wo 2012/166187 A1 | [A0 AT OO A O A

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

6 December 2012 (06.12.2012)

WIPOIPCT

(10) International Publication Number

WO 2012/166187 Al

(51

eay)

(22)

(25)
(26)
(30)

1

(72

International Patent Classification:
G06Q 50/00 (2006.01) GO6F 17/40 (2006.01)
GO6F 21/22 (2006.01)

International Application Number:
PCT/US2011/055529

International Filing Date:
9 October 2011 (09.10.2011)

Filing Language: English
Publication Language: English
Priority Data:

13/118,158 27 May 2011 (27.05.2011) US

Applicant (for all designated States except US): MI-
CROSOFT CORPORATION [US/US]; One Microsoft
Way, Redmond, Washington 98052-6399 (US).

Inventors: BEAM, Tyler K.; ¢c/o Microsoft Corporation,
LCA - International Patents, One Microsoft Way, Red-

mond, Washington 98052-6399 (US). RADHAKRISH-
NAN, Kavitha; ¢/o Microsott Corporation, LCA - Interna-
tional Patents, One Microsott Way, Redmond, Washington
98052-6399 (US). KARAS, Benjamin J.; c/o Microsoft
Corporation, LCA - International Patents, One Microsoft
Way, Redmond, Washington 98052-6399 (US).
BLANCH, Katrina M.; c¢/o Microsoft Corporation, LCA -
International Patents, One Microsoft Way, Redmond,
Washington 98052-6399 (US). WONG, Lyon; c¢/o Mi-
crosoft Corporation, LCA - International Patents, One Mi-
crosoft Way, Redmond, Washington 98052-6399 (US).
KIM, Allen T.; ¢c/o Microsoft Corporation, LCA - Interna-
tional Patents, One Microsott Way, Redmond, Washington
98052-6399 (US). BALL, Steven J.; c/o Microsoft Cor-
poration, LCA - International Patents, One Microsoft Way,
Redmond, Washington 98052-6399 (US). LAURI-
CELLA, J. Tracy; c¢/o Microsoft Corporation, LCA - In-
ternational Patents, One Microsoft Way, Redmond, Wash-
ington 98052-6399 (US). GRAHAM, Scott B.; c/o Mi-

[Continued on next page]

(54) Title: BROKERED ITEM ACCESS FOR ISOLATED APPLICATIONS

200 W

N\
Authorization 214
Store 208 \ - y

Application
202

(Broker Module 120
'd

N
Picker Module

122 APIls 210

.

N
ltem Access
Module 212

-
Filtering Module

' A ~\
Search Module [Arrangement

218 Module 216

. v

Picker Ul Module 220

Item Source 204

(57) Abstract: A broker module of a computing device receives requests
from an isolated application to access one or more items of an item source. In
response to a request, storage item objects representing items of the item
source are generated and returned to the isolated application for each item of
the item source that the isolated application is authorized to access. Whether
the isolated application is authorized to access a particular item can be based
on particular item sources and/or particular item locations.

WO 2012/166187 A1 WAL 00 TN T 0 A

31

crosoft Corporation, LCA - International Patents, One
Microsoft Way, Redmond, Washington 98052-6399 (US).
MISHRA, Manav; c¢/o Microsoft Corporation, LCA - In-
ternational Patents, One Microsoft Way, Redmond,
Washington 98052-6399 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
NO, NZ, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU,
RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ,
™™, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
IM, ZW.

(84) Designated States (unless otherwise indicated, for every

kind of regional protection available): ARTIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD,
RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ,
DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT,
LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS,
SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM,
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant’s entitlement to apply for and be granted
a patent (Rule 4.17(ii))

as to the applicant's entitlement to claim the priority of
the earlier application (Rule 4.17(iii))

Published:

with international search report (Art. 21(3))

10

15

20

25

30

WO 2012/166187 PCT/US2011/055529

BROKERED ITEM ACCESS FOR ISOLATED APPLICATIONS

Background

[0001] Users have access to a wide range of applications from a wide variety of different
sources. For example, users traditionally obtained an application from a “bricks and
mortar” store on a computer-readable storage medium (such as an optical disc) and then
installed the application on the user’s home computing device. These applications were
generally provided by reputable developers and thus were considered trustworthy.
[0002] Subsequent techniques were then developed in which the user accessed a
network to locate and install an application. For example, an application marketplace may
be made available for access via the Internet to locate and purchase applications. In some
instances, the application marketplace may include a multitude of applications, which may
originate from a variety of different developers. Because of the sheer number of
applications that may be made available and the variances in the developers that may
provide them, however, the functionality of the applications may have varying degrees of
trustworthiness. For example, the applications may have flawed functionality, may have
been written by malicious parties, and so on.

Summary
[0003] This Summary is provided to introduce a selection of concepts in a simplified
form that are further described below in the Detailed Description. This Summary is not
intended to identify key features or essential features of the claimed subject matter, nor is
it intended to be used to limit the scope of the claimed subject matter.
[0004] In accordance with one or more aspects, a request is received at a broker module
of a computing device. The received request is a request from an isolated application in
the computing device to access one or more items of an item source. A check is made as
to which (if any) of the one or more items of the item source the isolated application is
authorized to access. One or more storage item objects that represent those of the one or
more items that the isolated application is authorized to access are generated and the
generated storage item objects are returned to the isolated application. However, if the
isolated application is authorized to access none of the one or more items, then the
received request is denied.
[0005] In accordance with one or more aspects, an application invokes an application
programming interface (API) of a broker module to request access to one or more items of

an item source. The application is an isolated application that is restricted from accessing

10

15

20

25

30

WO 2012/166187 PCT/US2011/055529

the item source other than through the broker module. At least one storage item object is
received from the broker module, each storage item object containing those of the one or
more items that the isolated application is authorized to access.

Brief Description of the Drawings

[0006] The detailed description is described with reference to the accompanying figures.
In the figures, the left-most digit(s) of a reference number identifies the figure in which the
reference number first appears. The use of the same reference numbers in different
instances in the description and the figures may indicate similar or identical items.

[0007] Fig. I illustrates an example system implementing the brokered item access for
isolated applications techniques discussed herein.

[0008] Fig. 2 illustrates another example system implementing the brokered item access
for isolated applications techniques discussed herein.

[0009] Fig. 3 illustrates a data flow of the brokered item access for isolated applications
in additional detail in accordance with one or more embodiments.

[0010] Fig. 4 illustrates a procedure for implementing the brokered item access for
isolated applications in accordance with one or more embodiments.

[0011] Fig. 5 illustrates a procedure for implementing the brokered item access for
isolated applications in accordance with one or more embodiments.

Detailed Description

Overview
[0012] Brokered item access for isolated applications is discussed herein. A broker
module is situated between an isolated application and one or more item sources (¢.g., a
file system, a device, another application). To access items from an item source, the
isolated application requests access to an item by invoking an application programming
interface (API) of the broker module. If the isolated application is permitted to access the
requested item, then the broker module accesses the requested item and returns to the
isolated application an object that is a representation of the requested item. If the isolated
application is not permitted to access the requested item, then the broker denies the access
to the requested item and does not return to the isolated application an object that is a
representation of the requested item. The broker module and APT are discussed in
additional detail below.
[0013] In the following discussion, an example system is first described that is operable

to perform techniques described herein. Example procedures are then described, which

10

15

20

25

30

WO 2012/166187 PCT/US2011/055529

are operable in the example system as well as in other systems. Likewise, the example
system is not limited to performance of the example procedures.

Example System

[0014] Fig. I illustrates an example system 100 implementing the brokered item access
for isolated applications techniques discussed herein. The illustrated system 100 includes
a computing device 102, which can be configured in a variety of ways. For example,
computing device 102 can be configured as a computer that is capable of communicating
over a network 104, such as a desktop computer, a tablet or notepad computer, a mobile
station, an entertainment appliance, a set-top box communicatively coupled to a display
device, a television or other display device, a cellular or other wireless phone, a game
console, and so forth.

[0015] Computing device 102 may range from a full resource device with substantial
memory and processor resources (e.g., personal computers, game consoles) to a low-
resource device with limited memory and/or processing resources (¢.g., traditional set-top
boxes, hand-held game consoles). Additionally, although a single computing device 102
is shown, computing device 102 may be representative of multiple different devices, such
as multiple servers utilized by a business to perform operations, a remote control and set-
top box combination, an image capture device (e.g., camera) and a game console
configured to capture gestures, and so on.

[0016] Computing device 102 can also include an entity (e.g., software) that causes
hardware of computing device 102 to perform operations, ¢.g., configures processors,
functional blocks, and so on. For example, computing device 102 may include a
computer-readable medium that may be configured to maintain instructions that cause the
computing device, and more particularly hardware of computing device 102, to perform
operations. Thus, the instructions function to configure the hardware to perform the
operations and in this way result in transformation of the hardware to perform the
operations. The instructions may be provided by the computer-readable medium to
computing device 102 through a variety of different configurations.

[0017] One such configuration of a computer-readable medium is signal bearing
medium and thus is configured to transmit the instructions (e.g., as a carrier wave) to the
hardware of computing device 102, such as via network 104. The computer-readable
medium may also be configured as a computer-readable storage medium and thus is not a
signal bearing medium. Examples of a computer-readable storage medium include a

random-access memory (RAM), read-only memory (ROM), optical discs (e.g., DVD or

10

15

20

25

30

WO 2012/166187 PCT/US2011/055529

CD), flash memory, hard disk memory, and other memory devices that may use magnetic,
optical, and other techniques to store instructions and other data.

[0018] Network 104 can assume a variety of different configurations. For example,
network 104 can include the Internet, a wide area network (WAN), a local area network
(LAN), a personal arca network (PAN), a wireless network, a public telephone network,
an intranet, combinations thereof, and so on. Further, although a single network 104 is
shown, the network 104 may be configured to include multiple networks.

[0019] Computing device 102 is illustrated as including an item management module
106. Item management module 106 is representative of functionality to manage access to
one or more item sources 108 and/or 110. Item management module 106 can be
implemented in a variety of ways, such as a stand-alone application, as part of an
operating system of computing device 102, and so on.

[0020] Item source 108 employs techniques to organize and store a variety of different
types of items 112. An item refers to data or content that can be requested by an
application. For example, an item can be a file, a folder or directory, a uniform resource
identifier (URI), a uniform resource locator (URL) or other link, compressed files or
collections of files (e.g., zip files or cabinet files), a file maintained by (or content
maintained in a different manner by) another application, and so forth. Item source 108
can be implemented in a variety of different ways, employing various techniques to
organize and store items. For example, item source 108 can be a file system on computing
device 102, a storage system on computing device 102, another application running on
computing device 102 (e.g., that itself manages organization and storage of items),
databases, and so forth. Similarly, item source 110 can be implemented in a variety of
different ways, employing various techniques to organize and store items 114 that can be
accessed by computing device 102 over network 104. Item source 110 can be, for
example, a service provider (e.g., implemented using one or more computing devices
configured in the same and/or different ways as computing device 102), a file system of a
service provider, a storage system of a service provider, another application running on a
service provider, media server, and so forth.

[0021] An application 116 is one or more programs, scripts, or other collections of
instructions that run on computing device 102. Application 116 can assume a variety of
different configurations, such as an entertainment application (e.g., a game or audio/video
player), a utility application (e.g., a word processor or Web browser), a reference

application (e.g., a dictionary or encyclopedia), and so forth. Application 116 is referred

10

15

20

25

30

WO 2012/166187 PCT/US2011/055529

to as an isolated application due to application 116 being executed in a manner in which
the ability of application 116 to access resources (e.g., networked computer, the Internet,
modules, devices, memory, other applications) of computing device 102 is restricted. The
operating system (and/or other software, firmware, and/or hardware) of computing device
102 allows application 116 to access memory and other resources of computing device
102 that have been allocated or otherwise made available to application 116, but prevents
application 116 from accessing other memory of, resources of, and/or applications running
on computing device 102. This protects other applications running on the computing
device from being interfered with by application 116, as well as protects application 116
from being interfered with by other applications running on computing device 102, thus
isolating application 116 from other applications on computing device 102. As part of the
isolation, the operating system (and/or other software, firmware, and/or hardware) of
computing device 102 also prevents application 116 from accessing item source 108
and/or item source 110, except through item management module 106 as discussed in
more detail below.

[0022] In one or more embodiments, application 116 is executed in a restricted manner
by executing application 116 in a sandbox. Although a single application 116 is illustrated
in computing device 102, it should be noted that multiple applications can be executing in
computing device 102 concurrently (each application being executed in its own sandbox).
[0023] Item management module 106 is further illustrated as including a broker module
120 and a picker module 122. Broker module 120 is representative of functionality of
item management module 106 to manage access of application 116 to item source 108
and/or 110. Broker module 120, for instance, can act as an intermediary to locate items
112 and/or 114 requested by application 116 and provide the located items 112 and/or 114
back to application 116. Application 116 can access items 112 and/or 114 through broker
module 120, but due to it being an isolated application is otherwise restricted from
accessing item source 108 and/or 110 (as well as items 112 and/or 114 within these item
sources). Further, the items 112 and/or 114 can be provided to application 116 and
application 116 need not be aware of where the items 112 and/or 114 were obtained, ¢.g.,
application 116 can be unaware of the namespace used by item source 108 and/or 110.
This allows an application to treat items from various item sources in a uniform manner
and not specific to each kind of item source.

[0024] Additionally, broker module 120 may optionally employ picker module 122 to

provide an alternative way to gain access to item source 108 and/or 110. Picker module

10

15

20

25

30

WO 2012/166187 PCT/US2011/055529

122 provides a trusted method to allow an application (e.g., which does not have
programmatic access to item source 108 and/or 110 via broker module 120) to access item
source 108 and/or 110 (as well as items 112 and/or 114 within these item sources).

[0025] Generally, any of the functions described herein can be implemented using
software, firmware, hardware (e.g., fixed logic circuitry), manual processing, or a
combination of these implementations. The terms “module” and “functionality” as used
herein generally represent hardware, software, firmware, or a combination thereof. In the
case of a software implementation, the module, functionality, or logic represents
instructions and hardware that performs operations specified by the hardware, ¢.g., one or
more processors and/or functional blocks.

[0026] Fig. 2 illustrates an example system 200 implementing the brokered item access
for isolated applications techniques discussed herein. System 200 as illustrated may be
implemented in part by the item management module 106 of computing device 102 of Fig.
1 to perform item management techniques. For example, item management module 106
can be incorporated as part of an operating system, an application that executes in
conjunction with the operating system, a stand-alone application, and so on. Regardless of
where incorporated, item management module 106 can employ techniques to manage
items accessible to the computing device locally and/or remotely (e.g., via network 104 of
Fig. 1).

[0027] System 200 as illustrated includes an application 202 (which can be, for example,
an application 116 of Fig. 1), an item source 204 (which can be, for example, an item
source 108 or 110 of Fig. 1), and an item 206 (which can be, for example, an item 112 or
114 of Fig. 1). In this example, application 202 communicates with broker module 120
via one or more application programming interfaces (APIs) 210 exposed to application
202 by broker module 120 to access item source 204. Although a single application 202
and a single item source 204 are illustrated in Fig. 2, it should be noted that system 200
can include any number of applications 202 accessing any number of item sources 204.
[0028] Application 202 can be authorized to access particular item sources and/or
particular item locations. This authorization can be performed at different times and in
different ways, although is typically performed previous to application 202 requesting
access to item 206. In one or more embodiments, this authorization is performed when
application 202 is downloaded to or installed on the computing device implementing
system 200. For example, as part of the download or installation process, the user can be

notified of particular item sources and/or particular item locations that application 202

10

15

20

25

30

WO 2012/166187 PCT/US2011/055529

desires to access, and the user can provide input (e.g., selection of a particular button or
other part of a user interface (Ul)) as to whether application 202 is authorized to access
those particular item sources and/or particular item locations. Alternatively, this
authorization can be performed at other times, such as when application 202 is modified or
updated, during subsequent configuration of application 202 by a user of system 200, and
so forth. Regardless of how performed, system 200 maintains an authorization store 208
that includes a record of which item sources and/or item locations application 202 is
authorized to access. Authorization store 208 is accessible to broker module 120, allowing
the record of which item sources and/or item locations application 202 is authorized to
access to be obtained and used by broker module 120.

[0029] Application 202 can be authorized to access any of a variety of different item
sources 204 supported by broker module 120. For example, item sources that an
application 202 can be authorized to access can be a file system, one or more particular
applications running on a computing device, one or more particular storage systems
implemented by a service provider, and so forth.

[0030] Application 202 can also be authorized to access any of a variety of different
item locations. Different types of item locations can be defined for different item sources.
For example, for an item source that is a file system, the item locations can be defined as
folders or libraries (e.g., a documents library, a music library, a video library, a picture
library). A library refers to a collection of one or more locations (e.g., folders or
directories on one or more devices), and the locations included in a library can optionally
be modified by a user of system 200. By way of another example, for an item source that
is an application, the item locations can be groupings or other collections of items as
defined by the application.

[0031] Broker module 120 includes an item access module 212, which is representative
of functionality of broker module 120 to respond to requests from application 202 to
access items. APIs 210 support various interfaces that can be invoked by application 202
for various different types of access to items. For example, APIs 210 include interfaces
permitting reading items, writing items, creating items, deleting items, modifying items,
copying items, moving items, renaming items, retrieving properties of items, and so forth.
The same interfaces can be used for different item sources, abstracting the item sources
from application 202. For example, APIs invoked to retrieve or enumerate items can be
applied to multiple item sources supported by broker module 120, to item sources

supported by broker module 120 that application 202 is authorized to access, and so forth.

10

15

20

25

30

WO 2012/166187 PCT/US2011/055529

By way of another example, application 202 need not specify an item source when
invoking an API to write or rename an item (e.g., the item source can be identified in or
inherent in the storage item object as discussed in more detail below).

[0032] Alternatively, a parameter of the interface identifying the particular item source
for a request can be included. For example, APIs 210 can include a read item interface
used for both a file system source and a service provider storage system source, with a
parameter of the read item interface indicating for which of the two sources the application
202 is requesting to read items. In other alternatives, different interfaces can be used for
different item sources. For example, APIs 210 can include a file system read item
interface used to read items from a file system source, and a service provider read item
interface used to read items from a service provider storage system source.

[0033] Application 202 invokes one or more APIs 210 requesting access to one or more
items of (e.g., stored by) an item source. Upon receiving the request, item access module
212 checks the record of item sources and/or item locations that application 202 is
authorized to access, and determines based on this record whether application 202 is
authorized to access the requested item or items. If application 202 is not authorized to
access any of the requested one or more items (the application is authorized to access none
of the one or more items), then item access module 212 does not grant the requested
access. For example, if application 202 requests to access a file in a picture library but is
authorized to access only files in a music library, then item access module 212 does not
grant the requested access. Item access module 212 can optionally return an indication
(e.g., as a result value associated with an API 210 invoked by application 202 to request
access to the one or more items) that the requested access is denied.

[0034] However, if application 202 is authorized to access some of the requested one or
more items, then item access module 212 obtains and permits access to those of the one or
more items that application 202 is authorized to access. The manner in which the
requested one or more items are obtained by broker module 120 can vary based on the
particular item source 108, and broker module 120 is configured with (or can obtain) an
indication of how to access item source 108. Item access module 212 generates a storage
item object representing each item that application 202 is authorized to access. This
storage item object includes various information associated with the item, and optionally
includes the data and/or content of the item. Item access module 212 returns this

generated storage item object to application 202.

10

15

20

25

30

WO 2012/166187 PCT/US2011/055529

[0035] Alternatively, rather than using previously received authorization to access an
item or items, broker module 120 may employ picker module 122 to obtain access to one
or more items that are requested by application 202. Upon receiving the request to access
one or more items, broker module 120 can implement picker module 122 to generate a
user interface, which launches picker Ul module 220. Picker UI module 220 presents a Ul
querying the user as to whether the user authorizes access to the one or more items,
allowing the user to navigate to or otherwise locate the one or more items, and so forth. A
user input can be received, indicating whether the user authorizes application 202 to
access the one or more items. If the user authorizes application 202 to access the one or
more items, then picker module 122 obtains the one or more items and returns the
obtained one or more items to item access module 212 for generation of the storage item
object representing 112. Alternatively, rather than picker module 122 obtaining the one or
more items, picker module 122 can return an indication to item access module 212 for
module 212 to obtain the one or more as discussed above.

[0036] Item access module 212 returns storage item objects to application 202. A
storage item object represents an item. The storage item object is an abstraction or
representation of the item. Access by application 202 (e.g., reading, writing, modifying,
etc.) to the item represented by the storage item object is performed through broker
module 120 and/or the storage item object itself. The storage item object can take various
different forms. In one or more embodiments, the storage item object is an object
generated by broker module 120 and exposed to application 202. Broker module 120
returns such a storage item object to application 202 by providing an identifier or other
indication of the storage item object to application 202. Various methods or operations of
the storage item object can be invoked by application 202 to obtain information regarding
the item represented by the storage item object and/or perform various operations on the
item represented by the storage item object. Alternatively, the storage item object can be a
data structure that can include various information regarding the item represented by the
storage item object, and/or various methods or operations that can be invoked by
application 202 to perform various operations on the storage item object. Broker module
120 returns such a storage item object by providing the data structure to application 202.
[0037] In one or more embodiments, the storage item object includes a properties
portion, a thumbnail portion, a content portion, and an operations portion. The properties
portion of the storage item object includes various properties or attributes of the item.

Any of a variety of different properties or attributes maintained by item source 204 for

10

15

20

25

30

WO 2012/166187 PCT/US2011/055529

items can be included in the properties portion of the storage item object. For example,
the properties portion of the storage item object can include the name of the item, a size
(e.g., in bytes) of the item, a type of the item (e.g., picture type, music type, etc.), and so
forth.

[0038] The thumbnail portion of the storage item object includes a visual representation
of the item. This thumbnail can be an image or a sequence of images (e.g., a video). The
thumbnail can be, for example, a portion of the item (e.g., one page of a document or part
of a picture), a reduced-scale version of the item (e.g., a smaller-scale version of a
picture), an icon representing a type of the item, and so forth.

[0039] The content portion of the storage item object includes the content of an item or
an indication of how to obtain the content of the item. For example, if the item is a
picture, then the content portion can include the data of the picture itself, or a link (e.g.,
Uniform Resource Locator (URL) or path) to where the data of the picture is stored. The
item can be data that is streamed to application 202 (e.g., a music file or video file), and
the indication of how to obtain the content of the item can include an indication of (e.g.,
link to) the data to be streamed. The content portion can also include some operations on
items, such as operations to read the item and write to the item.

[0040] The operations portion of the storage item object includes one or more methods
or operations that can be performed on the item. Various different operations can be
performed on an item, providing various different access to the item. The particular
operations can vary based at least in part on the type of the item. For example, the
operations can include operations to rename the item, delete the item, and so forth. For an
item that is a folder of a file system, the operations can also include enumerating files in
the folder, sorting files in the folder, deleting files in the folder, adding new files to the
folder, renaming the folder or a file in the folder, and so forth.

[0041] Regardless of the form of the storage item object, various operations can be
performed on the storage item object and the storage item object includes the content of an
item or an indication of how to obtain the content of the item. Thus, the storage item
object can also be viewed as containing one or more items. For example, a storage item
object for a folder can contain one or more items representing files within that folder.
[0042] Although a storage item object is discussed herein, it should be noted that
different types of storage item objects can be supported. Different types of storage item
objects can include different properties, operations, and so forth relevant to that type of

storage item. For example, storage file objects and storage folder objects can be used.

10

10

15

20

25

30

WO 2012/166187 PCT/US2011/055529

The storage file objects include properties and operations particular to files (e.g., a rename
file operation), and the storage folder objects include properties and operations particular
to folders (e.g., an enumeration operation to enumerate files in a folder). By way of
another example, device objects and network node objects can be used, with the device
objects including properties and operations particular to devices, and the network node
objects including properties and operations particular to network nodes.

[0043] One or more of the storage item objects returned to application 202 can be
persisted by application 202. For example, application 202 can use a most recently used
(MRU) list, allowing one or more of the items most recently used by application 202 to be
readily identified. In one or more embodiments, broker module 120 manages the persisted
storage of storage item objects. Broker module 120 typically maintains a persisted access
list for each isolated application, although multiple isolated applications can optionally
share a persisted access list. A persisted access list is a list of persisted storage item
objects, and application 202 can invoke an API 210 to retrieve and use the persisted
storage item objects in the persisted access list. Broker module 120 can provide tokens or
other identifiers of persisted storage item objects to application 202 when a persisted
storage item is added to the persisted access list, and application 202 can use such tokens
or other identifiers to subsequently retrieve a persisted storage item object from the
persisted access list. Broker module 120 can also maintain multiple lists of persisted
storage item objects for application 202, such as an MRU list and a separate persisted
access list (e.g., allowing application 202 to persist storage item objects as it desires
independently of how recently the items were used). Broker module 120 can optionally
implement different lifetime rules for the different lists, reflecting different durations
(and/or different manners in which durations are determined) for keeping storage item
objects on a list.

[0044] Persisted storage item objects can be identified in a variety of different manners,
such as by device identifier, operating system (e.g., NTFS) object identifier,
name/timestamp matches, combinations thereof, and so forth. Thus, persisted storage item
objects can be identified even if the item has been renamed or moved. Additionally,
storage item objects can be persisted across multiple executions of application 202,
allowing application 202 to retrieve and use the persisted storage item object when
application is again executed after having been terminated (e.g., having been shut down or

deactivated).

11

10

15

20

25

30

WO 2012/166187 PCT/US2011/055529

[0045] Alternatively, application 202 can manage the persisted storage of storage item
objects rather than broker module 120. Application 202 can persist the storage item
objects rather in different locations, such as being stored in a memory or other storage
location allocated or otherwise made available to application 202. Thus, if application 202
desires an item again at a later time, application 202 can use the persisted storage item
object representing the item rather than re-requesting the item from broker module 120.
[0046] Broker module 120 optionally includes a filtering module 214, which is
representative of functionality of broker module 120 to filter items that can be accessed by
application 202. Application 202 is authorized to access particular item sources and/or
particular item locations as discussed above. Filtering module 214 allows access requests
to be further filtered, preventing particular item locations from being accessed by
application 202 even if access is otherwise authorized. Filtering module 214 filters items
from item source 204 prior to item access module 212 returning generated storage items
representing those items. Thus, storage items representing filtered items are not returned
to application 202 regardless of the particular item sources and/or particular item locations
application 202 is authorized to access.

[0047] Filtering module 214 can be configured to filter particular item locations based
on, for example, the desires of a designer of broker module 120 and/or an administrator of
system 200. For example, filtering module 214 can filter particular folders or directories
storing system files, preventing application 202 from accessing those particular folders or
directories. By way of another example, filtering module 214 can filter particular files
types, such as system files, hidden files, and so forth.

[0048] Broker module 120 also optionally includes an arrangement module 216, which
is representative of functionality of broker module 120 to arrange items in a particular
order and/or particular grouping. Application 202 can request that items be returned by
broker module 120 arranged in a particular order and/or grouping. Arrangement module
216 arranges the items in the requested order at different times, such as sorting and/or
grouping the accessed items prior to item access module 212 generating the storage item
objects representing the requested items, sorting and/or grouping the storage item objects
representing the requested items that are generated by item access module 212, and so
forth.

[0049] A variety of different orderings can be supported by arrangement module 216,
and different orderings based on different sort criteria can be supported for different item

types or item locations. For example, items can be ordered (e.g., chronologically

12

10

15

20

25

30

WO 2012/166187 PCT/US2011/055529

increasing or decreasing) based on an associated date (e.g., date a picture was taken for
picture items, date an item was stored in item source 204, date a song was recorded for
music items). By way of another example, items can be ordered (e.g., alphabetically)
based on a recording artist (e.g., for music items or video items), based on an album name
(e.g., for music items or video items), based on genre (e.g., for music items or video
items), and so forth. Arrangement module 216 can support a set of particular orderings
from which application 202 can choose. Alternatively, arrangement module 216 can
support sort criteria based on any metadata for items supported by item source 204. Thus,
any properties, attributes, or other metadata associated with items can be identified by
application 202 as the sort criteria to be used for the ordering.

[0050] Similarly, a variety of different groupings can be supported by arrangement
module 216, and different groupings based on different grouping criteria can be supported
for different item types or item locations. For example, items can be grouped by item type
(e.g., music items grouped together and document items grouped together). By way of
another example, items can be grouped based on a recording artist (e.g., for music items or
video items), based on an album name (e.g., for music items or video items), based on
genre (e.g., for music items or video items), and so forth. A grouping can be a set of
container storage item objects that each contain one or more storage item objects, and that
can be enumerated to provide storage item objects matching a particular condition.
Arrangement module 216 can support a set of particular groupings from which application
202 can choose. Alternatively, arrangement module 216 can support grouping criteria
based on any metadata for items supported by item source 204. Thus, any properties,
attributes, or other metadata associated with items can be identified by application 202 as
the grouping criteria to be used for the grouping.

[0051] Within a particular grouping, items can be sorted using various sort criteria as
discussed above, or alternatively need not be sorted. Furthermore, application 202 can
request to search storage item objects of a particular grouping, providing a variety of
different search criteria analogous to the discussion below regarding search module 218.
[0052] Broker module 120 also optionally includes a search module 218, which is
representative of functionality of broker module 120 to search for particular items.
Application 202 can request that items satisfying particular search criteria be returned by
broker module 120. Search module 218 searches item source 204 for the items satisfying
(e.g., matching) the search criteria, and those items satisfying the search criteria are

returned to application 202. Search module 218 typically searches items in item source

13

10

15

20

25

30

WO 2012/166187 PCT/US2011/055529

204 to identify the items that satisfy the search criteria prior to item access module 212
generating the storage item objects representing the requested items that satisfy the search
criteria. Alternatively, search module 218 can search the generated storage item objects to
identify the storage item objects that satisfy the search criteria, and only the generated
storage item objects that satisfy the search criteria are returned to application 202.

[0053] A variety of different search criteria can be supported by search module 218. For
example, search criteria can be a particular item type (e.g., a music file) and the search
criteria are satisfied by any item of that particular item type, or the search criteria can be a
name and the search criteria are satisfied by any item having that particular name (e.g., file
name). Additionally, more complex search criteria can be supported by search module
218, such as the use of date ranges, wild card values (e.g., a question mark to indicate any
single character or an asterisk to indicate any zero or more characters), an AQS or
Advanced Query Syntax (additional information regarding the Advanced Query Syntax is
available from Microsoft® Corporation of Redmond, Washington), and so forth. It should
also be noted that although application 202 can provide search criteria, application 202 is
still able to access only those items that application 202 is authorized to access (e.g., based
on the record maintained in authorization store 208 as discussed above).

[0054] Additionally, broker module 120 is discussed as permitting application 202 to
access the item or items if application 202 is authorized to access the item or items.
Broker module 120 can optionally treat application 202 as automatically authorized to
access one or more item locations without any specific user input indicating such
authorization. An example of such a location is a downloads folder to which all isolated
applications are permitted to write data. Broker module 120 can optionally restrict
application 202 to specific types of access unless application 202 is authorized (as
discussed above) to access those one or more item locations. For example, application
202 can be automatically authorized to write files to a downloads folder, but is permitted
to read files from the downloads folder only if the user of the computing device has
authorized application 202 to read files from the downloads folder.

[0055] The brokered item access for isolated applications techniques discussed herein
support various usage scenarios. For example, a photo editing application can be run,
accessing files via the broker module. When the photo editing application is installed on
the computing device, the user can give the photo editing application authorization to
access files in a pictures library, but not files in other locations. During operation, photo

editing application can request various files from the broker module, but the broker

14

10

15

20

25

30

WO 2012/166187 PCT/US2011/055529

module denies requests for any files other than files from the pictures library. The photo
editing application is thus prohibited from accessing any files stored in any location other
than the pictures library.

[0056] Fig. 3 illustrates a data flow 300 of the brokered item access for isolated
applications in additional detail in accordance with one or more embodiments. Data flow
300 is discussed with reference to elements of system 200 of Fig. 2. Application 202
submits an access request 302 to broker module 120 by invoking one or more APIs of
broker module 120. Access request 302 is a request for a particular type of access to item
source 204.

[0057] Broker module 120 submits one or more access requests 304 to item source 204
to obtain the items requested by access request 302. Broker module 120 can submit one or
more access requests 304 in various manners depending on the manner in which item
source 204 is implemented, such as by invoking an API of item source 204, sending a
message or other data structure to item source 204, and so forth.

[0058] Item information 306 for one or more items are returned from item source 204 to
broker module 120. The item information 306 describes one or more items based on
access request 302. As discussed above, the items for which item information 306 is
returned can include information for items at particular item sources, can be filtered items,
and so forth. Item information 306 includes information describing one or more items
from item source 204. Any information that can be included in a storage item object
representing an item can be included in item information 306.

[0059] Broker module 120 generates one or more storage item objects 308 based on
item information 306. Broker module 120 generates a storage item object 308 for at least
one item identified in item information 306. Broker module 120 can optionally filter one
or more items identified from item information 306 and not generate a storage item object
308 for the filtered one or more items as discussed above. Broker module 120 can also
optionally arrange storage item objects 308, or information included in storage item
objects 308, into a particular order or particular grouping as discussed above.

Example APIs

[0060] The broker module exposes one or more APIs to isolated applications, the one or
more APIs supporting various interfaces that can be invoked by the isolated applications
for various different types of access to items. For example, broker module 120 exposes
APIs 210 as discussed above. Tables I-XI below illustrate example APIs that can be
exposed by the broker module. It should be noted that these APIs are examples, and that

15

10

15

WO 2012/166187 PCT/US2011/055529

one or more of the APIs may not be exposed by the broker module, additional APIs may
be exposed by the broker module, and/or changes can be made to these APIs exposed by
the broker module.

[0061] APIs are grouped or collected together into particular namespaces, and each of
Tables I-XI includes APIs for a particular namespace. The manner in which such
grouping is performed can vary, for example, based on the desires of the developer of the
broker module. The names of the APIs have a preamble that identifies the particular
namespace, and the names of the APIs listed in Tables I-XI include this common preamble
(although it is not listed in the tables). For example, for a known folders namespace, the
common preamble can be “Windows.Storage.KnownFolders.” Accordingly, the name for
a “musicLibrary” API includes this common preamble, and thus although listed as
“musicLibrary” in Table IV below, is “Windows.Storage. KnownFolders. musicLibrary.”
[0062] Table I illustrates APIs for a storage item object, which can also be referred to as
a storage item namespace. The common preamble for the storage item namespace is
“Windows.Storage.Storageltem.” The APIs for the storage item namespace allow isolated
applications to obtain information regarding the item represented by the storage item
object and/or perform various operations on the item represented by the storage item

object.

16

WO 2012/166187 PCT/US2011/055529

Table 1

Name Description

getThumbnail Function to get the thumbnail of the item represented by the

Async() current storage item object.

renameAsync() Function to change the name of the item represented by the
current storage item object to a name specified by the isolated
application.

deleteAsync() Function to delete the item represented by the current storage
item object.

isOfType() Function to check whether the current storage item object is a
StorageFile storage item object or StorageFolder storage item
object.

name The name of the item represented by the current storage item
object.

size The size (e.g., in bytes) of the item represented by the current
storage item object.

displayType The item type (e.g., picture, video, document) of the item

represented by the current storage item object, formatted for
consumption by the user.

contentType The item type (e.g., picture, video, document) of the item
represented by the current storage item object.

path A path identifying where the item represented by the current
storage item object is located.

attributes Attributes of the item represented by the current storage item
object maintained by the item source.

dateModified A date that the item represented by the current storage item
object was most recently modified.

dateCreated A date that the item represented by the current storage item
object was created.

folderRelativeld An identifier that can be used to uniquely identify an item
relative to its parent folder.

ExtraProperties Additional "System" properties of the item represented by the

current storage item object that are maintained by the item
source and can be retrieved.

getMusicProperties | Function to retrieve music-specific properties of an item of a

Async() music item type that are accessible via an asynchronous (async)
call.

getVideoProperties | Function to retrieve video-specific properties of an item of a

Async() music item type that are accessible via an asynchronous call.

getlmageProperties | Function to retrieve picture- or image-specific properties of an

Async() item of a music item type that are accessible via an asynchronous
call.

getDocument Function to retrieve document-specific properties of an item of a

PropertiesAsync() music item type that are accessible via an asynchronous call.

[0063] Table II illustrates APIs for a storage folder (or StorageFolder) storage item
object, which can also be referred to as a storage folder namespace. The common

preamble for the storage folder namespace is “Windows.Storage.StorageFolder.” The

17

10

WO 2012/166187

PCT/US2011/055529

APIs for the storage folder namespace allow isolated applications to obtain information

regarding the folder represented by the storage folder object and/or perform various

operations on the folder represented by the storage folder object. A storage folder object

inherits or includes all of the APIs of a storage item object discussed above with reference

to Table 1.
Table I

Name Description

createFileAsync() Creates a file within the current StorageFolder storage item
object.

createFolderAsync() Create a folder within the current StorageFolder storage item
object.

getIndexedState Function to determine if the current StorageFolder storage

Async() item object represents a location which has its items’
properties stored in a database for faster property retrieval.

areQueryOptions Checks, and returns an indication of whether, the passed

Supported query options can be applied to the current StorageFolder

(QueryOptions) storage item object.

isCommonFileQuery Checks, and returns an indication of whether, the passed

Supported common file query options (one or more options pre-defined

(CommonFileQuery) for application use) can be applied to the current
StorageFolder storage item object.

isCommonFolder Checks, and returns an indication of whether, the passed

QuerySupported common folder query options (one or more options pre-

(CommonFolderQuery) | defined for application use) can be applied to the current
StorageFolder storage item object.

getFileAsync(name) Function to perform a single file retrieval.

getFolderAsync(name) | Function to perform a single folder retrieval.

getltemAsync(name) Function to perform a single file or folder retrieval.

[0064] Table III illustrates APIs for a storage file (or StorageFile) storage item object,

which can also be referred to as a storage file namespace. The common preamble for the

storage file namespace is “Windows.Storage.StorageFile.” The APIs for the storage file

namespace allow isolated applications to obtain information regarding the file represented

by the storage file object and/or perform various operations on the file represented by the

storage file object. A storage file object inherits or includes all of the APIs of a storage

item object discussed above with reference to Table 1.

18

WO 2012/166187 PCT/US2011/055529
Table 111
Name Description
fileName The name of the file represented by the current StorageFile
storage item object.
fileType The item type (e.g., picture, video, document) of the file
represented by the current StorageFile storage item object.
openAsync Opens a random access stream for consumption, allowing the
data for the file represented by the current StorageFile storage
item object to be provided to the isolated application for both
read and write.
openForReadAsync Opens an input stream allowing the isolated application to
read data for the file represented by the current StorageFile
storage item object.
copyAsync Copy a single file to a new location specified by
(destinationFolder, destinationFolder. The name of the new file can optionally be
newFileName, specified as newFileName, and collision options (e.g., how to
nameCollisionOption) | resolve collisions/duplicates in file names) can optionally be
specified as nameCollisionOption.
copyAndReplaceAsync | Copy a single file represented by the current StorageFile
(fileToReplace) storage item object to a specified location, and overwrite the
file at that specified location.
moveAsync Move a single file to a new location specified by
(destinationFolder, destinationFolder. The name of the new file can optionally be
newFileName, specified as newFileName, and collision options (e.g., how to
nameCollisionOption) | resolve collisions/duplicates in file names) can optionally be
specified as nameCollisionOption.
moveAndReplace Move a single file represented by the current StorageFile
Async(fileToReplace) | storage item object to a specified location, and overwrite the
file at that specified location.
[0065] Table IV illustrates APIs for a known folders namespace, which refers to a set of

folders or libraries of a file system item source that can be accessed by isolated

applications. The common preamble for the known folders namespace is

“Windows.Storage.KnownFolders.” The APIs for the known folders namespace allow a

particular set of pre-defined folders or directories to be accessed by isolated applications.

19

WO 2012/166187

PCT/US2011/055529

Table IV

Name

Description

musicLibrary

Returns a storage item object representing a Music Library
folder, including identification of files stored in the Music
Library folder.

picturesLibrary

Returns a storage item object representing a Pictures
Library folder, including identification of files stored in the
Pictures Library folder.

videosLibrary

Returns a storage item object representing a Videos
Library folder, including identification of files stored in the
Videos Library folder.

recordedTVLibrary

Returns a storage item object representing a Recorded TV
Library folder, including identification of files stored in the
Recorded TV Library folder.

documentsLibrary

Returns a storage item object representing a Documents
Library folder, including identification of files stored in the
Documents Library folder.

homeGroup

Returns a storage item object representing a Homegroup
folder, including identification of files stored in the
Homegroup folder.

removableDevices

Returns a storage item object representing a Removable
Devices folder, including identification of files stored in
the Removable Devices folder.

mediaServerDevices

Returns a storage item object representing a Media Server
Devices folder, including identification of files stored in
the Media Server folder.

[0066] Table V illustrates APIs for a storage namespace, which is a set of interfaces

allowing isolated applications to store or retrieve particular files or folders. The common

preamble for the storage namespace is “Windows.Storage.”

Table V
Name Description
DownloadsFolder Returns a storage item object representing a Downloads

folder, including identification of files stored in the
Downloads folder.

getFileFromPathAsync(path) | Returns a StorageFile storage item object from the

location specified by the given path.

getFileFromUriAsync(uri)

Returns a StorageFile storage item object from the
location specified by the given URI.

createFileForTransferAsync() | Returns a storage item object that is a Transfer File (a

temporary StorageFile storage item object to which
streamed data can be subsequently written).

getFolderFromPathAsync()

Returns a StorageFolder storage item object from the
location specified by the given path

20

WO 2012/166187

PCT/US2011/055529

[0067] Table VI illustrates APIs for query options, which can also be referred to as a

query options namespace. The common preamble for the query options namespace is

“Windows.Storage.QueryOptions.” The APIs for the query options namespace allow

isolated applications to specify various query options for search requests submitted by the

isolated applications.

Table VI
Name Description
fileTypeFilter Adds a file extension filter to the query to specify
particular file extension types to be searched for.
folderDepth Specifies whether the query is deep or shallow (e.g.,

whether sub-folders are to be searched)

applicationSearchFilter

Adds an AQS search filter to the query.

userSearchFilter Adds a second AQS search filter to the query.

searchLocale Specifies the search locale (e.g., item source or location of
an item source) of the query.

indexerOption Specifies whether only locations that are “indexed” (have
their item properties cached in a database) should be
queried.

sortOrder Adds an "OrderBy" sort to the query, specifying a
particular order for arranging the storage item objects
returned by the search.

stackPropertyName Adds a "GroupBy" shape to the query, specifying a
particular grouping for arranging the storage item objects
returned by the search.

dateStackOption For items grouped by date, indicates if the grouping should
be by day, month, year, etc.

saveToString() Function to save the query options to a string to handle

tombstoning (e.g., forced suspension of the isolated
application, such as to reduce power consumption).

loadFromString(string)

Function to load the query options from a string to handle
tombstoning (e.g., forced suspension of the isolated
application, such as to reduce power consumption).

[0068] Table VII illustrates APIs for a query namespace, which is a set of interfaces

allowing isolated applications to submit queries or searches for items. The common

preamble for the query namespace is “Windows.Storage.”

21

WO 2012/166187 PCT/US2011/055529
Table VII
Name Description
StorageQueryResultBase. Event that is fired when the file item contents behind a
contentsChanged query have changed.
StorageQueryResultBase. Event that is fired when the query options for a query
optionsChanged have been changed.

StorageQueryResultBase.
findStartIndex Async()

Allows the app to look up the index of the first item
that corresponds to the provided
value of the first sort order property.

StorageQueryResultBase.
getCurrentQueryOptions()

Function to retrieve the current query options of the
current query.

StorageQueryResultBase.

Function to apply new query options specified as

applyNewQueryOptions(queryOptions to the current query.

queryOptions)
StorageQueryResultBase. Function to get the number of items behind (satisfied
getltemCountAsync() by) a query.
StorageFileQueryResult. Function to retrieve files satisfied by a query.
getFilesAsync()

StorageFileQueryResult.
getFilesAsync(start, count)

Function to retrieve from a query a number of files
specified by count and beginning at an index specified
by start.

StorageFolderQueryResult.
getFoldersAsync()

Function to retrieve folders satisfied by a query.

StorageFolderQueryResult.
getFoldersAsync(start, count)

Function to retrieve from a query a number of folders
specified by count and beginning at an index specified
by start.

StorageltemQueryResult.
getltemsAsync()

Function to retrieve items satisfied by a query

StorageltemQueryResult.
getltemsAsync(start, count)

Function to retrieve from a query a number of items
specified by count and beginning at an index specified
by start.

[0069]

Table VIII illustrates APIs for a quick accessors namespace, which is a set of

interfaces allowing items to be retrieved (e.g., quickly, without specifying an AQS query).

The APIs can support retrieving items in different ways, such as a shallow mode (e.g.,

returning results from a particular folder or directory), a deep mode (e.g., returning results

from a particular folder or directory as well as all sub-folders or sub-directories), and so

forth. The common preamble for the quick accessors namespace is

“Windows.Storage.StorageFolder.”

22

WO 2012/166187 PCT/US2011/055529
Table VIII
Name Description
getFilesAsync() Retrieve files arranged in a by-folder grouping.

getFiles(CommonFileQuery)

Retrieve files using the passed common file query
options.

getFiles(CommonFileQuery,
start, count)

Retrieve, using the passed common file query options,
a number of files specified by count and beginning at
an index specified by start.

getFoldersAsync() Retrieve folders arranged in a by-folder grouping.

getFoldersAsync(Retrieve folders using the passed common folder query
CommonFolderQuery) options.

getFoldersAsync(Retrieve, using the passed common folder query

CommonFolderQuery, start,
count)

options, a number of folders specified by count and
beginning at an index specified by start.

getltemsAsync()

Retrieve files and folders arranged in a by-folder
grouping.

getltemsAsync(start, count)

Retrieve, arranged in a by-folder grouping, a number of
files and folders specified by count and beginning at an
index specified by start.

[0070]

Table IX illustrates APIs for a query creation namespace, which is a set of

interfaces allowing queries to be created by isolated applications. Once created, these

queries can be maintained by the broker module and subsequently accessed by the isolated

application creating the query. The common preamble for the query creation namespace is

“Windows.Storage.StorageFolder.”

Table IX
Name Description
createFileQuery() Creates a query with files arranged in a by-folder
grouping.
createFileQuery(Creates a file-only query using the passed common file
CommonFileQuery) query options.

createFileQueryWithOptions(
QueryOptions)

Creates a file-only query with query options specified
by the isolated application.

createFolderQuery() Creates a query with folders arranged in a by-folder
grouping.
createFolderQuery(Creates a folder-only query using the passed common
CommonFolderQuery) folder query options.
createFolderQueryWith Creates a folder-only query with query options
Options(QueryOptions) specified by the isolated application.
createltemQuery() Creates a query with files and folders arranged in a by-

folder grouping.

createltemQueryWithOptions(
QueryOptions)

Creates a file and folder query with query options
specified by the isolated application

23

WO 2012/166187 PCT/US2011/055529

[0071] Table X illustrates APIs for a storage item persistence namespace, which is a set
of interfaces allowing isolated applications to persist storage item objects. Storage item
objects can be persisted across multiple executions of an isolated application, as discussed
above. The common preamble for the storage item persistence namespace is
“StorageApplicationPermissions.futureAccessList.”

Table X

Name Description

add(storageltem, metadata) Adds the specified storage item object to the persisted
access list, and returns a token to the isolated
application allowing the persisted storage item object to
be subsequently retrieved. The isolated application can
optionally specify, as metadata, metadata to be linked
to the persisted storage item object.

addOrReplace(token, Adds the specified storage item object to the persisted

storageltem) access list as with add(), but also provides the ability to
replace any existing persisted access list entry
corresponding to the token. The isolated application
can optionally specify, as metadata, metadata to be
linked to the persisted storage item object.

getltemAsync(token) Get the persisted storage item object specified by the
token from the persisted access list.
getFileAsync(token) Get the persisted StorageFile storage item object
specified by the token from the persisted access list.
getFolderAsync(token) Get the persisted StorageFolder storage item object
specified by the token from the persisted access list.
remove(token) Remove the persisted storage item object specified by
the token from the persisted access list.
containsltem(token) Check, and return an indication of, whether the storage

item object specified by the token is present in the
persisted access list.

clear() Clears the access list, removing all persisted storage
item objects from the persisted access list.

Check, and return an indication of, whether the isolated
checkAccess(storageltem) application has access to the specified storage item
object (e.g., through a capability or because the item or
parent is persisted).

entries Retrieves the entire set of persisted storage item objects
in the persisted access list.

maximumlItemsAllowed Retrieves the maximum number of storage item objects
that are permitted to be persisted in the persisted access
list.

[0072] Table XI illustrates APIs for a most recently used (MRU) list, which is a set of
interfaces allowing isolated applications to generated and maintain a list of most recently

used items. The MRU list is an example of persisted storage item objects, with the

24

WO 2012/166187

PCT/US2011/055529

persisted access list being the MRU list. The common preamble for the MRU list

namespace is “StorageApplicationPermissions.mostRecentlyUsedList.”

Table XI

Name

Description

add(storageltem, metadata)

Adds the specified storage item object to the MRU list,
and returns a token to the isolated application allowing
the persisted storage item object to be subsequently
retrieved. The isolated application can optionally
specify, as metadata, metadata to be linked to the
persisted storage item object.

addOrReplace(token,
storageltem)

Adds the specified storage item object to the MRU list
as with add(), but also provides the ability to replace
any existing MRU list entry corresponding to the token.
The isolated application can optionally specify, as
metadata, metadata to be linked to the persisted storage
item object.

getltemAsync(token)

Get the persisted storage item object specified by the
token from the MRU list.

getFileAsync(token)

Get the persisted StorageFile storage item object
specified by the token from the MRU list.

getFolderAsync(token)

Get the persisted StorageFolder storage item object
specified by the token from the MRU list.

Remove the persisted storage item object specified by

remove(token) the token from the MRU list.

Check, and return an indication of, whether the storage

item object specified by the token is present in the
containsltem(token) MRU list.

Clears the MRU list, removing all persisted storage
clear() item objects from the MRU list.

checkAccess(storageltem)

Check, and return an indication of, whether the isolated
application has access to the specified storage item
object (e.g., through a capability or because the item or
parent is persisted).

entries

Retrieves the entire set of persisted storage item objects
in the MRU list.

maximumItemsAllowed

Retrieves the maximum number of storage item objects
that are permitted to be persisted in the MRU list.

Example Procedures

[0073] The following discussion describes brokered item access for isolated applications

techniques that may be implemented using the previously described systems and devices.

Aspects of each of the procedures may be implemented in hardware, firmware, software,

or a combination thereof. The procedures are shown as a set of acts that specify

operations performed by one or more devices and are not necessarily limited to the orders

25

10

15

20

25

30

WO 2012/166187 PCT/US2011/055529

shown for performing the operations by the respective acts. In portions of the following
discussion, reference will be made to elements of Figs. 1, 2, and 3.

[0074] Fig. 4 illustrates a procedure 400 for implementing the brokered item access for
isolated applications in accordance with one or more embodiments. Procedure 400 is
implemented by a broker module, such as broker module 120. In procedure 400, a request
to access one or more items of an item source is received (act 402). The request is
received from an isolated application in a computing device, and is typically a request for
a particular type of access for a particular item source. The request can be received by the
isolated application invoking an API exposed by the broker module, as discussed above.
Various different types of requests can be received as discussed above, such as requests to
read an item, write an item, modify an item, search for items, and so forth.

[0075] A check is made as to which of the one or more items, if any, the isolated
application is authorized to access (act 404). Which of one or more items the isolated
application is authorized to access can be based on particular item sources and/or
particular item locations as discussed above. The check can be made at different times,
such as when a root node of an item source (e.g., a folder, a library, a storage structure) is
accessed.

[0076] Procedure 400 proceeds based on whether the isolation application is authorized
to access none of the one or more items (act 406). If the isolated application is authorized
to access none of the one or more items (the application is not authorized to access any of
the items for which access is requested), then the request is denied (act 408). An
indication that the request is denied can optionally be returned to the isolated application
as discussed above.

[0077] However, if the isolated application is authorized to access at least one of the one
or more items, one or more storage item objects that represent those of the one or more
items that the isolated application is authorized to access are generated (act 410). Each
storage item object includes various information associated with the one or more storage
items as discussed above. Those of the one or more items that the isolated application is
authorized to access can exclude particular items from the item source that are filtered out,
as discussed above.

[0078] The one or more generated storage item objects are returned to the isolated
application (act 412). The storage item objects can be data structures provided to the

isolated application, or objects exposed to the isolated application as discussed above. The

26

10

15

20

25

30

WO 2012/166187 PCT/US2011/055529

storage item objects can optionally be arranged in a particular order or particular grouping,
as discussed above.

[0079] Fig. 5 illustrates a procedure 500 for implementing the brokered item access for
isolated applications in accordance with one or more embodiments. Procedure 500 is
implemented by an isolated application, such as application 116 or application 202. In
procedure 500, an API of a broker module is invoked to request access to one or more
items of an item source (act 502). The request is typically a request for a particular type of
access for a particular item source. Various different types of requests can be received as
discussed above, such as requests to read an item, write an item, modify an item, search
for items, and so forth.

[0080] At lcast one storage item object containing those of the one or more items that
the isolated application is authorized to access is received from the broker module (act
504). A check as to which of the one or more items the isolated application is authorized
to access can be made at different times, such as when a root node of an item source (e.g.,
a folder, a library, a storage structure) is accessed. Each storage item object includes
various information associated with the item as discussed above. Those of the one or
more items for which storage item objects are received can exclude particular items from
the item source that are filtered out, as discussed above. The storage item objects can be
data structures returned to the isolated application, or objects exposed to the isolated
application as discussed above. Additionally, the storage item objects can optionally be
arranged in a particular order, as discussed above.

Conclusion

[0081] Various actions such as communicating, receiving, sending, storing, generating,
obtaining, and so forth performed by various modules are discussed herein. It should be
noted that the various modules can cause such actions to be performed. A particular
module causing an action to be performed includes that particular module itself
performing the action, or alternatively that particular module invoking or otherwise
accessing another component or module that performs the action (or performs the action in
conjunction with that particular module).

[0082] Although the subject matter has been described in language specific to structural
features and/or methodological acts, it is to be understood that the subject matter defined
in the appended claims is not necessarily limited to the specific features or acts described
above. Rather, the specific features and acts described above are disclosed as example

forms of implementing the claims.

27

10

15

20

25

30

WO 2012/166187 PCT/US2011/055529

Claims

1. A method in a computing device, the method comprising:

receiving, at a broker module of the computing device, a request from an isolated
application in the computing device to access one or more items of an item source;

checking, in the computing device, which of the one or more items the isolated
application is authorized to access; and

if the isolated application is authorized to access none of the one or more items,
then denying the request, and otherwise:

generating one or more storage item objects that represent those of the one
or more items that the isolated application is authorized to access, and
returning the one or more storage item objects to the isolated application.

2. A method as recited in claim 1, the isolated application being restricted from
accessing the item source other than through the broker module.
3. A method as recited in claim 1, the returning the one or more storage item objects
to the isolated application comprising exposing an interface to the isolated application, the
interface allowing one or more properties of an item represented by a storage item object
to be retrieved, and supporting one or more operations on the item represented by the
storage item object.
4. A method as recited in claim 1, further comprising persisting, in response to a
request from the isolated application, a particular one of the one or more storage item
objects.
5. A method as recited in claim 1, the checking comprising checking whether the
isolated application is authorized to access items from a particular location of the item
source.
6. A method as recited in claim 1, further comprising, filtering those of the one or
more items that the isolated application is authorized to access to exclude particular types
of items.
7. A method as recited in claim 1, further comprising, arranging those of the one or
more items that the isolated application is authorized to access in a particular order, the
particular order being identified by the request.
8. A method as recited in claim 1, further comprising, arranging those of the one or
more items that the isolated application is authorized to access in a particular grouping, the

particular grouping being identified by the request.

28

10

WO 2012/166187 PCT/US2011/055529

9. A method as recited in claim 1, the request including search criteria, the one or
more items comprising one or more items that satisfy the search criteria.
10. A computing device including an application comprising multiple instructions that,
when executed by one or more processors of the computing device, cause the one or more
processors to:

invoke an application programming interface (API) of a broker module to request
access to one or more items of an item source, the application comprising an isolated
application that is being executed by the one or more processors and that is restricted from
accessing the item source other than through the broker module; and

receive, from the broker module, at least one storage item object containing those

of the one or more items that the isolated application is authorized to access.

29

WO 2012/166187

100 j‘

C

Computing Device 102
Application 11

s

\\

\
ltem Management A
Module 106

Broker Module 120
(Picker Module 122)

ltem Source 10)

4 N

(lte

G+3

3
o’

Go3 |

PCT/US2011/055529
1/5
(ltem source 110 A
(9
U]
3 [ltem 114) ¢+
a
L ©
\\ —
b
N
Network

104

WO 2012/166187 PCT/US2011/055529

2/5

200 \

Application
202

(Broker Module 120)
4 4
Picker Module
122] APIs 210
\,
4 4
Filtering Module Item Access
Authorization 214 Module 212
Store 208 \ - \ —
e e
Search Module Arrangement
218 Module 216
\\ _
_
VAN
Picker Ul Module 220
4 A4 N
ltem Source 204
- ™
7
C ltem 206)
f?
)
\\

WO 2012/166187 PCT/US2011/055529

3/5

300 \

Application 202

VAN
rf
Access
Request 302 Storage ltem
Object 308
Broker Module 120
VAN
rf
Access
Request 304 Item Information
D 306

ltem Source 204

WO 2012/166187 PCT/US2011/055529

4/5

402
Receive, From An Isolated Application, A Request To
Access One Or More ltems Of An ltem Source

l

404
Check Which Of The One Or More Iltems The Isolated
Application Is Authorized To Access

406

Authorized To
Access None?

Yes

410
Generate, One Or More Storage Item 408
Objects Representing Those Of The D Tﬁ t
One Or More Items The Isolated eny Ihe reques

Application Is Authorized To Access

l

Return The One Or More Storage ltem
Objects To The Isolated Application

Fig. 4

WO 2012/166187 PCT/US2011/055529

5/5

502
Invoke An API Of A Broker Module To Request Access To
One Or More ltems Of An Item Source

504
Receive, From The Broker Module, At Least One Storage
Item Object Containing Those Of The One Or More ltems
That The Isolated Application Is Authorized To Access

INTERNATIONAL SEARCH REPORT International application No.
PCT/US2011/055529

A. CLASSIFICATION OF SUBJECT MATTER

G060 50/00(2006.01)i, GO6F 21/22(2006.01)i, GOGF 17/40(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
G06Q 50/00; GOGF 17/00; HO4L 9/32; GO6F 17/40; GO6F 21/22

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS(KIPO internal) & Keywords: BROKER, ISOLATED APPLICATION, CHECK, ITEM, STORAGE, LOCATION,
FILTER, ACCESS

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

A US 2010-0146379 Al (GEORGE SAM et al.) 10 June 2010 1-10
See the abstract; claims 1-15; figures 1-3.

A US 2010-0153524 Al (REHM WERNER et al.) 17 June 2010 1-10
See the abstract; claims 1-20; figures 1-5.

A KR 10-2011-0025051 A (KOREA ADVANCED INSTITUTE OF SCIENCE AND TECHNOLOGY et 1-10
al.) 09 March 2011
See the abstract; claims 1-12; figures 1-22.

A KR 10-2010-0003092 A (KT CORPORATION) 07 January 2010 1-10
See the abstract; claims 1-15; figure 6.

A US 2010-0262977 A1l (HAVEMOSE ALLAN) 14 October 2010 1-10
See the abstract; claims 1-16; figures 1-2.

|:| Further documents are listed in the continuation of Box C. IE See patent family annex.

* Special categories of cited documents: "T" later document published after the international filing date or priority

"A" document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand
to be of particular relevance the principle or theory underlying the invention

"E" earlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive

"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone
cited to establish the publication date of citation or other "Y" document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is

"O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents,such combination
means being obvious to a person skilled in the art

"P" document published prior to the international filing date but later "&" document member of the same patent family

than the priority date claimed

Date of the actual completion of the international search Date of mailing of the international search report
25 MAY 2012 (25.05.2012) 29 MAY 2012 (29.05.2012)
Name and mailing address of the ISA/KR Authorized officer
' Korean Intellectual Property Office
Government Complex-Daejeon, 189 Cheongsa-ro, PARK Mi Jeong
. Seo-gu, Daejeon 302-701, Republic of Korea
Facsimile No. 82-42-472-7140 Telephone No. 82-42-481-8379

Form PCT/ISA/210 (second sheet) (July 2009)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.

PCT/US2011/055529
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2010-0146379 A1 10.06.2010 CN 102246157 A 16.11.2011
EP 2356582 A2 17.08.2011
KR 10-2011-0098735 A 01.09.2011
WO 2010-077443 A2 08.07.2010
WO 2010-077443 A3 26.08.2010
US 2010-0153524 A1 17.06.2010 None
KR 10-2011-0025051 A 09.03.2011 US 2011-0055352 A1 03.03.2011
KR 10-2010-0003092 A 07.01.2010 None
US 2010-0262977 A1 14.10.2010 None

Form PCT/ISA/210 (patent family annex) (July 2009)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - claims
	Page 31 - claims
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - wo-search-report
	Page 38 - wo-search-report

