(54) 发明名称
用于植物材料取样的转移站和示踪系统

(57) 摘要
用于处理植物材料样本的系统和方法，以及被设计成用于在该系统和方法中使用的一种转移站。在一个实施方案中，该系统包括一个控制器、一个植物材料取样装置以及一个转移站。该植物材料取样装置被配置成与该控制器相连通并读取一株植物的标识符。该取样装置还具有一个可移除的仓盒，并且被设计成从多株植物上获取至少一株植物样本。将此类样本放置于该仓盒中，并且对获取每个样本的植物的身份进行示踪。该转移站被配置成在多个位置上保持多个仓盒以及多个托盘，这样使得这些仓盒的位置是由这些托盘的位置反映出来的。读取每个仓盒的一个标识符，读取每个托盘的一个标识符，将这些仓盒中每一个的存储位置点映射到这些托盘之一的存储位置点上，并且从这些仓盒中顺序地将多个植物样本卸载至这些托盘上。
1. 一种用于处理植物材料样本的系统，该系统包括：
 a) 控制器；
 b) 植物材料取样装置，所述植物材料取样装置被配置成与所述控制器相连通并读取植物的标识符，具有可移除的仓盒，并且用于当从多株植物上获取至少一个植物样本，将所述样本放置于所述仓盒中。所述对获取的每个样本的所述植物的所述身份进行示踪，其中所述可
 移除的仓盒具有
 通道，所述通道被限定在所述仓盒中，
 用于收集的植物材料的多个器皿，所述多个器皿位于所述通道中，
 冲头位置，所述冲头位置限定于所述仓盒中且延伸穿过至包含所述多个器皿的所述通
 道，和
 驱动机构，所述驱动机构用于沿所述通道传送所述多个器皿；和
 c) 转移站，所述转移站包括：
 多个仓盒接收器，每个被配置成保持已从所述植物材料取样装置中移除的仓盒，
 仓盒索引器，所述仓盒索引器被配置以接合该仓盒的驱动机构，该仓盒位于所述多个
 仓盒接收器的仓盒接收器中，
 冲压杆组件，所述冲压杆组件包括冲压杆和活塞，所述冲压杆组件被配置以在有限定方
 向上移动所述冲压杆，
 多个托盘和用来读取仓盒和托盘上标识符的扫描器，
 其中所述转移站被配置为：
 读取每个仓盒的标识符，
 读取每个托盘的标识符，
 将所述多个仓盒中的每一个的多个存储位点映射到所述多个托盘中的每一个的多个
 存储位点上，和
 通过利用所述冲压杆组件以将所述冲压杆延伸穿过所述仓盒的所述冲压位置并且进
 入托盘的储存位点，
 利用所述冲压杆组件以从所述仓盒中抽出所述冲压杆，和
 利用所述仓盒索引器以旋转所述仓盒的驱动机构，以
 从包含在所述仓盒接收器中的仓盒中顺序地卸载植物样本。
2. 如权利要求1所述的系统，其中所述转移站被配置成读取一个工作列表。
3. 如权利要求1所述的系统，其中所述转移站被配置成从所述多个仓盒到所述多个托
 盘对获取的每个样本的植物的身份进行示踪。
4. 如权利要求1所述的系统，其中：
 所述多个仓盒位置安装在平台上；以及
 所述多个托盘位置安装在可转动的转盘上。
5. 转移站，所述转移站用于与以下一起使用：
 可移除的仓盒，所述可移除的仓盒具有限定在所述仓盒中的通道，用于收集的植物材
 料的多个器皿，所述多个器皿位于所述通道中，冲头位置，所述冲头位置限定于所述仓盒中
 且延伸穿过至包含所述多个器皿的所述通道，和
 驱动机构，所述驱动机构用于沿所述通道传送所述多个器皿；
所述转移站包括以下：
多个仓盒接收器，每个被配置成保持仓盒；
仓盒索引器，所述仓盒索引器被配置以接合所述仓盒的驱动机构，所述仓盒位于所述多个仓盒接收器的仓盒接收器中；
冲压杆组件，所述冲压杆组件包括冲压杆和活塞，所述冲压杆组件被配置以在线性方向上移动所述冲压杆；以及
用于保持多个托盘的多个托盘位置，这样使得所述多个仓盒的位置由所述多个托盘的位置所反映，
和用来读取仓盒和托盘上标识符的扫描器，
其中所述转移站被配置以通过利用所述冲压杆组件以将所述冲压杆延伸穿过所述仓盒的冲压位置并且进入托盘的储存位置，
利用所述冲压杆组件以从所述仓盒中抽出所述冲压杆，和
利用所述仓盒索引器以旋转所述仓盒的驱动机构，以
从所述仓盒中顺序地卸载植物样本。

6. 如权利要求5所述的转移站，其中所述多个仓盒接收器各自被安装在一个平台上，并且所述多个托盘位置各自被安装在一个可转动的转盘上。

7. 如权利要求6所述的转移站，进一步包括用于读取在所述多个仓盒之一上的标识符的扫描器。

8. 如权利要求6所述的转移站，其中每个托盘位置包括托盘接收器和线性定位滑块。

9. 如权利要求8所述的转移站，进一步包括扫描器，所述扫描器定位于所述转盘附近以用于读取所述多个托盘之一上的标识符。

10. 如权利要求5所述的转移站，其中所述转移站被配置成读取工作列表。
用于植物材料取样的转移站和示踪系统

相关申请
本申请与 2007 年 8 月 8 日提交的名称为“用于对植物材料取样和示踪的系统(System for Sampling and Tracking Plant Material)”的美国专利号 11/835,986 和 2007 年 11 月 30 日提交的名称为“用于对植物材料取样的装置(Device for Sampling Plant Material)”的美国专利号 11/948,491 有关。这些申请的内容都通过引用结合在此。本申请现在正作为一项美国实用新型申请被提交并且同一天按照《专利合作条约》作为一项国际申请被提交。

概述
本发明总体上涉及用于从大量植物中对植物材料取样以及示踪的系统以及方法。更具体地讲，本发明涉及的系统以及方法是针对获得样本材料以便在应用于发现、标记辅助的选择、或者质量控制程序中用于 DNA、RNA、蛋白质或者代谢产物的分析。甚至更具体地，本发明涉及将样本从收集装置中转移至微量滴定托盘（有时被称作“板”）或相似装置中的方法和系统，这样使得下游测试（例如以上所描述的）或其他的处理可以在这些样本上进行。本发明的实施方案在被设计成从大量的植物中获得遗传标记信息来帮助选择植物的系统中是有用的。

人们熟知可以从 DNA 中获得遗传标记并且可以将其用于多种目的。例如，在植物分析领域，可以分析从植物材料中获得的 DNA 以产生分子标记信息。在这个过程中，可以分析 DNA 序列的改变以便发现在分子标记与性状之间的关联性。然后，基于分子标记信息针对所希望的性状可以对这些植物进行选择。通过这个过程所选择的性状可以包括农艺性状，如产量、非生物胁迫耐性、生物性胁迫耐性，或者易受病虫害影响，如植物组成、动物营养性状、人类健康，以及类似性状。

对于标记辅助育种，带有一种所希望性状的植物的种子在一个温室或者一块地中被种植在土壤之中。于是从这些植物中收获植物组织（例如叶片的一部分）用于 DNA 的制备（一旦可以从这些植物中移除足够的组织而不损害其生存力）。因此，将基因组的 DNA 分离出来用于进一步的处理，以找出特异的遗传特征。在随后的处理中，这些特征是与所感兴趣的性状有联系的并且由此被用于预测在采样的植物中存在或不存在这些感兴趣的性状。

作为一个实际的问题，植物的标识包括多种复杂的程序，这些程序难以（若非不可能的话）在大田中完成。当涉及大量的植物，如在商业化的农业运作（其中数千种或数万种不同的植物在同一块大田中）时，情况变得更复杂。在这些运作中，随后识别一种具体植物的能力通常是重要的。

对于一个大型的农业操作（例如以上提到的类型），要考虑几个因素。一方面，在一块地里的所有植物都需要得到适当识别。另一方面，需要完成这些识别而无不适当的延迟。并且，最后，被识别的每棵植物必须能够随后在其大田位置处被找到。

鉴于以上情况，本发明的一个目的是为处理植物材料的多个样本提供一种系统以及方法，其中在田地中的一个具体植物可以随后被找到。本发明的另一个目的是为处理植物材料的多个样本提供一种系统以及方法，其中这些植物可以被识别并处理。本发明
又一个目的是提供一种用于将植物样本从一个取样装置转移至托盘或相似装置中的系统和方法，这些托盘或相似的装置被用来对这些植物样本进行 DNA 和其他测试。对植物样本进行的测试的结果可以用来栽培那些通过测试的植物，或在其他方面基于这些测试展现所希望特征的那些植物。

[0010] 在一个实施方案中，本发明为处理植物材料样本提供了一种系统，该系统包括一个控制器、一个植物材料取样装置以及一个转移站。该植物材料取样装置被配置成与该控制器连通并读取一个植物的一个标识符，具一个可被移除的仓盒，并且用于从多株植物中获取至少一株植物样本，将这些样本放置于该仓盒中，并且对获取每个样本的植物的身份进行示踪。该转移站被配置成在多个位置上保持多个仓盒和多个托盘这样使得这些仓盒的位置是由这些托盘的位置反映出来，读取每个仓盒的一个标识符，读取每个托盘的一个标识符，将仓盒中的每一个的存储位点映射到这些托盘之一的多个存储位点上，并且顺序地从这些仓盒中将植物样本卸载至这些托盘上。

[0011] 在另一个实施方案中，本发明提供了一种处理植物材料样本的方法，该方法包括使用一种植物材料取样装置从多株植物中收集植物材料样本，将这些植物材料样本转移到在一个转移站上的多个托盘中，对植物材料样本进行测试，并且基于这些测试选择这些植物中的某些用于栽培。该取样装置被配置成与一个控制器连通并读取一个植物的一个标识符，具一个可移除的仓盒，并且对获取每个样本的植物的身份进行示踪。该转移站被配置成在多个位置上保持多个仓盒以及多个托盘这样使得这些仓盒的位置是由这些托盘的位置反映出来，读取每个仓盒的一个标识符，读取每个托盘的一个标识符，将仓盒中的每一个的存储位点映射到这些托盘之一的多个存储位点上，并且顺序地从这些仓盒中将植物材料卸载至这些托盘上。

[0012] 在另一个实施方案中，本发明提供了一种转移站，该转移站包括用于保持多个仓盒的多个仓盒位置，以及用于保持多个托盘的多个托盘位置，这样使得这些仓盒位置通过这些托盘位置反映出来。

[0013] 通过仔细考虑详细的描述和附图，本发明的其他方面将会变得很明显。

[0014] 附图的简要说明

[0015] 图 1 是根据本发明的一个实施方案用于处理植物样本的系统的示意图。

[0016] 图 2 是一块植物田地的透视图。

[0017] 图 3 是根据本发明的一个取样装置的透视图。

[0018] 图 4 是本发明所使用的一个仓盒的俯视图。

[0019] 图 5 是处理植物样本时使用的一个托盘的透视图。

[0020] 图 6 是根据本发明的一个转移站的透视图。

[0021] 图 7 是图 6 的转移站的侧视图。

[0022] 图 8 是图 6 的转移站的俯视图。

[0023] 图 9 是图 6 的转移站的前视图。

[0024] 图 10 是图 6 的转移站的一部分的透视图。

[0025] 图 11 是图 6 的转移站的底部透视图。

[0026] 图 12 是图 6 的转移站的一部分的透视图。

[0027] 图 13 是图 6 的转移站的一部分的透视图。
说明书

[0028] 图 14 是图 6 的转移站的一部分的透视图。
[0029] 图 15 是图 6 的转移站的一部分的透视图。
[0030] 图 16 是图 6 的转移站的一部分的透视图。
[0031] 图 17 是图 6 的转移站的一部分的透视图。
[0032] 图 18 是图 6 的转移站的一部分的俯视图。
[0033] 图 19 是图 6 的转移站的一部分的透视图。
[0034] 图 20 是与图 6 的转移站一起使用的一个图形用户界面的屏幕截图。
[0035] 图 21 是与图 6 的转移站一起使用的一个图形用户界面的屏幕截图。
[0036] 图 22 是描述图 6 的转移站的一个过程的流程图。
[0037] 图 23 是描述图 6 的转移站的一个过程的流程图。
[0038] 详细描述

[0039] 在详细地解释本发明的任一实施方案之前，应理解的是，本发明在它的应用上并不限于下面描述中所提出的或下面附图中所图示的结构的细节和部件的排列。本发明可以有其他的实施方案，并且能够以不同的方式被实施或进行。

[0040] 先看图 1、示出根据本发明的一个系统并且该系统总体上被表示为 10。如图所示，该系统 10 包括一个控制 12（例如，一个微处理器，该微处理器带有相关的装置如存储器和输入/输出装置，或一个计算机）。该控制器包括过程控制软件，该软件从两个来源接收输入。这些来源是：一株植物数据库 14 以及一个数据输入表格 16。这些来源（即数据库 14 以及表格 16）一起为监控大数量植物提供有价值的信息。例如，考虑在图 2 中示出并且总体上表示为 18 的田地。为了监控这些植物 20，每个植物 20 必须是可识别的。为此目的，从数据库 14 到控制器 12 的输入允许用户记录这些个体植物（例如植物 20）的身份以及在田地 18 中的其他植物 20 的身份。确切地讲，数据库 14 包括在一个实验中使用的多个虚拟植物。例如，对于使用 500 株植物的一个实验 XYZ，数据库 14 将包括虚拟植物 XYZ-001 到 XYZ-500。

[0041] 控制器 12 也从数据输入表格 16 中接收输入。该数据可以包括关于一株植物的系谱或旨在用于来自植物 20 的样本的下游处理的信息，或关于植物 20 的其他数据，该其他数据包括通过全球定位系统（GPS）确定的该植物的物理位置。例如，一个实验可以要求检测两个亲本植物 20 以及它们的多个子代植物 20。在这种情况下，这些亲本植物 20 可以被种植在一个位置而这些子代种子被种植在另外一个独特的位置。关于这些亲本植物 20 以及子代植物 20 的遗传信息可以被输入该数据输入表格 16 之中。此外，对于植物 20 的每种类型的下游处理的指令也可以被输入该数据输入表格 16 之中，以用于在处理从这些植物 20 中获取的样本时使用。例如，该指令可以指明植物 20 的一个样本应该被转移的位置、多少来自一株植物 20 的样本应该转移到一个具体位置、以及对来自一株植物 20 中的样本应该进行何种测试。

[0042] 为了识别这些植物 20，例如，一个唯一性特征 22（如一个条形码或者 RFID）被连接到每株植物 20 上。这个唯一性特征 22 可以在物理形式上被预制或者制作在田地 18 中并且应用到植物 20 上或者应用到设置于邻近适当的植物 20 的土地中的一个柱 24 上。如在图 1 中所示，系统 10 包括一个装置 25，该装置从植物数据库 14 中接收植物信息并且产生包括植物信息的这种唯一性特征 22。在图 1 中，该产生装置 25 是一个条形码打印机。取决于所
希望的程序，可以为每株植物 20 或者为每个特定数目的植物 20 制作一个不同的唯一性特征 22。因此，每个唯一性特征 22 有效地为田地 18 中的一株或多株对应的植物提供一个地址。如以下将更详细地讨论的，还为包括随后收集的田地数据提供了关于这些唯一性特征 22 的同一信息并且它以文件形式展示为一个工作列表 26。在某些实施方案中，工作列表 26 包括用于植物样本的下游处理的多条指令的一个清单。因此，工作列表 26 是机器可读的，并且可以是人工可读的。典型地，工作列表 26 包含关于每个植物样本的来源的信息、每个植物样本所希望的目的地以及将每个植物样本移动到它所希望的目的地所涉及的优化的处理步骤。

[0043] 提供了一个取样装置 28，用来在田地 18 上从选定的植物 20 中收集植物材料。在从这些植物 20 上收集样本的过程中，每个被取样的植物 20 首先通过它的唯一性特征 22 被识别。此外，应予理解，通过取样装置 28 所获得的取样数据与该控制器 12 连通。在图 1 中，这种连通是由带有至少一个临时存储器的手持式计算机 31（例如“Pocket PC”）来进行的。确切地说，手持式计算机 31 登录了取样过程的活动并且暂时地存储了该取样数据用于随后下载到控制器 12（由箭头 27 指示）上。应指出，虽然所说明的系统 10 使用一个分离的手持式计算机 31 以提供在取样装置 28 与控制器 12 之间的连通，取样装置 28 可以包括存储器或者数据储存，这些存储器或者数据储存可以被直接下载到控制器 12 上面不使用手持式计算机 31 作为一个媒介。如由双端箭头 33 所表示的，手持式计算机 31 还提供了用于建立不同的取样选项以供取样装置 28 进行的一个用户界面。

[0044] 现在参见图 3，取样装置 28 被示出包括一个壳体 30，该壳体有一个冲头 32 以及冲模 34，它们被安装在壳体 30 的前端。位于壳体 30 顶部的一个键盘 36 被定位为在收到指令时启动冲头 32。同样的，取样装置 28 包括用于检索一株植物的唯一性特征 22 的一个单元 29，如一个读取器或者扫描器。一株植物的唯一性特征 22 与检索单元 29 相结合作为一个用于识别每个植物 20 的装置。因此，每当来自一个被识别的植物 20 的一个叶片（未示出）被安放在冲头 32 与冲模 34 之间，并且冲头 32 被键盘 36 启动时，将从该叶片中剪下一个插片（亦未示出）。这个插片被存放在一个仓盒 38（或相似的容器）之中。如图 3 中所示，仓盒 38 是与取样装置 28 相接合。然而，这是一种选择性的接合，因为它是旨在当仓盒 38 已被填满之后将从取样装置 28 中移除。然后，在取样装置 28 上被移除的仓盒 38 可以被另一相似的仓盒 38 替换。为了在下游处理的过程中识别一个具体的仓盒 38，每个仓盒 38 配备了一个区别的特征 39，如一个条形码或者 RFID。

[0045] 图 4 示出了在某些实施方案中，仓盒 38 包括九十九个用于收集植物材料（例如叶片插片）的存储位点 40。在所示出的实施方案中，这些存储位点 40 是多个器皿，这些器皿与一个定位器 42 一起在一个路径 44 上被定位于仓盒 38 中。一个或多个叶片插片可以被收集进单个存储位点 40。虽然展示了这些器皿 40，在此考虑了仓盒 38 可以使用多个存储位点 40 中的任何一个，如通过附着或者其他吸引力来保持植物样本的其他类型的容器或者区域。如图所示，这些器皿 40 沿路径 44 由一个驱动机构 46（如图所示，该驱动机构被安装在仓盒 38 上）传送。取样装置 28 进而操作该驱动机构 46。因此，通过使用定位器 42 作为一个起始点，取样装置 28 能够将这些器皿 40 沿路径 44 排列成一条有序的序列。这些器皿 40 由此被顺序地按次序作为多个独立的器皿 40 展示在一个冲头位置上（如图 4 中示出为器皿 40’的位置）。此外，取样装置 28 包括一个计数器 47，用于确定每个器皿 40 相对于
定位器42的位置。在图4中，应指出这些器皿40被局限于在路径44上运动。此外，所展示的驱动机构46进行旋转以便顺序地接合特定的器皿40来把运动赋予沿路径44的所有器皿40。虽然这些结构互相协作来收集在冲头位置40′处的植物样本，也考虑了其他系统以及结构用于沿路径44顺序地传送存储点位40。在其他实施方案中，仓盒38包括100个用于收集植物材料的存储点位40。

[0046] 正是在该冲头位置（在图4中由器皿40′示出）上冲头32产生了一个叶片插片。当一个器皿40已被所希望数目的叶片插片（例如高达八个叶片插片）填充时，驱动机构46将排在下一个的器皿40移动进入该冲头位置中。一旦仓盒38的这些器皿40已经被适当填充，该仓盒38就被从取样装置28中取出。然后，该仓盒38及其内容物（即装满叶片插片的器皿40）可以被冷冻干燥或以其他方式进行保存。随后，将冷冻干燥的仓盒38与其他的仓盒38捆在一起并且准备用于进一步处理。

[0047]回到图1，再次指出，在从植物20上收集样本的过程中，每个被取样的植物20首先通过其唯一性特征22被识别。此外，应理解由取样装置28为一个仓盒38获得的取样数据是通过手持式计算机31送给控制器12。确切地讲，该取样数据将允许在每个仓盒38中的一个具体存储点位40的内容物（即植物材料）对应于在获取该植物材料的植物20的唯一性特征22上的信息。换种说法，每个存储点位40是通过一个具体的身份特征22并且通过在数据库14中对应植物身份来识别的。因此，由控制器12整理的工作列表26将包括关于植物20的位置以及身份（该植物提供了保持在一个具体存储点位40处的植物材料）的信息以及仓盒38的身份以及仓盒38内保持该植物材料的存储点位40的信息。然后，工作列表26以及仓盒38均被用于在图1中所示的转移站50处的一个转移过程中。

[0048]简单来说，在转移站上进行的转移过程包括将植物材料从一个仓盒38的多个独立的存储点位40中转移进入一个接收构件54（如一个微量滴定托盘或板）的对应的孔52之中。如在图5中所见，用于该转移的接收构件54是一个托盘并且包括多个孔52（例如九十六个孔）。这些孔52被典型地安排在带有多个有标记的排和列的一个矩形阵列之中。此外，典型地将托盘54的一个拐角认定为原点，这样在托盘54上的这些孔52可以彼此相区分。在某些实施方案中，托盘54包括一个离散性特征55，该离散性特征允许对每个具体的孔52进行识别。确切地讲，离散性特征55允许对接收构件54的识别并且这些孔52的原点以及安排起到一种关键符（key）的作用，它用于确定在该接收构件54上的一个具体的孔52的位置。

[0049]植物材料取样的实例

[0050]为了进一步解释系统10，提供了植物材料取样的一个实例。在该实例中，计划了一个实验（标记为EXAM）用于分析两株植物的子代中的某些遗传特征。这里确定了该实验要求来自一百株植物的样本，包括来自每个亲本的十个以及来自子代的八十。因此，创建了一个数据库14，其中用于植物的虚拟身份被标记为EXAM-001到EXAM-100。此外，数据库14被构造为使得将亲本植物从EXAM-081到EXAM-100进行编号。

[0051]为了保证生长足够的数目子代，种植了一百五十颗子代种子。在种植过程中，这些种子被定位于六排中，每排二十五个。并且，十株遗传上相同的亲本植物中的每对被种植在限定的两排中。在这些子代种子发芽成为能存活的植物之后，进行了植物标记过程。确切地讲，开始于相对植物20的一个已知的位置（例如，这些植物20的阵列的东北角），一个
用户每个第五株植物上附上一个唯一性特征 22。该用户遵循一个设定的模式，如由北向南
通过每一排并且在排与排之间是由东向西。一旦对几十株子代以及五十株亲本应用了足够
的唯一性特征 22，则标记过程结束。当标记过程完成时，每个有待测试的植物 20 已经与数
据库 14 中的一个虚拟身份相匹配。当然，可以将一个唯一性特征 22 附到每株植物上或以
不同于每株植物之一的比率来进行。

0052 此后，从这些植物 20 上可以获取多株植物样本。确切地讲，该用户使用了植物取样
装置 28 来读取在一个仓盒 38 上的区域性特征 30，并且然后将仓盒 38 连接到取样装置
28 上。取样装置 28 自动地将定位器 42 定位在仓盒 38 内并且准备好在第一存储位点 40 处
插入一株植物样本。此后，该用户通过使用取样装置 28 来读取在植物 20 处的唯一性特征
22 来识别第一株植物 20。然后，该用户操作在取样装置 28 上的键盘 36 以便从植物 20 中
获取所希望的数目的样本。在从第一株植物 20 中获取所希望的样本之后，该用户指示取样
装置 28 将对相邻的植物 20 取样。重复这个过程直至遇到具有一个唯一性特征 22 的下一
株植物 20。然后，取样装置 28 被用来读取该唯一性特征 22，如对第一株植物 20 所做的那
样。

0053 当唯一性特征 22 被读取时，用户确保了所相信的被取样的植物 20 的数目与根据
取样装置 28 所获取的样本的实际数目是相同的。例如，在这个实例中，当使用植物取样装
置 28 来读取在第十六株植物处的唯一性特征 22 时，该用户注意到植物取样装置 28 已经记
录了获取第十六个样本。因为在第十一株植物处取样未显示这个错误，所以该用户知道在
第十一与第十六株植物 20 之间出现了一个错误。为了纠正这个错误，该用户将一个错误代
码输入植物取样装置 28 并且返回第十一株植物。读取在第十一株植物处的唯一性特征
22 并且获取了一个样本。然后，该用户继续该典型的取样过程。

0054 当在仓盒 38 中已经接收了一个所希望的数目的样本或最大数目的样本时，该用
户断开该仓盒 38，从一个替换的仓盒 38 读取区域性特征 30 并且将该替换仓盒 38 连接到植
物取样装置 28 上。再次，取样装置 28 自动寻找仓盒 38 内的定位器 42 并且使第一存储位
点 40 定位以接收一个样本。

0055 当该取样过程完成后，仓盒 38 被带到或以其他方式转移到一个转移站 50。并且，
该取样数据由手持式计算机 31 传输给控制器 12。在转移站 50 处，读取了本发明的工作列
表 26 并且执行这些转移指令。例如，工作列表 26 可以要求来自每个亲本植物的一个样本
以及来自子代的十个样本被安置在十个托盘 54 上的特定的孔 52 中。此后，每个仓盒 38 被
顺序地识别并且被连接到转移站 50 上。此外，每个托盘 54 被连接到转移站 50 上并且被转
移站 50 识别。对于每个仓盒 38，控制器 12 基于从手持式计算机 31 中接收的数据识别在每
个存储位点 40 的样本的植物 20 的来源。根据工作列表 26，转移站 50 将每个样本转移到一
个选定的托盘 54 中的一个选定的孔 52。此后，对于任何样本的植物来源可以通过识别该样
本所在的孔 52 以及托盘 54 而被识别出。通过已知的孔 52 以及托盘 54，存储位点 40 以及
仓盒 38 是已知的，因此样本来自哪株植物 20 就是已知的。如以上所指出的，控制器 12 已
经识别了包括取样错误的存储位点 40。因此，那些存储位点 40 将不被转移到这些托盘 54
上。

0056 转移站

0057 如图 6 至图 9 中所示，转移站 50 包括一个壳体 105，该壳体被支撑在一个支架 110
两个上壳体部分 115、120 通过铰链 127 枢转连接到一个壳体基座 125 上。一对支杆 130 将每个上壳体部分 115、120 连接到支架 110 上。支杆 130 将每个上壳体部分 115、120 保持在一个打开的位置中。在一个关闭的位置时，每个上壳体部分 115、220 大体上是水平的。每个上壳体部分 115、120 是完全相同的。因此，将只详细地描述其中一个上壳体部分。

[0058] 如图 10 至图 14 中所示，上壳体部分 120 包括一个平台 135，该平台被安装在上壳体部分 120 的一个下端处。四个样本移除工作站或仓盒位置 140 被安装在平台 135 上。每个样本移除工作站 140 包括一个仓盒接收器 145、一个仓盒索引器 150、一个冲压杆组件 155 以及一个条形码扫描器 160。仓盒接收器 145 安装在平台 135 的一个底表面 165 上，并且被配置成接收和固定一个仓盒 38。仓盒接收器 145 包括一个门锁，该门锁接合仓盒 38 的一部分以便将该仓盒固定到仓盒接收器 145 上。仓盒索引器 150 被安装在平台 135 的一个上表面 170 上。仓盒索引器 150 包括一个电机 175 以及一个轴 180，该轴延伸穿过平台 135 以便接合仓盒 38 的驱动机构 46。冲压杆组件 155 被安装在平台 135 的上表面 170 上。

[0059] 冲压杆组件 155 包括一个致动器 185 以及一个冲压杆 190。冲压杆 190 同心地对准穿过平台 135 的一个开口，这允许冲压杆 190 移动至一个移除位置，在该位置中，冲压杆 190 的至少一部分延伸穿过该开口并且经过仓盒 38。冲压杆 190 是圆柱形的。致动器 185 在一个收缩位置与该冲头位置之间驱动冲压杆 190，在该收缩位置中，冲压杆 190 不延伸穿过平台 135 的底表面 165。

[0060] 如图 14 所示，条形码扫描器 160 被安装在平台 135 的上表面 170 上，并且被配置成读取仓盒 38 的条形码 39。条形码扫描器 160 被安装在穿过平台 135 的一个开口 163 的附近。一个块体 161 被安装在底表面 165 上，靠近开口 163。一个镜子 162 被安装在块体 161 上，这样使得由条形码阅读器 160 发射出的一束激光被镜子 162 重定向以便读取位于仓盒 38 末端的条形码 39。

[0061] 如图 7 以及图 16 至图 18 所示，一个转盘 195 至少部分被定位在壳体基座 125 内。转盘 195 包括一个转轮 200 和一个板 205。该转轮 200 包括八个辐条 210。一个样本接收工作站或托盘位置 215 被定位在该八个辐条 210 各自的一个远端处。样本接收工作站 215 包括一个托盘接收器 220 和一个线性定位滑件 230。一个废料收集器 225 被安装到每个辐条 210 延伸出来的一个支撑臂 235 上。废料收集器 225 是一个顶式圆筒，该圆筒被配置成接收不想要的样本或错误的样本。一个单个条形码扫描器 222 被定位于圆盘 195 附近，这样使得通过旋转转盘 195 使其托盘 54 经过条形码扫描器 222 时，在每个托盘 54 上的条形码 55 能够被条形码扫描器 222 扫描到。

个旋转轴延伸通过该转轮的中心点 285 并且与上表面 255 垂直。凸轮滚轮 265 接合一个槽 290 的至少一个表面，该槽在板 205 的一个底表面 295 中形成。

[0063] 如图 11 和图 16 至图 18 所示，一个链轮 300 被安装到转盘 195 上。链轮 300 是以所述旋转轴为中心的。一个传动带 305 将链轮 300 连接到一个齿轮箱 310 上。该齿轮箱 310 被连接到一个转盘电机 315 上，这样使得转盘电机 315 驱动齿轮箱 310，该齿轮箱通过传动带 305 使链轮 300 旋转，从而使转盘 195 绕旋转轴旋转。一个轴承 320 被安装到支架 110 上，支撑转盘 195，并且以旋转轴为中心。

[0066] 如图 12 和图 17 最佳示出的，当壳体 105 的上部分 115、120 都处于关闭的位置中时，每个样本移除工作站 140 被定位在一个样本接收工作站 215 的上方，这样使得每个仓盒 38 的位置通过每个托盘 54 的位置反映出来。如图 15 所示，冲压杆 190 与仓盒 38 的在冲头位置 40’中的一个器皿 40 对齐，并且在托盘 54 中一个目标位置中的一个孔 52 对齐。仓盒索引器 150 可以使驱动机构 46 旋转，这样使得在仓盒 38 中的任意一个器皿 40 可以位于冲头位置 40’处。托盘接收器 220 可以移动，这样使得在托盘 54 中的任意一个孔 52 可以处在目标位置中。在所图示的实施方案中转移站 50 包括八个样本移除工作站 140 以及八个样本接收工作站 215。当然，转移站 50 可以包括一个单个的样本移除工作站 140 和一个单个的样本接收工作站 215。并且，转移站 50 可以包括少于八个的样本移除工作站 140 和八个样本接收工作站 215 或超过八个的样本移除工作站 140 和八个样本接收工作站 215。

[0067] 在使用中，通过仓盒索引器 150 和驱动机构 46，带有所希望的样本的器皿 40 被推进至仓盒 38 的冲头位置 40’，托盘接收器 220 被定位，这样使得在托盘 54 中的所希望的孔 52 处在目标位置中。致动器 185 将冲压杆 190 从收缩的位置推进到移除位置，从而通过冲压穿过仓盒 38 和在冲头位置 40’中的器皿 40 来从仓盒 38 中移除该希望的样本。冲压杆 190 将所希望的样本存放在位于目标位置的孔 52 中，并且然后返回到收缩的位置。当所希望的样本被存放在位于目标位置的孔 52 中之后，在仓盒 38 中的器皿 40 被推进，这样，下一个器皿 40 就位于冲头位置 40’之中，并且托盘接收器 220 可以被移动，这样使得在托盘 54 中的一个不同的孔 52 处在目标位置之中。
[0068] 在所有所需的样本或无错误样本从仓库 38 中被移除以后，不想要的样本或错误的样本可以通过一个清理模式从仓库 38 中被转移至废料容器 225 之中。带有一个错误样本的第一个器皿 40 被推进到仓库 38 的冲头位置 40’，并且废料容器 225 被移动到目标位置。在该目标位置，废料容器 225 的中心点与冲压杆 190 和在仓库 38 的冲头位置 40’中的器皿 40 对齐。致动器 185 将冲压杆 190 从收缩位置重新到移除位置，从而通过冲压穿过仓库 38 和在冲头位置 40’中的器皿 40 来从仓库 38 中移除该错误样本。冲压杆 190 将所希望的样本存放在废料容器 225 中，并且然后返回到收缩的位置。对在仓库 38 中任何其余的错误样本重复进行这个过程。所述清理模式可以通过转移站 50 自动地启动或通过用户启动。作为替代方案，当在转移所希望的样本的过程中，错误的样本出现在仓库 38 中的一系列器皿 40 中时，这些错误的样本可以从仓库 38 被转移到废料容器 225 之中。

[0069] 一个叶片样本管理器被用来为板或托盘 54 创建条形码，并且更新工作列表 26。该叶片样本管理器包括一个输入装置、一个图形用户界面 (GUI) 以及一个控制器。该输入装置可以是一个键盘、触摸屏、条形码扫描器、鼠标或其他合适设备或多个设备的组合。图 20 图示了一个“创建板 (Create Plates)”的屏幕 350，该屏幕将在 GUI 上显示以便使用户能够指定适当的项目，板的布局，每块板的组织或样本的最小数量以及这些板的创建条形码。

[0070] 一个用户界面包括一个输入设备、一个图形用户界面 (GUI) 以及一个控制器，该用户界面被配置成允许一个用户控制转移站 50。该输入装置可以是一个键盘、触摸屏、条形码扫描器、鼠标或其他合适的设备或多个设备的组合。该控制器被配置成控制和接收来自转移站 50 的组件的信息。图 21 图示了一个“将仓库转移至板 (Transfer Magazine to Plate)”的屏幕 355，该屏幕 355 将会在 GUI 上显示以便使用户能控制转移站 50 的运作。

[0071] 在使用中，所希望的工作列表 26 被加载至所述控制器中以便指导转移站 50 的转移循环。然后，在用户界面 (如图 21 所示) 中，从“项目 (Project)”下拉式菜单 360 中选出所希望的工作列表 26 或项目。所希望的工作列表 26 包括植物材料的相关联的样本，这些样本被包含在通过条形码 (或其他标识符) 识别的多个所需的仓库 38 中以及通过条形码 (或其他标识符) 识别的多个所需的托盘 54 中。在一些实施方案中，多个工作列表 26 可以被加载到所述控制器上。

[0072] 转移控制台 50 循环通过图 22 中图示的一系列步骤。在第一个步骤 401 中，圆盘 195 被旋转至一个复原位置，在该位置，每个样本移除工作站 140 都被定位在一个样本接收工作站 215 的上方。在该复原位置，一个样本移除工作站 140 (被指定为样本移除工作站 1) 被定位在一个样本接收工作站 215 (被指定为样本接收工作站 1) 的上方，以此类推，这样使得所有八个样本移除工作站被指定为 1 到 8，并且所有的相对应的样本接收工作站也被指定为 1 到 8。

[0073] 在第二个步骤 402 中，用户将所需的仓库 38 加载到样本移除工作站 140 之中，并将所需的托盘 54 加载到托盘接收器 220 之中。在加载了仓库 38 和托盘 54 之后，用户将两个上壳体部分 115、120 关闭。被加载到转移站 50 中的仓库 38 可以多于托盘 54。被加载到转移站 50 中的托盘 54 可以多于仓库 38。

[0074] 在第三个步骤 403 中，用户界面显示了一个按钮 365 (在图 21 中示出)，该按钮上写着“扫描工作站中的仓库和板 (Scan Magazines and Plates in Station)”。然后用户点击该按钮以便移动到第四个步骤 404。
[0075] 在第四个步骤 404 中，在仓盒 38 和托盘 54 各自上的条形码 39,55 都经过扫描。每个条形码扫描器 160 扫描在每个样本移除工作站 140 中的仓盒 38 的条形码 39。当转盘 195 处在复原位置中时，每个托盘接收器 220 处在相对于条形码扫描器 222 的一个已知的位置之中。将转盘 195 旋转至少一转，这样使得在每个托盘 54 上的条形码 55 被条形码扫描器 222 扫描，并且与适当的托盘接收器 220 相关联。作为替代方案，在每个托盘 54 上的条形码 55 可以被定位在每个托盘接收器 220 附近的一个条形码扫描器扫描。在其他实施方案中，一个手持式条形码扫描器可以被用于扫描每个仓盒 38 和每个托盘 54 的条形码 39 和条形码 55。

[0076] 在第五个步骤 405 中，用户界面显示了一个屏幕部分 370 (如图 21 所示)，该屏幕部分 370 显示出空的样本移除工作站 140 和空的样本接收工作站 215，其中将这些空的工作站 140,215 指定为“发现为空 (NONE FOUND)”。如果一个工作站 140,215 中没有来自仓盒 38 或托盘 54 的有效条形码，则该工作站 140,215 被确定为是空的。如果一个工作站 140,215 被错误地确定为是空的，则用户可以为在该工作站 140,215 中的仓盒 38 或托盘 54 手动地输入适当的标识符。在其他实施方案中，对每个工作站 140,215 包括一个传感器，该传感器被配置成检测一个仓盒 38 或托盘 54 的存在。

[0077] 在第六个步骤 406 中，控制器把工作列表 26 和每个托盘 54 关联起来。该工作列表是通过托盘 54 相关联，因为托盘 54 与一个单个工作列表 26 相关联，而仓盒 38 可以包含来自于多个工作列表 26 的样本。

[0078] 在第七个步骤 407 中，控制器接收每个托盘 54 中空的孔 52 的呈行，列格式的一个清单。在每个托盘 54 中的这些孔 52 形成了由多个列和多个行组成的网格。列使用字母和行使用数字指定。孔 52 被按顺序地放置，这样使得第一个孔是 A-1，下一个孔是 A-2，以此类推。在列 A 中所有的孔之后，孔 B-1 接紧其后，以此类推至在托盘 54 中所有的孔。

[0079] 在第八个步骤 408 中，用户界面在屏幕上显示了在每个托盘 54 中可使用的孔 52 的数量。

[0080] 在第九个步骤 409 中，用户界面查询工作列表 26 以便确定哪些仓盒 38 具有与工作列表 26 相关联的样本。

[0081] 在第十个步骤 410 中，用户界面指示哪些仓盒 38 没有与工作列表 26 相关联的样本。

[0082] 在第十一个步骤 411 中，用户界面指示哪些托盘 54 是满的并且不能再接收另外的样本。

[0083] 在第十二个步骤 412 中，第二个至第十一个步骤必要时被重复。然后，用户通过点击用户界面上的“开始转移 (Start Transfer)”按钮 380 (如图 21 所示) 来开始样本的转移。

[0084] 在第十三个步骤 413 中，基于上述的对孔 52 的定序，从所有的托盘 54 中确定第一个空的孔。因为托盘接收器 220 不能相互独立地移动，在每个托盘 54 中相同的孔 52 必须处在每个托盘接收器 220 中的目标位置之中。因此，所有托盘接收器 220 必须基于在任意的托盘 54 中的第一个空的孔来进行初始定位以便使用。使每个托盘接收器 220 移动，这样使得与该第一个空的孔相对应的孔 52 被置于目标位置之中。
在第四个步骤 414 中，使所有的仓盒 38 回复原位，这样使得第一个器皿 40 被定位在冲头位置 40’处。

在第十五个步骤 415 中，将每个仓盒 38 推进，这样使得带有待被转移到托盘 54 中的第一个样本的器皿 40 处在冲头位置 40’处。

在第十六个步骤 416 中，对于每个托盘 54，相对应的样本移除工作站 140 将位于冲头位置 40’处的器皿 40 中所包含的该样本冲压到处于目标位置中的孔 52 之中，条件是：该孔 52 是空的，该孔不是一个对照物，并且，器皿 40 包含待被转移到目标位置中的孔 52 中的一个有效的样本（如从工作列表 26 确定的）。

在第十七个步骤 417 中，用户界面更新工作列表 26 来反映在仓盒 38 中新的被清空的器皿 40，以及在托盘 54 中新的空的孔 52。

在第十八个步骤 418 中，使所有的托盘接收器 220 移动，这样使得下一个孔 52 处在目标位置之中。

在第十九个步骤 419 中，将刚移除了一个样本的每个仓盒 38 推进，这样，下一个器皿 40 处在冲头位置 40’之中。

在第二个步骤 420 中，用户界面更新和显示现在是状态为空的每个托盘 54。

在第二十个步骤 421 中，用户界面更新和显示现在状态为空的每个仓盒 38。

在第二十二个步骤 422 中，如果所有的托盘 54 是空的，则用户界面显示所有状态为满的托盘 54，并且停止转移站 50 的循环以作为第二十七个步骤 427。

在第二十三个步骤 423 中，如果所有的仓盒 38 是空的，则用户界面显示所有状态为空的仓盒 38，并且停止转移站 50 的循环以作为第二十七个步骤 427。

在第二四个步骤 424 中，只要最后的孔不在目标位置之中并且不是满的，就在必要时重复第十六至第二十三个步骤。

在第二十五个步骤 425 中，如果最后的孔处在目标位置之中并且是满的，在仓盒 38 之中的至少一个器皿 40 含有根据工作列表 26 待被转移至托盘 54 中的一个样本，并且至少一个托盘 54 含有一个开放的孔 52，则转移站 50 进入填充模式以作为第二十六个步骤 426。如果没有托盘 54 含有一个开放的孔 52，则转移站 50 的循环停止以作为第二十七个步骤 427。

如图 23 所示，对于填充模式的第一步 501，转移站 50 自动地选择具有最少空的孔的托盘 54 作为“当前托盘”。对于填充模式的第二步 502，转移站 50 查询每个仓盒 38 来确定仓盒 38 是否含有适合当前工作列表 26 的样本。对于填充模式的步骤三 503，带有选定的托盘 54 的托盘接收器 220 将在该托盘 54 中的第一个空的孔移动至目标位置。对于填充模式的步骤四 504，转盘 195 旋转，这样使得选定的托盘 54 被定位在对于工作列表 26 具有最少的可用样本的仓盒 38 的下方。对于填充模式的第五步 505，样本移除工作站 140 将处于冲头位置 40’处的器皿 40 中所含的样本冲压到目标位置中的孔 52 中，该控制器相应地更新工作列表，仓盒 38 将下一个器皿 40 推进到冲头位置 40’，并且托盘接收器 220 移动使得下一个空的孔处在目标位置之中。重复填充模式步骤五 505，直到仓盒 38 是空的或选定的托盘 54 是满的。对于填充模式的第六步 506，如果托盘 54 是满的，该控制器更新，并且，如果任意一个剩余的托盘 54 具有至少一个空的孔 52，则转移站 50 返回至填充模式第一步。对于填充模式的第七步 507，如果仓盒 38 是空的，则转盘 195 旋转，这样使得选定的托盘 54
被定位在对于工作列表 26 具有最少的可用样本的非空托盘 38 的下方，并且然后转移站 50
返回到填充模式第四步 504。对于填充模式的第八步 508，如果所有的托盘 54 是满的或者
没有剩余的托盘 38 含有适合工作列表 26 的一个样本，则控制器相应地更新，并且转移站 50
停止循环。作为替代方案，一个用户可以进行该填充模式的这些步骤。

[0098] 每个源植物 20 相对于一个条形码或其他识别符 22 进行识别。这种识别被联系到
器皿 40 上，该器皿在取样操作过程中接收该植物的样本。然后，对于被包含在一个仓盒 38
的每个器皿 40 中的样本来说的源植物 20，还通过在仓盒 38 中该器皿 40 相对于定位器 42
和仓盒的条形码 39 的位置被识别。在一个托盘 54 中的每个孔 52 在该行 - 列的格式中被
指定，并且每个托盘 54 通过一个条形码或其他标识符 55 进行识别。转移站 50 允许一个样本
根据工作列表 26 从一个仓盒 38 被转移至一个托盘 54，从而确保与被包含在一个托盘 54
中的每个孔 52 中的样本相关联的源植物是已知的。在对该托盘 54 中的这些样本进行测试
之后，可以基于通过所述测试而确定的特征，来选出一株植物 20。

[0099] 因此，除了其他之外，本发明提供了用于将植物样本从一个取样装置转移至一个
转移站来便于这些样本的测试的方法和系统。本发明的多项不同的特点和优势在所附的权
利要求书进行了阐述。
图 7
图 11
<table>
<thead>
<tr>
<th>项目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>布局</td>
<td>每个版只印最少组织数 50</td>
</tr>
<tr>
<td>创建</td>
<td>TMC03506 13 doc 构建创建</td>
</tr>
</tbody>
</table>

其中包含项目 TMC03506 的 10 个版的标签。

图 20
图21