A. H. MORTON.

SPINDLE FOR SPINNING, TWISTING, AND LIKE MACHINES.

APPLICATION FILED FEB. 2, 1914.

Patented June 30, 1914. 1,101,877. Fig.2. Witnesses: Frechrick S. Greenleaf Olice Ockrayd

UNITED STATES PATENT OFFICE.

ALBERT H. MORTON, OF LOWELL, MASSACHUSETTS.

SPINDLE FOR SPINNING, TWISTING, AND LIKE MACHINES.

1,101,877.

Patented June 30, 1914. Specification of Letters Patent.

Application filed February 2, 1914. Serial No. 816,031.

To all whom it may concern:

Be it known that I, ALBERT H. MORTON, a citizen of the United States, residing at Lowell, in the county of Middlesex and State of Massachusetts, have invented certain new and useful Improvements in Spindles for Spinning, Twisting, and the like Machines; and I do hereby declare the following to be a full class of the state lowing to be a full, clear, and exact descrip-10 tion of the invention, such as will enable others skilled in the art to which it appertains to make and use the same.

The present invention relates to an improvement in spindles, and more particu-15 larly to an improvement in the bobbin and

spindle connectors.

The object of the invention is to produce an improved form of connector which will hold the bobbin securely on the spindle in 20 driving engagement and which is simple in construction, durable and cheap.

To the above ends the present invention consists in the improvement in spindles hereinafter described and particularly defined in

25 the claims.

In the accompanying drawings illustrating the preferred form of the invention; Figure 1 is an elevation of a spindle; Fig. 2 is a vertical section on the line 2—2, Fig. 30 1; and Fig. 3 is a horizontal section on the line 3—3, Fig. 1.

Referring to the drawings, the illustrated embodiment of the invention is described as follows: The spindle blade 10 is provided with the usual bobbin support 11 carrying the whirl in the usual manner, being supported in any convenient spindle bearing. The spindle blade is provided at its base near the bobbin support with a bobbin do clutch, indicated in a general way by the reference characters 20. This clutch consists of a metallic shell 21 provided with three openings in its sides of the form illustrated in the drawings. The body of the 45 shell is cylindrical in form, of less diameter than the inside of bobbin and its upper end is necked down and provided with a concentric hole which fits the portion of the spindle blade with which it engages. This af-50 fords a concentric support for the shell 21 so as to hold it in correct position at its upper end on the spindle blade. The spindle blade just above the bobbin support is provided with a ring or collar 22 which is 55 formed integral with the bobbin support. The outside of this collar affords a support is claimed is:-

for the bottom of the shell which it fits, and thereby concentrically holds it in position on the blade. The several apertures 23 in the shell afford openings through which 60 the cork friction material projects outward to form the friction surfaces 24. The side walls of the apertures are parallel to each other, as shown in Fig. 3, thereby affording provision for supporting the cork where 65 it extrudes through the openings. The friction material consists of a ring of cork, the normal outside diameter of which is greater than the outside diameter of the shell 21. The inside diameter of the cork 70 shell is normally somewhat less than the size of the spindle upon which it fits. The cork is inserted in the shell, after a steaming process by which the cork is rendered flexible and elastic, by the use of some device 75 such as a jig to support the shell having portions which project into and fill the aper-tures in the shell, so as to render the inner surface of the shell a smooth cylindrical surface, and a tapering device supported in 80 axial alinement therewith, the small end of which is the same size as the internal diameter of the shell into which the annulus of cork is received and through which it is forced into the shell. After the cork has 85 been forced into position in the shell, the shell support is removed and the cork expands out through the apertures in the shell. The hole in the inside of the cork at this time is smaller than the size of the spindle 90 blade which it is to fit, but when the assembled shell and cork ring is forced onto the spindle blade, the blade enters the hole in the cork and as the shell is forced onto the tapering blade it further expands the 95 cork, causing it to be extruded through the apertures in the walls of the shell. The external surfaces 24 of the cork form the friction surfaces which engage the bobbin when it is placed on the spindle, and the cork is 100 supported at all points except where it extrudes through the openings in the shell, so that the construction is durable and not liable to accidental injury. The above-described construction is preferred because it is strong and durable. Other constructions departing therefrom in detail are within the purview of the invention. It is to be observed that the cork forms the only friction surface engaged by the bobbin.

Having thus described the invention, what

1. A spindle for spinning, twisting and the like machines having, in combination, a blade, a bobbin and spindle connector consisting of a cylindrical shell provided with openings therethrough, and soft, flexible, non-metallic friction material supported in and projecting from the openings beyond the outer surface of the shell, substantially as described.

2. A spindle for spinning, twisting and the like machines having, in combination, a spindle blade provided with a bobbin support, a collar mounted on the blade adjacent to the bobbin support, and a bobbin and spindle connector consisting of a shell having at its lower end a portion adapted to fit the collar and at its upper end a portion adapted to fit the spindle blade provided with openings in its sides, and soft, flexible, non-metallic friction material supported in said shell and projecting through the open-

substantially as described.

3. A bobbin and spindle connector for use on spindles for spinning, twisting and the like machines consisting of a cylindrical shell reduced at one end and having an opening therethrough for engagement with the blade of the spindle and having lateral

ings beyond the outer surface of the shell,

openings, and soft, flexible, non-metallic friction material supported in the shell and projecting therethrough beyond the outer surface of the shell, substantially as described.

4. A bobbin and spindle connector for use on spindles for spinning, twisting and the like machines, consisting of a shell provided with openings therethrough, and a soft, flexible, non-metallic, friction device supported in the shell and having portions projecting through the openings in the shell and beyond the outer surface thereof, substantially as described.

5. A bobbin and spindle connector for connecting bobbins and spindles on spinning, twisting and the like machines consisting of a metallic shell provided with openings therethrough and secured to one of said members, and a soft, flexible, non-metallic, friction device supported by the shell and having portions projecting through openings in the shell and beyond the surface thereof to engage the other member, substantially as described.

ALBERT H. MORTON

Witnesses:

HORACE VAN EVEREN, FRANCIS J. V. DAKIN.

Copies of this patent may be obtained for five cents each, by addressing the "Commissioner of Patents, Washington, D. C."