Autospreader® and/or Autotrader™, also

provided by Trading Technologies International, Inc.

[0038] Trading applications may be stored in a computer readable medium of the client
device 110. In certain embodiments, certain components of a trading application may be

stored on a trading workstation and other components of the trading application may be

WO 2011/049936 PCT/US2010/053172

stored on a server in communication with the workstation. In certain embodiments, one or
more components of a trading application may be loaded into the computer readable
medium of the client device 110 from another computer readable medium. For example,
the trading application (or updates to the trading application) may be stored by a
manufacturer, developer, or publisher on one or more CDs or DVDs, which are then
provided to someone responsible for loading the application onto the client device 110 or to
a server from which the client device 110 retrieves the trading application. As another
example, the client device 110 may receive the trading application (or updates to the trading
application) from a server, for example, via the Internet or an internal network. The client
device 110 may receive the trading application or updates when requested by the client
device 110 (“pull distribution”) and/or un-requested by the client device 110 (“push

distribution”).

[0039] The client device 110 is adapted to send orders to buy or sell a tradeable object. The
client device 110 may also be adapted to cancel orders, change orders, and/or query an
exchange, for example. As another example, the client device 110 may be adapted to send
orders to a simulated exchange in a simulation environment that does not effectuate real-

world trades.

[0040] The orders sent by the client device 110 may be sent at the request of a user or
automatically, for example. For example, a trader may utilize an electronic trading
workstation to place an order for a particular tradeable object, manually providing various
parameters for the order such as an order price and/or quantity. As another example, an
automated trading tool may calculate one or more parameters for an order and automatically
send the order. In some instances, an automated trading tool may prepare the order to be

sent but not actually send it without confirmation from the user.

[0041] In certain embodiments, the client device 110 includes a user interface. The user
interface may include one or more display devices for presenting a text-based or graphical
interface of a trading application to a user, for example. For example, the display devices
may include computer monitors, hand-held device displays, projectors, and/or televisions.
The user interface may be used by the user to specify or review parameters for an order
using a trading application. The user interface may include one or more input devices for

receiving input from a user, for example. For example, the input devices may include a

10

WO 2011/049936 PCT/US2010/053172

keyboard, trackball, two or three-button mouse, and/or touch screen. The user interface
may include other devices for interacting with a user. For example, information may be

aurally provided to a user through a speaker and/or received through a microphone.

[0042] In certain embodiments, a trading application may include one or more trading
screens to enable a trader to interact with one or more markets. Trading screens may enable
traders to obtain and view market information, set order entry parameters, enter and cancel
orders, and/or monitor positions while implementing various trading strategies, for example.
For example, a trading application may receive information (such as bid prices, bid
quantities, ask prices, ask quantities, prices and quantities for past sales, and/or other market
related information) from exchange 130 which, in turn, may be displayed with a user
interface of client device 110. Based on the received information, the trading screen may
display a range of price levels and corresponding bid and ask quantities for the price levels
in regard to tradeable objects. In order to provide the trader with pertinent trading
information, the trading screen may display a range of prices (and the corresponding bid and
ask quantities) around the inside market. The information may be continuously or regularly
provided to the trading application, which allows the trading application to update the
trading screen with current market information. A trader may use the trading screen to place
buy and sell orders for tradeable objects or to otherwise trade the tradeable objects based on

the displayed information, for example.

[0043] Trading screens may display one or more trading tools. Trading tools are electronic
tools that allow, assist with, and/or facilitate electronic trading. Exemplary trading tools
include, but are not be limited to, charts, trading ladders, order entry tools, automated
trading tools, automated spreading tools, risk management tools, order parameter tools,
order entry systems, market grids, fill windows, and market order windows, combinations

thereof, other electronic tools used for trading, preparing to trade, or managing trades.

[0044] In certain embodiments, the client device 110 includes an algorithmic trading
application. For example, the client device 110 may include a black box or grey box trading
application. As another example, the client device 110 may include a trading application
which algorithmically processes market data but provides a user interface to allow a user to
manually place orders based on the algorithmic processing or to manipulate orders that were

placed automatically. An algorithmic trading application is a trading application which

11

WO 2011/049936 PCT/US2010/053172

includes an automatically processed algorithm to perform certain actions. That is, the
trading application includes an automated series of instructions to perform defined action(s).
The actions may include processing market data in a particular way, placing an order,
modifying an existing order, deleting an order, refraining from placing an order, selecting
which tradeable object(s) to act on, determining a price to place or modify an order at,
determining a quantity to place an order at or modify an order to be, determining whether an

order should be to buy or sell, and delaying action for a period of time, for example.

[0045] As used herein, an algorithm (also referred to as a trading algorithm) is specified by
a definition which includes logic expressions and parameters that describe the algorithm to
be used in trading. Logic expressions specify the relationship between parameters and may
generate more parameters. Parameters may include, for example, inputs into the logic
expressions of the algorithm. The definition of an algorithm may be, at least in part,
specified by the algorithmic trading application. For example, an algorithmic trading
application may allow a user to only specify parameters to be used by pre-defined logic
expressions. As another example, an algorithmic trading application may allow a user to
specify some or all of the logic expressions and some or all of the parameters. A trading
algorithm where the logic expressions are specified by a user is a user-defined trading

algorithm.

[0046] In certain embodiments, the orders from the client device 110 are sent to the
exchange 130 through the gateway 120. The client device 110 may communicate with the
gateway 120 using a local area network, a wide area network, a virtual private network, a

T1 line, a T3 line, an ISDN line, a point-of-presence, and/or the Internet, for example.

[0047] The gateway 120 is adapted to communicate with the client device 110 and the
exchange 130. The gateway 120 facilitates communication between the client device 110
and the exchange 130. For example, the gateway 120 may receive orders from the client
device 110 and transmit the orders to the exchange 130. As another example, the gateway
120 may receive market data from the exchange 130 and transmit the market data to the

client device 110.

[0048] In certain embodiments, the gateway 120 performs processing on data
communicated between the client device 110 and the exchange 130. For example, the

gateway 120 may process an order received from the client device 110 into a data format

12

WO 2011/049936 PCT/US2010/053172

acceptable by the exchange 130. Similarly, the gateway 120 may transform market data in
an exchange-specific format received from the exchange 130 into a format understood by
the client device 110. The processing of the gateway 120 may also include tracking orders
from the client device 110 and updating the status of the order based on fill confirmations
received from the exchange 130, for example. As another example, the gateway 120 may

coalesce market data from the exchange 130 and provide it to the client device 120.

[0049] In certain embodiments, the gateway 120 provides services other than processing
data communicated between the client device 110 and the exchange 130. For example, the

gateway 120 may provide risk processing.

[0050] The gateway 120 may include one or more electronic computing platforms such as a
hand-held device, laptop, desktop computer, workstation with a single or multi-core

processor, server with multiple processors, and/or cluster of computers, for example.

[0051] The gateway 120 may include one or more gateway applications. The gateway
application(s) may, for example, handle order processing and market data processing. This

processing may be based on user preferences, for example.

[0052] In certain embodiments, the gateway 120 communicates with the exchange 130
using a local area network, a wide arca network, a virtual private network, a T1 line, a T3

line, an ISDN line, a point-of-presence, and/or the Internet, for example.

[0053] In general, the exchange 130 may be owned, operated, controlled, or used by an
exchange entity. Exemplary exchange entities include the CME Group, the London
International Financial Futures and Options Exchange (“LIFFE”), the
IntercontinentalExchange (“ICE”), and Eurex. The exchange 130 may be an electronic
matching system, such as a computer, server, or other computing device, that is adapted to
allow tradeable objects, for example, offered for trading by the exchange, to be bought and
sold.

[0054] The exchange 130 is adapted to match orders to buy and sell tradeable objects. The
tradeable objects may be listed for trading by the exchange 130. The orders may include
orders received from the client device 110, for example. Orders may be received from the
client device 110 through the gateway 120, for example. In addition, the orders may be

received from other devices in communication with the exchange 130. That is, typically the

13

WO 2011/049936 PCT/US2010/053172

exchange 130 will be in communication with a variety of other client devices (which may

be similar to client device 110) that also provide orders to be matched.

[0055] The exchange 130 is adapted to provide market data. The market data may be
provided to the client device 110, for example. The market data may be provided to the
client device 110 through the gateway 120, for example. The market data may include data
that represents the inside market, for example. The inside market is the lowest sell price
(also referred to as the “best ask™) and the highest buy price (also referred to as the “best
bid”) at a particular point in time. The market data may also include market depth. Market
depth refers to the quantities available at the inside market and may also refer to quantities
available at other prices away from the inside market. Thus, the inside market may be
considered the first level of market depth. One tick away from the inside market may be
considered the second level of market depth, for example. In certain embodiments, market
depth is provided for all price levels. In certain embodiments, market depth is provided for
less than all price levels. For example, market depth may be provided only for the first five
price levels on either side of the inside market. The market data may also include
information such as the last traded price (LTP), the last traded quantity (LTQ), and order fill

information.

[0056] In certain embodiments, the system 100 includes more than one client device 110.
For example, multiple client devices similar to the client device 110, discussed above, may

be in communication with the gateway 120 to send orders to the exchange 130.

[0057] In certain embodiments, the system 100 includes more than one gateway 120. For
example, multiple gateways similar to the gateway 120, discussed above, may be in
communication with the client device 110 and the exchange 130. Such an arrangement may

be used to provide redundancy should one gateway 120 fail, for example.

[0058] In certain embodiments, the system 100 includes more than one exchange 130. For
example, the gateway 120 may be in communication with multiple exchanges similar to the
exchange 130, discussed above. Such an arrangement may allow the client device 110 to

trade at more than one exchange through the gateway 120, for example.

[0059] In certain embodiments, the system 100 includes more than one exchange 130 and

more than one gateway 120. For example, multiple gateways similar to the gateway 120,

14

WO 2011/049936 PCT/US2010/053172

discussed above, may be in communication with multiple exchanges similar to the exchange
130, discussed above. Each gateway may be in communication with one or more different
exchanges, for example. Such an arrangement may allow one or more client devices 110 to
trade at more than one exchange (and/or provide redundant connections to multiple

exchanges), for example.

[0060] In certain embodiments, the client device 110 includes one or more computing
devices or processing components. In other words, the functionality of the client device 110
may be performed by more than one computing device. For example, one computing
device may generate orders to be sent to the exchange 130 while another computing device
may provide a graphical user interface to a trader. In certain embodiments, the gateway 120
includes one or more computing devices or processing components. In other words, the
functionality of the gateway 120 may be performed by more than one computing device. In
certain embodiments, the exchange 130 includes one or more computing devices or
processing components. In other words, the functionality of the exchange 130 may be

performed by more than one computing device.

[0061] In certain embodiments, the gateway 120 is part of the client device 110. For
example, the components of the gateway 120 may be part of the same computing platform
as the client device 110. As another example, the functionality of the gateway 120 may be
performed by components of the client device 110. In certain embodiments, the gateway
120 is not present. Such an arrangement may occur when the client device 110 does not
need to utilize the gateway 120 to communicate with the exchange 130, for example. For
example, if the client device 110 has been adapted to communicate directly with the

exchange 130.

[0062] In certain embodiments, the gateway 120 is physically located at the same site as the
client device 110. In certain embodiments, the gateway 120 is physically located at the
same site as the exchange 130. In certain embodiments, the client device 110 is physically
located at the same site as the exchange 130. In certain embodiments, the gateway 120 is

physically located at a site separate from both the client device 110 and the exchange 130.

[0063] While not shown for the sake of clarity, in certain embodiments, the system 100 may

include other devices that are specific to the communications architecture such as

15

WO 2011/049936 PCT/US2010/053172

middleware, firewalls, hubs, switches, routers, exchange-specific communication

equipment, modems, security managers, and/or encryption/decryption devices.

[0064] The components, elements, and/or functionality of the system 100 discussed above
may be implemented alone or in combination in various forms in hardware, firmware,
and/or as a set of instructions in software, for example. Certain embodiments may be
provided as a set of instructions residing on a computer-readable medium, such as a
memory, hard disk, CD-ROM, DVD, EPROM, and/or file server, for execution on a general

purpose computer or other processing device.

II. Algorithmic Order Builder

[0065] Certain embodiments provide building block buttons and an algorithm area to define
an algorithm. Certain embodiments allow for adjusting both the parameters and the logic of
an algorithm rapidly, even during a single trading session. Certain embodiments provide
live evaluation of an expression as the algorithm is being defined. Certain embodiments
reduce the risks of traditionally programmed algorithms such as syntax errors, unclear logic,
and the need for a non-trader programmer to develop the algorithm as specified by a trader
by reducing or eliminating the writing of programming code by a user. Certain
embodiments provide a single application for building, debugging, and simulating (with real
market data) an algorithm all at the same time. In addition, the single application may also

provide for initiating the placement of orders using the algorithm.

[0066] FIG. 2A illustrates a trading interface 200 according to certain embodiments. The
trading interface 200 is a trading interface for an algorithmic trading application referred to
as the Algorithmic Order Builder (“AOB”). The AOB allows a trader to create an algorithm
for an order to be placed. However, it should be understood that elements of the illustrated

trading interface 200 may be incorporated into other trading interfaces.

[0067] The trading interface 200 includes an instrument selection button 201, a market grid
202, a simulated indicative order entry area 203, an auto hedge option 204, a scratch
quantity 205, a variable area 206, an algorithm area 210, and building block buttons 215.
The algorithm area 210 includes a price area 211, a quantity area 212, and a conditional area

213.

16

WO 2011/049936 PCT/US2010/053172

[0068] In operation, an algorithm is defined in the algorithm area 210 by utilizing one or
more building block buttons 215 to build an expression in the price area 211, the quantity
arca 212, and/or the conditional arca 213. Default values for user-defined variables in the
algorithm may be specified using the variable area 206. Once the algorithm has been
defined the simulated indicative order entry areca 203 may be used to indicate how the logic
of the expression will behave. An order to be managed according to the defined algorithm

may then be initiated using a trading interface.

[0069] The instrument selection button 201 provides for selection of an instrument (that is,
a tradeable object) to which an order to be placed relates. As illustrated in FIG. 2A, the
instrument selection button 201 has already been used to select the GEH1-GEM1 calendar
spread, as indicated by the name of the selected instrument being displayed in the
instrument selection button 201. If an instrument has not yet been selected, the instrument
selection button 201 may display “Select Instrument” or provide some other indication that

an instrument has not yet been selected.

[0070] Upon activation of the instrument selection button 201 (for example by selecting it
with a pointer or touching it on a touch screen), an instrument selection interface may be

displayed to allow for selection of the instrument.

[0071] FIG. 2B illustrates an instrument selection interface 220 according to certain
embodiments. The instrument selection interface 220 displays a list of tradeable products
and allows a user to specify a particular tradeable object to be traded by following an
instrument tree. The instrument tree allows the user to pick the instrument, instrument type
(for example, spreads or futures), and the particular contract to be indicated, for example.

For example, as illustrated the GEH1-GEMI1 calendar spread has been selected.

[0072] Referring back to FIG. 2A, the market grid 202 displays market information for a
tradeable object. The tradeable objet may be the instrument selected with the instrument
selection button 201, for example. As another example, the tradeable object may be another
tradeable object selected by a user. The market grid 202 may display bid and/or ask price,
bid and/or ask quantity, last traded price and/or quantity information for the tradeable
object, for example. For example, the market grid 202 may display the inside market prices

and quantities for the selected instrument.

17

WO 2011/049936 PCT/US2010/053172

[0073] The simulated indicative order entry area 203 provides for generating feedback for
evaluating operational aspects of an algorithm defined in the algorithm area 210. A user
may simulate placement of a hypothetical order to buy or sell the selected instrument with
the simulated indicative order entry area 203 to indicate how the logic of the expression will
behave. A price and/or quantity for the hypothetical order may also be specified with the
simulated indicative order entry area 203. Additionally, in certain embodiments, the
simulated indicative order entry area 203 may be configured (for example, by selecting a
checkbox) to initiate placement of an actual order to buy or sell the selected instrument,

where the order is managed according to the defined algorithm.

[0074] The auto hedge option 204 provides for specifying that a counter order should be
placed when an initiated order is filled. The counter order is an order to sell when the filled
order was an order to buy and the counter order is an order to buy when the filled order was
an order to sell. The quantity of the counter order may be the same as the filled quantity, for
example. The counter order is initially placed at a profitable exit price, such as one
tradeable increment (as defined by the exchange) from the price of the filled order, for
example. For example, if the filled order bought a quantity of 10 at a price of 100, the
counter order may be to sell a quantity of 10 at a price of 101. As another example, if the
filled order sold a quantity of 5 at a price of 100, the counter order may be to buy a quantity
of 5 at a price of 99.

[0075] The scratch quantity 205 is used with the auto hedge option 204. When the quantity
in the market at the price level of the counter order drops below the specified scratch
quantity 205, then the price level of the counter order is changed to be the price of the
corresponding filled order. In this case, the filled order is said to be “scratched” and there is
no profit on the trade. In certain embodiments, the counter order may be placed at a price to

close the position regardless of the profit or loss.

[0076] The variable area 206 provides for specifying and modifying user-defined variables
used in the algorithm area 210. The variable area 206 displays each variable name and its
value. The variable area may be selected to change a variable name and/or its value.

Variables may also be referred to as parameters of the algorithm.

18

WO 2011/049936 PCT/US2010/053172

[0077] The algorithm area 210 provides for defining an algorithm to manage an order. The
algorithm area 210 includes the price area 211, the quantity area 212, and the conditional

area 213. Each area corresponds to a different aspect of the algorithm.

[0078] The building block buttons 215 are used to build expressions in the algorithm area
210 to define the algorithm. The expressions are evaluated to determine a value for each
arca of the algorithm arca 210. An expression includes one or more elements specified with
the building block buttons 215. The use of the building block buttons 215 is discussed in

more detail below.

[0079] Once the algorithm has been defined in the algorithm area 210, an order to buy or
sell may then be initiated with a trading interface. For example, in addition to providing for
initiating a hypothetical order, in certain embodiments, the simulated indicative order entry
area 203 may also provide for initiating a real order. As another example, trading interfaces
similar to those discussed below may be used to initiate an order. The initiated order is then

managed according to the defined algorithm.

[0080] The price area 211 is evaluated to determine the price at which the order being
managed should be placed. The price area 211 evaluates to a number representing the price.
If the price area 211 is blank, then the price specified in the simulated indicative order entry
area 203 is used. Ifthe price area 211 includes an expression, a price specified in the
simulated indicative order entry area 203 may be ignored. The price area 211 may evaluate
to a different value at different times, such as when market data changes. If so, the order
being managed is changed to work at the new price. This may be achieved by deleting the
order and placing a new order at the new price or by using a cancel/replace command, for

example.

[0081] The quantity area 212 is evaluated to determine the quantity for which the order
being managed should be placed. The quantity area 212 evaluates to a number representing
the quantity. If the quantity area 212 is blank, then the quantity specified in the simulated
indicative order entry area 203 is used. If the quantity area 212 includes an expression, a
quantity specified in the simulated indicative order entry area 203 may be ignored. The
quantity area 212 may evaluate to a different value at different times, such as when market
data changes. Ifso, the order being managed is changed to work at the new quantity. This

may be achieved by deleting the order and placing a new order with the new quantity or by

19

WO 2011/049936 PCT/US2010/053172

using a change order quantity command, for example. If the quantity area 212 evaluates to
0, the order being managed may be removed from the market until the quantity area 212
evaluates to a non-zero value. This may be similar to the conditional area 213 evaluating to

“false,” as discussed below.

[0082] In certain embodiments, the algorithm area 210 does not include the quantity area
212. Instead, the quantity may be fixed or predefined. For example, a trading interface for
managing hedge orders (for example, orders that are automatically placed when another
order for a tradeable object of a trading strategy is filled; this may also be referred to as a
hedge manager interface) may use a quantity that is based on the filled quantity of the other
order and thus is predetermined from the perspective of the algorithm. Thus, an algorithm
area in such a trading interface, which may allow an algorithm to be used for working hedge
orders, may not include a quantity area 212 because the quantity value does not need to be

specified since it is predetermined at the time the algorithm is utilized.

[0083] The conditional area 213 is evaluated to determine whether the algorithm should be
active. The conditional area 213 evaluates to a Boolean value. When the conditional area
213 evaluates to “true,” the algorithm is active. When the conditional area 213 evaluates to
“false,” the algorithm is inactive. If the conditional area 213 is blank, the algorithm is
always active. The conditional area 213 may evaluate to a different value at different times,
such as when market data changes. When the algorithm is active, the order being managed
is entered into the market and worked according to the determined price and quantity, as
discussed above. When the algorithm is inactive, the order being managed is removed from

the market. This may be achieved by deleting the order, for example.

[0084] In certain embodiments, the algorithm area 210 does not include the conditional area
213. Instead, the algorithm may simply always be “active” once the order is initiated. For
example, in a hedge manager interface, because the hedge order may be desired to be filled

as quickly as possible, the algorithm managing the hedge order may always be active.

[0085] If the expressions in the price area 211, the quantity area 212, and/or the conditional
area 213 do not evaluate to the proper type of value (a number for the price area 211 and the
quantity area 212 and a Boolean value for the conditional area 213), the expression is
invalid. To indicate that the expression is invalid, the background of the particular area may

be changed from green (indicating a valid expression) to red (indicating an invalid

20

WO 2011/049936 PCT/US2010/053172

expression). When an expression in one of the arcas of the algorithm area 210 is invalid, an

order cannot be placed.

[0086] In certain embodiments, other indicators besides (or in addition to) background color
may be used to indicate that the expression in an area of the algorithm area 210 is invalid.
For example, a different background pattern, a different border color or style, a text message

such as “Ready” or “Invalid,” and/or an icon of an exclamation point may be used.

[0087] If the order being managed according to the algorithm is filled, a counter order may
be automatically placed based on the auto hedge option 204 and the scratch quantity 205, as

discussed above.

[0088] As discussed above, the building block buttons 215 are used to build expressions in
the algorithm area 210 to define an algorithm. The building block buttons 215 may also be
referred to as icons, movable icons, icon buttons, movable buttons, or user interface
clements, for example. The expressions include elements (logic expressions and
parameters) and are evaluated to determine a value for each area of the algorithm area 210.
A building block button 215 may be selected and placed in a particular area of the algorithm
arca 210 to build an expression. For example, a user may drag and drop one or more
building block buttons 215 into one or more of the areas of the algorithm area 210, such as
the price area 211, the quantity area 212, and/or the conditional area 213. As another
example, a user may select a building block button 215 by, for example, clicking on it and
then it may be placed in the most recently used algorithm area 210. Placing a building
block button 215 in the algorithm area 210 places an element in the expression being built
in the algorithm area 210. As discussed below, certain elements in an expression may

include additional elements that act as sub-expressions, for example.

[0089] Types of building block buttons 215 include: instruments, constants, arithmetic
operators, logical operators, precedence operators, if-then-else constructs, and variables.
Instrument building block buttons specify attributes of the selected instrument, such as bid
price and ask quantity, for example. Constant value building block buttons specify numeric
and Boolean constant values, for example. Arithmetic operator building block buttons
include arithmetic operations such as addition (“+), subtraction (“-), multiplication (“*”),
and division (/7). In addition, arithmetic operator building block buttons may include

order-side-specific arithmetic operations such as “+/-”, which is addition for buy orders and

21

WO 2011/049936 PCT/US2010/053172

subtraction for sell orders (or addition for sell orders and subtraction for buy orders, as
specified by auser). Logic operator building block buttons include logic operations such as
AND, OR, and NOT and comparisons such as greater than (“>"), less than (“<”), greater

ce__2Y

than or equal to (“>="), less than or equal to (“<="), and equal to (“="), for example. In
addition, logic operator building block buttons may include order-side-specific logic
operations such as “>/<”, which is greater than for buy orders and less than for sell orders
(or greater than for sell orders and less than for buy orders, as specified by a user).
Precedence operator building block buttons include parentheses (“(“ and ”)”). In certain
embodiments, the precedence operator building block buttons may be used to form sub-
expressions comprised of the elements between the parentheses. The if-then-else construct
building block button allows for specifying conditional values, for example. The if-then-
else construct building block button provides portions where sub-expressions may be built
using one or more elements. Variable building block buttons specify a user-defined

variable that may have its value changed using the variable area 206, as discussed above, for

example.

[0090] FIGs. 2C-21 illustrate building a definition for an algorithm in a trading interface

200 according to certain embodiments.

[0091] As illustrated in FIG. 2C, the instrument building block button 231 is selected and
placed in the price area 211 as instrument building block 232. The instrument building
block 232 allows a user to select which attribute of the selected instrument should be used
from the list 233. The instrument bid price has been selected. Thus, the price area 211
containing the instrument building block 232 (specified to be the instrument bid price)

evaluates to the instantaneous instrument bid price in the market.

[0092] Examples of attributes of the selected instrument include the bid price, ask price, bid
quantity, ask quantity, last traded price, last traded quantity, volume, trading session high,
trading session low, non-implied bid/ask quantity (also referred to as the real bid/ask
quantity), settlement price, minimum tradeable increment (also referred to as the tick size),
and number of orders in the queue at a price (also referred to as the headcount). In addition,
special order-side-specific attributes may be specified (not shown), such as “bid price*”,
“ask price*”, “bid quantity™*”, and “ask quantity*”, for example. For these special

attributes, the specified value is used for buy orders and the opposite of the specified value

22

WO 2011/049936 PCT/US2010/053172

is used for sell orders. For example, if “ask price®” is selected, then the expression

evaluates to the ask price for a buy order and the bid price for a sell order.

[0093] As illustrated in FIG. 2D, the subtraction arithmetic operator building block button
241 is selected and placed in the price area 211 as subtraction building block 242. Now the
expression in price area 211 includes instrument building block 232 and subtraction

building block 242.

[0094] However, the expression in the price area 211 is now invalid and cannot be
evaluated (“bid price -” is not syntactically meaningful). This may be handled similarly to
the type of the area being invalid, as discussed above. That is, since the expression in the
price area 211 is invalid, the background of the price area 211 is changed from green

(indicating a valid expression) to red (indicating an invalid expression).

[0095] As illustrated in FIG. 2E, the numerical constant value building block button 251 is
selected and placed in the price arca 211 as the constant value building block 252. The user
has specified that the constant value building block 252 should have a value of “0.5.” The
expression in the price area 211 is now valid again (notice that the background has changed
from red back to green) and evaluates to the instantancous bid price of the instrument minus

0.5.

[0096] As illustrated in FIG. 2F, the if-then-clse construct building block button 261 is
selected and placed in the quantity area 212 as the if-then-else construct building block 262.
The if-then-else construct building block 262 includes an IF portion 263, a THEN portion
264, and an ELSE portion 265. Sub-expressions of one or more elements (including nested
if-then-else construct building blocks) may be built in each portion of the if-then-else
construct building block 262. When the if-then-else construct building block 262 is
evaluated, its value is determined as follows. The IF portion 263 is evaluated to determine a
Boolean value. When the determined Boolean value from the IF portion 263 evaluates to
“true”, then the if-then-else construct building block 262 evaluates to the value of the
expression in the THEN portion 264. When the determined Boolean value from the IF
portion 263 evaluates to “false”, then the if-then-else construct building block 262 evaluates

to the value of the expression in the ELSE portion 265.

23

WO 2011/049936 PCT/US2010/053172

[0097] The building block buttons 215 are also used to build expressions in the portions of
the if-then-else construct building block 262. As illustrated, the IF portion 263 includes a
partially built expression for comparing to determine if the instrument bid quantity is greater
than something. However, since this expression is not syntactically meaningful, it is
invalid. Note that consequently, the background of the IF portion 263 is red and not green
to indicate this. Additionally, because the if-then-else construct building block 262 is not
valid (because its IF portion 263 is not valid), the expression in the quantity area 212 is not

valid, and therefore it too has a red background.

[0098] As illustrated in FIG. 2@, the if-then-else construct building block 262 now includes
valid expressions in each of its portions and therefore the expression for the quantity area
212 is also valid.

[0099] As illustrated in FIG. 2H, if-then-else construct building blocks may be nested. The
ELSE portion 265 of the if-then-else construct building block 262 includes another if-then-
else construct building bock 266. As illustrated, since the if-then-else construct building
block 266 does not include any expressions in any of its portions it cannot be evaluated and
is therefore an invalid expression in the ELSE portion 265 of the if-then-else construct
building block 262. Consequently, the ELSE portion 265 has a red background to indicate
its expression is invalid. Further, because the ELSE portion 265 has an invalid expression,
the if-then-else construct building block 262 does not have a valid expression and therefore

the background of the quantity area 212 is red.

[00100] As illustrated in FIG. 21, the expression in the IF portion 263 of the if-then-else
construct building block 262 includes variable building blocks 273, 274, 275, and 276. The
variable building blocks 273, 274, 275, and 276 may be placed by using a variable building
block button or by selecting an option when using the constant value building block button
to indicate that the constant value should be a variable. The variable building block 273
displays the name of the variable (“M_TH_17) and its value (“5000”"). This may represent,
for example, a minimum threshold. As discussed above, the variable area 206 displays each
variable name and its value. As illustrated, variable area 206 includes a name column 271
with entries for each variable building block 273, 274, 275, and 276 and a default value
column 272 with corresponding default value entries for each variable. A user can select a

default value entry in the default value column 272 to change the default value of the

24

WO 2011/049936 PCT/US2010/053172

respective variable building block, so that the new default value is used in the evaluation of
the expression in the quantity area 212. Similarly, the user can select a name entry in the
name column 271 to change the name of the respective variable building block. The
variable building blocks 273, 274, 275, and 276 may allow a user to manipulate the
behavior of the algorithm, rather than the underlying logic, by changing the value of the

variable, which acts as a parameter to the algorithm, for example.

[00101] The trading interface 200 provides a live evaluation feature. The live evaluation
feature, as illustrated in FIGs. 2C-21, provides a display of an evaluation value for an
expression. The live evaluation value may be provided as the algorithm is being defined,
for example. The live evaluation value may be displayed in relation to the expression being
evaluated, for example. The evaluation may be performed whenever an expression changes
or the value of a building block in the expression changes. The evaluation may also be
performed periodically or continuously. In certain embodiments, a live evaluation value
may be provided for sub-expressions. In certain embodiments, a live evaluation value may

be provided for individual elements of an expression.

[00102] As illustrated in FIG. 2C, as discussed above, the instrument bid price has been
selected as the attribute for the instrument building block 232. The live evaluation 281 of
the price area 211 displays “8.5”, which is the current bid price for the instrument (also
shown in the market grid 202). As illustrated in FIG. 2D, as discussed above, the
expression in the price area 211 is invalid and therefore no live evaluation is displayed
because the expression cannot be evaluated. As illustrated in FIG. 2E, the live evaluation
282 of the price area 211 displays an “8”, which is the instrument bid price (8.5) minus the

constant value (0.5).

[00103] In addition to live evaluation of the price area 211, the quantity area 212, and the
conditional area 213, live evaluation may be performed for expressions within those areas.
For example, as illustrated in FIG. 2@, live evaluations are provided for each of the portions
of the if-then-else construct building block 262 as well as for the quantity area 212 itself.
The live evaluation 283 for the IF portion 263 is “True” because the instrument bid quantity
(863) is greater than or equal to 60. The live evaluation 284 for the THEN portion 264 is 2
because the expression in the THEN portion 264 is just the constant value 2. Similarly, the

live evaluation 285 for the ELSE portion 265 is 1 because the expression in the ELSE

25

WO 2011/049936 PCT/US2010/053172

portion 265 is just the constant value 1. The live evaluation 286 for the quantity area 212 is
then “2” because the evaluation of the if-then-else construction building block 262 is the

value of the THEN portion 264 because the IF portion 263 evaluates to “true”.

[00104] The building block buttons 215 and algorithm area 210 of the trading interface
200 allow a user such as a trader or non-programmer to reduce the time and risk needed to
develop an algorithm. This is achieved in part by reducing or eliminating syntax errors (for
example, due to the complexities of particular programming languages) and providing live
evaluation and feedback for the algorithm being built (for example, by flagging errors and

allowing for debugging of logic while the algorithm is being built).

[00105] Once an algorithm has been defined in the algorithm area 210, it may be saved.
An algorithm may also be given a name (for example, while the algorithm is being built
and/or when the algorithm is saved). The saved algorithm may then be recalled or
referenced at future time with the trading interface 200 or with another trading interface.
For example, the saved algorithm may be loaded with the trading interface 200 so that it
may be edited or re-used on another order. As another example, the saved algorithm may

be referenced as an order type from another trading interface as discussed below.

[00106] FIG. 2] illustrates a trading interface 290 according to certain embodiments.
The trading interface 290 is an order ticket adapted to provide for initiating an order

managed by an algorithm, where the algorithm is defined specifically for that order.

[00107] The trading interface 290 includes an algorithm area 299, an algorithm order
button 294, and building block buttons 295. The algorithm area 299 includes a price area
292, a quantity area 293, and a conditional area 294. The price area 291 is similar to the
price area 211 discussed above. The quantity area 292 is similar to the quantity area 212
discussed above. The conditional area 293 is similar to the conditional area 213 discussed
above. The building block buttons 295 are similar to the building block buttons 215

discussed above.

[00108] The trading interface 290 may be used to initiate placement of typical trading
orders. In addition, the algorithm order button 294 may be selected to enable the algorithm
area 299. When enabled, the algorithm order area 299 provides for defining an algorithm

using the price area 291, the quantity area 292, and the conditional area 293 in a manner

26

WO 2011/049936 PCT/US2010/053172

similar to that discussed above for the trading interface 200. Once the algorithm has been
defined in the algorithm area 299 and initiated, it is managed according to the defined

algorithm in a manner similar to that discussed above for the trading interface 200.

[00109] Similarly, an algorithm area and building block buttons similar to those in
trading interface 200 and 290 may be incorporated into other components of a trading
application. For example, a hedge manager interface may be adapted to incorporate similar

features so that an algorithm may be defined and specified to manage a hedge order.

[00110] The components, elements, and/or functionality of the trading interface 200 and
the trading interface 290 discussed above may be implemented alone or in combination in
various forms in hardware, firmware, and/or as a set of instructions in software, for
example. Certain embodiments may be provided as a set of instructions residing on a
computer-readable medium, such as a memory, hard disk, CD-ROM, DVD, EPROM,

and/or file server, for execution on a general purpose computer or other processing device.

II1. Algo Design Lab

[00111] Certain embodiments provide a design canvas area and blocks for designing an
algorithm. Certain embodiments provide blocks with complex functionality for use in an
algorithm. Certain embodiments provide for grouping blocks placed in the design canvas
area. Certain embodiments provide for virtualized group blocks enabling dynamic
instantiation of portions of an algorithm to handle particular discrete events. Certain
embodiments allow for adjusting both the parameters and the logic of an algorithm rapidly,
even during a single trading session. Certain embodiments provide live feedback for blocks
as the algorithm is being designed. Certain embodiments provide safety features to reduce
potential errors when an algorithm is designed. Certain embodiments provide for operation
of some or all portions of an algorithm when a connection between a client device and an
algorithm server is broken. Certain embodiments reduce the risks of traditionally
programmed algorithms such as syntax errors, unclear logic, and the need for a non-trader
programmer to develop the algorithm as specified by a trader by reducing or eliminating the
writing of programming code by a user. Certain embodiments provide a single application
for building, debugging, and simulating (with real market data) an algorithm all at the same
time. In addition, the single application may also provide for initiating the placement of

orders using the algorithm.

27

WO 2011/049936 PCT/US2010/053172

[00112] FIG. 3A illustrates a block diagram of an electronic trading system 300 in which
certain embodiments may be employed. The system 300 includes one or more client
devices 301, one or more algorithm servers 302, and one or more electronic exchanges 303.
Each client device 301 is in communication one or more algorithm servers 302. Each
algorithm server 302 is in communication with one or more exchanges 303. In addition, in
certain embodiments, although not shown in FIG. 3A, a client device 301 may also be in
communication with one or more exchanges 303. Communication with an exchange by a
client device 301 and/or an algorithm server 302 may be done through a gateway similar to

the gateway 120, discussed above, for example.

[00113] Client device 301 may be similar to client device 110, discussed above, for
example. In certain embodiments, the client device 301 may be referred to as a trader

terminal. Exchange 303 may be similar to exchange 130, discussed above, for example.

[00114] In certain embodiments, the algorithm server 302 is located physically near or at
an exchange 303. In certain embodiments, the algorithm server 302 is part of the client

device 301.

[00115] In operation, an algorithm for electronic trading may be designed on a client
device 301. The algorithm may then be communicated to an algorithm server 302. The
algorithm server 302 executes the algorithm to perform electronic trading with the exchange
303. Market data may be received by the algorithm server 302 for use by the algorithm. In
addition, market data may be received by the client device 301 for use in designing the
algorithm. The market data may be received from the exchange 303, for example. As
another example, market data may be received from a simulator or from stored/historical

data.

[00116] FIG. 3B illustrates a trading interface 310 according to certain embodiments.
The trading interface 310 is a trading interface for an algorithmic trading application
referred to as the Algo Design Lab (“ADL”). The ADL allows a trader to design an
algorithm for electronic trading. However, it should be understood that elements of the

illustrated trading interface 310 may be incorporated into other trading interfaces.

[00117] The trading interface 310 includes a design canvas area 311, a block list arca

312, a variable area 313, and a control area 314. In certain embodiments one or more of

28

WO 2011/049936 PCT/US2010/053172

these areas may be in separate windows or toolbars. For example, the block list area 312

may be in a separate window from the design canvas area 311.

[00118] In operation, an algorithm is defined in the design canvas area 311 by utilizing
one or more block from the block list area 312. Default values for user-defined variables in
the algorithm may be specified using the variable area 313. Once the algorithm has been
defined, the algorithm may be simulated using controls in the control area 314 to indicate
how the logic of the algorithm will behave. An order to be managed according to the

defined algorithm may then be initiated using a trading interface.

[00119] The design canvas area 311 provides for defining an algorithm. The design
canvas area 311 may also be referred to as a whiteboard area. The design canvas area 311
provides a visual programming environment for designing the algorithm. Designing an

algorithm includes building, testing, simulating, and/or evaluating the algorithm.

[00120] In certain embodiments, the design canvas area 311 is the primary focus of the
interface for the trading application 310 and may be a large, white space, for example. In
the design canvas areca 311, blocks may be arranged according to the preference of the user.
In certain embodiments, the design canvas area 311 provides grid lines that may be used to
arrange the blocks. In certain embodiments, the design canvas area 311 includes an
overview display or map that may be used to navigate through a large algorithm with many
blocks. In certain embodiments, the design canvas area 311 may be zoomed in or out so

that a user may see more or less of the algorithm at a time.

[00121] Blocks are placed in the design canvas area 311 and connected to define the
algorithm. The blocks to be placed may be selected from the block list area 312. Once a
block has been placed, it may then be connected to other placed blocks.

[00122] The block list area 312 includes one or more blocks which may be selected and
placed in the design canvas area 311. Blocks represent different functionalities that may be

combined according to user preference to build an algorithm.

[00123] In general, blocks have inputs and outputs. However, certain blocks may have
only inputs and others may have only outputs. For example, a pause block may have only

an input. As another example, a number block may have only an output.

29

WO 2011/049936 PCT/US2010/053172

[00124] Inputs and outputs of blocks are of one of two primary types: continuous or
discrete. A continuous type input/output, at any particular point in time (hence continuous)
has a value. A discrete type input/output receives/provides discrete events (individual
messages/objects) corresponding to specific actions/events that occur at some particular
point in time. When a specific action/event occurs, a corresponding discrete event may be

generated.

[00125] In addition to the primary type of the input/output, an input/output may have a
particular value types. For example, a continuous input might have a value type of Boolean,
number, integer, floating point number, or instrument. As another example, a block may
have two continuous inputs of a variable value type, where the value type for the two inputs
may be Boolean or numeric, for example, but must match. An equals block, which takes
two inputs and compares them to output a Boolean indicating whether the inputs are equal
may have variable inputs so that it may be used to compare Booleans or numbers or
instruments, for example. As another example, a discrete output might have a value type of
fill confirmation. That is, the discrete output might provide fill confirmation discrete
events. As another example, a discrete output might provide more than one type of discrete
event for actions such as order request confirmations (indicating an order was placed), fill
confirmations (indicating an order was filled or partially filled), order change confirmations
(indicating a working order parameters such as price or quantity was changed), order
deletion confirmations (indicating a working order was deleted or cancelled), or trade
confirmations (indicating a trade has occurred). As another example, a discrete event may
be empty in that it indicates only that an event has occurred. An empty discrete event may,
for example, be triggered by a timer, a change in a Boolean value, or used to activate a
portion of an algorithm at a particular time (such as a time of day or a time when certain
market conditions have been met, for example). A discrete event of a particular type may
include different information than a discrete event of another type. For example, an order
confirmation may include information such as an order identifier and/or an instrument. As
another example, a fill confirmation discrete event may include information such as an
order identifier, price, quantity, instrument, and/or time of a fill. As another example, an
order deletion confirmation may include an order identifier, instrument, and/or time of
deletion. As another example, an empty discrete event may not include any information (or
may include only a time the event occurred). A discrete event may include user-defined

information. For example, a discrete event a fill confirmation for a filled order for

30

WO 2011/049936 PCT/US2010/053172

instrument A may include user-defined market information such as a bid price in instrument

B at the time of the fill in instrument A.

[00126] In certain embodiments, a block includes indicators of the primary type for its
inputs/outputs. For example, continuous inputs/outputs may be indicated with a particular
background color, foreground color, background pattern, border color, border style, shape,
symbol, number, text, and/or font and discrete inputs/outputs might be indicated with

another color, pattern, border, shape, symbol, number, text, and/or font.

[00127] In certain embodiments, a block includes indicators of the value type for its
inputs/outputs. For example, inputs/outputs with a particular value type may be indicated
with a particular background color, foreground color, background pattern, border color,
border style, shape, symbol, number, text, and/or font and inputs/outputs with a different
value type may be indicated with another color, pattern, border, shape, symbol, number,

text, and/or font.

[00128] In certain embodiments, the primary type and/or the value type of an input or
output is displayed in a pop-up window when a cursor is positioned near the block. In
certain embodiments, information about the configuration of a block is displayed in a pop-

up window when a cursor is positioned near the block.

[00129] Blocks represent different functionality. In the trading interface 310, blocks
have been separated into four general categories of functionality: basic blocks, trading
blocks, discrete blocks, and miscellaneous blocks. However, these groupings are for
convenient organization and utilization by a user; blocks do not need to be grouped and a
block’s group does not necessitate particular features. Some blocks may appropriately fit in
more than one category and other organizations or groupings of blocks may also be

employed.

[00130] Basic blocks generally have continuous inputs and outputs and provide
arithmetic operations (for example, addition, subtraction, multiplication, and division),
logical operations (for example, AND, OR, and comparison such as equality, greater than,
and less than), constant values (for example, number and Boolean), and if-then-else

constructs.

31

WO 2011/049936 PCT/US2010/053172

[00131] Trading blocks generally provide more complex functionality related to
manipulating an order (for example, placing an order, modifying an existing order, or
deleting an order) or order-related information (for example, a fill confirmation). Trading
blocks may have both continuous and discrete inputs and outputs. For example, a market
maker block may have continuous inputs for specifying an instrument, price, quantity, and
condition for quoting an order and may have a continuous output of the working quantity
and a discrete output for providing notification of fills. Trading blocks allow users,
including non-programmers (such as traders), to utilize a visual design environment (such as
that provided by the ADL) to create and deploy trading algorithms. The trading blocks may
allow for more rapid and accurate design of an algorithm as compared to a typical
programmer with fewer steps or instructions as compared to other visual programming

platforms.

[00132] Discrete blocks generally have discrete inputs and outputs and provide
operations based on the occurrence of discrete events. For example, a generator block may
generate an occurrence of a discrete event. As another example, a value extractor block
may extract a value from a discrete event and make it available as a continuous value to
another portion of the algorithm. As another example, a sequencer block may be used to
control the sequence in which subsequent blocks are processed in response to a discrete
event. Certain discrete blocks may store data to be referenced at a subsequent time. For
example, a value accumulator block may receive a discrete event and extract a user-
specified value from it. The extracted value may be accumulated with values extracted

from each received discrete event.

[00133] Miscellaneous blocks provide a variety of functionality that may not necessary
fit into the above-discussed categories. For example, these blocks may provide special
purpose or more complex calculations or may add additional control to the execution of the
algorithm itself. Further, miscellancous blocks may provide more precise tools to control
risk, convert numbers into tradeable values, or use time (either precise or elapsed) as an

input or variable.

[00134] FIG. 3C illustrates examples of blocks 320 that may be used in the trading
interface 310 according to certain embodiments. Example blocks from each of the

categories identified above are illustrated. Example basic blocks include the add block 321

32

WO 2011/049936 PCT/US2010/053172

and the if-then-else block 322. Example trading blocks include the market maker block
323, the conditional buy/sell block 324, and the order handler block 325. Example discrete
blocks include the value extractor block 326 and the branch block 327. Example
miscellaneous blocks include the note block 328 and the pause block 329. Each of these
blocks, along with other examples of blocks that may be included in certain embodiments

are discussed in more detail below.

[00135] Basic blocks may include add, subtract, multiply, divide, greater than, less than,
greater than or equal, less than or equal, AND, OR, equals, IF-THEN-ELSE, number,

Boolean, and constant blocks, for example.

[00136] An add block may add two continuous numeric inputs together to produce one
continuous numeric output. The add block may have a triangular shape with a plus symbol
(“4+) in the middle, two continuous inputs on the left side, and one continuous output on the

right side. The add block may also be referred to as an adder block.

[00137] A subtract block may subtract one continuous numeric input (for example, the
bottom input) from a second continuous numeric input (for example, the top input) to
produce one continuous numeric output. The subtract block may have a triangular shape

with a minus symbol (“-*) in the middle, two continuous inputs on the left side, and one

continuous output on the right side.

[00138] A multiply block may multiply two continuous numeric inputs together to
produce one continuous numeric output. The multiplier block may have a triangular shape

Gk oY

with a multiplication symbol (“X” or “*”) in the middle, two continuous inputs on the left

side, and one continuous output on the right side.

[00139] A divide block may divide one continuous numeric input (for example, the top
input) by a second continuous input (for example, the bottom input) to produce one
continuous numeric output. The divide block may have a triangular shape with a division

[T

symbol (“/” or “+”) in the middle, two continuous inputs on the left side, and one

continuous output on the right side.

[00140] A greater than block may compare two continuous numeric inputs to determine
if one input (for example, the top input) is greater than a second input (for example, the

bottom input). The output is a continuous Boolean output of TRUE if the first input is

33

WO 2011/049936 PCT/US2010/053172

greater than the second input and FALSE for all other conditions. The greater than block
may have a rectangular shape on the left side and an arched shape to the right side with a
greater than symbol (“>") in the middle, two continuous numeric inputs on the left side, and

one continuous Boolean output on the right side.

[00141] A less than block may compare two continuous numeric inputs to determine if
one input (for example, the top input) is less than a second input (for example, the bottom
input). The output is a continuous Boolean output of TRUE if the first input is less than the
second input and FALSE for all other conditions. The less than block may have a
rectangular shape on the left side and an arched shape to the right side with a less than
symbol (“<”) in the middle, two continuous numeric inputs on the left side, and one

continuous Boolean output on the right side.

[00142] A greater than or equal block may compare two continuous numeric inputs to
determine if one input (for example, the top input) is greater than or equal to a second input
(for example, the bottom input). The output is a continuous Boolean output of TRUE if the
first input is greater than or equal to the second input and FALSE for all other conditions.
The greater than or equal block may have a rectangular shape on the left side and an arched
shape to the right side with a greater than or equal to symbol (“>=" or “>") in the middle,
two continuous numeric inputs on the left side, and one continuous Boolean output on the

right side.

[00143] A less than or equal block may compare two continuous numeric inputs to
determine if one input (for example, the top input) is less than or equal to a second input
(for example, the bottom input). The output is a continuous Boolean output of TRUE if the
first input is less than or equal to the second input and FALSE for all other conditions. The
less than or equal block may have a rectangular shape on the left side and an arched shape
to the right side with a less than or equal to symbol (“<=" or “<”) in the middle, two
continuous numeric inputs on the left side, and one continuous Boolean output on the right

side.

[00144] An AND block may perform a logical conjunction of two continuous Boolean
inputs such that if a first input (for example, the top input) is TRUE and a second input (for
example, the bottom input) is TRUE, then the Boolean output is TRUE. If either of the
inputs is FALSE, then the output value is FALSE. The AND block may have a rectangular

34

WO 2011/049936 PCT/US2010/053172

shape on the left side and an arched shape to the right side with “AND” text in the middle,
two continuous Boolean inputs on the left side, and one continuous Boolean output on the

right side.

[00145] An OR block may perform a logical disjunction of two continuous Boolean
inputs such that if either of the inputs is TRUE, then the Boolean output is TRUE. If both
inputs are FALSE, then the output value is FALSE. The OR block may have a rectangular
shape on the left side and an arched shape to the right side with “OR” text in the middle,
two continuous Boolean inputs on the left side, and one continuous Boolean output on the

right side.

[00146] An equals block may compare two continuous inputs to determine if one input
(for example, the top input) is equal to a second input (for example, the bottom input). The
inputs may be of variable value type so that the equals block may accept values such as
numeric, Boolean, or instrument, as long as each input is of the same type. The output is a
continuous Boolean output of TRUE if the two inputs are equal and FALSE for all other
conditions. The equals block may have a rectangular shape on the left side and an arched

()

shape to the right side with an equals symbol (“=") in the middle, two continuous variable
inputs on the left side and one continuous Boolean output on the right side. The equals

block may also be referred to as an equality block.

[00147] An IF-THEN-ELSE block may have three continuous inputs: a Boolean IF input,
a variable THEN input, and a variable ELSE input. The IF-THEN-ELSE block has one
continuous variable output. If the IF input value is TRUE, the output is the value of the
THEN input. If the IF input value is FALSE, the output is the value of the ELSE input.

The IF-THEN-ELSE block may have a rectangular shape with a “?” symbol in the middle,
one continuous Boolean IF input and two continuous variable ELSE and THEN inputs on

the left side, and one continuous variable output on the right side.

[00148] A number block may have one continuous numeric output that provides a
numeric value specified by the user. When placed, the user may be prompted to enter the
numeric value for the number block. Alternatively, the number block may default to a
predefined value such as 1. In addition, the value may be specified to the order ticket
quantity or order ticket price. If so, the value of the number block will be the respective

value specified when an order is initiated to be managed using the algorithm. The specified

35

WO 2011/049936 PCT/US2010/053172

value may be changed by the user during the design of the algorithm by, for example,
selecting the number block and using an action such as a menu item or double-click to be
prompted to enter a value. The specified value may also be changed if the number block is
specified to be variable using the variable area 313 discussed below. The number block
may have a circular shape with the specified number in the middle and one continuous

numeric output on the right side. This block may also be referred to as a constant number
block.

[00149] A Boolean block may have one continuous Boolean output that provides a
Boolean value specified by the user. When placed, the user may be prompted to enter the
Boolean value for the Boolean block. Alternatively, the Boolean block may default to a
predefined value such as TRUE. The specified value may be changed by the user during the
design of the algorithm by, for example, selecting the Boolean block and using an action
such as a menu item or double-click to be prompted to enter a value. The specified value
may also be changed if the Boolean block is specified to be variable using the variable area
313 discussed below. The Boolean block may have a circular shape with the specified
Boolean value displayed textually in the middle and one continuous Boolean output on the

right side. This block may also be referred to as a constant Boolean block.

[00150] In certain embodiments, the number block and the Boolean block may be
consolidated into a single block such as a constant block. A constant block may have one
continuous variable output that provides a value specified by the user. When placed, the
user may be prompted to enter the value type and value for the constant block.
Alternatively, the constant block may default to a predefined value type such as numeric
and a predefined value such as 1. In addition, the value may be specified to the order ticket
quantity or order ticket price. If so, the value of the constant block will be the respective
value specified when an order is initiated to be managed using the algorithm. The specified
value may be changed by the user during the design of the algorithm by, for example,
selecting the constant block and using an action such as a menu item or double-click to be
prompted to enter a value. The specified value may also be changed if the constant block is
specified to be variable using the variable area 313 discussed below. The constant block
may have a circular shape with the specified value displayed textually in the middle and one

continuous variable output on the right side. In certain embodiments, the constant block

36

WO 2011/049936 PCT/US2010/053172

may also support specifying an instrument for value, similar to the instrument block

discussed below.

[00151] Trading blocks may include instrument, instrument attribute, market maker,
legger, custom spread, responsive buy/sell, conditional buy/sell, order handler, IF-THEN-
ELSE instrument, instrument attribute at price, spread between, trade, order, fill calculator,

and fill accumulator blocks, for example.

[00152] An instrument block may have one continuous instrument output that provides
an instrument name. The instrument name may be an exchange-listed instrument or a
synthetic instrument, for example. When placed, the user may be prompted to specify the
instrument name for the instrument block. The instrument name may be selected from a
list, for example. Alternatively, the instrument block may default to a predefined value.
The specified value may be changed by the user during the design of the algorithm by, for
example, selecting the instrument block and using an action such as a menu item or double-
click to be prompted to enter a value. The specified value may also be changed if the

instrument block is specified to be variable using the variable area 313.

[00153] An instrument attribute block may have a continuous instrument input and a
continuous numeric output. The instrument attribute block may take an instrument name
and output a value for a specified attribute of that instrument. Attributes may include best
bid quantity, best bid price, best ask quantity, best ask price, volume, session high price,
session low price, minimum tradeable increment, last traded price, last traded quantity, total
quantity (total quantity traded at the last traded price, until a trade occurs at a new price),
settlement price from previous trading session, real (non-implied) best bid quantity, real
(non-implied) best ask quantity, bid headcount (number of orders in the market at the best
bid price), ask headcount (number of orders in the market at the best ask price), or position
(user’s overall inventor in a particular instrument). When placed, the user may be prompted
to enter the attribute to be provided by the instrument attribute block. Alternatively, the
instrument attribute block may default to a predefined value such as bid quantity. The
specified attribute may be changed by the user during the design of the algorithm by, for
example, selecting the instrument attribute block and using an action such as a menu item or

double-click to be prompted to enter an attribute. The specified attribute may also be

37

WO 2011/049936 PCT/US2010/053172

changed if the instrument attribute block is specified to be variable using the variable area

313 discussed below.

[00154] A market maker block may submit a buy or sell order for a tradeable object
specified by a continuous instrument input at a price and quantity specified by two
continuous numeric inputs, when the condition continuous Boolean input is TRUE. The
condition input is optional and defaults to TRUE if no input is provided. The market maker
block may delete the order when the condition input is FALSE. The market maker block
may also modify an existing order’s price or quantity if the respective price and quantity
input values change. The value specified in the quantity input represents the maximum
desired fill quantity, taking into account prior fills. For example, if quantity input value of 5
is provided, an order for 5 may be entered into a market and if a quantity of 3 is filled, an
order of 2 will continue to be worked, even if the price input changes. If the quantity input
changes, the order worked will be for the new quantity specified minus the already filled
quantity of 3. The market maker block may provide one or more discrete outputs that
provide fill confirmation and/or order request discrete events. The market maker block may
include an option to specify that orders generated by the market maker block should stay in
the order book even if the algorithm is deleted, halted, stopped, or paused. This feature may
be useful for hedging portions of algorithms, for example. The market maker block may
include an option to specify that an order generated by the market maker block is to be
marked as hung while it is displayed in the order book, which may make it easier to identify
an improperly functioning or incomplete algorithm (if, for example, orders are not expected
to stay in the order book). The market maker block may also include an option to specify a
color or textual flag to be associated with orders placed by the market maker block to make

them easier to identify in an order window, for example.

[00155] A legger block may submit buy or sell orders for tradeable objects of legs of a
custom spread, where the tradeable objects for each leg are specified by a continuous
instrument input. The price and quantity desired for the custom spread are specified by two
continuous numeric inputs. The legger block works an individual order(s) for the spread
when the condition continuous Boolean input is TRUE. The condition input is optional and
defaults to TRUE if no input is provided. The legger block may delete the order(s) when
the condition input is FALSE. The legger block may also modify the price and/or quantity

of a working order(s) if the price and/or quantity input values change. The value specified

38

WO 2011/049936 PCT/US2010/053172

in the quantity input represents the maximum desired fill quantity of the spread, taking into
account prior fills. For example, if quantity input value of 5 is provided, an order for 5 may
be entered into a market and if a quantity of 3 is filled, an order of 2 will continue to be
worked, even if the price input changes. If the quantity input changes, the order worked
will be for the new quantity specified minus the already filled quantity of 3. The legger
block may provide one or more discrete outputs that provide spread fill, order request,
and/or leg fill discrete events. After instruments have been provided for the legs of the
spread, the legger may be configured by, for example, selecting the legger block and using
an action such as a menu item or double-click to be prompted to specify parameters and
settings. Parameters that may be specified for each leg of the spread include “multiple” (the
coefficient of the spread leg), “trade quantity” (quantity for each leg of the spread, where a
positive number is a buy and a negative number is a sell), “work market?” (toggle whether
the leg of the spread will actively quote), “net change” (toggle whether to convert the
custom spread calculation to a net change rather than price), “pay-up ticks” (number of
minimum price increments through which the custom spread will enter a limit order on a
lean leg; a positive number means more aggressive to get filled, a negative number means
less aggressive to get filled), and “lean ratio” (quantity units required to exist on a lean leg
in order to work one quantity unit on a quoting leg; this may be a ratio of quantity between
the two legs or an threshold quantity in the lean leg, for example). Settings that may be
specified include “side” (buy or sell the custom spread), “always work inside market”
(toggle that, when true, legger block will only work individual leg orders that appear on the
best or inside market and, in certain embodiments, will only work the leg more likely to get
filled as determined by looking at market bid/ask size ratios), “disable ‘sniping’ mode”
(toggle the default behavior that if the legger block can achieve the desired spread price, it
will delete the current working orders and simultaneously submit orders on all legs to get
filled at the desired spread price; when disabled, the legger block will only work the
specified “work market?” legs even if the desired price becomes momentarily available),
“clip size” (quantity to be worked at one time incrementally increasing until the total
quantity has been filled as defined by the provided spread quantity input), and “flag”
(specifies a user-defined flag associated with a spread fill discrete event to make identifying
them easier). The legger block may include an option to specify that orders generated by
the legger block should stay in the order book even if the algorithm is deleted, halted,

stopped, or paused. The legger block may include an option to specify that an order

39

WO 2011/049936 PCT/US2010/053172

gencrated by the legger block is to be marked as hung while it is displayed in the order
book, which may make it easier to identify an improperly functioning or incomplete
algorithm (if, for example, orders are not expected to stay in the order book). The legger
block may also include an option to specify a color or textual flag to be associated with
orders placed by the legger block to make them easier to identify in an order window, for

example. This block may also be referred to as an autospreading block or a spreader block.

[00156] A custom spread block may submit buy or sell orders for tradeable objects of
legs of a custom spread, where the custom spread is provided as an instrument from an
external application. The price and quantity desired for the custom spread are specified by
two continuous numeric inputs. The custom spread block works an individual order(s) for
the spread when the condition continuous Boolean input is TRUE. The condition input is
optional and defaults to TRUE if no input is provided. The custom spread block may delete
the order(s) when the condition input is FALSE. The custom spread block may also modify
the price and/or quantity of a working order(s) if the price and/or quantity input values
change. The value specified in the quantity input represents the maximum desired fill
quantity of the spread, taking into account prior fills. For example, if quantity input value
of 5 is provided, if a quantity of 3 is filled, an order of 2 will continue to be worked, even if
the price input changes. If the quantity input changes, the order worked will be for the new
quantity specified minus the already filled quantity of 3. The custom spread block may
include an optional Boolean input to enable dynamic sizing of the order quantities of the
legs of the individual orders instead of requiring the original order quantity to be present on
hedging legs. The custom spread block may provide one or more discrete outputs that
provide fill confirmation and/or order request discrete events. When placed, the user may
be prompted to specify a custom designed instrument from an external application, where
the custom designed instrument provides synthetic market data representing a trading
strategy. Alternatively, specified custom designed instrument may be specified and/or
changed by the user during the design of the algorithm by, for example, selecting the
custom spread block and using an action such as a menu item or double-click to be
prompted to specify the custom designed instrument from an external application.
Additionally, during the design of the algorithm, a user may specify settings that may
include “disable ‘sniping’ mode” (toggle the default behavior that if the custom spread
block can achieve the desired spread price, it will delete the current working orders and

simultaneously submit orders on all legs to get filled at the desired spread price; when

40

WO 2011/049936 PCT/US2010/053172

disabled, the custom spread block will only work the specified quoting legs even if the
desired price becomes momentarily available) and “clip size” (quantity to be worked at one
time incrementally increasing until the total quantity has been filled as defined by the
provided spread quantity input). The custom spread block may include an option to specify
that orders generated by the custom spread block should stay in the order book even if the
algorithm is deleted, halted, stopped, or paused. The custom spread block may include an
option to specify that an order generated by the custom spread block is to be marked as
hung while it is displayed in the order book, which may make it easier to identify an
improperly functioning or incomplete algorithm (if, for example, orders are not expected to
stay in the order book). The custom spread block may also include an option to specify a
color or textual flag to be associated with orders placed by the custom spread block to make
them easier to identify in an order window, for example. In certain embodiments, a custom
spread block may provide a specified custom designed instrument from an external
application as a continuous instrument output. In certain embodiments, a custom spread
block may provide a specified numeric or Boolean value from an external application as a
continuous numeric or Boolean output. This block may also be referred to as a custom

strategy block or custom external application block.

[00157] A responsive buy/sell block may initiate placement of a buy or sell order for an
instrument specified by a continuous instrument input when a discrete event is received on a
discrete input. The price and/or quantity to place the order at may be provided by
continuous numeric inputs. Alternatively, the price and/or quantity may be specified by
user-defined equations that are evaluated to determine the respective price or quantity value
to be used. In certain embodiments, one of the price and quantity may be provided by a
continuous numeric input and the other may be provided by evaluating a user-defined
equation. The specified equation(s) for price and/or quantity (if used) may be changed by
the user during the design of the algorithm by, for example, selecting the responsive
buy/sell block and using an action such as a menu item or double-click to be prompted to
enter the equation(s). An equation may be entered textually or using building block buttons
similar to the building block buttons 215 discussed above, for example. Once the
responsive buy/sell block has initiated placement of the order, the order is not updated based
on subsequent changes in the provided price and/or quantity values. The responsive
buy/sell block may include an option to specify that orders generated by the responsive

buy/sell block should stay in the order book even if the algorithm is deleted, halted, stopped,

41

WO 2011/049936 PCT/US2010/053172

or paused. The responsive buy/sell block may include an option to specify that an order
gencrated by the responsive buy/sell block is to be marked as hung while it is displayed in
the order book, which may make it easier to identify an improperly functioning or
incomplete algorithm (if, for example, orders are not expected to stay in the order book).
The responsive buy/sell block may also include an option to specify a color or textual flag
to be associated with orders placed by the responsive buy/sell block to make them easier to

identify in an order window, for example.

[00158] A conditional buy/sell block may initiate placement of a buy or sell order for an
instrument specified by a continuous instrument input at a price and quantity specified by
two continuous numeric inputs, when the condition continuous Boolean input is TRUE. The
condition input is optional and defaults to TRUE if no input is provided. The conditional
buy/sell block does not delete the order when the condition input value is FALSE (but a
placement of an order is not initiated until the condition input becomes TRUE). The
conditional buy/sell block may only submit one order at a time. In certain embodiments, the
conditional buy/sell block will continue to submit orders (one at a time) to try to achieve the
initially provided quantity value, even if the orders may be deleted (for example, by another
block in the algorithm or manually by a user). Once the conditional buy/sell block has
initiated placement of the order, the order is not updated based on subsequent changes in the
provided price and/or quantity values. The conditional buy/sell block may provide one or
more discrete outputs that provide fill confirmation and/or order request discrete events.
The conditional buy/sell block may include an option to specify that orders generated by the
conditional buy/sell block should stay in the order book even if the algorithm is deleted,
halted, stopped, or paused. The conditional buy/sell block may include an option to specify
that an order generated by the conditional buy/sell block is to be marked as hung while it is
displayed in the order book, which may make it easier to identify an improperly functioning
or incomplete algorithm (if, for example, orders are not expected to stay in the order book).
The conditional buy/sell block may also include an option to specify a color or textual flag
to be associated with orders placed by the conditional buy/sell block to make them easier to

identify in an order window, for example.

[00159] An order handler block may receive an order event on a discrete input and
manage the corresponding order based on price and quantity values provided by two

continuous numeric inputs. If a value provided on a continuous Boolean input becomes

42

WO 2011/049936 PCT/US2010/053172

TRUE, the order is deleted. The order handler block may provide one or more discrete
outputs that provide fill confirmation, delete confirmation, and/or change confirmation
discrete events. The order handler block may provide working quantity and/or filled
quantity on continuous numeric outputs. The order handler block may include an option to
specify that orders managed by order handler block should stay in the order book even if the
algorithm is deleted, halted, stopped, or paused.

[00160] An IF-THEN-ELSE instrument block may have three continuous inputs: a
Boolean IF input, an instrument THEN input, and an instrument ELSE input. The IF-
THEN-ELSE instrument block has one continuous instrument output. If the IF input value
is TRUE, the output is the instrument value of the THEN input. If the IF input value is
FALSE, the output is the instrument value of the ELSE input. The [F-THEN-ELSE
instrument block may have a rectangular shape with a “?” symbol in the middle, one
continuous Boolean IF input and two continuous instrument ELSE and THEN inputs on the
left side, and one continuous instrument output on the right side. The IF-THEN-ELSE
instrument block is similar to the IF-THEN-ELSE block discussed above but specialized for

instrument values.

[00161] An instrument attribute at price block may have a continuous instrument input, a
continuous numeric input, and a continuous numeric output. The instrument attribute at
price block may take an instrument name (provided by the continuous instrument input) and
a price (provided by the continuous numeric input) and output a value for a specified
attribute of that instrument at the specified price. Attributes may include bid quantity, ask
quantity, real (non-implied) bid quantity, real (non-implied) ask quantity, bid headcount
(number of bid orders in the market at the specified price), and ask headcount (number of
ask orders in the market at the specified price). When placed, the user may be prompted to
enter the attribute to be provided by the instrument attribute at price block. Alternatively,
the instrument attribute at price block may default to a predefined value such as bid
quantity. The specified attribute may be changed by the user during the design of the
algorithm by, for example, selecting the instrument attribute at price block and using an
action such as a menu item or double-click to be prompted to enter an attribute. The
specified attribute may also be changed if the instrument attribute at price block is specified

to be variable using the variable area 313 discussed below.

43

WO 2011/049936 PCT/US2010/053172

[00162] A spread between block may have two continuous instrument inputs and a
continuous instrument output. The spread between block may take two instrument names
(for example, one from a “front leg” input and the other from a “back leg” input) and output
an instrument name corresponding to the exchange listed spread of the two provided
instruments (for example, “front leg — back leg”). For example, a spread between block
may be used to reference a spread between two different instruments such as “CLZ0”
(December Crude 2010) and “CLF1” (Jan Crude 2011). These “legs” may be referred to as
the “front leg” and “back leg,” respectively. The corresponding output of the spread
between block is the exchange listed spread instrument, in this example the exchange listed
instrument “CLZ0-CLF1” (the December 2010 — January 2011 spread market). This block
may be used to improve programming safety to reduce errors in the process of correctly
referencing spreads between instruments. For example, the two input instruments may be
denoted as variables that can be changed when the algorithm is running or specified to be
different exchange listed spreads for different orders being managed by the algorithm. The
spread between block provides safety by finding the “correct” listed spread instrument
without needing a third variable to be set or changed to match the two individual instrument
variables. The spread between block may also be used to locate or search for the existence

of certain exchange listed spreads.

[00163] A trade block may provide trade data in discrete events on a discrete event
output for an instrument provided on a continuous instrument input. The discrete events
include trade price and trade quantity values associated with each trade. The trade data may
be received from an exchange, for example. The trade price and trade quantity may be
extracted from the discrete events by a value extractor block, a value accumulator block, a

discrete min block, and/or a discrete max block, for example.

[00164] An order block may allow an existing order (that is, an order that has already
been placed outside of the algorithm and is not being managed by another algorithm) to be
managed according to the defined algorithm. For example, the order block may be used to
provide particular types of auto-hedging routines to limit orders that have been placed
manually by a user. The order block provides a continuous instrument output of the
instrument the existing order is for and continuous numeric outputs for the quantity, price,
and executed quantity for the existing order. The order block also provides a discrete output

for order discrete events related to the order such as fill confirmations. In certain

44

WO 2011/049936 PCT/US2010/053172

embodiments, if a defined algorithm includes an order block it may be presented in a list of
available algorithms to be applied to an existing order in a trading interface include an order
window, for example. As another example, an order identifier may be provided as a
variable to the algorithm when it is run or specified in the order block itself. When applied
to the existing order, the defined algorithm including the order block may then manage the

order according to the algorithm.

[00165] A fill calculator block may provide a discrete output for spread fill discrete
events. The fill calculator block may be used when the algorithm buys/sells a custom
spread without using a legger block or a custom spread block. The fill calculator block
receives multiple continuous instrument inputs and a discrete input for each trade execution
(fill) leg of the spread, the former providing the instruments for the legs and the latter
providing discrete events for fill confirmations. After instruments have been provided for
the legs of the spread, the fill calculator block may be configured by, for example, selecting
the fill calculator block and using an action such as a menu item or double-click to be
prompted to specify parameters and settings. Parameters that may be specified for each leg
of the spread include “multiple” (the coefficient of the spread leg), “trade quantity”
(quantity for each leg of the spread, where a positive number is a buy and a negative
number is a sell), and “net change” (toggle whether to convert the custom spread calculation
to a net change rather than price). Settings that may be specified include “side” (buy or sell
the custom spread for the fill calculator) and “flag” (specifies a user-defined flag associated

with a spread fill discrete event to make identifying them easier).

[00166] An accumulator block may receive an order or fill discrete event on a discrete
input and provide on a continuous numeric output the accumulated quantity for the received
discrete events. For example, if an accumulator block is connected to a market maker
block, the accumulator block may increase the value of its continuous numeric output for
each partial fill discrete event received from the market maker block. This block may be
used to keep track of the total number of fills, for example. The accumulator block may be
a pass-through block so each discrete event received is passed out through a corresponding
discrete output. The accumulator block may include a reset discrete input which, upon
receiving an event, will reset the accumulated quantity to 0. The accumulator block may be
similar to the value accumulator block discussed below but with more restricted

functionality because it accumulates only the filled quantity.

45

WO 2011/049936 PCT/US2010/053172

[00167] Discrete blocks may include generator, value extractor, value accumulator, value
bucket, discrete moving average, state, branch, multiplexer, funnel, sequencer, discrete min,

and discrete max blocks, for example.

[00168] A gencrator block may provide a discrete event on a discrete output whenever a
condition is TRUE. The condition may be provided by a continuous Boolean input so that
whenever the condition input becomes TRUE, an event is generated. Alternatively, the
condition may be specified to be an event such as: “on start” (the condition is TRUE when
the algorithm is started and FALSE thereafter so that a single discrete event is provided
when the algorithm is started), “on change” (the condition is TRUE whenever the
continuous Boolean input value changes so that going from TRUE to FALSE or FALSE to
TRUE both generate a discrete event), “every X (the condition is TRUE once each
specified time interval, where the interval may be specified in minutes, seconds, or

milliseconds).

[00169] A value extractor block may receive a discrete event on a discrete input and
extract a user-specified value from the event. Alternatively, the value extractor block may,
when the discrete event is received, evaluate a user-defined equation to determine the
extracted value. The exacted value may then be provided on a continuous output. The
value type of the output depends on the type of value extracted. The following expressions
may be available for use in specifying the value to be extracted from the discrete event:
“instrument” (providing the instrument associated with the discrete event), “fill price”
(providing the fill price associated with the discrete event), “fill quantity” (providing the fill
quantity associated with the discrete event), “order quantity” (providing the order quantity
associated with the discrete event), “order price” (providing the order price associated with
the discrete event), “executed quantity” (providing the accumulation of fills with regard to
the order quantity), “working quantity” (providing the accumulation of a non-executed
order quantity at a specific order price), “trade quantity” (providing the quantity of a trade
executed at an exchange), “trade price” (providing the price of a trade executed at an
exchange), and “variable” (providing the value of a specified user-defined variable or the
value of any other block output in the algorithm that is not part of a virtualized group
block). In certain embodiments, the value extractor block may reference a value from
another block’s output. The value may be referenced using a “variable” expression

discussed above or the value may be provided to a continuous variable input of the value

46

WO 2011/049936 PCT/US2010/053172

extractor block, for example. The value extractor block may be a pass-through block so

cach discrete event received is passed out through a corresponding discrete output.

[00170] A value accumulator block may receive a discrete event on a discrete input and
extract a user-specified value from the event to accumulate the value as each discrete event
is received. The accumulated value is provided on a continuous numeric output. The
following expressions may be available for use in specifying the value to be extracted from
the discrete event: “fill price” (providing the fill price associated with the discrete event),
“fill quantity” (providing the fill quantity associated with the discrete event), “order
quantity” (providing the order quantity associated with the discrete event), “order price”
(providing the order price associated with the discrete event), “executed quantity”
(providing the accumulation of fills with regard to the order quantity), “working quantity”
(providing the accumulation of a non-executed order quantity at a specific order price),
“trade quantity” (providing the quantity of a trade executed at an exchange), “trade price”
(providing the price of a trade executed at an exchange), and “variable” (providing the value
of a specified user-defined variable or the value of any other block output in the algorithm
that is not part of a virtualized group block). The value accumulator block may be a pass-
through block so each discrete event received is passed out through a corresponding discrete
output. The value accumulator block may include a reset discrete input which, upon
receiving an event, will reset the accumulated value to 0. The value accumulator block is
similar to the accumulator block discussed above but supports more flexible configuration

of what value is accumulated.

[00171] A value bucket block may provide for creating a table of key-value pairs. The
table may be a hash table, for example. The key for the table of the value bucket block is
referred to as a bucket hole. The value for the table corresponding to a particular bucket
hole (that is, the key of the table) is referred to as a bucket value. The value bucket block
receives a discrete event on a discrete input. When the discrete event is received, a user-
defined equation for the bucket hole is evaluated to determine the appropriate entry in the
table. A user-defined equation for the bucket value is then evaluated to determine a new
bucket value for the entry in the table corresponding to the determined bucket hole. As
discussed below, the new bucket value may be combined with or replace the previous
bucket value. When placed, the user may be prompted to enter the equations for the bucket

hole and bucket value. Alternatively, the value bucket block may default to predefined

47

WO 2011/049936 PCT/US2010/053172

equations such as a bucket hole of “0” and a bucket value of “0”. The specified equations
may be changed by the user during the design of the algorithm by, for example, selecting
the value bucket block and using an action such as a menu item or double-click to be
prompted to enter one or both of the bucket hole and bucket value equations. The equations
may be entered textually or using building block buttons similar to the building block
buttons 215 discussed above, for example. Expressions available for use in specifying the
equations (which may be provided by building block buttons) may include “instrument”
(providing the instrument associated with the discrete event), “fill price” (providing the fill
price associated with the discrete event), “fill quantity” (providing the fill quantity
associated with the discrete event), “order quantity” (providing the order quantity associated
with the discrete event), “order price” (providing the order price associated with the discrete
event), “executed quantity” (providing the accumulation of fills with regard to the order
quantity), “working quantity” (providing the accumulation of a non-executed order quantity
at a specific order price), “trade quantity” (providing the quantity of a trade executed at an
exchange), “trade price” (providing the price of a trade executed at an exchange), and
“variable” (providing the value of a specified user-defined variable or the value of any other
block output in the algorithm that is not part of a virtualized group block). As part of
specifying the value bucket equation, a user may also configure how a new bucket value is
combined with the previous bucket value. For example, the new bucket value may be added
to the previous bucket value (providing for a summation of the bucket values determined for
the same bucket hole for each received discrete event). As another example, an average of
the bucket values determined for the same bucket hole may be determined. As another
example, the new bucket value may replace the previous bucket value (providing the most
recent value as the bucket value for a particular bucket hole). The value bucket may default
to summing the bucket values for a particular bucket hole, for example. The value bucket
block may be a pass-through block so each discrete event received is passed out through a
corresponding discrete output. The value bucket block may also have a hole continuous
numeric input that provides a value to be used as the bucket hole so that the corresponding
bucket value for the provided bucket hole is provided on a value continuous numeric output.
The value bucket block may include a reset discrete input which, upon receiving an event,

will reset the stored table.

[00172] A discrete moving average block may provide a moving average for a value

determined by evaluating a specified user-defined equation each time a discrete event is

48

WO 2011/049936 PCT/US2010/053172

received at a discrete input. The number of data points to be used in determining the
moving average is specified by a continuous numeric input. The moving average is
provided to a continuous numeric output. The discrete moving average block may keep a
list of the evaluated data points until the number of data points specified by the
corresponding input has been reached, at which point the newest data point may be added to
the list, the oldest removed from the list, and the moving average be calculated over the data
points in the list. When placed, the user may be prompted to enter the equation to be
cvaluated. Alternatively, the discrete moving average block may default to a predefined
value such as 0 for the equation. The specified equation may be changed by the user during
the design of the algorithm by, for example, selecting the discrete moving average block
and using an action such as a menu item or double-click to be prompted to enter an
equation. The equation may be entered textually or using building block buttons similar to
the building block buttons 215 discussed above, for example. Expressions available for use
in specifying the equation (which may be provided by building block buttons) may include
“instrument” (providing the instrument associated with the discrete event), “fill price”
(providing the fill price associated with the discrete event), “fill quantity” (providing the fill
quantity associated with the discrete event), “order quantity” (providing the order quantity
associated with the discrete event), “order price” (providing the order price associated with
the discrete event), “executed quantity” (providing the accumulation of fills with regard to
the order quantity), “working quantity” (providing the accumulation of a non-executed
order quantity at a specific order price), “trade quantity” (providing the quantity of a trade
executed at an exchange), “trade price” (providing the price of a trade executed at an
exchange), and “variable” (providing the value of a specified user-defined variable or the
value of any other block output in the algorithm that is not part of a virtualized group
block). The discrete moving average block may also take a discrete input that is a reset
input. When a discrete event is received by the reset input, the recorded data points are
discarded. This may result in the moving average output being 0 or “Not a Number” (NaN).
The discrete moving average block may also provide an OK continuous Boolean output that
indicates whether a sufficient number of data points have been recorded to fully calculate
the moving average. The OK output is FALSE until the needed number of data points have
been recorded and TRUE thereafter (until reset). For example, if the number of data points
input provides a value of 20, 20 data points (that is, 20 evaluations of the specified equation,

each triggered by the receipt of a discrete event) will need to be recorded before the OK

49

WO 2011/049936 PCT/US2010/053172

output becomes TRUE. The discrete moving average block may also provide a number of
data points continuous numeric output that indicates the number of data points that have
been recorded. The discrete moving average block may be a pass-through block so each

discrete event received is passed out through a corresponding discrete output.

[00173] A state block may receive a discrete event on a discrete input and evaluate a
conditional for each discrete output to determine whether the discrete event should be
provided on the discrete output. The state block may be used to design a state machine
which is a model of behavior composed of a finite number of states, transitions between
those states, and actions, for example. Multiple state blocks may be linked together similar
to a “flow” graph where a user may inspect the way the logic runs when certain conditions
are met. Because a current state is determined by past states, it may essentially record
information about the past. A transition indicates a state change and is described by a
conditional that would need to be fulfilled to enable the transition. The state block allows
the user to define an exit action and the conditional that defines the transition. For example,
in a state block providing two discrete outputs each corresponding to a different state
transition, the user specifies a conditional for each. After a discrete event is received, the
state block waits for one or more of the conditionals associated with each transition to
become TRUE (if, when the discrete event is received, none of the conditionals are TRUE).
When the conditional associated with a particular state transition evaluates to TRUE, the
state block provides the discrete event (that has been held since it was received) on the
output associated with that particular state transition. A conditional may be provided on a
continuous Boolean input. Alternatively, the conditional may be provided by a specified
user-defined equation that evaluates to a Boolean value. The specified equation may be
changed by the user during the design of the algorithm by, for example, selecting the state
block and using an action such as a menu item or double-click to be prompted to enter the
equation. The equation may be entered textually or using building block buttons similar to
the building block buttons 215 discussed above, for example. A state block may be used to
evaluate a user defined pattern in a market such as if there are multiple consecutive trades at
non-lower prices. These signals may be used as a conditional input into a trading block
such as a market maker block, for example. A state block could also evaluate information
such as whether a discrete event is a buy or a sell fill message, for example. Expressions
available for use in specifying the equation (which may be provided by building block

buttons) may include “instrument” (providing the instrument associated with the discrete

50

WO 2011/049936 PCT/US2010/053172

event), “fill price” (providing the fill price associated with the discrete event), “fill quantity”
(providing the fill quantity associated with the discrete event), “order quantity” (providing
the order quantity associated with the discrete event), “order price” (providing the order
price associated with the discrete event), “executed quantity” (providing the accumulation
of fills with regard to the order quantity), “working quantity” (providing the accumulation
of a non-executed order quantity at a specific order price), “trade quantity” (providing the
quantity of a trade executed at an exchange), “trade price” (providing the price of a trade
executed at an exchange), and “variable” (providing the value of a specified user-defined
variable or the value of any other block output in the algorithm that is not part of a

virtualized group block).

[00174] A branch block may receive a discrete event on a discrete input and evaluate a
conditional. If the conditional is TRUE, then the discrete event will be provided on a first
discrete output (the “YES” path) and if the conditional is FALSE, then the discrete event
will be provided on a second discrete output (the “NO” path). The conditional may be
provided on a continuous Boolean input. Alternatively, the conditional may be provided by
a specified user-defined equation that evaluates to a Boolean value. The specified equation
may be changed by the user during the design of the algorithm by, for example, selecting
the branch block and using an action such as a menu item or double-click to be prompted to
enter the equation. The equation may be entered textually or using building block buttons
similar to the building block buttons 215 discussed above, for example. A branch block
may be used to evaluate whether the discrete event is a buy or a sell fill event, for example.
A “buy?” building block button may be used to build such an equation. Other expressions
available for use in specifying the equation (which may be provided by building block
buttons) may include “instrument” (providing the instrument associated with the discrete
event), “fill price” (providing the fill price associated with the discrete event), “fill quantity”
(providing the fill quantity associated with the discrete event), “order quantity” (providing
the order quantity associated with the discrete event), “order price” (providing the order
price associated with the discrete event), “executed quantity” (providing the accumulation
of fills with regard to the order quantity), “working quantity” (providing the accumulation
of a non-executed order quantity at a specific order price), “trade quantity” (providing the
quantity of a trade executed at an exchange), “trade price” (providing the price of a trade

executed at an exchange), and “variable” (providing the value of a specified user-defined

51

WO 2011/049936 PCT/US2010/053172

variable or the value of any other block output in the algorithm that is not part of a

virtualized group block).

[00175] A multiplexer block may receive a discrete event on a discrete input and provide
the discrete event on a particular discrete output. For example, the multiplexer block may
receive a discrete event from an order handler block and based on the type of the discrete
event (for example, fill, change, or delete), provide it on the appropriate discrete output of
the multiplexer block. When placed, the user may be prompted to specify which discrete
event types for which outputs are provided. Alternatively, the multiplexer block may
default to a predefined configuration of providing an output for every discrete event type.
The specified discrete event types for which outputs are provided may be changed by the
user during the design of the algorithm by, for example, selecting the multiplexer block and
using an action such as a menu item or double-click to be prompted to specify the discrete
event types. The multiplexer block may be used in conjunction with the order handler block

to manage an order, for example.

[00176] A funnel block may receive discrete events on two or more discrete inputs and
provide them on a single discrete output. The funnel block does not hold a discrete event, it
passes it through to the output. The funnel block may be used in conjunction with state

blocks that need multiple inputs, for example.

[00177] A sequencer block may guarantee the order in which discrete events are passed
through the outputs. The sequencer block may have a discrete input and two or more
discrete outputs. When a discrete event is received at the input, the sequencer block
provides the discrete event to each output in order. That is, in the processing for a received
discrete event, the sequencer blocker will first provide the discrete event to the first output,
and then the discrete event will be provided to the second output, and so on. This may
allow a user to precisely determine which order blocks which receive discrete inputs are
updated in the algorithm. However, if multiple blocks are connected to the same discrete
output of the sequencer block, the order those blocks receive the discrete event is

unspecified. This block may also be referred to as a sequence block.

[00178] A discrete min block may compare two discrete inputs and provide a continuous
numeric output of the minimum value of a specified attribute (for example, trade price,

trade quantity, etc.). When a discrete event is received on one of the inputs, the specified

52

WO 2011/049936 PCT/US2010/053172

attribute value is extracted from the event and stored. The extracted value is compared with
the most recently stored value for the other discrete input to determine which is the smaller
value and that value is provided on the continuous numeric output. If no discrete event has
been received for an input, the value extracted from the other input may always treated as
the larger value. As an alternative, the value for a particular discrete input may simply
default to 0. The discrete min block may be a pass-through block so each discrete event
received is passed out through a corresponding discrete output. The discrete min block may
include a reset discrete input which, upon receiving an event, will reset the stored values for

each discrete input and update the minimum output correspondingly.

[00179] A discrete max block may compare two discrete inputs and provide a continuous
numeric output of the maximum value of a specified attribute (for example, trade price,
trade quantity, etc.). When a discrete event is received on one of the inputs, the specified
attribute value is extracted from the event and stored. The extracted value is compared with
the most recently stored value for the other discrete input to determine which is the larger
value and that value is provided on the continuous numeric output. If no discrete event has
been received for an input, the value extracted from the other input may always treated as
the larger value. As an alternative, the value for a particular discrete input may simply
default to 0. The discrete max block may be a pass-through block so each discrete event
received is passed out through a corresponding discrete output. The discrete max block may
include a reset discrete input which, upon receiving an event, will reset the stored values for

each discrete input and update the maximum output correspondingly.

[00180] Miscellaneous blocks may include min, max, rounding, display to decimal, not,
once true, is number, moving average, conditional f(x), numeric f(x), average, timer, note,

random number, square root, log, and pause blocks, for example.

[00181] A min block may compare two continuous numeric inputs to determine which is
the smaller value and output it. The min block may have a triangular shape with “MIN”
text in the middle, two continuous numeric inputs on the left side, and one continuous

numeric output on the right side.

[00182] A max block may compare two continuous numeric inputs to determine which is

the larger value and output it. The max block may have a triangular shape with “MAX” text

53

WO 2011/049936 PCT/US2010/053172

in the middle, two continuous numeric inputs on the left side, and one continuous numeric

output on the right side.

[00183] A rounding block may round a number provided by a continuous numeric input
to the nearest increment provided by a continuous numeric input to produce one continuous
numeric output. If no increment value is provided, the round block may round to the
nearest integer. In addition, a user may specify one of three options for the rounding block:
normal rounding, always up rounding, and always down rounding. Normal rounding uses
the traditional rounding rules (for example, 0.5 rounds up to 1 and 0.49 rounds down to 0).
Always up rounding will round the number to the higher increment if the value falls
between two increments (for example, 2.1 rounds up to 3 and 2 rounds to 2). Always down
rounding will round the number to the lower increment if the value falls between two
increments (for example, 2.9 will round down to 2 and 2 rounds to 2). If no option is
specified, the rounding block may default to normal rounding, for example. The rounding
block may have a rectangular shape with “Round” text in the middle, two continuous

numeric inputs on the left side, and one continuous numeric output on the right side.

[00184] A display to decimal block may use a number provided by a continuous numeric
input and an instrument provided by a continuous instrument input to outputs number in
decimal form. For example, a display to decimal block may be utilized if a user wishes to
use a number block to feed a value such as a price into the rest of the algorithm (perhaps as
a variable) without having to calculate the value in decimal format. The user may be used
to seeing the price of the instrument ZN as 117125, which may represent a price of 117 and
12.5/32nds. With the display to decimal block, the number 117125 may be provided as an
input, along with the instrument, and the display to decimal block will convert the number
to the appropriate decimal format value (here, 117.390625) for use by the rest of the
algorithm. The display to decimal block may have a rectangular shape with “D2Dec” text
in the middle, one continuous instrument input and one continuous numeric input on the left

side, and one continuous numeric output on the right side.

[00185] A NOT block may perform a logical negation of a continuous Boolean input
such that if the input value is TRUE the output is FALSE and if the input value is FALSE
the output is TRUE. The NOT block may have a rectangular shape on the left side and an

“"’

arched shape to the right side with a negation symbol (“!”” or “—”) in the middle, one

54

WO 2011/049936 PCT/US2010/053172

continuous Boolean input on the left side, and one continuous Boolean output on the right

side.

[00186] A once true block may provide a continuous Boolean output of TRUE for the
life of the algorithm when a continuous Boolean input turns TRUE. Until the input value
become TRUE at least once, the output value of the once true block is FALSE. Once the
input value has become TRUE, the once true block always outputs a value of TRUE
regardless if the input value subsequently changes. The once true block may have a
rectangular shape on the left side and an arched shape to the right side with “T” text in the
middle, one continuous Boolean input on the left side and one continuous Boolean output

on the right side. This block may also be referred to as a once true always true block.

[00187] An is number block may provide a continuous Boolean output of TRUE if the
value provided on a continuous numeric input is a number and output FALSE if the
provided value is “Not a Number” (NaN). The is number block may have a rectangular
shape on the left side and an arched shape to the right side with “IsNum?” text in the
middle, one continuous numeric input on the left side and one continuous Boolean output

on the right side.

[00188] A moving average block may take a data value (which may be changing over
time, such as a price or quantity) as a continuous numeric input and a number of minutes
value as a continuous numeric input and provide a moving average over the specified
number of minutes as a continuous numeric output. The moving average block may record
the data value every second. For example, if a user desires to have a one minute moving
average, the moving average block will record 60 data points and average them for the
output. The moving average block may also take a continuous Boolean value that indicates
whether the data value input is valid. This input is optional and default to TRUE. When the
data value is about to be recorded (by default once per second), the moving average block
checks to see if the valid input is TRUE. If so, the data value is recorded as a data point. If
the valid input is FALSE, the data value is not recorded as a data point. The moving
average block may also take a discrete input that is a reset input. When a discrete event is
received by the reset input, the recorded data points are discarded. Depending on the data
value being recorded, this may result in the moving average output being 0 or “Not a

Number” (NaN). The moving average block may also provide an OK continuous Boolean

55

WO 2011/049936 PCT/US2010/053172

output that indicates whether a sufficient number of data points have been recorded to fully
calculate the moving average. The OK output is FALSE until the needed number of data
points have been recorded and TRUE thereafter (until reset). For example, if number of
minutes input provides a value of 20 (for a 20 minute moving average), 1200 data points (1
data point for every second over the 20 minute period) will need to be recorded before the
OK output becomes TRUE. The moving average block may also provide a number of data
points continuous numeric output that indicates the number of data points that have been
recorded. The moving average block may have a rectangular shape with “MvgAvg” text in
the middle, four inputs (2 continuous numeric inputs, 1 continuous Boolean input, and 1
discrete input) on the left side, and three outputs (2 continuous numeric outputs and 1

continuous Boolean output) on the right side.

[00189] A conditional f(x) block may evaluate a user-defined equation that provides a
value for a continuous Boolean output. When placed, the user may be prompted to enter the
equation to be evaluated. Alternatively, the conditional f(x) block may default to a
predefined value such as TRUE. The specified equation may be changed by the user during
the design of the algorithm by, for example, selecting the conditional f(x) block and using
an action such as a menu item or double-click to be prompted to enter an equation. The
equation may be entered textually or using building block buttons similar to the building
block buttons 215 discussed above, for example. In certain embodiments, the conditional
f(x) block may reference a value from another block’s output. The value may be referenced
using a building block button 215 that specifies the block and output or the value may be
provided to a continuous variable input of the conditional f(x) block. The conditional f(x)
block may have a rectangular shape on the left side and an arched shape to the right side
with “f(x)” text in the middle, no inputs on the left side (unless values are referenced in the
user-defined equation, in which case continuous inputs are provided corresponding to each

variable), and one continuous Boolean output on the right side.

[00190] A numeric f(x) block may evaluate a user-defined equation that provides a value
for a continuous numeric output. When placed, the user may be prompted to enter the
equation to be evaluated. Alternatively, the numeric f(x) block may default to a predefined
value such as 0. The specified equation may be changed by the user during the design of
the algorithm by, for example, selecting the numeric f(x) block and using an action such as

a menu item or double-click to be prompted to enter an equation. The equation may be

56

WO 2011/049936 PCT/US2010/053172

entered textually or using building block buttons similar to the building block buttons 215
discussed above, for example. In certain embodiments, the numeric f(x) block may
reference a value from another block’s output. The value may be referenced using a
building block button 215 that specifies the block and output or the value may be provided
to a continuous variable input of the numeric f(x) block. The numeric f(x) block may have
a rectangular shape on the left side and an arched shape to the right side with “f(x)” text in
the middle, no inputs on the left side (unless values are referenced in the user-defined
equation, in which case continuous inputs are provided corresponding to each variable), and

ong continuous numeric output on the right side.

[00191] In certain embodiments, the conditional f(x) block and the numeric f(x) block
may be consolidated into a single block such as an f(x) block. An f(x) block may evaluate a
user-defined equation that provides either a Boolean or a numeric value for a continuous
variable output. When placed, the user may be prompted to enter the equation to be
evaluated. Alternatively, the f(x) block may default to a predefined value such as 0. The
specified equation may be changed by the user during the design of the algorithm by, for
example, selecting the f(x) block and using an action such as a menu item or double-click to
be prompted to enter an equation. The equation may be entered textually or using building
block buttons similar to the building block buttons 215 discussed above, for example. In
certain embodiments, the f(x) block may reference a value from another block’s output.

The value may be referenced using a building block button 215 that specifies the block and
output or the value may be provided to a continuous variable input of the f(x) block. The
f(x) block may have a rectangular shape on the left side and an arched shape to the right
side with “f(x)” text in the middle, no inputs on the left side (unless values are referenced in
the user-defined equation, in which case continuous inputs are provided corresponding to

cach variable), and one continuous variable output on the right side.

[00192] An average block may average the values of two or more continuous numeric
inputs to produce one numeric continuous output. For example, the average block may
have 10 inputs. As another example, the average block may begin with one input and each
time a connection is made to an average block input a new input may be dynamically
provided. The values of the inputs are summed and then divided by the number of inputs

providing values to produce the output. The average block may have a rectangular shape

57

WO 2011/049936 PCT/US2010/053172

with “AVE” or “AVG” text in the middle, two or more continuous numeric inputs on the

left side, and one continuous numeric output on the right side.

[00193] A timer block may provide continuous numeric outputs for the hour, minute, and
second of a time. For example, the time may be the current time. The current time may be
the time at the computing device providing the trading interface to a user or the current time
at an algorithm server, for example. As another example, the time may be from when the
algorithm was started running. As another example, the time may be the time since the start
of the current trading session. As another example, the time may be from 12am CST of the
current trading session. As another example, the time may be a time provided by an
exchange. The timer block may have a rectangular shape with “TIMER” text or a clock

symbol in the middle and three continuous numeric outputs on the right side.

[00194] A note block may provide a text box for users to enter comments and notes about
the algorithm being designed. A note block may not have any inputs or outputs. When
placed, the user may be prompted to enter the text for the note block. Alternatively, the
note block may default to a predefined value such as “Add note here.” The specified value
may be changed by the user during the design of the algorithm by, for example, selecting
the note block and using an action such as a menu item or double-click to be prompted to
enter a value. The note block does not affect the operation of the algorithm. The note block

may have a rectangular shape with the text value displayed in the middle.

[00195] A random number block may provide a random number to a continuous numeric
output. The random number may be specified to be an integer or a floating point value
when the random number block is placed or later configured. The random number block
may default to providing an integer value. The random number may be between a
minimum value specified by a continuous numeric input and a maximum value specified by
a continuous numeric input. If the minimum input is not provided, it may default to 0, for
example. If the maximum input is not provided it may default to the maximum integer
supported by the computing device for an integer output or to 1 for a floating point output.
The random number block may also have a discrete input to signal when a new random
number should be provided. If a discrete input is not provided, the random number block
may provide a new random number once per second, for example. The random number

block may be a pass-through block so each discrete event received is passed out through a

58

WO 2011/049936 PCT/US2010/053172

corresponding discrete output. The random number block may have a square shape with a
question mark symbol (“?””) or “RAND” text in the middle, two continuous numerical
inputs and one discrete input on the left side, and one continuous numerical output on the

right side.

[00196] A square root block may provide a square root value on a continuous numeric
output for a value provided on a continuous numeric input. The output may be “Not a
Number” (NaN) if the input is a negative number. The square root block may have a
triangular shape with a square root symbol (“N”) in the middle, one continuous numeric

input on the left side, and one continuous numeric output on the right side.

[00197] A log block may provide a logarithm value on a continuous numeric output for a
value provided on a continuous numeric input. A base value for the logarithm may be
provided on a continuous numeric input. If the base value is not provided it may default to
the natural logarithm, for example. The log block may have a square shape with “Log” text
in the middle, two continuous numeric inputs on the left side, and one continuous numeric

output on the right side.

[00198] A pause block may pause the entire algorithm if a discrete event is received on a
discrete input or if a value provided on a continuous Boolean input becomes TRUE. In
certain embodiments, if the Boolean input value becomes FALSE again, the algorithm may
resume running. In certain embodiments, once the algorithm has been paused because of
the pause block, the algorithm must be manually restarted. The pause block may be
octagonal shaped with a red background, “Stop” text in the middle, one continuous Boolean

input and one discrete input on the left side.

[00199] Instructions or logic (herein referred to as programming code) representing the
algorithm are generated based on the definition of the algorithm. In certain embodiments,
the programming code is source code (such as human and/or compiler readable text) which
may subsequently be compiled. In certain embodiments, the programming code is in an
intermediate language. In certain embodiments, the programming code includes machine-
executable instructions. In certain embodiments, generation of programming code includes
compilation of generated source code and/or intermediate language code. In certain
embodiments, generation of programming code does not include compilation of generated

source code and/or intermediate language code and such compilation is a separate process.

59

WO 2011/049936 PCT/US2010/053172

The generated programming code (after compilation, if appropriate) may then be simulated
and/or used to trade according to the defined algorithm. As used herein, where
programming code is discussed to be run, executed, and/or simulated, it is assumed that the
generated programming code has additionally been compiled, if appropriate to be run,

executed, and/or simulated.

[00200] In certain embodiments, the programming code is generated as the algorithm is
being designed. Note that while the algorithm is being designed, the definition of the
algorithm may be changing as blocks and/or connections are added, modified, and/or
removed. In certain embodiments, the programming code is generated automatically when
a change is made to the algorithm definition. In certain embodiments, the programming

code is generated at the request of a user.

[00201] In certain embodiments, the programming code is generated by a component of
the algorithmic trading application of the trading interface 310 at a client device. In certain
embodiments, the programming code is generated by a component of the algorithmic
trading application at another device, such as a algorithm generation device, an algorithm
server similar to the algorithm server 302 discussed above, and/or a gateway similar to the
gateway 120 discussed above, for example. In certain embodiments, the programming code
is generated by more than one component. For example, multiple components of the
algorithmic trading application may work together to generate the code. Such components
may be specialized to generate different aspects or functionalities of the programming code,

for example.

[00202] In certain embodiments, the programming code is generated by more than one
device. For example, programming code may be generated by a client device and an
algorithm server. The programming code generated based on the algorithm definition may
be different based on which component or device is generating it. For example,
programming code generated on the client device may be optimized for execution by the
client device and/or may contain different features (for example, user interface-related
functionality) than programming code generated on an algorithm server (which may not, for
example, include user interface-related functionality). For clarity, unless otherwise noted,

the following discussion is with respect to generation of programming code on the client

60

WO 2011/049936 PCT/US2010/053172

device, but it should be understood that similar actions are taken when the programming

code is generated at another device such as an algorithm server.

[00203] In certain embodiments, the generated programming code is done in an object-

oriented manner using a programming language such as C# and the .NET 4.0 framework.

[00204] In certain embodiments, the programming code is generated by traversing each
block and connection in the algorithm definition. For each block, programming code is
generated. When generating programming code, some blocks may become primitive
variables. For example, an adder block may become a floating point variable whose value
is set to be the sum of the values of the outputs connected to the adder block’s inputs, which
may be determined recursively. Other blocks which may have more complex functionality
may be generated as subclasses derived from base classes. The base class may provide the
core functionality associated with the corresponding block. The generated subclass may
then override virtual methods having return values to provide values specific to the block
for which the programming code is being generated to the core functionality of the base
class. For example, a market maker block placed in the design canvas area 311 may have
programming code generated which is a subclass of a base market maker class. The
subclass may override virtual methods to get values for various inputs of the market maker
block and to specify whether the market maker block was configured to buy or sell. Unlike
the basic blocks discussed above, the market maker block is a trading block which provides

more complex functionality.

[00205] Continuous connections between blocks specify how the connected output
values and input values relate. Continuing the adder example above, the floating point
value representing the output of the adder block may be set to be the sum of the values of
other primitive variables (representing other blocks/outputs) connected to the adder block’s
continuous inputs. In certain embodiments, continuous connections may be used to flatten
the generated programming code so that multiple blocks (that would generate to primitive
variables) with continuous connections may be condensed to simple expressions without

using multiple intermediate variables.

[00206] Discrete connections between blocks are used to generate event generators and

event handlers so that the proper method (the handler) is invoked when a discrete event is

61

WO 2011/049936 PCT/US2010/053172

generated. The discrete event is passed from the event generator to the event handler to be

processed.

[00207] When running, the algorithm responds to actions that cause the state of the
algorithm to change. The actions may include external events such as market events (for
example, a price update, quantity update, order confirmation, trade confirmation, fill
confirmation, or trade notification) or timer events (for example, from a system clock or
alarm). These external events may result in discrete events being generated such as order
confirmation discrete events, trade confirmation discrete events, fill confirmation discrete
events, or trade notification discrete events and/or continuous values such as price or
quantity values for an instrument being updated. The actions may also include internal
events such as discrete events generated by blocks in the algorithm or continuous values

changing.

[00208] When an internal or external discrete event occurs (for example, a trade
confirmation discrete event or a generator block generates a discrete event), each interested
block in the algorithm has an event handler method invoked so that the block may perform
its specified functionality associated with the event. The event handlers may be evaluated
in an unspecified order. For example, the event handlers may be evaluated based on the
order their respective blocks were placed in the algorithm definition. The event handler
processing may include performing the block’s function based on the received event,
updating continuous output values, and genecrating a discrete event and providing it on an

output to other connected blocks.

[00209] When an internal or external continuous value changes (for example, market
data is updated or the system clock’s time changes), each interested block that is directly or
indirectly connected to the source of the data (“downstream blocks”) has its value updated
to reflect the new data. Primitive variables that are a result of some blocks will have their

new values assigned, for example.

[00210] If a continuous output value is updated cither by a discrete event or a continuous
value change, each directly or indirectly connected block to receive the updated value is
added to a list of blocks to be processed. When the blocks interested in the external event
have completed their processing, the list of blocks is then processed so that those blocks

may then act in response to the internal event. Internal events are processed in a manner

62

WO 2011/049936 PCT/US2010/053172

similar to an external event. This process may then be repeated as each block’s processing

gencrates new changes to the state of the algorithm.

[00211] FIGs. 3D-1 through 3D-7 illustrate example programming code generated
according to certain embodiments. Note that the programming code illustrated is only a
portion of programming code that may be generated and is intended to be exemplary and

simplified to emphasize certain features for clarity.

[00212] Programming code may be generated even when no blocks have been placed in
the design canvas area 311, as illustrated in FIG. 3D-1. The generated programming code
includes a new class (“CustomAlgorithm0”) which represents the algorithm being designed.
This new class is a subclass of an Algorithm class, which provides basic interfaces and
functionality for effectuating an algorithm with the algorithmic trading application. The
CustomAlgorithmO class may override virtual methods of the Algorithm class so that
functionality specific to the algorithm being designed may be incorporated into the

framework of the algorithmic trading application and executed.

[00213] Continuing the example, as illustrated in FIG. 3D-2, when a block is placed in
the design canvas area 311, additional programming code may be generated. As discussed
above, some blocks may become primitive variables and the continuous connections
between them tell how they relate. For example, as illustrated, two constant number blocks
(“ConstantNumberBlock0” and “ConstantNumberBlock1”) have been placed in the design
canvas area 311 as well as an adder block (“AdderBlock0). Note that the blocks have not
been connected. The marked portion of the generated programming code illustrates that
these basic blocks are represented in the programming code as primitive variables (of type
“double™).

[00214] As illustrated in FIG. 3D-3, connections have been made from
ConstantNumberBlock0 and ConstantNumberBlock1 to AdderBlock0. Connections specify
the relationship between blocks. The marked portion of the generated programming code
illustrates that the value of AdderBlockO is equal to the value of ConstantNumberBlock0
plus the value of ConstantNumberBlock1. This is because the functionality represented by
the adder block is to add the values of the two inputs.

63

WO 2011/049936 PCT/US2010/053172

[00215] As illustrated in FIG. 3D-4, a market maker block has been placed in the design
canvas area 311. Unlike the basic blocks discussed above, the market maker block is a
trading block which provides more complex functionality. The generated programming
code adds a new class (“CustomMarketMaker(”’) which represents the functionality of the
particular market maker block that has been placed. CustomMarketMaker0 is a subclass of
MarketMaker, which provides the basic functionality for the market maker block. The
CustomMarketMaker(class may override virtual methods with a return type of the
MarketMaker class so that functionality specific to the placed market maker block may be
incorporated into the framework of the algorithmic trading application and executed. In this
case, CustomMarketMaker0 overrides methods that are invoked by logic in the
MarketMaker base class to get the values for the various inputs of the market maker block.
As illustrated in FIG. 3D-5, the quantity input of the placed market maker block has been
connected to the output of the adder block discussed above. The marked portion of the
generated programming code illustrates that the virtual method “GetQty” of the
CustomMarketMakerO class has been overridden to return the value of AdderBlockO.

[00216] Continuing the example, as illustrated in FIG. 3D-6, a connection has been made
between a discrete output and a discrete input. In particular, a connection was made
between the discrete fills output of the market maker block and the reset input of a value
accumulator block. The value accumulator block is a discrete block and similar to a trading
block, a new class (“CustomValueAccumulator0”) is added (not shown). The marked
portions of the generated programming code illustrate that the new subclasses
(“CustomMarketMaker0” and “CustomValueAccumulator0) are instantiated and that the
event “DiscreteObjectGenerated” of MarketMakerBlockO is linked with event handlers for
the CustomAlgorithm0 (“InterceptOrderMessage”) and the ValueAccumulatorBlock0
(“ProcessResetMessage™). Thus, when the MarketMakerBlockO has a fill message, it will
fire the DiscreteObjectGenerated event and all handlers that have been linked will be
notified. In this case, when the ProcessResetMessage handler is notified, it will reset the

accumulator value to 0.

[00217] Continuing the example, as illustrated in FIG. 3D-7, a connection has been made
between an instrument block (“SimpleInstrumentBlock0”) and an instrument attribute block
(“InstrumentFieldBlock0”). The instrument block is generated to be an instance of the

“InstrumentSnapshot” class which updates its continuous outputs based on received market

64

WO 2011/049936 PCT/US2010/053172

data for the instrument “ESZ0.” The InstrumentSnapshot class provides member variables
or properties that may be referenced to get the corresponding value for that attribute of the
instrument. For example, when the “SetAllVariables” (setting all values in the algorithm)
or “HandleUpdate” (setting values that are affected by the update of a particular continuous
value) methods are invoked, the instrument attribute block sets its value to be the “.Bid”

property of the instrument block.

[00218] FIG. 3E illustrates a trading interface 310 according to certain embodiments.
Certain blocks may be specified to be “variable.” For example, constant number blocks,

constant Boolean blocks, and instrument blocks may be specified to be variable.

[00219] The variable area 313 provides for modifying variable blocks. The variable area
313 displays each variable block name and its default value. The variable area may be
selected to change a variable block name and/or its default value. Variables may also be

referred to as parameters of the algorithm.

[00220] As illustrated, the design canvas area 311 includes two blocks that have been
specified as variable, instrument block 321 and constant block 322. A block may be
specified as variable when it is being placed or after it is placed, for example. For example,
a cursor may be used to select the block and then a menu option may be selected to specify
the block should be made variable. A block specified variable may be indicated with a
different color, border, background, pattern, and/or text, for example. Here, the text

“[Variable]” has been appended to the displayed block name.

[00221] As discussed above, the variable area 313 includes a name column 323 with
entries for each variable block 321 and 32 and a default value column 324 with
corresponding default value entries for each variable block. For example, instrument block
321 is named “InstrumentBlock0” and has a default value of “ESZ0” and constant block

322 is named “ConstantBlockQ” and has a default value of <5.”

[00222] A user can select a default value entry in column 324 to change the default value
of the variable block, so that the new default value is used in the evaluation of the
algorithm. Similarly, the user can select a name entry in the name column 323 to change
the name of the respective variable block. The variable blocks 321 and 322 may allow a

user to manipulate the behavior of the algorithm, rather than the underlying logic, by

65

WO 2011/049936 PCT/US2010/053172

changing the value of the variable bock, which acts as a parameter to the algorithm, for

example.

[00223] The control area 314 provides controls for use in designing the algorithm. The
control area 314 may include a play button and a pause button for initiating and pausing
simulation of the algorithm. The simulation of the algorithm may be used to indicate how
the logic of the algorithm will behave. In addition, the control area 314 may include a
generate button (not shown) which will cause programming code to be generated based on
the algorithm. The generate button may be used when programming code is not being
generated automatically based on changes to the algorithm. This may be desirable when the
algorithm being designed is complex and generation of programming code (and the
subsequent compilation of that programming code if appropriate) after each modification to
the algorithm takes an undesirably long time. In certain embodiments, the control area 314
may include a compile button (not shown) which will cause programming code generated
based on the algorithm to be compiled. The compile button may be used when
programming code is not being generated and/or compiled automatically based on changes
to the algorithm. This may be desirable when the algorithm being designed is complex and
compilation of programming code after each modification to the algorithm takes an

undesirably long time.

[00224] FIGs. 3F-3G illustrate a trading interface 310 according to certain embodiments.
The trading interface 310 provides a live feedback feature. The live feedback feature
provides, for a particular block in the design canvas area 311, a display of a value for the
particular block. For example, a live feedback value may be displayed for one or more
inputs and/or outputs of that block. The live feedback value may be displayed in relation to
the block or the corresponding input and/or output, for example. The live feedback may be
updated whenever the value of an input or output for a block changes. Note that the change
in an output for one block may result in a change in the output of another block which takes
the first block’s output as an input (either directly or indirectly), resulting in live feedback

for both blocks being updated.

[00225] As illustrated in FIG. 3F, various blocks 331 have been placed in the design
canvas area 311. For each output of the blocks 331, live feedback 332 is provided showing
the value of the output. Note that blocks 333 are number blocks and live feedback is not

66

WO 2011/049936 PCT/US2010/053172

provided because the value of the output is shown in the display of the blocks 333
themselves. In certain embodiments, live feedback is provided for one or more inputs of a
particular placed block. In certain embodiments, live feedback is provided for both inputs
and outputs of a particular placed block. In certain embodiments, live feedback is provided

for all blocks in the design canvas area 311.

[00226] The live feedback for the instrument block displays a value of “GCJ1.” The live
feedback for the instrument attribute block, which is configured to provide the bid quantity,
displays a value of “3,” representing that the bid quantity for the instrument GCJ1 is 3. The
live feedback for the adder block displays a value of 13, which is the sum of the two input
values 3 (from the instrument attribute block) and 10 (from the first number block). The
live feedback for the divide block displays a value of 6.5, which is the result of dividing the
first input value 13 (from the adder block) by the second input value of 2 (from the second

number block).

[00227] The live feedback may not be provided for certain blocks unless the algorithm is
being simulated. For example, as illustrated in FIG. 3G, live feedback is not provided for
the outputs of the market maker block 335. This is because, unless the algorithm is running
(for example, being simulated), the market maker block 335 does not operate and interact
with a market. Thus, the market maker block 335 does not provide any continuous values
based on its operation (because it is not operating) nor does it generate any discrete events
(again, because it is not operating). Live feedback is also not provided for the outputs of the
value extractor block 336. This is because the value extractor block 336 has a discrete input
and thus its outputs only have values when a discrete event is received. However, unless

the algorithm is running, discrete events are not received.

[00228] The live feedback values to be displayed are provided from the algorithm itself.
For example, generated programming code for the algorithm being designed may include
additional instructions to update the display of a trading interface such as trading interface
310. In certain embodiments, the generated programming code for the algorithm does not
include additional instruments for updating the display of a trading interface because, for
example, no trading interface may be present, such as on an algorithm server 302. As
illustrated in FIGs. 3D-2 and 3D-3, the “SetAllVariables” method, when invoked, invokes a
“SendUpdate” method. The SendUpdate method provides to the user interface an

67

WO 2011/049936 PCT/US2010/053172

identification of the block the update is for, the particular output index the update is for, and
the value (here, the value of the adder block). Thus, whenever the value for a block
changes, the update is provided to the user interface to update the live feedback. The
SendUpdate method may also be invoked by base classes of blocks which generate to
derived classes to provide the user interface updated values. Similarly, as illustrated in FIG.
3D-6, the “InterceptOrderMessage” event handler was registered to be invoked when the
event “DiscreteObjectGenerated” occurs. The InterceptOrderMessage method provides to
the user interface notification the corresponding discrete event. Thus, whenever this

discrete event is generated, the user interface can provide live feedback.

[00229] When an algorithm is running (such as when it is being simulated), live feedback
may be provided for all of the blocks in the design canvas area 311. Because discrete
events occur at particular points in time, an indicator of the occurrence of a discrete event
may be displayed when the event occurs. For example, a discrete input and/or output may
flash, change color, size, or shape, when a discrete event occurs at that input/or output. As
another example, a connection between a discrete input and output may flash, change color,
size, or shape, when a discrete event is provided through the connection. As another
example, an animation along the connection may be provided to represent a discrete event
being provided from the output to the input along the connection. The animation may be,
for example, an icon, such as a red circle, moving along the connection or the connection

may pulsate.

[00230] The live feedback feature provides feedback to a user when an algorithm is being
designed and when an algorithm is being run. The live feedback may allow the user to
evaluate how the logic of the algorithm behaves, including the algorithm’s operational

safety and completeness, general tendencies, and profit/loss possibilities.

[00231] FIGs. 3H-3L illustrate a trading interface 310 according to certain embodiments.
The trading interface 310 provides safety features to reduce potential errors when an

algorithm is designed.

[00232] As illustrated in FIG. 3H, instrument block 341 has been placed in the design
canvas area 311. However, when the instrument block 341 was placed, no instrument was
specified, which is an invalid configuration because the instrument block cannot output the

instrument name if the instrument has not been specified. A warning indicator 342 (here, an

68

WO 2011/049936 PCT/US2010/053172

“"’

icon with an exclamation point (“!”) in a red circle) is displayed near the instrument block
341 to indicate there is a problem and an explanation 343 of the problem is displayed when
a cursor is placed near the instrument block 341. In certain embodiments, other (or
additional) indicators may be displayed to indicate a problem such as the background of the
design canvas area 311 being tinted red and/or a warning or error message being displayed

in a status bar, for example.

[00233] As illustrated in FIG. 31, instrument attribute block 344 has been placed in the
design canvas area 311. However, the instrument attribute block 344, configured to provide
the best bid price for an instrument, has not been provided with a required input: the
instrument name to provide the best bid price for. That is, the instrument attribute block
344 has not been connected to an instrument block (or other block that may provide an
instrument name). Consequently, the algorithm definition is invalid. A warning indicator

and an explanation are also displayed, similar to those in FIG. 3H.

[00234] As illustrated in FIG. 3J, an instrument attribute block 344 and a market maker
block 345 have been placed in the design canvas area 311. A user is attempting to connect
the output of the instrument attribute block 344 (a continuous output with a numeric value
type) to the instrument input of the market maker block 345 (a continuous input with an
instrument value type). The value types for these inputs and outputs are incompatible and
therefore would result in an invalid algorithm definition. An indicator 346 (here, a circle
with a slash through it) is displayed on the attempted connection line to indicate the
connection is not valid. In addition, an explanation 347 is also displayed. Similar feedback
may also be provided if a connection is attempted between a continuous output and a

discrete input.

[00235] As illustrated in FIG. 3K, adder block 348a and adder block 348b have been
placed in the design canvas area 311. A user is attempting to connect the output of adder
block 348b to the input of adder block 348a. However, the output of adder block 348a is
already connected as an input to the adder block 348b. Allowing the attempted connection
would result in a cyclic dependency in the generated programming code. Specifically, in
attempting to generate programming code to determine the value for the adder block 348a

would result in an infinite loop. Thus, such an algorithm definition is invalid and, similar to

69

WO 2011/049936 PCT/US2010/053172

the feedback provided in FIG. 3], the connection is indicated to be invalid and an

explanation is displayed.

[00236] As illustrated in FIG. 3L, generator block 349a, funnel block 349D, value
extractor block 349c¢, and value accumulator block 349d have been placed in the design
canvas area 311. A user is attempting to connect the discrete output of value accumulator
block 349d to a discrete input of funnel block 349b. However, each of funnel block 349b,
value extractor block 349¢, and value accumulator block 349d are pass-through blocks, so
cach discrete event received is passed out through a corresponding discrete output the
output. Thus, when a discrete event is provided by the generator block 349a (also
connected to the funnel block 349b), it will be passed through each connected block.
Allowing the attempted connection would result in an infinite loop in the generated
programming code. Specifically, the generated programming code would, in processing the
discrete event provided by the generator block, infinitely pass the discrete event to each
block in turn to be processed, where that processing includes providing the discrete event to
the next block in the cycle. Thus, such an algorithm definition is invalid and, similar to the
feedback provided in FIG. 3J, the connection is indicated to be invalid and an explanation is

displayed.

[00237] In certain embodiments, warnings and/or error messages may be provided in a
separate area of the trading interface 310. This may allow a user to readily view all
outstanding warnings and errors rather than individually examining each block, for

example.

[00238] FIGs. 3M-3R illustrate a trading interface 310 according to certain embodiments.
The trading interface 310 provides grouping features to allow, for example, reducing clutter,
enabling re-use of portions of algorithms (including creating modules that may be shared
between algorithms), and to enable the virtualizing feature. Reduced clutter and re-use of
portions of algorithms may lead to better algorithms because it reduces the likelihood of
mistakes in the algorithm design. Advantages of the virtualizing feature are discussed

below.

[00239] As illustrated in FIG. 3M, a definition for a simple scalping algorithm has been
designed. As an overview, the scalping algorithm will buy at the best bid price and then sell

at one trading increment above the fill price, making a profit of one trading increment per

70

WO 2011/049936 PCT/US2010/053172

unit bought and sold. More particularly, the algorithm includes a buy market maker block
351 and a sell market maker block 352. The buy market maker block 351 is provided with
an instrument to buy (“ESZ0”) specified by an instrument block. The buy market maker
block 351 is provided with a price to buy at specified by an instrument field block which
provides the best bid price for the instrument. The buy market maker block 351 is provided
with a fixed quantity of 10 to buy specified by a number block. When the buy market
maker block 351 receives fill confirmations for the buy order it is working, a discrete event

is generated.

[00240] The sell market maker block 352 will work the sell orders to cover the position
taken by the buy market maker block 351. The sell market maker block 352 is provided
with the same instrument (“ESZ0”) to sell. The sell market maker block 352 is provided
with a price to sell at specified by an adder block which adds the minimum price increment
for the instrument (provided by an instrument field block) to the fill price (provided by a
value extractor block from the discrete event generated by the buy market maker block 351
when a fill confirmation is received). The sell market maker block 352 is provided with a
quantity to sell specified by an accumulator block which provides the accumulated quantity
that has been bought by the buy market maker block 351, which is extracted from the
discrete events generated when fill confirmations are received by the buy market maker
block 351.

[00241] Thus, when the algorithm is run, the buy market maker block 351 will buy a
quantity of 10 at the best bid price and sell (perhaps across multiple sell orders) a quantity

of 10 at the fill price plus the minimum price increment.

[00242] As illustrated in FIG. 3N, the blocks associated with the covering logic portion
of the algorithm have been selected by drawing a box 353 around them. Other user
interface techniques may also be used to select the blocks of interest to the user such as
selecting with a cursor in combination with the shift or control key being pressed, for

example.

[00243] Once the blocks have been selected, they may be grouped by an action such as

selecting a menu item.

71

WO 2011/049936 PCT/US2010/053172

[00244] As illustrated in FIG. 30, the grouped blocks are then displayed in a group block
353 with a thumbnail image of the blocks contained therein. The group block 353 reduces
the clutter of the design canvas area 311 by reducing the number of blocks and connections
shown. In addition, a group block may be saved in a library of modules so that it may be
loaded in another algorithm and re-used. A group block may also be referred to as a
grouped block. The blocks within the group block may be referred to as a portion of the

defined algorithm, a sub-algorithm, or a subroutine, for example.

[00245] The group block 353 may be created with inputs 354 corresponding to the inputs
of blocks in the group block 353 that are provided values by outputs of blocks not in the
group block 353. For example, as illustrated in FIG. 30, the group block 353 has a
continuous instrument input and a discrete input. The continuous instrument input
corresponds to the continuous instrument inputs of the sell market maker block 352 and the
instrument field block which determines the minimum price increment. The discrete input

corresponds to the discrete input of the accumulator block and the value extract block.

[00246] The group block 353 may be selected and then using an action, such as selecting
a menu item or a double-click, the blocks included in the group block 353 may be edited.
As illustrated in FIG. 3P, a new window with a design canvas area similar to the design
canvas area 311 may be displayed and manipulated in the same manner. The group block
353 includes two new input blocks 355 and 356, which correspond to the inputs of the
group block 353. Input block 355 corresponds to the continuous instrument input of the
group block 353 and input block 356 corresponds to the discrete input of the group block
353. Each input block 355 and 356 has a single output providing the value that is provided
to the respective input of the group block 353.

[00247] Although not shown in FIG. 3P because none of the blocks in the group block
353 have an output connected to a block outside of the group block 353, a group block may
also include output blocks. Similar to the input blocks discussed above, output blocks
correspond to outputs of the group block. Blocks within the group block that have outputs
connected to an output block will provide values to blocks outside of the group block that

are connected to the corresponding output of the group block.

[00248] When designing a group block, input blocks and output blocks may be placed to

create an input or output for the group block. When placed, the user may be prompted to

72

WO 2011/049936 PCT/US2010/053172

specify the type of the input or output. Alternatively, the input or output block may default
to a predefined type such as continuous numeric. The type of the input or output block may
be changed by the user during the design of the algorithm by, for example, selecting the
input or output block and using an action such as a menu item or double-click to be
prompted to enter a type. Similarly, the user may also specify a name for the input or

output block (and thus the corresponding input or output of the group block).

[00249] A group block may contain another group block. This nesting of group blocks

allows for less clutter and potentially greater reusability of various portions of algorithms.

[00250] When generating program code, a group block is generated as a subclass of the
Algorithm class which is nested within the main CustomAlgorithmO class for the algorithm
being designed. When group blocks are nested within other group blocks, the generated
programming code similarly nests each generated subclass. Additionally, any non-primitive
blocks are declared and defined in their nearest group-block parent. So, for example, if a
group block is nested three group blocks deep and it has a market maker block (an example
of a non-primitive block) within it, the subclass of the market maker block will reside in the

three-deep derived algorithm class.

[00251] Returning to the scalping algorithm discussed above, as illustrated in FIG. 3M,
this algorithm has a flaw. Recall that the scalping algorithm aims to buy a the best bid price
and then sell at one trading increment above the fill price, making a profit of one trading
increment per unit bought and sold. If the buy market maker block 351 receives a single fill
for the entire quantity of 10 for the buy order it places, then the algorithm will operate as
intended. However, if more than one fill confirmation is received at more than one price
level, then the algorithm will not function as desired. For example, assume that the buy
market maker block 351 works an order to buy a quantity of 10 at the best bid price of
114125. Then, a first fill confirmation is received for a quantity of 3 (thus, the first fill was
for a quantity of 3 at a fill price of 114125). In response to this fill, the sell market maker
block 352 will work an order to sell a quantity of 3 at a price of 114150 (114125 (fill price)
+ 25 (minimum price increment)). Now assume that the best bid price decreases to 114100.
The buy market maker block 351 will then re-quote its working order to the new (and now
lower) best bid price for a quantity of 7. Then, a second fill confirmation is received for a

quantity of 7 (thus, the second fill was for a quantity of 7 at a fill price of 114100).

73

WO 2011/049936 PCT/US2010/053172

Therefore, the desired behavior of the scalping algorithm is that a first sell order for a
quantity of 3 (to cover the first fill) should be placed at a price of 11450 (114125 + 25) and
a second sell order for a quantity of 7 (to cover the second fill) should be placed at a price of

114125 (114100 + 25).

[00252] However, the algorithm illustrated in FIG. 3M will not properly work orders to
achieve the desired behavior. When the first fill is received, the sell market maker block
352 will place a first cover order to sell a quantity of 3 at a price of 114125 + 25. However,
if the second fill is received before the first cover order is filled, the sell market maker block
352, receiving a new quantity to quote from the accumulator block (which is updated to
reflect that a quantity of 10 has now been filled), will work its cover order for a quantity of
10 at a price of 114100 + 25 (the price of the most recent fill (the second fill) plus the
minimum price increment). Consequently, the first fill will not get covered at the desired
price (which is unintended and/or undesirable behavior). Here, if the cover order is filled
completely, the entire quantity of 10 for the cover order will be filled at the same price, even
though the desired behavior of the algorithm would be for the cover orders to be worked at a

price and quantity particular to each fill received.

[00253] The virtualizing feature of the trading application 300 addresses problems of this
nature. A group block may be selected and then using an action, such as selecting a menu
item, the group block may be specified to be virtualized. As illustrated in FIG. 3Q, group
block 353 has been virtualized and this is indicated by changing the border of the group
block 353 from a solid line to a dashed line. In certain embodiments, a group block may be
designated as virtualized in other ways, such as appending text to the name of the block,

changing the border color, background color, or background pattern, for example.

[00254] An instance of a virtualized group block is created for each discrete event that is
provided to the virtualized group block. That is, each time a discrete event is received at a
virtualized group block, a new instance of the virtualized group block is created to handle
the discrete event. This addresses the desired behavior discussed above: that each discrete
event be handled by the logic of the group bock based on the information particular to that
discrete event. Continuing the example above, but specifying the group block 353 to be

virtualized, each discrete event generated by the buy market maker block 351 for a fill will

74

WO 2011/049936 PCT/US2010/053172

result in a new instance of the virtualized group block 353 being created to handle that

particular discrete event.

[00255] Therefore, every group block to be virtualized must have a discrete event input
because it is the notification of the discrete event to the virtualized group block which
causecs a new instance to be created. Once a virtualized group block has been instantiated,
that particular instance no longer receives discrete events from outside of its scope (that is,
from blocks not within the virtualized group block). Rather, any subsequent discrete events
from outside of the virtualized group block’s scope would result in the creation of a new
instance of the virtualized group block. However, discrete events may still be generated and
processed by blocks within the virtualized group block and a discrete event generated inside
the virtualized group block may be provided to a discrete input of the virtualized group
block. FIG. 3R illustrates conceptually how the logic of the algorithm would work when
three discrete events have been generated by the buy market maker block 351. Three
instances of the group block 353 were instantiated in response to each of the three discrete
events from the buy market maker block 351. Note that the displayed algorithm would
actually only show the single virtualized group block 353 as illustrated in FIG. 3Q and that
the three instances shown in FIG. 3R are shown only to indicate the concept of virtualizing
a group block. In certain embodiments, the number of instances of a group block may be
indicated. For example, the number of instances may be indicated graphically in a similar
manner to that shown in FIG. 3R by showing a stack of the virtualized group block, where
the size of the stack represents the number of instances of the virtualized group block that
have been instantiated. As another example, the number of instances may be indicated by a
number displayed in the group block (such as in a corner) that represents as count of the

number of instances of the virtualized group block that have been instantiated.

[00256] In addition, a virtualized group block cannot have a continuous output (however,
it can have discrete outputs) because the value of such an output would be semantically
undefined. This is because there may be more than one instance of the virtualized group
block (or, potentially no instances if a discrete event has not yet been received for it) and
thus such a continuous output could have may have different values simultaneously (or no
value at all). Additionally, a virtualized group block may not contain a block specified to be
variable because the variable would not “exist” until the virtualized group block was

instantiated.

75

WO 2011/049936 PCT/US2010/053172

[00257] A virtualized group block may contain another group block or another

virtualized group block, just as group blocks may be nested as discussed above.

[00258] When generating program code, a virtualized group block is generated as a
subclass of the Algorithm class, like a non-virtualized group block as discussed above.
However, rather than being instantiated when the main CustomAlgorithmO class, an
initially-empty list of subclasses for the virtualized group bock is maintained and when a
discrete event is to be provided to the subclass corresponding to the virtualized group block,

a new instance of the virtualized group block subclass is created.

[00259] The network connection between a client device and an algorithm server may be
severed unexpectedly. For example, the Internet service provider (“ISP”) used by the client
device to connect to the algorithm server may have a router failure or physically severed
communications link which may break communication between the client device and the
algorithm server. As another example, an intermediate node in the network may fail, also
breaking communication between the client device and the algorithm server. As another
example, the client device may crash, breaking the connection to the algorithm server. In
current systems, when such a connection is broken, the algorithm is either halted or
continues to run without knowledge that the connection has been broken. In the former
case, a trader may be left with open positions that he cannot get out of easily (or potentially
at all, since his connection is down). In the latter case, a trader may be unable to modify
parameters for, shut down, or stop an algorithm that is not longer operating correctly or
which may inappropriate for changes in conditions in the market. Often traders run
algorithms that may be very risky, and they may desire to be able to turn them off or change

the parameters at a moment’s notice.

[00260] In certain embodiments, one or more blocks can be specified to be aware of the
connection state between a client device and an algorithm server. For example, when
placed, the user may be presented with an option to specify that the block should continue to
run even if the connection between the client device and the algorithm server running the
algorithm is disconnected. The option may also be specified by selecting the block and
using an action such as a menu item or keyboard command. By default, an algorithm may
pause or halt when the connection between the client device and the algorithm server is

broken. In certain embodiments, the entire algorithm is specified to continue to run even if

76

WO 2011/049936 PCT/US2010/053172

the connection between the client device and the algorithm server running the algorithm is

disconnected.

[00261] For example, a market maker block may have an option to keeps orders
generated by the market maker block in the market even if the connection between the client
device and the algorithm server is broken. A market maker block being used in a hedging
or cover order portion of the algorithm may be configured in this manner so that any
position taken by another part of the algorithm is will be hedged or covered as desired, even
if the portion of the algorithm placing those orders is no longer running because the

connection is broken.

[00262] In certain embodiments, an input block may be added to the algorithm being
designed which provides a continuous Boolean output representing the state of the
connection between the client device and the algorithm server. Blocks may then take the
value from this connection state input block as an input to control their behavior. For
example, the connection state input block may be connected to the conditional input of a
market maker block so that the market maker block only works an order when the

connection state is TRUE (representing connected).

[00263] Once an algorithm has been defined in the trading interface 310, it may be saved.
An algorithm may also be given a name (for example, while the algorithm is being built
and/or when the algorithm is saved). The saved algorithm may then be recalled or
referenced at future time with the trading interface 310 or with another trading interface.
For example, the saved algorithm may be loaded with the trading interface 310 so that it
may be edited or re-used on another order. As another example, the saved algorithm may

be referenced as an order type from another trading interface as discussed below.

[00264] The components, elements, and/or functionality of the trading interface 310
discussed above may be implemented alone or in combination in various forms in hardware,
firmware, and/or as a set of instructions in software, for example. Certain embodiments
may be provided as a set of instructions residing on a computer-readable medium, such as a
memory, hard disk, CD-ROM, DVD, EPROM, and/or file server, for execution on a general

purpose computer or other processing device.

77

WO 2011/049936 PCT/US2010/053172

IV. Launching and Managing Aleorithms

[00265] Certain embodiments provide for initiating placement of an order to be managed
by an algorithm selected as an order type. Certain embodiments provide for initiating
placement of an order to be managed by a selected user-defined trading algorithm from a
value axis. Certain embodiments provide for changing a variable for an algorithm while the
algorithm is managing an order. Certain embodiments provide for manually modifying an
order being managed by an algorithm. Certain embodiments provide for assigning to an
unmanaged order an algorithm to manage the order. Certain embodiments provide for
displaying working orders being managed by different user-defined trading algorithms on a

value axis.

[00266] FIGs. 4A-4F illustrate trading interfaces according to certain embodiments. As
illustrated in FIG. 4A, trading interface 410 is an order ticket that allows a saved algorithm
to be selected as an order type. The saved algorithms may have been saved using a trading

interface similar to trading interfaces 200 and 310 discussed above, for example.

[00267] The saved algorithm may be selected using the selection interface 415, which, as
illustrated, provides a drop-down list that includes both standard order types (such as limit
and market) as well as saved algorithms. In certain embodiments, the selection interface
415 includes other elements for selecting from available saved algorithms. For example, the
selection interface 415 may open a file navigator to browse for a particular algorithm. As
another example, the selection interface 415 may include a tree view of saved algorithms

which have been categorized in a hierarchy based on algorithm type.

[00268] Trading interface 420 is a simplified order ticket that also allows a saved

algorithm to be selected as an order type with a selection interface 415.

[00269] When an order is initiated from trading interface 410 or 420 and a saved
algorithm has been selected as the order type, the order is managed according to the selected
algorithm. If the selected algorithm has been configured to take parameters from the trading
interface (such as an order ticket price or quantity), the values specified in the trading

interface 410 or 420 will be provided to the algorithm when it is run.

[00270] As illustrated in FIGs. 4B-4C, trading interface 430 (an order ticket style trading

interface similar to trading interface 410 discussed above) and trading interface 440 (a

78

WO 2011/049936 PCT/US2010/053172

market depth ladder or axis style trading interface) are shown after an algorithm order type
has been selected using a selection interface 415. Here, the selected algorithm is similar to
the one illustrated in FIG. 2I. The trading interface 440 may include a value axis which
includes values corresponding to or based on price levels for a tradeable object. The values
may be prices for the tradeable object (such as in a price axis), for example. Information
related to the tradeable object, such as quantity available at the price levels corresponding to
the values in the value axis, may also be displayed along the value axis. The variables of
the algorithm are shown in variable arcas 435 and 445, respectively, and may be changed
before initiating an order. Variable area 435 is incorporated into trading interface 430 as
part of the same window. Variable area 445 is incorporated into trading interface 440 as a
separate window. The variables in variable area 435 and 445 default to the values specified
in the default value column 272 of the variable arca 206, as illustrated in FIG. 2I. When
changed, an initiated order will be worked according to the selected algorithm with the

changed variable values.

[00271] As illustrated in FIG. 4D, trading interface 450 is an order book showing orders
working in the market. Here, an order 451 being worked according to an algorithm (also
similar to the one illustrated in FIG. 2I) is selected. The variables of the algorithm are
shown in variable area 455 (similar to variable arecas 435 and 445) and may be changed.
When changed (and the change is applied), the algorithm will continue to run according to
the changed variable values. The change to the variables becomes effective without pausing

or stopping the algorithm.

[00272] In certain embodiments, the trading interface 450 allows a user to manually
modify an order being managed by an algorithm. For example, a user may change the price
or quantity of the order or delete the order. In response, the algorithm managing the order
may change the order price, it may change the order quantity, it may do nothing, or it may
perform no new action but merely have new information or thresholds based on the manual

modification to use according to the algorithm definition, for example.

[00273] In certain embodiments, the trading interface 450 may include an order that is
not being managed by an algorithm (for example, a manually entered order). This
unmanaged order may be selected and an algorithm may be applied to it. For example, a

user may select the unmanaged order and, using an action such as a menu item or keyboard

79

WO 2011/049936 PCT/US2010/053172

command, be presented with a list of available algorithms to apply to the selected
unmanaged order. The list of available algorithms may include saved algorithms which
include an order block, for example. When applied to the selected unmanaged order, the
selected algorithm may then manage the order according to the algorithm. As another
example, a user may select an unmanaged good-til-cancelled (“GTC”) order and apply a
selected algorithm to it so that the algorithm may manage the order across future trading

sessions.

[00274] As illustrated in FIG. 4E, trading interface 460 is a market depth ladder or axis
style trading interface similar to trading interface 440 discussed above. Several orders have
been initiated and are illustrated working at different price levels. Orders 461 were initiated
to be managed with a first algorithm and orders 462 were initiated to be managed with a
second algorithm. Thus, the trading interface 460 provides for a single interface displaying
multiple working orders being managed according to the same algorithm. Additionally, the
trading interface 460 provides for a single interface displaying working orders being

managed according to multiple algorithms.

[00275] In certain embodiments, working orders being managed according to a particular
algorithm are commonly identified. For example, each working order associated with a first
algorithm may be identified graphically, for example, with a particular background color,
foreground color, background pattern, border color, border style, shape, symbol, number,
text, and/or font. Working orders associated with a second algorithm may then be identified
using a different color, pattern, border, shape, symbol, number, text, and/or font, for

example.

[00276] In certain embodiments, working orders being managed according to a particular
algorithm are individually identified. For example, each working order associated with a
different instance of the same algorithm may be distinguished from other working orders
associated with different instances of that algorithm with an identifier such as a color,
pattern, border, shape, symbol, number, text, and/or font. Orders being managed according
to a first instance of an algorithm may have a number “1” in the corner of their working
order indicators whereas order being managed according to a second instance of the
algorithm may have a number “2” in the corner of their working order indicators. The

indication of working orders being managed by different instances of a particular algorithm

30

WO 2011/049936 PCT/US2010/053172

may be applied in combination with the indication of working orders being managed by

different algorithms discussed above.

[00277] As illustrated in FIG. 4F, trading interface 470 is an algorithm manager. The
trading interface 470 may also be referred to as a cockpit or dashboard. The trading
interface 470 includes a list 471 of available algorithms. A particular algorithm may be
selected from the list 471. When an algorithm is selected, a view of a selected algorithm is
displayed in the view area 472 and a list 473 of running instances of the selected algorithm
is also displayed. As illustrated, the view area 472 may show an algorithm definition made
using a trading interface similar to trading interface 310 discussed above. However, the
view area 472 may also display a view of an algorithm defined using a trading interface
similar to trading interface 200 discussed above. The list 473 of running instances of the
selected algorithm may include information about the running instance such as the time it
was initiated, its position, status, profit and loss, number of working orders, number of filled
orders, instrument the most recent order was placed for and/or a fill was received for, and/or

order account information, for example.

[00278] In addition, variable area 474 displays the variables of the selected algorithm and
the values of those variables for a selected instance of the selected algorithm. The variable
area 474 is similar to the variable areas 435, 445, and 455 discussed above. The variables
for the selected instance of the selected algorithm may be changed. When changed (and the
change is applied), the algorithm will continue to run according to the changed variable
values. The change to the variables becomes effective without pausing or stopping the

algorithm.

[00279] In certain embodiments, a trading interface, such as trading interfaces 200, 290,
310, 410, 420, 430, 440, 450, 460, and/or 470, is adapted to allow a user to specify the
behavior when an order being managed by an algorithm is unfilled at the close of a trading
session. For example, a trading interface may allow the user to specify that an unfilled
order being managed by an algorithm should be cancelled and the algorithm stopped. As
another example, a trading interface may allow the user to specify that an unfilled order
being managed by an algorithm should continue to be managed at the start of the next

trading session. As another example, a trading interface may allow the user to specify that

81

WO 2011/049936 PCT/US2010/053172

an unfilled order being managed by an algorithm should be paused at the start of the next

trading session and to resume being managed by the algorithm when un-paused by the user.

[00280] The components, elements, and/or functionality of the trading interfaces 410,
420, 430, 440, 450, 460, and 470 discussed above may be implemented alone or in
combination in various forms in hardware, firmware, and/or as a set of instructions in
software, for example. Certain embodiments may be provided as a set of instructions
residing on a computer-readable medium, such as a memory, hard disk, CD-ROM, DVD,
EPROM, and/or file server, for execution on a general purpose computer or other

processing device.

V. Ranking Tool

[00281] FIG. 5 illustrates a ranking tool 500 according to certain embodiments. The
ranking tool 500 may be used for ranking hedge options, for example. In futures trading,
one of the most common strategies is to “spread trade,” which is a method by which a trader
with market directional risk exposure in one instrument is willing to hedge his risk by
placing a trade in one or more like instruments to offset, minimize, or decrease the variance
of the trader’s risk. The two prices at which the two positions are initiated create a
combination or spread price. The trader may then eventually attempt to perform trades that
unwind the open position, preferably at a spread price differential that yields a profit from

the prices at which he initiated the position.

[00282] For some automated trading programs a hedge technique can be implemented
that automatically hedges the risk for the trader. This hedge technique might be automated
to hedge in one particular instrument, or may be programmed to choose between a plurality
of instrument choices according to a pre-programmed method. However, current systems

do not provide for hedging trades that are not tied to pre-determined instrument choices.

[00283] The difficulty in initiating a non-automated spread trade position, particularly for
a market maker, is that, due to the speed gains in technology, opportunities to hedge one’s
trades most efficiently have become very difficult. Due to the nature of their liquidity
providing role in the markets, a market maker is frequently notified with no notice or
preparation that they are providing liquidity (i.e. are receiving a trade execution) for a
counter-party. For the market maker or any trader who may suddenly acquire an open

trading position, the time gap between when a first leg of a spread is initiated and when a

82

WO 2011/049936 PCT/US2010/053172

trader can hedge this trade has become a serious detriment to efficient hedging and risk
management. A trader who is unable to quickly hedge a trade may lose hundreds,
thousands, or even millions of dollars. The trader must not only expend the time to decide
what instrument is their best instrument with which to hedge but they must also execute the

hedge trade.

[00284] Certain embodiments provide a ranking tool 500 that provides two distinct speed
advantages in manually hedging a trade to optimally create (but not limited to creating) a
spread position. The first aspect lets a user pre-select a group of instruments which are
constantly analyzed by a pre-programmed method of parameters to determine, in
preferential order, which contract(s) is the most advantageous instrument to buy or sell at
any particular moment. In one embodiment, this technique can be implemented to analyze
various bid/ask levels in existing spread markets in an instrument that the program is
considering. In another embodiment, it may look at the trader's trading position inventory
to decide which hedge trade will assist the trader in best lowering his overall risk. In reality,
the methods behind the system's execution process are limitless. This information can be
used by the trader to eliminate the time required to decide what instrument with which to

hedge their risk.

[00285] Another aspect of the ranking tool 500, in addition to the ability to automatically
analyze what instrument provides the optimal hedge, is that it can be used to actually
automatically enter a buy or sell order or group of orders to execute the “best” hedge or
group of hedges available in the market according to the aforementioned pre-programmed
hedging method. A trader’s only potential actions required are to pre-select the instruments
under consideration, enter the desired quantity (which can be pre-set), and to click a buy or
sell execution heading on the trading interface. This automated hedger leaves the trader
with various hedged trade inventory that should be accumulated at advantageous spread
prices that align with the trader’s desired ranking method. The ranking tool 500 is useful
for any trader who runs the risk of executing a trade that could become difficult to hedge

under a large variety of market circumstances.

[00286] The ranking tool 500 includes a selection area 510 with a listing of tradeable
objects that a user can identify or select for analysis. In this example, the listed tradeable

objects are Eurodollar futures for various months. The “Best” columns (best buys 520 and

33

WO 2011/049936 PCT/US2010/053172

best sells 530) display a ranking of the selected instruments in order, with buys 520 in this
example being ranked based on the current ask price and sells being ranked based on the

current bid price.

[00287] The Order Ticket portion 540 of the ranking tool 500 allows the user to enter a
quantity to buy or sell according to the rank system. The Buy and Sell buttons allow auto
execution of a desired instrument. In this system, a user has various choices 550, including
the choice to only buy/sell the number one ranked instrument, to fill all selected
instruments, or to loop if necessary. For example, in the event that a trader’s desired
quantity is not satisfied by the quantity available with the instrument at the number one
position, the ranking tool 500 can work a limit order in that instrument at the initial price. A
more aggressive approach is to execute whatever quantity is available for the instrument at
the number one position, and if necessary move on to auto-hedge to the next contracts. The
auto-execute will only work through to the bottom of the list (the number 5 rank in this
example), and work a limit order if the quantity associated with it still has not been satisfied
by trading through higher all the listed months. The ranking tool 500 can loop if necessary,
such as where a pure market order exists and the application will continue on to the next

available price while re-starting at the top of the list.

[00288] The components, elements, and/or functionality of the ranking tool 500
discussed above may be implemented alone or in combination in various forms in hardware,
firmware, and/or as a set of instructions in software, for example. Certain embodiments
may be provided as a set of instructions residing on a computer-readable medium, such as a
memory, hard disk, CD-ROM, DVD, EPROM, and/or file server, for execution on a general

purpose computer or other processing device.

VI. Example Computing Device

[00289] FIG. 6 illustrates a block diagram of a computing device 600 according to
certain embodiments. The client device 110 may include one or more computing devices
600, for example. The client device 301 may include one or more computing devices 600,
for example. The algorithm server 302 may include one or more computing devices 600,
for example. The gateway 120 may include one or more computing devices 600, for
example. The exchange 130 may include one or more computing devices 600, for example.

The exchange 303 may include one or more computing devices 600, for example.

34

WO 2011/049936 PCT/US2010/053172

[00290] The computing device 600 includes a bus 610, a processor 620, a memory 630, a
network interface 640, a display device 650, an input device 660, and an output device 670.
The computing device 600 may include additional, different, or fewer components. For
example, multiple buses, multiple processors, multiple memory devices, multiple network
interfaces, multiple display devices, multiple input devices, multiple output devices, or any
combination thereof, may be provided. As another example, the computing device 600 may
not include an output device 670 separate from the display device 650. As another example,
the computing device 600 may not include a display device 650. As another example, the
computing device 600 may not include an input device 660. Instead, for example, the
computing device 600 may be controlled by an external or remote input device via the

network interface 640.

[00291] The bus 610 may include a communication bus, channel, network, circuit,
switch, fabric, or other mechanism for communicating data between components in the
computing device 600. The bus 610 may be communicatively coupled with and transfer
data between any of the components of the computing device 600. For example, during an
installation process of a trading application, one or more computer-readable instructions that
are to be executed by the processor 620 may be transferred from an input device 660 and/or
the network interface 640 to the memory 630. When the computing device 600 is running
or preparing to run the trading application stored in the memory 630, the processor 620 may

retrieve the instructions from the memory 630 via the bus 610.

[00292] The processor 620 may include a general processor, digital signal processor,
application specific integrated circuit, field programmable gate array, analog circuit, digital
circuit, programmed processor, combinations thercof, or other now known or later
developed processing device. The processor 620 may be a single device or a combination
of devices, such as associated with a network or distributed processing. Any processing
strategy may be used, such as multi-processing, multi-tasking, parallel processing, and/or
remote processing, for example. Processing may be local or remote and may be moved

from one processor to another processor.

[00293] The processor 620 may be operable to execute logic encoded in one or more
tangible media, such as memory 630 and/or via network device 640. As used herein, logic

encoded in one or more tangible media includes instructions that are executable by the

85

WO 2011/049936 PCT/US2010/053172

processor 620 or a different processor. The logic may be stored as part of software,
hardware, integrated circuits, firmware, and/or micro-code, for example. The logic may be
received from an external communication device via a communication network, for
example, connected to the Internet. The processor 620 may execute the logic to perform the

functions, acts, or tasks illustrated in the figures or described herein.

[00294] The memory 630 may be tangible media, such as computer readable storage
media, for example. Computer readable storage media may include various types of volatile
and non-volatile storage media, including but not limited to random access memory, read-
only memory, programmable read-only memory, electrically programmable read-only
memory, electrically erasable read-only memory, flash memory, magnetic tape or disk,
optical media, any combination thereof, or any other now known or later developed tangible
data storage device. The memory 630 may include a single device or multiple devices. For
example, the memory 630 may include random access memory and hard drive storage. The
memory 630 may be adjacent to, part of, programmed with, networked with, and/or remote
from processor 620, such that data stored in the memory 630 may be retrieved and

processed by the processor 620, for example.

[00295] The memory 630 may store instructions that are executable by the processor 620.
The instructions may be executed to perform one or more of the acts or functions described

herein or shown in the figures.

[00296] The network interface 640 may be a one-way or two-way communication
coupling. Accordingly, the network interface 640 may communicatively connect one, two,
or more communication networks or devices. For example, the bus 610 may be coupled
with a gateway similar to gateway 120 discussed above via the network interface 640, such
that one, some, or all of the components of the computing device 600 are accessible or can
communicate with the gateway. As another example, the network interface 640 may couple
the bus 610 with other communication networks. The network interface 640 may be, for
example, an integrated services digital network (ISDN) card or a modem to provide a data
communication connection. As another example, network interface 640 may be a local area
network (LAN) card to provide a data communication connection to a compatible LAN, for

example, connected to the Internet. Wireless links may also be implemented. The network

36

WO 2011/049936 PCT/US2010/053172

interface 640 may send and receive electrical, electromagnetic, or optical signals that carry

analog or digital data streams representing various type of information, for example.

[00297] The display device 650 may include a visual output device, cathode ray tube
(CRT) display, electronic display, electronic paper, flat panel display, light-emitting diode
(LED) displays, electroluminescent display (ELD), plasma display panels (PDP), liquid
crystal display (LCD), thin-film transistor displays (TFT), organic light-emitting diode
displays (OLED), surface-conduction electron-emitter display (SED), laser television,
carbon nanotubes, nanocrystal displays, head-mounted display, projector, three-dimensional
display, transparent display device, and/or other now known or later developed display, for

example.

[00298] The display device 650 is adapted to display a trading screen. The trading screen
may be similar to the trading screens discussed above, for example. The trading screen may
be interactive. An interactive trading screen may allow, for example, one or more trading
actions to be performed using the trading screen. For example, an interactive trading screen
may allow one or more order entry parameters to be set and/or sent using one or more order
entry actions. The display device 650 and/or input device 660 may be used to interact with

the trading screen, for example.

[00299] The input device 660 may include a keyboard, mouse, microphone, touch-
screen, trackball, keypad, joystick, and/or other device for providing input, for example.
The input device 660 may be used, for example, to provide command selections to
processor 620. For example, the input device 660 may be a mouse that is used to control a
cursor displayed on a trading screen. The mouse may include one or more buttons for

selection and control, for example.

[00300] The output device 670 may include a keyboard, mouse, speakers, touch-screen,
trackball, keypad, haptic device or system, joystick, and/or other device for providing
output, for example. For example, the output device 670 may be used to output one or more

signals, such as a haptic signal or an audio signal, to a user.

[00301] While the present inventions have been described with reference to certain
embodiments, it will be understood by those skilled in the art that various changes may be

made and equivalents may be substituted without departing from the scope of the

87

WO 2011/049936 PCT/US2010/053172

inventions. In addition, many modifications may be made to adapt a particular situation or
material to the teachings of the inventions without departing from their scope. Therefore, it
is intended that the inventions not be limited to the particular embodiments disclosed, but

that the inventions will include all embodiments falling within the scope of the claims.

88

WO 2011/049936 PCT/US2010/053172

CLAIMS

1. An apparatus including:

a client device,

wherein the client device is adapted to display a design canvas area, wherein
the design canvas area includes a plurality of placed blocks arranged by a user to
specify a definition for a trading algorithm;

wherein the client device is adapted to determine a first live feedback value
for a first placed block of the plurality of placed blocks, wherein the first live
feedback value is determined based on market data and the definition; and

wherein the client device is adapted to display the determined first live

feedback value.

2. The apparatus of claim 1, wherein the plurality of placed blocks are selected

by the user from a plurality of available blocks.

3. The apparatus of claim 1, wherein the arrangement of the plurality of placed
blocks includes one or more connections between one or more blocks in the plurality of

placed blocks.

4. The apparatus of claim 1, wherein the first live feedback value is determined

for an input of the first placed block.

5. The apparatus of claim 1, wherein the first live feedback value is determined

for an output of the first placed block.

6. The apparatus of claim 1, wherein the market data is received from an

clectronic exchange.

7. The apparatus of claim 1, wherein the market data is received from a

simulation environment.

8. The apparatus of claim 1, wherein first live feedback value is further based

on a functionality corresponding to the first placed block.

9. The apparatus of claim 1, wherein the first live feedback value is displayed

in relation to the first placed block.

89

WO 2011/049936 PCT/US2010/053172

10. The apparatus of claim 1, wherein the client device is adapted to detect the
generation of a discrete event and wherein the client device is adapted to display an

indicator representing the occurrence of the discrete event.

11. The apparatus of claim 10, wherein the indicator includes flashing a

connection on which the generated discrete event is provided.

12. The apparatus of claim 10, wherein the indicator includes an animation of an

output on which the generated discrete event is provided.

13. The apparatus of claim 10, wherein the indicator includes an animation on a

connection on which the generated discrete event is provided.

14. The apparatus of claim 10, wherein the client device is adapted to determine
a second live feedback value for a second placed block of the plurality of placed blocks,
wherein the second live feedback value is determined based on market data and the
definition, wherein the second placed block is different from the first placed block, and

wherein the client device is adapted to display the determined second live feedback value.

15. An apparatus including:

a client device,

wherein the client device is adapted to display an algorithm area;

wherein the client device is adapted to determine a live evaluation value for a
first expression in the algorithm area, wherein the first expression is specified by one
or more placed build block buttons, wherein each placed building block button
represents an element of the first expression;

wherein the client device is adapted to determine a first live evaluation value
for a first clement of the first expression; and

wherein the client device is adapted to display the determined first live

evaluation value in relation to the first element.

16. The apparatus of claim 15, wherein the algorithm area includes a price area,

a quantity area, and a conditional area.

17. The apparatus of claim 15, wherein first expression includes an IF-THEN-

ELSE element.

90

WO 2011/049936 PCT/US2010/053172

18. The apparatus of claim 15, wherein the client device is adapted to determine
a second live evaluation value for a second expression in the algorithm area, wherein the

second expression is an element of the first element of the first expression.

19. A method including:

displaying by a computing device a value axis;

receiving by the computing device a command to select a user-defined
trading algorithm;

receiving by the computing device a command to initiate placement of an
order; and

managing an order according to the selected user-defined trading algorithm.

20. The method of claim 19, wherein the command to initiate placement of the
order includes at least one of a price and a quantity, wherein managing the order according
to the selected user-defined trading algorithm is based on the at least one of the price and

the quantity.

21. The method of claim 19, further including:

displaying by the computing device a first indicator in relation to the value
axis, wherein the first indicator represents a working order being managed according
to a first user-defined trading algorithm; and

displaying by the computer device a second indicator in relation to the value
axis, wherein the second indicator represents a working order being managed
according to a second user-defined trading algorithm, wherein the first user-defined

trading algorithm and the second user-defined trading algorithm are different.

22. A method including:

displaying by a computing device a trading interface, wherein the trading
interface includes an order entry region and a ranking region;

receiving by the computing device market data for a plurality of tradeable
objects selected by a user;

determining by the computing device a ranking for the plurality of tradeable

objects based on the received market data;

91

WO 2011/049936 PCT/US2010/053172

displaying by the computing device the determined ranking for the plurality
of tradeable objects in the ranking region of the trading interface, wherein the
display of the ranking for the plurality of tradeable objects is dynamically updated
based on the received market data;

receiving by the computing device a quantity to buy or sell from a user
through the order entry region of the trading interface; and

initiating placement by the computing device at least one order for at least
one of the plurality of tradeable objects based on the ranking of the plurality of the
tradeable objects and the quantity to buy or sell.

23. The method of claim 22, wherein the trading interface includes a selection

region adapted to allow the user to select the plurality of tradeable objects.

24, The method of claim 22, wherein the trading interface includes an execution
strategy selection region, wherein the execution strategy selection region is adapted to allow

the user to a select an execution strategy from a plurality of available execution strategies.

25. The method of claim 24, further including receiving by the computing device
a selection of an execution strategy through the execution strategy selection region of the

trading interface.

26. The method of claim 25, wherein initiating placement of the at least one

order is based on the selection of the execution strategy.

92

WO 2011/049936 PCT/US2010/053172

27. An apparatus including:

a client device,

wherein the client device is adapted to display a design canvas area, wherein
the design canvas area includes a plurality of placed blocks arranged by a user to
specify a definition for a trading algorithm, wherein the first plurality of placed
blocks includes a grouped block, wherein the grouped block includes a second

plurality of placed blocks.

28. The apparatus of claim 27, wherein the grouped block is a virtualized group
block, wherein when the virtualized group block receives a discrete event on an input of the
virtualized group block, a new instance of the algorithm functionality represented by the

virtualized group block is instantiated.

29. The apparatus of claim 28, wherein the input of the virtualized group block is
connected to an output of a first block in the plurality of placed blocks that provides fill
confirmation discrete events, wherein each fill confirmation discrete event corresponds to at

least a portion of a quantity of an order being filled.

30. The apparatus of claim 29, wherein the virtualized group block provides
hedging functionality for the at least a portion of the quantity of the order that was filled

corresponding to the received discrete event.

31. The apparatus of claim 27, wherein at least one of the first plurality of placed
blocks and the second plurality of placed blocks includes a first block, wherein the
functionality corresponding to the first block is based on a connection state between the
client device and an algorithm server when the trading algorithm is processed by the

algorithm server.

32. The apparatus of claim 31, wherein the connection state between the client
device and the algorithms server is provided to the first block by a connection to an input of

the first block from a connection state input block.

93

PCT/US2010/053172

WO 2011/049936

1/43

[Ol

JONVYHIX3

TN
0¢l

AVYMALYD ~
0c1

30IA3Q INJMO |~
O1t1

001

PCT/US2010/053172

WO 2011/049936

V¢ Ol

y//

[(GAILOV 38 SAYMIY TIIM_WHLMODTY JHL YMNY1G dI) ._<zo_._._n_zoo

1902
a0¢ 702
IMVA ONVAIA]] J1avevh] |
ALD_HOLVHOS) 3903H OLNY G
(G3SN 38 TIM ALILNVND LIYOIL ¥3QH0 HINVIE d1) t:_,_,sc E— g
21z 00 |
_3014d D €0¢
__Id [T 06
R0 WSY] S ~N
202
(a3SN 38 TIM_30I4d L3MOIL 430HO YNVIE J) 301d||<Poweuum> YN WHLNODY] [N
:N S/<[7+NHIE] / T+ [[+ F <F > #[=[<]> [40]anv] () [Wi] |10z
71l
XIOI] ¥30TING ¥3040 JINHLI09TY [TT]

glz

/oom

PCT/US2010/053172

WO 2011/049936

3 /43

d¢ Ol

XIOr]

14ONVO

YO

EHIO-THID
¢Z39-TH3D
¢N39-THID
¢W3D-THID
¢HID-THID
[VERMIER;
IN39-TH3Y

TN3D-TH3D

AT vHID
i~£739
i~€N3D
i~EN3D
i~E€HID
i~2739
ANER)
A ER)
i~¢HID

¢-1N39
iV\ER)

¢~TH39

¢—0Z39
¢—0X39
v| ¢OA3D

S9:39
dd-39
4439
Sd:39
d*39
Nd*39
40:39
ERIER)
44939

Sav3¥ds

dVANITVI

S3AnLnd

4€
1€
0¢
0¢
QE4
04¢
\Et4
E4
pEl4
[4¢

a¢
R

< |u

ER)

INJNNYLSNI N¥ 3500HI H

/omm

PCT/US2010/053172

WO 2011/049936

4 /43

Jd¢ 9Ol

NN /

(JALLOY 39 SAVMIV T1IM IWHLINMODTY JHL MNYIE J1) TVNOILIANOD

OO

JMYA LINVA30] TIaVIavA
ALD HOLY¥OS] 3903H olnvO
_ MOT LSNIF
(@3SN_39 T1IM ALIINVND LINOIL_93ad0 YNV m_\,_@%» mn_ 1138 ANg

/ /V o sy Nl ! 00—

S

Nmm/}io_g Qig_LN][[LALD VL ASv

‘ H)I4d aig LSNI .
\ (@3SN 39 TIIM 3018d 13YOIL_¥3a40 MNVIE 41 F01yd]l <poweuun> :INYN WHLINOOTY

B¢l 112 S/<[7+ N[/T [- [+ E<E>[#[=[<[>Tuo[anv] (T) [y lawnsy I
T [1€2

XIOI] 430N ¥3040 JINHLIM0TY [TH]

/oom

PCT/US2010/053172

WO 2011/049936

5 /43

d¢ 9Ol

NN

(JALLOY 389 SAVMIV T1IM WWHLMODTY JHL MNY1g J1) TYNOILIANOD

B

(d3SN 39 TTIM ALIINVND 13XOIL ¥3AH0 MNYIE d1) ALLINVND

INTvA 11Nv430] ERELELA
ALD HOLVHISL__J 39d3H 0lNvO
113S ANg

[00] [0 _
:3014d ‘ALD

__|d 4] 06 68 £98
MO MSV[NSV Qg[AlD a1

[N3D-THID

/ 272
\ 434
, /
S RN
(@0

38 TTIM 301Md 13MOIL HIAHO0 MNVIE dI) 301

<psweuun> JNYN WHLIODTY

11¢ >/<[+ N1l / +E<E>#|=

<[> [0 [ANV] (|) |13 INIANISNI

L

* 1.
ve—
XS]

43078 ¥3qH0 o__\,__._:mow.zﬁ

/oom

PCT/US2010/053172

WO 2011/049936

6 /43

INTVA LNV4Ad] TTVIEvA
ALD HOLY¥IS] 3903H oLnYO
(@3SN_39 _T1IM ALIINVAD YL Y3090 YNYIg 4D ALIINVAD 1138 ANE

// L o0 | [0]

3014d ‘ALD

__Id Fel[06] _ G8] 98

AD WSV syl aig[A0 aid

‘ 2[3018d_a1g LSNI __[IN39-THIY
d (@3SN 39 TIIM 3018d 13IYOIL_HIAHO0 MNVIE d1) 30IYd] mue_o YNYIE 1) 3O1dd]lL <pwedun> -JNYN WHLIHOUTY
8c| 112 >/<|7+NHH /T« [- T+ E <E>[#[=]<[>Tyo anv] (T) o vaunisy
150~ |
XIOI] 430N ¥3040 JINHLIM0TY [TH]

3¢ Ol

N

(JAILOY 39 SAVMIV TTIM WHLIMODTY JHI YNY1E 41) TYNOILIANOD

,///////////

/oom

PCT/US2010/053172

WO 2011/049936

] /43

4¢ Ol

(JAILIV 39 SAYMIV TTIM_ IWHLIHODTY JHL YNY1E d1) TYNOILIANOD

Pl = = = = = P coz
212 \ N\ [==1/l
(3 A / /9
o] [MD Q18 ISNTH™3TvA Tnv43a] TTAVIEVA
ETSE NaHL 1|l ALD HOLYYOS] 3903H OO
(@3SN 39 T1IM ALIINYAD L1IXDIL 43a¥0 YNYIE 1) ALIINYAD 1138 \Ng
J / [00] [0]
207 3014d TALD
__Id ver] 06] G8] £98
A0 WSVl WSy] aia[A0 aid
BN G°0] [~ N=[30/8d /8 LSNI} TW3D-THID
(@ISN 39 TIM 30/Md [INDIL ¥IAHO MNYIA 41) 30N <paweuun> JNYN_WHLIMODTY
>/<[7+NHE] /T« [~ [+ E<E>[#][=[<[>]d0anv] () Jom I

197—

L

XIO[]

43078 ¥3qH0 o__\,__._:mow.zﬁ

/oom

PCT/US2010/053172

8 /43

WO 2011/049936

¢ 9Ol

N /

m_>_._.o< 14 w><>>._< ._.__>> _>__._._._m_oo._< JHL YNVIE d1) TVNOLLIANOD

\ AN N\ N\ AN N\
Nmr //// TN €92
$N 009 E <
682 8z \U A TIVEEa] TTAVITA
WVﬂ Z O'clf GaunAD 018 NI =™ s] 3903 oLy oo
(Q3S0 38 TIM ALLNYAD TDDIL 93090 INVIE 40 t:z,so m— NG

OO

N T .
3014d ALD

@ Z __Id 4] 06 G8] £93
AD WSV WSV Qi A0 aIg

m_ m.o a[30Md a8 LSNI . [N3D-TH3D

(@3SN 39 TNM 301dd [INDIL mue_o YNVIE 4D FO1dd|l <pweuun> JWYN WHLIHODTY
>/<[7+NHEHT /T« [- T+ E <E>[#[=T<]>TuoJanv] () Joms hanndsy
T4

XIOI] ¥30TING 4300 dINHL¥oTY [T
00z

PCT/US2010/053172

9 /43

WO 2011/049936

HC Ol

G9Z
[ANLOV 39 SAYMIV TIIM _IWHLINODTY JHL YNV1g JN TVNOILIGNGD
\/r P P < P P
2z INc=> = = N\
f.v NI NN / 00 &= N T TTAVIEVA
1, 3513 N3HL uwd el zmxm SnALD 08 5_“__ ALD HOLYYOS[] 3903H OLNY O
\ (@3ISN 39 T1IM ALIINVND 1301l 93090 YNV 41 t:z%c 1138 ANg

[00]
:3014d
__Id vy 06
MO SV ASY
a|304d Q19 ISNI

(@3SN_3g TUM 3F018d [IMOIL 43A¥0 MNY1E d1) F0IMd] mue_o YNY18 41) 301Md <poweuun> -JNYN WHLIOOTY

>/<|7+NHH /T« [- T+ E <E>[#[=]<[>Tyo anv] (T) o sy
T1l4

XIOI] ¥30TING ¥3040 JINHLI09TY [TT]

/oom

PCT/US2010/053172

WO 2011/049936

10 /43

¢9¢

I¢ Ol

AONOON NN N ANAN

(@3SN 39 TTIM J01dd 13MJIL HIAY0 MNVIE d1) 3O1Md

m@m

/ /

NHN
¢Le 1/2

. m_>_5< 39 SAYMTY T1IM IWHIIMODTY JHL MNYTI 1) TYNOILIANOD _

S AN AN AN AN AN AN AN AN AN oom N E 0
AN N N N N Y7)] 0 I AT

\ N £92 00s[/ T H1 ¥300
EERE S JLe J N\ |[Z 000s[/T HLW
/ // /2 /_age T AL WN_INTvA LTnv43a] TTVTIvA

N . / / / I ALD HOLWHOS[C_] 39Q3H onvO

== L1009 T HL 4300]| B AID i ISNIN 1138 ANg

35713 NIHL dl ™ 00 0 |

(d3sn 39 T7IM ALIINVND 13NJIL HIA¥0 MNVIFG dI) ALIINVND o"m_vo_m_n__ 0 A0

8811 0L 69| 89ll

azIs PIq_uIof

g

[N3D-THID
JNYN_INHLIHODTY

> /<

~/+NHLH /| «

|_|

— <

= S[# =

<|>

d0 |ANY

)

(7313 INFWNALSNI

L

XIO[]

43078 ¥3qH0 o__\,__._:mow.zﬁ

/oom

PCT/US2010/053172

WO 2011/049936

66¢

11/43

[¢ Ol

POOOOUNINNNNNN NN

{IJN SI DONIMOTIO4 JHL NIHM/ 41 H3QHO FOV1d ATNO) T¥YNOILIANOI

NSO NN NN N NN NN

*(JA0gGY d314193dS 'ALD JILVIS V SATIIA MNVIE SIHL ONIAVIT ALIL

INVNO

K//////////////

JA0gY d314193dS "3014d OJILVIS ¥V SATIIA YNVIE SIHL ONIAVIT 3OIMd|

16¢

X%

W_ZMIE_ /

] dn JABO
|2] 0102 ‘02 ¥3FIILd3S ‘AYANOW | 4190

"I+ [#[=F <5< [> (90 [anv] (1) [T Ny
_Ew 0] m— X 0
62 T4 vnNvwol 6 [8 |£
A0 d0ISO[O] AL dsid[o g [v
(23T LiviolL o0 ¥366] 0 ezt
50 1IN [00T] 0G] G2 ALD
B Gov| 0VG66] 0EG66] 782
Ty (AOOYL_ Y[Qig[AID aig

XIO[]

300N WISkIQ0N WISxx3QOW WIS«xdQOW WIS+~L13XIIL HIQHO H_._mwﬁ

/omm

PCT/US2010/053172

WO 2011/049936

12 /43

VE Ol

30IA3d IN4ITO

./Sm

J0I1A3Q INFITO

10€

JONVHIXd I~ ¢0E
€0¢ —
EVIREN
WHLIHODTY
ENYER
WHLIHODTY
//l\/
JONVHOXT I~ ¢0¢
€0e

30IA3d IN4ITO

N
10€

J0I1A3Q INFITO

10€

00€

PCT/US2010/053172

WO 2011/049936

dE ‘O [o:x=0xx Ol %00 o] [AJOJR] _ AQv3d ‘SNIVISC— (<[X018 DN @

o
o o

W03 Y0
NVHL Ss31¢(> |

W03 40
NyHL Ha1vaes {2}
NvHL ss31<(> |
NVHL ¥3Lv3u o < |

i E_::_\,_.&w

13 /43

ITVA CINVA3a[3TavIEvA| |\ BEED?AW
STTAVIGVA_ N3N | | N A -
I FIjIEN) aay =<3}
/ \ / AIVHET MAIA LG 31 SYO0 19 ISV e
x][O["] / \ { Aspepiun - gyl NOISIA 091V [|[x _m__l_ ‘01 1av[IH[IE

p1e e1e 11e s

PCT/US2010/053172

WO 2011/049936

14 /43

SMJ019

SNOANVTT3OSIN

J1dANVX3

doLs B

310N 1S3l

6¢t

-l

8¢t

€D

SMJ014
31340SId F1dNVX3

[=]ON

REN

Ol

[m]

101d 114 (=

[« ION - TL

LCE

9¢t

SHJ014 SHJ014
ONIAYYL J1dNYX3 21Sve I1dAVX3
= mews_
g ALD XM Tp 2
301d BN
SY3AY0 [@ |cze
= ANOD aav
ANOO
S/4 ADRE
144 P W
i (76 3S13[
& s1114 B zu_._w_m_ Umm
aNOJ B N
WIN LI .
PEdE N + |
£Z¢ oJ I
g ALD M ISNI@ 12§

PCT/US2010/053172

15 /43

[-d€ Ol {

{
{} (31epdn 105[qo)eiepdnajpuey pioA apuJano djgnd
{} ()se|qeLeA|YIeS PIOA BpuUsA0 pajdslold
{} ()oziferyu poa aygnd
{
{()ozieniu|
'SIy} = QWyiHoB|ywolsn) "W
BN} = |enuIA "W
1,08y 18], = SweNo3y "W
} (Q)dapes “Jewolsna ‘q|uoiejaLIod Uasn ‘Ja||0u0d)aseq
t (RypiexoILIapIoul B|gnop
‘JWIT3eNdILIspIoUI T B|gnop ‘uonduasagiexdlLispioulT Bulys
‘qiapesy Buuls ‘Jawoisnd 3uuls ‘gluonealiod suuls
‘Jasn J3]|0Jju0D08|y 19]|041U02 J3[|03U0)08|)W UI08|ywolsny aljgnd
qnU = QWIYIMOZYWOoIsN) TW Quiylogd|ywoisny pejosiod
(Juopuey MaU = JojelsusnlaquinNwopuey Wopuey alignd
Al{ T T T T T T T T T T T e e
Ie L1 wiyguoSly ¢ QWUILOS|yWoIsNY Ssed o__aa_

WO 2011/049936

} qeudisaqod|y 888&8

PCT/US2010/053172

WO 2011/049936

16 /43

¢-d€ 9Ol

(00| g4apPY" QUIUILIOB|YWwosN) ~W

2. 4029992 ¥SIPT-0G 9-edey—0BT/-190%2E G,)81epdnpuss; Quiyos ywolsn) ~ W

‘T = DYoojgiaquinNIueIsuo) sjgnop aljgnd
' = (OYo0|giequinNIuBISuUo) d|gnop aljgnd

(0[guappy

o <{:

TY00|gaquInN1uzISUo)

(Y00|gIaqUINNIUEISUO)

® .

—I1I¢

} qequBiseqod|y soedsaweu

PCT/US2010/053172

WO 2011/049936

17 /43

€-ad€ 9Ol

*(0X90]|g48ppY" QWYIL03|ywolsn) ~W

ﬂ

...... 24029992 7GIPT-0G1q- 2297081/ T9079€ S BIepdnpuag QOB WISy "W

1(T)20]g49qUINNIURISUOY) QWIYIL0Z|ywolsny) ~ W
+ 0Y20]g4aquINNIURISUO) QWO YWwoIsny ~ W)

0X20]gJ8ppY"QWYLIoZ]yWoisn) ~W

‘0 = (o0/gJappy Sgnop ijgnd

(a0[giapp

a

TY00|gaquInN1uzISUo)

—I1I¢

= T¥o0|gJaquinNiueISuo) 8jqnop algnd
0Y20|gJ4aquinNIuBISuo) 8jgnop algnd
WYLoB)y : QuyiLog|ywolsny ssejd algnd

} qequBiseqod|y soedsaweu

PCT/US2010/053172

WO 2011/049936

18 /43

v-ag¢ Ol

{ fani} winja1 } ()jeuonipuoniay j0oq apuiano gnd

{‘o wnai })ADIRY 9|qnop apuieno Agnd

{0 wmas } (Hwrien sjgnop apuisno dljgnd

{inu winjas } (uswnusu|ey joysdeugiualuniisu| aplIsao dlgnd
‘e = 0B|4TW

{

m “ouxovc:&omccoole “
| ‘[L96Y6POEIT9-2906-1GoY-966P-oF €GP, = @lenbiun "w m
| ‘oWyogywolsnaul = QUILYLOZyWoIsny LW “
m } (Anq ‘03|y|ed0] ‘QWYIL0g|ywoisnoul)aseq !
! t (Ang |ooq ‘03|y|ed0| WUyHo3|Y |
| ‘OLLLOSYWwoIsn)ul QLIYILO3|ywoIsnd)olane e ey woisng aljgnd “
“ qINU = QUIYIIoS|Ywolsn) TW QUIYlLos|ywoisny paosiold “
“ } JoeNIoYIe | QlexeNIIeNWOlSNY) sSejd dlignd |

qInu = OYJ0|gINRININIBIN (JaqeNIaB N WOolsSN) dljgnd

} wyiuod)y ¢ Quuyiuos|ywolsny ssejd dlgnd
} qequBiseqod|y soedsaweu

—11€

PCT/US2010/053172

WO 2011/049936

19 /43

G-d¢ Ol

£ 0420]g43pPY"OWIYIUOB[YLOISNY ~W(UI) LNjal |
} (/10199 9|gnop apuano dlgnd !

1(0%00|g48pPY QWIYILOZ|YWoISN) ~W
‘Z ' 4029992 7GIPT-0G7q-.8y—0BT /-T9013E ZG.)3lepdnpusg’ WyLog|ywoisng W
H(T00]g4aqUINNIUBISUOY QWIYLO0ZYWwoisny) ~w
+ (Y20]|gJeqUINNIUBISUC) QWYMo ywolsn) ~W) = (OY20[gi8ppy" QWyog|ywolsng ~w
} ()s9|qeUeA|YIoS PIOA dpLUBA0 pajdaloud

qInu = OYo0|gIeNRININBIN QlaYeNIeYIeNWOlSN) d1jgnd
‘0 = 0X20|g/eppy B|gnop liqnd
‘T = Doojgsequinniueisuo) ajgnop algnd
‘e = OYoojgiequinNiueIsuo) ajgnop algnd
} wyod)y © gwyiuog|ywoisny ssed algnd
} qeuBiseqos|y soedsaweu

TYo0|gIaqUInNIUBISUO)
(MOOIGRHeINRM B @

(Y0jgiaqUINNIUEISUO)

° N-T1€

PCT/US2010/053172

WO 2011/049936

20 /43

9-d¢€ 9l

f(SIU) "oWIyYIL03|yWOoisny ~W)0J0IBNWNIIYAN[BALLOISNY) MaU = ()20[g40)e|nlundayan|e

= +

'a8eSSa|\ 1959} SS8014" 0490]|g01.|NWINJIYaN A" QLIYILOS|yWolsn) ~ W

pa1RIaULn]I8[q01RJISI ONo0|gIeN B NISN BN

ra8essa|NJapIQIdadisiu| QUIYILIoSywoisn) W

= +

pajeIaUan)I8[q(08]RJaSIg" ON20|g e _ IS Ie N

1 *(.GY76/B83P8GR0-896U-IEGT—L0EI-TP609 L. ‘0120|9434 BNIBYIRN D0 g8|qeuunyppy
L {and) ‘sIy) ‘QuyIuoSywoisny TW)0IeNBNISHBINWOISN) MaU = (X0|giexeNISNIeIN

'SIY} = QuUyMo3|ywoisny W
|anl] = |enpip "W
' 08y 19|, = oweNo3y W

} ()eseq * (**)owyuos|ywoysng algnd

qInu = (QY90]|giolRINWNJIYRNIBA (QJ0l|NWNJdYaNjeAWOISNY dljgnd

___3: =

ONgIolEUIyaN e

(A20[G2HeINIEHE

—I1I€

OY00|gIaNRNINIBIN Q4N eNIeY RN WOoISNY) dljgnd
}wyod)y : ouydodywolsny ssejd a1gnd
} qeudisaqod)y adedsaweu

PCT/US2010/053172

WO 2011/049936

21 /43

/-A¢€ Dl

OH0/gDRLAUaINASL)

G/cPIT RN 301Md Alg J=]

{
... .
{ m
O+ PIg oN20|guaWINAsU|B|dLIS QWUHIOE ywosn) ~W _
ilinu = j OYo0|gluswinsu|a|dwiS QLIYILo3|ywolsn) ~ W) m
= 0){0|gp[olfluswniisu| QuyLIos|ywolsn) ~W !
} (elepdn == (oyoojgjuswinisuje|dWIS’ QUILLOS|yUoISN) W) i |
........................... 17(31epdn 155140)57epan3[PUBH PIOR SpLIsA0 dijgnd

{
TTH0 pigiopojgiuswnasupdwis pwyuosywosny w T T |
JlINU = | OYoojgiuswnsuls|dwiS QWYILog|ywolsn) ~W) “
= ()00|gpelluswnisul QwyLIog|ywolsn) ~W m
{0753,)uswnisudnyooT ouyilog|ywoisng ~w !
= ()%20|g)uswiniisula|dwig QwyILog|ywosny ~w “
.................................. T ()S3|GEIeA|[V13S PIOA Spiliond pepeloid
{
‘()zilery|
L (,0ZS3, SIy1)iaus]SITIUSWNIISUIPPY QWRLOZYWoisn) “W =" pxoojgiuswnasupidwis T |
................................... T T7y8seq (~)Quilanosjgosny agnd "
‘0 = OYooigp[eIfuswinasu] sjgnop aljqnd
“___.E = ov_oo_mEoE:bmc_o_aE_m Ho_._mn_mcw“coE:bmc_ o__n_:n_
OyoojgiuaunASUBidwI } wyod)y @ guyjuodywolsny ssejd algnd

} qequsisaqosd)y adedssweu

N-T11€

PCT/US2010/053172

WO 2011/049936

3¢ Ol

22 /43

veE—

9GZ:A 'TGZX Pl o] [Hol}] avss []
]
[31geUEA] (ooigIUEISu0)
~N
OF0lgiappY ¢ce \
. 11§
G <% |
G OY20|gIuEISU0) (¥o0[gpjalflusunsul [31del_A] Q¥oogiuawnAsU|
0253 | Ovoigewnsu O0TETHENMd (IDE
INTVA [IN¥3301 F18VIHYA 128
\ STTAVIIYAEIST
4 ﬂ@
Nele T TEREER
XIo]7] IS GTILINN - 81 N9Is3a 09 [| ope

PCT/US2010/053172

WO 2011/049936

1€ Ol

23 /43

[T8ATehX el Jro] [EolR] avacsws]
]
333
THo0|g/oqUINNjuRISLOY
OFolgepig e_g_m_weﬁzg%_s
: =] -
1 =L gy €ee
a /,
2€€] .Au \
1€€ QHoolgPRLaWNSY e
433
I€€ TETTDSTERTIT
¢ee (] g - WG
INTYA LINVA3AT T1dvRav Nmm\ Hmmk
émg_@ 5&
L LE G REL
XIO["] IS GTILINN - 81 N9Is3a 09 [| ope

PCT/US2010/053172

WO 2011/049936

o€ Ol

24 /43

22r°A 66t Pl o] [Hol}] avss []
|
(Y00|g0joRANTANfA
8 304 T4 [@
oge (420|giaqUNNIUEISUO)
~
OHOIGLOYE IO OYo0jgpieLuaIASU A\
= w_\u_g_n_ Q%m T1€
014
BIALO MM LSNI
NVA LINY4301 718¥I4VA mmmk
"méx@_ xu&
NiviT IR L3 | N
XIo]7] 4IS ATILINN - &1 NIs3a 091 (] | ope

PCT/US2010/053172

WO 2011/049936

HE Ol

25 /43

GIT:A 'ETX

Y0¥ WwH0ud Snlvls []

[l o] [H]
]

ANVA LINY43d1

J1aVIAvVA

RELH{LAMEN

[v]e]

.. *
. A,
- e .
.
.
o, .
L
..
. .
. .
P S Y
« b .
.
.
. .
. .t
.
LI
PEY o Y
.
. .
PO .
o "
S "
.
.
., “ ..
. - .
LI .
.
.
v . . s
.
. PR
L
.. .
PEEY
PR
.
* e . .
. . *
. 3. N
..
., .
AR AR
e
- LY
L .
Lt e m
.
o t 4
.
o o .
o . .
.
se *
. .
o
- .,
. .
., .
.
. . .
. L. .
. LAY
. .
L. .
.
« e " .
v . .« s *
.
.
.
. .
« "% e .
e
L .
. . .
., v .
o " .
. .
. . -
. .
.
R
..
. . .
MY
LY LY
.
- L
.
.
A .

oIR]

. 0 T e O g
. .« e = e AN LR
. e .. . - .
P L B . o " . . . e e . . *
- . . .
A
PO N . . . LY P

- . e . s S e e

. - . . - e .
. cE x4, P . . . N .

. . . - .

. . .
. PR M .. . A L L
P * . LY LR . o . = .t . .

P R . . L L e . .

. . .. “e

. " . .] . « =
. -, MR .o, .. - .
. - . . .
.- . . P . e
. . L . N « . PO . . . -

. P -, . . -

. . . 4t . . .t

. . . . =t .. e v * .. .

. . N LIV .
. o s . v .
..
. . .. LY . . - . . .
“ae v s LI . o
. . LR
.
PRI PO MY . . “e = .
. . .
. .
PR T . LIPS . L DU
. . ., . .o . LY R -
..t L . . .- et ‘. A A -
s e o s * PUE ° * .
. fe o . . « * . Y .,
. LI I PR

., - . . -

R Y - . L . . e e
- .
.. . L L !

- ., . . ¢ e PN . - R

. L .. . - .t
.
<o, eto . . TR ot
. =
.
. . . e *an ..
. oo
.. I
L L . - *. L LR .o
N . . LI I s " o . "
N .. e -t . R - " . P L
A . - . e -
.. . v e e . . .
. D . LI DA A o . . . -
R . - s e . . P .. .
. . . LIRS .4 .. ., .
.. . . PO S
. . et . - . e Lt . .
LY » . ¢ " L .] . .
LI e .o . .
. . . .
s .. . - - -, Lt ws . . .
. . e . ! B
. . . . - . . .o .
LTS . . . e e e . . .
. .. e, . . e,

. P . . et e, . —_—

. « o . o,

. - .

. . . « v .. D] .

. . PRI . . .

.
. . R . . . o N

« _as .. * san e

- = s

. . LI .
. . [T . eae o, e, PO N .
. . PO . e e, was
R
. . . R . o
PR . > . S e — . . .
. . s e . o so . .
.t Y .
. * . LI
. - . .
.
. . e - . e o
LI M
. ML . .
.. ..

. LI COE R

N . .
. e . .v
¢ - .
PP A
. .
.-

. P

LY . .
. . . .

. .

. N - . R

Ce e s e .

. . P
.
s . L
. .
.

. * .
LR .
. .

. . . LRI

L e n
* . . . s
. . .

s - . .

NavaaT Wk L 3

XIOr]

1S Q1LIINN - 8¥T NIIS3 09TV H

1€

01¢

PCT/US2010/053172

WO 2011/049936

I€ Ol

26 /43

GIT:A 691X Pl o] [Hol}] R RSN
]
~N
e
RN E vre
EVEL
kY,
(D
IV 1IN0 1974
ﬁsé@ 5&
Mg MR w3 N
XIo]7] 4IS ATILINN - &1 NIs3a 091 (] | ope

PCT/US2010/053172

WO 2011/049936

[€ 9Ol

27 /43

26T I Pl o] [Hol}] SM0079 QNSRS []
|
OHoogIaYe NN
ST
Gmk
~
\
T1€
0o0[gpRLUBLASU|
3(Jod Q18 (¥oo|gauawnisujajduig
ve
VA [INY4301 T1aYRYA
"mé_x@ 5&
YT MR UG T | A
XIO["] 4IS ATILINN - &1 NIs3a 091 (] | ope

PCT/US2010/053172

WO 2011/049936

M€ Ol

28 /43

68°A'LLTX Pl o] [Hol}] avss []
]
TH00|gSqUNNJUBISUO)
TYo0giappy
~N
\
[SISHA FONFANId3T TVarm) Ie
(400|g/oquUnNuLISue)
VA LINV4301 T18vIvA
aﬂ%&%ﬁ& BQYE

Mg MR w3 N
XIo]7] IS GTILINN - 81 N9Is3a 09 [| ope

PCT/US2010/053172

WO 2011/049936

1€ Ol

29 /43

QITA ‘SO Pl o] [Hol}] (SMooTd ameNisns]
]
(X00|gI0jeINLINIOYEN A
P6YE

~
\
T1€

4 (00|glcjelausy)
VA [INY4301 T1aYRYA e6bE
"wﬂmsx@ 5&

YT MR UG T | A
XIo]7] IS GIILUNN - a1 NaIs3a 09 [|y

PCT/US2010/053172

WO 2011/049936

NE Ol

30 /43

0°A O el o] [EiolR] avsns []
|
DYoojgpjal oSy
(o0/gi0zeinunady (00]g/aquInNLEISUCY)
A EF :
N
OYOIEINeY RNl OroojgpiLuawnnsy - ([N
ok T1€
DYoojglayeieNe AN _AoR
ST a2
nnE olALD Y4M LSNIfEH
NN _ADEH 7
INTA LINV4301 T18414YA 10— 1GE
STIVIMEA ¥35n | E{ALD M ISNIB
[l 1
o R MR LG TN

41S TONIdNOYD - 8v1 NaIs3a 091y [TH]

0] 13

PCT/US2010/053172

WO 2011/049936

NE Ol oo Lol R[] E__M_H s]

DRROGPIRLUBWNASU

=

ov_g_m_gzu OYoojgioroepanjen

mN.AAﬁu =]
3 30 11l [

31/43

(MooIguoje|nuinady (0]gIaquInNIUeISUC)
A= (>
(Ho0|gaxelNIM el (MI0[gP[olfuownSul
Iﬂ .
I RIEN B | [caitil o €YU
YOOI NN ADEF
E=fsTH B0
NoY gAY NI
Og
WA LIn¥4301 T18YRdYA A s%ml
STIGVIVA 43S0 | EALOYUM ISNIE
[]le] T
gge~ T TEREER
XIO] 4IS TONIANOY) - 81 N9IS3A 091 (] | ope

PCT/US2010/053172

WO 2011/049936

O€ Ol |ree'ior el o] [EloR] [——
]

32 /43

|
OYo0guiypus]y
141
OHo0[glaqunNuEISue)
7€ é N
()o0|gaxe|NIMIely (M0/gPfol fuaLUNLSY| ITe
h_mw_\“_.__n_ D%mm_. Z(JHd QIg)E
3k
QA0 MM ISNIf= OpogIawRASURIduIS
VA LNV T18YI4A 102838 0253
"m._m<_~_2H¢_ﬁ%

L LG REL A
XIO] 4IS TONIANOY) - 81 N9IS3A 091 (] | ope

PCT/US2010/053172

WO 2011/049936

dt Ol

33 /43

OLG°A 29T el 0 Jo] [Hl[oIX]
|]
THOOlgRRL RIS
o_g T
OY0[gIoTE Iy
A EF
e e
T B g
i T~ gy ||
- Ofooigioeuuoy) |
7 g v Flcte
¢G¢ 4/
X ALS GEILINN - 81 N9IS30 O3] | g

PCT/US2010/053172

WO 2011/049936

O¢ "9l

34 /43

826 19X Pl o] [EHoll}] avss []
]
OoojguigIoz)y
cGe \ ()o0]g/agWnNueISUO)
()o0|gaxe|NIMIely (M0/gPfol fuaLUNLSY|
=] ST ok - €N o
ADE
W 10ld =
QA0 MM ISNIf= O giLaLnASU RIS
ANTYA L1NY4301 J1aVIIYA \ 0283
@%&%ﬁ& 16€
A4Y¥ET MR Lia3 5_.u_| /
XIO] 4IS TONIANOY) - 81 N9IS3A 091 (] | ope

PCT/US2010/053172

WO 2011/049936

g€ Ol

35 /43

881 ‘688X Pl o] [EHoll}] avss []
|
--.%_m.e.%w_.,‘.--_
4 oo
E
|_|II|\E
_I.\)
Lo (420/g/3qunN3URISUO)
= |0
()o0|gaxe NI Iely (M0/gPfol fuaLUNLSY|
w_\u_g_n_ Dzomm 330d QD=
€€ Y
SALD YuM LSNIf= OYogIUALASURLIG
INVA LINY4301 T19YI4YA [0S 053
@%@ 5&
NiviT IR L3 |
XIo]7] YIS TONIINOYD - 81 N9is3a 091y [T

A

01¢

PCT/US2010/053172

WO 2011/049936

36 /43

4V110J

GlY—

—

37IS di9 NIOr

020
WAE

J0I
WZPIN

Vv Ol

LINHVIA
LINTT

1114 TYANYWE
dolsSO [0 | ALD dSid

LINOILO == L] |

0L

I |

91900:3dA1 ¥43QU0
"Ssxd00N WISx+x3AOW WIS »—LINIIL 43040 INID-THID [

~LINTT

‘ALD

ANg

] qv1109]
375 aig Nior
| 000
N
= Edmﬁ_w,_ __ x| o
LNV ANg TeTeT7

] 1A TIZ VNNVIC]

QT Lo LINN dolso 0 _JADdSIal 9 |G|
:3dAL_¥3QH0 0z | : FAERE
| LSEAME 1IN [00T [06] G2 FALD

m_H_ ¢0L G'L 0L €26
|| Ty | ALD SV oV Qg AD aid
[X]__"S+x300W_WISxxIQ0N_IIS «x L0l 93QHO0 TWI9-THID []

PCT/US2010/053172

SIANIE

37 /43

S Tvadn 0 ‘ALD 0 ‘0Nd|[[|y3qyo 091V ANG X 0
_ 00z] AN T4 vnNviweL 8 | 8] £
24 . GTp

=N 000¢] Zwul| .mmwv_mum_mm /7 dotsO [O0Jad dsiaf 9 | s | v
=| | 00s] 1 HLw3aNoll| 7|4 69 || L EE

il 3005| rr || [FEEPOUD Wi [OOT 0o G2 LD
= ANTVA J19VRIVA _M_H_ 16¢1 0L G9 996¢
STIGVIIVA WHLIHODTY-| 957 | ALD ISV NGV aigl Ao aig

X #3IQ0N WIS+IQON WIS+IQON WIS+s30ON WiSx-13%0IL ¥3040 TW39 - THID T |

WO 2011/049936

A

0tY

PCT/US2010/053172

WO 2011/049936

38 /43

Gy

a ge
v 9Ol 0
Sy | Il
0S| Lol
[31vadn | 5G| 6017
09 |290z1
N 9 | LE0€
B 1 1v6€ | 0L
= 808zz| ¢/
191 | 08
_ 00¢] Zuo oSl | S8
i G/9T | 06
_ 000g] Twu e
_ 00§ THL 43040 ool
i< o [l w0 [0
[<]O]7] satavisva WHuMooTY 1ia3 M) wﬂﬁ 1 [965]| G0 |
[69 |LINN|(r)STIgvI¥vA|| 41D
HONNY _H_>5 alis;piq uior|] 219

*1JJY M3IA - 11dd

[XJOI=] - wao-1H39-43aav) ¥asvw [T]

Gy

PCT/US2010/053172

WO 2011/049936

39 /43

GG —

RN

_ 00¢] 2o
_ 0007] 2w
_ 00S] T HL ¥3a¥o
_ 0006] T HL I

INIVA J19VINVA

_
[XJO7] sa1aviava WHLkoDTY Lia3 (]

av Ol

4]

3814 1p3 = {smeisIpue HNNH, = [¢3e|410,uadg, = [snjels]pue, = [3e|4]i0,pasned, = [sneiglio Suiuuny, = [sniels] @A =

0 00 009 0

6’9

TN39-THID

00§

<

1Sy [IALD YOIl dOLS|ALD MHOM[ALD

3X3| LINM]ALIINDES]

19

ALD['

d8¢/6 £09571
a JNIL

I "
SYALTIH 13S34d [Lid3

i
31313q 410

ALD

R0 [0 0 sl 3mnumo

3dAL Q40[G™9 [LIWI[00G |ALD

++3QON WISsxIQOW WISxxIAON WISx+x3A0N INISx+~S¥3QYO [T]

N—057

PCT/US2010/053172

WO 2011/049936

40 /43

¥ Ol

9v

19%

G'¢

0t

G'¢

18

Y

ETll

G'v

9968

0'G

¥0C0€

009

609¢€]

GG

0G€9

8ot

000T

4 TAT

09

k005

£0601

G'9

009

8011

0/

ZT\T1

r 006

88.

G/

eecl

08

G'8

0'6

v

PiL

S43110
11373d

ALD

TV

113130

ALD

805+ | 00:Le€1 [[8T2L___]| HONN |

Sdig

EIERE(
HONN

HONNVT

[09 [LIAN

06100] *LJJV

(G)ST18VINYA|[DLD

[1 Jao []sTezs uiof[0L9

MAIA - 11dd

[XIO["] Wisw-1HIs-0739-430av1 [

19%
c9v

PCT/US2010/053172

WO 2011/049936

41 /43

€Ly .
f NDNJ H_.v G_H_ I/

q _ . E « F a0 Yiens M Jaauenbes
430114 1103 35010<> [sn1vls] @ X 0L T2 Wiy uo 1o
« ey Y0 Ang W P |jeS
0T 52 2 2N DI s ¥
10 2oe/dy J2oues) ynpoyy
peaids Wisn ONOW
_ o} U330
31000[06100[THA0Z3D| 0 ¢ | O0OS|NINNNY | eaids azig Uior 0 |6 ST9EEIH] | 0L /1 ¢ Speads azig ___s_
§aT000] 06T00[IHI-073D| 0 T | O0'0S|ONINNNY| @S piq uiof 0 |6 20°9¢'€EIH . a-v_o@__wsem___
JT000] 06100[HI0Z39| T | T JogZI$[ONINNNY] ezs pig uor 0 ["6209¢€IE ¢ SEISUJR 82 40 U0k
\atooo| oGI00[lkER-0m0| 1 | 1 [oscislonnns] asoquer] 0 [seoseeE ||| == et
01000 06T00|THID-0Z39| O T | 00'0$[ONINNNY| azs pig uior 0 [76 209E°ET[H] $agessalll alelauas
1000 oetoofha-0z3| o | 1 [ooog|oNiNNny] eas piquer 0 |6 a09gieIE —|| | 27 880 youd an 39
01000] 06100[HA9-0739| 0 | T [0'OS[ONINNNY| ezs pig uor 0 |6 ogeetcy |f[(HONNYT [L9LDfi=] 06100 J-L00Y 0l ggms_%m_mw_b w%w%w
1000 06100|THI-0Z739| 0 T | 00'0$|ONINNNY| azss pig uior 0 176 209 || o0l TR 0l N:swmg g 1M
01000 6100[IHI-0Z0| 0 | 1 | O0'O$[aNNNNY[ez piuior 0 ["6 2ot ||| mﬁ M_w V_o_h RGO
01000]_ 06100[THI0-079] 0 | 1 | 000S|aNINNRE] ezs piuer 0 ["6 098I 0¢ M.E Al Suere 3e) 14
o000 06100307 | o | 1 [ovosownny] aspquer] o [ezvoeeid Jf| 000 EU-EE ary _MQ o
01000]_ostoofIKa-0m0] 0 | 1 [ovos[anmnng] asoguer] [0 "6 0seeim |||] 0 vl sz e ?_;W@M
701000] 06100|IHI-0Z39| 0 T | O0'OS[ONINNNY| s pig oy 0 "6 C09EETI 0005] MopuTAL 01 7 T azis pesuy
01000(06100)THI-0Z39| 0 T | 00'0$|ONINNNY| azis piq uior o "6 2098 ST |of(|| (ON39-0NY » LIVAVIN- 1 { 090785 01 Spmnon ay
080 INNQOOY | IOV1ISTI 7 [Sea080#_Ted] SAIVIS 0OTY [TVISNIISO TWIL[|| [3TTVA IN9MM0 [/ TTavvn]t IIckem deutp paps-Z
3L 09 Ag dN0¥D DY (STVII0 M) j:J ‘SINIVAJTIvIEYA YILINI{ € SO9TV 0¥ TIEVIvAY
v/v HINZ) HONNVT
L1200 1av [1)

~—0LY

PCT/US2010/053172

WO 2011/049936

42 /43

049

G Ol

a TYER)

AAED

I . ED)

T13S ANd ¥H3ID
€719

ED)

ovg—” O X 0 mm_\,_m_w

, H3

MO 61 gl s AED

0 :SOd AED)

AUYSSI0IN 41 doo1 T Tl 2| S| ¥ = S
aomsTwWTHO| ¢ [2 | 1 | waw
ADINVY T# AINO TIH @ 1735
13M0IL ¥3ayo- TR

THID

INER) ZINID ED

1739 EDR) onio

ZHID ZHID ER

ED) 179 Ll oHID

ZIN3D nd| [+ 6739
STYS,1S38 SANG,LS3E SLHOIMLNO T1V-
x O[] / / SINVY LHONLNO [T

|
0gs

|
0cS

PCT/US2010/053172

WO 2011/049936

43 /43

30IA3d LNd1nO

9 Ol

049

30I1A30 1NdNI

AHOW3N T~
0€9

099

30IA3d AV1dSId

099

JOV443LNI
NHOMLAN

d0SS3004d —
0¢9

0¥9

019
009

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - description
	Page 61 - description
	Page 62 - description
	Page 63 - description
	Page 64 - description
	Page 65 - description
	Page 66 - description
	Page 67 - description
	Page 68 - description
	Page 69 - description
	Page 70 - description
	Page 71 - description
	Page 72 - description
	Page 73 - description
	Page 74 - description
	Page 75 - description
	Page 76 - description
	Page 77 - description
	Page 78 - description
	Page 79 - description
	Page 80 - description
	Page 81 - description
	Page 82 - description
	Page 83 - description
	Page 84 - description
	Page 85 - description
	Page 86 - description
	Page 87 - description
	Page 88 - description
	Page 89 - description
	Page 90 - claims
	Page 91 - claims
	Page 92 - claims
	Page 93 - claims
	Page 94 - claims
	Page 95 - drawings
	Page 96 - drawings
	Page 97 - drawings
	Page 98 - drawings
	Page 99 - drawings
	Page 100 - drawings
	Page 101 - drawings
	Page 102 - drawings
	Page 103 - drawings
	Page 104 - drawings
	Page 105 - drawings
	Page 106 - drawings
	Page 107 - drawings
	Page 108 - drawings
	Page 109 - drawings
	Page 110 - drawings
	Page 111 - drawings
	Page 112 - drawings
	Page 113 - drawings
	Page 114 - drawings
	Page 115 - drawings
	Page 116 - drawings
	Page 117 - drawings
	Page 118 - drawings
	Page 119 - drawings
	Page 120 - drawings
	Page 121 - drawings
	Page 122 - drawings
	Page 123 - drawings
	Page 124 - drawings
	Page 125 - drawings
	Page 126 - drawings
	Page 127 - drawings
	Page 128 - drawings
	Page 129 - drawings
	Page 130 - drawings
	Page 131 - drawings
	Page 132 - drawings
	Page 133 - drawings
	Page 134 - drawings
	Page 135 - drawings
	Page 136 - drawings
	Page 137 - drawings

