An inexpensive bottle container adapted for wine and like bottles of varying size comprising upper and lower open-ended matching enclosures of a light weight insulating material such as closed cell polyurethane, which enclosures are retained on the bottle by means of decorative upper and lower sleeves having elastic means disposed at the open ends of the respective enclosures, these elastic means circumscribing an opening of smaller area than that circumscribed by the open ends of the enclosures whereby the contact of the elastic means of the sleeves with the bottle is functional in retaining the insulated enclosure in position over the bottles, as well as in inverted position for packing and storage purposes.
LIGHT WEIGHT DECORATIVE INSULATED BOTTLE CONTAINER

BACKGROUND OF THE INVENTION

This invention relates to an insulated bottle cover. The structure of the bottle cover allows the cover to accommodate bottles which may vary in size, such as wine bottles and other containers of irregular configuration.

The art is replete with different structural arrangements for sleeve-enclosed insulating containers; see for example U.S. Pat. Nos. 535,550; 747,025; 995,700; 1,939,777; 2,325,955; 2,759,617 and 2,974,814. Each of the containers therein disclosed practical drawbacks in that the sleeve and insulating material arrangement often leaves the bottle partially exposed and the mode of attachment is by means of mechanical clasps or snaps and therefore expensive to manufacture as well as cumbersome to use. Moreover, any of the previous bottle covers are not readily adaptable for use with bottles of different sizes. This is particularly true where no suitable elastic sleeve arrangement is incorporated into the structure of the bottle cover.

SUMMARY OF THE INVENTION

Accordingly, one of the objects of the invention is to provide an insulating container for bottles which is extremely simple in structure and hence very inexpensive to manufacture; also, the device is versatile enough to be adapted for use with bottles of varying size.

Another objective of the invention is to provide a container that functions not only to insulate the bottle and its contents but also protects the bottle from breakage during transport.

Still another object of the invention is to provide an insulated container which when not in use can be stored within a minimal space.

A further objective of the invention is to provide a bottle container which not only achieves the functions of protection and insulation but moreover, is readily adaptable to marketing with bottles containing wines and liquors, since the bottle container also serves a highly decorative function.

An additional objective is to provide a unique decorative container, the structure of which permits the decorative part of the container to be readily changed.

A yet further objective is to provide an insulating container which need not be totally removed when the contents of the bottles are being served, thereby providing a decorative effect for the bottom portion of the bottle and partial insulation thereof clinging to the bottle during pouring, to thus present dribbling down the side of the bottle onto a tablecloth or other stain susceptible surface.

Also and as briefly indicated above, the invention has the added feature of lessening the accidental shattering of bottles containing beverages under pressure, e.g., containers for champagne and sparkling wines. Shattering is an ever present problem and may result from imperfections in the bottle, temperature change, and/or mishandling. This invention lessens the possibility of accidental shattering due to mishandling and temperature variation, and ameliorates as well the hazards of shattering where the bottle is defective. Such provides an added inducement for use of the container, either via shipment or home consumption.

The bottle container of this invention comprises an upper enclosure of solid, light weight insulating material having an interior substantially conforming to the shape of the upper portion of a bottle, this upper enclosure having a lower open end suitable for receiving the upper portion of the bottle. The lower enclosure of the unit is also of solid, light weight insulating material. It similarly has an interior substantially conforming to the shape of the lower portion of a bottle. Such lower enclosure is provided with an upper open end suitable for receiving the lower portion of the bottle. An upper sleeve covers the upper enclosure. This has an elastic open end disposed at the lower open end of the upper enclosure, such circumscribing an opening of a smaller area than circumscribed by the open end of the upper enclosure. The lower sleeve covering the lower enclosure also has an upper elastic means disposed at the open end of the lower enclosure which circumscribes an opening of a smaller area than circumscribed by the open end of the lower enclosure. The open ends of said upper and lower enclosures are approximately complimentary in diameter, whereby the bottle is substantially enclosed by the placement of said upper and lower enclosures over the respective upper and lower portions of said bottle. The respective elastic ends of said enclosures, in facing contact with each other, tend to maintain said portions in juxtaposed position, thus to firmly encase the bottle or container.

BRIEF DESCRIPTION OF THE DRAWING

The present invention may be more clearly understood by reference to the accompanying drawing wherein one preferred embodiment is illustrated.

FIG. 1 is an isometric view showing the bottle container with the upper half thereof in inverted and storage position, and
FIG. 2 is a cross-sectional view of the invention as shown in FIG. 1 illustrating the two-part container in position for storage and/or immediate use of the container.

Referring first more particularly to FIG. 1, the bottle container there shown is disposed in a manner suitable for storage, shipment, and/or sale. The upper enclosure 1 is inverted and placed within the lower enclosure 2 in such inverted position. It is retained in the position illustrated in FIG. 1, in large part, by contact of the elastic 9 surrounding the open end of the lower enclosure 2. The upper sleeve 3 covers the upper enclosure 1. The contact between the covered enclosures 10 is along the line of contact depicted by line 8.

In FIG. 2 the two-part bottle container is appropriately positioned around a champagne bottle — this in a manner contemplated for storage, shipment and/or immediate use.

In the latter FIGURE, the upper enclosure 1 is made of polyurethane, preferably the closed cell type, or like synthetic material. The upper enclosure 1 is made of stretch nylon or equivalent elastic material and is also preferably interwoven with decorative metallic thread. This material also facilitates handling and adherence to the bottle. The lower enclosure 2, similarly to upper enclosure 1, is also preferably fabricated of polyurethane. The lower sleeve 4, covering lower enclosure 2, is generally and for aesthetic reasons, made of the same type of material as the upper sleeve 3. The elastic means of the upper enclosure is identified by numeral 5.
The elastic open end of the lower enclosure is identified by numeral 9. Line 8 indicates the line or contact area of the outer sleeves 3 and 4 of the upper and lower portions which, as so positioned, entirely encase the bottle. The upper body portion 10 of the bottle extends from line 8 upwardly and is inclusive of the foil covering the bottle stopper. The lower body portion 12 of the bottle extends downwardly from dotted line 8 to the bottle bottom. Dotted lines 15 and 16 demarcate the primary area of frictional contact of the elastic 5 provided at the open end of the upper sleeve with the bottle. Dotted lines 18 and 20 demarcate the primary area of frictional contact of the elastic 9 provided at the open end of the lower sleeve of the bottom portion 12 of the bottle.

The contacting areas of these lower and upper sleeves (through elastic means 5 and 9) tend to retain the lower and upper enclosures 3 and 4 respectively in the required position. The tenacity of retention of contact between the elastic open end and bottle is a function of the elasticity, area of contact and coefficient of friction of the elastic material employed as well as the referred to elastic means 5 and 9 surrounding their respective openings.

In the embodiment illustrated, the bottom portion 12 of the bottle has been placed within the sleeve-covered lower enclosure 2. In the process of inserting the bottle, it firmly contacts the elastic 9 of the open end of the lower sleeve covering the lower enclosure. The elastic means 9 is displaced into the interior of the lower enclosure 2 in the manner illustrated in FIG. 2. The area of contact between the elastic open end of the lower enclosure and the bottle is demarcated by dotted lines 18 and 20, and is maximized where the entire elastic open end of the lower sleeve extends within the open area circumscribed by the open end of the lower enclosure. It is essential that the elastic open end of the lower sleeve covering circumscribe an opening of a smaller area than that circumscribed by the open end of the lower enclosure because, as stated, the elastic open end operates to maintain the lower enclosure in position over the champagne bottle.

The elastic portion of the lower sleeve covering is preferably located entirely within the opening circumscribed by the open end of the lower enclosure. This is best illustrated by reference to FIG. 1. In FIG. 1, the opening circumscribed by the elastic means 9 around the lower enclosure is defined by line 22. When the lower portion of the bottle is inserted, the elastic 9 of the open end of the lower sleeve is drawn inwardly and contact is established along this entire elastic area which forms a part of the outer surface of the lower sleeve. Accordingly, the tenacity of frictional adherence between the elastic 9 and the bottle is increased relative to the contact area available.

By utilizing elastic 9 as a means of attaching the lower enclosure to the bottle, it is also apparent that the lower enclosure 2 is adapted for use with bottles, the dimensions of which may vary because of different bottle configurations.

With further reference to the embodiment illustrated, the upper portion 10 of the bottle has been covered by the sleeve 3. In the process of covering the bottle, the bottle contacts the elastic means 5 of the open end of the upper sleeve. The resultant area of contact between the elastic 5 of the open end of the upper enclosure 1 and the bottle (demarcated by lines 15 and 16) is again increased where the entire elastic 5 of such upper sleeve 3 extends into facing contact with the open area circumscribed by the elastic, open end of the lower sleeve.

In any event, the elastic portion 5 of the upper sleeve covering is again preferably located entirely within the opening circumscribed by the open end of the upper enclosure 3. Also, this is best illustrated by reference to FIG. 1. Here it is further noted that the opening circumscribed by the open end of the upper enclosure is defined by dotted line 25. The elastic 5 is located entirely within such opening as circumscribed by line 25.

There is a further functional advantage in the use of this two-part structure which is again accentuated by reference to FIG. 1. Here it is seen that the upper enclosure, together with its outer covering 3, may be inverted with the narrow neck of that structure inserted into the open end of the lower enclosure 2. By reason of the use of the elastic means 9 as an inner “gasket” surrounding the inner circumference of the upper opening of the lower enclosure 2, inversion of the cover as so depicted in FIG. 1, will cause this elastic means to tightly grasp the outer surface 3 representing the rather rough material of which the outer covering is made. The frictional contact between this covering and the elastic means 9 will maintain the two segments in the relative position shown in FIG. 1 for use during storing, shipment, etc., and of course prior to the positioning of these two parts around the usual container and in a manner illustrated in FIG. 2, as above described in detail.

It is to be noted that different types of light weight insulating materials, as well as various types of sleeve fabrics may be employed. Thus the invention is not limited to the precise insulating or fabric materials of the invention herein particularly disclosed, but is deemed to include other alternates of equivalent functionality within the skill of the art.

In the latter regards, the solid light weight insulating material is one which is able to provide the requisite insulation as well as the rigidity required for handling and protecting the bottle. Preferred materials of this type are the foamed polymers, and such of the closed cell or rather rigid type. Examples of suitable foamed polymers are the polyesters, polyolefins, polystyrenes and polyurethanes. Especially preferred polymeric materials are the closed cell polyurethanes.

The upper and lower sleeve coverings may be made of a fabric which is selected on the basis of durability, texture and appearance. Materials such as cotton, wool, other synthetic fabrics, rayon nylon, etc., are all suitable materials. Especially preferred however are stretchable materials which, in conforming to the shape of the enclosures, also are held thereto by being stretchably fitted over such coverings. An especially preferred material is stretch nylon interwoven with metallic threads. It is decorative, easy to handle, affords a rough-type surface facilitating handling as well as adhesion, and also exhibits a “stretchability” particularly well suited for secure attachment to the preferred foamed polymer enclosures.

The elastic material circumventing the open ends may be of any appropriate elastic material. Such would include synthetic, as well as natural, elastic polymeric materials, as rubber. The elastic elements 5 and 9 are formed integral with the sleeve covering and operate, in addition to retaining the enclosures positioned over
the bottle, to facilitate unitary storage of the container when not in use, as well as to retain the sleeve coverings over the enclosures.

As described in the foregoing and as illustrated in FIG. 1, the upper and lower enclosures are stored by inverting the upper enclosure and inserting it within the lower enclosure. The elastic open end of the upper enclosure holds both enclosures together as a unit of manageable size, and thereby prevents inadvertent separation and/or loss before use.

We claim:

1. A bottle container comprising:
 a. an upper enclosure of solid, light weight insulating material having an interior substantially conforming to the shape of the upper portion of a bottle, said upper enclosure having an open end suitable for receiving the upper portion of the bottle,
 b. a lower enclosure of solid, light weight insulating material having an interior substantially conforming to the shape of the lower portion of a bottle, said lower enclosure having an open end suitable for receiving the lower portion of the bottle,
 c. an upper sleeve with a lower open end covering the upper enclosure and having an elastic means at said upper open end thereof, said elastic means thereof circumscribing an opening of a smaller area than circumscribed by the open end of the upper enclosure,
 d. a lower sleeve with an upper open end covering the lower enclosure and having an elastic means at said upper open end thereof, said elastic means thereof circumscribing an opening of a smaller area than circumscribed by said upper open end, the open ends of said upper and lower enclosure being of about complementary diameter, whereby said bottle is substantially enclosed by the placement of said upper and lower enclosures over the respective upper and lower portions of said bottle.

2. The bottle container of claim 1 further characterized in that the upper and lower sleeves are made of a fabric of stretchable materials and stretchably fitted over the respective upper and lower enclosures.

3. The bottle container of claim 2 further characterized in that the stretchable material of the fabric of the upper and lower sleeves is composed of a stretch polymer interwoven with metallic thread.

4. The bottle container of claim 1 further characterized in that the solid light weight insulating material is a foamed polymeric material.

5. The bottle container of claim 4 further characterized in that the foamed polymeric material is polyurethane.