METHODS FOR FORMING A TUBE ASSEMBLY UTILIZING A JOINING AGENT

A method for joining a flexible tube to a connector having a female fitting that allows relatively facile connection and desirable retention force in a short amount of time. Tube assemblies having a tube bonded to the female fitting of the connector with a joining agent composition including an evaporable liquid hydrocarbon are disclosed.
METHODS FOR FORMING A TUBE ASSEMBLY UTILIZING A JOINING AGENT

FIELD OF THE INVENTION

[0001] The present invention relates to a method for joining a flexible tube to a connector having a female fitting that allows relatively facile connection and desirable retention force in a short amount of time. Tube assemblies having a tube bonded to the female fitting of the connector with a joining agent composition including an evaporable liquid hydrocarbon are disclosed.

BACKGROUND OF THE INVENTION

[0002] In the medical field, medical tubing is utilized to convey fluids to and from a patient. Tubing is also used in various other non-medical fluid transfer fields as known in the art. Tubes are bonded, in some embodiments, to a female fitting wherein the outer diameter of the tube is bonded to the inner diameter of the female fitting.

[0003] Flexible tubing made with essentially non-polar surfaces and relatively difficult to bond (co)polymers such as polypropylene, polyethylene, styrenic block copolymers and blends thereof can be difficult to bond to traditional female connectors utilizing a conventional solvent bonding technique, wherein the tubing has an end that is coated, such as by dipping, and then inserted into the female fitting.

[0004] To improve bonding between a tube and a connector, different techniques have been developed, see U.S. Patent Nos. 8,871,864 and 8,871,317, which involve the use of adhesives, U.S. 2012/01 50150 which incorporates the use of an insert liner, and U.S. 8,735,491 which utilizes a halogen-free, plasticizer-free thermoplastic elastomer compound reportedly capable of being solvent bonded or welded to another thermal plastic material utilizing cyclohexanone alone or with methyl ethyl ketone.

[0005] As evidenced by the various approaches taken, there is a demand for practical and cost effective ways to improve the retention force between tubing and a female fitting of a connector.
SUMMARY OF THE INVENTION

[0006] In view of the above, it would be desirable, and is an object of the present invention, to provide a method for joining a flexible tube to a female fitting of a connector with a joining agent composition that a) lubricates one or more of the tube and connector to allow insertion of the tube into the connector, to a desired location, and b) results in high retention force, which can be achieved rapidly, within minutes in some embodiments.

[0007] Still another object of the present invention is to provide a method for bonding flexible tubing, preferably thermoplastic elastomeric tubing, having a maximum outer diameter, at least at a surface that contacts the fitting when the tube assembly is formed, that is larger than a maximum inner diameter of the female fitting of a connector with a joining agent composition.

[0008] A further object of the present invention is to provide a method for joining a flexible tube to a female fitting of a connector utilizing an evaporable liquid hydrocarbon-containing joining agent composition.

[0009] An additional object of the present invention is to provide bonding methods that achieve high retention force, rapidly after joining a tube and a desired connector, provide low assembly costs, and tube assemblies that are relatively easy to produce, which enable mass production.

[0010] Yet another object of the present invention is to provide a joining agent composition that includes a hydrocarbon, such as one or more of hexane, heptane, xylenes (one or more of a o-xylene, m-xylene and p-xylene) and toluene. In additional embodiments the joining agent composition further includes a thermoplastic elastomer, preferably a styrenic block copolymer in one embodiment.

[0011] In one aspect of the present invention a method for forming a tube assembly is disclosed, comprising the step of obtaining a tube having an outer diameter; obtaining a connector having a female fitting with an inner diameter that is less than the tube outer diameter; applying a liquid joining agent composition comprising a hydrocarbon to one or more of i) the outer diameter of an end portion of the tube and ii) at least a portion of
the female fitting inner diameter; joining the tube to the connector to form the tube assembly by inserting the end portion of the tube into the female fitting.

[0012] In another aspect of the present invention is a tube assembly is provided, comprising a tube having an end having an outer diameter, the end inserted in, and secured to a female fitting of a connector, wherein prior to insertion the tube outer diameter is greater than an inner diameter of the female fitting, wherein the tube and connector are secured using a joining agent including a hydrocarbon composition.

BRIEF DESCRIPTION OF THE DRAWINGS

[0013] The invention will be better understood and other features and advantages will become apparent by reading the detailed description of the invention, taken together with the drawings, wherein:

[0014] FIG. 1 is a partial cross-sectional view of one embodiment of a tube assembly according to the present invention, wherein a tube having an end of a greater initial outer diameter has been located within a female fitting of a connector, wherein the inner diameter of the female fitting is smaller than the initial outer diameter of the tube end.

DETAILED DESCRIPTION OF THE INVENTION

[0015] In this specification, all numbers disclosed herein designate a set value, individually, in one embodiment, regardless of whether the word "about" or "approximate" or the like is used in connection therewith. In addition, when the term such as "about" or "approximate" is used in conjunction with a value, the numerical range may also vary, for example by 1%, 2%, 5%, or more in various other embodiments.

[0016] The invention provides a tube assembly exhibiting desirable retention force between a soft flexible tube and a connector having a female fitting that is achieved rapidly after connection or joining of the tube and connector. The tube and connector are secured using a joining agent composition including a hydrocarbon, wherein the joining agent composition not only serves as a bonding agent, but as a lubricant that
facilitates connecting the tube having a larger outer diameter than an inner diameter of the female fitting of the connector.

[0017] Referring now to the drawings, Fig. 1 illustrates one embodiment of a tube assembly 10 of the present invention including a flexible tube 20 having a first end 22 joined to a connector 30.

[0018] Tube 20 is formed from a relatively soft composition that allows the tube to be flexible. When utilized herein, the terms "tube" and "tubing" are intended to embrace any construction or structure arranged at a substantially radial distance about a longitudinal axis. The intended use of the tube is as a conduit to convey a fluid such as a gas or liquid, or even a flowable solid, such as in a liquid, or a combination thereof.

[0019] The tubing can have one or more of the following features: a hollow cylinder having an inner surface and outer surface, independently, with a circular or non-circular cross-section for example oval, elliptical; a longitudinal axis that is linear or non-linear, e.g. bent or curved along all or a portion of the tube length; and one or more of the inner surface and outer surface, such as multi-lumen tubing, having a shape that is variable along the length of the tube. The tube can have one or more, two or more, layers with a single layer being preferred.

[0020] Depending upon the application, the tubing can be formed having any desired length, inner diameter, outer diameter and wall thickness. The wall thickness is generally defined as the difference between the outer diameter and inner diameter of the tube at a given cross-sectional area.

[0021] The composition of the tube can likewise vary based on the requirements of the end use of the assembly. Examples of compositions that can be utilized include, but are not limited to, various polymers, copolymers, thermoplastic elastomers and thermoplastic vulcanizates. Suitable polymers include, but are not limited to, polyolefins, acrylonitrile-butadiene-styrene resins, silicone homopolymers or block copolymers and polyolefin-styrenic block copolymer-based thermoplastic elastomers.

[0022] Thermoplastic elastomer tubing is preferable in various embodiments of the invention and can be utilized to obtain a desirable retention force between the tubing and connector with the use of the joining agent composition. It has been surprisingly
found that with difficult to bond flexible tubing, the outer diameter of the tubing needs to be generally from about 1 to about 10%, desirably from about 2 to about 8% and preferably from about 3 to about 5% larger than the inner diameter of female fitting of the connector.

[0023] The flexible tubing joined to a connector is relatively soft and flexible as well as easy to bend and manipulate in actual application. In various embodiments the tube hardness ranges generally from about 50 Shore A to about 40 Shore D, desirably from about 65 Shore A to about 92 Shore A and preferably from about 73 Shore A to about 88 Shore A as measured according to ASTM D 2240. In some preferred embodiments, the connector has a greater hardness than the tube.

[0024] The wall thickness of tubing can vary, depending on the application. That said, the tube preferably has a wall thickness generally between about 5 to about 40% of the tubing outer diameter, desirably from about 10% to about 35% of the tubing outer diameter, and preferably from about 15% to about 25% of the tubing outer diameter.

[0025] The connector 30 can be any suitable construction, and is preferably utilized as a fitting to join tube 20 to another component. Many different styles of connectors are known in the art. In the medical field, one common connector is a Luer lock-type connector, with one embodiment illustrated in Fig. 1. The connector has a body 31 having at one end a female fitting 32 having an inner surface 33 with an inner diameter. The outer diameter of flexible tube 20 is joined to the inner surface 33 of the inner diameter of connector 30 as explained herein. Preferably the female fitting is provided with a seat 34 having an aperture or passageway 37 therein having the diameter less than the diameter of the inner surface 33 and preferably a diameter substantially equal to the inner diameter of tube 20 that allows fluid to pass therebetween. The end 22 of tube 20 preferably contacts the seat 34 upon full insertion into fitting 32. At a second end 35, the connector has a second fitting, opposite the first, female fitting 32 that accepts the tube. The second fitting may optionally have a taper. The second end 35 preferably includes a threaded external surface 36 in one embodiment.

[0026] The connector is preferably made from a durable polymeric material, but alternatively can be made from metal or other materials. Suitable polymers include, but
are not limited to, polyolefins, polycarbonate (PC) resins, polyurethane, acrylic resins, polyvinyl chloride, acrylonitrile-butadiene-styrene (ABS) resins, PC/ABS alloy, polyesters, olefin-containing alloys, polyacetyls, cyclic olefin copolymer, polyether ether ketone, polyamide, such as nylon, or a fluorocarbon polymer such as polytetrafluoroethylene.

[0027] The tube is joined to the connector after applying a joining agent composition comprising a hydrocarbon to one or more of the outer diameter of the end portion of the tube and a portion of the inner diameter of the female fitting. The joining agent includes or consists of one or more hydrocarbons that are liquids at room temperature in various embodiments. The hydrocarbon comprises one or more of hexane, heptane, toluene, o-xylene, m-xylene, and p-xylene.

[0028] In one preferred embodiment, the hydrocarbon composition has a boiling point between 50°C and 200°C, and preferably between about 60°C and 150°C.

[0029] In a further embodiment, the joining agent composition includes one or more of a polymer and thermoplastic elastomer, such as one or more of a polystyrene, styrene butadiene block copolymer, hydrogenated styrene butadiene copolymer, and polyurethane; preferably dissolved or substantially dissolved by the hydrocarbon. The concentration of the one or more of the polymer and thermoplastic elastomer in the hydrocarbon is between 0% or 1% to about 20%, desirably from 0% or 1% to about 15%, and preferably from 0% or 1% to about 10% by weight of the joining agent composition.

[0030] In one embodiment, the joining agent composition includes a hydrogenated or saturated styrenic block copolymer comprising at least three blocks with styrene or mono alkenyl arene present in each block, preferably a majority of the monomers of the end blocks and a minority of the monomers in the one or mid-blocks. The styrenic block copolymer has relatively high styrene or mono alkenyl arene content, with the styrene or mono alkenyl arene present in the mid-block(s) arranged randomly or in a controlled distribution.

[0031] In various embodiments of the invention, the styrene or mono alkenyl arene is present in a total weight in an amount of greater than 38% and preferably greater than
45% based on the total weight of the random or controlled distribution styrenic block copolymer. In various embodiments, the mid-block of the random or controlled distribution copolymer block has a mono alkenyl arene content of less than 30%, desirably less than 29% by weight.

[0032] The controlled distribution block copolymer of the present invention may include the copolymers sold under the trade name Kraton A ® Polymers, wherein Kraton A 1536 and A 1535 are examples.

[0033] The joining agent composition can be applied to one or more of a) the outer diameter of an end portion of the tube and b) at least a portion of the female fitting inner diameter. In one embodiment, the end of the tube is dipped in the joining agent composition for a desired period of time, for example from about 0.5 to about 2 seconds, prior to inserting the tube end into the female fitting of the connector. In other embodiments, the joining agent is brushed or sprayed, with a liquid dispenser, onto one or more of the tube and female fitting surfaces to be connected.

[0034] In various embodiments of the invention, a tube assembly comprising a tube having an end bonded in a female fitting of a connector has a bond strength of at least 35.6 N (8 Lbf), wherein the tube has an outer diameter from about 1% to about 10% larger than the female fitting inner diameter, wherein the tube has a hardness from about 65 Shore A to about 92 Shore A. In another embodiment of the present invention, a tube assembly comprising a tube having an end bonded in a female fitting of a connector has a bond strength of at least 42.7 N (9.6 Lbf), wherein the tube has a 78 Shore A hardness, wherein a polycarbonate connector is utilized, and wherein the tube has an outer diameter from about 1% to about 10% larger than the female fitting inner diameter, for example, an outer diameter of 4.27 mm and inner diameter of 4.01 to 4.17 mm. Toluene is used as the joining agent in a preferred embodiment.

[0035] Examples

[0036] The examples set forth below serve to illustrate methods for joining a flexible tube to a connector having a female fitting and tube assemblies formed utilizing the methods of the invention.

[0037] The examples are not intended to limit the scope of the invention.
[0038] Tube assemblies consisting of a tube bonded to a connector were prepared by dipping an end portion the tube into solvent (comparative examples) or joining agent, briefly tapping the dipped tube on a paper tissue to remove some or substantially all of the solvent or joining agent inside of the tube, and inserting the tube end into the connector.

[0039] With the comparative examples having a small tube outer diameter, the tube could easily be inserted into the connector. To ensure the connector inner surface is sufficiently wetted, the tube was pulled out and immediately reinserted into the connector.

[0040] In the comparative examples with a large, oversized tube outer diameter, the tube could not be inserted all the way into the connector. The tube was then pulled out and immediately reinserted into the connector. It was often necessary to re-dip the tubing into solvent before reinserting the tubing into the connector. It was also often necessary to repeat the re-dipping/re-inserting more than 2 times in attempt to fully insert the oversized tube into the connector when using the comparative solvent.

[0041] In the case of the invention, the tube was inserted into the connector. To ensure the connector inner surface was properly wetted, the tube was pulled out and immediately reinserted into the connector. No additional dipping/reinserting was needed.

[0042] The solvent used in the comparative examples was cyclohexanone. The joining agents used in the examples were pure hydrocarbon, such as heptane, toluene, xylenes; or polymer solution. The polymer solution was prepared by dissolving the polymer into the hydrocarbon solvent. For example, 10 wt.% Kraton A 1536 is dissolved in toluene.

[0043] The retention force of the assembly between the tubing and connector was measured on an Instron tensile instrument at 20 in/min speed with one inch tube sample length between the Instron clamp and the tubing/connector line. To ensure the tubing/connector assembly was aligned straight to prevent or minimize tilting and false high retention force, an adaptor was used to hold the connector in a straight position. The retention force test was typically done 7 days after the assembly. In a time study
shown in Table 3, the retention force was tested after various bonding times. The results of an average retention force of 5-10 bonded samples are reported in the tables. The tubes used in the examples were extruded from grades of various hardness of Medalist® MD-50200 series from Teknor Apex. The connectors were purchased from Qosina. The ABS connector was P/N 65248 with fitting ID of 4.04-4.19 mm. The PC connector was P/N 71636 with fitting ID of 4.01-4.17 mm.

[0044] The following test protocols were used for testing:

<table>
<thead>
<tr>
<th>Tests</th>
<th>Units</th>
<th>Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tubing TPE Hardness (15sec)</td>
<td>Shore A</td>
<td>ASTM D-2240</td>
</tr>
<tr>
<td>Average Retention Force</td>
<td>N (Lbf)</td>
<td>Given Above</td>
</tr>
</tbody>
</table>

[0045] In the tables, a "Yes" entry in the "Easy to Assemble" column means that the tube was inserted into the connector without having to repeat the dipping step prior to attempting to reinsert the tube end into the connector. A "No" entry required at least one additional dipping step and reinsertion, and often could not be inserted fully even with multiple attempts.
<table>
<thead>
<tr>
<th>Experiment Number</th>
<th>Control Solvent or Joining Agent Composition</th>
<th>TPE</th>
<th>Tubing OD (mm)</th>
<th>Tubing Wall Thickness (mm)</th>
<th>ABS Fitting ID (mm)</th>
<th>Avg Retention force, N (Lbf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control #1</td>
<td>Toluene</td>
<td>Yes</td>
<td>4.06</td>
<td>4.04-4.19</td>
<td>36.9 (8.3)</td>
<td>38.7 (8.7)</td>
</tr>
<tr>
<td>Control #2</td>
<td>Cyclohexanone</td>
<td>No</td>
<td>4.27</td>
<td>4.04-4.19</td>
<td>36.0 (8.1)</td>
<td>35.6 (8.0)</td>
</tr>
<tr>
<td>Example #1</td>
<td>Toluene</td>
<td>Yes</td>
<td>4.27</td>
<td>4.04-4.19</td>
<td>36.0 (8.1)</td>
<td>35.6 (8.0)</td>
</tr>
<tr>
<td>Example #2</td>
<td>Heptane</td>
<td>Yes</td>
<td>4.27</td>
<td>4.04-4.19</td>
<td>36.0 (8.1)</td>
<td>35.6 (8.0)</td>
</tr>
<tr>
<td>Example #3</td>
<td>A1536/Toluene (10%)</td>
<td>Yes</td>
<td>4.27</td>
<td>4.04-4.19</td>
<td>36.0 (8.1)</td>
<td>35.6 (8.0)</td>
</tr>
<tr>
<td>Control #3</td>
<td>Cyclohexanone</td>
<td>No</td>
<td>4.36</td>
<td>4.04-4.19</td>
<td>38.7 (8.7)</td>
<td>38.3 (8.6)</td>
</tr>
<tr>
<td>Example #4</td>
<td>Toluene</td>
<td>Yes</td>
<td>4.36</td>
<td>4.04-4.19</td>
<td>38.7 (8.7)</td>
<td>38.3 (8.6)</td>
</tr>
</tbody>
</table>
In Table 1, Control #1 illustrates that tubing having substantially the same outer diameter as an inner diameter of the fitting is relatively easy to assemble but results in lower average retention force as compared to Control #2 and Examples #1, #2 and #3. Control #2 utilizes tubing having an outer diameter larger than the fitting and cyclohexanone as a solvent. The combination provides acceptable retention force but it is difficult to assemble the tubing into the connector. To fully insert the tubing into the connector, the partially inserted tube had to be pulled out of the connector, dipped into solvent, and reinserted into the connector. Sometimes, it was necessary to repeat the above procedure more than two times, which is not practical for mass production. Examples #1, #2 and #3 utilized tube having a larger outer diameter than the inner diameter of the fitting. The Examples were easy to assemble and provide a desirable retention force due to the use of the specified joining agents.

Control #3 utilized an even larger tube outer diameter, and even greater average force is exhibited as compared to Control #2 but the tube assembly was not easy to assemble. Example #4 illustrates that tubing having even a larger outer diameter than Example #1 exhibited even greater retention force using the toluene joining agent, while maintaining ease of assembly.

In Table 1A, the controls and examples showed the same comparison as in Table 1 for tubing made with a 83 Shore A hardness TPE instead of a 73 Shore A hardness. The retention forces are all higher than those in Table 1 due to the higher hardness of the TPE.
<table>
<thead>
<tr>
<th>Experiment Number</th>
<th>Control Solvent or Joining Agent Composition</th>
<th>Easy to Assemble</th>
<th>TPE Hardness 15s delayed Shore A</th>
<th>Tubing OD (mm)</th>
<th>PC Fitting ID (mm)</th>
<th>Tubing Wall Thickness (mm)</th>
<th>Avg Retention force, N (Lbf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control #7</td>
<td>Toluene</td>
<td>Yes</td>
<td>73A</td>
<td>4.06</td>
<td>4.01-4.17</td>
<td>0.76</td>
<td>26.7 (6.0)</td>
</tr>
<tr>
<td>Control #8</td>
<td>Cyclohexanone</td>
<td>No</td>
<td>73A</td>
<td>4.27</td>
<td>4.01-4.17</td>
<td>0.86</td>
<td>38.7 (8.7)</td>
</tr>
<tr>
<td>Example #10</td>
<td>Toluene</td>
<td>Yes</td>
<td>73A</td>
<td>4.27</td>
<td>4.01-4.17</td>
<td>0.86</td>
<td>40.5 (9.1)</td>
</tr>
<tr>
<td>Example #11</td>
<td>Heptane</td>
<td>Yes</td>
<td>73A</td>
<td>4.27</td>
<td>4.01-4.17</td>
<td>0.86</td>
<td>36.9 (8.3)</td>
</tr>
<tr>
<td>Example #12</td>
<td>Xylene</td>
<td>Yes</td>
<td>73A</td>
<td>4.27</td>
<td>4.01-4.17</td>
<td>0.86</td>
<td>37.8 (8.5)</td>
</tr>
<tr>
<td>Control #9</td>
<td>Cyclohexanone</td>
<td>No</td>
<td>73A</td>
<td>4.36</td>
<td>4.01-4.17</td>
<td>0.91</td>
<td>45.4 (10.2)</td>
</tr>
<tr>
<td>Example #13</td>
<td>Toluene</td>
<td>Yes</td>
<td>73A</td>
<td>4.36</td>
<td>4.01-4.17</td>
<td>0.91</td>
<td>40.5 (9.1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Experiment Number</th>
<th>Control Solvent or Joining Agent Composition</th>
<th>Easy to Assemble</th>
<th>TPE Hardness 15s delayed Shore A</th>
<th>Tubing OD (mm)</th>
<th>PC Fitting ID (mm)</th>
<th>Tubing Wall Thickness (mm)</th>
<th>Avg Retention force, N (Lbf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control #10</td>
<td>Toluene</td>
<td>Yes</td>
<td>83A</td>
<td>4.06</td>
<td>4.01-4.17</td>
<td>0.76</td>
<td>37.4 (8.4)</td>
</tr>
<tr>
<td>Control #11</td>
<td>Cyclohexanone</td>
<td>No</td>
<td>83A</td>
<td>4.27</td>
<td>4.01-4.17</td>
<td>0.86</td>
<td>51.2 (11.5)</td>
</tr>
<tr>
<td>Example #14</td>
<td>Toluene</td>
<td>Yes</td>
<td>83A</td>
<td>4.27</td>
<td>4.01-4.17</td>
<td>0.86</td>
<td>53.4 (12.0)</td>
</tr>
<tr>
<td>Example #15</td>
<td>Heptane</td>
<td>Yes</td>
<td>83A</td>
<td>4.27</td>
<td>4.01-4.17</td>
<td>0.86</td>
<td>53.4 (12.0)</td>
</tr>
<tr>
<td>Example #16</td>
<td>Xylene</td>
<td>Yes</td>
<td>83A</td>
<td>4.27</td>
<td>4.01-4.17</td>
<td>0.86</td>
<td>51.6 (11.6)</td>
</tr>
<tr>
<td>Control #12</td>
<td>Cyclohexanone</td>
<td>No</td>
<td>83A</td>
<td>4.36</td>
<td>4.01-4.17</td>
<td>0.91</td>
<td>54.7 (12.3)</td>
</tr>
<tr>
<td>Example #17</td>
<td>Toluene</td>
<td>Yes</td>
<td>83A</td>
<td>4.36</td>
<td>4.01-4.17</td>
<td>0.91</td>
<td>54.7 (12.3)</td>
</tr>
</tbody>
</table>
Table 2 discloses test results of a tube assembly having a thermoplastic elastomer tube and a polycarbonate connector. Control #7 illustrates that tubing having substantially the same outer diameter as an inner diameter of the fitting is relatively easy to assemble but results in lower average retention force as compared to Control #6 and Examples #10, #11 and #12. Control #8 utilizes tubing having an outer diameter larger than the fitting and cyclohexanone as a solvent. The combination provides acceptable retention force, but it is difficult to assemble the tubing into the connector. To fully insert the tubing into the connector, the partially inserted tube had to be pulled out of the connector, dipped into solvent, and reinserted into the connector. Sometimes, it was necessary to repeat the above procedure more than two times, which is not practical for mass production. Examples #10, #11 and #12 utilized tubing having a larger outer diameter than the inner diameter of the fitting and the specified joining agents. The Examples were easy to assemble and provide a desirable retention force.

Control #9 utilized a larger tube outer diameter and achieved greater average force as compared to Control #8, but, again, the tube assembly was not easy to assemble. Example #13 illustrates that tubing having even a larger outer diameter than Example #10 exhibited even greater retention force using toluene as joining agent.

In Table 2A, the controls and examples showed the same comparison as in Table 2 for tubing made with a 83 Shore A hardness TPE instead of a 73 Shore A hardness. The retention forces are all higher than those in Table 1 due to the higher hardness of the TPE.

Table 3

<table>
<thead>
<tr>
<th>Experiment Number</th>
<th>Bonding Time before Retention Test, Hour(s)</th>
<th>Easy to Assemble</th>
<th>Avg Retention force, N (Lbf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example #14</td>
<td>0.12</td>
<td>Yes</td>
<td>42.7 (9.6)</td>
</tr>
<tr>
<td>Example #15</td>
<td>0.61</td>
<td>Yes</td>
<td>43.1 (9.7)</td>
</tr>
<tr>
<td>Example #16</td>
<td>7.11</td>
<td>Yes</td>
<td>44.0 (9.9)</td>
</tr>
<tr>
<td>Example #17</td>
<td>21.14</td>
<td>Yes</td>
<td>44.0 (9.9)</td>
</tr>
<tr>
<td>Example #18</td>
<td>77.51</td>
<td>Yes</td>
<td>45.8 (10.3)</td>
</tr>
<tr>
<td>Example #19</td>
<td>147.46</td>
<td>Yes</td>
<td>46.7 (10.5)</td>
</tr>
<tr>
<td>Example #20</td>
<td>244.02</td>
<td>Yes</td>
<td>47.6 (10.7)</td>
</tr>
</tbody>
</table>
[0052] Table 3 illustrates the low variation of retention force with solvent bonding time for a tube assembly formed with a tube having 78 Shore A hardness and a PC connector. The tube had an outer diameter of 4.27 mm and wall thickness of 0.86 mm. The PC connector had a female fitting ID of 4.01-4.17 mm. The bonding was done using toluene as the joining agent. Unlike what was disclosed in US 8,735,491, namely high retention force reportedly can be achieved after multiple days of bonding, desirable high retention force was achieved almost instantly with the bonding method disclosed herein.

[0053] While in accordance with the patent statutes the best mode and preferred embodiment have been set forth, the scope of the invention is not limited thereto, but rather by the scope of the attached claims.
WHAT IS CLAIMED IS:

1. A method for forming a tube assembly, comprising the steps of:
 obtaining a tube having an outer diameter;
 obtaining a connector having a female fitting with an inner diameter that is less than the tube outer diameter;
 applying a liquid joining agent composition comprising a hydrocarbon to one or more of i) the outer diameter of an end portion of the tube and ii) at least a portion of the female fitting inner diameter;
 joining the tube to the connector to form the tube assembly by inserting the end portion of the tube into the female fitting.

2. The method according to claim 1, wherein the outer diameter is generally 1 to 10% larger than the female fitting inner diameter.

3. The method according to claim 1, wherein the outer diameter is generally 2 to 8% larger than the female fitting inner diameter.

4. The method according to claim 1, wherein the outer diameter is generally 3 to 5% larger than the female fitting inner diameter.

5. The method according to claim 1, wherein the hydrocarbon comprises one or more of hexane, heptane, toluene, o-xylene, m-xylene, and p-xylene.

6. The method according to claim 5, wherein the hydrocarbon composition comprises one or more of heptane, toluene, o-xylene, m-xylene, and p-xylene.

7. The method according to claim 5, wherein the joining agent composition further includes one or more of a polymer and thermoplastic elastomer.
8. The method according to claim 7, wherein the polymer or thermoplastic elastomer comprises one or more of polystyrene, styrene butadiene block copolymer, hydrogenated styrene butadiene copolymer, and polyurethane.

9. The method according to claim 8, wherein the polymer or thermoplastic elastomer comprises styrene or mono alkenyl arene in a mid-block, in a random or controlled distribution form.

10. The method according to claim 5, wherein the tube comprises a thermoplastic elastomer composition comprising a styrenic block copolymer and a polyolefin, and wherein the connector comprises one or more of ABS, polycarbonate, and an acrylic resin.

11. The method according to claim 8, wherein the tube has a wall thickness generally between about 5-40% of the tubing outer diameter.

12. The method according to claim 5, wherein the tube has a hardness of about 50 Shore A to about 40 Shore D.

13. The method according to claim 1, wherein the tube assembly has a bond strength of at least 35.6 N (8 Lbf), wherein the tube has an outer diameter from 1% to 10% larger than the female fitting inner diameter, and wherein the tube has a hardness from about 65 Shore A to 92 Shore A.

14. The method according to claim 5, wherein the hydrocarbon composition has a boiling point between 50°C and 200°C.

15. The method according to claim 8, wherein total concentration of the one or more of the polymer and thermoplastic elastomer is from 1 to 20% by weight based on 100 total parts by weight of the joining agent composition.
16. The method according to claim 1, wherein the tube assembly has a bond strength of at least 42.7 N (9.6 Lbf) at 12 hour after the joining step, wherein the tube has a 78 Shore A hardness, wherein a polycarbonate connector is utilized, wherein the tube has an outer diameter from about 1% to about 10% larger than the female fitting inner diameter.

17. A tube assembly, comprising:

a tube having and end having an outer diameter, the end inserted in an secured to a female fitting of a connector, wherein prior to insertion the tube outer diameter is greater than an inner diameter of the female fitting, wherein the tube and connector are secured using a joining agent including a hydrocarbon composition.
INTERNATIONAL SEARCH REPORT

International application No.
PCT/US16/21484

A. CLASSIFICATION OF SUBJECT MATTER
IPC(8) ... 1450, Alexandria, Virginia 22313-1450
Facsimile No. 571-273-8300
Form PCT/ISA/2 1 0 (second sheet) (January 2015)

B. FIELDS SEARCHED

Minimum document searched (classification system followed by classification symbols)
IPC(8) Classifications: A61M 25/00; B23P 17/04; B29C 65/52 (2016.01); CPC Classifications: A61M 25/0097; B29C 65/48, 65/4895, 66/1222, 66/1224, 66/5344; USPC Classifications (if searched): 29/428; 106/296, 297; 604/524

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
PatentSeer (US, EP, WO, JP, DE, GB, CN, FR, KR, ES, AU, IN, CA, INPADOC Data); IEEE/IEEExplore; Google/Google Scholar; EBSCO Keywords: Tube w2 assembly, tube, tube w2 connector, duct, flex* w2 conduit, outer, diameter, circumference, width, End, Distal w2 end, insert*, embed*, implant*, inlay*, female w2 fitting, fitting, coupling, connector, Connect, bond*, inner w2 diameter, bore, joining w2 agent, seal* w2 agent, seal*, join*, hydrocarbon w2 composition, hydrocarbon, xylene, toluene, polymer, thermoplastic w2 elastomer, bond*

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 2012/015150 A (CAI, KG et al.) June 14, 2012; figure 1; paragraph [0015], [0039], [0044], [0046], [0047], [0051], [0060]</td>
<td>1-6, 10, 12-14, 17</td>
</tr>
<tr>
<td>Y</td>
<td>US 2,971,876 A (PHAIR, RJ) February 14, 1961; figure 1; column 1, lines 15-16; column 2, lines 3-10; column 3, lines 30-70</td>
<td>7-9, 11, 15</td>
</tr>
<tr>
<td>A</td>
<td>US 2012/0273496 A1 (LOURIDO, R) November 1, 2012; entire document</td>
<td>1-17</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier application or patent but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art document member of the same patent family

Date of the actual completion of the international search
10 May 2016 (10.05.2016)

Date of mailing of the international search report
03 JUN 2016

Name and mailing address of the ISA/
Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450
Facsimile No. 571-273-8300

Authorized officer
Shane Thomas
PCT Helpdesk: 571-272-4300
PCT OSP: 571-272-7774

Form PCT/ISA/2 10 (second sheet) (January 2015)