(54) 发明名称

一种制备艾替班特的方法

(57) 摘要

本发明涉及一种制备艾替班特的方法。本发明的具体步骤为：A) 通过液相合成片段Boc-D-Arg-Arg-OH 中HCl ；B) 采用固相合成法，以二甲基为起始试剂，按照艾替班特主链肽序依次偶联具有N端Fmoc 保护的氨基酸，其中最后两个氨基酸偶联采用片段Boc-D-Arg-Arg-OH 中HCl 偶联；C) 蛋白质裂解、纯化、脱盐、冻干后可以得到艾替班特，其缺失肽质des-D-Arg1- 艾替班特和 des-Arg2- 艾替班特含量均小于 0.1%。本发明提供了一种纯度高、成本低，适合规模化生产的艾替班特的制备工艺，此工艺既能有效控制杂质 des-D-Arg1- 艾替班特和 des-Arg2- 艾替班特的含量又不影响艾替班特的收率。
1. 一种制备艾替班特的方法，提供了一种纯度高、成本低，适合规模化生产的艾替班特的制备工艺，此工艺既能有效控制杂质 des-D-Arg^{1}- 艾替班特和 des-D-Arg^{2}- 艾替班特的含量又不影响艾替班特的收率，其特征在于，所述方法包括以下步骤：

步骤 1，通过液相合成片段 Boc-D-Arg-Arg-0H_2HCl；

步骤 2，采用固相合成法，以王树脂为起始树脂，按照艾替班特主链肽序依次偶联具有 N 端 Fmoc 保护且侧链保护的氨基酸，其中最后两个氨基酸偶联采用片段 Boc-D-Arg-Arg-0H_2HCl 偶联；

步骤 3，肽树脂裂解、纯化、脱盐、冻干后可以得到艾替班特，其缺失肽杂质 des-D-Arg^{1}- 艾替班特和 des-D-Arg^{2}- 艾替班特含量都小于 0.1%。

2. 根据权利要求 1 所述的方法，其特征是：

其中，步骤 1 所述的片段 Boc-D-Arg-Arg-0H_2HCl 的液相合成步骤为：Boc-D-Arg-0H HCl、HOSu 和 DCC 偶联得到 Boc-D-Arg-OH HCl，然后 Boc-D-Arg-OH HCl 和 H-Arg-0H 反应得到二肽片段 Boc-D-Arg-Arg-0H，重结晶后得到 Boc-D-Arg-Arg-0H_2HCl。

3. 根据权利要求 1 所述的方法，其特征是：

其中，步骤 2 所述的固相合成方法，1) 采用王树脂为起始树脂，活化剂系统的存在下，Fmoc-Arg(Pbf)-0H 和王树脂偶联得到取代度为 0.60-0.90mmol/g 的 Fmoc-Arg(Pbf)- 王树脂；2) 采用体积比为 4:1 的 DMF 和哌啶组成的去保护液脱除氨基酸树脂上的 Fmoc 保护基；3) 在偶联剂系统的存在下，H-Arg(Pbf)- 王树脂和 Fmoc-Oic-0H 偶联得到 Fmoc-Oic-Arg(Pbf)- 王树脂；4) 重复步骤 2、3)，按照艾替班特主链肽序依次偶联具有 N 端 Fmoc 保护且侧链保护的氨基酸，其中，最后两个氨基酸偶联采用片段 Boc-D-Arg-Arg-0H_2HCl 偶联。

4. 根据权利要求 3 所述的方法，其特征是：

所述活化剂系统由 DIC、HOBt 和 DMAP 组成；所述偶联剂系统包括缩合剂和反应溶剂，所述缩合剂选自 DIC/HOBt、PyBOP/HOBt/DIEA 或 HATU/HOBt/DIEA；所述反应溶剂选自 DMF、DCM、NMP、DMSO 或他们之间的组合。

5. 根据权利要求 3 所述的方法，其特征是：

优选地，步骤 2) 中，二肽 Boc-D-Arg-Arg-0H_2HCl 偶联过程中，H-Pro-Hyp(tBu)-Gly-Thi-Ser(tBu)-D-Tic-Oic-Arg(Pbf)- 王树脂、Boc-D-Arg-Arg-0H_2HCl、DIC 和 HOBt 的摩尔比优选为：1:3:3:3 ~1:5:5:5，反应温度为 25-35℃，反应时间为 2-3 小时；更优选，H-Pro-Hyp(tBu)-Gly-Thi-Ser(tBu)-D-Tic-Oic-Arg(Pbf)- 王树脂、Boc-D-Arg-Arg-0H_2HCl、DIC 和 HOBt 的摩尔比优选为：1:3:3:3，反应温度为 25℃，反应时间为 2 小时。
说明书

一种制备艾替班特的方法

技术领域
[0001] 本发明涉及一种多肽类药物的制备方法，是一种合成具有选择性抑制缓激肽与 B2 受体结合以治疗遗传性血管水肿治疗特效药 - 艾替班特的制备方法。

背景技术
[0002] 艾替班特，英文名：Icatibant，是含有 5 个非蛋白源氨基酸的十肽，结构式如下：

肽序列为：
H-D-Arg-Arg-Pro-Hyp-Gly-Thi-Ser-D-Tic-Oic-Arg-OH

遗传性血管水肿（hereditary angioedema, HAE）又称 Cl 抑制物缺乏症，是一种罕见的由遗传缺陷引起的常染色体显性遗传病，发病率约为1/50000~1/10000。HAE 其特征是不可预知的手、脚、脸、喉头和腹部的发作性水肿和肿胀，导致毁容，失能或死亡。病人通常有该病的家族史。HAE 病人可出现手、足、四肢、面部、肠道、喉头或气管的快速水肿，这可能使呼吸道水肿而导致病人有窒息的危险。

[0004] 艾替班特是一种对缓激肽 B2 受体选择性的竞争性拮抗剂，亲和力与缓激肽相似。遗传性血管水肿是 Cl− 酶酶 - 抑制剂的缺乏或功能失调所致，缓激肽是一种血管扩张剂，被认为负责局部化肿胀，炎症，和疼痛等 HAE 特征性症状。艾替班特通过抑制缓激肽与 B2 受体结合以治疗 HAE 急性发作临床症状。除此之外，他还有潜在的治疗适应症如哮喘、肝硬化和其他类型的血管性水肿。

[0005] 然而现有的艾替班特的制备方法主要有，由德国赫切斯特股份公司 1988 年发明的固相合成方法和 CN201210028377.9 公开了的制备方法。具体步骤为：通过 Fmoc 固相合成法，以 CTC− 树脂为起始树脂，按照艾替班特主链肽序依次偶联具有 N 端 Fmoc 保护且侧链保护的氨基酸，裂解后得到产品。由于最后两个偶联的氨基酸都是精氨酸，侧链保护基团为大分子的疏水性基团，因此导致精氨酸偶联不完全，生成缺失肽杂质 des-D-Arg1- 艾替班特
和des-Arg²- 艾替班特。

【0006】有关杂质 des-D-Arg¹- 艾替班特和 des-Arg²- 艾替班特的氨基酸序列分别如下：
des-D-Arg¹- 艾替班特 :H-Arg-Pro-Hyp-Gly-Thi-Ser-D-Tic-Oic-Arg-Oh
des-Arg²- 艾替班特 :H-D-Arg-Pro-Hyp-Gly-Thi-Ser-D-Tic-Oic-Arg-Oh

这两个杂质都是毒性较大的杂质之一，且与主峰分离十分困难，该杂质的存在严重影响艾替班特含量以及使用安全。因此需要找到有效的方法将其去除并使其达到优质标准级别 0.1% 以下。本发明人研究发现，该杂质用现有技术的手段很难除去，有些方法虽可以除去部分，但去除效果不理想，难以达到优质标准级别同时容易造成艾替班特本身收率降低。

【0007】综上所述，现有艾替班特的固相合成过程中，由于合成收率低，杂质多，特别是都不能很好控制杂质 des-D-Arg¹- 艾替班特和 des-Arg²- 艾替班特，不适用于工业化生产。

发明内容

【0008】本发明人用现有的合成方法，制备艾替班特，发现现有技术存在的技术问题是：合成收率低，杂质多，特别是都不能很好控制杂质 des-D-Arg¹- 艾替班特和 des-Arg²- 艾替班特，不适于工业化规模生产。为此，本发明人对艾替班特的合成方法进行了研究，从而得到了本发明的技术方案。

【0009】本发明的目的是提供一种艾替班特的固相合成方法。本发明的合成路线如图 1 所示：首先通过液相方法合成片段 Boc-D-Arg-Arg-Oh, 2HCl；其次通过固相合成法，以王树脂为起始树脂，按照艾替班特主链肽序依次偶联具有 N 端 FMoc 保护且侧链保护的氨基酸，其中最后两个氨基酸采用片段 Boc-D-Arg-Arg-Oh, 2HCl 偶联，肽树脂裂解、纯化、脱盐、冻干后可以得到艾替班特，其缺失肽杂质 des-D-Arg¹- 艾替班特和 des-Arg²- 艾替班特含量都小于 0.1%。

【0010】本发明中一些常用的缩写具有以下含义：

FMoc : 芳甲氧羰基
FMoc-AAC : 芳甲氧羰基保护的氨基酸
DIC : N,N' - 二异丙基碳化二亚胺
DCC : N,N' - 二环己基碳二亚胺
PyBOP : 六氟磷酸苯并三唑 -1- 基 - 氧基三吡咯烷基磷
HATU : 2-(7- 偶氮苯并三氮唑)-N,N',N' - 四甲基脲六氟磷酸酯
HOBt : 1- 羟基苯骈三唑
HOAt : N- 羟基琥珀酰亚胺

tBu : 叔丁基
Pbf : 2, 2, 4, 6, 7- 五甲基二氢苯并呋喃 -5- 硫酰基
Pro : 脯氨酸
Gly : 甘氨酸
Arg : 精氨酸
Ser : 丝氨酸
Oic : 八氢吲哚 -2- 甲酸
Tic : 1, 2, 3, 4- 四羟基异喹啉 -3- 甲酸
Thi: 2-噻吩丙氨酸
DMF: N,N' - 二甲基甲酰胺
MeOH: 甲醇
DCM: 二氯甲烷
NMP: N-甲基吡咯烷酮
DMSO: 二甲基亚砜
TFA: 三氟醋酸
EDT: 乙二硫醇
Piperidine: 六氨吡啶
DMP: 二甲氨基吡啶
DIEA: N,N' - 二异丙基乙胺
TMP: 2,4,6-三甲基吡啶。

[0011] NMM: N- 甲基吗啉

为此本发明提供一种艾替班特的合成方法，其步骤如下:
步骤1. 通过液相合成片段 Boc-D-Arg-Arg-Oh. 2HCl；
步骤2. 通过固相合成法，以树脂为起始树脂，按照艾替班特主链肽序依次偶联具有 N 端 Fmoc 保护且侧链保护的氨基酸，其中最后两个氨基酸采用片段 Boc-D-Arg-Arg-Oh. 2HCl 偶联；
步骤3. 将树脂裂解，纯化，脱盐，冻干后可以得到艾替班特，其缺失肽杂质 des-D-Arg^2- 艾替班特和 des-Arg^2- 艾替班特含量都小于 0.1%。

[0012] 其中，步骤1 所述的片段 Boc-D-Arg-Arg-Oh. 2HCl 的液相合成步骤为：Boc-D-Arg-Oh. HCl、Hosu 和 DCC 偶联得到 Boc-D-Arg-Oh. HCl，然后 Boc-D-Arg-OSu. HCl 和 H-Arg-Oh 反应得到二肽片段 Boc-D-Arg-Arg-Oh，重结晶后得到 Boc-D-Arg-Arg-Oh. 2HCl。

[0013] 其中，步骤2 所述的固相合成方法，1) 采用树脂为亲脂树脂，在活化剂系统的存在下，Fmoc-Arg(Pbf)-OH 和王树脂偶联得到取代度为 0.60~0.90mmol/g 的 Fmoc-Arg(Pbf)- 王树脂；2) 采用由体积比为 1:4 的吡啶和 DMF 组成的去保护液脱除氨基酸树脂上的 Fmoc 保护基；3) 在偶联剂系统的存在下，H-Arg(Pbf)- 王树脂和 Fmoc-Oic-Oh 偶联得到 Fmoc-Oic-Arg(Pbf)- 王树脂；4) 重复步骤 2,3)，按照艾替班特主链肽序依次偶联具有 N 端 Fmoc 保护且侧链保护的氨基酸，其中，最后两个氨基酸采用片段 Boc-D-Arg-Arg-Oh. 2HCl 偶联，偶联氨基酸顺序为：Fmoc-D-Tic-Oh、Fmoc-Ser(tBu)-Oh、Fmoc-Thi-Oh、Fmoc-Gly-Oh、Fmoc-Hyp(tBu)-Oh，Fmoc-Pro-Oh、Boc-D-Arg-Arg-Oh. 2HCl；所述活化剂系统由 DIC、HOBT 和 DMAP 组成；所述偶联剂系统包括缩合剂和反应溶剂，所述缩合剂选自 DIC/HOBT，PyBOP/HOBT/DIEA 或 HATU/HOBT/DIEA；所述反应溶剂选自 DMF、DCM、NMP、DMSO 或它们之间的组合。

[0014] 优选地，步骤2 中，二肽 Boc-D-Arg-Arg-Oh. 2HCl 偶联过程中，H-Pro-Hyp(tBu)-Gly-Thi-Ser(tBu) - D-Tic-Oic-Arg(Pbf)- 王树脂，Boc-D-Arg-Arg-Oh. 2HCl，DIC 和 HOBT 的摩尔比优选为 1:3:3:3；反应温度为 25~35℃，反应时间为 2~3 小时；更优选，H-Pro-Hyp(tBu) - Gly-Thi-Ser(tBu)-D-Tic-Oic-Arg(Pbf)- 王树脂，Boc-D-Arg-Arg-Oh. 2HCl，DIC 和 HOBT 的摩尔比优选为 1:3:3:3，反应温度为 25℃，反应时间为 2 小时。
[0015] 本发明的方法是经过筛选获得的，筛选过程如下：
1）摩尔比的选择：
H-Pro-Hyp(tBu)-Gly-Thi-Ser(tBu)-D-Tic-Oic-Arg(Pbf)-王树脂：
Boc-D-Arg-Arg-OH, 2HCl·HOBT·DIC 的摩尔比为 1:3:3:3 和 1:5:5:5；
2）反应温度的选择；
25℃和 35℃；
3）反应时间的选择；
2 小时和 3 小时。

[0016] 为此提出了 8 种实验条件：
实验条件 1：取 2.66g H-Pro-Hyp(tBu)-Gly-Thi-Ser(tBu)-D-Tic-Oic-Arg(Pbf)-王树脂（1.0mmol）、1.00g Boc-D-Arg-Arg-OH·2HCl（3.0 mmol）、0.41g HOBT（3.0 mmol）和 1.14g DIC（3.0 mmol）加入 20ml DMF 中搅拌溶解，冷却到 0℃，加入上述溶液中，在 25℃反应 3 小时，用 DMF 洗涤 3 次，DCM 洗涤 3 次，MeOH 洗涤 3 次，DCM 洗涤 3 次，MeOH 洗涤 3 次，干燥后得到 2.97g Boc-D-Arg-Arg-Pro-Hyp(tBu)-Gly-Thi-Ser(tBu)-D-Tic-Oic-Arg(Pbf)-王树脂。氧化、纯化、冷冻，得到艾替班特精肽。

[0017] 实验条件 2～8，实验操作如实验条件 1 所示，不同的实验条件及其实验结果如下面的表 1 所示：
表 1 实验条件 1～8 及实验结果如下：
<table>
<thead>
<tr>
<th>实验条件</th>
<th>摩尔比</th>
<th>温度 /℃</th>
<th>时间 /小时</th>
<th>des-D-Arg<sup>1</sup>-艾替班特含量 /%</th>
<th>des-Arg<sup>2</sup>-艾替班特含量 /%</th>
<th>总收率 /%</th>
<th>纯度 /%</th>
</tr>
</thead>
<tbody>
<tr>
<td>实验条件1</td>
<td>1:3:3:3</td>
<td>25</td>
<td>3</td>
<td>0.09</td>
<td>0.12</td>
<td>45</td>
<td>99.73</td>
</tr>
<tr>
<td>实验条件2</td>
<td>1:3:3:3</td>
<td>25</td>
<td>2</td>
<td>0.03</td>
<td>0.05</td>
<td>46</td>
<td>99.75</td>
</tr>
<tr>
<td>实验条件3</td>
<td>1:3:3:3</td>
<td>35</td>
<td>3</td>
<td>0.09</td>
<td>0.09</td>
<td>32</td>
<td>99.70</td>
</tr>
<tr>
<td>实验条件4</td>
<td>1:3:3:3</td>
<td>35</td>
<td>2</td>
<td>0.08</td>
<td>0.09</td>
<td>34</td>
<td>99.75</td>
</tr>
<tr>
<td>实验条件5</td>
<td>1:5:5:5</td>
<td>25</td>
<td>3</td>
<td>0.09</td>
<td>0.10</td>
<td>45</td>
<td>99.73</td>
</tr>
<tr>
<td>实验条件6</td>
<td>1:5:5:5</td>
<td>25</td>
<td>2</td>
<td>0.03</td>
<td>0.05</td>
<td>46</td>
<td>99.75</td>
</tr>
<tr>
<td>实验条件7</td>
<td>1:5:5:5</td>
<td>35</td>
<td>3</td>
<td>0.09</td>
<td>0.10</td>
<td>33</td>
<td>99.71</td>
</tr>
<tr>
<td>实验条件8</td>
<td>1:5:5:5</td>
<td>35</td>
<td>2</td>
<td>0.08</td>
<td>0.08</td>
<td>34</td>
<td>99.75</td>
</tr>
</tbody>
</table>

以上结果表明，实验条件2、6的纯化效果较优，但是实验条件2合成成本相对较低，所以实验条件2的综合结果最优。

本发明的方法和现有技术相比具有明显的优势，有关对比实验如下表2所示：

<table>
<thead>
<tr>
<th>表2 对比实验结果</th>
<th>des-D-Arg<sup>1</sup>-艾替班特含量 /%</th>
<th>des-Arg<sup>2</sup>-艾替班特含量 /%</th>
<th>总收率 /%</th>
<th>纯度 /%</th>
</tr>
</thead>
<tbody>
<tr>
<td>本发明技术</td>
<td>0.03</td>
<td>0.05</td>
<td>46</td>
<td>99.75</td>
</tr>
<tr>
<td>CN201210028377.9</td>
<td>0.32</td>
<td>0.21</td>
<td>35</td>
<td>99.35</td>
</tr>
</tbody>
</table>

本发明的有益效果是：选用片段Boc-D-Arg-Arg-OH·2HCl高收率、相对低成本的固相合成了艾替班特，解决了最后两个精氨酸偶联不完全，合成收率低，杂质多，特别是不能很好控制杂质des-D-Arg¹-艾替班特和des-Arg²-艾替班特，不适用于工业化生产的问题；本发明提供了一种纯度高、成本低，适合规模化生产的艾替班特的制备工艺，此工艺既能有效
控制杂质 des-D-Arg⁴- α替斑特和 des-Arg⁵- α替斑特的含量又不影响 α替斑特的收率。

附图说明
[0019] 图 1 本发明 α替斑特的合成路线；
图 2 二肽片段的 HPLC 谱图；
图 3 二肽片段的质谱图；
图 4 α替斑特粗肽的 HPLC 谱图；
图 5 α替斑特精肽的 HPLC 谱图；
图 6 α替斑特对照品的 HPLC 谱图；
图 7 α替斑特精肽质谱图。

具体实施方式
[0020] 以下通过实施例进一步说明本发明。
[0021] 具体地，在下面实施例中涉及的各商购氨基酸以及氨基酸片段，以及各商购树脂，其生产厂商和商品型号如下：
Fmoc 保护基氨基酸原料：和王树脂均为常规的市售试剂（厂家：吉尔生产化（上海）有限公司，化学纯）；二肽片段 Boc-Arg-Arg-OH，HCl 是本专利描述取得的。
[0022] 有机溶剂和其他原料来源均为市售品（厂家：国药集团化学试剂有限公司，化学纯）。
[0023] 另外，下面实施例中提到的“旋蒸浓缩”以及“冻干”以及测定 HPLC 和质谱的条件和所用设备型号及生产厂商说明如下：
旋蒸浓缩设备：旋转蒸发仪 R-200/205（瑞士 Buchi（布奇）公司）；
旋蒸浓缩条件：30℃下，真空（-0.1Mpa）条件下旋蒸浓缩，浓缩后体积在旋蒸前总体积 75%以下。
[0024] 冻干设备：冻干机 FD-3（北京博医康实验仪器有限公司）；
冻干条件：将冻干盘放入冰箱冷冻室（-20℃）中，预冻 6 小时，开启冻干机，打开制冷，预冷 30 分钟以上，设置冻干曲线如下：
第一段：-27℃运转 16 小时；第二段：-5℃运转 4 小时；第三段：在 5℃运转 2 小时；第四段：30℃运转 16 小时。
[0025] HPLC： Dionex 高效液相色谱仪；用十八烷基硅烷键合硅胶（5μm，250×4.6mm）为填充剂，以 0.1%TFA 溶液为流动相 A，以乙腈为流动相 B，进行梯度洗脱，流速为每分钟 1.0ml；检测波长为 220nm；柱温 30℃。取供试品溶液 20μl，注入液相色谱仪，记录色谱图。
[0026] 质谱：MALDI-TOF-MS 基质辅助激光解吸电离飞行时间质谱；仪器型号为 AUTO FLEX SPEED TOF-TOF。
[0027] 实施例一：Boc-Arg-OSu 活化酯的合成
称取 310.67g Boc-Arg-OSu·HCl（1.0mol），138.10g HOSu（1.2mol）加入 2000ml DMF 中，冰水浴下加入 247.59g DCC（1.2mol），反应 1 小时，升温到室温反应 3 小时，反应液过滤，母液旋干，加 DCM 溶解，过滤，冰乙醇重结晶 3 次，过滤，固体油泵拉干得到 273.90g Boc-Arg-OSu·HCl 活化酯，收率 89%。
实施例二：Boc-D-Arg-Arg-OH·2HCl的合成

称取87.10g H-Arg-OH（0.5mol）、153.88g Boc-D-Arg-OsU·HCl（0.5mol）和79.50g NaCO₃（0.75mol）加入到500ml水和500ml THF的混合溶液中溶解，室温下反应过夜，用10%稀盐酸调节pH至7，旋蒸除去THF，之后调节pH至3。得到大量的白色沉淀，过滤。将得到的白色沉淀用冰乙醇重结晶，得到的固体在盐酸-二氧六环溶液中搅拌重结晶2小时，得到的固体油泵干的到187.2g Boc-D-Arg-Arg-OH·2HCl。其HPLC谱图如图2所示，HPLC纯度为97.95%，收率87%。其质谱如图3所示，[M+Na]+：453.255，[MH]+：469.605，HR：片段Boc-D-Arg-Arg-OH·2HCl的理论精确分子量为430.27，样品质谱结果与理论分子量相符，结构正确。

实施例三：取代度为0.60mmol/g的Fmoc-Arg(Pbf)-王脂的合成

称取代度为1.0mmol/g的王树脂20g，加入到固相反应柱中，用DMF洗涤1次，用DMF溶胀树脂30分钟后，取64.88g Fmoc-Arg(Pbf)-OH(100mmol)、13.51g HOBt(100mmol)用DMF溶解，冰箱水浴下加入12.62g DIC(100mmol)活化后，加入上述装有树脂的反应柱中，5分钟后加入1.22g DMAP(10mmol)，反应2小时后，用DMF洗涤3次，DCM洗涤3次，用200ml体积比为1:1的醋酸酐和吡啶封端过夜，甲醇收缩干燥，得到Fmoc-Arg(Pbf)-王脂，检测取代度为0.60mmol/g。

实施例四：取代度为0.90mmol/g的Fmoc-Arg(Pbf)-王脂的合成

称取取代度为1.25mmol/g的王树脂20g，加入到固相反应柱中，用DMF洗涤1次，用DMF溶胀树脂30分钟后，取81.10g Fmoc-Arg(Pbf)-OH(125mmol)、16.89g HOBt(125mmol)用DMF溶解，冰箱水浴下加入15.78g DIC(125mmol)活化后，加入上述装有树脂的反应柱中，5分钟后加入1.53g DMAP(12.5mmol)，反应2小时后，用DMF洗涤3次，DCM洗涤3次，用200ml体积比为1:1的醋酸酐和吡啶封端过夜，甲醇收缩干燥，得到Fmoc-Arg(Pbf)-王脂，检测取代度为0.90mmol/g。

实施例五：艾替班特王脂的制备

称取16.67g(10mmol)取代度为0.60mmol/g的Fmoc-Arg(Pbf)-王脂，加入固相反应柱中，用DMF洗涤1次，用DMF溶胀Fmoc-Arg(Pbf)-王脂30分钟后，用DMF：吡啶体积比为4:1的混合溶液脱去Fmoc保护，然后用DMF洗涤6次，称取11.74g Fmoc-Oic-OH(30mmol)、4.05g HOBt(30mmol)加入体积比为1:1的DCM和DMF混合溶液，冰箱水浴下加入3.79g DIC(30mmol)活化后，加入上述装有树脂的反应柱中，室温下反应2小时后，以苯三酮法检测判断反应终点，如果树脂无色透明，则表示反应完全；树脂显色，则表示反应不完全，需要再次反应1小时，此判断标准适用于后续氨基酸偶联中以苯三酮法检测判断反应终点。重复上述脱除Fmoc保护和加入相应氨基酸偶联的步骤，按照艾替班特主链肽序，依次完成Fmoc-D-Tic-OH、Fmoc-Ser(tBu)-OH、Fmoc-Thi-OH、Fmoc-Gly-OH、Fmoc-Hyp(tBu)-OH、Fmoc-Pro-OH、Boc-D-Arg-Ang-OH·2HCl的偶联。

其中Fmoc-D-Tic-OH偶联时溶剂换为：选用体积比为1:4的DMSO和DMF混合溶液；Fmoc-Thi-OH偶联时偶联试剂换为：PyBOP/HOBt/DIEA；Fmoc-Hyp(tBu)-OH偶联时偶联试剂换为：HATU/HOBt/DIEA；Boc-D-Arg-Ang-OH·2HCl的偶联为：H-Pro-hyp(tBu)-Gly-Thi-Ser(tBu)-D-Tic-Oic-Ang(Pbf)-王脂，Boc-D-Arg-Ang-OH·2HCl、DIC和HOBt的摩尔比优选为：1:3:3:3，反应温度为25℃，反应时间为2小时，偶联完毕，将艾替班特王脂用DMF...
实施例六：艾替班特王树脂的规模化制备

称取 166.67g (100mol) 取代度为 0.60mmol/g 的 Fmoc-Arg(Pbf) - 墙树脂，加入固相反应柱中，用 DMF 洗涤 1 次，用 DMF 溶胀 Fmoc-Arg(Pbf) - 王树脂 30 分钟后，用 DMF: 甘油体积比为 4:1 的混合溶液脱去 Fmoc 保护，然后用 DMF 洗涤 6 次，称取 117.45g Fmoc-0ic-OH (300mmol)、40.52g HOBt(300mmol)加入体积比为 1:1 的 DCM 和 DMF 混合溶液，冰水浴下加入 37.92g DIC(300mmol) 活化后，加入上层含树脂的反应柱中，室温下反应 2 小时后，以茚三酮法检测判断反应终点，如果树脂无色透明，则表示反应完全；树脂显色，则表示反应不完全，需要再反应 1 小时，此判断标准适用于后续氨基酸偶联中以茚三酮法检测判断反应终点。重复上述脱除 Fmoc 保护和加入相应氨基酸偶联的步骤，按照艾替班特主链肽序，依次完成 Fmoc-D-Tic-OH，Fmoc-Ser(tBu)-OH，Fmoc-Thi-OH，Fmoc-Gly-OH，Fmoc-Hyp(tBu)-OH，Fmoc-Pro-OH，Boc-D-Arg-Arg-OH 2HCl 的偶联。

实施例七：艾替班特粗肽的制备

称取 100g 全保护的艾替班特王树脂，加入到 1000mL 的三口圆底烧瓶中，按 TFA: 苯甲酸醚:EDT=90:5:3:2 的体积比配置裂解液 10L，将裂解液加入上述树脂中，室温反应 2 小时，过滤，用少量 TFA 洗涤裂解后的树脂 3 次，合并滤液，浓缩，将浓缩后的液体加入到冰乙醚中沉淀 1 小时，离心，无水乙醚离心洗涤 6 次，真空干燥，得到艾替班特粗肽 38.42g，其 HPLC 谱图如图 4 所示，HPLC 纯度 83.98%，粗肽收率 78%。

实施例八：艾替班特精肽醋酸盐的制备

称取上述 38.42g 艾替班特粗肽用 38L 水溶解后，通过 C18 柱纯化，纯化条件：流动相为：A 相：0.1%TFA；B 相：乙腈；梯度程序为：15% B，60 分钟内至 60% B；检测波长 220 nm；收集目的峰馏分。脱盐的条件：流动相：A 相：20 mmol/L 乙酸铵的水溶液；乙腈 =95:5；B 相：水；乙腈 =95:5；C 相：0.03% 醋酸的水溶液；乙腈 =95:5；D 相：0.03% 醋酸的水溶液；乙腈 =50:50；梯度程序为：以流动相 A 等梯度洗脱 15 分钟，转换成流动相 B 等梯度洗脱 10 分钟，转换成流动相 C 等梯度洗脱 10 分钟，转换成流动相 D 等梯度洗脱 25 分钟；检测波长 220 nm；收集目的峰馏分；蒸馏浓缩，冻干得到艾替班特醋酸盐粗肽 22.65g，其 HPLC 谱图如图 5 所示，HPLC 纯度 99.75%，des-D-Arg²- 艾替班特含量为 0.03%，des-Arg²- 艾替班特含量为 0.05%。纯化总收率 59%，总收率 46%。其质谱如图 7 所示，[M]⁺: 1303.738，艾替班特的理论精确分子量为 1303.6，样品质谱结果与理论分子量相符。

实施例九：杂质 des-D-Arg²- 艾替班特和 des-Arg²- 艾替班特的含量测定

des-D-Arg²- 艾替班特的含量 = 艾替班特对照品含量 × des-D-Arg²- 艾替班特峰面
积 × 艾替班特对照品浓度 × 校正因子 / （艾替班特对照品峰面积 × 艾替班特粗肽浓度）×100% = 92.15%×0.103×1.0×1.00 / (345.782×1.0) ×100% = 0.03%；

\[
\text{des-Arg}^2-\text{艾替班特的含量} = \text{艾替班特对照品含量} \times \text{des-Arg}^2-\text{艾替班特峰面积} \times \text{艾替班特对照品浓度} \times \text{校正因子} / (\text{艾替班特对照品峰面积} \times \text{艾替班特粗肽浓度}) \times 100% = 92.15% \times 0.171 \times 1.0 \times 1.00 / (345.782 \times 1.0) \times 100% = 0.05%。
\]

[0038] 注：艾替班特对照品和艾替班特精肽的检测条件和进样量一致，都为 25 μl。校正因子 des-D-Arg^1- 艾替班特的校正因子 = 1.00；校正因子 des-Arg^2- 艾替班特的校正因子 = 1.00

艾替班特对照品浓度 : 1.0 mg/ml

艾替班特对照品峰面积 : 345.782 mAU× 分钟（图 6）

艾替班特对照品含量 : 92.15%

艾替班特粗肽配置浓度 : 1.0 mg/ml

艾替班特精肽中杂质 des-D-Arg^1- 艾替班特峰面积 : 0.103 mAU× 分钟

艾替班特精肽中杂质 des-Arg^2- 艾替班特峰面积 : 0.171 mAU× 分钟。

[0039] 以上内容是结合具体的修选实施方式对本发明所作的进一步详细说明，不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说，在不脱离本发明构思的前提下，还可以做出若干简单推演或替换，都应当视为属于本发明的保护范围。
图 1
图2

<table>
<thead>
<tr>
<th>序号</th>
<th>保留时间 (分钟)</th>
<th>峰面积 (mAU)</th>
<th>对峰面积 (%)</th>
<th>分高度 (EP)</th>
<th>不对称度 (EP)</th>
<th>塔板数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>17.846</td>
<td>0.461</td>
<td>0.07</td>
<td>1.18</td>
<td>n.a.</td>
<td>2461</td>
</tr>
<tr>
<td>2</td>
<td>19.627</td>
<td>0.516</td>
<td>0.07</td>
<td>4.88</td>
<td>n.a.</td>
<td>2428</td>
</tr>
<tr>
<td>3</td>
<td>23.190</td>
<td>0.367</td>
<td>0.05</td>
<td>5.63</td>
<td>0.88</td>
<td>5134</td>
</tr>
<tr>
<td>4</td>
<td>26.588</td>
<td>2.573</td>
<td>0.36</td>
<td>n.a.</td>
<td>n.a.</td>
<td>3689</td>
</tr>
<tr>
<td>5</td>
<td>28.599</td>
<td>1.703</td>
<td>0.24</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>6</td>
<td>32.384</td>
<td>8.902</td>
<td>1.26</td>
<td>1.34</td>
<td>0.88</td>
<td>5437</td>
</tr>
<tr>
<td>7</td>
<td>34.376</td>
<td>693.418</td>
<td>97.95</td>
<td>n.a.</td>
<td>1.24</td>
<td>7571</td>
</tr>
</tbody>
</table>

总和: 707.933 100.000
图 3
<table>
<thead>
<tr>
<th>序号</th>
<th>峰面积</th>
<th>相对峰面积</th>
<th>分离度</th>
<th>不对称度</th>
<th>标称数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16.895</td>
<td>1.575</td>
<td>0.50</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>2</td>
<td>18.733</td>
<td>1.229</td>
<td>0.39</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>3</td>
<td>19.883</td>
<td>1.081</td>
<td>0.34</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>4</td>
<td>22.535</td>
<td>3.374</td>
<td>1.07</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>5</td>
<td>25.014</td>
<td>4.993</td>
<td>1.58</td>
<td>1.3</td>
<td>1231</td>
</tr>
<tr>
<td>6</td>
<td>27.582</td>
<td>0.910</td>
<td>0.29</td>
<td>1.51</td>
<td>0.3</td>
</tr>
<tr>
<td>7</td>
<td>30.271</td>
<td>0.622</td>
<td>0.20</td>
<td>4.19</td>
<td>0.75</td>
</tr>
<tr>
<td>8</td>
<td>32.421</td>
<td>10.945</td>
<td>3.45</td>
<td>0.3</td>
<td>5110</td>
</tr>
<tr>
<td>9</td>
<td>40.986</td>
<td>3.642</td>
<td>1.15</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>10</td>
<td>44.142</td>
<td>14.412</td>
<td>4.55</td>
<td>1.54</td>
<td>0.3</td>
</tr>
<tr>
<td>11</td>
<td>47.356</td>
<td>255.983</td>
<td>33.95</td>
<td>1.17</td>
<td>9603</td>
</tr>
<tr>
<td>12</td>
<td>49.148</td>
<td>2.113</td>
<td>0.67</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>13</td>
<td>49.666</td>
<td>2.375</td>
<td>0.75</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>14</td>
<td>51.794</td>
<td>1.046</td>
<td>0.33</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>15</td>
<td>55.101</td>
<td>1.662</td>
<td>0.59</td>
<td>1.65</td>
<td>0.95</td>
</tr>
<tr>
<td>16</td>
<td>53.953</td>
<td>0.557</td>
<td>0.3</td>
<td>0.3</td>
<td>19409</td>
</tr>
</tbody>
</table>

图 4
<table>
<thead>
<tr>
<th>序号</th>
<th>保留时间</th>
<th>峰面积</th>
<th>相对峰面积</th>
<th>分高度</th>
<th>不对称度</th>
<th>有效数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>37.840</td>
<td>0.309</td>
<td>0.09</td>
<td>0.1</td>
<td>0.1</td>
<td>5347</td>
</tr>
<tr>
<td>2</td>
<td>39.328</td>
<td>0.275</td>
<td>0.08</td>
<td>0.1</td>
<td>0.1</td>
<td>0.3</td>
</tr>
<tr>
<td>3</td>
<td>42.403</td>
<td>0.103</td>
<td>0.03</td>
<td>0.1</td>
<td>0.1</td>
<td>0.3</td>
</tr>
<tr>
<td>4</td>
<td>45.382</td>
<td>342.697</td>
<td>99.75</td>
<td>0.1</td>
<td>1.17</td>
<td>809.1</td>
</tr>
<tr>
<td>5</td>
<td>48.581</td>
<td>0.171</td>
<td>0.05</td>
<td>0.1</td>
<td>0.1</td>
<td>0.3</td>
</tr>
<tr>
<td>总和</td>
<td></td>
<td>343.555</td>
<td>100.000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

图 5
<table>
<thead>
<tr>
<th>序号</th>
<th>保留时间</th>
<th>峰面积</th>
<th>相对峰面积</th>
<th>分高度</th>
<th>不对称度</th>
<th>塔板数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>36.964</td>
<td>0.291%</td>
<td>0.08%</td>
<td>n.a.</td>
<td>n.a.</td>
<td>5345</td>
</tr>
<tr>
<td>2</td>
<td>38.434</td>
<td>0.282%</td>
<td>0.08%</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>3</td>
<td>41.637</td>
<td>0.112%</td>
<td>0.03%</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>4</td>
<td>45.275</td>
<td>345.782%</td>
<td>99.76%</td>
<td>n.a.</td>
<td>1.15%</td>
<td>8090</td>
</tr>
<tr>
<td>5</td>
<td>47.686</td>
<td>0.160%</td>
<td>0.05%</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>总和</td>
<td></td>
<td>346.627%</td>
<td>100.00%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

图 6
图 7