wo 20187144377 A1 I 0K 000 000

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

J

=

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
09 August 2018 (09.08.2018)

(10) International Publication Number

WO 2018/144377 Al

WIPO I PCT

(51) International Patent Classification:
GO6F 11/14 (2006.01) GO6F 11/20(2006.01)

(21) International Application Number:
PCT/US2018/015697

(22) International Filing Date:

29 January 2018 (29.01.2018)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:

62/454,871 05 February 2017 (05.02.2017) US
15/844,359 15 December 2017 (15.12.2017) US
(71) Applicant: VERITAS TECHNOLOGIES LLC
[US/US]; 500 East Middlefield Road, Mountain View, CA

94043 (US).

(72) Inventors: BANDOPADHYAY, Tushar; 1030 Forest
Knoll Drive, San Jose, CA 95129 (US). DIGHE, Bharat;
10705 Gardena Court #20-100, Cupertino, CA 95014 (US).

(74) Agent: CAMPBELL, Samuel, G., I1L.; Campbell Stephen-
son LLP, 11401 Century Oaks Terrace, Building H, Suite

250, Austin, TX 78758 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
CA,CH,CL,CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP,
KR,KW,KZ,LA,LC,LK,LR,LS,LU,LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,

(54) Title: METHOD AND SYSTEM FOR DEPENDENCY ANALYSIS OF WORKLOADS FOR ORCHESTRATION

Application
655(1)

Application
855(2)

Virtualization
Module
652

I \ Physical
| Machine

610

——_—— -

Data Center
602

Dataset

\

| Boundary 606 :

| I

| j‘.

| |
1

| I
|
|
|
|
1
1
|
|
|
1
1
|
|
|
|
1
1
|
|
|
1
1
|
|
|
|

Property Graph
700

Virtualization
Module

Storage 670

Systems
[618
Dataset
150

Data Center
604

{
| | |
| | |
Storage : 730 Replication Relationship 710 | :
Systems — |
612 N - |
] Storage Group Storage Group | Storage Unit I
| Storage Unit Information : Information | 155 |
| s = S~ = : |
1
ogical Storage
| ! Logical St |
! Logical Storage |de7nstg'er :
I Identifier | oY
' 0 | \ !
\ sy - e = -
—————— - Fig. 7

(57) Abstract: Methods, computer program products, computer systems, and the like providing for representation and analysis of enti-
ties and their relationships are disclosed. The method, for example, includes selecting a node of a plurality of nodes in a property graph,
analyzing entity information associated with the node, and, in response to the analyzing, storing the entity information in dependency
information. Each node of the plurality of nodes represents an entity of a plurality of entities, and is coupled to at least one other node
of the plurality of nodes by one or more links of a plurality of links of the property graph. Each of the one or more links represents
a relationship between the each node and the at least one other node. The entity information is information regarding the entity. The
dependency information is configured to facilitate orchestration of one or more of the plurality of entities.

[Continued on next page]

WO 2018/144377 A1 {00000 00 00

SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Published:
— with international search report (Art. 21(3))

WO 2018/144377 PCT/US2018/015697

METHOD AND SYSTEM FOR DEPENDENCY ANALYSIS OF
WORKLOADS FOR ORCHESTRATION

Tushar Bandopadhyay
Bharat Dighe

FIELD OF THE INVENTION

[0001] This invention relates to the management of workloads in computing systems,
and in particular, methods and systems for dependency analysis of workloads for

purposes of orchestration.

DESCRIPTION OF THE RELATED ART

[0002] Today's organizations often rely extensively on data maintained online. Such
frequently accessed, constantly changing data can be critical to the ongoing operations of
such organizations. So to are computing resources, which can include not only data
storage, but also computing systems (implemented using both physical and virtual
components). Unplanned events that inhibit the availability of such data and systems can
seriously impair business operations. Additionally, any permanent data loss, from natural
disaster or other events, will likely have serious negative consequences for the continued
viability of a business. Therefore, when disaster strikes, organizations must be prepared
to eliminate or minimize data loss and downtime, and recover quickly with useable data
and functional systems. Data backup and other disaster recovery (DR) techniques can be
used to prevent the loss of data and functionality in the event of such disasters. For
example, a data backup process can be used to create copies of original data. These
copies can be used to restore the original data after a data loss event. Various techniques
can be used to generate such backups, such full backups, incremental backups, or
differential backups, as well as various types of data replication, among a variety of other

techniques. In case of a failure, then, such online data processing systems should provide

WO 2018/144377 PCT/US2018/015697

fast, easy, efficient functionality for recovering from such disasters. Similarly, disaster

recovery architectures can be employed to ensure continuity of service.

SUMMARY OF THE INVENTION

[0003] The present disclosure describes methods, computer program products,
computer systems, and the like that support the analysis of computing environments
using one or more property graphs (or comparable constructs) that represent entities and
one or more of their relationships to one another. The method, for example, includes
selecting a node of a plurality of nodes in a property graph, analyzing entity information
associated with the node, and, in response to the analyzing, storing the entity information
in dependency information. Each node of the plurality of nodes represents an entity of a
plurality of entities. Each node of the plurality of nodes is coupled to at least one other
node of the plurality of nodes by one or more links of a plurality of links of the property
graph. Each of the one or more links represents a relationship between the each node and
the at least one other node. The entity information is information regarding the entity.
The dependency information is configured to facilitate orchestration of one or more of

the plurality of entities.

[0004] In certain embodiments, such methods, computer program products, computer
systems, and the like can include determining whether the one or more links crosses a
boundary and, in response to one of the one or more links crossing a boundary, recording

a contact point in the dependency information.

[0005] Further, in certain embodiments, such methods, computer program products,
computer systems, and the like can include traversing a link of the property graph from
the node to another node of the plurality of nodes, where the link is one of the plurality of
links. Further still, operations can be performed that include determining whether the
link crosses a boundary and, in response to a determination that the link crosses the

boundary, recording a contact point in the dependency information. It may be the case

WO 2018/144377 PCT/US2018/015697

that the node is selected as a starting point in the property graph, and/or the node and the

another node have a dependency relationship with one another.

[0006] Moreover, in certain embodiments, such methods, computer program products,
computer systems, and the like can include determining whether the link represents a
contact point and, in response to a determination that the link represents the contact point,
recording the contact point in the dependency information. This and other embodiments
can include determining whether the another node should be included in the dependency
information, (in response to a determination that the another node should be included in
the dependency information) performing the traversing and, in response to a
determination that the another node should not be included in the dependency

information, preventing the traversing.

In certain embodiments, such methods, computer program products, computer systems,
and the like can include determining whether another link exists between the node and a
subsequent node and, in response to a determination that the subsequent node should be
included in the dependency information, recursively performing the traversing. In these
and other embodiments, each entity of the plurality of entities can be one of a virtual
computing component, a virtual storage component, a physical computing component, or

a physical storage component.

BRIEF DESCRIPTION OF THE DRAWINGS

[0007] The present invention may be better understood, and its numerous objects,
features and advantages made apparent to those skilled in the art by referencing the

accompanying drawings.

[0008] Fig. 1is a block diagram illustrating an example of a computing environment

that includes management functionality according to one embodiment.

WO 2018/144377 PCT/US2018/015697

[0009] Fig. 2 is a block diagram illustrating an example of a physical machine
supporting multiple virtual machines (VMs) and other functionality, according to one

embodiment.

[0010] Fig. 3 is a block diagram illustrating an example of a computing environment

analysis architecture, according to one embodiment.

[0011] Fig. 4 is a block diagram illustrating an example of a computing environment,

according to one embodiment.

[0012] Fig. 5 is a block diagram illustrating an example of a computing environment

having multiple contact points, according to one embodiment.

[0013] Fig. 6is a block diagram illustrating an example of hardware and software

entities in a computing environment, according to one embodiment.

[0014] Fig. 7 is a block diagram illustrating an example of a representation of a
property graph representing portions of the computing environment of Fig. 6, according

to one embodiment.

[0015] Fig. 8 is a flowchart depicting an example process for the implementation of a

property graph, according to one embodiment.

[0016] Fig. 9is a flowchart depicting an example process for property graph creation,

according to one embodiment.

[0017] Fig. 101s a flowchart depicting an example process for traversing entities and
their relationships, according to one embodiment, in order to create a property graph

according to one embodiment.

[0018] Fig. 11 is a flowchart depicting an example process for analyzing one or more

property graphs, according to one embodiment.

4 -

WO 2018/144377 PCT/US2018/015697

[0019] Fig. 12 1s a flowchart depicting an example process for traversing a property

graph as part of analyzing the property graph, according to one embodiment.

[0020] Fig. 13 is a block diagram illustrating an example of a representation of a
property graph, according to one embodiment, in which low-level replication is

implemented.

[0021] Fig. 14 is a block diagram illustrating an example of a representation of a
property graph, according to one embodiment, in which high-level copying is

implemented.

[0022] Fig. 15 is a block diagram illustrating an example of a representation of a
property graph, according to one embodiment, in which high-level synchronized physical

replication is implemented.

[0023] Fig. 16 is a block diagram of an example of an orchestration architecture,

according to one embodiment.

[0024] Fig. 17 is a block diagram depicting a computer system suitable for
implementing aspects of systems according to embodiments of systems such as those

disclosed herein.

[0025] Fig. 18 is a block diagram depicting a network architecture suitable for
implementing aspects of systems according to embodiments of systems such as those

disclosed herein.

DETAILED DESCRIPTION

[0026] The following is intended to provide a detailed description of an example of
the invention and should not be taken to be limiting of the invention itself. Rather, any
number of variations may fall within the scope of the invention which is defined in the

claims following the description.

WO 2018/144377 PCT/US2018/015697

[0027] While the invention is susceptible to various modifications and alternative
forms, specific embodiments of the invention are provided as examples in the drawings
and detailed description. It should be understood that the drawings and detailed
description are not intended to limit the invention to the particular form disclosed.
Instead, the intention is to cover all modifications, equivalents and alternatives falling

within the spirit and scope of the invention as defined by the appended claims.

Introduction
[0028] Methods and systems such as those described herein provide for the
management of hardware and software resources in computing environments by
supporting dependency analysis of workloads in a manner that is able to generate one or
more results that are appropriate for use by orchestration systems. Such methods and
systems facilitate the production of such results through their use of one or more property

graphs (or comparable constructs.

[0029] As will be appreciated, identification of dependency mappings and
infrastructure points of contact (contact points) for workloads is a fundamental part of
building robust workflows for disaster recovery and migration of applications and other
data center components. Often, there are multiple contact points between data center
infrastructure and the workload(s) being orchestrated, any (or all) of which may

contribute to the dependency needed to support the given workload.

[0030] Challenges faced in orchestration operations such as migration and disaster
recovery scenarios include physically separated contact points, the segregation of such
contact points, and the identification of contact points affected by such orchestration
operations. Methods and systems such as those described herein address these challenges

in an efficient and effective manner, as described below and elsewhere herein.

[0031] For example, in the case of geographically distributed contact points between
units of infrastructure such as between data centers. Given the diversity of the workload

infrastructure, different methods of data migration and type of target (hosted data center

-6-

WO 2018/144377 PCT/US2018/015697

or cloud), it is challenging to identify a dependency chain which can be used to
orchestrate migration of workloads along with associated data to another data center. In
the case of replicated databases, upon dependency evaluation, sufficient migration
contact point can be the database itself. This avoids the need to orchestrate database
infrastructure like filesystems for DR and migration. In the case of VMs replicated using
low-level (e.g., logical unit number (LUN) level replication, upon dependency
evaluation, from VM to data stores to LUN, the migration contact point will be the LUN
in question and every VM resident thereon. Another scenario is the replication of VM
images outside of the system(s) supporting them (out-of-band replication). In this case,
upon dependency evaluation, the migration contact point is the backup policy and the
backup images generated. Here again, this avoids the need to orchestrate VM

infrastructure such as data stores, LUNSs, and the like.

[0032] Another example is the ability to segregate contact points. For more complex
recovery configurations that have multiple data migration methods, for example, the
dependencies should be segregated on a per-data migration-method basis. This can occur
where low-level replication and out-of-band replication are both implemented (e.g., VM
images are replicated using out-of-band replication , but the storage for the VMs is also

replicated at the LUN level).

[0033] Yet another example is the identification of contact points (potentially)
affected by orchestration operations. For example, with respect to maintenance
operations, there can be a need to find entities which will be impacted by such operations.
Here the dependencies should reflect those entities which should be stopped or disabled
to be able to perform the maintenance in question. Such a situation could occur, for
example where there is a need to perform maintenance on a storage device, resulting in
the need for workloads using that device should be gracefully stopped, and file systems
using that device to be unmounted. As will be appreciated in light of the present
disclosure, the ability to quickly and efficiently determine the entities affected by such an
operation through a determination of their relationship to the device(s) in question is

advantageous.

WO 2018/144377 PCT/US2018/015697

[0034] Methods and systems such as those described herein provide such advantages
through the use of a property graph or comparable construct. In such a construct,
hardware and software components (also referred to herein as “entities”) and their
relationships are represented by, respectively, nodes (vertices) and links (edges). The
relevant features of such a construct are the ability to provide representation of
computing, network, and storage resources, generally, and to be analyzed in a manner
that such information can be presented to one or more orchestration systems, in order to
facilitate and support the orchestration of the entities thus represented.. Thus, examples
of various innovative elements of an computing environment management architecture
are described, with particular emphasis on the creation and analysis of computing
environments in a manner that lends itself to orchestration (e.g., for purposes of disaster

recovery).

[0035] There are, presently, no solutions that provide a generic system that addresses
challenges such as those described above, which extends to a flexible approach that does
not rely on manually generated information (clearly, an insurmountable task in large
systems with potentially hundreds or thousands of components, and an exponentially
larger number of relationships therebetween). To address the challenge of quickly and
efficiently determining dependency mapping(s) for data and application migration/DR
operations and the contact points involved therein, and to do so in a generic manner, the

following characteristics will be appreciated as being advantageous.

o Represent the entities of the connected domain by a property graph to enable
autonomous computation/analysis of the connected paths to the degree desired.
This will facilitate the identification of dependencies and migration contact points

without explicit knowledge of the entity types and the relationship between them.

o Use case and technology agnostic analysis of the representation for identifying
mapping and migration contact points in a technology thus making it less
susceptible to need for modifications as newer dependencies, use cases and

technologies are introduced in the environment.

-8-

WO 2018/144377 PCT/US2018/015697

o Represent the dependency mapping in a well-defined standard format which can
be consumed by other systems like a workflow creation system for application

and VM DR and migration automation.

[0036] To address the aforementioned needs and noted challenges, methods and

systems such as those described herein provide elements such as those described below.

[0037] 1. Representation of various entities in the computing environment

[0038] 2. Annotation of entities

[0039] 3. Identification of dependency mapping

[0040] 4. Standard interface for the dependency mapping

[0041] In providing such features, a computing environment management architecture
according to methods and systems such as those described herein provides disaster
recovery and workload management capabilities for entities such as virtual machines
(VMs), as well as various applications, such as those which might be executed on a
desktop computer platform. In so doing, such an architecture provides a system for
managing information technology (IT) applications for numerous resiliency capabilities
in various forms, with such solutions providing for, e.g., disaster recovery and workload
management. To do so, methods and systems such as those described herein can employ
a construct such as a property graph to represent the various entities in a computing
environment, as well as the relationships that may exist therebetween. Such a

representation provide a number of benefits.

Example features of an Orchestration Architecture

[0042] A computing environment according to methods and systems such as those
described herein also provides for the management of virtual machines (VMs) and other

such entities (hardware and/or software components). Such entities are associated both

-9.

WO 2018/144377 PCT/US2018/015697

with VM that are to be provisioned on (and so be hosted on) a physical machine
(computing system), as well with VMs that are already being hosted by such nodes. In
this regard, a VM configuration can include one or more resource requirements as well as
one or more additional requirements. Resource requirements indicate one or more
resources that are needed in a node for hosting the given VM. Additional requirements
indicate one or more operational elements needed in a node for hosting the given VM.
This VM configuration is compared to configurations of various clusters. The cluster
configuration can indicate configuration information for node(s) of that cluster. Such a
comparison can be implemented by orchestration systems to select a cluster that includes
nodes that can meet the resource and the additional requirements for hosting the given
VM. A VM can be provisioned or migrated (e.g., in the event of a disaster) based on a
service level agreement (SLA) associated with that VM. An SLA can include various
resource requirements such as physical requirements of a node where that VM is
provisioned. These resource requirements can include CPU, memory, and other
hardware requirements, as well as dependencies on other entities (be they hardware or
software, or a combination thereof). As aresult, the VM is provisioned on (or migrated
to) a server that has the resources specified by the resource requirements of the SLA

associated with that VM.

[0043] As noted earlier, a virtual machine (VM) is a computing entity, such as a
software construct, that provides functionality typically associated with a physical
computing device. Such functionality includes, for example, the ability to run
applications such as word processing, database, and web browsing programs. A virtual
machine can execute an operating system, such as Windows®, Linux, Mac OS X®, and
the like. A virtual machine executes on a physical machine, known as a host. Multiple
virtual machines can be implemented, or provisioned, on a single physical machine. A
given virtual machine is logically isolated from other virtual machines running on a

physical machine (or other physical machines, of course).

[0044] When a new virtual machine is to be provisioned in an environment where

multiple physical machines are available, selecting which physical machine to use for the

-10 -

WO 2018/144377 PCT/US2018/015697

new virtual machine is an important decision. In the case where an existing virtual
machine is to be moved from one physical machine to another, e.g., if the physical
machine on which the virtual machine is provisioned is being taken offline for
maintenance or has failed, selecting which physical machine to migrate the existing

virtual machine to is an equally important decision.

[0045] In certain situations, such provisioning is controlled by an SLA, which defines
the requirements of the implementation (as noted), and which can include VM
configuration, such as both resource requirements and additional requirements. Resource
requirements such as physical requirements of a node where this VM can be provisioned.
These resource requirements can include CPU, memory, and/or other hardware
requirements. The resource requirement(s) indicate resource(s) needed in a node for
hosting the VM. For example, these resources include various hardware requirements of
a node for hosting the VM. As a result, the VM can be provisioned on (or migrated to) a
node that has the resources specified by the resource requirements of the SLA associated

with this VM.

[0046] The additional requirements indicate operational element(s) needed in a node
for hosting the VM. For example, these additional requirements can include availability
requirements, data protection requirements, and security requirements, among others.
The availability requirements can define the VM’s availability requirement(s). The data
protection requirement(s) can indicate data protection elements needed in a potential
node for hosting the VM. The security requirement(s) can indicate security elements
needed in the potential node for hosting the VM. The operation element(s) can indicate

data protection elements needed in a potential node for hosting the VM.

[0047] VM configuration information can include resource requirement(s), and one or
more additional requirement(s). Such VM configuration information can be supported,
implemented, accessed, and/or stored anywhere in a cluster (e.g. such configuration
information can be distributed among a cluster’s nodes and/or its storage). VM

configuration information can also be stored outside the cluster, such as at a central

-11 -

WO 2018/144377 PCT/US2018/015697

repository, and be accessed via a network, for example. In one embodiment, the VM
configuration is included in the VM’s service level agreement (SLA). In one
embodiment, the VM configuration is associated with a VM that is not yet hosted. For
example, a command can be received requesting a creation of anew VM (e.g., to be
provisioned at a node) according to the VM configuration. In another embodiment, the
VM configuration is associated with a VM that is already being hosted on one of nodes of
a cluster. For example, a command can be received requesting that a VM be provisioned

at a new node according to the VM configuration.

[0048] In one embodiment, the cluster can also have an associated cluster
configuration. Cluster configuration can include configuration information for the cluster
and/or configuration information for node(s). For example, such cluster information can
include configuration information for a given node. It is noted that cluster configurations
can be supported, implemented, accessed, and/or stored anywhere in the given cluster,
including being distributed among the nodes of the cluster, in cluster storage, or in
storage outside the cluster, such as at a central repository, and accessed via a network, for

example.

[0049] The performance of a virtual machine (either a new virtual machine or an
existing virtual machine that is being migrated from one physical machine to another
physical machine) and associated applications may vary depending on the physical
machine selected to host the virtual machine. That is, the virtual machine’s performance,
e.g., speed, responsiveness, stability, may vary depending on the physical machine the
virtual machine is implemented on. Running a virtual machine on a given physical
machine can also affect performance of the physical machine and other processes running
on the physical machine. The virtual machine may consume the physical machine’s
resources, resulting in fewer resources being available for other processes being executed
by the physical machine, e.g., other virtual machines implemented on the same physical
machine. One technique to more efficiently use the physical machine’s resources is for

the virtual machines implemented on the physical machine to share memory pages that

-12 -

WO 2018/144377 PCT/US2018/015697

are used by multiple virtual machines. That is, the physical machine’s memory can be

deduplicated.

[0050] In a computing environment where multiple physical machines are available to
host a virtual machine, one way to select which physical machine to host the virtual
machine is to compare the available resources, e.g., network transmission bandwidth,
memory, processor cycles, of each physical machine and select the physical machine with
the most available resources. Another way to select a physical machine from among
several available physical machines is round-robin, where the available physical
machines take turns hosting virtual machines that are being newly provisioned or
migrated from another physical machine. Meeting terms imposed in negotiated service

level agreements is sometimes an important consideration in placing virtual machines.

[0051] In addition to the foregoing resource considerations, resource requirement(s)
information can define, generally, the VM’s various resource requirements (and
“preferences” for optimal and/or acceptable operation). Resource requirements can
include CPU, memory, network, platform, boot disk image, and so on. These are
typically hardware requirements of the node (e.g., a server) for hosting a VM. Additional
requirement(s) can include availability requirements, data protection requirements, and
security requirements, as well as dependence on other components (e.g., hardware and/or

software components).

[0052] Availability requirements can define the VM’s availability requirement(s), e.g.,
the number of physical host failures that the virtual machine needs to be able to tolerate,
the number of remote sites configured for the virtual machine’s disaster recovery, etc.
For example, a requirement could include that a VM needs to tolerate N physical host
failures. This requirement can be met by the clusters having at least N+1 physical hosts
capable of meeting the VM’s resource requirement(s). In another example, a requirement
can include a VM tolerating one site failure, i.e., it needs to have a Disaster Recovery
setup. This requirement can be met only by the clusters in the data centers that have

Disaster Recovery (DR) configured, such as where there is a cluster (e.g., at a remote

-13 -

WO 2018/144377 PCT/US2018/015697

site) that can be used to activate the virtual machines active on the cluster. For example,
a cluster in New York could have a corresponding DR cluster setup in London. If a host
in the New York cluster fails, the virtual machines that were active on the cluster in New

York can be made available via the DR cluster in London.

[0053] Security Requirements define the security zones for the virtual machine to
restrict the networks that the virtual machine will have access to, policies and frequency
for malware scanning, etc. For example, a requirement may be to scan a VM disk image
for virus every N hours. This requirement can be met by setting virus scan software
within a VM and/or the node hosting a VM. Alternatively, this requirement can be done
offline from wherever VM image is accessible, e.g., where the VM image is placed, or
another host that has access to the virtual machine's disk image. In another example, a
requirement can be to have a virtual infrastructure be compliant to some guidelines. This
requirement can be met by checking the hypervisor, network, storage for compliance with
compliance assessment systems. Another example of a requirement is that the VM needs
to be provisioned on a host that has DLP gateway configured to scan all outbound traffic.
This SLA can be met by hosts that have DLP gateway that can be configured to scan all
outbound traffic of a VM.

[0054] Data Protection Requirements define the frequency, media and method/type
for the backup or the snapshot of the virtual machine. For example, a requirement may
be that an image needs to be backed up every H hours using a particular type of backup
software. Another requirement may require use of a certain type of backup, such as
incremental or full backup. This requirement can be met by hosts that have appropriate

backup software setup and have access to backup media.

[0055] In this vein, as will be appreciated in light of the present disclosure, a virtual
machine and virtual machine data associated therewith (often organized as a virtual disk)
can be backed up to provide data protection for the virtual machine and virtual disk. The
backed-up virtual machine and virtual disk can be restored to resume or begin virtual

machine operations. For example, in a disaster recovery scenario, a virtual machine that

- 14 -

WO 2018/144377 PCT/US2018/015697

has been inoperable due to a crash of the node hosting the virtual machine can be restored
from backup to another host and operations can be resumed. In another embodiment, a
virtual machine and virtual disk can be restored from backup to a host and operations can
begin, thus creating multiple instances of the same virtual machine. Restoring the virtual
machine can typically be performed relatively quickly as the virtual machine itself
includes a relatively small amount of data (e.g., on the order of kilobytes or megabytes).
Restoring the virtual disk typically takes longer as the virtual disk typically includes a

relatively large amount of data (e.g., on the order of gigabytes).

Example Orchestration Architecture

[0056] Fig. 1is a block diagram of a computing environment 100. As shown,
computing environment 100 includes several physical machines 110(1)-110(N)
(computing systems). Each physical machine 110 hosts several virtual machines 115(1)-
115(1). It 1s noted that alternative embodiments can implement different numbers of
physical machines, different numbers of virtual machines per physical machine, and the
same system can include one or more physical machines that each implement a different

number of virtual machines than other physical machines within the same environment.

[0057] It will be noted that the variable identifiers such as those used above ("N" and
“1”) are used to more simply designate the final element (e.g., physical machine 110(N))
of a series of related or similar elements (e.g., physical machines). The repeated use of
such variable identifiers is not meant to imply a correlation between the sizes of such
series of elements, although such correlation may exist. The use of such variable
identifiers does not require that each series of elements has the same number of elements
as another series delimited by the same variable identifier. Rather, in each instance of

use, the variable identified may hold the same or a different value than other instances of

the same variable identifier.

[0058] Physical machines 110 are coupled to a management server 120 and a number
of storage devices 150(1)-150(4) by a network 130. Network 130 can include a WAN

(Wide Area Network), such as the Internet, one or more LANSs (Local Area Networks),

- 15 -

WO 2018/144377 PCT/US2018/015697

and/or one or more SANs (Storage Area Networks), among other such constructs and

systems.

[0059] Physical machines 110 are computing devices, or portions of computing
devices, an can be computing devices of any sort, such as personal computers, laptop
computers, servers, personal digital assistants, cell phones, or the like. In some
embodiments, such physical machines are included in a cloud computing environment in
which physical computing resources, such as memory and processor cycles, are allocated
on an as-needed and/or as-contracted basis. The resources of a physical machine 110 are
shared by any virtual machines that are implemented on the physical machine. Physical
machines 110 each include memory 112. Memory 112 is, in an embodiment, random
access memory (RAM). Memory 112 is organized into a number of pages. A page is
generally a fixed size portion of memory, for example a 4 kilobyte (Kb) portion of

memory.

[0060] Virtual machines 115 can be used to provide computing resources, for
example, to a user associated with an organization. When a user, e.g., an information
technology (IT) professional in an organization, requests additional resources an
administrator (e.g., IT professional) at the cloud vendor, can provision one or more
additional virtual machines to satisfy the request for additional resources. In an
embodiment, a provisioning module 121 can be employed to detect requirements
specified by a user in a request for computing resources. Provisioning module 121, which
uses provisioning data 122 to performs its functions, can automatically create or locate a
virtual machine in response to the request and cause the virtual machine to be provisioned
on one of physical machines 110. As can be seen, provisioning module 121 (and its
associated provisioning data 122), as well as a property graph creation module 125 and a
property graph analysis module 126 (and associated property graph data 127), are among
the modules supported by management server 120 (which modules are depicted, as
examples, in Fig. 1 as management modules 129). The operation of systems such as
property graph creation module 125 and property graph analysis module 126 are

described subsequently, as well as in connection with and as related to Figs. 3-16.

- 16 -

WO 2018/144377 PCT/US2018/015697

[0061] The administrator can also move one or more virtual machines from a first
physical machine to an alternate physical machine. For example, an administrator can
move (migrate) one or more virtual machines to a different (target) physical machine in
response to detecting that a physical machine is failing, has failed, is overloaded, or that
additional resources are available on a different physical machine from the physical
machine currently hosting the one or more virtual machines. In an embodiment,
provisioning module 121 can automatically detect a condition that indicates a virtual
machine should be migrated, such as detecting that a physical machine is failing, has
failed, is overloaded, or that additional resources are available on a different physical
machine from the physical machine currently hosting the one or more virtual machines.
Provisioning module 121 can automatically migrate one or more virtual machines in

response to detecting such a condition, as part of providing orchestration services.

[0062] Management server 120 can be, fore example, a computing device, or portion
of a computing device, such as a personal computer, laptop computer, server, personal
digital assistant, cell phone, or the like. Management server 120 can select a target
physical machine to host a new or migrated virtual machine. Management server 120

includes a provisioning module 121 and provisioning data 122.

[0063] Provisioning module 121 can select a target physical machine based upon the
likelihood that a new virtual machine (or a virtual machine being migrated from one
physical machine to another physical machine) will more effectively utilize resources
(e.g., memory) of the target physical machine (e.g., by virtue of sharing a greater number
of memory pages with one or more virtual machines that are or will be hosted by the
target physical machine). Further, such operations can be performed in an intuitive,
efficient manner, using a graphical user interface (GUI) presented for the administration

of management server 120.

[0064] Provisioning module 121 can collect and maintain information regarding
provisioning using provisioning data 122, and determine the manner in which one or

more virtual machines, their associated storage components (virtual machine disks

-17 -

WO 2018/144377 PCT/US2018/015697

(VMDKS5)), associated functionality, and the like are provisioned to make appropriate (or
simply acceptable) use of the available resources. This can be, for example, the
determination to accept a given VM (e.g., indicating which physical machine is likely to
share the largest number of shared memory pages with a given virtual machine and store
the information in provisioning data 122). Provisioning module 121 can analyze
provisioning data 122 to select which physical machine is to host a virtual machine.
Provisioning module 121 can collect provisioning data 122 in various forms from various
sources. Provisioning module 121 can also keep track of the data being maintained each
physical machine’s memory. In an embodiment, each physical machine periodically
transmits information regarding the pages stored in the physical machine’s memory to
provisioning module 121. Alternatively, the physical machine in question can transmit
the list in response to adding a new page to memory, in response to a new virtual machine
being provisioned on the physical machine, and/or in response to a request by
provisioning module 121 for a list of entries. In an embodiment, each entry includes an
address, e.g., an address of a page. In one embodiment, such information can include a
tag that identifies a characteristic of one or more virtual machines hosted by the physical
machine, such as an operating system or application used by a virtual machine hosted by

the physical machine.

[0065] In an embodiment in which a virtual machine is running on a physical machine
and is being migrated to another physical machine, provisioning module 121 can use
resource information (e.g., memory information) from the physical machine on which the
virtual machine is running, to determine to which of multiple available physical machines
(target physical machines) the virtual machine should be migrated. Using the present
example, provisioning module 121 can compare information regarding the virtual
machine (as received from the physical machine that is hosting the virtual machine) with
information for each of the target physical machines, in order to identify one more

candidates to which the given virtual machine might be migrated.

[0066] When a virtual machine is not already running on a physical machine, such as

when a new virtual machine is being provisioned, management server 120 can perform

- 18 -

WO 2018/144377 PCT/US2018/015697

operations to provision the virtual machine, determining the computing resources needed
by the virtual machine being provisioned. In an embodiment, provisioning module 121
receives virtual machine information from a storage device, such as one of storage
devices 150, instead of and/or in addition to receiving from the physical machines.
Storage devices 150 provide persistent data storage, such that data stored on such a
storage device will remain stored even after the storage device is powered off. Such a
storage device can be, for example, a hard disk, a compact disc (CD), a digital versatile
disc (DVD), or other mass storage device, or a storage system (e.g., a redundant array of
independent disks (RAID) system or an optical storage jukebox) that includes an array of
such storage devices. Such a storage device can also be a virtual or logical storage device
that is implemented on such physical storage devices and/or storage systems. For
example, such a storage device can be a logical volume that is implemented on a RAID
storage system. Additionally, such a storage device can include one or more storage
devices. A storage device can also include one or more types of storage media, including
solid state media (e.g., flash drives), optical media (e.g., CDs and DVDs), and magnetic
media (e.g., hard disks or magnetic tape). In some embodiments, such storage devices can
be implemented using cloud storage, in which the storage device is a logical storage
device to which physical storage device(s) are allocated on an as-needed and/or as-

contracted basis.

[0067] A number of virtual machines (e.g., VMs 156(1)-(3), 166(1)-(3), and
176(1)(3)) can be stored on one or more of storage devices 150 (e.g., storage devices
150(1)-(3)), as can one or more VMDKSs (e.g., VMDKSs 180(1)-(N), stored on storage
device 150(4)). Provisioning module 121 can obtain information regarding one or more
of these virtual machines and provision the virtual machine(s) in question. Provisioning
module 121 can also obtain information regarding one or more of virtual machines115, in
order to store the virtual machine(s) in question. As depicted in Fig. 1, storage device
150(1) implements a file system 152, which includes a deduplication module 154. File
system 152 supports deduplication of data stored therein, including virtual machines 156.
In this example, virtual machines 156(1)-156(3) are deduplicated. That is, each virtual

machine 156 is formed of a set of data. In certain embodiments, a virtual machine 156

-19 -

WO 2018/144377 PCT/US2018/015697

includes identical data as another of virtual machine 156. This is likely in cases where
two or more virtual machines 156 include identical applications and/or operating systems.
When multiple virtual machines 156 include identical data, storage device 150(1) stores
only a single copy of the identical data. Deduplication data 158 thus includes
information identifying which portions of data that make up virtual machines 156 is
shared among the virtual machines, e.g., identical between two or more virtual machines
156. Provisioning module 121 can use deduplication data 158 to select a physical

machine to host one of virtual machines 156.

[0068] Such storage devices can also include one or more fingerprint modules that can
calculate fingerprints for the stored virtual machines and store the fingerprints thus
generated in fingerprint data on one or more of storage devices 150. Calculating
fingerprints for a virtual machine involves dividing the virtual machine image and any
data related to the virtual machine into chunks, and calculating a fingerprint for each
chunk. A chunk is a fixed or variable length portion of data. Fingerprint module 162 can
utilize various functions to generate a signature, or fingerprint for each chunk. Such
functions can include one or more of, for example, a Secure Hash Algorithm (SHA),
Message-Digest Algorithm 5 (MDS5), a Rabin hash, a Cyclic Redundancy Check (CRC)
and/or the like. For instance, a signature may be a hash that is generated by a hash
function, such as SHA-1, that processes a particular chunk and in response computes the

hash (e.g., a SIS-level signature).

[0069] In such a scenario, provisioning module 121 receives information from storage
devices 150 regarding what fingerprints are stored in the resulting fingerprint data. One
or more of storage devices 150 can transmit information regarding fingerprints to
provisioning module 121 periodically, in response to the addition of new fingerprints
(e.g., if a new virtual machine is stored in one of storage devices 150), and/or in response
to a request by provisioning module 121. Such a request can specify one or more virtual

machines for which fingerprint data should be transmitted to provisioning module 121.

-20 -

WO 2018/144377 PCT/US2018/015697

[0070] In an environment such as computing environment 100, methods and systems
such as those described herein include, as noted, property graph creation module 125 and
property graph analysis module 126, as well as the property graph data created/analyzed
(e.g., property graph data 127), in support of orchestration functions provided by one or
more of the management modules that make up management modules 120. As will be
appreciated in light of the present disclosure, property graph creation module 125
provides functionality that facilitates the creation of property graph data such as property
graph data 127, while property graph analysis module 126 provides functionality that
facilitates the analysis of such property graph data, as well as generating information that
is in a form that is amenable to use by one or more orchestration systems. Examples of
such functionality are given, for example, in connection with Figs. 8, 9, and 10 (with
respect to property graph creation module 125), and Figs. 8, 11, and 12 (with respect to
property graph analysis module 126 and the orchestration systems making use of its

output).

[0071] Fig. 2 is a block diagram of a physical machine 110. Physical machine 110
includes a memory 200 and a processor 202. Physical machine 110 also includes several
virtual machines 115(1)-115(3). While three virtual machines are shown, physical

machine 110 can support more or fewer virtual machines.

[0072] Memory 200 includes an operating system 205. Operating system 205 controls
the hardware of physical machine 110 and provides various services to applications and
virtual machines executing on client physical machine 110. For example, when a virtual
machine 115 requests a page be brought into memory 200 (via a virtualization module
such as virtualization module 225 (e.g., a hypervisor or the like)), operating system 205
can relay the request to file system 210, which can request that the page be read, e.g.,
from file data in one of storage devices 150. File system 210 can receive the page and
write the page to memory 200, e.g., to virtual machine data 240. File system 210 can
organize data, such as file data in one of storage devices 150, into files and directories.
File system 210 can maintain a listing of the physical locations of files and data in one or

more of storage devices 150.

-21 -

WO 2018/144377 PCT/US2018/015697

[0073] Memory 200 includes a deduplication module 230. Deduplication module 230
can perform deduplication operations related to memory 200, including virtual machine
data 240. When a specified unit of data, e.g., a page, is to be loaded into memory 200,
deduplication module 230 determines whether a unit of data containing identical data
already exists in memory 200, e.g., the data may have been requested by another virtual

machine hosted on physical machine 110, and allow access thereto.

[0074] In an embodiment, deduplication module 230 is notified of the page request by
file system 210. To determine whether the page already exists in memory, deduplication
module 230 calculates a signature, e.g., fingerprint, for the page and compares the
fingerprint with a list of fingerprints stored in virtual machine data 240. If the fingerprint
exists in the list, the page is redundant, and deduplication module 230 can notify file
system 210 to cancel the load. If the fingerprint is not found, the page is not already
stored in virtual machine data 240 and deduplication module 230 adds the fingerprint to
the list of fingerprints and allows the load to proceed. Virtual machine data 240 includes

data used by virtual machines 115, as well as a list of fingerprints for the data.

[0075] Memory 200 includes a virtualization module 225. Virtualization module 225
performs operations related to creation and management of virtual machines and
resources for virtual machines. Virtualization module 225 is illustrated as a stand-alone
module but can also be included in operating system 205. Virtualization module 225
provides physical machine 110 the ability to concurrently support one or more virtual
machines, such as virtual machines 115. Virtualization module 225 provides this ability
by coordinating the distribution of computer resources (e.g., processing power, memory,
etc.) to the virtual machines so that the virtual machines operate similarly to physical
computers. Virtualization module 225 can be designed to support virtual machines by
coordinating processor resources to support the execution of instructions on behalf of the
virtual machines, and performing memory management to help ensure that the virtual
machines effectively share the host computer’s system memory. Further, certain
embodiments of virtualization module 225 need no host operating system (commonly

referred to as a “bare metal hypervisor” or the like).

-22 -

WO 2018/144377 PCT/US2018/015697

[0076] Memory 200 includes a cluster module 235. In an embodiment, it may be
desirable to make a placement or migration decision for multiple virtual machines at
once. In such an embodiment, a placement server can form clusters of similarly situated
virtual machines. The size of a cluster can depend on various factors, such as available
resources on each physical machine, resource requirements of the virtual machines, and

the like. Various algorithms can be used for clustering.

[0077] Physical machine 110 also includes virtual machines 115(1)-115(3). In general
terms, virtual machines 115 are software constructs that act as physical computer
systems. For instance, virtual machines 1115 can include and execute applications,
provide services, and process commands. A virtual machine has its own operating
system, such as Microsoft Windows®, Unix, or the like, and can interface with
virtualization software on a host, such as is provided virtualization module 225 on

physical machine 110.

Examples of Architectural Features and Representational Constructs Thereof

[0078] Fig. 3 is a block diagram illustrating an example of a computing environment
analysis architecture, according to one embodiment. As noted, methods and systems

such as those described herein provide elements such as those described below.

1. Representation of various entities in the computing environment

2. Annotation of entities

3. Identification of dependency mapping

4. Standard interface for the dependency mapping

[0079] With regard to entity and relationship representation, methods and systems
such as those described herein represent the entity records fed by one or more

extract/transform/load (ETL) processes into a representational construct such as a

_23 .-

WO 2018/144377 PCT/US2018/015697

property graph. This results in a graph abstraction of entities and their relationships with
one another, where entities are represented as vertices of such a property graph and their

relationships are represented as edges of such a property graph.

[0080] Such methods and systems, as well as representational constructs, provide for
annotation of entities. The entities which can be orchestrated (e.g., entities that support
operation interfaces, such as, for example, up-down, enabled-disabled and so on) can be
annotated. Examples of such entities are applications, virtual machines, file systems, data

stores, array consistency groups, and so on.

[0081] Such annotations can include, for example:

* _ecosystem (_e): Grouping of entities by operations possible on them. Examples

include compute, storage, network, replication, cloud, and so on.

* _technology (_t): The name of technology which enables the ecosystem.

Examples include VM entities, replication entities, cloud entities, and so on.

[0082] Certain entities may not be amenable to orchestration, certain orchestration
operations, or orchestration during certain system operations, or may never be amenable
to orchestration (e.g., a physical machine cannot be migrated, save for by physically
moving the unit). As a result, such entities may not require (or may even be unable to be)

orchestrated (e.g., physical servers, enclosures, hypervisors, and the like).

[0083] Entities which are configured for data transfer (replication/copy) can thus be

annotated with a property.

* _replicated: For example, the annotation for replicated entities is _replicated.
Examples of such entities are replicated LUNs, backup images which are
replicated using out-of-band replication, replicated data stores, and/or the like.

* _copy: The snapshots and backup copies are additionally annotated with _copy.

-4 -

WO 2018/144377 PCT/US2018/015697

[0084] Methods and systems such as those described herein also support the
identification of dependency mappings. Identification of the dependency mappings
involved is an iterative process of identifying the optimal ordered collection of entities

and relationships for a given workload.

* System traverses down the hierarchy of entities starting from selected workloads

on the source data center.

* It records the entities which are annotated with _technology.

* Entities which are annotated with _replicated are recorded as migration contact

point for the source data center.

* For such entities, system looks for related entities on the target data center, by
interrogating the relationships and selecting path which is also annotated with

_replicated and records them as migration contact points on the target data center.

* There can be more than one remote targets depending on how the

replication/copy is configured.

* System traverses up the hierarchy of entities starting migration contact points on

the target data center.

* It records the entities which are annotated with _technology.

[0085] Methods and systems such as those described herein also provide for a
standard representation. Such a process gives an ordered list of entities on source and
target data centers. The system then consolidates the entities in the groups of ecosystem

and technology to provide a view of various layers which can be orchestrated.

-25 -

WO 2018/144377 PCT/US2018/015697

[0086] Simply put, when using a property graph as a representational construct, such a
property graph, in which both vertices and edges have properties (key value pairs, where
the key is the attribute name), can be used to maintain information regarding entities and
their relationships, as noted. The advantage here is that because such a representational
construct has properties on edges as well, traversals can also take into account the
characteristics of the path/relationship, the traverser can stamp properties on the
edges/relationships as a permanent or temporary tag which can be used subsequently
during analysis. An example of the types of information (and so, characteristics) that

such a representational construct can include appear below:

Vertex1:

{
_type: “host”
id: 123452317
_technology: “VMware”
_environment: “virtualization”
platform: “ESXi”
ncpu: 16

}

Vertex2:
{
_type: “disk”
id: “98345231”
_environment: “virtualization”
size: “16GB”
type: “SSD”

}

Vertex3:
{
_type: “disk”
id: 98345232
_environment: “virtualization’
size: “16GB”
type: “SSD”

’

}

Edge between vertex1 and vertex2:

{
label: “has”

-26 -

WO 2018/144377 PCT/US2018/015697

mode: “READ-WRITE”

}
Edge between vertex1 and vertex3:
{
label: “has”
mode: “READ-ONLY”
}

[0087] As can be seen above, certain characteristics (_type, _environment, and so on)
can be used to make determinations as to the appropriate management of the given

entities, and to determine dependency relationships therebeteween.

[0088] In view of the foregoing, Fig. 3 depicts a computing environment analysis
architecture 300. Computing environment analysis architecture 300 includes a number of
software and/or hardware layers, which can be implemented as, for example, separate
modules, as will be appreciated in light of the present disclosure. Further, one or more of
the layers depicted in Fig. 3 can be combined with others depicted therein, removed,
augmented by other layers, and so on. The layers of computing environment analysis
architecture 300, as depicted in Fig. 3, include a migration layer 310, a workflow creation
layer 320, and entity representation layer (orchestration) 330, a contact point
identification layer 340, a dependency identification layer 350, an entity representation
layer 360, an entity annotation layer 370, and ETL (extract/transform/load) processing
layer 380. As a prerequisite to performing orchestration on one or more of the entities of
the given computing environment, a construct such as the property graph described
herein (or comparable such construct) that represents various virtual and physical
hardware and software units of the given computing environment are represented as
entities and their relationships in such a construct. These entities and relationships
represent various hardware and software units within a computing environment such as a
data center, for example. Such a construct can be annotated with the characteristics of
the given entity, and such information can then be used by an orchestration system to
orchestrate those entities. Annotation of such entities can include information identifying

the entity’s ecosystem, technology, whether or not the entity is replicated, whether or not

-27 -

WO 2018/144377 PCT/US2018/015697

the entity is copied, and other such characteristics. Through the use of such a construct,
methods and systems such as those described herein provide for the identification of
dependency mapping and the migration of affected entities based on contact points for a
given workload. That being the case, such a construct can be traversed within the source
computing environment (e.g. data center), and thus permit the recordation of information
regarding such entities and their relationships. For example, entities marked with a given
marker (e.g., technology), allow an analysis process (e.g., a property graph analysis
process such as that described herein) to record information regarding entities can
subsequently be migrated as part of the operation of the given orchestration system. Such
traversal can also switch to a target computing environment (e.g., data center) based on
entities that are marked as being replicated or copied. In so doing, such a traversal can

traverse boundaries between data centers.

[0089] As aresult, in such instances, a property graph can be traversed to a target data
center, allowing for the recordation of entities in the target data center that are also
marked as being associated with the given technology (e.g., virtual devices that can be
migrated). Further, traversal paths can be customized (e.g., by way of a user interface
presented to an administrator) to account for external pluggable rules, as well as other
manually-entered guidance for the analysis system. By using a workflow-friendly
representation such as a property graph, an analysis system such as that described herein
is able to provide an ordered list of entities on, for example, source and target data
centers. Further, such representation consolidates the entities into groups of ecosystem
and technology to provide a view of various layers which can be orchestrated by the

given orchestration system.

[0090] Fig. 4 is a block diagram illustrating an example of a computing environment,
according to one embodiment. Fig. 4 thus depicts a computing environment 400 that, in
turn, includes a source system 405 and a target system 410, separated by a boundary 415.
Examples of boundaries such as boundary 415 can be logical (e.g., different virtual
networks, different network domains, and so on) or physical (e.g., physically separated

by distance, physically distinct networks, and so on). That being the case, one of the

-28 -

WO 2018/144377 PCT/US2018/015697

challenges faced in analyzing dependencies in computing environments such as
computing environment 400 include the need to determine dependencies across

boundaries such as boundary 415.

[0091] Computing environment 400, as depicted in Fig. 4, includes an entity depicted
as a workload 420. Workload 420 has relationships with entities 422 and 424, and also
with an entity 430. Source system 405 also includes entities 432, 434, 440, 442, and 444.
Entity 430, as depicted, has relationships with entities 432, 434, and 440. Entity 440 in
turn, has relationships with entities 442 and 444. Entity 440 also has a relationship with
an entity in target system 410 (depicted in Fig. 4 as entity 450). Entity 450 has
relationships not only with entities 452 and 454 of target system 410, but is also related to
an entity 460, which, in turn, is related to an entity depicted in Fig. 4 as a resource 470.
The representation of computing environment 400 depicted in Fig. 4 allows for the
traversal of the entities and relationships depicted therein. Identification of an optimal
dependency mapping and infrastructure contact points is important to building workflows
that support orchestration operations such as disaster recovery and migration of
application and data centers. Such dependencies are illustrated in Fig. 4 by the heavier
line-widths used for certain of the entities and relationships. For example, workload 420
depends on entity 430, which, in turn, depends on entity 440. Entity 440, in source
system 405, depends on entity 450 in target system 410. Dependency relationships also
exist between resource 470, entity 460, and entity 450 in target system 410. Thus, by
traversing a construct that represents these entities and their relationships, a dependency
analysis system according to the methods and systems described herein, is able to
produce an ordered representation of the entities in question, and thereby support

orchestration operations on the hardware and software units represented thereby.

[0092] Fig.5 is ablock diagram illustrating an example of a computing environment
having multiple contact points, according to one embodiment. Workload 520 has
relationships with entities 522 and 524, and also with an entity 530. Source system 505
also includes entities 532, 534, 540, 542, and 544. Entity 530, as depicted, has
relationships with entities 532, 534, and 540. Entity 540 in turn, has relationships with

-29 -

WO 2018/144377 PCT/US2018/015697

entities 542 and 544. Entity 540 also has a relationship with an entity in target system
510 (depicted in Fig. 5 as entity 550). Entity 550 has relationships not only with entities
552 and 554 of target system 510, but is also related to an entity 560, which, in turn, is

related to an entity depicted in Fig. 5 as a resource 570.

[0093] The representation of computing environment 500 depicted in Fig. 5 allows for
the traversal of the entities and relationships depicted therein, in the manner noted earlier.
Identification of an optimal dependency mapping and infrastructure contact points is
important to building workflows that support orchestration operations such as disaster
recovery and migration of application and data centers. Such dependencies are
illustrated in Fig. 5 by the heavier line-widths used for certain of the entities and
relationships. For example, workload 520 depends on entity 530, which, in turn, depends
on entity 540. Entity 540, in source system 505, depends on entity 550 in target system
510. Dependency relationships also exist between resource 570, entity 560, and entity
550 in target system 510. Thus, by traversing a construct that represents these entities
and their relationships, a dependency analysis system according to the methods and
systems described herein, is able to produce an ordered representation of the entities in
question, and thereby support orchestration operations on the hardware and software units
represented thereby. Also depicted in Fig. 5 is a relationship between entity 524 and a
resource 580. As will be appreciated in light of the present disclosure, the relationship
between entity 524 and resource 580 crosses boundary 515. This information is
associated with the edge between entity 524 and resource 580 in the manner of the

relationship between entity 540 and entity 550.

[0094] Fig. 6 is a block diagram illustrating an example of hardware and software
entities in a computing environment, according to one embodiment. As depicted, a
computing environment of Fig. 6 includes a data center 602 and a data center 604,
separated by a boundary 606. As noted earlier, a boundary such as boundary 606 can
result from logical separations between data center 602 and 604, physical separation, and
other such circumstances. As will be appreciated, separation represented by boundary

606 is typically intentional, as the result of disaster recovery planning and the like. Data

-30 -

WO 2018/144377 PCT/US2018/015697

center 602 includes, for example, a physical machine 610 and storage systems 612.
Similarly, data center 604 is depicted as including a physical machine 616 and storage
systems 618. Data centers 602 and 604 are communicatively coupled to one another by a
wide area network 620. Entities within data center 602 are able to communicate with one
another via an enterprise network 622, which is, in turn, coupled to wide area network
620. In comparable fashion, data center 604 includes an enterprise network 624, which
couples the entities of data center 604 (e.g., physical machine 616 and storage systems
618) to one another. Data center 604 is also communicatively coupled to wide area

network 620 by enterprise network 624.

[0095] The physical machines depicted in Fig. 6 (physical machines 610 and 616)
support a variety of hardware and software units. For example, physical machine 610
includes a processor 630, a network interface 632, and a memory 634. As depicted in
Fig. 6, various software modules are stored in memory 634 (and are executed therefrom).
Such software modules can include, for example, an operating system 650, a
virtualization module 652, and one or more virtual machines (depicted in Fig. 6 as virtual
machines (VMs) 654(1)-(N)). Virtualization module 652 can be implemented, for
example, as a hypervisor or comparable construct, in support of virtual machines 654(1)-
(N) in turn, virtual machines 654(1)-(N) support the execution of one or more
applications (depicted in Fig. 6 as applications 655(1)-(6)). Storage systems 612 include
virtual machine disks (VMDK) 658(1)-(N), which provide storage for one or more

associated virtual machines (e.g., virtual machine 654 (1)-(N)).

[0096] In comparable fashion, physical machine 616 provides components such as a
processor 660, a network interface 662, and a memory 664. In the manner of memory
634, memory 664 stores and permits execution of software modules such as operating
system 670, virtualization module 672, and some number of virtual machines (depicted in
Fig. 6 as virtual machines 674(1)-(N)). In turn, virtual machines 674(1)-(N) can support
some number of applications (depicted in Fig. 6 as applications 675(1)-(4)). Storage
systems 618 include virtual machine disks (VMDK) 678(1)-(N), which provide storage

for one or more associated virtual machines (e.g., virtual machine 654 (1)-(N)).

231 -

WO 2018/144377 PCT/US2018/015697

[0097] Fig. 7 is a block diagram illustrating an example of a representation of a
property graph representing portions of the computing environment of Fig. 6, according
to one embodiment. In Fig. 7, a computing environment such as computing environment
600 of Fig. 6 is represented by a property graph 700 (or similar construct). As before,
data center 602 and data center 604 are separated by boundary 606. In property graph
700, entities in data center 602 and data center 604, as depicted in Fig. 7, have
relationships with one another via a replication relationship 710 between a storage
information group 720 and a storage information group 725. As can be seen, these and
other entities, while not shown in Fig. 6, exist either physically or logically, and so are
subject to representation in property graph 700. In the manner noted, property graph 700
also represents relationships between entities which do appear in Fig. 6. For example,
application 655(1) depends on application 655(2). Applications 655(1) and 655(2), in
turn, depend on virtual machine 654(1). Virtual machine 654(1) depends on
virtualization module 652 and also on one of the virtual machine disks (virtual machine
disk 658(1)). Applications 655(1) and 655(2) also depend on a dataset 730, which is
stored on a storage unit 735 that is identified by a logical storage identifier 740, which all
exist in storage systems 612. The storage unit of storage systems 612 (e.g., storage unit
735, identified by logical storage identifier 740) are identified as being members of a
storage group by storage group information 720, which results in the replication
relationship (replication relationship 710) with storage in data center 604 via storage
group information 725 therein. In a manner similar to that of data center 602, data center
604 provides support for replication relationship 710 by including, for example, a dataset
750 that is stored in a storage unit 755 identified by a logical storage identifier 760,

within storage systems 618.

Example Processes for the Creation and Analysis of Representational Constructs

[0098] Fig. 8 is a flowchart depicting an example process for the implementation of a
property graph, according to one embodiment. Fig. 8 depicts a property graph
implementation process 800. Property graph implementation process 800 begins with the

creation of a property graph at 810. Once the requisite property graph(s) have been

-32-

WO 2018/144377 PCT/US2018/015697

created, analysis of the hardware and software components represented thereby can be
performed. Property graph analysis is therefore performed at step 820. The hardware
and software components of the computing environment in question having been
analyzed using methods and systems such as those described therein, orchestration of
those hardware and software components can now be performed. Orchestration based on
one or more results of the property graph analysis thus performed is then accomplished at

step 830.

[0099] Fig. 9is a flowchart depicting an example process for property graph creation,
according to one embodiment. The creation of a property graph (or one or more property
graphs) can be accomplished by way of a property graph creation process 900, as
depicted in Fig. 9. Property graph creation process 900 begins with the identification of
the entity (hardware and/or software components within, for example, a data center) as a
starting point for the creation of the property graph (or a portion thereof) and that it being
selected at 910. For the selected entity, a determination is made as to whether the
selected entity has already had its entity information collected (920). If the selected
entity's entity information has not yet been collected, the entity information for the
selected entity is collected and stored in association with the node in the property graph
representing the selected entity (930). Once the requisite entity information has been
collected and stored (or a determination made that such collection and storage has already
been performed, and thus is not necessary), a determination is made as to whether the
selected entity is the last entity needing creation of a node in the property graph (940). If

the selected node was indeed the last entity, the process concludes.

[00100] Alternatively, if additional entities remain, the management software traverses
relationships that the selected entity may have with other entities in order to add these
entities to the property graph (950). An example of a process for traversing such
relationship is described in connection with the process depicted in Fig. 10, below. The
management system having traversed from the selected entity to the next entity, the next
entity is selected as the next selected entity for analysis (960). The process then returns

to the determination as to whether entity information has already been collected for the

-33 -

WO 2018/144377 PCT/US2018/015697

(now) selected entity (920). This process continues, until such time as entity information
for the entities in question has been collected and stored in association with those entities

in the property graph.

[00101] Fig. 10 1s a flowchart depicting an example process for traversing entities and
their relationships, according to one embodiment, in order to create a property graph
according to one embodiment. As noted, the management software will traverse
hardware and software components and their relationships, in order to build a construct
(e.g., a property graph) that represents such component and their relationships therein.
To this end, the management process will traverse such components by way of their
relationships, as is depicted in Fig. 10 by a property graph creation traversal process
1000. Property graph creation traversal process 1000 begins with the identification of
one or more relationships that the present entity has with other entities (i.e., that the
component in question has with other components within the given data center or other
data centers) (1010). Next, one of these entity relationships is selected (1020).
Relationship information regarding the selected entity relationship (i.e., the relationship
between the components in question) are then collected and stored in association with the
edge of the property graph representing this relationship (1030). A determination is then
made as to whether other entity relationships between the present entity (component) and
other such entities (components) remain to be added to the property graph (1040). If no
further relationships exist, and so require creation, the process proceeds to a point of
which the next entity with which the present entity has a relationship is to be selected
(1050). The process then concludes. Alternatively, in the case in which additional entity
relationships remain to be added to the property graph (1040), property graph creation
traversal process 1000 proceeds to the performance of the property graph creation process
depicted in Fig. 9 (property graph creation process 900) to allow for the creation of the
requisite link (SM) representing the remaining entity relationship (S), with an indication
as to the starting entity being the presently-selected entity (1060). In so doing, and as
will be appreciated in light of the present disclosure, the process of creating one or more
remaining links in property graph creation traversal process 1000 (and so property graph

creation process 900) is recursive in nature, and so explore the components and their

-34 -

WO 2018/144377 PCT/US2018/015697

relationships in a manner that provides for the creation of a graph according to the
methods and systems such as those described herein. Thus, as multiple relationships that
a given component may have with other components, edges (links) can be created in the
resulting property graph and so provide an accurate representation of the components and

their relationship in a computing environment.

[00102] Fig. 11 is a flowchart depicting an example process for analyzing one or more
property graphs, according to one embodiment. Property graph analysis can thus be
performed by, for example, a property graph analysis process 1100. Property graph
analysis process 1100 begins with the identification of a node in the given property graph
that represents the workload to be orchestrated (1110). In so doing, property graph
analysis process 1100 identifies this node as the starting point for a dependency analysis.
Next, entity information associated with the node in the property graph is analyzed
(1120). A determination has been made as to whether the entity information associated
with the selected node indicates that the entity (node) should be part of the dependency
chain being generated (1130). If the entity information indicates that the entity need not
be made part of the dependency chain, a determination is made as to whether the selected
node is the last such node to be analyzed for the given dependency chain (1140). If the
node in question is the last such node, the process concludes. Alternatively, if the entity
information indicates that the node should be included in the dependency chain such
entity information is collected and stored in the dependency information being recorded
(1150). As before, a determination is then made as to whether the selected node is the
last node in the dependency chain (1140). If the selected node is the last node in the
dependency chain, the process concludes. Alternatively, if further nodes remain to be
analyzed, the process proceeds to a traversal of the appropriate link(s) and the property
graph to reach a next node(s) to potentially be included in the dependency chain (1160).
An example of the operation that can be performed in traversing to the next node are
discussed in detail in connection with Fig. 12, below. Having traversed to the next node
in the property graph to be analyzed, property graph analysis process 1100 selects the

node in question, and proceeds to its analysis (1170). The process thus loops to the

-35-

WO 2018/144377 PCT/US2018/015697

analysis of this selected node (1120), and the process of property graph analysis process

1100 continues.

[00103] Fig. 12 is a flowchart depicting an example process for traversing a property
graph as part of analyzing the property graph, according to one embodiment. A property
graph analysis traversal process 1200 is thus depicted, and begins with the identification
of one or more edges from the present node in the property graph to other nodes in the
property graph (1210). At this point, property graph analysis traversal process 1200
selects an edge from the present node representing that entity's relationship with another
entity represented in the property graph (1220). A determination is then made as to
whether edge information related to the edge (relationship) indicates that the edge leads
to one or more nodes that will be included in the dependency chain (1230). If the given
edge does not lead to such nodes (and so it can be concluded that no further analysis
along this path through the property graph is needed), an indication is made that traversal
along such a path need not proceed (1240). The process then concludes. Alternatively, if
the edge information in question indicates that the edge leads to one or more nodes that
should be part of the dependency chain, a determination is made as to whether other
edges from the present node in the property graph will need to be traversed (1250). If no
other edges from the present node need be traversed, a determination is made as to
whether the edge represents a point of contact (contact point), and if so, contact point
information is recorded in the dependency data (1260). An indication is then made that
traversal can proceed to the next node thus identified (1270). The process then

concludes.

[00104] Alternatively, if other edges from the present node in the property graph
remain to be traversed (1250), property graph analysis traversal process 1200 performs
property graph analysis (property graph analysis traversal process 1100) for the
remaining edges, indicating that the starting node for such analyses is the present node
(1280). In a manner similar to that discussed earlier, it will be appreciated that this
process is recursive in nature, and so traverses the property graphing question in a

manner that ensures that all requisite nodes (and so, entities) are included in the ordered

-36 -

WO 2018/144377 PCT/US2018/015697

dependency information that can be used by orchestration software to perform
management tasks such as disaster recovery. As before, if the present edge represents a
contact point, information regarding this contact point is recorded in the dependency data,
for use by the orchestration software (1260). Also as before, an indication is then made
that traversal of the property graph in question can proceed to the next node thus

identified (1270). The process then concludes.

Examples of Representational Constructs

[00105] Fig. 13 is a block diagram illustrating an example of a representation of a
property graph, according to one embodiment, in which low-level replication is
implemented. In the example of Fig. 13, a virtual machine is protected with LUN-level
replication (the virtual machine is protected because it is resident on a data store which is
on a LUN replicated at the storage array level). A property graph 1300 is thus depicted in
Fig. 13, and, as before, includes representations of entities in a data center 1302 and a
data center 1304, which are separated by a boundary 1306. Components in data center
1302 represented by the entities (nodes) depicted in Fig. 13 include a virtual machine
1310, a virtual machine disk 1315, and a dataset 1317. Virtual machine 1310, virtual
machine disk 1315, and dataset 1317 are supported by a virtualization module 1320.
Dataset 1317 is stored on a storage unit 1330 in an enclosure 1335. Storage unit 1330 is
identified by a logical unit number 1340. Information stored in storage unit 1330 is
replicated between a consistency group object 1350 in data center 1302 and a consistency
group object 1355 in data center 1304. Replication operations are represented by a low-
level replication relationship 1360. Replication of dataset 1317 is performed, and thus
the data in dataset 1317 is replicated to a dataset 1316 that is stored in a storage unit 1370
within an enclosure 1375, and identified by a logical unit number 1380. Dataset 1360 is

supported by a virtualization module 1390.

[00106] As is depicted in Fig. 13, various entities represented by the nodes of property
graph 1300 can be migrated (e.g., in the case of disaster recovery), and it is the
identification of the entity and the determination of certain other characteristics that

enable an orchestration system to perform such migration. That being the case, elements

-37 -

WO 2018/144377 PCT/US2018/015697

depicted in Fig. 13 with heavier line weights represent entities and their relationships
identified during a property graph analysis process such as property graph analysis
process 1100 of Fig. 11. For example, VM 1310 is seen to have a relationship with
VMDK 1315, which has a relationship to dataset 1317. Storage unit 1330 and enclosure
1335 (as well as the identifier of storage unit 1330 (logical unit number 1340)) are not
appropriate candidates for migration, and so are not shown in heavier line widths.
Consistency group objects 1350 and 1355, which are associated with one another by low-
level replication relationship 1360, allow such a property graph analysis process to make
a determination with regard to entities in data center 1304. That being the case, such a
process identifies dataset 1360 as also (potentially) being subject to migration. In this
example, storage unit 1370 (identified by logical unit number 1380) and enclosure 1375,

as well as virtualization module 1390, are deemed inappropriate for migration.

[00107] By traversing the entities depicted in Fig. 13, information for use in a property

graph can be assembled:

DC1 {
Ecosystems: {
Compute: |
{Tech: vmware, Objects: {VM1l}}
1,
Storage: [
{Tech: vmware, Objects: {vmdkl, DS1}}
1,
Replication: [
{Tech: srdf, Objects: {CGl}}
]
}
}o
DC2 {
Ecosystems: {

Replication: |

{Tech: srdf, Objects: {CG2}}
1,
Storage: [

{Tech: vmware, Objects: {DS2}}
1,

-38 -

WO 2018/144377 PCT/US2018/015697

[00108] Fig. 14 is a block diagram illustrating an example of a representation of a
property graph, according to one embodiment, in which high-level copying is
implemented. In the example depicted in Fig. 14, a virtual machine is protected using an
out-of-band replication technique. A property graph 1400 is thus depicted in Fig. 14, and
again includes common elements such as a data center 1402, a data center 1404, and a
boundary therebetween (depicted in Fig. 14 as a boundary 1406). In the scenario
depicted in Fig. 14, a VM 1410, a VMDK 1415, and dataset 1417 are depicted in relation
to one another, as is a storage unit 1420 in an enclosure 1425 and identified by a logical
unit number 1430. As before, a virtualization module 1440 supports VM 1410 and
dataset 1417 stored in VMDK 1415 within storage unit 1420. A copy of dataset 1417
exists in data center 1404 as a data set 1450 stored in a storage unit 1460 in an enclosure
1465 and identified by a logical unit number 1467, and supported by a virtualization
module 1470. Dataset 1450 is a copy of dataset 1470 and is created by a high-level copy
relationship 1480 between a copy process 1482 and a copy process 1484. Copy process
1482 is under the control of a master process 1490, while copy process 1484 is under the
control of a master process 1492. As in the example presented in Fig. 13, the example
depicted in Fig. 14 employs heaving line widths to denote nodes in property graph 1400
that, in the given example, are subject to orchestration. That being the case, VM 1410,
VMDK 1415, and dataset 1417 in data center 1402 are subject to such orchestration. By
traversing property graph 1400, however, a determination can be made that dataset 1450
is also subject to such orchestration. As will be appreciated in light of the present
disclosure, the migration may include all of these entities, or some portion thereof. For
example, the entities subject orchestration that are in data center 1402 might be migrated
to another data center while maintaining the relationship with entities within data center

1404 (e.g., dataset 1450) in, for example, a disaster recovery scenario.

[00109] By traversing the entities depicted in Fig. 14, information for use in a property

graph can be assembled:

DC1 {
Ecosystems: {
Compute: |
{Tech: vmware, Objects: {VM1l}}

-39 -

WO 2018/144377 PCT/US2018/015697

1,
Copy: [
{Tech: nbu, Objects: {vmlcopy}}
]
}

Yy
DC2 {

Ecosystems: {

copy [
{Tech: nbu, Objects: {vmlcopy}}

]

[00110] Fig. 15 is a block diagram illustrating an example of a representation of a
property graph, according to one embodiment, in which high-level synchronized physical
replication is implemented. Fig. 15 thus depicts a property graph 1500 that includes a
data center 1502 and data center 1504 separated by a boundary 1506. In the scenario
presented in Fig. 15, data center 1502 supports a database 1510 that comprises one or
more file(s) 1515 that are stored in a file system 1520 on a storage unit 1525 in an
enclosure 1530 and identified by a logical unit number 1535. Database 1510 and its
file(s) 1515 in filesystem 1520 are supported by a host computing system 1540.

Database 1510 is replicated to data center 1504 and appears in data center 1504 as a
database 1560 that includes one or more file(s) 1565 in a filesystem 1570 on a storage
unit 1575 in an enclosure 1580 and identified by a logical unit number 1585. In a fashion
similar to data center 1502, data center 1504 supports database 1560, file(s) 1565, and
filesystem 1570 on one or more host computing systems (depicted in Fig. 15 as a host
computing system 1585 to affect a synchronization relationship (depicted in Fig. 15 as a
high-level synchronization relationship 1590), components in data centers 1502 and 1504
include a synchronized physical replication module 1592 and a synchronized physical
replication module 1594. Synchronized physical replication modules 1592 and 1594
support high-level synchronization relationship 1590, which is represented in property
graph 1500 and can be analyzed by a property graph analysis process such as property
graph analysis process 1100 of Fig. 11. To that end, entities depicted in Fig. 15 in

- 40 -

WO 2018/144377 PCT/US2018/015697

heavier line widths are those subject to such property graph analysis, and thus appear in
orchestration information that can be used by an orchestration system to perform, for
example, migration of such entities (e.g., in the event of a disaster recovery scenario).
Thus, database 1510, its file(s) (file(s) 1515), and filesystem 1520 can be migrated to
another data center to facilitate recovery from a disaster. In such a case, the migration of
these entities can be performed while maintaining high-level synchronization relationship
1590 by either migrating synchronized physical replication module 1592 or properly

configuring such a module in the new data center.

[00111] By traversing the entities depicted in Fig. 13, information for use in a property

graph can be assembled:

DC1 {
Ecosystems: {
hpp: |
{Tech: oracle, Objects: {Oradbl}}
1,
Replication: [
{Tech: dataguard, Objects: {DGuard2}}
]
}
}o
DC2 {
Ecosystems: {

Replication: [
{Tech: dataguard, Objects: {DGuard2}}
1,
hpp: |
{Tech: oracle, Objects: {Oradb2}}
1,

Example Orchestration Architecture Using Representational Constructs

[00112] Fig. 161s a block diagram of a management and orchestration architecture
according to methods and systems such as those described herein. As noted, an ITRP
architecture such as that illustrated in Fig. 16 (and depicted therein as an ITRP
architecture 1600) can be implemented as a centralized architecture (e.g., as depicted in

Fig. 1 (ITRP server 120 and the modules thereof)), as a distributed architecture (e.g., as

-41 -

WO 2018/144377 PCT/US2018/015697

noted with many of the features of such an architecture such as those described herein),
or as some combination thereof. That being the case, the depiction of ITRP architecture
1600 in Fig. 16 is a logical representation of the elements illustrated therein, the
implementation of which can be distributed in any fashion suitable for the situation at

hand.

[00113] As can be seen in Fig. 16, ITRP architecture 1600 includes ITRP systems
1605, which, in turn, include a resiliency manager 1610 and an infrastructure
management service 1615. Infrastructure management service 1615, according to
methods and systems such as those described herein, provides a distributed management
functionality, which, in certain embodiments, can also include a two-layered set of
services. Infrastructure management service 1615, in turn, includes one or more layers.
As depicted in Fig. 16, infrastructure management service 1615 includes two layers,
illustrated as an aggregator layer 1620 and an agent layer 1630. In light of the present
disclosure, however, it will be appreciated that infrastructure management service 1615
can be configured with more than two layers, and any number of such layers can be

implemented, as may be appropriate to the circumstances encountered.

[00114] Aggregator layer 1620 functions as a “top” layer, and provides the ability to
provide consolidated summary of discovered assets, uniform operational layer and a
persistent state for supported hardware and software elements. Agent layer 1630, in
support thereof, functions as a “bottom” layer, and provides the ability to discover,
monitor and operate on supported hardware elements (example — a storage array) and
software elements (example — a database (DB) and/or database management system

(DBMS) instance(s)).

[00115] As noted above, infrastructure management service 1615 also includes
resiliency manager 1610. Resiliency manager 1610 can be configured to provide a
centralized management functionality, which, in certain embodiments, includes a two-
layered set of services. As with infrastructure management service 1615, however,

resiliency manager 1610 can be configured with more than two layers, and any number of

-42 -

WO 2018/144377 PCT/US2018/015697

such layers can be implemented, as may be appropriate to the circumstances encountered.
As depicted in Fig. 16, resiliency manager 1610 includes a business layer 1640. Business
layer 1640 functions as a “top” layer, and, in turn, can include a number of modules,
examples of which are depicted in Fig. 16 as a workload management service module

1642, a recovery automation service module 1644, and a reporting service module 1646.

[00116] Resiliency manager 1610 also includes a core layer 1650. Core layer 1650, in
support of business layer 1640, functions as a “bottom” layer, and provides a number of
services, by way of including modules such as, for example, a provisioning module 1660,
an ER service module 1661, a database (DB) service module 1662, a messaging service
module 1663, a communication and data facade service module 1664, an authentication
and authorization services module 1665, a logging and auditing services module 1666, a
licensing service module 1667, and a workflow service module 1668. As will be
appreciated in light of the present disclosure, such modules (and the services they
provide) are merely examples thereof, and are among many other such functions and

services that might be provided in support of business layer 1640.

An Example Computing and Network Environment

[00117] As shown above, the systems described herein can be implemented using a
variety of computer systems and networks. Examples of such computing and network

environments are described below with reference to Figs. 17 and 18.

[00118] Fig. 17 depicts a block diagram of a computer system 1710 suitable for
implementing aspects of the systems described herein, and the like. Computer system
1710 includes a bus 1712 which interconnects major subsystems of computer system
1710, such as a central processor 1714, a system memory 1717 (typically RAM, but
which may also include ROM, flash RAM, or the like), an input/output controller 1718,
an external audio device, such as a speaker system 1720 via an audio output interface
1722, an external device, such as a display screen 1724 via display adapter 1726, serial
ports 1722 and 1730, a keyboard 1732 (interfaced with a keyboard controller 1733), a
storage interface 1734, a floppy disk drive 1737 operative to receive a floppy disk 1738, a

-43 -

WO 2018/144377 PCT/US2018/015697

host bus adapter (HBA) interface card 1735A operative to connect with a Fibre Channel
network 1790, a host bus adapter (HBA) interface card 1735B operative to connect to a
SCSI bus 1739, and an optical disk drive 1740 operative to receive an optical disk 1742.
Also included are a mouse 1746 (or other point-and-click device, coupled to bus 1712 via
serial port 1722), a modem 1747 (coupled to bus 1712 via serial port 1730), and a
network interface 1748 (coupled directly to bus 1712).

[00119] Bus 1712 allows data communication between central processor 1714 and
system memory 1717, which may include read-only memory (ROM) or flash memory
(neither shown), and random access memory (RAM) (not shown), as previously noted.
RAM is generally the main memory into which the operating system and application
programs are loaded. The ROM or flash memory can contain, among other code, the
Basic Input-Output System (BIOS) which controls basic hardware operation such as the
interaction with peripheral components. Applications resident with computer system
1710 are generally stored on and accessed from a computer-readable storage medium,
such as a hard disk drive (e.g., fixed disk 1744), an optical drive (e.g., optical drive
1740), a floppy disk unit 1737, or other computer-readable storage medium.

[00120] Storage interface 1734, as with the other storage interfaces of computer system
1710, can connect to a standard computer-readable medium for storage and/or retrieval of
information, such as a fixed disk drive 1744. Fixed disk drive 1744 may be a part of
computer system 1710 or may be separate and accessed through other interface systems.
Modem 1747 may provide a direct connection to a remote server via a telephone link or
to the Internet via an internet service provider (ISP). Network interface 1748 may
provide a direct connection to a remote server via a direct network link to the Internet via
a POP (point of presence). Network interface 1748 may provide such connection using
wireless techniques, including digital cellular telephone connection, Cellular Digital

Packet Data (CDPD) connection, digital satellite data connection or the like.

[00121] Many other devices or subsystems (not shown) may be connected in a similar

manner (e.g., document scanners, digital cameras and so on). Conversely, all of the

- 44 -

WO 2018/144377 PCT/US2018/015697

devices shown in Fig. 17 need not be present to practice the systems described herein.
The devices and subsystems can be interconnected in different ways from that shown in
Fig. 17. The operation of a computer system such as that shown in Fig. 17 is readily
known in the art and is not discussed in detail in this application. Code to implement the
modules of the systems described herein can be stored in computer-readable storage
media such as one or more of system memory 1717, fixed disk 1744, optical disk 1742,
or floppy disk 1738. The operating system provided on computer system 1710 may be
MS-WINDOWS®, UNIX®, Linux®, or other operating system.

[00122] Moreover, regarding the signals described herein, those skilled in the art will
recognize that a signal can be directly transmitted from a first block to a second block, or
a signal can be modified (e.g., amplified, attenuated, delayed, latched, buffered, inverted,
filtered, or otherwise modified) between the blocks. Although the signals of the above
described embodiment are characterized as transmitted from one block to the next, other
embodiments may include modified signals in place of such directly transmitted signals
as long as the informational and/or functional aspect of the signal is transmitted between
blocks. To some extent, a signal input at a second block can be conceptualized as a
second signal derived from a first signal output from a first block due to physical
limitations of the circuitry involved (e.g., there will inevitably be some attenuation and
delay). Therefore, as used herein, a second signal derived from a first signal includes the
first signal or any modifications to the first signal, whether due to circuit limitations or
due to passage through other circuit elements which do not change the informational

and/or final functional aspect of the first signal.

[00123] Further, and as will be appreciated in light of the present disclosure, each of
the operations described herein may be executed by a module (e.g., a software module) or
a portion of a module, or a computer system user. Thus, the above-described method, the
operations thereof and modules therefor may be executed on a computer system
configured to execute the operations of the method and/or may be executed from
computer-readable storage media. The method may be embodied in a machine-readable

and/or computer-readable storage medium for configuring a computer system to execute

- 45 -

WO 2018/144377 PCT/US2018/015697

the method. Thus, the software modules may be stored within and/or transmitted to a
computer system memory to configure the computer system to perform the functions of

the module.

[00124] The software modules described herein may be received by a computer system,
for example, from computer-readable storage media. Such computer readable storage
media may be permanently, removably or remotely coupled to the computer system.
Computer-readable storage media may non-exclusively include, for example, any number
of the following: magnetic storage media (including disk and tape storage media);
optical storage media such as compact disk media (e.g., CD ROM, CD R, etc.) and digital
video disk storage media; nonvolatile memory storage memory including semiconductor-
based memory units such as FLASH memory, EEPROM, EPROM, ROM or application
specific integrated circuits; and volatile storage media (including registers, buffers or
caches, main memory, RAM, etc.). In a UNIX-based embodiment, the software modules
may be embodied in a file, which may be a device, a terminal, a local or remote file, a
socket, or other such element. Other new and various types of computer-readable storage

media may also be used to store the software modules discussed herein.

[00125] Many other devices or subsystems (not shown) may be connected in a similar
manner (e.g., bar code readers, document scanners, digital cameras and so on).
Conversely, it is not necessary for all of the devices shown in Fig. 17 to be present to
practice the present invention. The devices and subsystems may be interconnected in
different ways from that shown in Fig. 17. The operation of a computer system such as
that shown in Fig. 17 is readily known in the art and is not discussed in detail in this
application. Code to implement the present invention may be stored in computer-
readable storage media such as one or more of system memory 1716, fixed disk 1744,
CD-ROM 1742, or floppy disk 1738. Additionally, computer system 1710 may be any
kind of computing device, and so includes personal data assistants (PDAs), network
appliance, X-window terminal or other such computing device. The operating system
provided on computer system 1710 may be MS-DOS®, MS-WINDOWS®, UNIX®,

Linux® or other known operating system. Computer system 1710 also supports a

- 46 -

WO 2018/144377 PCT/US2018/015697

number of Internet access tools, including, for example, an HTTP-compliant web browser
having a JavaScript interpreter, such as Netscape Navigator®, Microsoft Internet

Explorer® and the like.

[00126] Moreover, regarding the signals described herein, those skilled in the art will
recognize that a signal may be directly transmitted from a first block to a second block, or
a signal may be modified (e.g., amplified, attenuated, delayed, latched, buffered, inverted,
filtered or otherwise modified) between the blocks. Although the signals of the above
described embodiment are characterized as transmitted from one block to the next, other
embodiments of the present invention may include modified signals in place of such
directly transmitted signals as long as the informational and/or functional aspect of the
signal is transmitted between blocks. To some extent, a signal input at a second block
may be conceptualized as a second signal derived from a first signal output from a first
block due to physical limitations of the circuitry involved (e.g., there will inevitably be
some attenuation and delay). Therefore, as used herein, a second signal derived from a
first signal includes the first signal or any modifications to the first signal, whether due to
circuit limitations or due to passage through other circuit elements which do not change

the informational and/or final functional aspect of the first signal.

[00127] Fig. 18 is a block diagram depicting a network architecture 1800 in which
client systems 1810, 1820 and 1830, as well as storage servers 1840A and 1840B (any of
which can be implemented using computer system 1810), are coupled to a network 1850.
Storage server 1840A is further depicted as having storage devices 1860A(1)-(N) directly
attached, and storage server 1840B is depicted with storage devices 1860B(1)-(N)
directly attached. Storage servers 1840A and 1840B are also connected to a SAN fabric
1870, although connection to a storage area network is not required for operation. SAN
fabric 1870 supports access to storage devices 1820(1)-(N) by storage servers 1840A and
1840B, and so by client systems 1810, 1820 and 1830 via network 1850. Intelligent
storage array 1890 is also shown as an example of a specific storage device accessible via

SAN fabric 1870.

-47 -

WO 2018/144377 PCT/US2018/015697

[00128] With reference to computer system 1710, modem 1747, network interface
1748 or some other method can be used to provide connectivity from each of client
computer systems 1810, 1820 and 1830 to network 1850. Client systems 1810, 1820 and
1830 are able to access information on storage server 1840A or 1840B using, for
example, a web browser or other client software (not shown). Such a client allows client
systems 1810, 1820 and 1830 to access data hosted by storage server 1840A or 1840B or
one of storage devices 1860A(1)-(N), 1860B(1)-(N), 1820(1)-(N) or intelligent storage
array 1890. Fig. 18 depicts the use of a network such as the Internet for exchanging data,
but the systems described herein are not limited to the Internet or any particular network-

based environment.

[00129] The foregoing described embodiments wherein the different components are
contained within different other components (e.g., the various elements shown as
components of computer system 1710, discussed subsequently). It is to be understood
that such depicted architectures are merely examples, and that in fact many other
architectures can be implemented which achieve the same functionality. In an abstract,
but still definite sense, any arrangement of components to achieve the same functionality
is effectively "associated" such that the desired functionality is achieved. Hence, any two
components herein combined to achieve a particular functionality can be seen as
"associated with" each other such that the desired functionality is achieved, irrespective
of architectures or intermediate components. Likewise, any two components so
associated can also be viewed as being "operably connected"”, or "operably coupled”, to

each other to achieve the desired functionality.

Other Embodiments

[00130] The systems described herein are well adapted to attain the advantages
mentioned as well as others inherent therein. While such systems have been depicted,
described, and are defined by reference to particular descriptions, such references do not
imply a limitation on the claims, and no such limitation is to be inferred. The systems
described herein are capable of considerable modification, alteration, and equivalents in

form and function, as will occur to those ordinarily skilled in the pertinent arts in

- 48 -

WO 2018/144377 PCT/US2018/015697

considering the present disclosure. The depicted and described embodiments are

examples only, and are in no way exhaustive of the scope of the claims.

[00131] The foregoing detailed description has set forth various embodiments of the
systems described herein via the use of block diagrams, flowcharts, and examples. It will
be understood by those within the art that each block diagram component, flowchart step,
operation and/or component illustrated by the use of examples can be implemented
(individually and/or collectively) by a wide range of hardware, software, firmware, or

any combination thereof.

[00132] The systems described herein have been described in the context of fully
functional computer systems; however, those skilled in the art will appreciate that the
systems described herein are capable of being distributed as a program product in a
variety of forms, and that the systems described herein apply equally regardless of the
particular type of computer-readable media used to actually carry out the distribution.
Examples of computer-readable media include computer-readable storage media, as well

as media storage and distribution systems developed in the future.

[00133] The above-discussed embodiments can be implemented by software modules
that perform one or more tasks associated with the embodiments. The software modules
discussed herein may include script, batch, or other executable files. The software
modules may be stored on a machine-readable or computer-readable storage media such
as magnetic floppy disks, hard disks, semiconductor memory (e.g., RAM, ROM, and
flash-type media), optical discs (e.g., CD-ROMs, CD-Rs, and DVDs), or other types of
memory modules. A storage device used for storing firmware or hardware modules in
accordance with an embodiment can also include a semiconductor-based memory, which
may be permanently, removably or remotely coupled to a microprocessor/memory
system. Thus, the modules can be stored within a computer system memory to configure
the computer system to perform the functions of the module. Other new and various
types of computer-readable storage media may be used to store the modules discussed

herein.

- 49 -

WO 2018/144377 PCT/US2018/015697

[00134] The above description is intended to be illustrative and should not be taken to
be limiting. As will be appreciated in light of the present disclosure, other embodiments
are possible. Those skilled in the art will readily implement the steps necessary to
provide the structures and the methods disclosed herein, and will understand that the
process parameters and sequence of steps are given by way of example only and can be
varied to achieve the desired structure as well as modifications that are within the scope
of the claims. Variations and modifications of the embodiments disclosed herein can be
made based on the description set forth herein, without departing from the scope of the

claims, giving full cognizance to equivalents thereto in all respects.

[00135] Although the systems described herein have been described in connection with
several embodiments, these embodiments and their descriptions are not intended to be
limited to the specific forms set forth herein. On the contrary, it is intended that such
embodiments address such alternatives, modifications, and equivalents as can be

reasonably included within the scope of the appended claims.

-50 -

WO 2018/144377 PCT/US2018/015697

WHAT IS CLAIMED IS:

1. A computer-implemented method comprising:
selecting a node of a plurality of nodes in a property graph, wherein
each node of the plurality of nodes represents an entity of a plurality of entities,
the each node of the plurality of nodes is coupled to at least one other node of the
plurality of nodes by one or more links of a plurality of links of the
property graph, and
each of the one or more links represents a relationship between the each node and
the at least one other node;
analyzing entity information associated with the node, wherein
the entity information is information regarding the entity; and
in response to the analyzing, storing the entity information in dependency information,
wherein
the dependency information is configured to facilitate orchestration of one or

more of the plurality of entities.

2. The method of claim 1, further comprising:
determining whether the one or more links crosses a boundary; and
in response to one of the one or more links crossing a boundary, recording a contact point

in the dependency information.

3. The method of claim 1, further comprising:
traversing a link of the property graph from the node to another node of the plurality of
nodes, wherein

the link is one of the plurality of links.

4. The method of claim 3, further comprising:
determining whether the link crosses a boundary; and
in response to a determination that the link crosses the boundary, recording a contact

point in the dependency information.

-51 -

WO 2018/144377 PCT/US2018/015697

5. The method of claim 3, wherein
the node is selected as a starting point in the property graph, and

the node and the another node have a dependency relationship with one another.

6. The method of claim 5, further comprising:
determining whether the link represents a contact point; and
in response to a determination that the link represents the contact point, recording the

contact point in the dependency information.

7. The method of claim 3, wherein the traversing comprises:

determining whether the another node should be included in the dependency information;

in response to a determination that the another node should be included in the
dependency information, performing the traversing; and

in response to a determination that the another node should not be included in the

dependency information, preventing the traversing.

8. The method of claim 7, further comprising:
determining whether another link exists between the node and a subsequent node; and
in response to a determination that the subsequent node should be included in the

dependency information, recursively performing the traversing.

9. The method of claim 1, wherein

each entity of the plurality of entities is one of
a virtual computing component,
a virtual storage component,
a physical computing component, or

a physical storage component.

-52 -

WO 2018/144377 PCT/US2018/015697

10. A computer program product comprising:
a plurality of instructions, comprising
a first set of instructions, executable on a computer system, configured to select a
node of a plurality of nodes in a property graph, wherein
each node of the plurality of nodes represents an entity of a plurality of
entities,
the each node of the plurality of nodes is coupled to at least one other node
of the plurality of nodes by one or more links of a plurality of links
of the property graph, and
each of the one or more links represents a relationship between the each
node and the at least one other node,
a second set of instructions, executable on the computer system, configured to
analyze entity information associated with the node, wherein
the entity information is information regarding the entity, and
a third set of instructions, executable on the computer system, configured to, in
response to a result of the second set of instructions, store the entity
information in dependency information, wherein
the dependency information is configured to facilitate orchestration of one
or more of the plurality of entities; and
a non-transitory computer-readable storage medium, wherein the instructions are encoded

in the non-transitory computer-readable storage medium.

11. The computer program product of claim 10, wherein the instructions further

comprise:

a fourth set of instructions, executable on the computer system, configured to determine
whether a link between the node and another node of the plurality of nodes
represents a contact point; and

a fifth set of instructions, executable on the computer system, configured to, in response
to the link representing the contact point, record the contact point in the

dependency information.

-53 -

WO 2018/144377 PCT/US2018/015697

12. The computer program product of claim 10, wherein the instructions further

comprise:

a fourth set of instructions, executable on the computer system, configured to traverse a
link of the property graph from the node to another node of the plurality of nodes,
wherein

the link is one of the plurality of links.

13. The computer program product of claim 12, wherein the instructions further

comprise:

a fifth set of instructions, executable on the computer system, configured to determine
whether the link crosses a boundary; and

a sixth set of instructions, executable on the computer system, configured to, in response
to a determination that the link crosses the boundary, record a contact point in the

dependency information.

14. The computer program product of claim 12, wherein
the node is selected as a starting point in the property graph, and

the node and the another node have a dependency relationship with one another.

15. The computer program product of claim 14, wherein the fourth set of instructions

comprises:

a first subset of instructions, executable on the computer system, configured to determine
whether the link represents a contact point; and

a second subset of instructions, executable on the computer system, configured to, in
response to a determination that the link represents the contact point, record the

contact point in the dependency information.

16. The computer program product of claim 12, wherein the fourth set of instructions
comprises:
a first subset of instructions, executable on the computer system, configured to determine

whether the another node should be included in the dependency information;

-54 -

WO 2018/144377 PCT/US2018/015697

a second subset of instructions, executable on the computer system, configured to, in
response to a determination that the another node should be included in the
dependency information, execute the fourth set of instructions; and

a third subset of instructions, executable on the computer system, configured to, in
response to a determination that the another node should not be included in the

dependency information, prevent execution of the fourth set of instructions.

17. The computer program product of claim 16, wherein the instructions further

comprise:

a fifth set of instructions, executable on the computer system, configured to determine
whether another link exists between the node and a subsequent node; and

a sixth set of instructions, executable on the computer system, configured to, in response
to a determination that the subsequent node should be included in the dependency

information, recursively perform the fourth set of instructions.

18. A computer system comprising:
one or More processors;
a computer-readable storage medium coupled to the one or more processors; and
a plurality of instructions, encoded in the computer-readable storage medium and
configured to cause the one or more processors to
select a node of a plurality of nodes in a property graph, wherein
each node of the plurality of nodes represents an entity of a plurality of
entities,
the each node of the plurality of nodes is coupled to at least one other node
of the plurality of nodes by one or more links of a plurality of links
of the property graph, and
each of the one or more links represents a relationship between the each
node and the at least one other node,
analyze entity information associated with the node, wherein

the entity information is information regarding the entity, and

-55-

WO 2018/144377 PCT/US2018/015697

in response to a result of the instructions configured to cause the one or more
processors to analyze, store the entity information in dependency
information, wherein
the dependency information is configured to facilitate orchestration of one

or more of the plurality of entities.

19. The computer system of claim 18, wherein the plurality of instructions is further

configured to cause the one or more processors to:

traverse a link of the property graph from the node to another node of the plurality of
nodes, wherein

the link is one of the plurality of links.

20. The computer system of claim 19, wherein the plurality of instructions is further
configured to cause the one or more processors to:

determine whether the link crosses a boundary; and

in response to a determination that the link crosses the boundary, record a contact point in

the dependency information.

21. The computer system of claim 19, wherein the plurality of instructions configured

to cause the one or more processors to traverse the link is further configured to cause the

one or more processors to:

determine whether the another node should be included in the dependency information;

in response to a determination that the another node should be included in the
dependency information, execute the plurality of instructions configured to cause
the one or more processors to traverse the link; and

in response to a determination that the another node should not be included in the
dependency information, prevent execution of the plurality of instructions

configured to cause the one or more processors to traverse the link.

-56 -

WO 2018/144377

PCT/US2018/015697
1/18
Physical machine 110(1) Physical machine 110(2) Physical machine 110(N)
Memory 112(1) Memory 112(2) Memory 112(N)
VM VM VM VM ce e VM VM
115(1) 115(2) 115(4 115(5 115(i-1) 115()
Management Server 120
Computing Environment
Provisioning Property Graph 100
Module Creation Module
121 125
Provisioning Property Graph Network 130
Data Analysis Module —
122 126
: Property Graph Data
127
Management Modules 129
Storage Device 150(1) Storage Device 150(2) Storage Device 150(4)
File system 152 VM VM VM VMDK
166(1) 166(2) 166(3) 180(1
Deduplication Module 154
VMDK
180(2)
VM VM VM °
. [}
15611 156(2 1963 Storage device 150(3) °
Deduplication Data 158 1;/6“?1) 1;/6“?2) 17\/6“?3) VMDK
180(N)

Fig. 1

WO 2018/144377

2118

PCT/US2018/015697

Physical machine 110

Processor
202

Memory 200

Virtual machine

Virtual machine

Virtual machine

115(4 115(2 115(3
Application Application Application
228(1 228(2 228(3)
Operating System Virtualization System Operating System
226(1 227(2 226(3

Virtualization Software

Virtualization Software

Virtualization Software

227(1 227(2 227(3)
Virtualization module

225

Operating system
205

File system 210

VM Data Deduplication module Cluster module
240 230 235

Fig. 2

WO 2018/144377

Computing Environment
Analysis Architecture
300

3/18

Migration Layer
310

Workflow Creation Layer
320

Entity Representation Layer
(Orchestration)
330

N () (O
U U

Contact Point Identification Layer
340

_/

Dependency ldentification Layer
350

Entity Representation Layer
360

Entity Annotation Layer
370

ETL Processing Layer
380

et a el
NN NG AN

Fig. 3

PCT/US2018/015697

PCT/US2018/015697

WO 2018/144377

4/18

0¥
a0Inossy

007
Juswuoliaug Bunndwon

v "Bl

[1]%7
wolsAg 19bie |

Sov
wolsAs 924n0g

/ S1¥ Aiepunog

fnuz

[\/4%
PEOPIOM

PCT/US2018/015697
5/18

WO 2018/144377

G b4

50%
wolsAs 924n0g Anug

oIS
wolsAg 19bie |

085
90In0say

0.
a0Inossy

025

I
I
I
I
I
I
I
I
I PeOPOA

00S

wswuoliaug Bunndwo) \
616 Aepunog

PCT/US2018/015697
6/18

WO 2018/144377

9190 swalsAg abelolg Z19 swalsAg sbelolg

9 ‘bi4
WO | veeoeee [QL7E] 859 ce0c0ee [OFEE]
MAINA MAINA MANA MANA

029 MOMBN BaIY SPIM

009
uswuonaug bunndwon

20 JJomieN esudisiug

20 JJom}eN asudisiug

a 909 Arepunog \

209
laus) vleq

¥09
la)us) eleq

099 105s900.d 299 9oeLBU| YIOMISN “ 759 90BLIBIU| YIOoMIBN 0€9 J0sseo0.d
[[! [_
] |]
|
079 wa)sAs Bunesado “ 0G0 waysAs Buneltado
|
|
€13 8Inpojy uonezifenpiA “ 259 8inpoy uohezifenyip
|
|
|
(N)PZ9 NN @VIS NA (DVLS NA | (N)¥S9 INA @¥S9 NA TD¥S9 NA
[
|
€529
v)S.9 1)6/9 | €559
voneoiddy | | ¢ oo | | UONENA0Y uonealjddy ! 9559 sos €159 uoneaiiddy
“ uonealddy
vammm | G)e89
uonealjddy “ (T)559
_ 71559 uojealjady
pr— | —_—
799 Alowsay I €9 Aloway
|
|
979 auyoeyy [eaisAud [079 auyoey [eaisAud
[
I

PCT/US2018/015697

WO 2018/144377

7/18

09z
Jaynuap|

abel01S |B2I60T

1A
nun abelois

057
joseleq

[543
uonewopu|
dnoio ebeloig

012 diysuonejey uonesidey

SWIaISAS

079 obeiolg

a|Npo
uonezijenpip

09
Jsluag eleqg

007
ydeis Ausadoig

[1j22
Jeluap|
abei10)s [e01607

sel

0zl
nun abeioig

uoneuLIoju|
dnolg ebeloig

N Zl9
SRS

0¢L obeio1S

loseleq

209
Jajuag ejeq

uoneolddy

|

|

019 |
aUIYOBIN _
[eoishyd _
259 _

(2)559 aINpolA _

“ uoneoiddy uonezijenuin |

_ _

909 Aiepunog _ (1)559 "
\ |

WO 2018/144377

Property Graph
Implementation
Process
800

8/18

Create property graph
810

l

Perform property graph analysis
820

l

Orchestrate based on
results of property graph analysis
830

Fig. 8

PCT/US2018/015697

WO 2018/144377

(Start)

A 4

Identify entity as starting point

for creation of property graph

(or portion thereof) and select
910

PCT/US2018/015697
9/18

Property Graph Creation Process
900

Has
entity information for selected
entity already been collected?
920

Yes

No

!

Collect and store entity information
regarding selected entity in
property graph
930

Last entity?

No

940

Yes

End

l

Traverse relationship(s)
entity has with other entities
950

l

Select selected entity identified as
having relationship with
present entity
960

Fig. 9

WO 2018/144377

Property Graph Creation
Traversal Process
1000

10118

Identify relationship(s) present entity
has with other entities
1010

|

Select entity relationship
1020

|

Collect and store relationship information,
regarding selected entity relationship,
and associate with edge
in property graph
1030

Other
entity relationship(s) to be
added to property graph?
1040

Yes

v

Perform property graph
creation for remaining link(s),
indicating starting entity is
present entity
1060

!

Indicate next entity as being
entity to be selected
1050

End

Fig. 10

PCT/US2018/015697

WO 2018/144377 PCT/US2018/015697
1118

(Start)

A 4

Property Graph Analysis Process
1100

Identify node in property graph
representing workload to be orchestrated,
as starting point for dependency analysis

1110

'

Analyze entity information associated
with node in property graph <
1120

Does
entity information
indicate that the entity should be
part of dependency chain?
1130

Yes

v

Collect and store entity information
from selected node in
dependency information

1150 No

Last
node in dependency chain?
1140

Traverse appropriate link(s)
No——Pp in property graph
1160

I

Yes
Select node in property graph
identified by link
End 1170

Fig. 11

WO 2018/144377 PCT/US2018/015697

12/18

Identify edge(s) from present node to Property Graph Analysis Traversal Process

other nodes in property graph 1200
1210

v

Select edge
1220

Does
edge information
indicate that edge leads to
node that should be part of
dependency chain?
1230

Indicate traversal
need not proceed
along this edge

Yes

1240
Other
edge(s) from present node
to be traversed?
1250
Yes
* No
Perform property graph analysis process
for remaining edge(s), indicating starting
node is present node
1280
A 4
If edge represents point of contact, record
—p contact point in dependency data
1260
Indicate traversal can proceed
to next node thus identified End

1270

Fig. 12

PCT/US2018/015697

WO 2018/144377

13118

08Sr
JaquinN
uun [eo1607

Glel

alnsojoug o7eT

nun abeiois

09cl
laseieq

065l
s|NPO
uonezijenuip

0ocl

ydeis Auadoig

gacl
1w9lgo dnoio
Aougjsisuon

¥ocl

Joluad ele

osgcl
algo dnoio
Koug)sIsuon

over
JaquinN
uun [e91607

09¢ !

diysuonejey
uoneoidey
|oA9T7-M0T

c0¢cl
Jaluad eleq

\ a0¢ct

Aepunog

gecl

_ aINso|ou
0cel U3

nun ebeiois

Ligl
laseleq

ocel
SINPON
uonezifenuin

PCT/US2018/015697

1418

WO 2018/144377

vl bl

ocvl
Jaquinn

0ov1 uun [e21607

ydelo Auadolid

acvl
alnsojoug

ocrl
nun ebeiois

77T
JaquinN
nun [eoibo

Lyl
laseled

08vl
diysuoneley
Ado9 jana1-ubiH

Sovl
alnsojaug

oovl
nun abeioig

corl
Jaluad eleq

Yovri
Jaag eleg

—
¥evl
ssao0ld AdoD

0grl
1eseleq

cevl
ssaonold AdoD

0Lvl
s|npo
uonezienip

orvl
SINPON
uonezifenuin

06¥l
$S920.d JaIseln

/ 90

Aepunog

44}
$S8004d JolIsey

PCT/US2018/015697

WO 2018/144377

15/18

Gq8Gl
JaquinN

uwun [e21607 005T

ydeisy Ausadoiyg

089l
alnsojoug

Sl
uun ebelols

0451
wialsAsalld

Y0sl
Jaag eleqg

SoST
(s)and

09¢l
asegeleq

G8GlL

wislsAg
Bunndwon
1soH

651
a|npoyy uoneolday
|esisAyd paziuoiyosukg

Gl ‘b4

c0gl
Jajuag ejeq

0651
diysuonejey
uoIBZIUCIYOUAS
|oAeT-UBIH

geal
JagquinN
uun [ea1bo

2651
a|npoy uoneolday
|edisAyd pazIuocJyouiAs

\ Q0G|

Aepunog

0gsl
alnsojoug

gcsl
1un obelois

02sl1
wial1sAsally

SIS
(s)and

oLgl
aseqeieq

v,

[z
WwolsAg
Bunndwon
1soH

PCT/US2018/015697

WO 2018/144377

16/18

00T 2/noa)yoly uonensaysio

91 ‘b4

0¢9l
Joke weby

029l
Jake Jojebolbby

STOT 201ag Juawabeuey ainmoniiselu|

Jaken ssauisng

8991 1991 9991
aInpo aInpol a[Npo
20IAI8G 20IAIBG $9919g Bunpny
MOIIOAA Buisuaol puy Buibbo
G991 95T
SINPOA 3INPO 22IAI8G apeie
SOOIMRS UoliEZLoyny Ble puy UoIEDIUNWLIOD
puy uonednuayiny T
€991 c991 —_— —_
b o aImpon ampon
QOB QOIS 20INI18S ¥ Buluoisinoid
Buibessapy aseqgele
0991
Joke alo)
59T v¥9ol ¢v9l
SINDOIN BOIAIS 9INPOIN 90IAI8S a|npol
INPON SAINIBS uonewoiny 90InI8g Juawabeuely
bupodoy Aonooo
o PEQLIOAA
0¥9l

01971 Jabeue Aoualisoy

S0O1 SWalSAS UoNeNsaydIO

PCT/US2018/015697

WO 2018/144377

17118

ge/l
3s1@ Addoj4

Zvil ZL ‘bi4
%s1q [eondo
06/1 0LLL
NIOMION
|auueyd
alqi4
ovZ1
anLIg AsIqg |eond
0z.1 1@ s |eondo
wolsAg A
ioxeads 5IT WIT T 520! V2IT
/ sng 1SOS ysIg paxid pJeoghed asnol usauog Aejdsiq
Y
f4a) geciT VeelT $SIT TTIT 9zl oc/1
adelalU| oIpny vaH vaH ooeLIoIU| 6BEI0IS 191/01U0D PJEOGAS] uod |euss Jeidepy Aejdsiq
- 0 y #V
_ rAWA)
Lell 0T sng
Nun ysig Addoj4 1od [eUaS
SviT SriT Vit YT
90BLIOIU| JIOMION J91j043u0d O/l KIowoN wolishks 10§S2201d |enuan
V71
Wapon

PCT/US2018/015697

WO 2018/144377

18/18

(NJO88T

8o1A8(

0681
Aely

obeioig
Jsbljjeyu

008l

2JN08NYDIY MJOMISN

(1)0881

e o o| SOINSCT

8l ‘b4
(NJG098T
201A8Q
*
(1)g0981 ¢
201A8(Q
dov8l
Jealeg

0.8l
olge4

NVS

(N)V0981

ao1Ae(

(1)v0981

801A8(Q

YOr381L
Jonleg

0e8l
usiD

ol8l
uelD
0s8l1
MomjaN
0csl
JusIo

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2018/015697

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F11/14 GO6F11/20
ADD.

According to International Patent Classification (IPC) or to both national classification and IPG

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X US 7 386 752 Bl (RAKIC BRANKA [US] ET AL)
10 June 2008 (2008-06-10)

Y abstract

column 1, line 27 - column 8, Tine 21
column 9, 1line 60 - column 13, Tine 58
figures 2-4, 6-8

Y US 20047049365 Al (KELLER ALEXANDER [US]
ET AL) 11 March 2004 (2004-03-11)
paragraph [0014]

paragraph [0044] - paragraph [0055]
paragraph [0114]

_/__

1-21
1-21

1-21

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

cited to establish the publication date of another citation or other
special reason (as specified)

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is

"Q" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination
means being obvious to a person skilled in the art

"P" document published prior to the international filing date but later than
the priority date claimed "&" document member of the same patent family

Date of the actual completion of the international search Date of mailing of the international search report

2 May 2018 11/05/2018

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswik
Tel. (+31-70) 340-2040,

Name and mailing address of the ISA/ Authorized officer

Fax: (+31-70) 340-3018 Lanchés, Philippe

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

Consolidation in Virtualized Environment",
2013 TEEE 11TH INTERNATIONAL CONFERENCE ON
DEPENDABLE, AUTONOMIC AND SECURE
COMPUTING, IEEE,

21 December 2013 (2013-12-21), pages
606-612, XP032611106,

DOI: 10.1109/DASC.2013.134

[retrieved on 2014-06-25]

the whole document

PCT/US2018/015697
C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT
Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y US 2010/169720 Al (LUMPP THOMAS [DE] ET 1-21
AL) 1 July 2010 (2010-07-01)
abstract
paragraph [0002] - paragraph [0003]
paragraph [0006] - paragraph [0007]
paragraph [0078] - paragraph [0088]
A US 20117126099 Al (ANDERSON ERIC W B [US] 1-21
ET AL) 26 May 2011 (2011-05-26)
abstract
paragraph [0076] - paragraph [0084]
paragraph [0101]
A DENG LI ET AL: "vMerger: Server 1-21

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2018/015697
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 7386752 Bl 10-06-2008 US 7386752 Bl 10-06-2008
us 8015430 Bl 06-09-2011
US 2004049365 Al 11-03-2004 NONE
US 2010169720 Al 01-07-2010 US 2010169720 Al 01-07-2010
US 2012089862 Al 12-04-2012
US 2011126099 Al 26-05-2011 US 2011125894 Al 26-05-2011
US 2011125895 Al 26-05-2011
US 2011126047 Al 26-05-2011
US 2011126099 Al 26-05-2011
US 2011126197 Al 26-05-2011
US 2011126207 Al 26-05-2011
US 2011126275 Al 26-05-2011
US 2013254768 Al 26-09-2013
US 2014237550 Al 21-08-2014

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - claims
	Page 54 - claims
	Page 55 - claims
	Page 56 - claims
	Page 57 - claims
	Page 58 - claims
	Page 59 - drawings
	Page 60 - drawings
	Page 61 - drawings
	Page 62 - drawings
	Page 63 - drawings
	Page 64 - drawings
	Page 65 - drawings
	Page 66 - drawings
	Page 67 - drawings
	Page 68 - drawings
	Page 69 - drawings
	Page 70 - drawings
	Page 71 - drawings
	Page 72 - drawings
	Page 73 - drawings
	Page 74 - drawings
	Page 75 - drawings
	Page 76 - drawings
	Page 77 - wo-search-report
	Page 78 - wo-search-report
	Page 79 - wo-search-report

