wo 2011/002437 A1 I 1A A0KO0 00 OO 0O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date

/AIV .;-;\
¥
d”Ik

(10) International Publication Number

s
6 January 2011 (06.01.2011) PCT WO 2011/002437 Al
(51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
GO6F 12/06 (2006.01) GO6F 13/10 (2006.01) CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
GO6F 12/08 (2006.01) DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
. o HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
(21) International Application Number: KR, KZ. LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
PCT/US2009/049038 ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
(22) International Filing Date: NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
29 June 2009 (29.06.2009) SE, SG, SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT,
TZ,UA, UG, US,UZ, VC, VN, ZA, ZM, ZW.
(25) Filing Language: English

) (84) Designated States (unless otherwise indicated, for every
(26) Publication Language: English kind of regional protection available): ARIPO (BW, GH,
(71) Applicant (for all designated States except US): GM, KE, LS} MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
HEWLETT-PACKARD DEVELOPMENT COMPA- ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
NY, L.P. [US/US]; 11445 Compaq Center Drive W, M), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
Houston, TX 77070 (US). ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, SE, SL SK, TR),
(72) Inventors; and OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML,

(75) Inventors/Applicants (for US only): CHANG, Jichuan MR, NE, SN, TD, TG).

[CN/US]; 1501 Page Mill Road, Palo Alto, CA 94304

Declarations under Rule 4.17:

(US). PARANATHAN, Partha [IN/US]; 1501 Page Mill
Road, Palo Alto, CA 94304 (US). LIM, Kevin [US/US];
1501 Page Mill Road, Palo Alto, CA 94304 (US).

Agents: MCCULLOUGH, Ted et al.; Hewlett-Packard
Company, Intellectual Property Administration, P.O. Box
272400, Mail Stop 35, Fort Collins, CO 80527-2400

(US).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,

as to the identity of the inventor (Rule 4.17(1))

as to applicant's entitlement to apply for and be granted
a patent (Rule 4.17(i1))

Published:

74

with international search report (Art. 21(3))

31

(54) Title: MEMORY AGENT TO ACCESS MEMORY BLADE AS PART OF THE CACHE COHERENCY DOMAIN

FIG. 2 REMCTE MEMORY 200~
COMPUTE SLADE AGENT ON BOARD 4
5 219,
¢ Z
£ BACK PLANE
P COMMUNICATION
) CHANNEL (E.G., PHYSICAL OR
LOGICAL CONNECTION)
205
i ¥ 1207
| PROTOCOL AGENT H BT v
208 by
| ~.200 208 ‘205
MEMORY CONTROLLER | | o e oy
*——-—I———— - _{Dle] D!MM
] AobRESS | 20 20 ‘200
/ MAPPING | ’
205 e "2
a '[ACCELERATORS j
T Tas o 104
SOCKET WAGENT 205 COMPUTE BLADE MEMORY B ADE

103

Gz
COMPUTE BLADE

2085 208;

16 T oy —{ ot | iy |

3l
214A(;ENT ON NEMJRV CONTROLLER

(57) Abstract: A system and method is shown wherein a memory agent module to identify a memory command related to virtual
memory pages associated with a memory blade and maintain and optimize cache coherency for such pages. The system and
method also includes a memory module, operatively connected to the memory agent that includes a page cache used by the memo-
ry agent to manage the virtual memory page. Further, the system and method includes a transmission module to transmit the mem-
ory command to the memory blade, as well as data structures to facilitate the page migration between the compute blade's local
memory and remote memory on the memory blade.

WO 2011/002437 PCT/US2009/049038

MEMORY AGENT TO ACCESS MEMORY BLADE AS PART OF THE CACHE
COHERENCY DOMAIN

BACKGROUND
{601 Multi-core based computing may be used to solve a number of data

mtensive problems, Computers with muitiple cores can be implemented as compute
blades in a blade rack, a plurality of computers organized as one or more computing
clusters, or some other suitable organization. These computers with multiple cores

can be used within a data center, server farm, or some other suitable facility.

BRIEF DESCRIPTION OF THE DRAWINGS

{0802} Some embodiments of the mvention are described, by way of example,
with respect to the following figures:

{0083] F1G, | is a diagram of a sysiem, according lo an example embodiment,
iltustrating a compute blade architecture that utilizes a memory agent.

[0864) FIG. 2 is a diagram of a system, according to an example embodiment,
that utilizes a memory agent to manage the memory for a compute blade,

|3065] FIG, 3 is o diagram of memaory agent logie architecture, according to
an example embodiment, that is implemented as part of a memory agent.

{0086} FIG. 4 is a diagram ol a system, according to an example embodiment,
tHustrating the migration of a remote memory page.

{0607} FIG. 5 is a dizgram of a system, according to an example embodiment,
lustrating the migrstion of a local meniory page.

{0608] FIG. 6 1s a block diagram of a computer system, according to ah
example embodiment, in the form of the compute blade used to implement 2 memory
agent to process & memory command.

{08489] FIG. 7 is a block diagram of a computer system, according 10 an
example embodiment, in the form of the compute blade used 1o implement a memeory

agent to maintain cache coberency.

SUBSTITUTE SHEET (RULE 26)

WO 2011/002437 PCT/US2009/049038

{6018] FIG. 8 is a block diagram of a computer system, according to an
cxample embodiment, in the form of the compute blade used 1o store evicted dirty
data o 8 write back buffer.

[0611] FIG. % is a How chart lustrating a method, according to an example
embodiment, executed on a compute blade o process a memory command.

{012} FIG. 10 is a flow chart illustrating a method, according o an example
embodiment, executed on a compate blade to implement a memory agent to maintain
cache coberency.

{6013} FIG. 11 1s a flow chart tlustrating & method, according 1o an example
embodiment, executed on a compute blade to store data to a write back buffer.

[8014] FIG. 12 15 a flow chart illustrating a method, according toan example
embodiment; for initiating the boet up of a compute blade boot with memory agents.
1381 5] FIG. 13 15 a flowchart iflustrating the exccution of operation, according
to an example embodiment, {o conduct & capacity option selection.

{0016} FIG. 14 s a flow chart itlustrating a method. according to an example

erabodiment, for page cache access,

{0017} FIG. 13 15 a diagram of & vector, according to an example embodiment,
for storing the generation hits and veference counter values as part of a page cache.
{6018} FIG. 16 is a flow chart iHustrating a method, according to an example

embodiment, used to faciitate page migration.
[6619] FIG. 17 1s a diagram of a computer system, according to an example

cmbodinwent.

DETAILED DESCRIFTION

[0820] Mlustrated 15 a system and method for a conpute blade architecture
ptitizing a memory agent to faeilitate processor load/store based accsss to remote
memory, and to optintize performance by selective exeeuting tocal and remote virtual
memery page swaps. A compute blade, as referenced herelu, 18 @ computer system
with memory to read commands and data, and a processor 10 execute conymands

manipulating that data. Commands, as referenced herein, may be memory

[

SUBSTITUTE SHEET (RULE 26)

WO 2011/002437 PCT/US2009/049038

commands. In some exanmpie embodiments, the compute blade alse includes a
backing storage (e.g., the above referenced memory} to store the results. This backing
storage may be located native to the compute blade or remote to the compute blade in
amemory blade. Asused herein, a remote memory agent 15 a memory agent. A
virtual memory page or memory page is a fixed-length block of memory that is
contigeous in both physical memeory addressing and virtual memory addressing. This
memory may be Static Random Access Memory {SRAM), Dynamic Random Access
Memory (DRAM), or anotber Main Memory implementation {e.g., optically,
magnetically or flash based memory). A local virtnal memory page is a located on a
compute blade, whereas a remote memory pages s access across & network and may
reside on a memory biade.

[BO21} in some example embodiments, a swapping regime is implemented
wherein the accessing of a virtual memory page is tracked and swapping is based
upon this tracking. As used herein, swapping includes migration. Tracking may
include mamtain a reference counter value for each virtual memory page, where the
number of times the virtual memory page is gecessed across a generation is recorded.
In cases where a virtual memeory page has a larger reference coanter value associated
with it as compared to another viriual memory page, the virtual memory page with the
larger reference counter value is deemed 1o be a “hot page,” and will be less likely to
be used in the swapping of a remote for a local virtual memory page. Virtual memeory
pages with a relatively fow reference couster value as compared to apother virtual
MEMOry page are deemed to be “cold pages.”

{0022} FIG. 1 15 & diagram of an example system 100 dlustrating a compute
blade architecture that utilizes 2 memory agent. Shown ars a compute blade 101, a
compute blade 112, a compuie blade 103, and a memory blade 104 and memory blade

blade rack 106. The compute blades [01-103 are operatively connected to the
network 107 via a Jogical or physical connection. The network 107 may be an
internet, an intranet, a Wide Area Network {WAN), a Local Arca Network (LAN), or

some other network and suitable topology associated with the network. In some

SUBSTITUTE SHEET (RULE 26)

WO 2011/002437 PCT/US2009/049038

example embodiments, operatively contected o the network 107 15 a phuvality ot
devices including a cell phone 106, a Personal Digital Assistant (PDA)Y 107, a
computer system 108 and a television or monitor 109. In some example
embaodirents, the compuie blades 101-103 communicate with the plurality of devices
via the petwark 107,

16023} FI(. 2 is a diagram of an example system 200 that utilizes a memory
agent to manage memory for a compute blade. Shown are the compute blade 101, the
compute blade 102, and the compute blade 103, cach of which is operatively
connested to the memory blade 104 via a plurality of communication channels 203,
In some example embodiments, the comm unication channel 205 is a logical or
physical connection. Peripheral Component Interconnect Express (PCle) is an
example of the communication channels 205, Further, the commumication channels
205 may be routed through a backplane 204 to operatively connect the various
compute blades and memory blades. The compute blade 101 may include a remole
menory agent on the motherboard of the compute blade 101, This remote memory
agent on the motherboard of the compute blade 101 s referenced at 219, Further,
shown is a plurality of Central Processing Unit (CPU) dies 201 operatively connected
to one another via a plurality of poing-to-point connections 203, These point-to-point
connections 203 may include a coberent fabric such as.a QUICKPATH
INTERCONNKNECT™ (QPI}, Additionally, shown is g memory agent 202 that is
operatively connected to the plurality of CPU dies 201, and the connections may
soelude QPL The communication channel 205 operatively connects the memory
agent 202 to the mervory blads 104,

{0624 Additionally, shown is the compute blade 102 that includes a socket
with a memory agent, referenced at 213, A socket, as dsed hevein, s a CPU sacket.
The memory agent 217, includes as part of CPU socket, is referenced at 213.
(peratively connetted to the memory agent 217 is a CPU 218, Further, operatively
connected o both the memory agent 217 and the CPU 218 is a phurality of memory

oy
4
4

modules 208, Az with the memory agent 202, the memory agent 217 manages the

traffic between the compute blade 102 and the memory blade 104 viaa

SUBSTITUTE SHEET (RULE 26)

WO 2011/002437 PCT/US2009/049038

compication channel 205, Traffic includes memory commands such a read, and
write commands.

{25} Also shown is the compute blade 103 that Hlustrates a memory agent
2135 as part of a memory controller that resides as a part of the CPU 216.
Collectively, the memeory agent 215 and CPU 216 are referenced at 214, As used
heretn, a memory controller is 3 digital cirowit whick manages the flow of data going
to.and from a memory module. The CPU 216 is operatively connected to menary
modufes 208, Like the memory agents 202 and 217, the memaory agent 215 manages
the traffic between the compute blade 103 and the memory blade 104,

{0926] Ini some example embodiments, a memory agent is inplemented either
as a separate chip on the compute blade board {see e.g., memory agent 202}, or as
zero-CPU chip sitting on a processor socket {see ¢.g., memory agent 217), or as part
of the on-chip memory coptroller (see e.g., memory agent 215). The memory agent
acts as the home hode for data allocated on the memory blade(sy 104 or 105, and
seceives all cache coherency request for this data. The memory agent initiates and
handles cache coherency protocols for request to this data, so ne coberency supported
is needed on the memory blade(s) 104 or 165, When a load/store s initiated to access
the memory blade(s) 104 or 103, as indicated by its coherency request, the memory
agent franslates the request into a memory blade data access command {e.g.. a
memory command}, which is transler as a packet, for examnple. over the PCle {abric.
A cache coherency request. as used herein, is a request used iy managing confliots
between caches used by one or more CPUs, and used in maintaiming consistency
between these caches and memory. In some example embodiments, the memory
agent can have maltiple PCle lanes connecting to multiple memory blades to ensure
maximum memory capacity. One memory blade can also be connected o multiple
compute blades for capacity sharing, For example, memory blade 104 may be
operative connected to memaory blade 103,

{06271 The memary blade 104 is also shown that includes a number of
modules. These modules may be hardware, software, of firmware. Additionally,

these modudes can include a protecol ggent 206, memory controfler 2140, address

L]

SUBSTITUTE SHEET (RULE 26)

WO 2011/002437 PCT/US2009/049038

mapping module 211, and accelerator module 212, The protoced agent nmanages
memory commands received from the compute blades 101-103. For example, the
protocol agent 201 communicates with the compule blades {e.g., compute blades 101
and 102). This comnumication may be via some type of protocol ingluding PCle,
QP HYPERTRANSPORT™, or some other suitable protocol. Fusther, this
communication includes the packing/unpacking of vequests, cormmands and responses
using the aforementioned protocels. Request that cannot be satisfied divectly by the
memory blade are forwarded to other memory blades or compute blades. A request
forwarded to other memory blades is referenced herein as a memory-side request. A
memory controller 210 is iHustrated that handles read or write requests, In some
example embodiments, these read and write requests are data pairs that include a
bladelD), and a compute blade maching address (g.g., the SMA). An address mapping
module 211 is mplemented to check whether the read and write requests have the
appropriale permissions, Where the appropriate permission exists, a requested access
is permitied and a Remote Memory Address (RMMA) 18 retrieved by the address
mapping module 211, The RMMA is forwarded by the memory controller 210 to a
corrssponding repeater buffer (e.g., buffer) 207 and 209 via a memory channel, The
bullers 207 or 209 respond to this request through performing the necessary encoding
and decoding operation for the memory modules 208 upon which the targel data is
fcated. These memory modales 208 may be Dual In-Line Menwery Modules
{DIMMS). Residing on the memaory module 208 may be a virlual memory page. An
accelerator module 212 is lustrated that can be implemented either within the
memory controtler 21, or a repeater buflers 207 and 209 to do special purpose
computation on the data. This accelerator can be a CPU, special purpose processor,
Application-Specific Integrated Circutt {ASICY, or a Field-Prograrimable Gate Array
{(FPGA). Special parpose computation inchides the execution of hashing algorithms
{e.g., the Secure Hashing Algorithm (SHA)), compression/decompression algorithms,
encryption/decryption algorithms {e.g., the Advanced Encryption Standard (AES)), or
trror Correction Coding (ECCYchip kill coding. The buffers 207 or 209 may be

implemented to hide the density/timing/control details of & memory module from the

SUBSTITUTE SHEET (RULE 26)

WO 2011/002437 PCT/US2009/049038

central memory consrelier. Further, a bulfer may be used to independently operate
other bufters in the case of the fatture of another buffer.

{1628] FIG. 3 1s a diagram of example memory ageat logic architecture
resides part of the memory agent 202 or 217. This memory agent logic architecture

may be implemented W software, firmware, or hardware, Showns a cache coberence

protocol engine 301 that processes memory commands received from the memory
blade 104. This cache coherence protocol engine 301 is operatively connected to a

page cache 302. Residing as a part of this page cache 30245 a gmupin gof tagand
presence bitg 303, The grouping of tagging and presence bits 303 may be organized
to some type of suitable data structure including an array/vector, hash table, or other
suitable dota structure. Further, residing on the page cache 302 is a plurality of
generation bits and reference counter bits that aggregate the generation bits. The
generation bits and reference counter bits may be stored into some type of ailtable
data structure including aw array/vector or hash table. A generation bit fracks a
specific instance during which a virtual meesvory page 15 accessed. A generation 1s an
example of an instance. The reference counter includes the number of accesses for
data in a page stored in the page cache. Also stored on the page cache 302 is DRAM
refresh logic and page cache BECC, collectively referenced at 304, The DRAM relresh
fogie includes circuit and instructions executed 1o refresh DRAM.

{06291 In some example embodiments, the cache coherent protocel engine
301 1s implemented to handle incoming coherence requests. The cacbe coherent
protocol engine 301 initiates and bandles coherency transactions, and if no local
coples in memory exists on any processor saekets, the cache coherent protocol engine
301 may source the data from either its page cache (.., that of the compute blades
101, 102, or 103) or the memory blade(s) 104 or 105, The coherence messages may
be only sent to processor sockets. A write back request may either update its page
cache or triggers a write command o the memory blades 104 or 105, A request 1o the
memory blade(s) 104 or 103 is packetized via PCle or other data format suitable for
the connection between the compute blade and the memory blade. and the response

from the memory blade(s) 104 or 103 also needs to be handled by the cache coherent

SUBSTITUTE SHEET (RULE 26)

WO 2011/002437 PCT/US2009/049038

protocol engine 301, Data may be stored info the page cache to speedup later
ACCRESES,

[80346} In some example embodiments, 2 memory agent implements the page
cache tag array 303. The page cache tag array 303 may be implemented as part of the
memory module 208 implemented #s part of the memory agents 202, 215, or 217
The compute blade(s) 101-103 may have multiple agent chips or multiple agent
sockets to forther support more memory blade connections.

{0031] FIG. 4 is a diagran of an example system 400 illustrating the
migration of a remote memory page. Hlustrated s the compute blade 102 operatively
coupled to the memory blade 104 via a communication chanoel 205, The
communication channel 205 may be a logical or physical connection. Farther, in
some example embodiments, communication channel 205 passes through the
backplane 204, The wemory blade 104 transmits a virtual memory page 401 acrosy
the communication channel 205 to the compute blade 102 as part of the nugration of
the virtual memory page 401 relerenced herein at 402, The virtual memory page 402
may be a hot page. The virtual memory page 401 is used to overwrite a victim page
selected by the compute blade 102, Here, for example, virtual memory page 403, a
lseal memaory page, has been selected as 2 victim page. ln some example
embodiments, a temporary page, stch as virtual memory page 404 is wse (o store the
data of the victim page {e.g., virtual memory page 403).

(06321 FIG. 5 isa diagram of example system 560 itlustrating the migration of
a local memory page. Shown is the compute blade 102 that is operatively coupled to
the memory blade 104 via the communivation channel 203, Ulustrated is the
migration of the local virtual memory page 403 represented at 501. This focal virtual
memory page 403 may be a cold page. The virtual memery page 210 is transmitted
agross the communication channel 203 and received by the memory blade 104, This
local virtual memory page 403 is used to over-write, for example, the previously
remotely located virtual memory page 401, In some other example embodiments,

other remotely focated memory pages may be sclected 10 beoverwritien,

8

SUBSTITUTE SHEET (RULE 26)

WO 2011/002437 PCT/US2009/049038

{0433 FIG. 6 15 a block diagram of an example compater systent in the form
of the compute blade 102 used to implement a memory agent to process @ menoery
command, These various blocks may be implemented in hardware, firmware, or
software as part of the compute blade 101, compute blade 102, or compute blade 103.
A CPU 601 is shown operatively connected to memory module 602, Operatively
connected includes a togical or physical connection. Hlustrated i @ menory agent
module 603 (c.g, @ memory agent) to idestify a memory command refated to a virtaal
memory page associated with a memory blade. This memory agent module 603 is
operatively connecled to the CPU 601, Additionally shown, is a memory module 604,
operatively connected 1o the memory agent module 603, which includes a page cache
used by the mémory agent 1o manage the viriual mentory page. The memory modale
604 may be DIMM or DRAM chips. A transmussion module 605 1s shown that is
operatively connected o the memory agent module 603, the rapsmission madule B053
{o transmoit the memory contmand to the shemory blade. [n some example
embodiments, the memory comimand is transmitted if the command cannot be
satistied by data stored in the page cache. The memory agent module 603 may
inciude at least one of the memory agent on a motherboard of the computer systeny,
the memory agent pepulating a secket on the computer system, or the memory agent
as part of a memory controller on the computer system. Further, the memory agent
module 603 may include a cache coherence protocol engine, as well as logics, to filter
oyt unnecessary access to the memory blade, and to update a generation bitand a
reference counter value included in the page cache used by the memory agent. As
used hergin, unnecessary access is a memory command that is redundant relative to a
prior or future memory command within a given time period. Additionally,
unRecessary access, as used herein, means a memory command that seeks to access
local memory such that & memaory command need not be sent to a memory blade.
tdentify may include may include checking whether the farget data address of the
incoming request falls in the address range covered by memory blade. 1f so, the
memory agent may perform a transfation of a cache coherency request into the

memory command. The memory command may include at feast one of & read

9

SUBSTITUTE SHEET (RULE 26)

WO 2011/002437 PCT/US2009/049038

command, 3 write command, or a swap command, The swap command, as used
herein, facilitates the execution of a page migration as cullined in FI1Gs. 4, 3, and 16
The page cache may include a prefeteh buffer comprising the virtual memeory page.
[0034] FIG. 7 is a block diagram of an example computer system in the form
of the compute blade 102 used fo implement a memory agent to maintan cache
coherency. These various blocks may be implemented in hardware, firmware, or
software as part of the compute blade 191, compute blade 102, or compute blade 103,
A CPU 701 is shown operatively conunected to memory modute 702, Operatively
connected includes a logical or physical connection. Hlustrated is @ memory agent
modufe 703 that is operatively connected to the CPU 701, The memory agent module
703 is used to receive a coherency vequest that identifies data residing on a memory
blade to be accessed. The memory agent module 703 translates the coberency request
into a memory command formatted based upon a protocol utilized by the memory
blade. Further, the memory agent module 703 transmits the memory command to the
memory blade {e.g., the memory blade 105) 1o access the data residing on the memory
blade. Additionally, the memory agent modude 703 1s used to update a reference
counter value that identifies a total number of times a virtual memory page, which
includes the data, is accessed. This updating may also be performed by the cache
cuherence protocel enging 301 that resides on or is operatively connected to the
memory agent module 703, Mereover, the memory agent meodule 703 s used to set a
generation bit that identifies an stance during which a virtual memory page, that
includes the data. is accessed. This sciting of the generation bit may also be
performed by the cache coherence protocol engine 301 that resides on the memory
agent module 703, In some examiple embodiments, the instance includes at least one
of a number of CPU cycles, a memeory conmmand, or a clock time. The memory agent
module 703 is used to respond to the coherency request through accessing local
memory in Hew of accessing the memory blade. The memory agent module 703 may
also be use to clear the generation bit after an expivation of a preset number of
instances, Additionally, the memory agent modude 703 may be used to identify a

viriual memory page that includes the data based upon a reference counter value

10

SUBSTITUTE SHEET (RULE 26)

WO 2011/002437 PCT/US2009/049038

assoctated with the virtual memory page, the identifying based upon a comparison of
the reference counter value to a further reference counter value associated with a
further virtual memory page. A swapping module 704 may reside as part of the
memory agent module, or be operatively conneeted to 11, to swap or facilitate the
migration of the virtual memory page with the further memory page based wpon the
comparison of the reference counter value to the further reference counter vahie
associated with the further virfual memory page. To some example embodiments,
memory command includes packetizing the memory command using a FCle protocol.
6035} FIG. § is a block diagram of an example computer svstem in the form
of the compute blade 102 used to store data (e.g., evieted dirty data) to a write back
buffer, These various blocks may be implemented in hardware, firmware, or Sofiware
as part of the compute blade 101, compate blade 102, or compute blade 103, A CPU
301 18 shown operatively connected to memory moduale 802, Operatively connected
includes a logical or physical connection. Nlustrated is a memory agent modale 803
that is operatively connected to the CPU 861 to identify a virtual memory page, the
vivteal memory page identitied based upon, in part, a reference counter value., The
memory agent module 803 is also used to get data from the virtual memory page, the
virtual memory page less frequently accessed than a further virtual memory page
based upon-a comparivon of the reference counter value to a further reference counter
value associated with the further vivtual memory page. The comparison may be
performed by the cache coherence protocol enging 301 that resides on or is
operatively connected to the memory agent medule 883, The memory agent module
803 may also be nsed to store the data into a write-back buffer, Tn some example
embodiments, the reference counter value is stored in a page cache managed by the
memory agent miodule 803. This page cache may be the page cache 302, Some
example embodiment may include the write-back bufter is stored infe a page cache
such as page cache 302 that is managed by the memory agent module 803, The
memory agent module 803 may also be used to write the data stored in the write-back
buffer 1o a memory module managed by a memory blade such as memory blade 104,

The memory module may be the memory module 208, In some example

1

SUBSTITUTE SHEET (RULE 26)

WO 2011/002437 PCT/US2009/049038

embodiments, at least ong of the virtual memory page or the further virtual memory
page are stored to a memory blade such as memory blade 104,

{0034) FIG. 9 is a flow chart iltustrating an example method 900 executed on
a compute blade to process a memory command, The compute blade may include the
compute blade 11H | the compute blade 102, or the compute blade 103, Ap operation
901 15 executed by the memory agent module 603 to identiiy a memory command
refated to a virtual memory page asscciated with a memory hlade. For other request
received by the memory agent, for example, invalidating a plece of cached data, that
shoukd not involve the memory blade, the memory agent can directly respond on
behalf of the memory blade to maintain cache coherency, Operation 9072 is exceuted
by the memory agent module 603 to manage the virtual memory page included in the
page cache. Operation 903 is executed by the soemory agent module 603 to transmi
the memory comimand to the memiory blade 105, Operation 904 is executed by the
memory agent medule 603 0 update a generation bit and a reference counter value
included in the page cache vsed by the memory agenl module 603, In some example
embodiments, identify may include checking whether the target data address of the
incoming request falls in the address range covered by memory blade. 1fso, the
memory agest may perform a translation ol a cache coherency request into the
memory command. In some example embodiments, the memory command includes
at least ong of a read command, a write command, or & swap command, In some
example embodiments, the page cache includes a prefelch buffer comprising the
virtual memory page.

{8037} F1G. 10 is a Bow chart illastrating an example methed 1000 executed
on a compute blade to implement a memory agent to maintain cache coberency. The
compute blade may chide the compute blade {91, the compute blade 102, or the
compute blade 103. Operation 1001 is executed by the memory agent modsle 703 to
receive a coherency request that identifies data residing on a memory blade to be
aceessed. Operation 1002 s execntad by the memory agent module 703 fo franslate
the coherengy reguest, using the memory agent, into a memory command formatied

hased upon a protocol utilized by the memory Blade. Operatien 1003 is executed by

12

SUBSTITUTE SHEET (RULE 26)

WO 2011/002437 PCT/US2009/049038

the memory agent modile 703 to transmit the memory command to the memory blade
to access the data residing on the memory blade. Operation 1004 is executed by the
memory agent module 703 to update 2 reference counter value that identities a total
number of times a virtwal memory page, which includes the data, is aceessed,
Operation 1003 is executed by the memory agent module 703 to seta generation bit,
the generation bit identifving an instance during which a virtual memory page, that
includes the daig, is accessed. In some exanple embodiments, the instance includes
at feast one of a number of CPU cycles, a memory command, or & clock time,
Operation 1006 is executed by the memory management madule 763 to respond to the
coherency request through accessing local memory in liew of accessivg the memory
blade. Operation 1007 is executed by the memory management module 703 to clear
the generation bit afler an éxpivation of & preset number of instances. Operation T8
1% executed by the memory agent module 703 to identify a virtual memory page that
includes the data based upon a relerence counter value associated with the virtual
memory page, the wdentifying based npon a comparison of the reference counter value
to 3 further reference counter value asseciated with a further virtual memory page.
Operation 1009 is executed by the memory agent module 703 1o swap the virtual
memory page with the further maamory page hased upon the comparison of the
reference eounter value to the further reference connter valug associated with the
fusther virtual memory page (see e.g., FIGs. 4, 5, and 16 hereiny. In some example
embodiments, the transmitting of the memory command includes packetizing the
memory command using a PCle protocel.

0038} FIG. 11 i3 a flow chart ifhistrating an example methed 1) executed
on a compute blade to store data to a write back bufter. The compute blade may
inciude the compute blade 101, the compute blade 102, or the compute blade 103,
Operation 1101 g exeruted by the memory agent module B3 to identify a virtual
memaory page, the vistual memory page identified based apon, in part, a reference
counter vadue, Operation 1102 s esecuted by the memory agent module 803 to get
data from the virtual memory page, the virtual memory page less frequently accessed

than a fusther virtual memory page based upon a comparison of the reference coanter

SUBSTITUTE SHEET (RULE 26)

WO 2011/002437 PCT/US2009/049038

value to a further reference counter value associated with the turthet vivtual memory
page. Operation 1103 is executed by the memory agent moduole 803 1o store the data
inter a write-back buffer using the memory agent. In some example embodinents, the
reference counter value is stored in a page cache managed by the memory agent.
Further, in some example ernbodinents, the write-back butfer is stored in a page
cache managed by the memory agent. Operation | 104 is exceuted by the memory
agent mandule $03 to write the write-back butter to a memory module managed by a
memory blade. The memory module may include the memory module 208, In some
example embodiments, at least onpe of the virtual memory page or the further virtual
memory page are stored to a memory blade such as memory blade 104,

[B839] FIG. 12 i5 a flow chart ifhustrating an example method 1200 for
initiating the boot up of a compate blade boot with memory agents. Hustrated are
vartous operations 1201 through 1210 that are executed on the compute blade 101,
An operation 1201 is executed to the conduct a system boot of the compute blade 101,
An operation 1202 is executed to get user options regarding memory blade capacity
allocation. Get, as reforenced hereln, includes identifving, retrieving, or some other
suitable operation. These user options may be dictated by & Service Level Agreement
{SLA) or boot options. An operation 1203 s executed (o get the number of
processors sockets and memory sizes associated with the compute blade upon which
the method 120(is executed (e.g.. the compute blade {3). In some example
embodiments, the execution of operation 1203 inchades the retrieval of processor
speed, bus speed, or other performance refated information. Operation 1204 is
executed fo get the number of remote memory agents and active memory blade
comnections assoctated with each rentote memory agents. An active memory blade
connection may include the communication channel 205, an execution thread, or
spme other suitable connection. An operation 1203 is executed to register active
memory blade connections with a corresponding memory blade (o retrieve the free
space size available on each memory blade. An operation 1206 is executed to
conduct a capacity option selection as dictated by for example a service level

agreement. This capacity option selection may include the memory capacity

SUBSTITUTE SHEET (RULE 26)

WO 2011/002437 PCT/US2009/049038

associated with the compute biade or the memory blade. An operation 1207 is
executed to requests available speed free space from all available memory blades. An
available memory blade s one that 15 operatively connected to the compute blade 101,
An operation 1208 is executed to partition the physical address space between the
processor sockets and remote agents. This partitioning may be based upon copying a
SMA to a RMMA, and assigning an offset value to the RMMA. Farthermore, the
memory agent records the address range covered by each active memory blade, which
will be used to identify request assoctated with virtual pages stored or covered by
memery blades. An operation 1209 is execoted in cases where only one processor
sockets exists on a compute blade. In such an example case, a bypass is implemented
such that the coherency transaction is bypassed for the data request. A termination
operation 1210 is execuled to resine the usual system boot.

{6046} fn sonie exarmple embodiments, the SMA is used by the memory blade
104 to map to the RMMA. Specifically, a map register i the address mapping
module 211 1s indexed using a blade D that uniquely identifies a memory blade,
where ¢ach entry in the map register represents the number of super pages managed
by the memory blade identified using the bladelDd. Further, the base entry and a super
page 1D, parsed from the SMA, are used 1o index into an RMMA map. Each entry in
the RMMA niap that also resides on the address mapping module 211 represents a
super page and the permissions associated with this super page. A super page isa
virtual roemory page of, for example, 16KB or larger. A sub page s a virtual memory
page that is, for example, smaller than 16KB.

j6041] FIG. 13 is & Bowcehart illustrating the éxecution of an example
operation 1206. The operation 1301 is execnted to assign a vahie to a “heed free”
variable based upon linding the quotient of the requested remote memory capacity,
divided by the mumber of memory blades, An operation 1302 is executed to assign a
value to a “minimum free” variable based upon the minimum free space avatlable on
all merory blades to which the compute blade 101 is operatively connected. A
decisional operation 1303 is shown that determines whether the “minimam free”

variable is less than (<) the "need free” variable. In cases where decisional operation

SUBSTITUTE SHEET (RULE 26)

WO 2011/002437 PCT/US2009/049038

1303 evaluates 1o “true™ an operation 1303 is executed. 1w cases where decisional
operation 1303 evaluates to “false™ an operation 1304 18 executed. The operation
1304, when executed, allocates capacity from each memory blade such that the
minimum amount of free memory is allocated, this allocation defined by the
“minimum free” variahle. Qperation 1303, when executed, alfocates memary
capacity from sach memory blade such that capacity is initially allocated from that
memory blade having the most amount of free memory. In some example
embodiments, another suitable method s implemented, in heu of operation 1305, to
altocate free memory. This suitable method may inclade a memory allocation regime
whereby memory is allocated equalty from each memory blade to which the compute
biade 101 is operatively connected.

[0842] FIG. 14 is & flow chart iHustrating an example method 1400 for page
cache access. This method 140 may be exetuied by a compute blade, such as the
compute blade 101, Operation 1401 is executed to process an inconing memory
requests. An incoming memory request may be 2 memory command such as a read or
write command. A decisional operation 1402 is executed to deternune whether this
incoming request is for a virtaal memory page that inclades a tag de}nmin‘g whether
the requested virtual memory page is & “hot page” or a. “cold page.” In example cases
where the decisional operation 1401 evaluates to “false,” an operation 1403 ix
gxecuted. In cases where decisional operation 1402 evaluates to “tree,” a decisional
operation 1404 is executed. Operation 1403, when executed, selects a victim page,
puts the dirty blocks of the victim page into the write back buffer, installs a new page
cache entry, and clears the prasence bits, A victim page may be selected based upon a
statistical value generated from the number of times the victint page is selected in one
of more generations, Additionally, the dirty block ot the victint page may be placed
into the main memory of the compute blade i hew of the write back buffer.
Diecisional operation 1404 determines whether a particular block of memory is
present. In cases where decisional operation 1404 evaluates to “false,” operation

1403 35 executed. In cases where decisioual operation 1404 evaluates 10 “true,”

eperation 1406 is executed, Operation 1403, when excouted, reads the reguested

16

SUBSTITUTE SHEET (RULE 26)

WO 2011/002437 PCT/US2009/049038

biock from the memory blade 104, In cases where operation 1403 successfully
exceutes the operation 1407 1s executed. Operation 1406, when executed, calculates
the DRAM address, and reads the block from the DRAM managed by the memory
agent. Operation 1407 js executed 1o install data into a page cache, and to set the
present bit. The present bit denotes the corresponding block within the viral
memory page as being installed in the page cache. Operation 1408 is executed 1o
update the generation bit value, the reference counter and present bit. The execution
of eperation 1407 may be faciitated by the memory agent 217 1o reflect the swapping
of the remote and local memory pages. A termination operation {409 is executed to
resume the usual system hoot associated with the memory blade 101,

{6643 In some example embodiments, data is sourced from the page cache of
the compute blade 101 and bence can avoid sending a request to the memory blade
1{4. The page cache maintains cache fag arrays it SRAM for fast access, and stores
the data array DRAM). The organization of the fag array may be similar 1o the
processor cache except that each cache entry corresponds to a 4K virtual memory
page, instead of a typieal 64-byte cache block. A block presence vector may be used
to record what blocks are currently present and valid in the page cache. Accesses to
non-present blocks frigger memory blade reads, and page cache eviction triggers
mepoey blade writes for divty blocks.

{44} Some sxampie embodiments include cache block prefetching that can
bie integrated into the page cache. This integration can be performed either with a
small prefetch buffer tagged at cache block granularity, or directly nto the page
cache, Similar to processor cache, various prefetching policies can be used to
partially or completely hide remote memory access latency, i'a cache block is fetched
from the memory blade before it is requested. One simple policy is next-N block
prefetch, which prefetches the next-N blocks whenever there is a page cache miss. To
[actiitate the selection of a victim page, and to promote page migration (seg e.g.,

FI1Gs. 4 and 5}, the page cache maintaing per-page access statistics. These statics may
relate to {1} access recency information for generational replacement, and (2} access

frequency information for page promotion. Such statistical information may be

,._
iy

SUBSTITUTE SHEET (RULE 26)

WO 2011/002437 PCT/US2009/049038

grouped into separate arrays and kept i the page cache SRAM for fast access.

{6045] FIG. 15 i3 a diagram of an example vector storing the generation bits
and reference counter values as part of a page cache. Shown, for example, are a
gencration one row 15011, a generation two row 1502, and a generation three row
1503, A generation row 1 arow ina vector that denoting a virtual memory page has
been accessed i the corresponding generation. A generation may be a number of
CPU cycles, a number of memory commands, a nomber of clock times, or some other
suitable period of fime or ocourrence of an event. Bach column 1o the vector
represents a particalar virtual memory page. In some example embodiments, a
generation row {€.2., generation one vow 1501} is cleared as denoted at 1507, A row
may be cleared based apon a present number of generations as deneted 1 an SLA.
As reflected in generation row two 1502 each ime a virtoal memory page in accessed
a bit is flipped to denote the accessing of the virtual niemory page. [h generation row
two 1502 two virtsal memory pages have been accessed. Generation row three 1303
reflects the reference counter value that aggregates the number of times the virtual
memory rage has been accessed across a certain number of generations. This
reference counter valus may be used to determine a “hut page.” a “cold page,” or a
victim page. A particular virfual memory page that has not been accessed within &
predetermined nunther of generations {e.g., two generations) may he referred to as a
“eold page™ and also may be a victim page. A “cold page™ may bodentified as 8
victim page and later swapped (see e.g., FIGs. 4 and 5). Potential victim pages are
referenced at 1504-1306. Also shown are “hot pages” that have been recently
accessed and may not be idensified for swapping. “Hot pages” are referenced at
1508-1510 and are denoted n the vector by the bit value 1. Virtual memory pages
that are “hot pages” may be tagged as such in the memory cache 305, A tag may bea
bit vidue or collection of bits values identifving a virtual memory page as recently
accessed as detined by the generation.

[6046] FI1G. 16 1sa flow chart ilustrating an example method 1600 used to
facilitate page migration. Shown is a process 1601 that processes incoming requests,

where these incoming requests are a memory command related to migrating hot

18

SUBSTITUTE SHEET (RULE 26)

WO 2011/002437 PCT/US2009/049038

remote pages to local memory, Operation 1602 is executed fo select a virtial memory
page is that tagged as a “hot page.”™ A decisional operation 1603 1s tHustrated that
determines whether the number of hot pages is greater than {i. In cases wherg
decisional operation 1603 evaluates to “false.” an operation 1604 s executed. In
cases where decisioual operation 1603 evaluates to “true,” a decistonal operation 1603
is executed. Operation 1604 is executed to seleet “hot pages” from another randomly
selected cache sat. Decistonal operation 1605 determings whether the namber of “hot
pages™ 1§ greater thaw one. In example cases where decisional operation 1605
evaluates to “false.” operation 1606 1s executed. In cases where decisional operation
1605 evaluaies to “true,” an operation 1607 15 executed, Operation 1606, when
exccufed, reads non-present blocks mto the virtual memory page from the memory
biade. Operation 1607, when ecxecnted, selects a “hot page™ with the smallest mumber
of non-present cache blocks. An operation 1608 is executed apon the completion of
the operation 1606 and 1607. The operatiop 1608, when executed, copies the “cold
page”™ info the page cache’s write back buffer. Au operation 1609 is executed to copy
the “hot page™ imte where the “eold page™ was previously stored, Operation 161015
executed update page table of the compute blade. Operation 1611 is executed to, in
hatch, invalidate TLLB entries, and flush the Level 2 {1.2) cache to ensure correctness,
Oiperation 1612 is executed 1o restme normal execation of the compute blade.

{0847] In some example embodiment, the page cache, which not only stores
the recently used virtual memory pages and blocks, also provides recency information
{e.g., access generation bits) and page-level access frequency information for
promotion page scleetion. Further, the page cache also provides the wnite back
buffers for temporarily storing demoted local pages. In some example cases, when
page migration is initiated {see e.g., FIG; 5) it can request for a number of hot pages
frem the page cache. Such hot pages can be selected from a hot page veetor, The hot
page vector includes the highest bits of the refevence counters. Both generation bits
and reference counters may be periodically cleared sach that: the older gencration bits
are cleared and used to record recent generation access information; the Jower-bits of

the reference counters are cleared and higher bits are rotated into lower bits to keep

19

SUBSTITUTE SHEET (RULE 26)

WO 2011/002437 PCT/US2009/049038

frack of history information. Tn some embodiments, the generation hifs are used for
victim page selection. The selection logic chowses the victim pages within a cache set
and selects the first page that has pot beew accessed i the more recent generation,
This selection may be accomplished through ANDY ing these bits. A fust-zero logic
may be used 1o seheet such a page.

{0848] in some example embodiments, the method 1609 is executed to select
cold pages from the local memory to be replaced using reference history information
{e.g., available s page table access bits as Hlostrated in FIG. 153, The method 1600 i3
exceuted to wdentify “hot pages,” “cold pages,” and swap each pair of “cold” and
“hot” pages. The swapping inclades the swapping of both page content aud address:
mappingfre-mapping. The processor Translation Lookaside Buffer {TLB) is refreshed
{e.z., a TLRB shootdown 15 implemented), polentially o batch, to reflect such address
mapping changes. The non~-present blocks in each “hot page™ are read from the
memory blade before the swapping and the “cold page” can also be temporarily stored
in page cache and graduoally written-back to the memory blade. In some example
embodiments, the memory blade may restrict a page being migrated into a compute
biade’s local memory if this page is read-only shared among multiple compute blades
at this time. Read only information and the nurnber of compute blades accessing the
page is reconded in the page cache, and used to avoid the selection of such hot-pages
for migration.

[oB491 G, 17 is a diagram of an example computer systern 1708, Shown 18 a
CPU 1781, The processor die 201 may be a CPU 1701, In some example
embodiments, a plurality of CPU may be implemented on the computer system 1700
i the form of a plurality of core (e.g., 2 multi-core computer system}, of in some
other suitable configuration, Some example CPUs inclade the x86 series CPUL
Operatively connected (o the CPU 1701 is SRAM 1792, Operatively connected
includes a physical or logical connection such as, for example, a point to point
connection, an optical connection, a bus connection or some other suitable
connection. A North Bridge 1704 15 shown, also known as a Memory Controller Hub

{MCH), or an Integrated Memory Controller (IMC), that handles communication

28

SUBSTITUTE SHEET (RULE 26)

WO 2011/002437 PCT/US2009/049038

between the UPU and PCle, DRAM, and the South Bridge. A PCle port 1703 is
shown that provides a computer expansion port for connection to graphics cards and
assoclated Graphical Processing Units (GPUS). An cthernet port 17035 1s shown that i,
operatively connected to the North Bridge 1704, A Digital Visual Interface (DV1)
port 1707 is shown that is operatively consected to the North Bridge 1704
Additionaily, an analog Video Graphics Arrav (VOA) port 1706 is shown that is
operatively connected to the North Bridge 1704, Conmecting the North Bridge 1704
and the South Bridge 1711 is a point to point livk 1709, In some example
embodiments, the point te point fink 1709 s replaced with oue of the above
referenced physical or logical connections. A South Bridge 1711, also kisown as an
/0 Coniroller Hub (ICH) or a Platform Controller Hub (PUH), s also iflustrated.
Operatively connected to the South Bridge 1711 1s a High Definstion (HD} audio port
1708, boot RAM port 1712, PCI port 1718, Universal Serial Bus (USB) port 1713, a
port for a Serial Advanced Technology Attachment (SATA) 1714, and a port fora
Low Pin Count (LCP) bus 1715, Operatively connected to the South Bridge 1711 isa
Super Input/Output (HO) controdler 1716 10 provide an interface for low-bandwidth
devices (e.g., kevboard, mouse, serial ports, parallel ports, disk controllers).
Operatively connected 1o the Super VO controlier 1716 isa parallel port 1717, and a
serial port 1718,

{0858 The SATA port 1714 may Interface with a persistent storage mediom
{e.g.. an optical storage devices, or magnetic storage device) that includes a machine-
readable mediom on which is stored one or more sets of instructions and data
structures {e.g., software} embodying or utilized by any one or more of the
methodotogies or fanctions tustrated hereln. The software may also reside,
completely or at least partially, within the SRAM 1702 and/or within the CPU 1701
duving execution thereof by the computer system 1700, The mstructions may further
b transmitted or received over the 10/100/1000 ethernet port 1703, USB port 1713 oy
some other suitable port iltustrated herein,

19851) In some example entbodiments, 3 removable physical storage medium

is shown to be a single mediom, and the term "machine-readable medivm” should be

SUBSTITUTE SHEET (RULE 26)

WO 2011/002437 PCT/US2009/049038

taken to inclade a single medivm or mailtiple mediom {e.g., a centralized or
distributed database, and/or associated caches and servers) that store the one or more
sets of instructions. The term "machine-readable medium” shall also be taken to
include any medivm that is capable of storing, encoding or carrying a set of
mstructions for exccution by the maching and that cause the machive to perform any
of the one or more of the methodologies iltustrated herein. The term "machine-
readable medinm™ shall accordingly be 1aken to include, but not be limited to, solid-
state memories, op'tical and magnetic medium, and carvier wave signals,

{6052] DPrata and instructions (of the software) are sored in rospective storage
devices, which are implernenied as one or more computer-readable or
computer-usable storage media or mediums, The storage media inclade different
torms of memory including semiconductor memory devices such as DRAM, or
SRAM, Erasable and Programimable Read-Only Memornies (EPROMs), Electrically
Erasable and Programmable Read-Only Memories (EEPROMs) and flash memories;
magnetic disks such as fixed, floppy and removable disks; other magnetic media
including tape; and optical media such as Compact Disks {TDs) or Digital Versatile
Bisks (DVDs). Note that the instructions of the software discussed above can be
provided on one computer-readable or computer-usable storage medium, or
alternatively, can be provided on mulbiple computer-readable or computer-usable
storage media distributed in a large system having possibly plural nodes. Such
computer-readable or computer-usable storage medium or media is {are) considered to
be part of an article {or article of manufacture). An arlicle or article of manufacture
can refer to any manutactured single component or multiple components.,

[B053] In the foregoing description, numerous details are set forth to provide an
anderstanding of the present invention. However, it will be understood by those
skitled in the art that the present invention may be practiced without these detanls.
While the invention has been disclosed with respect to a limited number of
embodiments, those skilled in the art will appreciate sumerous modifications and
variations thesefrom. 1 is intended that the appended claims cover such modifications

and variations as fall within the “iruc” spirit and scope of the invention,

fam s
Tt

SUBSTITUTE SHEET (RULE 26)

WO 2011/002437 PCT/US2009/049038

What is claimed is:

. A computer system comprising: _

a memory agent module o identify a memory command related 16 a virtual
memory page associated with a memory blade;

a mentory module, operatively connected to the memory agent, that includes a
page cache used by the memory agent fo manage the virtual memory page; and

a transnmission module to transmit the memory commiand 1o the memory blade.

2. The computer system of claim 1, wherein the memory agent includes at least
one of the memory agent on a motherboard of the computer system, the memory
agent as part of a socket on the computer system, or the memory agent as part ol a
memory controller on the computer system.

3. The computer system of claim 1, wherein the memory agent includes a cache
coherenee protocol engine to filter out annecessary aceess to the memory blade, and
to update a generation bit and a reference counter value included in the page cache
used by the memory agent.

4. ‘The computer system of claim 1, wherein to identify incisdes a translation of' a

cache coherency request into the memory command to the memaory blade,

3, The computer system of elaim 1, wherein the memory command includes at

least one of a read commangd, a write conymand, or a swap command.

6. A computer implemented method comprising:

receiving a coherency request, using a memory agent, that identifies data
residing on a memory blade {0 be accessed;

translating the coherency request, using the memory agent, into a mgmory

command formatted based upon a protocol utitized by the memory blade; and

SUBSTITUTE SHEET (RULE 26)

WO 2011/002437 PCT/US2009/049038

transmitting the memory conmmand, using the memary agent, to the memory
blade to access the data residing on the memaory blade.
7. The cormputer implemented method of clatm 6, further comprising updating a
reference counter value, using the memory agent, that identifies a total number of

1imes a virtual memory page, that includes the data, is accessed.

8. The computer implemented method of claim 6, further comprising setting a
seneration bit, using the memory agent, the peneration bit identifving an instance

during which a virtual memory page. that includes the data, is accessed.

9, The computer implemented method of claim 6, further comprising responding
to the coherency request through accessing local memory in liev of aceessing the

memory blade.

10, The computer implemented method of claim 6, further comprising clearing a
generation bit, using the memory agent, after an expiration of a preset number of

instances.

11, The compuater implemented method of claim 6, further comprising identifying,
using the memory agent, & virtual memory page that includes the data based wpon a
reference counter valug associated with the virtual memory page, the identitying
based upon a comparison of the reference counter value to a further reference counter

value associated with a further virtual memory page.

12, The computer implemenied method of claim 11, further comprising swapping
the virtual memery page with the further memory page based upon the comparison of
the reference counter value to the further reference counter value associated with the

further virtaal memory page.

™
Ei

SUBSTITUTE SHEET (RULE 26)

WO 2011/002437 PCT/US2009/049038

13, The computer mnplemented methed of claim 6, wheren the transmitting of the
memory command includes packetizing the memory command using a Peripheral
Component Interconnect Express (PCle) protocol, Quick Path Interconnect (QP), ora

HyperTransport protoced.

. A computer implemented method comprising:

identifyving a vivival memory page, using a memory agent, the virtual memory
page identified based upon, in past, a reference counter valug;

gotting data from the virtual memory page, using the memory agent, the
virtual memory page less frequently accessed than a further virtual memory page
based upon a comparison of the reference counter value to a further refetence counter
value associated with the further virtual memory page; and

storing the data into a write-back buffer using the memory agent.
15, The compuler implemented method of claim 14, tarther comprising writing

the write-back buffer 0 a memory module, using the memory agent, managed by a

memory blade.

25

SUBSTITUTE SHEET (RULE 26)

PCT/US2009/049038

1/14

WO 2011/002437

P AMOWAN
LiL - ’ \x\
o S = | v
L e F\,.V w\ﬁ.mo_}_mg

~ e T

TN D
7 N T - g0y 30v1E
- ~ L7 ananoo
AN NNETI VR ,
M/// xm O\ W w!wfm Z ¥(.l!ﬁt.i&!l? e — \ aal \11\1.MM\\ MDJ%I_m

e 20t 31NdWOD
—>_ S B2

0L

..............................

3avi8g
ALNdWOS

AOVY AAYIE

w
it L O

PCT/US2009/049038

WO 2011/002437

2/14

HITTOHLINOD AHOWIW NO LNIADY ¥1E,

WIAKG = WINIO] NgD | INTDY «ﬁ% JAVIE FLOGNOD
<902 BT b 201
IaYI9 AHOWIN €0l LINIOVM LDIDOS
30v719 FLAGWOD 502 | <
01 - €Lz,
SHOLYH3TIODY | . Nda — Wi H wwia
7 xw m.M N\—.N mru V4
‘21z — 508 8ig | 2 90z 80c
ONIddVIN / - o
80 80¢ diz S8IHOAY LNIOVY WINIO - 0
y) -
{ w \ —
b hidias ~ HITIOHINOD AHOWIN
207 . 807 -
/ 802 | oe0ey
WG M , o
WNIC . [INTOV 102010%d
10271
507
(NOLLDINNDD YO0
HO WOISAHG "©'3) TANNYHO 7
NOLLYDINNRNOD 0T
INYId MOVE 7
17 Loy
A y¥Y08 NO LNIOY 30V 3LNdNOS
F I AHOWNWIN FLON3Y 7 54

PCT/US2009/049038

WO 2011/002437

3/14

L

74

405 S
{

50

1
¢

{

HILNNOD IONIHI43Y
+ 5118 NOLLYH3ENID

S118 D03 Vivd ZH0OVD J9vd
+ 21907 HS3HHA3Y Wvdd

e0e 7

S1i8 dONIS3d + DY

Log ™

ANIOND T00010dd LNGHEHOOD FHOYO |

{z0¢
IHOYD 39Vd

£ Ol

PCT/US2009/049038

WO 2011/002437

0l FOVd TYI0OT 40 NOLLVHOIN

{(IDOVd 0100V "3}

20l

N
G0Z — e
SaVIE ANONSN (ROHATNGS 308 ILNGW0D
wcw TWOID0T HO TWIISAH
_ roe 93} TINNYHD
ﬂk ANYId 0ve NOLLYOINDIWNOD
- Q0% G 94

<

o _ .

¥ (30vd LOM ¥ "9'3) 39Vd

0L JLOW3Y 40 NOLLVHOIW
) Z0
: o
7 oy S
M % LY
w -]w_ N L T B N
N / RS ;
! (1074 p—_ ,
YN AHOWIN ™ - i/ INOLLOTINNOD FAvd LNdWO0
-7 %M TWIDOT HO TYDISAHA
! “£3°3) I3NNYHD
A ANYId MOvd NOLLYDINNNINGD
C ooy p Ol

WO 2011/002437

5/14

FIG. 6

604 ~~ MEMORY
MODULE

MEMORY AGENT

SDBN MODULE

TRANSMISSION

60 MODULE

FiIG. 7

COHERENCE PROTOCOL | 301
ENGINE ~

~. MEMORY AGENT
703 MODULE

l

~_| SWAPPING
704 MODULE

FIG. 8

COHERENCE PROTOCOL
ENGINE

~_ MEMORY AGENT
803 MODULE

PCT/US2009/049038

102~

~

602
102~
y“‘
~~~~~~~~~~~~ 702
102~
?/’
02




WO 2011/002437 PCT/US2009/049038
6/14

FIG. 9 900 ~
.

IDENTIFY A MEMORY COMMAND RELATED TO A
90?\" VIRTUAL MEMORY PAGE ASSOCIATED WITH A
MEMORY BLADE

'

MANAGE THE VIRTUAL MEMORY PAGE INCLUDED IN
g2 THE PAGE CACHE

— TRANSMIT THE MEMORY COMMAND TO THE
903 MEMORY BLADE

¥

. UPDATE A GENERATION BIT AND A REFERENCE
904~ COUNTER VALUE INCLUDED IN THE PAGE CACHE




WO 2011/002437 PCT/US2009/049038

7/14

FIG. 10 1000 ~
v

RECEIVE A COHERENCY REQUEST THAT IDENTIFIES DATA RESIDING ON A
MEMORY BLADE TO BE ACCESSED

T ¥ 001
TRANSLATE THE COHERENCY REQUEST, USING THE MEMORY AGENT,

INTO A MEMORY COMMAND FORMATTED BASED UPON A PROTOCOL
UTILIZED BY THE MEMORY BLADE

v {1002

TRANSMIT THE MEMORY COMMAND TO THE MEMORY BLADE TO ACCESS
THE DATA RESIDING ON THE MEMORY BLADE

¥ 74003

UPDATE A REFERENCE COUNTER VALUE THAT IDENTIFIES A TOTAL
NUMBER OF TIMES A VIRTUAL MEMORY PAGE, WHICH INCLUDES THE
DATA, 1S ACCESSED

] £41004

SET A GENERATION BIT, THE GENERATION BIT IDENTIFYING AN INSTANCE
DURING WHICH A VIRTUAL MEMORY PAGE, THAT INCLUDES THE DATA, 18
ACCESSED

¥ ¢ 1005

RESPONDING TO THE COHERENCY REQUEST THROUGH ACCESSING
LOCAL MEMORY IN LIEU OF ACCESSING THE MEMORY BLADE

¥ {1008

CLEAR THE GENERATION BIT AFTER AN EXPIRATION OF A PRESET
NUMBER OF INSTANCES

% | ¢ 1007

IDENTIFY A VIRTUAL MEMORY PAGE THAT INCLUDES THE DATA BASED
UPON A REFERENCE COUNTER VALUE ASSOCIATED WITH THE VIRTUAL
MEMORY PAGE, THE IDENTIFYING BASED UPON A COMPARISON OF THE
REFERENCE COUNTER VALUE TO AFURTHER REFERENCE COUNTER
VALUE ASSOCIATED WITH A FURTHER VIRTUAL MEMORY PAGE

é { 1008

SWAP THE VIRTUAL MEMORY PAGE WITH THE FURTHER MEMORY PAGE
SASED UPON THE COMPARISON OF THE REFERENCE COUNTER VALUE TO
THE FURTHER REFERENCE COUNTER VALUE ASSOCIATED WITH THE

FURTHER VIRTUAL MEMORY PAGE

Z?ODQ



WO 2011/002437

FIG 11

PCT/US2009/049038

8/14

IDENTIFY A VIRTUAL MEMORY PAGE, THE
VIRTUAL MEMORY PAGE IDENTIFIED BASED

1100 ~
b

1101

UPON, IN PART, A REFERENCE COUNTER [~

VALUE
\

GET DATA FROM THE VIRTUAL MEMORY
PAGE, THE VIRTUAL MEMORY PAGE LESS
FREQUENTLY ACCESSED THAN A FURTHER
VIRTUAL MEMORY PAGE BASED UPON A
COMPARISON OF THE REFERENCE COUNTER
VALUE TO A FURTHER REFERENCE
COUNTER VALUE ASSOCIATED WITH THE
FURTHER VIRTUAL MEMORY PAGE

1102

Y

BUFFER USING THE MEMORY AGENT

v

STORE THE DATA INTO A WRITE-BACK |- 1103

WRITE THE WRITE-BACK BUFFER TO A
MEMORY MODULE MANAGED BY A MEMORY
BLADE

1104

e




WO 2011/002437

FIG. 12

1208

Y
1201

1202~

12037\

1204

PCT/US2009/049038

9/14

1200 ~

/‘

SYSTEM BOOT

BLADE CAPACITY ALLOCATION
¥
GET NUMBER OF PROCESSOR
SOCKETS AND THEIR MEMORY SIZES

v

GET THE NUMBER OF REMOTE MEMORY
AGENTS AND ACTIVE MEMORY BLADE
CONNECTIONS FOR EACH OF THEM

ACTIVE CONNECTIONS REGISTER WITH THEIR
CORRESPONDING MEMORY BLADES, GET THEIR

FREE SPACE SIZE

1207 -

¥

~ | CAPACITY OPTION
1206 SELECTION

N
N
N

E‘

REQUEST AVAILABLE FREE SPACE FROM

ALL AVAILABLE MEMORY BLADES

i
H

1208

PARTITION THE PHYSICAL ADDRESS SPACE BETWEEN ALL
PROCESSOR SOCKETS, REMOTE AGENTS (E.G., AND
CONNECTED MEMORY BLADES, MAP SMA TO RMMA ON EACH

MEMORY BLADE)

12087

i

¥

[F ONLY ONE PROCESSOR SOCKET, SETUP
REMOTE MEMORY AGENT TO BYPASS
COHERENCY TRANSACTION FOR {TS DATA
REQUEST

v

1210~ RESUME TO USUAL
\_ SYSTEMBOOT .




WO 2011/002437 PCT/US2009/049038

10/14
FIG. 13 1206 ~
4
NEED FREE = REQUESTED REMOTE CAPACITY/# OF MEMORY
BLADES 1301

‘

MIN FREE = MIN FREE SPACE SIZE ON ALL 1302
MEMORY BLADES T

FALSE . o TRUE
< MIN FREE < NEED ™

F e FREE i
1304 1305
/ _ / {

ALLOCATE 1303 ALLOCATE CAPACITY
CAPACITY FROM EACH MEMORY
FROM EACH | BLADE(E.G., GET ALL FREE
MEMORY BLADE SPACE FROM THE
(E.G., AT LEAST | LARGEST MEMORY BLADE
MIN FREE) | FIRST)




WO 2011/002437 PCT/US2009/049038
11/14
FIG. 14 1400 ?)
140D iNcomNG
. REQUEST | SELECT VICTIM PAGE; PUT
| ‘ | DIRTY BLOCKS OF THE VICTIM
$ PAGE INTO WRITE-BACK
1402 e BUFFER; INSTALL NEW PAGE
oo FALSE CACHE ENTRY; CLEAR
T TAG PRESENT? = PRESENT BITS
TRt\)\E\E T ‘ | 1405
¥ 1403 7
1404 T FALSE READ THE REQUESTED
“BLOCK PRESENT? > ™ BLOCK FROM THE MEMORY
BLADE
TRUE i
CALCULATE DRAM
ADDRESS, READ BLOCK | 1406
FROM DRAM MANAGED
BY THE AGENT
1407,
¢
INSTALL DATA INTO PAGE g

CACHE, SET PRESENT BIT

$’

UPDATE GENERATION BIT, |
REFERENCE COUNTER(1) AND (1408

PRESENT

BIT (1)

l

. SYSTEM

RESUME TO USUAL 1 409

BOOT




PCT/US2009/049038

WO 2011/002437

12/14

(839vd (535vd LOH "D'3) (39vd
G100 "©'3) $39vd SIDVL JISSI00Y G100 “9'3) 9V
WILOIA WWLINSLOd ¢nay amm«zmuwwmv 801 WELDIA IWILN3LOd

890G , ' N\ P0G
N\ / L\ |
. % r'e | % s~ £051
) } L £ N3O
| N Z051
NOILLYHINID b t A VED
¥YII10
LOSLN, -} 051
gs.:.ktr.k.!l;.it,..:b.k.kir».\t.!.!;ll.i, |||||||||| e e e e i g e i i i e min WZM@

- G0¢

1 Old



WO 2011/002437

13/14
FIG. 16

16801, -

INCOMING -
REQUEST .~

Y

PCT/US2009/049038

1600 ~
y

SELECT <HOT PAGES> IN THE CACHE OF
<COLD PAGES>

11602

1603 e _FALSE

B HOTPAGES >0t

SELECT <HOT PAGES> FROM
ANOTHER RANDOMLY
SELECTED CACHE SET

7
TRUE 804 1806}
1905 < FALSE T READ NONPRESENT
G #HOTPAGES>1 > ™| BLOCKS IN THE PAGE
FROM THE MEMORY BLADE
TRUE i
SELECT THE HOT PAGE WITH
THE SMALLEST NUMBER OF K 1607
NON-PRESENT CACHE BLOCKS
1608
d

COPY COLD PAGE INTQ THE PAGE
CACHE'S WRITE-BACK BUFFER

¥
1609~ COPY THE HOT PAGE INTO WHERE THE
| COLD PAGE USE TO BE STORED
1610~ UPDATE PAGE TABLE

L
L

ENTRIES AND FLUSH L2 CACHE TO ENSURE CORRECTNESS

v

~. RESUME TO NORMAL
16812 4, EXECUTION "




WO 2011/002437 PCT/US2009/049038
14/14
FIG. 17 1700~
>
1701
SRAM e C | CPU |
??05\‘/ ---------------- \ SR OO E]
i 1705
Pore NORTH ¥ e
3 i BRIDGE g - ~
<1703 ! =
DVI | 1707
SR N
ANALOG VGA 1704 \J
- POINT TO POINT LINK 1 730
1708, 1700 N\ 1709 :
< 711 N e
HD AUDIO - A
A R e s B VEY:
_— e SOUTH
i1 o BRIDGE
- i 714
BOOT ROM SATA
e
~ 715
& LPC
17167
L ¥
Tw SUPER 1/0 ~
| ‘ l 1718
’\\,"

PARALLEL PORT

SERIAL PORY




INTERNATIONAL SEARCH REPORT International application No.
PCT/US2009/049038

A. CLASSIFICATION OF SUBJECT MATTER

GOGF 12/06(2006.01)i, GO6F 12/08(2006.01)i, GO6F 13/10(20006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
GO6F 12/06; GO6F 12/02; GO6F 12/08; GO6F 9/455; G11C 16/02

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models since 1975.
Japanese utility models and applications for utility models since 1975.

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS(KIPO internal) & Keywords: "memory", "cache", "agent”

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X LIM, KEVIN et al. 'Disaggregated Memory for Expansion and Sharing in Blade 1-15
Servers.' In: 36th International Symposium on Computer Architecture. ACM,
2009, ISBN 978-1-60558-526-0, Pages 267-278.

See Abstract, Chapters 1, 3; and Figures 3, 4.

A US 2008-0313495 A1 (HUFF, G.) 18 December 2008 1-15
See Abstract, Claims 1, 5; and Figures 1-5.

A US 2009-0037652 A1 (YU, F. et al.) 05 February 2009 1-15
See Abstract; Claim 1; and Figure 2.

A US 2009-0113110 A1 (CHEN, X. et al.) 30 April 2009 1-15
See Abstract; Claim 1; and Figures 3, 4.

|:| Further documents are listed in the continuation of Box C. & See patent family annex.

* Special categories of cited documents: "T" later document published after the international filing date or priority

"A" document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand
to be of particular relevance the principle or theory underlying the invention

"E"  earlier application or patent but published on or after the international ~ "X" document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive

"L"  document which may throw doubts on priority claim(s) or which is step when the document is taken alone
cited to establish the publication date of citation or other "Y" document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is

"O"  document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents,such combination
means being obvious to a person skilled in the art

"P"  document published prior to the international filing date but later "&" document member of the same patent family

than the priority date claimed

Date of the actual completion of the international search Date of mailing of the international search report
31 DECEMBER 2009 (31.12.2009) 04 JANUARY 2010 (04.01.2010)
Name and mailing address of the ISA/KR Authorized officer
' Korean Intellectual Property Office
Government Complex-Daejeon, 139 Seonsa-ro, Seo- LEE, Sang Hun
gu, Daejeon 302-701, Republic of Korea
Facsimile No. 82-42-472-7140 Telephone No.  82-42-481-5914

Form PCT/ISA/210 (second sheet) (July 2008)



INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.

PCT/US2009/049038

Patent document Publication Patent family Publication

cited in search report date member(s) date

US 2008-0313495 A1 18.12.2008 None

US 2009-0037652 Al 05.02.2009 US 2008-0320209 A1 25.12.2008
US 2008-0320214 A1 25.12.2008
US 2009-0093136 A1l 09.04.2009
US 2009-0113121 A1 30.04.2009
US 2009-0177835 A1 09.07.2009
US 2009-0193184 A1 30.07.2009
US 2009-0204732 A1 13.08.2009
US 2009-0204872 A1 13.08.2009
US 2009-0240865 A1l 24.09.2009
US 2009-0240873 A1 24.09.2009
US 7103684 B2 05.09. 2006
US 7130958 B2 31.10.2006
US 7243185 B2 10.07.2007
US 7383362 B2 03.06.2008
US 7428605 B2 23.09.2008
US 7471556 B2 30. 12.2008
US 7507119 B2 24.03.2009
US 7524198 B2 28.04.2009
US 7552251 B2 23.06.2009
US 7606111 B2 20.10.2009
US 7628622 B2 08.12.2009

US 2009-0113110 At 30.04.2009 US 2009-0113111 A1 30.04.2009
US 2009-0113216 A1l 30.04.2009
US 2009-0113424 A1 30.04.2009
US 2009-0113425 A1 30.04.2009

Form PCT/ISA/210 (patent family annex) (July 2008)




	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - claims
	Page 25 - claims
	Page 26 - claims
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - wo-search-report
	Page 42 - wo-search-report

