Office de la Propriete Canadian CA 2918136 A1 2016/07/19

Intellectuelle Intellectual Property
du Canada Office (21) 2 91 8 136
- organisme An agency of 12y DEMANDE DE BREVET CANADIEN
d'Industrie Canada Industry Canada
CANADIAN PATENT APPLICATION
(13) A1
(22) Date de depot/Filing Date: 2016/01/18 (51) CLInt./Int.Cl. G11C 16/10 (2006.01)
(41) Mise a la disp. pub./Open to Public Insp.: 2016/0//19 (71) Demandeur/Applicant:
(30) Priorité/Priority: 2015/01/19 (US62/104,911) QUEEN'S UNIVERSITY AT KINGSTON, CA

(72) Inventeurs/Inventors:
HUA, JAY, CA;
YOUSEFI, SHAHRAM, CA

(74) Agent: SCRIBNER, STEPHEN J.

(54) Titre : MEMOIRE A ECRITURE UNIQUE A TAUX DE SOMMATION ELEVE
(54) Title: HIGH SUM-RATE WRITE-ONCE MEMORY

Sum-rate vs t wriles

@
©
iy
-
—
()

L i 6 -Vaakobi Biock Code [3 5]

i A S S ;|0 Postion Modulation [36]

z 3 4 H) Y4 8 9 10
t wriles
(57) Abregé/Abstract:

Provided are modified one-hot (MOH) constructions for WOM codes with low encoding and decoding complexity, that achieve
high sum-rates. Features include maximizing writing of data information values for successive rewrites, all-zero and all-one cell
state vectors that represent a unigue data information value that can be written for many generations, a very high number of writes,
and does not sacrifice capacity. One embodiment comprises ordered or unordered MOH code that approaches the upper-bound
for large n wits. According to the embodiments, before an erasure Is needed, the majority of the wits are encoded, which provides
level wearing and maximizes life of cells.

SRR f f f []
R RN N
-_h.;’:.? IO - LA L
SN 7 /7
——

I*I] . Paven N o
C an ad a http:/opic.ge.ca + Ottawa-Hull K1A 0C9 - atip.://eipo.ge.ca OPIC 48 @igmr -~

- SR \\:‘b"'m'\-f}._-.:\:h RN A
OPIC - CTPO 191 “l

CA 02918136 2016-01-18

Abstract

Provided are modified one-hot (MOH) constructions for WOM codes with low encoding
and decoding complexity, that achieve high sum-rates. Features include maximizing writing of
data information values for successive rewrites, all-zero and all-one cell state vectors that
represent a unique data information value that can be written for many generations, a very high
number of writes, and does not sacrifice capacity. One embodiment comprises ordered or
unordered MOH code that approaches the upper-bound for large » wits. According to the

embodiments, before an erasure is needed, the majority of the wits are encoded, which provides

level wearing and maximizes life of cells.

- 45 -

10

15

20

25

CA 02918136 2016-01-18

High Sum-Rate Write-Once Memory

Related Application

This application claims the benefit of the filing date of U.S. Application No. 62/104,911,
filed on January 19, 2015, the contents of which are incorporated herein by reference in their

entirety.

Field

This invention relates to methods and constructions for operating a digital memory.

Background

Flash memories are used everywhere to store files, media, and programs due to their
portability. Solid state disks (designed with flash memories) are replacing traditional hard disk
drives due to their superior data read time and transfer rates. Programming a memory cell
(hereinatter referred to as a “cell”) 1s done by electron injection (i.e., hot electron injection creates
an electric field) to increase the voltage incrementally above a charge threshold. Conversely,
erasing 1s done by removing electrons to decrease the charge level to zero. The main disadvantage
1s the limited number of erases (10,000 to 100,000) during the flash lifecycle. The write and
subsequent re-write processes require a suitable block of cells (10°) that allows electron injection
to increase the desired cells from a lower voltage level to a higher voltage level. If there are not
enough suitable cells then an erasure (cell voltages are dropped to the lowest level) 1s needed.
Within a block, any single cell’s voltage level can be increased as needed (i.e., programmed),
however all cells within the block must have their voltage charges lowered 1f an erasure 1s needed.
As a result, data may be erased needlessly, because deleting a single cell 1s impossible without
changing the physical medium completely. Since the main constraint of encoding involves only

increasing a cell’s levels (i.e., cannot decrease), previous work has shown that using permutations

of cells can allow data values to be rewritten.

Basic single cell level (SCL) flash memory uses two cell levels, each respectively

representing either the on state or off state. Currently, multiple level cells (MLC) with four cell

10

15

20

25

CA 02918136 2016-01-18

levels and triple level cell (TLC) with eight cell levels are also used. Current research is focused
on three 1ssues: error correction, interference, and increasing cell sum-rate. Increasing cell sum-
rate 1s of particular interest; however, truly high cell sum-rates have not been achieved, and
current state of the art codes use a high number of cells to achieve a particular sum-rate in

relation to a specified number of writes.

Summary

Provided herein are methods and constructions for operating a digital memory. Relative
to prior methods, the embodiments vastly improve trade-offs between the number of rewrites

before erasures and the amount of encoded data in all the generations.

Embodiments include methods and constructions for WOM and WAM codes with low
encoding and decoding complexity while achieving the highest sum-rates‘possible after
approximately 1000 writes. In the binary embodiments, the constructions achieve the highest
sum-rates for £ =7 and approach the capacity as » and ¢ are increased.

Binary, ternary, and quaternary MOH code embodiments are all within constants 1.44,
3.89 and 6.49 bits in their sum-rates from the capacity in the very worst cases. Since for MOH
codes according to embodiments described herein, t and n are essentially equal, only 1000 cells
are needed to achieve a sum-rate 1.44 bits away from the capacity. This makes cell block sizes

(n) much smaller when compared to the current state of the art WOM codes. Thus,

embodiments are very practical to implement since a typical block size in a flash memory is 10°.

The embodiments also allow very high number of writes and do not sacrifice capacity. Before

an erasure i1s needed, the majority of the writable cells are encoded, such that even wearing ot

cells is achieved, thereby extending the life of the cells.

Decoder embodiments do not need to store the number of writes 1n extra storage units

and can be easily used for any ¢ -ary digital memory system. Encoder and decoder embodiments

have a practical running time complexity that 1s polynomial 1n 7.

Embodiments include one or more of the following features:

1) Achieve very high sum-rate;

10

15

20

25

30

CA 02918136 2016-01-18

2) Before each erasure, at least (n - 1) out of n cells are encoded, such that over time,
substantially all cells are subjected to the same number of writes, and will reach failure after the
same number of writes:;

3) Polynomial 1n n complexity decoding and encoding, wherein no extra wits are needed
to store a generation number;

4) The encoding 1s not complex in that each value encodes the same cell to reach another
value without dependence on a current generation;

S) Allow (n — 1) writes;

6) From 1 and 5, the traditional trade-offs between high sum-rate and high writes are
vastly reduced.

According to one aspect, there 1s provided a method {or operating a digital memory,
comprising: minimizing a number of memory cells encoded for a write operation; and avoiding
erasing memory cells by re~using written memory cells; wherein a sum-rate of the digital
memory 1s maximized.

In certain embodiments, minimizing the number of memory cells or maximizing the sum
rate may require writing more than one cell at some generations.

In another embodiment, minimizing the number of memory cells comprises encoding one
cell for each write operation.

In one embodiment, minimizing the number of memory cells comprises constructing cell
state vectors that are uniquely decodable.

One embodiment further comprises decoding each permutation of memory cells into a
unique value.

One embodiment comprises encoding cells synchronously, wherein a cell state vector 1s

related to a selected generation.

In one embodiment, the digital memory is a write-once memory (WOM), or a write-
asymmetric memory (WAM).

According to another aspect there is provided programmed media for use with a
processor, comprising: a code stored on non-transitory storage media compatible with the
processor, the code containing instructions to direct the processor to operate a digital memory

by: minimizing a number of memory cells encoded for a write operation; and avoiding erasing

10

15

20

25

30

CA 02918136 2016-01-18

memory cells by re-using written memory cells; wherein the code maximizes a sum-rate of the
digital memory.
According to another aspect there 1s provided a digital memory device comprising the

programmed media and digital memory.

Brief Description of the Drawings

For a greater understanding of the invention, and to show more clearly how 1t may be
carried into effect, embodiments will be described, by way of example, with reference to the

accompanying drawings, wherein:

Fig. 1(a) is a diagram representing a flash memory module partitioned into blocks and

pages, according to the prior art;

Fig. 1(b) is a schematic representation within a block of cells of a flash memory module,

according to the prior art;

Fig. 2 is a plot of sum-rates for a binary MOH code and the upper-bound tor WOM

codes;

Fig. 3 is a plot of the difference between the capacity and MOH sum-rate for various ¢
values;

Fig. 4 is a plot showing sum-rates achieved by prior art methods and an MOH code

according to one embodiment;

Fig. 5 is a plot of sum-rates for g -ary MOH codes and upper-bounds for WAM codes;
and
Fig. 6 is a plot showing differences between the upper bound and achieved ternary and

quaternary sum-rates for various ¢.

Detailed Description of Embodiments

According to a broad aspect of the invention, there are provided digital memory devices,
and methods and programmed media for operating a digital memory. The term “operating™ 1s

intended to include writing data to and/or reading data from a digital memory.

(1]

Embodiments described herein include write-once memory (WOM) codes implemented

in memory hardware that include one or features that address deficiencies of previous write-once

-4 -

10

15

20

25

30

CA 02918136 2016-01-18

memory. The one or more features may include one or more of providing very high sum-rates,
maximizing the number of writes before erasures, balancing wear of the cells to ensure proper
data retention and to increase the longevity of flash memory, storing as much information as
possible before an erasure is needed. The embodiments may be applied to, for example, flash
memory with any g cell levels. For example, one embodiment provides WOM codes that
achieve higher sum-rates than currently known, while simultaneously achieving high rewrites.
Embodiments may be constructed in any suitable code that can be executed by a
processor associated with the memory, for controlling operation of the memory. Thus,
embodiments may be implemented 1n any device that uses memory. The executable
programmed instructions for directing the processor to implement embodiments of the invention
may be implemented in one or more hardware modules and/or software modules resident in the
processing system or elsewhere. In one embodiment the programmed instructions may be
embodied on a non-transitory computer readable storage medium or product (e.g., a compact
disk (CD), etc.) which may be used for transporting the programmed instructions to the memory
of the data processing system and/or for executing the programmed instructions. In one
embodiment the programmed instructions may be embedded in a computer-readable signal or
signal-bearing medium (or product) that is uploaded to a network by a vendor or supplier of the
programmed instructions, and this signal or signal-bearing medium may be downloaded through
an interface to the data processing system from the network by end users or potential buyers.
The maximum achievable number of information bits stored per cell for any number of
writes is referred to as the capacity. No practical coding scheme is currently known that
achieves sum-rates that equal the capacity. Increasing the number of rewrites betore an erasure
is needed will prolong the lifespan of a flash memory device, since the number of erasures per
transistor is limited. The primary challenge is to develop efficient coding that can re-use dirty
(written) cells to increase the storage as many times as possible (i.¢., increasing writes) before an
erasure is needed. Currently-known codes use a large number of cells to achieve a particular
sum-rate in relation to the specified number of writes. In contrast, the embodiments described
herein achieve higher sum-rates for the same number of writes, and also use fewer cells. This
means that for the same number # of cells used, the embodiments will multiply the sum-rates

when compared to previously-known codes. In some embodiments, the maximum or upper

bound sum-rate is approached. As described herein, embodiments are based on finite values

10

15

20

25

30

CA 02918136 2016-01-18

rather than values derived asymptotically as » cells approach infinity.

For example, for a typical 16 Megabyte (MB) flash memory storage device without any
coding, the entire device (n = 128,000,000 cells), can allow storage of exactly 16 MB of
Information (per crasure) for just one write. However, in accordance with coding embodiments
described herein, by increasing the sum-rate to, e.g., 1.5, the flash code would now allow 24 MB
of information per erasure spread over multiple writes on the same device. Since a storage
device would incur multiple operations to store segmented information (a typical storage device
retains thousands of smaller files instead of one big file), the increase in sum-rate through such
coding 1s thus highly desirable.,

Previous work (R. L. Rivest and A. Shamir, Inform. and Control, 55:1-19, 1982) showed
a construction for a two-write WOM code using three cells to represent two bits of data. There
have been WOM constructions based on coset coding via linear block codes and lattice coding,
and position modulation techniques. Some non-decodable WOM constructions require
additional knowledge of current data generation (j-th write) to correctly decode, which can be
obtained by using log(z — 1) additional cells, where ¢ is the number of rewrites. In contrast to that

previous work, decodable code embodiments described herein do not require extra storage on the

J-th write, which reduces any overhead.

Embodiments are described herein primarily with respect to WOM codes, where each
cell state 1s either 0 or 1. However, write asymmetric memory (WAM) constructions may also
be made 1n accordance with the approaches described herein. One aspect of the embodiments 1s
based on an approach wherein only one cell is encoded for each write. By just using one cell,
there 1s a reduction 1n the redundancy of representing valid data for many future rewrites. This
approach 1s referred to herein as modified one-hot (MOH) code. As described herein, this
approach achieves higher sum-rates than currently known WOM constructions. As one example,
a complete construction for a 6 write binary code 1s described below. The achieved surﬁ—rate iS
at least 2.102 compared to the previous best known sum-rate of 2.1331 (E. Yaakobi, ef al., IEEE
Trans. Inform. Theory, 58:5985-5999, 2012). For writes greater than 6, embodiments described
herein achieve the highest sum-rates currently known. Further, embodiments described herein
achieve the highest rates for 1 > 7 and approach the upper bound (i.e., capacity) as n increases to
large values. In addition, as described herein, MOH code construction embodiments achieve the

capacity once ~ (10°) cells are used. Further features include balanced wear of the cells, no-cost

10

15

20

25

30

CA 02918136 2016-01-18

decoding, and low complexity encoding. MOX code addresses the major deficiencies in
achievable sum-rate, maximizing writes, and retention quality by balanced wearing.

For WOM codes, if there are n total cells and only one cell is used for each rewrite, the
largest number of writes, ¢, is upper bounded by n. In general, the more rewrites supported
results 1n lower instantaneous rates for each write. That is, to save more 0 state cells for future
writes, there must be a limit on the number of bits previously written. As a typical example, a
position modulation code for £ = 6 writes requires # = 196 cells. Embodiments described herein
provide improvements by targeting this large amount of overhead, wherein MOH code is optimal

for both r writes and the achieved sum-rate as f = n.

Comparison with Position Modulation
Prior work (Y. Wu and A. Jiang, JEEE Trans. Inform. Theory, 57:3692-3697, 2011)
focussed on small rewrites and moderate data sizes, instead of asymptotic behaviour. The

cardinality of an information set can be written depending on the number of k encoded cells. The
lexical order of a sequence of cells is computed by choosing i spots out of . This gives position
modulation code polynomial encoding and decoding complexity. This construction had the
highest sum-rates for 5 writes at 1.63, 6 writes at 1.71, 8 writes at 1.88, 9 writes at 1.95, and 10
writes at 2.01. For writes up to 50, the sum-rate of position modulation is limited to under 2.8.
For companson, the technique of Rivest and Shamir (1982) referred to above provides a sum-
rate of less than 2 for writes up to 50. In contrast, in the MOH code embodiment in the example
described herein, for 6 writes, only 7 cells are needed compared to 196 cells used by position
modulation. If eight cells are used, a MOH code construction can allow a seven write code with

a sum-rate of at least 2.3563.

Comparison with Coset Coding

Prior work (E. Yaakobi, ef al., IEEE Trans. Inform. Theory, 58:5985-5999, 2012)

provided a flash construction based on linear codes. Linear codes are extensively used for error
detecting and correcting in communication systems. An (n, k) linear code utilizes n bits to

represent & bits of information; there are (n - k) redundant bits or parities for error detection and
n - »
correction. Consider a linear block code with (n — k) x n parity-check matrix H. 2 information

R D ; |
vectors are divided into 2 disjoint cosets. Each coset has 2 elements. For the first write, m of

10

15

20

25

30

CA 02918136 2016-01-18

the n cells are flipped from state “0” to state “1”. This n sequence of the states i1s referred to as

the vector s after the first write. To write a (n — k)-bit message vector y for the second write

T
given the initial state s, the encoder looks for a vector ¢ > s such that cH = y. The message for

the second write is carried by the coset index (syndrome). The encoding and decoding scheme i1s
also polynomial complexity. This work provided a 2-write WOM code using 33 cells to achieve

a sum-rate of 1.49. In contrast, for 31 cells, embodiments described herein achieve a sum-rate of
at least 3.77 (i.e., a 253% increase) while supporting 30 writes. This translates to extending the

memory life by 15 times.

Modified One-Hot Code

The minimal number of cells to encode for each generation (i.e., each write iteration) 1s at
least one cell. In these embodiments, the objective is to provide a code that uses only one cell at
each write, and at the same time 1s able to represent as much as possible, or all, of the data to be
sto;ed. As described herein, this may be achieved by constructing cell vectors that will always
be uniquely decodable. As described hercin, this requires a unique decoder design that decodes
any cell permutation into unique values. In addition, the embodiments include one or more
features such as: encoding and decoding schemes that are generation-independent, such that the
encoding and decoding schemes are always substantially the same regardless of the current
number of writes or cell states; code that 1s synchronous, wherein a cell state vector can only be
reached at a particular generation and is thus decodable without knowing the generation number;
and a construction that can approach or achieve the upper bound using a finite number of cells.

[n one embodiment, for example, the construction uses just 7 cells for 6 writes, and achieves a

sum-rate of at least 2.102. Not only does MOH code achieve higher rates for the same number
of writes, but it also uses much smaller values of n. Using block code construction, Yaakoba, ef
al. (2012), discussed above, achieved a high rate for 2 writes using 33 cells, whereas using two
fewer cells the rate achieved using a MOH code according to one embodiment is doubled and the
number of rewrites supported increases by 15 times.

MOH codes as described herein address the major deficiencies of current write-once
memory, use values of » that are practical and match typical block sizes used 1n industry.
Encoders and decoders use common digital logic and circuitry. Thus, embodiments can be easily

implemented without long development and production times. Embodiments may be constructed

10

15

20

25

30

CA 02918136 2016-01-18

in any suitable code that can be executed by a processor associated with the memory, for
controlling operation of the memory. The embodiments are compatible with existing flash
memory hardware configurations, such as those available from manufacturers including, e.g.,
Intel, Micron, and Spansion. Accordingly, implementation of embodiments is straight-forward
as no hardware re-design is required. However, it will be appreciated that embodiment described
herein and variants thereof may also be implemented in custom hardware configurations and

other digital memory technologies.

NAND Technology

MOH code embodiments as described herein are suitable for use in NAND technologies
such as those manufactured by, e.g., Intel, Micron, and Spansion. NAND technologies usually
can store higher densities (compared to NOR), and are used mainly for mass digital storage
applications in camcorders, smartphones, tablets, flash drives, and solid state disks (SSD).
Single level charge (SLC) cells contain two levels of voltage charge region, which allows one bit
of data capacity (binary one-hot code) per cell. Multilevel charge (MLC) cells contain, for
example, four levels of charge; this allows two bits of data capacity (quaternary one-hot code)
per cell.

Fig. 1(a) shows a typical SLC 128 Megabit (Mbit) NAND memory cell organization, and
Fig. 1(b) is a zoomed in view of a section of a block/page. The structure as shown 1n Fig. 1(a)
illustrates a page of the smallest number of cells that can be read from memory. Fig. 1(b) shows
that any single cell can be programmed as needed. However, the smallest number of cells that
can be crased is a block as shown by the shaded region in Fig. 1(a). Based on devices from
Micron, as one example, a 128 Mbit memory has 1004 to 1024 valid blocks, and 2008 to 2043
for a 256 Mbit version. For eight bit devices, there are 16 bytes (8 bits = 1 byte) usually reserved
for error correcting code (ECC) per page. For 16 bit devices, there are eight words reserved for
ECC per page. A page for the eight bit device consists of 4096 + 128 = 4224 bits, or cells. This
equates to a block of 131072 + 4096 = 135168 cells. A single cell can thus cause an erasure to
135167 other good cells during a block erasure. Larger densities of NAND (e.g., 1 Gbit) use
blocks with 64 pages, 2048 + 64 bytes per page, for a total of 1024 blocks. This equates to a
block of roughly 1081344 cells.

In accordance with embodiments described herein, sum-rates achieved using MOH code

. 9.

10

15

20

25

30

CA 02918136 2016-01-18

greatly outperforms current state of the art coding schemes for these parameters (e.g., cells up to
10°). For mass digital storage manufacturers like Intel®, SSDs can support densities up to 512
(igabytes (GB) and 1 Terabyte (TB). Page sizes for these SSDs are typically 4 Kilobytes (KB)
and 8 KB.

NOR Technology

NOR flash are produced in smaller densities in the range of 2 Mbit to 1 Gbit. The smaller
densities are typically used in low digital storage requirements such as system caches. A 2 Mbit
flash memory may have a block size of 64 KB, and 128 KB to 256 KB for larger densities.
Unlike NAND, each cell can only store one bit of data, and each block is not partitioned into
smaller péges. Physically, NOR cells are zeroed when the bit is high (one). MOH code
embodiments as described herein may be suitable for use in NOR technologies, where, at least in
some cases, additional simple logic may be implemented. For example, an inverter may be used
when decoding and encoding, insofar as NOR may be considered as a logic complement of

NAND.

Flash Model

Linear WOM codes are a broader family of one-hot codes. Rivest and Shamir (1982)
showed that for a fixed size data set M, with cardinality |M|, a valid cell state or codeword will
represent each element m €M. These codes are linear in the sense that codewords (¢/ + ¢2) mod
q 1s another codeword ¢3, where g 1s an integer value. The fixed sum-rate for a restricted M and
g = 2 1s log(n)/4, and the number of ¢ writes supported 1s ¢ = [M|/4. To guarantee |M| for each
successive write, the minimum number of ¢ 1s M/4. That 1s, M| 1s the same for any write.

However, as described herein, if |M] is unrestricted for successive writes, the achievable
sum-rate 1s much higher. That 1s, for each j-th write, [Mi + 1] = |Mi| — 1. The decoder for a
Linear WOM code 1s just the modulo-g sum of all the cells in the programmed state. A
trajectory code is a Linear WOM code where g = M| (A. Jiang, et al., IEEE Trans. Inform.
Theory, 59:4530-4541, 2013), wherein for a fixed M, the decoder is a modulo-A sum of all the

cells in the programmed state.

In contrast, in the embodiments described herein, A 1s not fixed, and such an example 1s

described below and compared with the current state of the art. In addition, as described below,

10 -

10

15

20

25

30

CA 02918136 2016-01-18

Linear WOM codes are expanded for WAM constructions by constructing an alternate decoder

definition.

Notations used herein are as commonly used in WOM codes. The memory cell-state
vector ¢ = (cy, ¢2,..., cn) €{0, 1}"is a g-ary vector of length n. Each ¢ is known as a codeword
that is outputted from an encoder. For a binary cell, injecting a cell’s gate with electrons past
each threshold voltage Vi results,in a cell state increase from “0” to “1”, conversely removing
electrons below Vrx transitions the state down to “0”.

Definitions are as follows:

Definition 1. A cell that can be programmed is a wit. A wit is a g-ary digit in GF(q).

For example, a SL.C wit is a binary digit.

A flash code uses n wits to store information. The encoding and decoding operations are those
of the Galois Field of order ¢, GF(g). For example, in GF(2), multiplication () is a logical AND,
and addition is a logical exclusive OR (XOR).

M; represents the set of data values to be written in the j-th write. The cardinality of a set is
denoted by ||

Definition 2. A code is restricted if | M| is the same for all /.

Definition 3. A code is generation-independent or synchronous if an encoded message
(codeword or the content of the n cells) can only be written at a specific write/generation.

Definition 4. A non-synchronous code allows a codeword to represent different messages
at different generations. It is un-decodable without using extra storage wits to keep track of the
generation number.

Definition 5. A WOM code is a coding scheme used for a two-level cell (SLC) that has
cell states of 0 and 1.

Definition 6. A WAM code 1s a coding scheme used for cell levels that are greater than
two. For example, this this is suitable for MLC and TLC flash memory.

Definition 7. For the sake of brevity, each addition or multiplication required for the
encoding or decodin g processes 1s counted as 1 floating point operation or FLOP.

Definition 8. O(-) 1s the Big-Oh expression for quantifying the asymptotic running time

taken by an algorithm to run as a function of the input size.

- 11 -

10

15

20

25

CA 02918136 2016-01-18

In one embodiment, let ¢; : AMj — GF (q)n and D ; : GF(q)n — M; denote the encoding and

decoding functions of the j-th write. Then the state of the cells for a message m is given by the

g-ary vector ei{m) = ¢ with Di(e1(m)) =m tor the first write.

The instantaneous rate on the j-th write 1s defined to be

Rm... L y (1)

Thus, the sum-rate equation for ¢ writes 1s

Rsum - ZR - (2)
i=

Results are compared to the current highest rates as well as to the upper bound, that 1s, the

capacity (C) as found by Fu and Han Vinck (IEEE Trans. Inform. Theory, 45: 308-313, 1999):

(t+g—-1)
R, <C=log,

Sum

(3)

.)

The proot in Fu and Han Vinck shows that the capacity is the maximum total number ot
information bits stored in one cell during the £ writes. The rate per write of a code 1s equivalent
to the number of information bits stored per cell for the j-th write. For a t-write flash code, the
sum-rate is the equivalent to the total number of information bits stored per cell during the ¢
writes. Thus, it is reasonable to compare the sum-rate to the capacity as both expressions
measure the total number of information bits stored 1n one cell during the ¢ writes.

Standard digital circuitry one-hot encoding requires n = |M,| bits to encode. In these
embodiments one-hot coding is not used for the binary value zero, thus the total number n of wits
needed for an alphabet M; 1s

n=|\M/— 1. (4)
By using just one wit per write, the one-hot code will support at least

t=n— 1= M- 2. (5)

Code Construction

The general approach in the MOH coding embodiments described herein 1s to use a

single wit to encode a message at each write. For example, a decoder is provided to uniquely

decode every possible combination of the codeword ¢ for the n wits. For r wits, there are 2°

~17 -

10

15

20

25

CA 02918136 2016-01-18

combinations. One embodiment does not restrict ¢, that is, the entire cell vector space is used
and any vector is a valid codeword. Such an embodiment relies on a perfect storage channel.
That 1s, there can be no errors in storing the states of a cell. To ensure robustness and reliability,

error control coding must be added on top of the storage code. This contrasts with block codes,

where valid codewords (¢) are usually limited strictly to less than 2. Howevér, many flash
codes are constructed with the foundation of block codes. A reason for this 1s the practical
polynomial-time encoding and decoding complexities. Also, by using coset coding
decomposition, it is possible to find a new codeword such that the new codeword can be written
on top of the previous generation codeword. As used herein, a WOM code is modified one-hot
encoded if and only 1f only one cell 1s used to encode each new message from generation to
generation, and each codeword c¢ is uniquely decodable. For a ¢ vector of weight 1 (first write),
for example, there are n possible unique vectors. A MOH construction may be defined as

follows:

Modified g -ary one-hot construction. Let M, be the set of messages for the j-th

write. Let L be the number of messages in M, and unrestrict the subsequent (¢ —1) writes by

reducing the size of | M ; | by one message for each successive j-th write. In other words,
M =M, -1, for =208 (6)
Let x be defined as follows:
X = (Iog ; L. (7)
Store a vector /m € M ; as the message for the current j-th write and read a vector y e M, the

message stored in the previous write. Use g(m)=¢ and D(¢) = m to denote the encoder and

decoder, respectively. The state is raised at most one wit for each write.

Remark. It is important to note here that L should be the largest information input size
in bits for a given MOH code for two reasons. First, information is mostly transmitted/stored 1n
bits due to real-life practical convenience in digital circuitry. Second, the encoder and decoder
are constructed to operate on each element over the length of a message vector. This means the

same encoder/decoder 1s used as long as the input bits are smaller than the value of x for the

subsequent j=2,...,t, writes. However, if the input size becomes larger for each subsequent

write then we may need to recalculate x to determine the appropriate length of the

~ 13 -

10

15

20

25

CA 02918136 2016-01-18

corresponding message vector. If the value of x increases, then the length of ¢ will also

increase and may not guarantee a successful rewrite.
Remark. The embodiment decreases the size of the information set by one, as shown 1n

(6), to store the maximum theoretical input size for each write of MOH code. In reality, there

will be a rounding down from x to p; where p, = Llog, | M ; | for some subsequent | -th write.

One can use a table to find the correct mapping from the x bits to p, bits. This will result 1n

extra storage costs depending on the mapping. However, it is also possible to hardwire the

mapping from x bits to p. bits in a similar fashion as Meggitt decoders by, for example, using

combinatoric logic gates. Thus, it is assumed that it is possible to find a practical mapping from

x bits to p, bits. An exact mapping may be determined accordingly.

Remark. It is shown below that it 1s bossible to not decrease the information set size.
This may be done by encoding more than 1 wit. It is more beneficial to encode more than 1 wit
during the last write(s), in terms of maximizing the number of information bits stored per cell
during the last few writes. Thus, embodiments can be optimized by allowing more than 1 wit to
be encoded per write. However, investigations using multi-hot encoding for smaller writes

(¢t <50) found that the sum-rate increase was only approximately 1 percent compared to one-hot

encoding. Accordingly, a trade-off exists between this 1 percent sum-rate gain versus the
possible increase in encoding/decoding compiexity.

The g-ary MOH encoder and decoder are defined using addition and subtraction over

GF(q).

Modified g-ary one-hot encoder. A 1-to-1 mapping ot a vector h= (h,h,,~+ h) 101,

denoted by F(), 1s defined as follows:

— 8
- thqx—-k- ()

In other words, let a vector % represent the index i in base g where the first index of £ 1s the

most significant digit. For instance, if ¢ =2, x=3, and h=(1,0,0), then i =4.
The MOH encoder 1s defined by
e(m)=c¢ (9)

-14 -

CA 02918136 2016-01-18

where ¢ is the programmed cell state vector from the previous write but with the wit ¢, raised to

the next available state. In order to find A , we need to solve for each 4, ,k=1,2,--- x, over
GF(g) by the following

ho=m, -y, fork=12L ,x. ‘ (10)
Once h is found, i is determined with (8). Then ¢, 1s raised to the next state. An example of an
encoding sequence is summarized in Algorithm 1. This embodiment uses approximately
2‘—10g2 n | FLOPs to calculate the mapping from hoto , rlog2 n | FLOPs to find each h, , and

thus requires a time complexity of O(logzn). The decoding complexity in Step 1 will be

presented later with the decoder.

Algorithm 1. Steps to encode a message.

— - PP Cap—y a
e T Y Y P T Y T P WV OV T WO VA W o W W W W0 Y e W LR Yy ol o e iy

Step 1. Decode the previous message 7 .

AA
LAMMALAMMLLLARLLALALAASASAL LAl b ol N VY Y YV VWV Y Y Y Y Y A S VWA AAAAAANAANAAAMNMBMAAANANY

ié.Step 3. Find &, for k=1,2,---,x, by using (10).

AAAA A A ABMAASALRAARIBARLAML AML AALA ML
Lo A AR AL AR AL AL L ABE AR AL 44 ey TV VATV v VTV v Y L aaal Y v v
<
L
:E
L
L
-

Step 4. Find i by using (8).

i
:
E

PANILL
y

Step S. Update ¢ by raising ¢, to the next state.

{ WA A Y VA A VA N Y VY VMV VNV VW W W WA W WA W W WA 0 WA oA o 0 W AV o N A W M A A A A AN i e e B s g b BT AW AT AT o e T T A A A A A A A A A A i 2 e i g i e 2 T o g 7 g A e i i g

Moditied g-ary one-het Decoder. In one embodiment, the decoder 1s defined by
D()=m. (11)

To find m, solve for each element in m, denoted by m,, in the following

n, = Zci -}zk(i), for k=12 x, (12)

_ 15 -

CA 02918136 2016-01-18

=

where kkm is the k-th element of £® and 2" is the vector # corresponding to i given by the
mapping of (8). This embodiment works for all ¢ > 2. The number of FLOPs needed to solve
(12) 1s approximately 2z, thus the time complexity is O(nlog,n) without considering the 4 to ;
mapping. With the mapping, the complexity becomes O(n* log, n).

5 An example of a pseudo-code for a binary MOH decoder in given in Algorithm 2.

M A dub A bbb d b b ha b h bbb L 4 YV YWY Y Y Y YY Y Ayvwevw vy

M)

z=
| A

for /=1 to 2%V

Call EncFunc(z, z %'---! A{ I)
2 2
} z=Zz+ |;f|><2

Increment / by 1

end for

Increment £ by 1

end for

P

»)

A PR P Py A
IABBARBARE S ARASAA LA A L AL EEE LA LALLM L LEL R AL ool

A AT VAR WA VARV VARAARAR ASAAL VAATA WALV WL AL LA

Enclunc (x,

w SO0 MO MO o,

while(x less than y) ;

m, =m, +h,
Increment x

end while

................

S i i A A A A A A A A A O R R R R e e X e e O O e St e Dt)

This means that any n-length binary MOH code can be decoded using the same decoding

10 algonthm. Algonthms 1 and 2 may be used as shown in the next two examples. The first

example 1s for the case when g =2 and the second example 1s for the case ¢ = 3.

- 16 -

10

15

20

CA 02918136 2016-01-18

Example 1. To illustrate a series of writes for n =7 and g = 2, parameters for this code

are | M, |=8 and x=3 from (4) and (7). Let y =(0,0,0) be the only element in the set M,

imitially. Each y, is read using the decoding function

7 ’
V=D B, for k=123
i=1

Each m is stored by following the five steps from Algorithm 1. Suppose the message

changes as

(0,0,0) = (0,0,1) = (1,0,0) — (0,0,0),

then the states ¢ = (¢,,¢,,...,¢,) will change as

(0,0,0,0,0,0,0),
\J

(1,0,0,0,0,0,0),
v

(1,0,0,0,1,0,0),

)
(1,0,0,1,1,0,0).

(13)

(14)

(15)

(16)

To show (15) using Algorithm 1: Step 1 of Algorithm 1 requires decoding the previous message

y . Algorithm 2 may be used directly, or a hoto mapping table may be created. Choosing the

latter option, the mapping of F(%) is shown in Table 1.

Table 1: F (5) , the mapping from hotoi.

g”““””"iiihgk;iiﬁ
T ot f
I 010 |
E ol

4 % l‘OO

-17 -

CA 02918136 2016-01-18

"""""" 5 101
— T
""""""""""" 7 111

Start with step 1 of Algorithm 1 with the help of Table 1 as follows:
¢ = (1,0,0,0,0,0,0).
¥, ch‘.-hkm, for k=1,2,---,x,
-

>y, =cC,+c, e, +C,, (17)

—> Y, = +CyF+C+0s,
= 1.

In step 2, ¥y =(0,0,1) 1s not the same as m = (1,0,0) so proceed to step 3 as tollows:

h, =m, —y,, for k=12,--+,x.
—>h =m—
=1,

—>h, =m,—y,,

(18)

K
VG X

> h =m-

Sy

Step 4 requires using Table 1 to map from h=(1,0,1) to i=5. Finally, in step 5 ¢, is raised by
one state and ¢ = (1,0,0,0,1,0,0) results. Next is an example for the case ¢ =3.

Example 2. To illustrate a series of writes for n =8 and, ¢ = 3, parameters for this
code are | M, =9 and x=2 from (4) and (7). Let y =(0,0) be the only element in the set M

10 initially. Each y, is read using the decoding function

S -
y, = Zc.‘. B\, for k=12,
=

>
T 200
4

_18 -

CA 02918136 2016-01-18

Each m is stored using Algorithm 1. Suppose the message m changes as
(0,0) = (2,1) = (1,0) = (0,1),

then the states ¢ = (¢, c,,...,c,) will change as

(0,0,0,0,0,0,0,0), (19)
5 v '
(0,0,0,0,0,0,1,0), (20)
l
(0,0,0,0,0,0,1,1), ViVl
J
10 (1,0,0,0,0,0,1,1). (22)

To show (21) using Algorithm 1, the mapping of F(k) is shown in Table 2.

Table 2. F(f{) , the mapping from htoi.

A e s e

l —
h (hl ? h 2)
1 01
2 02
f 3 10
...... R ;
r 4 1 1 {
f E
5 ‘ 12
6 § 20
|
- et
7 | 21
%
e .
3 ! 22
i

15 Start with step 1 of Algorithm 1 with the help of Table 2 as follows:

- 19 -

10

CA 02918136 2016-01-18

% =(0,0,0,0,0,0,1,0).
Ve = ici -kkm , Jor k=12,
— zéz;+c4+cs)-l+(cé+c.;+cg)°2,
=2, (23)
—>y, =(c +c,+c)1+(cy,+cs+¢;)-2,
=1,

In step 2, y =(2,1) is not the same as m = (1,0) so proceed to step 3 as follows:
h, =m, ~y,, for k=1,2.

> h =m—y,

(24)

Step 4 requires using Table 2 to map from h = (2,2) to i =8. Finally, in step 5 raise ¢, by one

state and ¢ = (0,0,0,0,0,0,1,1) results. To formulate a sum-rate expression, binary and ternary

one-hot code examples are presented in the following sections.
Further examples are provided to illustrate a set of possible message vectors in each M _,
calculating a sum-rate for the MOH code, and determining ¢ for a g -ary MOH code.

Example 3. This example relates to a binary MOH code. Suppose 8 data messages are

to be stored initially, as in Example 1. Table 3 below shows a MOH encoding map for 8 values.

R -
Codeword ¢ =(¢,,¢,,...,¢;) | Message m=(m;,m,,m)

; 0000000 | 000
i U | R
1000000] 001 |
|
0100000 E 010 |

- 20 -

10

15

20

CA 02918136 2016-01-18

—_—_---ii
;_ 0001000 . | 160 ﬁ

i“ M % “;)OOOIO(:’)‘“ 101 W
____________ —
— — !

Note that in MOH coding embodiments, the all-zero codeword (1.¢., 0000000 in Table 3)

18 being used whereas the traditional one-hot encoder does not allow the all-zero codeword. In
fact, a weight of 1 is traditionally used to encode every message and requires n,._,. ., wits to
encode | M | messages in the traditional coding. Thus, for the same data alphabet size, the MOH

coding always uses one fewer wit in the codeword compared to the traditional one. In

mathematical terms, MOH code according to these embodiments uses
n={M] -1
wits. The decoder D : ¢ — m takes the states of the 7 cells as a vector ¢ and outputs a 3 bit

vector m. Using (12), the specific decoder to find each m,, for k£ =1,2,3, 1s simplified as

m, =c,+cs+c,+c,,

M, = Cy +Cy+C + ¢y,

my, =¢ ey +este;.
Using Table 3, 1t is verified that this decoder is valid for the MOH encoding scheme. Parameters
for this code are =7, and t =6 from (4) and (5). It will be shown why ¢ # 7 below. Thatis, a

6-write binary WOM code using 7 wits is constructed to store information.

[1lustrated next is a series of encoding tables for 6 writes. Table 4 shows the i-th

highlighted wit to encode to store a message vector m for the first write. We see {c,}., from

Table 4 for all entries agrees with (12).

- 21 .-

CA 02918136 2016-01-18

Table 4. Encoding map for the first write.

From y/To m . 001 | 010 011 ¢+ 100 | 101 | 110 111

10000100 | 0000010 | 0000001 |

vvvvvvvvvvvvvvvvvvvvv

000 1000000 | 0100000 | 0010000 | 0001000

I o " aini Addub, A 2O FORETUTETCT Y

VRS, SRR, S OO

For example, suppose m = (1,1,1) 1s to be stored in the first write. The initial erased cell

state vector 1s ¢ = (0,0,0,0,0,0,0) and D(c) = (0,0,0) . Using (10}, b= (1,1,1) which corresponds
5 tothe seventh cell. In Table 4 the seventh cell is highlighted when the message (1,1,1) is stored.

Thus 8 different messages are stored in the first write, and nothing is done to ¢ if m = (0,0,0) 1s

to be stored in the first write. Now unrestrict the second write to store as much information as

possible. Table 5 below shows the encoding map for the second write.

10 Table 5. Encoding map for the second write.
From j/Tos | oot | o010 | o1l | 100 | o1 | 110 | 111]
D (1000000=001| na | 1010000 | 1100000 | 1000100 1001000 | 1000001 (1 000010
D (0100000)=010 | 0110000 na 11 00000 | 0100010 0100001 | 0101000 { mooiooéé

2 A AR RARRARARS 3 AR MR

' D (0010000)=011 | 0110000 | 1010000 na 0010001 | 0010010 | 06010100 g 0011000 |
5 | l

----------- T
[

0011000

; :

................. PO AP PPN A A Y A AT T T T T T T PR v A A St e, W SN S

v

R A et baa Y

D (0001000)=100 | 0001100 | 0001010 | 0001001 | na | 1001000 | 0101000

2

FEVPN

e O M)

D (0000100)=101 | 0001100 | 0000101 | 0000110 [1000100 | na | 0010100 | 0100100 |

>

b
C A d L
b, PP PPPITTPPY A A A A AAAAAAAAAAAAAAAAAAAL

AANAAS AN NARAR A, » WA WAAAMAAMAA YV TR Y T Y T TR R T T T T T Y Y RS RSN TSNy T RS

0100010 |0010010| na | 1000010

|
j

| D (0000010)=110| 0000011 | 0001010 | 0000110

D (0000001)=111| 0000011 | 0000101 | 6001001 | 0010001 | 0100001

A AAAS S A_LAAAAANAAAPAAARIR ULARS S, ¥,

A PP,
AIRTRARINI AT & M, o IO o BN L W e o e

AP AT AN AN ARAA AR
Al o) Call ol R Ca ety VETESATETITUTEY

The first column in Table 5 shows the possible states for each ¢ and the decoded y

message after the first write. The first row in Table 5 shows the possible messages m that can
be written. The remaining columns show the highlighted i-th wit to program to store a new
15 message m. If the message does not change, then there are no changes to ¢ . This 1s denoted by

na. Thus, 7 different messages are provided to store for the second write.

.90

CA 02918136 2016-01-18

Table 6. Encoding map for the thaird write.

From y /To m

001 |

e

010

011 100

101

111

E

D (0110000)=001 |

na |

4
i
jl

O e e) B e T D e e e e e O e e)

<
<
-
<
1
«
<
5
" e SRR B

0110100 |

0111000

0110001

0110010 |

: D (0001100)=001

na | 0011100 l 0101100

0001101

6bdiiid7

1

vvvvv

na

0010011 | 0100011

RN, R R iL'_A_LI_‘A_I_lJJ 2 PRE R TR R TR R R R)

f0000111

0001011

vw' VWV Y Y Y Y iyt b Ak

]

[)(1010000) 010

|

nd

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

floloolo

1010001

1011000

1010100?

ades 4 b b de s L

D (0001010)= 010

P P A /A NN DN NN NN SN

1d

:1001010

0001011

ot ai, —y
iy Ao o ot Ty

i
3
;
i
3

0001110

Jrar—

' D (0000101)=010

i0010101?

na §

"1000101

0000111

"0001101g

APAMAMANANAMNVWVINANNAINA

AAAAAAAAAAAAAAAAAAAAAAA

[)(1100000}—011

AAAARAAAAAASASASAL LS LA L LALLIAL B P AALAAMMAR AR AR AAALAAAL o AA LSS bbb ddtA

1 1100001

‘1100010

ANV WAV Y VAV VY

1100100

11010004

*[)(0000110y=011‘

0100110

1000110 |

D (1000100)=100

1000101

na {0000111
‘G

1id

1100100

.;; D (0001001)=011 0101001 i 1001001 | na 0001011 | 0001101
| I . i é S
: - i

;0001110‘
‘ g.

1010100

f

D (0100010)=100]

0100110;

30100011

...

' D (0010001)=100

0010011
5

M OO e e s

N A adO

na

AAasiili Al AR AR A AL ARAAAALALRA A

0110010

RARAL LA LS Al sl

1010001

‘0110001}

[

..

D (1001000)=101

L L A A A A A A AL LA A A A A A A A A A A A

@1001001§

VA VA A WV T r Y vrrveriyery

1001010

I1d

51011000;

. . ._,'1

1101000 |

[3(0010010}-101

§[3(0100001y:101!

»)WW‘

0011010

B

m.wmm

0010011E

E

0100011 1100001;

m) e, B3 A0UN % 4 L UET, LT AT Mmﬁ-.n.“ T "

na

0110001 |

1010010

Ina

i

0110010

2 ;”m AXAL

D (1000001)=110

i
E
»

1

5[)(0101000) 110

0101001
|

:1001001§

OOONVAN IO VIVIVX

1000101 1100001

0101100

1010001?

>
3
:: 3 3
,)WWMWMW Ww.*uu*ﬂuuhww

50111000i

Ild

na

%[3(0010100}:1101

m T AT L O C U T A A AR AR A OO TR L0, IO, IO SRR O QIO s A SO DL UM UC UL, % ERELCE L cly b Cole Ll ool bolor Lol sl od oo aiasid

[)(1000010) 111

0010101 |

:

;
;.

0011100

ST, WA VO AT S O

1000110

D (0100100)=111 |

0100110

|

0110100

Iid

1001010 1010010

1100010“

e a o Rt atas ey . S L

1010100

10101100 01101003

1100100%

e —

1101000

TAAA VUR LAAA R A58 5 00 n e 00

4

[

: i
s AR A e e
3

Nnda

R WY COEE ¥ G ou AT RO SOURUALAUTUAR, L U LS AL LU O UL U i,

-723 -

=a=ad Aot darar

CA 02918136 2016-01-18

D (0011000)=111]0011010] 0011100 | i o

5 e -
ot or MAS AL L L oe el Attt - Cr o S e

j‘omoooi 10110001 na |

Table 6 shows the all possible encoding for the third write. The blank entries 1n the

tables represent the rate loss for the j-th write due to an unwritable message. With each write,

the cardinality of M . is reduced and a mapping from the acceptable n-tuples to p -tuples 1s

established, where p, =?log, | M |?, forj#1. In practice, this means accept 3 bits of mput

information but will need to round down to the nearest power of ¢ . This means 2 bits of input

information for the subsequent writes until the need to round down to 1 bit. This can be done via
a table or proper combinatorial logic designs such as, for example, those used for Meggit
decoders. However, it may be assumed that information input does not need to be in powers of

g and the mapping from a larger data set to a smaller data set is well defined. Thus, it may be

assumed that the controller knows to restrict the input message corresponding to each blank entry
in subsequent encoding tables.
The encoding maps for the fourth, fifth, and sixth writes are shown in Tables 7-9, and the

encoding map for m = (0,0,0) 1s shown later on.

Table 7. Encoding map for the fourth write.

From /Tom | 001 | 010 | o011 | 100 | 101 | 110 | 111 i
D (0011010)=001| na 0111010 z [oo11110 0011011 g i
: | R N . S |
%D(0010101)=0 11 na { j0110101 52 0011101 | ioolom}E
- } N T R URR— SE— mi |
D (0101001)= 001g na }0111001E 0101101 301010111E
f e b - — _..._..,“_,,,,wmm,.}xm,,wm '

D (0100110)=001 {011011(); | 0101110 0100111§ E
|D(0011100)=010| § na | 1011100 0011110 0011101 | E }
E— | I E AR S
D(1001001) ~010 10110011 ra | z1001011 1001101
D(lOOOllO) 0102 1010110! na | 1000111 1001110; i
éD(0010011)-=010§ na |1010011 | ‘ 0011011 | oomm%
| | z

-4 -

CA 02918136 2016-01-18

D (0101100)=011 |

RRRN TSR RPN FR)

vvvvvvvvvvvvvvvvvvvvvvvvvvvvv

1101100

na | 0101101

0101110

L

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

D (0100011)=011

1100011

nd

3

AAAAAAAAAAAAAAAAAA

10100111

0101011

11101010

1a

s
3
|
b
4

;

11001110

—

LA Lo da AAd A Al o b o h o d

=1100101:

—— :

-~ a - W e e aaad caasaa s Lyt e ta Ll o

E

.... A Sl AP g

1000111

1001101

]
3

A PP A A L T LA A A AT T A

T EITE TIITE

L

D (0110100)=100

D (0000111)=100

0110110

f0110101§ na

11110100

]

3.
1.
1

ld

i

1000111

A,
M g L A

1 0010111

3

.« e o 5 g . pes IREEEY LRI EER R 0

L

‘D (1010010)=100

3

D (1100001)=100

- *.'."ﬁé

1010110

11010011

b
<

1id

InA N T, o

1100101
|

<
-
PP AN
VAP AT YY LAAME AL AL AL LLA LA Y AYYYY VAW ¥ v T L4

SR

11d

:

D (0111000)=101

D (0001011)=101

AAAAAAAAAAAA

: O e e k.

AP, & = A A e VY A v bl vt A 4

10111001

NN T X

0111010

)
<
L
‘
b
‘
‘
L
L

+AA Al AR
'

4

4

= v
t A FPRRVPPPPRRPVPTTPPTPVICPRTPPPIVNTINTT VY SELTV VNS §
VYV T T C
4

3 p
. a
9

. a
y

N <
.

2

N o
. 3
S

3

3

" y
b

-

1011001

ia

1110001 |

D (1100010)=101

11101010

YW ARAAMAY WA

D (0110001)=110|

1110010

b
3
]»
3

PR 0

na |1110001 |

1
3
]

D (0001101)=110

| D (1011000)=110

10101101

- prarrap—

é

D (1100100)=110

1101100

1011100

t.ﬁd‘ VA . W

v virteir A eaArvidir W A YW eV t’

1111000

“
-
ar

WM\W

}

|
|
_

W IO RO R R Y KRV VA T T T hd

—r-

na

11001101 |

e prwier v urrane 4

.....

na

na

.......

D (0110010)=111 |

D (0001110)=111 |

0110110 |

i
!

i

0111010

3

vvvvvvvvvvvvvvvvvvvvvvvvvvvv 1 L dded d & 24 v
) ha' i A At At

0011110

t

'

A Ay e 4

11011100

3

3
s

i
s

i
:

0101110

T LELT FPEPEY T

1110100

1101010

A A AAAAAA VA AA T ATV T T T TV T TOTCPT VTV T
: : : 3
t

A
AAASYVAVAWAAASTV AT

1111000

. N
I

:
S
:
s

|

vvvvvvvvvvvvvvvvvvv

na

T O O " T T T T T T T T T T IR WEY T T o

Y

AP AP AR AR,

- 25 -

CA 02918136 2016-01-18

‘Table 8. Encodmg map for the fifth wnite.

5

From y /To m

VANV VY Y Ve vy

*13(1011001) 001

i

011

1111001

R e ah i e e R N VN PR S S R Y Wiy v e Ay ey v Y e
.. P T
»
} r
>
1.
~
4 -
3 1
v
.
b

3 4
i J»
p
4
.
4
: t
4
: 4
4

b .o
3 :

Py Py J - A ~~C

< 3

e —
101

110 ;

111

1011011 |

jj D (1010110)=001

11101103

A mamadaaagmaaagma e Muge

1011110

il

1010111§

D (1101010)=001 |

TYTUCTVrrEiem

1111010

SAARAAALLLS 2

D (1100101)=001 |

PR AA AR

D (0111001)=010

VWA

Ind

-

VUUEUY wwnmmmm‘mimwm
o -
“

":1110101§

..................................

1101110

YWY VYV VYA Y Y A R T Y T Y T T T TV T T T T T T Y

L S T

'1101101?

%1100111§

AA

i

| 1111001 g0111011

o

-
b SEOALSAAASASII A, o COOO AP IEPEI I I I I I XL T P RS PV VU wwe s A
e oy YN
<
4
L
“
1
L
r — 4
1 -
b
4
4
4

N4

(1110110

E e

;0110111 0111110

%13(1101100}=01o W

na

Ol 2 Lo o

bl D

t1101110*

1101101

v ——

[)(1100011) 010

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
vv AAAAARMARANAAS

1110011§

Ia

par—
ey

LA g

M ha LA A o ol) g

é ?1101011
|

1100111

i

D (0111010):011 ,

e e | e)

1111101o§

N4

0111011

501111101

‘.“..._HAAAAA;;n Y 3

....................

..

C
L
C
C
o
AR, v M.L‘--“A.il.u“

:11101012 na

IAMAL AAAAL L AARARR AR Ll L ARE AL L AR A s ud o s dd SR LR L g

<
Aaddr S
7'

0110111

i
z

0111101

Iia

1011101 |

R B E
't
1011110 E

D (0011110)=100]

5[3(0101101}:100

SAAARAARARARARAAAAARAAAN L AALAAAAAABARARA AN

13(1001011) 100

1001111

D (1111000)=100

I N e T o N N e K W K W

1111100

fld

i1010111§

1011011

AA A

1011110E

0111110

VA Y IR YWY

Iid

Id

rlerepeeore waCrrwinteivieinf

1101101?

{1101011

0111101

10110 1

na

td a2 a1y

A RAdd

1011101

n

|
|
E

E
|
|
t

0111101

A . Apdh,

VYA VY T VA WAV VR VR W WA

AAAAAANA

ey wWweww YWY rrrvvew N

i1101110;

Nnd

i

Sebdnh Il A/ AL L A AAAA L

AAAAAAAAAAAA

%13(1110100) 101

W P

11101101

AdA t‘

Ild

A 3, 8, A I M O M NP Y Y Y Y W Y R R WO YTy

e e | ROV W A B ATIEOOT ZXVTEY S P XTI

- 26 -

CA 02918136 2016-01-18

hAA AL ALA LAl dddedend al-a 4 M dndd A4 A4 YWeyrrvirervrry

0011111

0111011

1011011 |

A A A A AL A ash

T v ' o A AR, N, S, e 8 A T S o e e

| D(1001110)--110

11001111 |

10110111

. TR R ———

vvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

1011110

D (1110010)=110'

1110011 |

D(OOlOlll) 11|

0011111

fld

Y

'--I:llllllllll'lll'll“lllll A ||'|||||'......'.q..4'A.AAA.AA.A;‘~AAAAAA1 AAAANALALL AL M

0110111 | 1010111

VARV UV AV VWAV TV Y

ED(0101011)=111 f

A‘A_AA‘AA‘AL < -y - SN AAATCAIC ORI e s ity

W

0101111

0111011

-vv ey

o
y

1001111

TR TR ————

21011101

p
L
-
-
-
o . o .o -
R O AR s ST b d Ly 2 & NPRRAO/ SEE S pEE RS A MA,N ﬁ o Jn I, AL S A B\ ARS8 LSS A
-
A
-
<

...........................

vvvvvvvvvv

D(moool) 111] 1110011

1110101 1111001

1101101 |

1101011

-
-
“-l AR, .Jﬁmnxcﬁ

......................

WACOR,

Table 9. Encoding map for the sixth write.

From y/To m

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

E

010 | 011 100

D(1111100) 001

|
,3
L.
i

101 110

1111101

111

1111110

-
e S L e e W N RO Y

D(lllOOll) 001

;1110111}1111011

.1 .
* Sl

D(lOOllll) =001

I1d
1

1011111 1101111 |

D(llllOlO)-—-OlO

1111011

D(1110101)=010“ |

I T T TET TR N PV @ S R e,

1111101

A A ARAAA A A A At

--

D (0011111)=011

YW YWisYvnwWY WYY Tt e

0111111

1011111r

D (0101111)=010 0111111§ na | 1101111 : |

: | ‘

IR : “““né ,,,,,,,,,,,,, e sant s s s s minsosinsa i ree TS PO YOOV RSSO0 S %

D (1111001)=011] E na l 1111011 1111101
D (1110110)=011 | na | 1110111 1111110

z

:
E
E

D(lOlllOl) 100

| D (1101110)=100

%mmmwwwmwwwmmwwwwwwwwwmw~

1011111 |

...............

1111101

.

vvvvvvvvvvvvvvvvvv

1111110

_27 -

CA 02918136 2016-01-18

EYS T =T T S — E — ,- f
o S I i S | N — | . o
D (1011110)=101 1011111 na 1111110
D (0110111)=101 | 0111111 o 1110111 na M
§D(1101101)——-101; ; - fnbnnf na | 1111101
{ | _ :
5[)(10101155 110 H%#ﬁ‘ElolllfTEWMWH """" o 1110]{;1 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA Cna | T

D (110101 =1 10

AV

RS B,

o vula

1101111

E
 e———
‘:
;
E

o

D(0111110)__110§

Ofﬁﬁiié

ool e

sadaasas ol ot a2 a s naaan s antan o an al ot ot N

D(1011011)-111 '

1011111 |

wale il

KT TN Jv.q.vq.

L

i
——
[

W“““

1111011

na

Co'n=ale oLl

1111110

WAL WA A, S, S S, SR S LSS AL A AL SA ARARA VAA R AAS

1111011

D 100111)—1 1

1110111

e - ﬁf e — : L amenmssennasnan —
§D(0111101)=111 0111111 | | 1111101 na
R R B | I -

 Andantmnd

Now analyze the encoding maps for each write. The

previous message-to-current message for all 6 writes is recorded in Table 10.

Table 10. Encoding for each message.

¢, -th wit to program for each

i — e N ;
.~ From y/To 001 010 1 011 100 101 110 111
|
!] T | I C
| 001 na | & & Cs Cy ! G 1 L
i | |
: | | E : |
;. R R ORI S . : coveeercerevee e orerermre e g i |
, 011 C, C; id C [Ce, ‘E Cs f Cy
E | | | 3 3
A ” 0 X _— qimvm vvvvvvvvvvvvv — . 3 - -A% VLTV A R AR TR AN A VAP reTT .-.1'(-?1 -~ %
| | ’ | - . E | i
ENMMMWWWW]; { i - L ﬂﬂﬂﬂﬂ
z 1 O 1 g L 4 C7 { Cé i C] Inna C3 Cz
I R — j
; 110 Gy | G [c, | G na ¢
_ — ——— - R
111 Cq B S N N T T ¢ fa
— E— »»mmmwwmiw . : 4 o E

-8 -

> -
4
4
b
3
b J .
b : >
Wt L e i RV R ER R S S P RT RE VRV LV ELY VERREER TTRRE NN PAREEEVEE I TR COTERREY. ‘TP AT XLTY,

CA 02918136 2016-01-18

We see {c}_, from Table 10 for all entries agree with (10). The analysis was stopped at

6 writes because two wits are used for the last write to include storing the message m = (0,0,0) .
This is because only ¢ = (1,1,1,1,1,1,1) can be written for the seventh write otherwise. A goal of

the embodiments is to maximize the sum-rate for a ¢-write code. By allowing two wits for the
5 last write, higher sum-rates in terms of ¢ writes are achieved. This is shown below 1n the binary

code analysis section. The results from Table 4 to Table 9 show that there are 16 unique vectors

¢ for each m message. Since there are 2’ =128 total unique ¢ vectors, there must be 16 left to

represent m = (0,0,0). The 16 unique vectors that decode to m = (0,0,0) are shown in Table 11

below. Thus, m = (0,0,0) may be stored 1n 4 difterent generations.

10
Table 11. All vectors that decode to m=(0,0,0).
/0000000 | 1111111 | 0111100 | 1000011 | 0001111 | 1110000 1001100’0110011
| I A W VSN FUOUS ESS—
11010101} 0101010 | 0011001 | 1100110} 0100110 | 1011001 1 0101001 l 1010110
From the encoding map tables, it is clear that to store the message vector (0,0,0) from a
message vector y, the i-th wit corresponding to h = y must be encoded. This 1s summarized
15 below.
Table 12. Writing for m=(0,0,0).
| To m/From ¥ | 001 | 010 | O11 100 101 110 | 111
N 1 Emmmm ’ :
000 ' <, { Cy | 3 ; Cy s | Co 7 %
B S N S e |
Again, the entries for {c }._, in Table 12 agree with (10).
20

Sum-rate Analysis for Binary Codes

A sum-rate expression for binary MOH code is presented. For any n, there are exactly

t = n—1 writes. For each successive j-th write, decrease in data size by 1, as given by (6). This

was shown in Example 3.

~92g -

10

15

20

25

CA 02918136 2016-01-18

Then obtain a simplified sum-rate expression for our MOH code, R, ., as follows:

!
Ryon = .

J=1i

log;2 | M, l 25)

In Example 3, calculate the sum-rate for a binary MOH code with n="7 cells using the following

M, |
| M, |8
M, =7
M, =6,
M, =5
M, |- 4
M= 4

for the 6 writes. This equates to a sum-rate of 2.102 using (25). Recall from Table 9 that the
sixth write can store 3 different messages using 1 wit. However, two wits may be used for the

sixth write. This 1s discussed with reference to Table 13.

Table 13.1 Sum-rates of binary MOH codes by using 1 wit or 2 wits for the last write.

A AR e A A 2 - ey, ey TR WA

E n= 6andzf--6 n=7and =6 | n—-7dnd£—7 5 n=8 and { =7 %

Phradn e e W e we e N AN

2.05 2.102 21856 | 2.2355

............... - UK T TETUCT LI, IR, £ OO
y

b o

The second column in Table 13 shows the sum-rate of the binary code from Example 1 as
calculated using (25). The third column with n=7 and ¢ =7 shows a larger sum-rate than
column two. However, column 1 with #=6 and ¢ = 6 has a lower sum-rate than column two.
This means if a designer of a MOH code wants to achieve a higher sum-rate in terms of ¢, the
last write should use 2 wits. On the other hand, to achieve a higher sum-rate in terms of n, one
wit should be used for all writes. An embodiment allowing two-wit encoding for only the last
write would require the lowest overhead and is the most likely scenarto. This 1s because the
encoder may be instructed to use two-wit encoding once a data alphabet of size 3 in reached.

This would mean the second-to-last write available 1s reached.

- 20 -

CA 02918136 2016-01-18

Performance of a binary MOH code is shown in Fig. 2. Equation (25) was used to

calculate the points for the plot of the dashed curve for various ¢t writes. Equation (3) was used

to calculate the upper-bound of sum-rates for any WOM code for the shown number of ¢ writes.

Let Fg,q=2,3,:-, represent the asymptotic g -ary gap to capacity constant as ¢ goes to infinity.

5 F, denotes the binary gap to capacity constant as follows:

r

Proof. Using change of variable | M . |=/ in the above finite sum,

pr—

¢

lim| log,(1+0)-) - ;
i

{—0

prore—

= lim| log, (1+¢)—

{—r<0

-

10 = 1im| log, (1+¢)—-

§ 300

r—#

= lim| log, (1+17)~

{—coC

.

r 1Y
!

=C—Rypoy
= lim!ilogz (1+1¢)— Z
{~>»a0 J=1
_ ~ |.44,
In2

log, (1M,)

.

fi log, (/)

2 1

el

e

(' 5 B

log, ﬂf

N2 /0

— 1im . 0
§ 20 4

uuuuuuuuuuuuuuuuuuu

15 = log, lim ==

t 3

i
-

—

_31-

log, | M ; §‘

v o,

(26)

(27)

(28)

(29)

(30)

(1)

(32)

(33)

10

15

20

25

CA 02918136 2016-01-18

!

=log, lim—= (34)
{ =G ! ﬂ

=log,(e), (35)

where the last equality follows by the fact that Jim,_,. j.‘ = ¢ and (32) follows from the
Vit

following theorem (Limit of Composite Function): If lim g(x) =« and function f 1s continuous

at a, it follows that lim f{g(x)]= f[lim g(x)].
Fig. 3 is a plot of the difference between the capacity and the achieved sum-rates for ¢

values up to 524,286. The numerical results from Fig. 3 illustrate a ceiling starting at ¢ =10’
with 1.44 sum-rate distance. Thus, the achieved sum-rate will reach the best gap to capacity

when n ~ 1000 wits in the worst case. Modified binary onec-hot code is thus a near-capacity-

achieving code,

Performance for smaller ¢ writes will now be described. Fig. 4 shows the highest

previously reported sum-rates for ¢ <10.

Yaakobi’s (Yaakobi and Shpilka, Proceedings of the 2012 IEEE Int. Symp. on Inform.
Theory, ISIT2012, Cambridge, U.S.A, pp. 1386-1390, 2012) construction shows an unpredictable
sum-rate curve as ¢ is increased. This is because the rates from Yaakobi’s construction were
found through a computer search. Thus the structure of the code changes for different ¢-write
codes. Conversely, MOH code embodiments and the position modulation code shows a smooth
increase as ¢ is increased. This is because the same encoder and decoder expressions can be
adapted for increasing block sizes. Thus the rate-loss scales in proportion to ¢ and ».
Conversely, the encoder and decoder is vastly different for each 7-write code constructed by
Yaakobi, thus the amount of overhead (rate-loss) 1s harder to generalize. The gap in sum-rate
between MOH code embodiments and the position modulation code widens as the value of 7 1s

increased. For example, at £ =50, an MOH code can achieve a sum-rate of 4.3385 compared to

a sum-rate of 2.8 achieved by the position modulation code.

-32.-

10

15

20

25

CA 02918136 2016-01-18

Table 14. Block sizes for various ¢ write codes for MOH and position modulation code.

AAAANANAUAF UARRARALRALAAA LA A b manddonsahd

AR AT

LLLLL 3

e adnonde on,

B — B — i e
t writes 2 3 4 1 5 6 | 7 8 9 10 |
' Position modulation n value [10]| 98 | 124 | 150 | 172 | 196 | 216 | 238 | 258 | 278
. B | i) | % ‘ e I
MOH code n value 3 = 5 6 7 1 8 9 | 10 1
............ ke e AT e _— cosssebsamsassasosiconosoossovsseossessssssssrssssosssssssssssacsasnoncbsossssssssmamsms ot 1 -

Table 14 shows the block sizes used for each ¢-write code for position modulation and an

MOH code embodiment. No comparison was made with Yaakobi’s block size as the values

were not clearly reported aside from their 2 -write code which used a block size of 33 wits.

From Table 14 and Fig. 4, it can be seen that the MOH code embodiment achieves higher sum-

rates while using small block sizes for each ¢-write WOM code. In general, the larger the block

size used results in a higher sum-rate achieved. Thus, for a comparable value of n, a MOH

embodiment can extend the life cycle of a flash device by allowing more writes and store more

information bits per cell when compared to position modulation code.

Remark. In general, MOH code embodiments have a lower rate loss in between each

consecutive write in comparison to other unrestricted codes. This can be easily seen by the fact

that the data information set size decreases by one for each write. On the other hand, Yaakobi’s

code construction usually has a higher rate loss in between writes. This means most of the stored

information bits per cell is achieved in the first half of a ¢-write code. For example, fora 0 -

write Yaakobi WOM code, the rate loss between the fourth write to the fifth write 1s 0.1216. In

comparison, the rate loss between the fourth and fifth write of a 6 -write MOH code embodiment

1S just 0.046.l

In summary, for a block size of »n cells, MOH coding embodiments as described herein

achieve larger sum-rates, while also allowing a larger number of writes, and achieve the highest

sum-rates for ¢ > 6 writes. This translates into a longer life cycle for a flash memory device, as

the need for an crasure is delayed. MOH coding also uses at least (n—1) of the n wits per

erasurc. This means that over time, nearly all of the floating gate cells will reach failure at the

same time for each n block.

A g -ary MOH code embodiment is compared to the stacked WOM constructions in the

next section, starting with a temary example.

-33 -

CA 02918136 2016-01-18

Ternary Modified One-hot Codes

A ternary MOH code embodiment is presented to show the size of the data set for each

successive write. This will aid in calculating achievable sum-rates. Encoding maps are shown

where the procedure is parallel to the binary code in Example 3.

Example 4. To store, e.g., 9 messages in the first write, n =28 from (4). A ternary

decoder for a message vector m over GF(3) is
m, ={c;+c,+c5)-1+(¢c, +¢,+¢g) 2,
m, =(c,+c, +¢c,)-1+{c, +cs+¢;) 2,

which is a simplified expression for (12). A MOH encoding for ternary messages 18

shown 1n Table 15.

Table 15. Modified one-hot encoding for ternary messages.

S —— e
Codewords ¢ =(¢,,¢,,...,¢5)1 Message m=(m,,m,) |
..... R B o
g _
| 00000000 E 00
| IS S -
g 10000000 | 01
R S 1
| 01000000 i 02 ;
| e - - e _;
00100000 i 10 E
o N .
00010000 | i1
00001000 ' 12
00000100 20
00000010 | 01
00000001 é 22 i
. I

CA 02918136 2016-01-18

As with the binary example, the encoding map for the second and third write will be shown.

Table 16 shows the encoding map for the second write for a ternary MOH codes. The first

column again shows the message corresponding to the states of ¢ after the previous write. The

—

term s(m)=c¢ 1s used in the first columns of the encoding tables in this exampie due to the

limited space available. Note that the highest state “2” for any wit is not reached until the second

write at the earliest. Table 16 also shows that the available messages to be stored is the same as

the first write. In other words | M, |=| M, |. Table 17 shows the encoding map for the third

write. For the third write, | M, | -1 different messages are stored.

135 -

CA 02918136 2016-01-18

;4) , 4;agfi....+ w;i;;%;; ,?iwj%,J,,,i‘J [remme——— - 1WE - O000000 W
@1 | 10000070 | T000000T | TOT0000D | 000000D | 7000000 | 10000TO0 | 1
M
| 01000007 | 07000070 | 02000000 | OTF00000 | T10000CO ézci
0DTO00TO | 00T000O0T | ®U | 10700000 | OTT00000 | 0000000 | 0OTT0000 | 00TOTO00.
' CODIOT00 | 00030000 | DOOTTO0D M 50| 0COI00TO | 0001000T | 00TI0000 | T0TO00D | OTOTC000
doeeeeeosemressessessensemsonsonsonsomnsomsomsomesesensors hesose ssewoomsovueree seum oo Asemsoeoc oo oo szir — s AN A A S50 b 8 0 A ASOASAR A088080000 000880000 SRS At raAA RS w w SN
00002000 | 0000TYO0 | 000TTO00 | 0000TOOT % 000OTOTO | OTO0TO00 | 0OTOTO00 | TODOTOCO |
Mesttbasdl i — , m bt I W — T
| “ W
 Q0OTOT00 | 00COTTOO | 00000200 | 0000OTE0 | 0GO0DTON 20| T0000100 | 0T000TO0 | 00100100 | =(0T)3
L . —— S U i
00T00010 | T00000TO | 0T0000T0 0000CTTO | 0OCTOOTO | COOOTOTO # | 00000020 | 00000O0TT
07000007 | DOTOO0OT | T00C0OOT | 0000TODT | DODOOTOT | COOTO0OT | 00OCOUOE °0) 00000011 | =(10)3
) S S——— - S ettt ! . R A R O
‘ ~ _ | wor/f
& 1z | v o1 i 1 0 | 10| 00| oy

‘PO AIRUId} I0] NIA PUOIIS 9 dqe.L

llllllllll

lllllllllllllllllll

_36 -

CA 02918136 2016-01-18

GO00T00

il) i
00000007

00TO000Z | T000C oom 07000002 | 0DOOOFOT | 000T000Z | 000OTOOZ | =t | Q00000IE | ()3

T A Y T rev

i
-
wpaod
CI‘
-
S
o
3
Y |
C_

QMM

ey
-
Cfb
3

000100 :oooﬂoc 10000600 T00L0OT0D ¢ TCOOT 100 | s H gogm

2 " 2 La - R T T RN T N N PR P P U R I T P PR PR PR R T L T RN NN T RN NN RN NS AR IR TR P RN P PR RPN RSN ...
vy eYYY s

W |
m i
m m w | W
M
w

. . . . sppee s
aa P EEE PR R R R RN RS TR R PR PR PP N RN PP RN YRR R R PPN RN O PPV T P T T T I P NPT RPN T T T PN O T TN T T PR TR PRT TN CERT PP VTP PUTCRRRT T T T T P Urpprrey A ettt e P -
+ iy *

11111111111111111111

Vv § WW:

S AR WS

W T | m w | [TO0TO000 |
| TT070000 | TOTT0000 | Z00T0000 | TOOTTO00 | TOOTOTO0 | TOOZO0DO | TOOTOOOT | 7 | 10010010 |
| | m | ,

1%
...4E

0010 TGT0

 OTI07000 | 00501000 | TOTOLO00 | 00105000 | DOLOTIO0 | 00TTTO00 | 0OTOI0OI

| 03000100 | OTT00T00 | 1000100 | OTOOTTO0 | 01000200 | OIOTOTOC | 0100010T SU | OT000TTO

\3

- 0100007

88%% T00000Z0 | 0000T0Z0 | 00000TZ0 | 000T00Z0 | 0000002 T en

R —— T YY) ‘ - st o : . P— , T o i s NI £ Lok n X ottt
Aarasa -3 Ll o bl LAl MO

L

g
-
-
' k)

J1UL

)
-

L
o
VAL S Vv = A AL R

11007000 | TOTOTO00 | TOOTTO00 | TO0CZOCO | TODOTIO0 | 1000IOTO 10007007 en | =(00)3

Adadod bbb bbb PRy P Ak il b A LA il Al o A b ok A, Ak AASAAA A A A i el b A A AA

<
Ay md i e e i i iy = H\{Eii}gg
A

JUUL

MaOAACAR A S ‘1 bl
o>

g PRSI

17010000 | 0Z0T0000 | OTTTO00C | OTOZ0000 | OTOLTO0D | ODTOTOI00 | OTOTOCTO | OIDTOOOT

o
L
o
.
4
r
h
L
AN . Ec A AR S SS e e

A s Lasaabas o
R Al S\ & A S PR AAAA AR AAIAS i A Mmm{ S ANASTANAAP NP AR AN IEP PP PO O I o PR A -2y . AWML b A Ay A
4
Yyt A
3 "
:-q--a LT B
(-.M" .-‘
e
‘\um:‘
npasana
(M
A
1
~ o,

COTOTTON | 0OTO0ZOC | OOTOOTIO | 0OI00UTOT

700000TT | OTO00OTT | COTONOTT | 000TOGTT | 0000TOLT | 0CODOTTE | 000000ZT | GOO0OOLE

s o e o e e e
fy
b
" :

b

N
e e

m . W
| 77 | K¢ 0% | Gl [T | 0T an [0 00 | WoLg |

o 4
) . » u v
20 iy X LA O A N £ a AL SO L S A A A < . P P g e 228 e o . . oy .o .o

AP0 AIBUID] JOF)M PIIYT ‘LI dlqel.

-37 -

CA 02918136 2016-01-18

.............. e - ey At e nrnrn ‘itw.:i ‘ S AR St w m/ \w ..:_ C W w

W | | w |) oo |

- 00000510 | 000TOTIO | 0OOOTTIO | eu | 0000TEO | COOOOTTT | OOTOTTIO | TOOOTTIO | 01000110 | =(21)7 |
T s o N — 5“ e DTN .ﬁ - S — m w m jq_/,u,@m.ﬂw,ﬂwam W “
0000TTOT | COOTTO0T | 0000%00T ¥ | QDDOIOTT | 0000TO0Z | COTOTOUT | T000TOOT | 0TO0TOOT | =(z1)? |

“" v vy MLl i anrsaaarad oh e m . n. w“
i . O M‘,,.\;f mmn /\m C

O e e A A S Ay Dl Sy

m@goﬁ QQO

UL m w0 0000 8@

AR A s AMAAMAAAAARAARMAAARAA N AL UAYAAY

moooomoo moogcoo 2000

M e (o_.ll))z{r.—)))Air ALK A EEE S MARALLAARS AR EICRE A BAAATLAAALAL A

et i) A

ooomaog

01101000 * 01100100 :588 0T10000T 0| QTT000L0 | 0ZT00000 | 0TZ000CO

OLO10010 | 001 10010 8@88

Y TN P F AREE - UL LRSS

r .
<
e N }t\wwvr*w

ouoﬂo:o 000Z00T0 | 00OTOOTT et | 00010020

j
m

Q000TTOT | 00000Z0T “ 000TOTOT | 0000010Z | e | 00DOOLTT | OTO00TOT | OOTO0IOT | TOOOOIC

N A SR R R IR AU DA ANRNRA T AAAAANNN." e s Pt .’LPEEE(((' ' e e e —- A A o' M d.u. X ke e e e e i i o g e e e e Y o o 44, PO ARG, TS T
2 m | m :
. b - .
-A m
: : v

4
1
]

EE

s
k

femuleivhh e +5%--MQMWMW\\A!M k-\mm- S s s e e s s e s o O
~
K

:u CC g C

| | | o N
00510000 | DOZOTO00 | 00Z00T00 | 0OGOO0TO | %O%ma | #0 | T0Z00000 | 0TZ00000 | =(01)% |
s £ PO IR PRIy KPRV R T e Mr Tr.urﬁniiﬁei.,;?z ‘ et o g s izjzijliﬁ

m m | L LLAOUUUY

11070000 | TI00T000 | 1100000 | TTO0COIO | 11000001 =0 | 1000000 | 12000000 | TTTO0000 | ={0T)3

............. R P H . N ﬁ _s:f14 . o taw 4 \.”.Ww.. JTUTT

POOTIOTE | 0000ZOTO | 0COOTTIO | 853% | 00007 o,: o | T000T0T0 | 01001010 | ooToToto | =(01)3
T - T N T " | T O0gToouT

w, |] . o ..
00DZO00T | OOOTTOOT | O0OIOTOT | OOOTOOTL | 00010003 2 | 10010001 | OTOIC0OT | 0010001 | =(0T)3

Wt W iyt ud 0" o

pV A SVVVP VNPV 2 T

O0TT000T -

.

u:wo sl QOLIOUTO

AL L R AT AL RN AN AL AL .I_S. A T e e AN S A Lo A

2.
i w'a ol e e s s e il e
wan

T

ODTTOT00 | 00TZ0000

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> b aia
.

|
|
|

- _w.;.‘.o.‘.‘.g.o.o;.o.‘.g.‘w.mwﬂ A A A A A A

m oom_,oooo LOTI0000 | OL 110000
w.- :

s Ak sl b aam .

QCQNSQ

-
qpeenee]
{2
!
i
s
.,
-
N’
oeroed
G
)
i
'm..-...ﬂ"
D
-

0TTOTO00 | TT00T000 | 0ZOOTO00 DT00TOTO | DTOOTOOT - =(z0o)F

'APOO Areula) 10§ 9JLIM PITY L, (P Juod) LI dqeL

- 38 -

CA 02918136 2016-01-18

I 1‘1111111“1“1“11‘1‘1 — w W

¢ e £ ' ~ PN - o D eVt G 3 \ , e Y |

. 201 0000Z0TO | 0000Z0OT | 00TOZ00D | T0AGE000 | 01002000 | DODOZEOD | DOO1EOU0 (z) |

v rm _ ve S LARARALAAN a”: e A dads T e A NN NN A “ + = 1 ..“.M ”l m.w,.uw..., mi lm”v sttwll‘
Bl Qo@aoﬂﬁmw 00070107 | 00TTOTO0 | TOOTOTOO | OTOTOTCO | 0OOTOZO0 | 000ZOI0O | OUCITIO0 | =70, |

— |) M B S Sam— o111 (31108

. 000010 C arienatn | antantTa b onnttaatn | oo efrr\g |

w ¢ | 00T0C0ZO | O0TOOOTT | 0OTOLOTO | 10100010 | OF1000I0 | CGOTCOTE0 | DOLTCOT0 | QUIDLOI0 | =16e)% |

w e e et e e o m ... ooz w P PP M,. AR AAASATASABARAANE o— . ————— wmr A A T e T N YT —— Yy ¢ mu...,m M%tiu H

| 2 | (T0000TT | 0T00000Z | OTTO000T | TIOOOCOT | 0BODDOOT | 0L000TOL | O1OT000L | OICOLLOL ={22)3

- 00070001 0 | 000Z00TI0 | OTOZ0000 | 00TZO0CO | TOOZOOD0 | 0COZTO00 | 0OCZOTO0 |

$. . . e , — N . M e i EE——— -

LAAAASAA LAl 2 ’ AN

VY VRV VR VR VYV R s

A LA A AN

02 M;-m gy 0000TTTO

i
g
"=
-
]
aprane]
£

U

ST Ty ST TOWY 1 OO Ty . o L OONT T T Y S g
COTOTIO0 | TOCOTTO0 | 00002100 | 0000TZEO | coottron | - =(1g)s

W
m
| 1 R IR m — ST DU S—
- ~t ; t !
M m | M m "
‘ N e o Y s AN BISTETATE ~ N w e P AP — “__ﬁ Ty _...u =
[00000TT eu | 10000050 | TT000DT0 | T0T000T0 | Z00DDOTO | 10001010 | TO00OT 10 | T00T00T0 | =(1z)
w Fw s .ME — - MEEF;EE,,E AN AS A AR YA A e s v - e ,3.\3}.%:\. e e e e e i M : wq W.qm/w m. mﬂ.w“.rww.mc ﬁ 5
m “ : 2h " P et - M . N EE w NN CE Y SN Y Y m o £ e e
1 D0L00DGS | 200 Q0L 8@: Toooom 94 _m § m 10100001 ¢+ Q01 EK T 1 DOTOUL0L O0LEOOOL =150
; i e e e e eeeeeeeeseestees bosoeemoesepemeemoceooemocest AN oetortoma e sadh A AR A - Wnmanosmn : : N
W« e ———" NS, : s W m C _cmrm g .\x,\wm:m
| | | i W |y .
 000TTOTO | 00OTTOOT 2u | 10011000 | OTOTLCOU | GOTLIC00 | 00DZTO00 | 00OTEO00 | 00DTTTO0 | = (©7)7 |
; i » i e soeseebomsr s esmensorssessensemsesmestnstansssasstasio oot st s A A A— oAbttt AN AN ARSI 3 serosisnonsove done ORI AAN RS RO O B BPB O OENR A BAAOASBA AL ANSS .
W .. " v Wndy | 4 $ m M PQ‘ r.\wr.\/\vws\mr.mﬁwm
w I e . e M ~ -~ ~ M N N ; n\.q oy e f o ,., o
| 000002T0 | 0000020 =1 | 10000200 | 01000200 | 0OL00Z00 | 00DEOZ00 | 00COTZ00 .;A@ E

v\.’.;lbn AV AP A A S A8 A, APPSR PP DI P, »

g
Nean
C‘W

%%%I%%%{
~

i

[OCOTO0T | 10000107 | HA@mwm

AVARLIAAAR LAY D

AR pApARE e

1000C0TT | T00G000G B Z000000T | TTO000OT | TOTO000T | T00T000T

o S— PPN O AP B AN N W ”iz.z.;.s.,sss..s.., RN w - A .i:imi..,.siiit.i\ _ris.i 3235535.,.5‘ “ iiug Mz.msig.
A o . s v - o N T S - - . N, m I

| poﬁbo@o QOTON0 M] Sl TOT0001I0 c: o?f GCLO00I0 | DOLIGOIU vi 3 | Q,J ﬁ w“ =6

S eosoomavmsorr e AR APPSR R | SN, N w AR A ARAA Y AP AN RSP VL ARVAAS WUV S - |

W 00
NZT00000 | T0Z000) =(71)3

{2
N3
CA
(23
N e
D
%~
o
&
b
3
R
(S
P
-
C
oot
i
e
I
A

06000100 omaro mr w

3
>
>
v
v
v
N T P O R O U R Y T R R R R R T) r 8 D . . R ORIy - Y
.

mz T W{ M e fer R Hzia ts!imum\,dfy
| 10T00TO0 | TOTTO000 | TOTOTO0O ou o@@ﬂ@ H¢ﬁm<&uﬂ 10800000 | TOTCOOCO | TEI00000 | =(21)7 |

'9p0oo A1ewio)} 103 UM pHYL “(PJU0d) LI dqe],

tes. Then the number of writes for a ¢ -ary MOH

-39 -

WTl

t 1 wit for all

Ing jus

by

Consider encod

1S given

code

CA 02918136 2016-01-18

t =n(g—1). (36)
This example is thus a 16-write ternary MOH code. The wit ¢, to program for all writes is

shown 1n Table 18.

Table 18: Encoding map for a ternary MOH code for n=38.

From y/Tom | 00 | Ol 02 | 1o | 11 { 12 | 20 | 21 | 22
LLLLLL RS WA W - SRS NN SR A R—
] | jF : 1 :
5 01 c, | na c,
; Y S i é
02 ¢ | G na
I S R
10 Cs | G Cq |
— . —_—— % I S . .?
................... WSRO ?; S S - R ?m S
- l nim > 1: ﬁ,l % — 3 %tw wevy
20 Cs C4 cs | G | G i C na G | &
— S R .- - | IR — :
| i z §
| > 3 s g
L ,, I F R SR W R
22 Cy of C, E C; Gy t Ce C, ¢, | na
o I b b i . e

Verifying (10) finds the i -th wit to program over GF(3) by using entries from Table 18.

For instance, to store a new message m = (1,2) when the message y = (2,2) is decoded from the

current ¢ . Then the sixth wit is used to program to a higher state. Using (10), solve for
h,k=1,2 by

h, =m, — Y, Jor k=12

—>h =1-2,

=2
37
-, =2-12, G7)

:0,

thus 4 = (2,0) and converts to i = 6.

_40 -

10

15

20

25

CA 02918136 2016-01-18

Sum-rate Analysis for ¢ -ary Modified One-hot Codes
Start by analyzing the sum-rate of the above ternary MOH code example. From Tables

15-17 of Example 4, the first two writes guarantee | M, |= n+1 messages. The third write

decreases in data alphabet size by 1. The simulation shows the data alphabet size for the fourth
write is the same. Relate this sequence to that of a binary MOH code. In other words, the size of

the message set decreases after every (g —1) writes. Physically, this means in the worst case, a

floating gate cell has reached the highest state allowable and can no longer be programmed. For

Example 4, then

M, =9,
M, =9,
| M, =8,
| M, =38,
M |=17,
M =17,
| M =2,
M, =2

Fig. 5 shows the sum-rates of a ternary and a quaternary MOH code along with the
corresponding ternary and quaternary capacities for any WAM code. The upper sohid curves
represent the sum-rates achieved for a quaternary MOH code and the quaternary capacity. The
middle solid curve represents the capacity for a ternary code. The two dashed curves represent
the sum-rates for a ternary code and the sum-rates for a stacking of two binary MOH codes.

It was shown above that a binary MOH code as described herein outperforms previous
binary WOM codes. A further embodiment includes stacking of binary MOH code to construct a
quaternary WAM code. Quaternary MOH code embodiments outperform the quaternary stacked

construction in terms of the achieved sum-rate for the same number of writes. The gap between

the two quaternary sum-rates increase as ¢ increases. This widening gap 1s a result of a slower

rate loss caused by the combination of the smaller sizes of »n for the same ¢ and the fact that

- 41 -

10

15

20

CA 02918136 2016-01-18

| M ;| decreases in size by 1 for every (¢ —1) writes. F, denotes the ternary gap to capacity

constant as ¢ goes to infinity, as follows:

r, =C—-R, ..

o (t+2Y)
(>0 N =

a— w

log, | M, || (38)
n ' '

Likewise, F, denotes the quaternary gap to capacity constant as ¢ goes to infinity, as follows:

K, ::CL?RMWQ \ _
{+3 ‘loglMl 39
f—>00 i \ t) = N -E

In Fig. 6, differences between the upper bound and the achieved sum-rates for the ternary and

quaternary MOH codes for ¢ values up to 531,439 and 1,048,574 are shown. The numerical
results from Fig. 6 show that F, =3.89 and [, =6.49 for a ¢ value of approximately 1000

writes. Thus, the ternary and quaternary MOH codes are both also near-capacity-achieving

codes.

All cited publications are incorporated herein by reference in their entirety.

Equivalents

While the invention has been described with respect to illustrative embodiments thereof,
it will be understood that various changes may be made to the embodiments without departing
from the scope of the invention. Accordingly, the described embodiments are to be considered

merely exemplary and the invention is not to be limited thereby.

_ 42 -

10

15

20

25

30

CA 02918136 2016-01-18

Claims

1. A method for operating a digital memory, comprising:
minimizing a number of memory cells encoded for a write operation; and
avoiding erasing memory cells by re-using written memory cells;

wherein a sum-rate of the digital memory is maximized.

2. The method of claim 1, wherein minimizing the number of memory cells comprises

encoding one cell for each write operation.

3. The method of claim 1, wherein minimizing the number of memory cells comprises

constructing cell state vectors that are uniquely decodable.

4. The method of claim 3, further comprising decoding each permutation of memory cells

into a unique value.

5. The method of claim 1, comprising encoding cells synchronously, wherein a cell state

vector 1S related to a selected generation.

6. The method of claim 1, wherein the digital memory comprises write-once memory

(WOM).

7. The method of claim 1, wherein the digital memory comprises write-asymmetric memory

(WAM).

8. Programmed media for use with a processor, comprising:

a code stored on non-transitory storage media compatible with the processor, the code
containing instructions to direct the processor to operate a digital memory by:

minimizing a number of memory cells encoded for a write operation; and

avoiding erasing memory cells by re-using written memory cells;

wherein the code maximizes a sum-rate of the digital memory.

- 43 -

10

15

20

25

CA 02918136 2016-01-18

0. The programmed media of claim &8, wherein minimizing the number of memory cells

comprises encoding one cell for each write operation.

10. The programmed media of claim 8, wherein minimizing the number of memory cells

comprises constructing cell state vectors that are uniquely decodable.

11. The programmed media of claim 10, further comprising decoding each permutation of

memory cells into a unique value.

12. The programmed media of claim §, comprising encoding cells synchronously, wheren a

cell state vector 1s related to a selected generation.

13. The programmed media of claim &, wherein the digital memory comprises write-once

memory (WOM).

14. The programmed media of claim 8, wherein the digital memory comprises write-

asymmetric memory (WAM).

15. A digital memory device comprising the programmed media of claim 8 and digital

memory.

16. The digital memory device of claim 15, wherein the digital memory comprises write-

once memory (WOM).

17. The digital memory device of claim 15, wherein the digital memory comprises write-

asymimetric memory (WAM).

- 44 -

CA 02918136 2016-01-18

. ‘-.
. 4 .
“
.q‘- Y -
o X e
S ca ud L]
B .3
3 g -
4 .
v M .
[
o

- b
K 4
. 3
. 4
‘=
. K 3
‘S .
d
-3 i S

sre v vnnre

B b - v,
. . - “a (3
. ..
v . 3 i
. .4 .
.. ' - -
- =~ 3 -
-y 3 .
or . O
. B .' '
'-" - ¥
¥ :) [
N g X g,
, -
. “
. .
'
'
B
KR
K R
v iy
o B o VYV VY e O e
’
Ol
’

Fig. 1(b) (Prior art)

ot

CA 02918136 2016-01-18

Sum-rate vs t writes

L AN S AT IO A S BN S B S e J - ---_-- AL, CUR) S T T - NTEEL L) Aadareesdssensesssessspsssesss . . . sees
4}-’\& - ‘.(:.‘- LRy % t s \. A IO A A e :: -; ..--.-::_\-.-.\(:-- > A -’.‘-'- ‘-.?.:'. ALY) L UL QL LR TN 2i'- si -.0.-.-.°.'\:.°.'. .t'.‘.'-':.} .i'-fj.‘ T T T T P AT LT L Lt A e ,q-,‘s-- "--t-}."-::v-.'-'h PO C O VIR ¥ ‘ --'-o'_,-'-’?’-"-' gf".ovonoonooﬁoﬁ“ e A\aan.;VV‘A'.‘.\'.:.'.'.'.'.‘.‘.;....?.'.‘.'.‘::.'. .t':k z&..«--a-:
; . ‘ i .) . b 3 - - ; B -
. k - ’ - - e ‘r . . v AT T AR L e W P RO I et R i et AR Ll L i R L L L LRy s.A..s'.ol vrrde llﬁuaauadwaufwawa-ﬂ-J’-JN(JJJ»JM(L L L PR O AAR RO
. Ao RN . . CRNA e L R RE R S T T :Al.h"#.:.' “?
; . % . . ' > " T g p e
: - . : - TR S
. i " T v ") - g o :
)-w- c e - TN 3 =g e ars SRR RN RSN " - R S N PENE -_u'\ .,,u < AN .
N - v ~ y % % .t o i 3
: o . - :) - ' . i, i
-1 3 . - - ~> = teoe g - STLTTTN b »
] ’ . . ¥ : . . - }
E : ' . ; . - SR ERRRXS B A e T S S T 08 b0 0 0 0 8 8 8 P P 0 L N 8888 a8 A 2 :
3 ‘5' [. < - . . LS £
. - .o -) : : - c ok
3 X = . I . ‘ - . e . N ' [
3 A . ~ E . ?
] . - . < . ;- .
i Q- % - [‘ ' §
. 4 = - . . . - . ’ ~ . ' : - .
- * (4 . - 5 e - o - - . - . 4 . *“i
- ; . . , N : . \ > " . 3
. '. < .. : . ' ‘. . - = s
. ¢ - N ' > . . < 3
. ... ’ - - - '\.) - : f
! . W . . . A - A NN N 3
b ~ . CRCR . - S S e :.(. > rru s 8. & < J oy e T L. T S T Ay PROR0000Y- - . R)"“" o .
- - T " . ‘o ' S 2 P X
- : e P B - & :
. " 2. . R * e o '. s L o L4
: - s ; »r R ;
o N) - " > R = > -
) : 3 4 v . g~ g
) . . - > B . :
) ' . - ~ - “
A Es a ' ’
ENEY RN) « :
3 vk .) - 2
= .. .:.. " ""0 . o - - L “ . .".\'2
: .-"g‘\. 3
E - lemy T . R ' " i ;
N . . §
. ‘L '\
:::::§ * ’f‘ b DN T e ~ NN anee [N
Doy - - - R y ™ A L v e DR L v R il ,u-;-' R >:]
. I’ - " . - . Y
5 . . ' . ‘A = ;
. X . -
G 3 S-S °) - .o 4 o 3 o A
> . 2 2 T) . £
3. < , s ; Do . " . > - <
3 A ; ‘ . : , i
S JEEXCEAES .4 I R R R Sanprt o oaT . A A A P e e prei e s et PPy W o ¢~ raq ' LI O S N R =
~r . a ~]) >
> . ’ - St e LT x
- ¥ CE ’ . o §
-) .- - to. ’ - :
v A I < . A . - " - ': e d
.: =3 . ‘ . . ‘
- - - > .
- ~) \ : . j
- ! . -)
b -)) ‘ = : - -) 4
« . v . . - "
: : P : R :
.) z : " : -
.. - " : - * 4
- L] > . '
< ' J .
" » ; b
R L L : . _ |) §
b N : . ' ' . o -~
. - - X v X [
-~ - » . . . -
> * .. : - . '
¥ ’ ' ;]
>) -) DI - :
’- . . . '- = s
“: v : v < . ¢ - %
- .) : ' . . 7
~ - " L . s
~ . h ' o - . :
: . . A K ’ T . ‘ N :
‘ . .) . . i N) > v . v . X - . - i :
! . . :) . 5 :) v i v o, 5 - - -
l""""""‘"'"""""" e ‘-‘-s"-‘-‘*-‘-'- b,--.t R T S O e Cu SLLCR L LT -'U“'- AR '-" Ayt 0'- "5 . !-c-.\-\b.-\ 9-"-\‘(\\«-\\«- aqeee=- teeeee E RN R ‘i ------------- £ KERRE WX -.! -.-.-.-u.-.-l I U NN i TR TR, SRR 3. e :,-,._.,'; e .ﬁ,.;.,b_. .i Lt L L A L e e s W AL b A LT LN L e e A e e o J J‘ - ~. . 1 v S

3

10°

3 4

o

=
&

>

jovad &
1

\®

pivo.

.

smz_iw

10

10°

?O

~&- (1} -The gam of binary one-hot code from upper-bound in terms of t|

N AN P A SN AN OB L L L LA R AR B R AR AR AN,

107

A AR AR A AN A S A S A AT A A L . .W‘k\\(t." EARATEATE N SRR S T T RETRRS T TARE REENTRRRL AVIRLTTRTA IS TT T IRNTNEELLL DAL CALANNE AL b A AN AL Sl 4 b b b A ot

10° 10"

t writes

Fig. 3

e e

10°

e

st

4

!

’: 3 3 % z 1 ‘ : :w:: “s“ >v 1 ‘_:‘“‘ A t 2 v Yy i ; ’ - E {nﬂmﬂ- -s- m“?um-rv‘w;ﬂ (ltt WW}WW; ‘f l —‘_,; ﬂ
! = _ ; . i
% Lk . =
(..) N S . h
(O § - - ;o
(i 5 L
:. ». . "
1 ‘}Mv - - : - . at p . PR - - ~ - e |
(U 3 R - :
3 e E
(> - : '.
+—‘ , - o .
Q— ' , ;)) = -
Y - .
E Sl oo - '
’ O 5 b < R AR " oa) " - - -:: . '.\‘- ¢ ' . . - o s : ,. * ; B
] +. . -
E t - ; : ‘..
| S g S
[“ . . .
D E . . o . ' - - ’ g
7 | \] .
’ ' ? - - . - -
- : | o : - T
: : , , y ¢ g ’ ERPER
* . g ' ~ : - ©
i WW‘-.-)- SRR AN NN YRR S : . '. . & O Y S NN v.--\u-n--s--n--.-mw\\-n-ss\-A.\v\u\\“xwx--‘;u‘-«\ w.:- \-#--."

O

6

Sum-rate

3.5

2

10

CA 02918136 2016-01-18

Sum-rate vs t writes

o)

a o - ' *
1 0 R T RS'......i.v..;,.,,. vard: 228,

Oy AT o S AN A A A su(
[" i = 1 <
« * .

= AR, e e e M?WMMW

Lo aad P st aant T a s NN
.
- .

10

\

. W‘?ﬂ*\% m g

——Binary MOH Code

»

]
o ; B Upper—bOUﬂd (2 3)

i z
E‘@- Posmon Modulauon 13 6}

5 8 g

Sum-rate vs t writes

10

L) Ser ---0--0,\--:3:",»-\‘-,-,n-_.'-Au--.,u-v-\-9-,..@-,.*0,\)\\\"\.,_\\-, r LU Y LT LT P OO P L CO P PR 2RV WO PN sl ‘. anm LY LT PRy P 1.a YRy ssswrve aa -
. 4 < LI A B

......

B R S N T e T P A R SR I~ 2L St ST

—£>—Temary MOH code

~—E=~-Upper bound (2.3) for any ternary code
e Quaternary MOH code

~&-Upper bound (2.3) for any quaternary code

.*’ . . N N L L L o -oxqu,sq-“ N L P P

R Ry

Y O A e W e VA WA e

2 Qazm@mary code usmg two bi f“sary MOH codes

< p =
v A Y < e w8 r oty iy D o o o e oo e e a e Py,

10° 10°

{ writes

10°

Sum-rate gap to capacity

CA 02918136 2016-01-18

On

N

0

. o I

- [e=F(t

wieintate. wtule My Y AN N Y N

1

W r—— E'}0'4‘-’/-V-'-‘Wt-V-';-V-V-\t-’n'zm'-“'gww-v?\) oT- L] g Hi - § YA C e e YW MW{VWWW-)'G'V';:) 3wy o%n*\?c-q-v‘-g -Xh?’ffh’gi)"? o Tmmwwuwwmu&-h? e-ﬂao‘-r? vmww?owgwgow-?é‘mwmwwwwqgrvww %Oﬁﬁww?m?—o;—c W?‘*ﬁﬁic

i ¥

..... ol .
. Cow .

.
B L U N e

oper-bound in terms of t

~
e e N AN AL I NI AL AR AR L AR R AR N SASAAAAAAAAA L b d AAAd e VA A A e gy =

\-The gap of

I F(t)-The gap of quaternary MOH code from upper-bound in terms of t

ARARASFAASRAAALL AU UUAEAAALA LA AR R o Ua A AN i

10°

A AT L AT AR AT (O A r S 00 BN 00 RNl A S b e

O b i i A A A AR A L S G LR LR A LA L

10"

3

| 10°
Lwriles

Fig. 6

Sum-rate vs t writes

3.5

N
;.

Sum-rate

N KRS L AL T EAATEAL LT FERET T T TRRL DL e m @ AN AP N,

B i T : & Vankob: Bloek Code [85]
R A | _&-Upperbound (2.8

| -1~ Binary MOH Code
N R S S __|-6-Position Modulation [36]
2 3 4 5 5 7 8 9 10
1 writes

2P ps TN TN NN RN G AN W A0 I P DR i NN
: ¥

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - claims
	Page 46 - claims
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - abstract drawing

