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INTEGRITY ORDAINMENT AND 
ASCERTAINMENT OF 

COMPUTER-EXECUTABLE INSTRUCTIONS 
WITH CONSIDERATION FOR EXECUTION 

CONTEXT 

RELATED APPLICATIONS 

This application is a divisional of and claims priority to 
U.S. patent application Ser. No. 10/116,263, filed Apr. 3, 
2002, which is incorporated by reference herein. 

BACKGROUND 

Digital goods (e.g., software products, data, content, etc.) 
are often distributed to consumers via fixed computer read 
able media, such as a compact disc (CD-ROM), digital ver 
satile disc (DVD), Soft magnetic diskette, or hard magnetic 
disk (e.g., a preloaded hard drive). More recently, content is 
being delivered in digital form online over private and public 
networks, such as Intranets and the Internet. Online delivery 
improves timeliness and convenience for the user, as well as 
reduces delivery costs for a publisher or developers. Unfor 
tunately, these worthwhile attributes are often outweighed in 
the minds of the publishers/developers by a corresponding 
disadvantage that online information delivery makes it rela 
tively easy to obtain pristine digital content and to pirate the 
content at the expense and harm of the publisher/developer. 
One concern of the publisher/developer is the ability to 

check digital content, after distribution, for alteration. Such 
checking is often referred to as SRI (Software Resistance to 
Interference). The reasoning for the desire to check for such 
alterations may vary (e.g., to ensure that the content continues 
to operate as intended by the publisher/developer, to protect 
against improper copying, etc.). 
The unusual property of content is that the publisher/de 

veloper (or reseller) gives or sells the content to a client, but 
continues to restrict rights to use the content even after the 
content is under the sole physical control of the client. For 
instance, a software developertypically sells a limited license 
in a Software product that permits a user to load and run the 
Software product on one or more machines (depending upon 
the license terms), as well as make a back up copy. The user is 
typically not permitted to make unlimited copies or redistrib 
ute the software to others. 

These scenarios reveal a peculiar arrangement. The user 
that possesses the digital bits often does not have full rights to 
their use; instead, the provider retains at least some of the 
rights. In a very real sense, the legitimate user of a computer 
may be an adversary of the data or content provider. 
DRM Techniques 
One of the uses for SRI (Software Resistance to Interfer 

ence) is to provide “digital rights management” (or "DRM) 
tamper-resistance (i.e., protection) to prevent unauthorized 
modification, distribution, copying, and/or illegal operation 
of or access to the digital goods. An ideal digital goods 
distribution system would substantially prevent unauthorized 
modification/distribution/use of the digital goods. 

Digital rights management is fast becoming a central 
requirement if online commerce is to continue its rapid 
growth. Content providers and the computer industry must 
quickly address technologies and protocols for ensuring that 
digital goods are properly handled in accordance with the 
rights granted by the developer/publisher. If measures are not 
taken, traditional content providers may be put out of business 
by widespread theft or, more likely, will refuse altogether to 
deliver content online. 
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2 
Various DRM techniques have been developed and 

employed in an attempt to thwart potential pirates from ille 
gally copying or otherwise distributing the digital goods to 
others. 

Original Media Required 
For example, one conventional DRM technique includes 

requiring the consumer to insert the original CD-ROM or 
DVD for ascertainment prior to enabling the operation of a 
related copy of the digital good. Unfortunately, this DRM 
technique typically places an unwelcome burden on the hon 
est consumer, especially those concerned with speed and 
productivity. Moreover, such techniques are impracticable 
for digital goods that are site licensed. Such as Software prod 
ucts that are licensed for use by several computers, and/or for 
digital goods that are downloaded directly to a computer. 
Additionally, it is not overly difficult for unscrupulous indi 
viduals/organizations to produce working pirated copies of 
the CD-ROM. 

Registration 
Another conventional DRM technique includes requiring 

or otherwise encouraging the consumer to register the digital 
good with the provider. For example, this is often done either 
through the mail or online via the Internet or a direct connec 
tion. Thus, the digital good may require the consumer to enter 
a registration code before allowing the digital good to be fully 
operational or the digital content to be fully accessed. Unfor 
tunately, such DRM techniques are not typically effective 
since unscrupulous individuals/organizations need only 
undermine the DRM protections in a single copy of the digital 
good. Once broken, copies of the digital good may be illegally 
distributed; hence, such DRM techniques are considered to be 
Break-Once, Run-Everywhere (BORE) susceptible. Various 
techniques may be used to overcome some of the BORE 
Susceptible. Such as per-user Software individualization, 
watermarks, etc. However, a malicious user may still be able 
to identify and remove from the digital good these various 
protections. 
Code Obfuscation 

Still another DRM technique is an emerging one called 
“code obfuscation” or “code scrambling.” Code obfuscation 
is described, to some degree, in the following co-pending 
patent applications: 

U.S. patent application Ser. No. 09/670,916, entitled 
“Code Integrity Verification that Includes One or More 
Cycles' filed on Sep. 29, 2000. 

U.S. patent application Ser. No. 09/536,033, entitled “Sys 
tem and Method for Protecting Digital Goods using 
Random and Automatic Code Obfuscation' filed on 
Mar. 27, 2000; 

U.S. patent application Ser. No. 09/651,424, entitled 
“Method and System for Using a Portion of a Digital 
Good as a Substitution Box' filed on Aug. 30, 2000; and 

U.S. patent application Ser. No. 09/651.901, entitled “Pro 
tecting Digital Goods using Oblivious Checking filed 
on Aug. 30, 2000. 

Code obfuscation thwarts would-be software pirate's 
attempt to attack the licensing provisions in digital goods 
(such as software). It also thwarts malicious would-be inter 
lopers when they attempt to modify the security portions of 
Such digital goods. In either case, existing code obfuscation 
techniques complicate an attackers attempt to locate and 
identify specific portions of code within a Software program 
(such as the operating system or an application). 
Code obfuscation techniques effectively “hide' (i.e., 

obfuscate) or “scramble' the underlying code of a digital 
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good, thereby making it difficult for a would-be attacker to 
locate and identify portions of the code. 

Although it may be difficult, an attacker may be able to 
overcome code obfuscation. For example, an attacker may 
track the execution instance of the Software program to iden- 5 
tify where and when specific actions are performed. Once an 
attacker identifies and locates specific portions of code, she 
may modify it. Conventional code obfuscation cannot prevent 
code modification. Conventional code obfuscation cannot 
detect when code has been modified. 10 

Code Modification 
As stated above, the publisher/developer would like the 

ability to check digital content, after distribution, for alter 
ation. The reasons for checking for Such alterations may vary 
(e.g., to ensure that the content continues to operate as 
intended by the publisher/developer, to protect against 
improper copying, etc.). However, conventional DRM tech 
niques do not actually check for alteration of digital content, 
Such as Software code. 

Strictly speaking, conventional DRM techniques are 
chiefly designed to complicate code analysis by the digital 
pirate. They erect barriers and obstacles to unauthorized use 
of the Software and/or unauthorized access the underlying 
code. However, they cannot detect code modification (i.e., 
alternation). 

Accordingly, there is a challenge for a DRM technique to 
increase tamper resistance by detecting code modification 
without imposing unnecessary and burdensome requirements 
on legitimate users. 

15 

25 

30 

Remote Code Ascertainment 
"Remote code ascertainment” is another realm that lacks 

the capability to effectively detect code modifications. A 
generic example of “remote code ascertainment' is the fol 
lowing: a computing entity (e.g., server) may ensure that only 35 
authorized (e.g., unaltered) computing entities (e.g., a client 
Software program) connect via a remote coupling and that 
Such remote entities remain free from tampering. This is also 
called: “persistent remote authentication.” 
Some systems, such as those employing Internet instant- 40 

messaging systems, include a small, simple client program 
that connects to a secure server over a network. Deployers of 
Such systems may require that only authorized, unmodified 
client software use the servers. 
How does the server in such a system ascertain that the 45 

client Software with which it is communicating is unmodified, 
unaltered, unadulterated, untainted, etc. by the devious hands 
of malicious would-be infiltrator? The issue here is not 
whether the proper security protocol is followed and the 
proper security information is provided. Rather the issue is 50 
whether the server may be certain that the security features of 
the client software have not be hijacked by a malicious would 
be infiltrator. 

Generally speaking, for an experienced Software expert, it 
is not particularly difficult to reverse engineer the client- 55 
server communications. Therefore, an attacker may create a 
fully functional but unauthorized client program. Moreover, 
an attacker may patch the original code or data of authorized 
client software to instruct it to perform unauthorized and 
undesirable actions. 60 

Traditional authentication protocols do not address the 
problem described. Unauthorized parties may reverse engi 
neer such protocols and write new software to implement 
them. An attacker may modify a client program's code or data 
without changing its implementation of an authentication 65 
protocol. Traditional protocols do not address code tamper 
1ng. 

4 
Accordingly, there is a challenge for a technique to confirm 

the Veracity of a remote Software program. Conventionally, it 
is a challenge to effectively thwart maliciously modified pro 
grams from harming a network system by preventing their 
initial passage through the security layers by masquerading as 
the original and unaltered program. 
The Challenge of Accurately Detecting Code Modification 

Accordingly, it is a challenge for a technique to address the 
concerns of the publisher/developer in protecting their rights 
in a digital good, such as Software. Specifically, it is a chal 
lenge for to detect an alteration of the digital content without 
imposing unnecessary and burdensome requirements on 
legitimate users. 

Furthermore, it is a challenge for to test the Veracity of a 
remote software program. Specifically, it is a challenge for to 
detect a modified program so that it cannot impersonate the 
original and unaltered program. 

SUMMARY 

Described herein is a technology for facilitating the pro 
tection of computer-executable instructions, such as Soft 
Wa. 

At least one implementation, described herein, may gen 
erate integrity signatures of one or more program modules— 
which are sets of computer-executable instructions—based 
upon a trace of activity during execution of Such modules 
and/or near-replicas of such modules. With at least one imple 
mentation, described herein, the execution context of an 
execution instance of a program module is considered when 
generating the integrity signatures. With at least one imple 
mentation, described herein, a determination may be made 
about whether a module is unaltered by comparing integrity 
signatures. 
With at least one implementation, described herein, a trace 

record is generated and Such recorded may be obfuscated. 
Furthermore, with at least one implementation, described 
herein, the one or more near-replicas of program modules are 
hidden. 

This summary itself is not intended to limit the scope of this 
patent. Moreover, the title of this patent is not intended to 
limit the scope of this patent. For a better understanding of the 
present invention, please see the following detailed descrip 
tion and appending claims, taken in conjunction with the 
accompanying drawings. The scope of the present invention 
is pointed out in the appending claims. 

BRIEF DESCRIPTION OF THE DRAWINGS 

The same numbers are used throughout the drawings to 
reference like elements and features. 

FIGS. 1A-1F are block diagrams illustrating some of the 
components manipulated by an implementation described 
herein and some of their relationships and associations with 
each other within the context of the implementation. 

FIG. 2 is a block diagram graphically illustrating actions 
performed by an embodiment described herein and some of 
the components manipulated by Such. 

FIG. 3 is a block diagram graphically illustrating actions 
performed by an embodiment described herein and some of 
the components manipulated by Such. 

FIG. 4 illustrates an example of a digital rights manage 
ment (DRM) distribution architecture in accordance with an 
implementation described herein. 

FIG. 5 is a flow diagram showing a methodological imple 
mentation described herein. 
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FIG. 6 is a flow diagram showing a methodological imple 
mentation described herein. 

FIG. 7 is a block diagram graphically illustrating actions 
performed by an embodiment described herein and some of 
the components manipulated by Such. 

FIG. 8 is a block diagram graphically illustrating actions 
performed by an embodiment described herein and some of 
the components manipulated by Such. 

FIG. 9 is a block diagram graphically illustrating actions 
performed by an embodiment described herein and some of 
the components manipulated by Such. 

FIG. 10 is a block diagram graphically illustrating actions 
performed by an embodiment described herein and some of 
the components manipulated by Such. 

FIG. 11 is a block diagram graphically illustrating actions 
performed by an embodiment described herein and some of 
the components manipulated by Such. 

FIG. 12 is a block diagram graphically illustrating actions 
performed by an embodiment described herein and some of 
the components manipulated by Such. 

FIG. 13 is an example of a computing operating environ 
ment capable of implementing at least one embodiment 
(wholly or partially) described herein. 

DETAILED DESCRIPTION 

The following description sets forth one or more specific 
embodiments of integrity ordainment and ascertainment of 
computer-executable instructions with consideration for 
execution context that incorporate elements recited in the 
appended claims. These embodiments are described with 
specificity in order to meet statutory written description, 
enablement, and best-mode requirements. However, the 
description itself is not intended to limit the scope of this 
patent. 
The one or more specific embodiments, described herein, 

are exemplary implementations of an integrity ordainment 
and ascertainment of computer-executable instructions with 
consideration for execution context. The inventors intend 
these exemplary implementations to be examples. The inven 
tors do not intend these exemplary implementations to limit 
the scope of the claimed present invention. Rather, the inven 
tors have contemplated that the claimed present invention 
might also be embodied and implemented in other ways, in 
conjunction with other present or future technologies. 
An example of an embodiment of an integrity ordainment 

and ascertainment of computer-executable instructions with 
consideration for execution context may be referred to as an 
“exemplary integrity ordainer/ascertainer.” Alternatively, it 
may be called an “exemplary integrity Veracitor.” The exem 
plary integrity Veracitor may include an exemplary integrity 
ordainer and/or an exemplary integrity ascertainer. 
Incorporation by Reference 
The following co-pending patent application is incorpo 

rated by reference herein: U.S. patent application Ser. No. 
1 1/275,060, entitled “Integrity Ordainment and Ascertain 
ment of Computer-Executable Instructions' filed on Dec. 6, 
2005, and assigned to the Microsoft Corporation; 
Brief Glossary 
To aid the reader, the following brief glossary is provided 

as a quick reference to the definitions of terms that are other 
wise not common in the art. This glossary primarily covers 
terms related to the color-coding of computer-executable 
instructions (i.e., code). This color-coding is purely for 
explanatory purposes only. Of course. Such code has no actual 
color, but if it did, the actual color plays no functional role. 
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6 
Integrity Veracitication—this includes integrity ordain 
ment and integrity ascertainment. 'Veracitication' is 
noun form of a verb form of the word “veracity, which 
generally means “adherence to the truth; truthfulness; 
conformity to fact or truth; something that is true.” 

Integrity Ordainment—this may be thought of as the front 
end of integrity Veracitication. “Ordainment' is noun 
form of the word “ordain.” which generally means, “to 
prearrange unalterably. Implementations of integrity 
ordainment techniques may employ execution tracing 
and hashing, output tracing and hashing, or a combina 
tion of both. 

Integrity Ascertainment—this may be thought of as the 
back-end of integrity Veracitication. “Ascertainment” is 
noun form of the word “ascertain.” which generally 
means, “to discover with certainty, as through examina 
tion or experimentation.” This may also be called “integ 
rity verification.” 

Primary code 110 original computer-executable instruc 
tions (i.e., “code’) of a program module of a digital 
good. The primary code 110 may have hidden, special 
purpose instructions that are strategically, distributively 
inserted within the clear code. These hidden instructions 
may be called “black code.” Alternatively, primary code 
may refer to same instructions after it is obfuscated 
using code obfuscation techniques. 

Near-Replica code 130—slightly modified replica (i.e., 
“near-replica') of the primary code 110. With at least 
one implementation, this code is the result of integrity 
ordainment performed on the primary code 110. 

Code 120 this code of a program module may be either 
the primary code 110 or its near-replica code 130. 

Red Module 150 modified code of a program module: 
code after it has been modified by a pirate; code that is 
determined and/known to be modified. This modified 
code may have been the primary code 110 or its near 
replica code 130. 

Yellow Module 160—code of a program module that is 
Suspected of having been modified (i.e., it is Subject of 
detection tests). With at least one implementation, this is 
code that is the Subject of integrity ascertainment tests. 

Parameters 142 herein, this refers to one or more specific 
input parameters that are passed to a program module 
(i.e., function, set of instructions, etc.) that are used to 
generate one or more signatures. 

External Factors 144—herein, this refers to factors that are 
external to a program module, but may affect a module's 
execution instance and/or may be affected by Such 
execution instance. Typically, this will include factors, 
Such as: heaps, stacks, global variables, and the like. 

Execution Context 140 herein, this refers to context in 
which a program module executes. It includes, for 
example: input parameters 142 and external factors 144. 

Primary signature 112—a signature is a specific value that 
identifies the execution instance of a program module (in 
this case, of the primary code) based upon specified 
execution context. With at least one implementation, a 
primary signature is one generated during integrity 
ordainment and/or integrity ascertainment. According to 
at least one implementation, it employed in a determi 
nation of the code of a module has been modified. 

Near-Replica signature 132 a signature is a specific value 
that identifies the execution instance of a program mod 
ule (in this case, of the near-replica code) based upon 
specified execution context. With at least one implemen 
tation, a primary signature is one generated during integ 
rity ordainment and/or integrity ascertainment. Accord 
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ing to at least one implementation, it employed in a 
determination of the code of a module has been modi 
fied. 

Integrity Veracitication 
The one or more exemplary implementations, described 

herein, of the present claimed invention may be implemented 
(in whole or in part) by an integrity Veracitication system. The 
integrity Veracitication system may be part of a digital rights 
management (DRM) distribution architecture 400; and/or a 
computing environment like that shown in FIG. 13. It may be 
implemented by an integrity ordainer 470; an integrity ascer 
tainment system; and/or a computing environment like that 
shown in FIG. 13. 
At least one implementation, may generate integrity sig 

natures of one or more program modules—which are sets of 
computer-executable instructions—based upon a trace of 
activity during execution of Such modules and/or near-repli 
cas of such modules. With at least one implementation, the 
execution context (including, for example, external factors 
and input parameters) of an execution instance of a program 
module is considered when generating the integrity signa 
tures. With at least one implementation, a determination may 
be made about whether a module is unaltered by comparing 
integrity signatures. 

With at least one implementation, a trace record is gener 
ated and such recorded may be obfuscated. Furthermore, with 
at least one implementation, the one or more near-replicas of 
program modules are hidden. 
One or more implementations of “integrity Veracitication', 

described herein, may be combined with one or more imple 
mentations of the forms “integrity veracitication” techniques 
(e.g., execution tracing and/or output tracing) described in 
co-pending U.S. patent application Ser. No. 1 1/275,060, 
entitled “Integrity Ordainment and Ascertainment of Com 
puter-Executable Instructions'. 
Integrity Ordainment 

With at least one implementation of an integrity ordain 
ment technique, described herein, may employ execution 
tracing in a manner similar to that described in U.S. patent 
application Ser. No. 1 1/275,060, entitled “Integrity Ordain 
ment and Ascertainment of Computer-Executable Instruc 
tions'. Thus, so-called “black code' or hidden instructions 
may be inserted to accomplish execution tracing. 

With at least one implementation of an integrity ordain 
ment technique, hidden instructions are inserted within a 
program module of the digital good. This program module 
may be the “primary' module. When the primary module is 
executed, these hidden instructions generate an execution 
trace of various morsels of data. This implementation gener 
ates a primary-integrity signature based upon the execution 
trace of an execution instance of the primary module with a 
specified execution context. 

With at least one implementation of an integrity ordain 
ment technique, a near-replica of the primary program mod 
ule of the digital good is employed. This program module 
may be the “near-replica” module because it is a replica or a 
near replica of the primary module. When the near-replica 
module is executed, the hidden instructions generate an 
execution trace of various morsels of data. This implementa 
tion generates a near-replica-integrity signature based upon 
the execution trace of an execution instance of the primary 
module with a specified execution context. 

With at least one implementation of an integrity ordain 
ment technique, the primary-integrity signature and the near 
replica-integrity signature are compared. With this compari 
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8 
son, it may be determined whether a module primary or 
near-replica—has been modified without actually examining 
the code of a module. 

Although code obfuscation may be used to limit code 
accessibility and to make code modification more difficult to 
accomplish, the tamper-resistance (i.e., protection) afforded 
by one or more implementations, described herein, enables 
detection of alterations to the executable instructions of a 
digital good. Consequently, one or more alternative imple 
mentations may combine code obfuscation with the integrity 
ordainment techniques. 

Rather than employing execution tracing, one or more 
implementations of an integrity ordainment technique, 
described herein, may employ output tracing in a manner 
similar to that described in U.S. patent application Ser. No. 
1 1/275,060, entitled “Integrity Ordainment and Ascertain 
ment of Computer-Executable Instructions”. 

Primary and Near-Replica Modules 
FIG. 1A illustrates an implementation where a copy of a 

primary program module 110 is made to generate a near 
replica program module 130. The primary module 110 may 
be one containing “black code” and/or one with code obfus 
cation. FIG. 2 also shows the primary program module 110 
and its near-replica 130. 

In some implementations, this may be an exact copy— 
without modifications—of the primary. In others, it may be a 
near-copy, which is a copy having some modifications. 
Examples of these modifications are described later. As dis 
cussed later, one purpose of the modifications is to simulate 
the primary module’s execution context for an execution 
instance of the near-replica. 

Execution Context and Signatures 
FIG. 1B illustrates an implementation where a primary 

integrity-signature 112 is generated based upon one or more 
execution instances of the primary module 110 with a known 
execution context 140 (for one or more execution instances). 
That context expressly includes input parameters 142 of the 
module and external factors 144. The execution context 140 is 
known because it is specified and/or recorded for an execu 
tion instance. Signature 112 may be based upon execution 
tracing and/or output tracing. 

FIG. 2 also shows the primary module 110 and its primary 
integrity-signature 112. 

FIG. 1C illustrates an implementation where a near-rep 
lica-integrity-signature 132 is generated based upon one or 
more execution instances of the near-replica module 130 with 
the known execution context 140 (for one or more execution 
instances). Since the context 140 of FIG. 1C for the near 
replica is the context 140 of FIG. 1B for the primary, the 
near-replica-integrity-signature 132 is indistinguishable from 
the primary-integrity signature 112. Signature 132 may be 
based upon execution tracing and/or output tracing. 

FIG. 2 also shows the near-replica module 130 and its 
near-replica-integrity-signature 132. 

In addition, FIG. 2 shows the execution context 140. This 
context includes the input parameters 142 and external factors 
144 for the primary module 110. It also includes the input 
parameters 142 and external factors 144' for the near-replica 
module 130. With at least one implementation, the primary 
module generates a copy (i.e., a record) of its parameters 142 
and external factors 144. The result of that act is represented 
by parameters 142 and external factors 144'. These stored 
parameters 142 and external factors 144' are provided to the 
near-replica 130 when it generates a signature 132. 
Red Module 
FIG.1D illustrates a malicious attack 152 by a digital pirate 

on either a primary or its near-replica module 120 (“primary/ 
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near-replica code 120). Consequently, the computer-execut 
able instructions of the red module 150 are compromised. A 
module having code that has actually been modified (i.e., 
modification has been detected) is called a “red module.” 

Yellow Code 
To continue the metaphor further, a module (such as mod 

ule 160) having code that is suspected of having been modi 
fied is called a “yellow module. It is not known whether such 
code of Such a module is modified or not. 

Integrity Ascertainment 
With at least one implementation of an integrity ascertain 

ment technique, the integrity of a program module of a digital 
good is ascertained. As such, a determination is made regard 
ing whether one or more computer-executable instructions of 
the program module of the digital good have been altered. 
This technique is called “integrity ascertainment, herein. 

Comparison of Signatures 
With at least one implantation, the primary-integrity-sig 

nature 112 of the primary code 110 of a yellow module 160 is 
generated during integrity ordainment. Likewise, with at least 
one implantation, the near-replica-integrity-signature 132 of 
the near-replica code 130 of the yellow module 160 is gener 
ated during integrity ordainment. 
As shown in FIGS. 1E and 1F, these signatures are com 

pared during integrity ascertainment. FIG. 1E shows that if 
there is a match, then the primary 110 and its near-replica 
module 130 remain unmodified. FIG. 1F shows that, other 
wise either the primary 110 or its near-replica module 130 has 
been modified from its original state. 
As shown in FIG. 2, with at least one implementation, the 

signature 112 and 132 are compared by a comparator 210 
which generates a result that goes to a monitor 220. 
Execution and/or Output Tracing 
The exemplary integrity Veracitor may employ execution 

tracing and hashing, output tracing and hashing, or a combi 
nation of both. Generally, with execution tracing and hashing, 
the execution instance of a program module is traced and the 
result of Such is hashed to generate an execution-trace signa 
ture. Generally, with output tracing and hashing, the output of 
a program module is traced and the result of such is hashed to 
generate an output-trace signature. 

Execution tracing and hashing and output tracing and hash 
ing are described in U.S. patent application Ser. No. 1 1/275, 
060, entitled “Integrity Ordainment and Ascertainment of 
Computer-Executable Instructions'. 

Execution tracing and hashing and output tracing and hash 
ing may employ oblivious hashing techniques as described in 
U.S. patent application Ser. No. 1 1/275,060, entitled “Integ 
rity Ordainment and Ascertainment of Computer-Executable 
Instructions'. 

Execution Context 
The exemplary integrity Veracitoris particularly applicable 

to program modules (i.e., functions) that are not necessarily 
deterministic with respect to input parameters alone. Instead, 
the exemplary integrity Veracitor factors in the entire context 
of a module’s execution instance. 

Ofcourse, those factors include the input parameters of the 
module, but it may also include factors external to the module 
itself. Examples of such factors include virtual memory 
states, operating system states, input/output (I/O) system 
calls, other processes, system environment stacks, and heaps. 
Other examples include reading static global variables, read 
ing files or other external data, and the system clock. 

Presumably, an execution of a primary module and its exact 
replica will yield identical signatures (e.g., oblivious hashes) 
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10 
if each have the identical execution context. However, the 
implementation of that statement is not as Straightforward as 
it seems. 

Execution Context Record 
First, determining a closure of global data that a module 

accesses and modifies is an undecidable problem in the 
abstract, and an extremely difficult problem in practice. Sec 
ond, for a multi-threaded application, the global data that is 
modified during a forced call there within may cause other 
threads to misbehave. Although one may try Suspending other 
threads during a forced call or play with virtual memory 
protection, these techniques also reveal to the hackers the 
protection scheme and location. 

In addition, pre-determining a known set of execution con 
texts in order to stress test a module is not easily automated, 
for the same reason why it is difficult to determine the closure 
for a module’s global data access. At best, one may design 
semi-automatic tools to help programmers generate the set of 
known execution contexts. That may just impractical. 

Instead of forced calls with known execution contexts, one 
may try to Verify a module as it is being invoked naturally. In 
order to do this, a near-replica of the primary module is 
employed to “replay its execution, and thereby obtain and 
Verify the resulting signature. The primary module—within 
which may be embedded hidden code (such as that for execu 
tion tracing and hashing) produces a record of its execution 
context in a secret location. 
At some point later, the near-replica is invoked with the 

saved context to generate a signature. Since the execution 
context is captured as the primary executes, arbitrary input 
parameters and global data accesses may be fed to the near 
replica. 

Capturing Execution Context 
Given the same execution context, a module and its replica 

will execute identically and hence produce indistinguishable 
integrity signatures. It is a highly non-trivial task to determine 
at the compile time what global data a module may access 
during its invocation. 
One of the characteristics of a module’s interface with 

external factors is that references to external factors are made 
by individual read and write instructions. With at least one 
implementation, a replica of a module may be modified— 
thereby producing a near-replica—so that its “read instruc 
tions retrieves the actual value read by the primary during its 
invocation. During the near-replica's invocation, it does not 
simply read a value from the same location from which the 
primary read. That is because that value may have changed 
since the primary read it. Rather, the near-replica retrieves the 
actual value read by the primary during its invocation from a 
specified memory location (i.e., trace record). 
As shown in FIG. 3, every read from an external source 

(e.g., a heap) of a primary module 310 places the result of the 
read in a trace record (such as record 320 of FIG. 3), which 
corresponds to that primary module. Similarly, every write to 
an external source results in the to-be-written value placed 
similarly in the trace record. With at least one implementa 
tion, the trace record is organized in a first-in, first-out (FIFO) 
a. 

As shown in FIG. 3, in the near-replica module 330, every 
read instruction (of the primary module) that gets data from 
an external source (e.g., a heap) is converted into a retrieval 
operation (within the near-replica) from the corresponding 
trace record (such as record 320 of FIG.3). In other words, the 
read instructions (from an external source) of the primary 
module are converted to retrieval instructions from the corre 
sponding trace record within the near-replica module. 
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Similarly, every write instruction (of the primary module) 
that stores data to an external Source extracts a value from the 
trace record and compares the value with that it is Supposed to 
write. In other words, the write instructions (to an external 
location) of the primary module are converted to retrieval & 
check instructions from the corresponding trace record within 
the near-replica module. 

At least one implementation employs an unbounded trace 
record because the primary module may contain a loop that 
may generate many insertions to the trace record. 

With at least one implementation, the trace record used for 
storing the read and write results may be allocated for the 
entire module as illustrated in FIG. 3. 

Hiding the Near-Replica 
A clever attacker may be able to spot the near-replica 

module within the digital good. To hide the location of a 
near-replica module, the basic blocks of the near-replica 
module may be broken up and spread throughout the some 
portion of the digital good. 
DRM Distribution Architecture 
A digital rights management (DRM) distributionarchitec 

ture produces and distributes digital goods in a fashion that 
renders the digital goods resistant to many known forms of 
attacks or makes such attacks detectable. 

Digital Goods 
Essentially any type of digital good may be protected using 

this architecture, including Such digital goods as Software, 
audio, video, and other content. For discussion purposes, 
many of the examples are described in the context of software 
goods and in particular goods that include computer-execut 
able instructions. However, the techniques described herein 
may be effective for other digital goods (such as audio data, 
video data, and other forms of multimedia data) if they 
include Some form of computer-executable instructions. 
Architecture 

FIG. 4 shows a DRM distributionarchitecture 400 in which 
unprotected (i.e., modification-undetectable) digital goods 
are transformed into protected (i.e., modification-detectable) 
digital goods and distributed in their protected form. This 
involves the employment of integrity ordainment, as 
described here. 
The architecture 400 has a developer/producer/provider 

system 402 that develops or otherwise produces the protected 
good and distributes the protected good to a client 404 via 
some form of distribution channel 406. The protected digital 
goods may be distributed in many different ways. For 
instance, the protected digital goods may be stored on a 
computer-readable medium 408 (e.g., CD-ROM, DVD, 
floppy disk, etc.) and physically distributed in some manner, 
Such as conventional vendor channels or mail. Alternatively, 
the protected goods may be downloaded over a network (e.g., 
the Internet) as streaming content or files 410. 

The developer/producer System 402 has a memory (e.g., 
memory 420 and 460) to store an original module 105 (i.e., 
clear code) from a digital good, as well as a protected module 
120. Using the integrity ordainer 470, the protected module 
120 is generated from the original module 105 (i.e., clear 
code). With at least one implementation, the protected mod 
ule includes a primary module 110 and its near-replica mod 
ule 130. 

The system 402 also has a production server 430 that 
transforms the clear code 110 into the green code 130 that is 
suitable for distribution. The production server 430 has a 
processing system 432 and implements an integrity ordainer 
470. 
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12 
The integrity ordainer 470 is the exemplary integrity 

ordainer of the exemplary integrity Veracitor, described 
herein. 

Alternatively, the processing system 432 may include an 
obfuscator 434. The obfuscator 434 obfuscates the digital 
good. While obfuscation makes it extremely difficult for 
pirates to modify the original digital goods, it does not prevent 
it. A pirate may fool a conventional obfuscator and modify the 
digital good without detection. 
The developer/producer system 402 is illustrated as a 

single entity, with memory and processing capabilities, for 
ease of discussion. In practice, however, the system 402 may 
be configured as one or more computers that jointly or inde 
pendently perform the tasks of transforming the original digi 
tal good into the protected digital good. 
The client 404 has a secure processor 440, memory 442 

(e.g., RAM, ROM, Flash, hard disk, CD-ROM, etc.), one or 
more input devices 444 (e.g., keyboard, joystick, Voice rec 
ognition, etc.), and one or more output devices 446 (e.g., 
monitor, speakers, etc.). The client may be implemented as a 
general-purpose computing unit (e.g., desktop PC, laptop, 
etc.) or as other devices, such as set-top boxes, audio/video 
appliances, game consoles, and the like. 
The client 404 runs an operating system 450, which is 

stored in memory 442 and executed on the secure processor 
440. Operating system 450 represents any of a wide variety of 
operating systems, such as a multi-tasking open platform 
system (e.g., a “Windows'-brand operating system from 
Microsoft Corporation). 

Alternatively, the operating system 450 may include a local 
integrity ascertainer 452 that evaluates the digital goods (i.e., 
yellow code) prior to their utilization to determine whether 
the goods have been tampered with or modified. The local 
integrity ascertainer 452 is the exemplary integrity ascer 
tainer (in whole or in part) of the exemplary integrity Veraci 
tor, described herein. In particular, the local integrity ascer 
tainer 452 is configured to analyze the various portions 
according to the tamper-resistance (i.e., protection) scheme 
of the exemplary integrity Veracitor. 
The local integrity ascertainer 452 includes code portions 

that may be executed in these most secure areas of the oper 
ating system and secure processor. Although the local ascer 
tainer 452 is illustrated as being integrated into the operating 
system. 450, it may be implemented separately from the oper 
ating System. 

In the event that the client detects some tamperactivity, the 
secure processor 440 acting alone, or together with the oper 
ating system 450, may decline to execute the Suspect digital 
code. For instance, the client may determine that the software 
product has been modified because the evaluations performed 
by the ascertainer 452 are not successful. In this case, the local 
ascertainer 452 informs the secure processor 440 and/or the 
operating system. 450 of the Suspect code and the secure 
processor 440 may decline to run that software product. 

It is further noted that the operating system. 450 may itself 
be the protected digital good. That is, the operating system 
450 may be modified with various tamper-resistance (i.e., 
protection) schemes to produce a product that is difficult to 
copy and redistribute, or at least makes it easy to detect Such 
copying. In this case, the secure processor 440 may be con 
figured to detect an improper version of the operating system 
during the boot process (or at other times) and prevent the 
operating system from fully or partially executing and obtain 
ing control of system resources. 

For protected digital goods delivered over a network, the 
client 404 implements a tamper-resistant Software (not shown 
or implemented as part of the operating system 450) to con 
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nect to the server 402 using an SSL (secure sockets layer) or 
other secure and authenticated connection to purchase, Store, 
and utilize the digital good. The digital good may be 
encrypted using well-known algorithms (e.g., RSA) and com 
pressed using well-known compression techniques (e.g., ZIP 5 
RLE, AVI, MPEG, ASF, WMA, MP3). 
Methodological Implementations of the Exemplary Integrity 
Veracitor 

FIGS. 5 and 6 show methodological implementations of 10 
the exemplary integrity Veracitor performed (in whole or in 
part) by an integrity Veracitication system. These implemen 
tations may be performed by embodiments of the integrity 
ordainer 470; an integrity ascertainment system; and/or a 
computing environment like that shown in FIG. 13. These 
methodological implementations may be performed in Soft 
ware, hardware, or a combination thereof. 

FIG. 5 shows a methodological implementation of the 
exemplary integrity ordainer performed (in whole or in part) 
by the integrity ordainer 470. 

At 510, the exemplary integrity ordainer modifies original 
primary module of a digital good by Strategically inserting 
hidden code (“black code’) therein. At 512, it produces a 
replica of the modified primary module. 

At 514, the replica is altered to generate a near-replica 
where the read/write instructions are replaced with instruc 
tions the retrieve? retrieve-and-check from a trace record. At 
516, the near-replica is hidden within the digital good. At 520, 
this process ends. 

FIG. 6 shows a methodological implementation of the 
exemplary integrity ascertainer performed (in whole or in 
part) by an integrity ascertainment system (e.g., local integ 
rity ascertainer 452). 

At 610, the exemplary integrity ascertainer identifies a 
primary module and its corresponding near-replica module of 
a subject digital good. At 612, it invokes the primary module 
and generating a primary-integrity signature of the primary 
module. 
At 614, the exemplary integrity ascertainer Stores the 

execution context of the execution instance with which the 
primary-integrity signature is generated. It accomplishes this, 
at least in part, by use of a trace record (like that record 320 of 
FIG. 3). At 616, the exemplary integrity ascertainer retrieves 
the execution context of the execution instance with which the 
primary-integrity signature is generated. At 618, it invokes 
the near-replica module and generates a near-replica-integrity 
signature of the near-replica module. At least portions of the 
actions of blocks 616 and 618 are typically performed some 
what coordinated fashion. For example, the exemplary integ 
rity ascertainer may: 5 

invoke the near-replica module with input parameters of 
the execution context; 

while the near-replica module executes, values from the 
trace record (of the execution context) are retrieved; 

after the execution instance of the near-replica module, the 
near-replica-integrity is generated. 

At 620, the primary-integrity signature and near-replica 
integrity signature are compared. If they are indistinguish 
able, then the integrity of the code is confirmed at 630. If they 
are distinguishable, then it is indicated that the code has been 
tampered with at 632. See FIGS. 1E and 1F. At 640, this 
process ends. 
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Code obfuscation and various anti-debugging techniques 

have been used extensively in commercial software to thwart 
piracy attempts. Unfortunately, most of them may be defeated 
by determined hackers (i.e., attackers) within a manageable 
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time period. The more tamper-resistance (e.g., obfuscation) 
techniques that include software, the more difficult it is for the 
hackers to crack the protection. 
Many of the implementations of the exemplary integrity 

Veracitor, described herein, employ a technique called 
"oblivious hashing.” In general, obvious hashing involves 
techniques that, for example, calculate a checksum of a code 
fragment by examining its actual executions rather than read 
ing explicitly the code fragment. 
At least one implementation of the exemplary integrity 

Veracitor, described herein, computes a hash value of the data 
(such as architectural registers) along an execution path of a 
module, thereby implicitly providing a “signature' of the 
modules behavior given its input parameters and execution 
environment. When the hashing computation is seamlessly 
integrated into the original computation flow of the hashed 
module, oblivious hashing provides a stealthy means to Verify 
Software integrity. 
Oblivious Hashing and Verification using Primary/Near-Rep 
lica Model 
At least one implementation takes Snapshots of the inter 

mediate states of the computer-executable instructions within 
a module during an execution instance of the module. The 
Snapshots consist of the values of local variables, and are used 
to compute a hash value that serves as a fingerprint of the 
code. 

Property of oblivious hashing: (1) Computing the integrity 
of a module without reading its code; (2) Having weak colli 
sion resistance in the following sense given a module fand 
its hash value H(f)=h, it is hard to make minor modifications 
to f such that the resulting module f has the same hash value 
H(f)=h. 

Automatic tool may be employed to inject code (e.g., 
“black code’) into the program for taking Snapshots and 
computing the hash value. The format of a program for that 
tool may be used with any level of language, which includes, 
for example: 

abstract syntax trees (AST), 
a high-level intermediate language (e.g., C/C++ Interme 

diate Language (CIL)), 
machine level program binary (e.g., x86 program binary), 

and 
an intermediate language (for example Microsoft Interme 

diate Language (MSIL) for the Microsoft Common Lan 
guage Runtime platform). 

At least one implementation works with a format that has 
compiler front-end produces, for two reasons. First, there is 
adequate information about local variables, expressions, and 
types so that code and variables may be arbitrarily inserted. 
Second, the transformation performed by the compiler back 
end may reasonably obfuscate the traces left by our inser 
tions. 

With at least one implementation, procedural hashing con 
sists of three types of operations: hash-initialization, capture 
and-hash (CH), and hash-output. 
The initialization operation initializes one or more local 

variables, the hash registers, which will hold the result of 
on-going hash computation. These variables are created 
within the target module. A capture-and-hash operation is 
inserted after every expression in the original, un-hashed 
module. It takes the value of the expression and applies to a 
hash register using a checksum operation Such as CRC. Mul 
tiple statements (expressions) in a compound statement (ex 
pressions) are captured and hashed individually. The hash 
output operation writes the content of a hash register to a 
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global store. With at least one implementation, the global 
store is part of a special data structure called trace record (like 
trace record 320 of FIG. 3). 
Any modification of the hashed module is likely to result in 

a different hash value. In essence, an implementation has 
transformed the problem of verifying a module’s code integ 
rity to the problem of verifying the module’s input-output 
behavior. 

Such behavior depends on the execution context, which 
includes input parameters and external factors. External fac 
tors include, for example, global variables, system time, and 
so on, during the life time of the module. A system may 
prepare a set of known execution contexts and force many 
calls on the module, using the predetermined contexts, out 
side the usual control flow of the program. However, such a 
system may only verify "purely-functional” modules— 
which are those without indirect memory references. 

In reality, side effects Such as global memory writes and 
system calls make it extremely difficult to call an arbitrary 
module outside the normal control flow without disrupting 
the correct execution of the program. Most modules in a 
real-life digital good have side effects. 
One seemingly feasible solution is to prepare and restore 

the context that the module accesses and modifies during its 
execution. It roughly involves the following steps in prepar 
ing a forced execution of the module: (1) choosing an execu 
tion context, (2) saving the global data that the module may 
modify, and (3) setting up the global data for the chosen 
execution context. During the execution, some system calls 
are masked off with stubs. After the module returns, the caller 
must restore the global data to before the forced hashing call. 

However, there are several drawbacks with the solution just 
described. First, determining a closure of global data that a 
module accesses and modifies is an undecidable problem in 
the abstract, and an extremely difficult problem in practice. 
Second, for a multi-threaded application, the global data that 
is modified during a forced call there within may cause other 
threads to misbehave. Although one may try Suspending other 
threads during a forced call or play with virtual memory 
protection, these techniques also reveal to the hackers the 
protection scheme and location. 

In addition, pre-determining a known set of execution con 
texts in order to stress test a module is not easily automated, 
for the same reason why it is difficult to determine the closure 
for a module’s global data access. At best, one may design 
semi-automatic tools to help programmers generate the set of 
known execution contexts. That may just impractical. 

Instead of forced calls with known execution contexts, one 
may try to Verify a module as it is being invoked naturally. In 
order to do this, a near-replica of the primary module is 
employed to “replay' its execution, and thereby obtain and 
Verify the resulting signature. The primary module—within 
which may be embedded hidden code (such as that for execu 
tion tracing and hashing) produces a record of its execution 
context in a secret location. 

At some point later, the near-replica is invoked with the 
saved context to generate a signature. Since the execution 
context is captured as the primary executes, arbitrary input 
parameters and global data accesses may be fed to the near 
replica. 

Although static analysis is unnecessary for at least one 
implementation, its use may help reduce overhead. The dia 
gram below illustrates the conceptual steps involved in Veri 
fying a target module using its replica. Note that the two hash 
values are compared by another module, and the comparison 
result is stored in a monitor variable. 
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Capturing the Execution Context with Trace Records 

Given the same execution context, a module and its replica 
will execute identically and hence produce indistinguishable 
integrity signatures. It is a highly non-trivial task to determine 
at the compile time what global data a module may access 
during its invocation. One possible approach is to compute a 
closure of all possible references to the heap a module may 
ever make, and copy the closure to a different location. The 
replica is invoked with the new closure as its global context. 
But this requires, in most cases, a Swizzling of pointers within 
the closure. This is tantamount to performing garbage collec 
tion, and is very difficult to get right with unsafe language 
Such as C and C++. In addition, a lot of unnecessary data may 
be collected. 

Another approach takes advantage of characteristics of a 
module’s interface with external factors. With one such char 
acteristic, references to external factors are made by indi 
vidual read and write instructions. With at least one imple 
mentation, a replica of a module may be modified—thereby 
producing a near-replica—so that its “read” instructions 
retrieves the actual value read by the primary during its invo 
cation. During the near-replica's invocation, it does not sim 
ply read a value from the same location from which the 
primary read. That is because that value may have changed 
since the primary read it. Rather, the near-replica retrieves the 
actual value read by the primary during its invocation from a 
specified memory location (i.e., trace record). 
As shown in FIG. 3, every read from an external source 

(e.g., a heap) of a primary module 310 places the result of the 
read in a trace record (such as record 320 of FIG. 3), which 
corresponds to that primary module. Similarly, every write to 
an external source results in the to-be-written value placed 
similarly in the trace record. With at least one implementa 
tion, the trace record is organized in a first-in, first-out (FIFO) 
a. 

As shown in FIG. 3, in the near-replica module 330, every 
read instruction (of the primary module) that gets data from 
an external source (e.g., a heap) is converted into a retrieval 
operation (within the near-replica) from the corresponding 
trace record (such as record 320 of FIG.3). In other words, the 
read instructions (from an external source) of the primary 
module are converted to retrieval instructions from the corre 
sponding trace record within the near-replica module. 

Similarly, every write instruction (of the primary module) 
that stores data to an external source extracts a value from the 
trace record and compares the value with that it is Supposed to 
write. In other words, the write instructions (to an external 
location) of the primary module are converted to retrieval & 
check instructions from the corresponding trace record within 
the near-replica module. 
At least one implementation employs an unbounded trace 

record because the primary module may contain a loop that 
may generate many insertions to the trace record. 

With at least one implementation, the trace record used for 
storing the read and write results may be allocated for the 
entire module as illustrated in FIG. 3. 

Multi-Record 

The trace record used for storing the read and write results 
may be allocated for the entire module as illustrated in FIG.3 
or a group of instructions as shown in FIG. 7. Herein, the 
former (shown in FIG. 3) is called a single-record and the 
latter (shown in FIG. 7) is called a multi-record. 

FIG. 7 shows a primary module 710 and its near-replica 
module 730. With every read and global write, a copy of the 
read/written value is stored in one of the trace records of the 
logical trace record 720. 
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Using multiple trace records (of the logical trace record 
720) offers the advantage that insertions and extractions look 
like updating and reading a large number of un-related global 
variables, and hence may fool the attackers. Implementing the 
use of multiple trace records are also easy because the trace 
insertion and extraction instructions may be generated that go 
into the primary and near-replica modules. The trace record 
may be tailored to individual instructions. For instructions 
that are not inside a loop, the amount of space they require in 
the trace records is fixed and known at the compile time. The 
trace records for these instructions may simply be collections 
of words instead of a FIFO trace record. 
One may also achieve certain level of stealth with the 

single-record approach. For example, the trace record, in this 
case almost invariably a FIFO trace record TRACE 
RECORD, may be implemented as a splay tree, or a hash 
table, so that a casual peruse of the disassembled code will not 
reveal patterns of instructions for inserting into the FIFO trace 
record. 

Using Encryption 
The values stored in the trace record may be encrypted. 

Using encryption may help hide the fact that the value just 
read from the heap is being stored into another location. The 
cryptography keys may simply be constants or taken from the 
hash values computed along the computation. In addition, 
intermediate hash values may also be stored in the trace 
record so that the near-replica module may verify the primary 
at more than one point along the execution path. 

For example, the primary module may encrypt the value of 
a parameter using the hash register's content up to a specific 
point. In its near-replica, the encrypted value is decrypted 
using the hash register that is calculated at that point. If both 
modules follow exactly the same execution, the value 
decrypted in the near-replica should be the correct value for 
the parameter. 

Similarly, there is a safe transfer of the global variable 
between the primary and near-replica modules. There are 
many ways to create encryption/decryption pairs between the 
primary and the near-replica modules. 

Capturing & Retrieving References 
Typically, read/write instructions reference a parameter, a 

location in the heap, or a location on the stack. However, not 
all read/write instructions may be statically determined to be 
one of these three types. When this situation occurs, either 
inject run-time checks may be inserted to avoid capturing and 
retrieving the access to the Stack or simply act conservatively 
and default to capturing and retrieving the instructions result. 
Also, a module may access a stack variable in a module 
upstream in the calling chain. This may happen when pointers 
to local variables are passed as arguments. This may be 
addressed by treating all indirect accesses in the same way as 
global memory accesses. 

It may be unnecessary to capture every global memory 
reference at times. For example, the primary module may first 
write and then read a variable. The near-replica does not need 
the value of the variable, because it may create the value all by 
itself. But doing this optimization requires some data flow 
analysis, and it is all that clear that the amount of savings in 
memory traffic and footprint will be worth the effort. 

Tamper-Proofing Trace Records 
A trace record is the link of information flow between the 

primary module and it near-replica. In at least one implemen 
tation, this link may be hidden that an attacker cannot easily 
discover the near-replica module. One approach is to insert 
code in other parts of the program to access the trace record, 
and possibly re-arrange its physical layout without changing 
the logical representation. 
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FIG. 8 illustrates this approach. A primary module 810 

inserts values into a trace record 820. A near-replica module 
830 extracts values from the record. Little code snippets (such 
as snippets 841-846) are scattered throughout other portions 
of the digital good. These snippets access the trace record, but 
effectively perform no substantive action. 
The actions of the Snippets are designed to increase the 

information overload that an attacker must process. Since 
these Snippets are accessing the trace record 820, the accesses 
by the primary module 810 and near-replica module 830 does 
not appear to be unique. 

There are virtually an infinite number of ways to re-arrange 
the physical layout of a trace record. For an implementation 
based on linked lists, Swapping the physical locations of two 
nodes is one possible operation. A hash table-based imple 
mentation may use re-sizing and rehashing. An implementa 
tion using a priority tree, where the priority is the order in 
which items are inserted, allows many kinds of re-balancing 
operations. Other possibilities include insertion of extra 
nodes and expansion of one node into multiple nodes. These 
operations require that the extraction operations in the replica 
may recognize extraneous records. 
Interleaved Execution of Near-Replica Modules 
The addition of extraction and comparison instructions in 

the near-replica module, along with removal of procedural 
and system calls, results in a near-replica module that looks 
quite different from the primary module, which has insertion 
instructions. Despite that, a clever attacker may still be able to 
spot a near-replica module. 
To further hide the location of a near-replica module, at 

least one implementation breaks it up into basic blocks and 
spreads them throughout the program and interleaves execu 
tion of the near-replica module along with other modules in 
the program. 

With one implementation employing interleaved execu 
tion, a module is decomposed into chunks. Each chunk con 
sists of one or more basic blocks. The first instruction of a 
chunk may serve as a branch target. In other words, there are 
no branches into the middle of a chunk. The simplest decom 
position is to treat every basic block as a chunk. 

Each chunk is embedded in a host module. One chunk may 
appear in more than one host module. A logical execution is 
carried from a chunk to another when the hosts are executed. 
There are no explicit branches taken between chunks. 

FIG. 9 illustrates an example (in "chunks in the original 
procedure” 900) of how a module may be decomposed into 
chunks and how a logical execution occurs among these 
chunks. The execution sequence of the hosts is unlikely to 
correspond to the required execution order of the chunks. As 
shown in “logical execution flow”950 of FIG.9, the order of 
host module invocation may be host 1, host 3, host 5, host 1, 
host 4, host 6, host 2, host 3, host 1, host 2, and so on. Only the 
ones underlined will invoke the embedded chunks to carry out 
a logical execution of the split module. 
A logical execution may be realized by two devices: a 

transition variable and a local state store. Each chunk is 
assigned a chunk id. A transition variable is established to 
hold theid of next chunk to be executed. It is initialized to the 
id of the first chunk in the module. When a chunk is reached 
in a host, a comparison is made between the chunk's id and 
the transition variable. If they are equal, the chunk is 
executed. At the end of the chunk, or when the chunk needs to 
branch to another chunk, the target chunk's id is saved in the 
transition variable, and execution resumes in the host module. 
As shown in diagram 1000 of FIG. 10, the local state of the 

split module must be preserved between chunk invocations. 
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The host module may be modified to include local variables 
that appear in the pre-split near-replica module, renaming the 
variables if necessary. When execution ends in a chunk, the 
local variables are copied to a secret location which will then 
be picked up by next chunk when it starts. 
An implementation may augment the trace record data 

structure to include storage for the local state and the chunk 
ing state variable. Many techniques used for obfuscating the 
global trace are also applicable to saving and restoring the 
local context. 

Monitors and Propagation Networks 
With at least one implementation, the results of checking 

primary modules against their near-replicas may be stored in 
tamper-resistant variables called monitors. Each checking of 
a primary/near-replica pair updates one or more monitors. 
The monitors may be logically represented as Boolean vari 
ables, although their physical implementation may assume 
different forms, for example, bit vectors, known constants, 
pointers, or invariants on dynamic data structures. A monitor 
is always associated with a set of primary modules. A true 
value indicates that no tampering has been found on the 
monitored primary modules. A false value indicates that at 
least one of them has been found to be compromised. 
Two operations are defined on a monitor: set and test. The 

semantics are just as implied by their names. A monitor may 
be set by two types of agents: verifiers and relays. A verifier 
verifies the integrity of a module and sets the monitor to the 
result of the verification. A relay tests one or more monitors, 
and upon finding at least one monitor in the false state, sets 
one or more monitors to the false state 
As shown in FIG. 11, monitors and relays form a propaga 

tion network. The monitors are the vertices 1110. A directed 
edge exists between two monitors if there is a relay that tests 
one monitor and sets the other. Information on the integrity of 
the program flows in through the verifiers, and is spread 
throughout the network via relays. Besides the relays, actors 
are placed in the program to test Some monitors and trigger 
program failures if the test turns out negative. 
As shown in FIG. 11, a propagation network delays the 

firing of intentional program failures from the moment a 
tampering is discovered. An attack now faces a tremendously 
difficult task of back-tracking the propagation through the 
network to find out which verifier causes the program failure. 
The monitor state need not be Boolean. The monitor may 

have a counter. It records the number of verifiers that have 
detected code tampering. The implementation is slightly 
complicated. 

Forming Cross Dependencies Among Target Modules 
With at least one implementation, there may be a mutual 

Verification among a group of modules. One approach, as 
shown in FIG. 12, is to arrange a number of modules in a 
cycle, make each module call the near-replica of its predeces 
Sor to Verify its integrity. 
A High-Level View and the Hardness Property 

At the high level, at least one implementation creates 
implicit dependencies among various components of a digital 
good. Proper execution of one component depends on the 
code integrity of another component. Integrity dependencies 
may be created among many components in a digital good 
and their existence is invisible to compiler-based static analy 
sis. The only way for an attacker to detect an integrity depen 
dency is to run the program and go through trials and errors by 
running the program. 

With conventional tamper-resistance, an attacker may 
uncover and remove an integrity dependency with a reason 
able amount of patience and the aid of automated tools, unless 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

20 
there is a complex web that ties all these dependencies 
together. An isolated integrity dependency may be discovered 
by modifying the code component and observing the program 
behavior. With thousands of hackers out there, it won't be 
long before all isolated integrity checks are discovered by 
trials and errors. One option is to use these one or both of these 
two orthogonal techniques: postpone the onset of an anoma 
lous behavior and have integrity checks that depend on each 
other. 

Postpone the Onset of an Anomalous Behavior 
The first technique is to postpone the onset of an anomalous 

behavior of the program till several integrity dependencies 
have failed. This feature prevents an attacker from pin-point 
ing the integrity dependencies that are embed in the program. 
To see how this work, assume that code components (or 
modules) C1, C2, ..., and CL have embedded within them 
oblivious hashing checks (like that described herein), and that 
the execution state of Ci depends on the integrity of Ci-1. 
Although Ci need not be called as a result of Ci-1, there 
should be at least a non-zero probability (e.g., 20%) that Ci 
runs sometime after Ci-1 is invoked; it is entirely possible 
that between the invocation of Ci-1 and that of Ci, Ci-1 and 
other code components are called. What this means is that if 
the attacker modifies code block C1, with a probability close 
to 1 the execution state of C2 will become different from that 
if C1 has not been tampered with. 

Furthermore, there will be many code blocks including 
other Cis, which may run immediately after Ci is called. If a 
system is designed in Such a way that the program starts to 
exhibit anomalous behaviors after the modification (corrup 
tion) of Ci is propagated through at least L links, the attacker 
is faced with a tremendous difficulty to determine what these 
links are. The attacker has at hand a list of module calls, 
starting from C1 and ending at CL. 

All the attacker may infer is that his modification of C1 
causes CL to fail. This information is not enough for the 
attacker to know what the correct fixes should be, because in 
a way information is propagated and mutated along L links 
before it finally reaches CL. In order to learn exactly what has 
happened, the attacker essentially has to determine all the 
intermediate links from C1 to CL By making it very difficult 
to backtrack from the failure point, the amount of work an 
attacker has to perform in discovering the integrity checks is 
significantly increased. 

Integrity Checks that Depend on Each Other 
The second defensive technique, as already alluded to 

above, is to make integrity checks depend on each other. A 
cyclic dependency is created for a group of modules whose 
integrity is to be ensured. For example, a group of modules 
C1, C2 ... and CL may form an integrity dependency cycle 
C1->C2 ... -->CL-sC1 Such that if one or more modules in 
the cycle are tampered with, the “corruption' will propagate 
along the cycle and result in corruption, and eventually mal 
behavior of other modules on the cycle. Given N number of 
protected modules, there are roughly N2 number of such 
cycles in the program. An attacker must discover all cycles 
containing a modulef, and figure how to modify the modules 
on the cycles in order to modify or remove f without causing 
the program to fail. 
Exemplary Computing System and Environment 

FIG. 13 illustrates an example of a suitable computing 
environment 1300 within which an exemplary integrity 
Veracitor, as described herein, may be implemented (either 
fully or partially). The computing environment 1300 may be 
utilized in the computer and network architectures described 
herein. 
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The exemplary computing environment 1300 is only one 
example of a computing environment and is not intended to 
Suggest any limitation as to the scope of use or functionality 
of the computer and network architectures. Neither should the 
computing environment 1300 be interpreted as having any 
dependency or requirement relating to any one or combina 
tion of components illustrated in the exemplary computing 
environment 1300. 
The exemplary integrity Veracitor may be implemented 

with numerous other general purpose or special purpose com 
puting system environments or configurations. Examples of 
well known computing systems, environments, and/or con 
figurations that may be suitable for use include, but are not 
limited to, personal computers, server computers, thin clients, 
thick clients, hand-held or laptop devices, multiprocessor 
systems, microprocessor-based systems, set top boxes, pro 
grammable consumer electronics, network PCs, minicom 
puters, mainframe computers, distributed computing envi 
ronments that include any of the above systems or devices, 
and the like. 
The exemplary integrity Veracitor may be described in the 

general context of computer-executable instructions, such as 
program modules, being executed by a computer. Generally, 
program modules include routines, programs, objects, com 
ponents, data structures, etc. that perform particular tasks or 
implement particular abstract data types. The exemplary 
integrity Veracitor may also be practiced in distributed com 
puting environments where tasks are performed by remote 
processing devices that are linked through a communications 
network. In a distributed computing environment, program 
modules may be located in both local and remote computer 
Storage media including memory storage devices. 
The computing environment 1300 includes a general-pur 

pose computing device in the form of a computer 1302. The 
components of computer 902 may include, by are not limited 
to, one or more processors or processing units 904, a system 
memory 1306, and a system bus 1308 that couples various 
system components including the processor 1304 to the sys 
tem memory 1306. 

The system bus 1308 represents one or more of any of 
several types of bus structures, including a memory bus or 
memory controller, a peripheral bus, an accelerated graphics 
port, and a processor or local bus using any of a variety of bus 
architectures. By way of example, such architectures may 
include an Industry Standard Architecture (ISA) bus, a Micro 
Channel Architecture (MCA) bus, an Enhanced ISA (EISA) 
bus, a Video Electronics Standards Association (VESA) local 
bus, and a Peripheral Component Interconnects (PCI) bus 
also known as a Mezzanine bus. 
Computer 1302 typically includes a variety of computer 

readable media. Such media may be any available media that 
is accessible by computer 1302 and includes both volatile and 
non-volatile media, removable and non-removable media. 
The system memory 1306 includes computer readable 

media in the form of volatile memory, such as random access 
memory (RAM) 1310, and/or non-volatile memory, such as 
read only memory (ROM) 1312. A basic input/output system 
(BIOS) 1314, containing the basic routines that help to trans 
fer information between elements within computer 1302, 
such as during start-up, is stored in ROM 1312. RAM 1310 
typically contains data and/or program modules that are 
immediately accessible to and/or presently operated on by the 
processing unit 1304. 

Computer 1302 may also include other removable/non 
removable, Volatile/non-volatile computer storage media. By 
way of example, FIG. 13 illustrates a hard disk drive 1316 for 
reading from and writing to a non-removable, non-volatile 
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magnetic media (not shown), a magnetic disk drive 1318 for 
reading from and writing to a removable, non-volatile mag 
netic disk 1320 (e.g., a “floppy disk’), and an optical disk 
drive 1322 for reading from and/or writing to a removable, 
non-volatile optical disk 1324 such as a CD-ROM, DVD 
ROM, or other optical media. The hard disk drive 1316, 
magnetic disk drive 1318, and optical disk drive 1322 are each 
connected to the system bus 1308 by one or more data media 
interfaces 1326. Alternatively, the hard disk drive 1316, mag 
netic disk drive 1318, and optical disk drive 1322 may be 
connected to the system bus 908 by one or more interfaces 
(not shown). 
The disk drives and their associated computer-readable 

media provide non-volatile storage of computer readable 
instructions, data structures, program modules, and other data 
for computer 1302. Although the example illustrates a hard 
disk 1316, a removable magnetic disk 1320, and a removable 
optical disk 1324, it is to be appreciated that other types of 
computer readable media which may store data that is acces 
sible by a computer. Such as magnetic cassettes or other 
magnetic storage devices, flash memory cards, CD-ROM, 
digital versatile disks (DVD) or other optical storage, random 
access memories (RAM), read only memories (ROM), elec 
trically erasable programmable read-only memory (EE 
PROM), and the like, may also be utilized to implement the 
exemplary computing system and environment. 
Any number of program modules may be stored on the hard 

disk 1316, magnetic disk 1320, optical disk 1324, ROM 1312, 
and/or RAM 1310, including by way of example, an operat 
ing system 1326, one or more application programs 1328, 
other program modules 1330, and program data 1332. 
A user may enter commands and information into com 

puter 1302 via input devices such as a keyboard 1334 and a 
pointing device 1336 (e.g., a “mouse'). Other input devices 
1338 (not shown specifically) may include a microphone, 
joystick, game pad, satellite dish, serial port, Scanner, and/or 
the like. These and other input devices are connected to the 
processing unit 1304 via input/output interfaces 1340 that are 
coupled to the system bus 1308, but may be connected by 
other interface and bus structures, such as a parallel port, 
game port, or a universal serial bus (USB). 
A monitor 1342 or other type of display device may also be 

connected to the system bus 1308 via an interface, such as a 
video adapter 1344. In addition to the monitor 1342, other 
output peripheral devices may include components such as 
speakers (not shown) and a printer 1346 which may be con 
nected to computer 1302 via the input/output interfaces 1340. 
Computer 1302 may operate in a networked environment 

using logical connections to one or more remote computers, 
Such as a remote computing device 1348. By way of example, 
the remote computing device 1348 may be a personal com 
puter, portable computer, a server, a router, a network com 
puter, a peer device or other common network node, and the 
like. The remote computing device 948 is illustrated as a 
portable computer that may include many or all of the ele 
ments and features described herein relative to computer 
1302. 

Logical connections between computer 1302 and the 
remote computer 1348 are depicted as a local area network 
(LAN) 1350 and a general wide area network (WAN) 1352. 
Such networking environments are commonplace in offices, 
enterprise-wide computer networks, intranets, and the Inter 
net. 

When implemented in a LAN networking environment, the 
computer 1302 is connected to a local network 1350 via a 
network interface or adapter 1354. When implemented in a 
WAN networking environment, the computer 1302 typically 
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includes a modem 1356 or other means for establishing com 
munications over the wide network 1352. The modem 1356, 
which may be internal or external to computer 1302, may be 
connected to the system bus 1308 via the input/output inter 
faces 1340 or other appropriate mechanisms. It is to be appre 
ciated that the illustrated network connections are exemplary 
and that other means of establishing communication link(s) 
between the computers 1302 and 1348 may be employed. 

In a networked environment, such as that illustrated with 
computing environment 1300, program modules depicted 
relative to the computer 1302, or portions thereof, may be 
stored in a remote memory storage device. By way of 
example, remote application programs 1358 reside on a 
memory device of remote computer 1348. For purposes of 
illustration, application programs and other executable pro 
gram components such as the operating system are illustrated 
herein as discrete blocks, although it is recognized that Such 
programs and components reside at various times in different 
storage components of the computing device 1302, and are 
executed by the data processor(s) of the computer. 
Computer-Executable Instructions 
An implementation of an exemplary integrity Veracitor 

may be described in the general context of computer-execut 
able instructions, such as program modules, executed by one 
or more computers or other devices. Generally, program mod 
ules include routines, programs, objects, components, data 
structures, etc. that perform particular tasks or implement 
particular abstract data types. Typically, the functionality of 
the program modules may be combined or distributed as 
desired in various embodiments. 

Exemplary Operating Environment 
FIG. 13 illustrates an example of a suitable operating envi 

ronment 1300 in which an exemplary integrity Veracitor may 
be implemented. Specifically, the exemplary integrity Veraci 
tor(s) described herein may be implemented (wholly or in 
part) by any program modules 1328-1330 and/or operating 
system 1326 in FIG. 13 or a portion thereof. 
The operating environment is only an example of a Suitable 

operating environment and is not intended to Suggest any 
limitation as to the scope or use of functionality of the exem 
plary integrity Veracitor(s) described herein. Other well 
known computing systems, environments, and/or configura 
tions that are suitable for use include, but are not limited to, 
personal computers (PCs), server computers, hand-held or 
laptop devices, multiprocessor Systems, microprocessor 
based systems, programmable consumer electronics, wire 
less phones and equipments, general- and special-purpose 
appliances, application-specific integrated circuits (ASICs), 
network PCs, minicomputers, mainframe computers, distrib 
uted computing environments that include any of the above 
systems or devices, and the like. 
Computer Readable Media 
An implementation of an exemplary integrity Veracitor 

may be stored on or transmitted across Some form of com 
puter readable media. Computer readable media may be any 
available media that may be accessed by a computer. By way 
of example, and not limitation, computer readable media may 
comprise "computer storage media' and “communications 
media.” 
“Computer storage media' include volatile and non-vola 

tile, removable and non-removable media implemented in 
any method or technology for storage of information Such as 
computer readable instructions, data structures, program 
modules, or other data. Computer storage media includes, but 
is not limited to, RAM, ROM, EEPROM, flash memory or 
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other memory technology, CD-ROM, digital versatile disks 
(DVD) or other optical storage, magnetic cassettes, magnetic 
tape, magnetic disk storage or other magnetic storage devices, 
or any other medium which may be used to store the desired 
information and which may be accessed by a computer. 

“Communication media typically embodies computer 
readable instructions, data structures, program modules, or 
other data in a modulated data signal. Such as carrier wave or 
other transport mechanism. Communication media also 
includes any information delivery media. 
The term "modulated data signal” means a signal that has 

one or more of its characteristics set or changed in Such a 
manner as to encode information in the signal. By way of 
example, and not limitation, communication media includes 
wired media such as a wired network or direct-wired connec 
tion, and wireless media Such as acoustic, RF, infrared, and 
other wireless media. Combinations of any of the above are 
also included within the scope of computer readable media. 

CONCLUSION 

Although the invention has been described in language 
specific to structural features and/or methodological steps, it 
is to be understood that the invention defined in the appended 
claims is not necessarily limited to the specific features or 
steps described. Rather, the specific features and steps are 
disclosed as preferred forms of implementing the claimed 
invention. 

The invention claimed is: 
1. A method for facilitating the tamper-resistance of com 

puter-executable instructions, the method comprising: 
generating a trace record of one or more external reads or 

writes during an execution of a primary program mod 
ule, the trace record comprising values read or written by 
the one or more external reads or writes, such module 
comprising one or more computer-executable instruc 
tions; 

extracting at least one of the values from the trace record 
for an external write during an execution instance of a 
near-replica module of the primary module; 

comparing the value from the trace record to a value to be 
used by the external read by the near-replica module. 

2. A method as recited in claim 1, further comprising 
extracting a value from the trace record during an execution 
instance of another program module. 

3. A computer-readable storage medium having computer 
executable instructions that, when executed by a computer, 
performs a method as recited in claim 1. 

4. A computer comprising one or more computer-readable 
storage medium having computer-executable instructions 
that, when executed by the computer, perform a method as 
recited in claim 1. 

5. A method as recited in claim 1 further comprising: 
obtaining a first execution-identifying signature of the pri 
mary program module; and 

obtaining a second execution-identifying signature of the 
near-replica module, wherein the second execution 
identifying signature is created by retrieving values from 
the trace record. 

6. A method as recited in claim 5 further comprising: 
comparing the first and the second signatures; and 
authenticating the near-replica module if the signatures are 

indistinguishable. 
7. A method as recited in claim 1 further comprising modi 

fying one or more read instructions of the primary program 
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module in the near-replica with an instruction to retrieve from 
the trace record of one or more execution instances of the 
primary program module. 

8. A method as recited in claim 1 further comprising modi 
fying one or more write instructions of the primary program 
module in the near-replica with an instruction to retrieve from 
the trace record of one or more execution instances of the 
primary program module. 

9. A method as recited in claim 1 further comprising adding 
one or more computer instructions for the extracting and 
comparing into the near-replica module. 

10. A method as recited in claim 9 further comprising 
dispersing portions of the near-replica module with the one or 
more added instructions for the extracting and comparing 
throughout the primary module. 

11. A computer-readable storage medium having com 
puter-executable instructions that, when executed by a com 
puter, perform a method comprising: 

executing a primary program module that includes an 
external write, wherein the primary program module 
comprises one or more computer-executable instruc 
tions, the executing producing a trace record comprising 
at least one value written by the external write: 

generating a near-replica module of a primary program 
module by modifying one or more computer-executable 
instructions of a copy of the primary program module: 

executing the near-replica module that includes the modi 
fied external write; 

extracting the at least one value, from the trace record of the 
primary program module, for the external write during 
said executing the near-replica module; and 

comparing the value from the trace record to a value to be 
used by the modified external write by the near-replica 
module. 

12. A computer-readable storage medium as recited in 
claim 11, wherein the method further comprises: 

obtaining a first execution-identifying signature of the pri 
mary program module; and 

obtaining a second execution-identifying signature of the 
near-replica module, wherein the second execution 
identifying signature is created by retrieving values from 
the trace record. 

13. A computer-readable storage medium as recited in 
claim 11, wherein the method further comprises: 

comparing the first and the second signatures; and 
authenticating the near-replica module if the signatures are 

indistinguishable. 
14. A computer-readable storage medium as recited in 

claim 11, wherein the method further comprises modifying 
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one or more read instructions of the primary program module 
in the near-replica with an instruction to retrieve from the 
trace record of one or more execution instances of the primary 
program module. 

15. A computer-readable storage medium as recited in 
claim 11, wherein the method further comprises modifying 
one or more write instructions of the primary program mod 
ule in the near-replica with an instruction to retrieve from the 
trace record of one or more execution instances of the primary 
program module. 

16. A computer-readable storage medium as recited in 
claim 11, wherein the method further comprises adding one 
or more computer instructions for the extracting and compar 
ing into the near-replica model. 

17. A computer-readable storage medium as recited in 
claim 11, wherein the method further comprises dispersing 
portions of the near-replica module with the one or more 
added instructions for the extracting and comparing through 
out the primary module. 

18. A method for facilitating the tamper-resistance of 
computer-executable instructions, the method comprising: 

generating a trace record of one or more execution 
instances of a primary program module comprising at 
least one external write, the trace record comprising at 
least one value written by the external write: 

generating a near-replica module of a primary program 
module by modifying one or more computer-executable 
instructions of a copy of the primary program module, 
wherein the one or more write instructions of the pri 
mary program module are modified in the near-replica 
with an instruction to retrieve the at least one value from 
the trace record and compare the value from the trace 
record to a value to be used by the modified external 
write; and 

dispersing portions of the near-replica module with one or 
more added instructions for the retrieving and compar 
ing throughout the primary module. 

19. A method as recited in claim 18 further comprising 
executing a primary program module that includes an 

external write, wherein the primary program module 
comprises one or more computer-executable instruc 
tions; 

extracting a value, from a trace record of the primary pro 
gram module, for the external write during said execut 
ing the near-replica module; and 

comparing the value from the trace record to a value to be 
used by the modified external write by the near-replica 
module. 


