METHOD FOR UTILIZING WASTE

ABFALLVERWERTUNGSVERFAHREN

Abstract

Disclosed is a method for utilizing waste, whereby a supplied mixture of materials containing organic components is at first mechanically prepared and subsequently undergoes aerobic hydrolysis in a reactor. The intermediate product formed after said hydrolysis is then compacted into a solid or substitute fuel. The intermediate product can be dried after hydrolysis has occurred, whereby the substitute fuel exists in a dry and stable form that does not require or can be withheld. The substitute fuel can be supplied directly to a gasification unit or can be directly supplied to an incineration plant as a substitute for fossil fuels. Alternately, the substitute fuel can be stored in a dump.

Zusammenfassung

<table>
<thead>
<tr>
<th>Code</th>
<th>Landgröße</th>
<th>Schriftgröße</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL</td>
<td>Albanien</td>
<td>Spanien</td>
</tr>
<tr>
<td>AM</td>
<td>Armenien</td>
<td>Finnland</td>
</tr>
<tr>
<td>AT</td>
<td>Österreich</td>
<td>Frankreich</td>
</tr>
<tr>
<td>AU</td>
<td>Australien</td>
<td>Gabun</td>
</tr>
<tr>
<td>AZ</td>
<td>Aserbaidschan</td>
<td>Vereinigtes Königreich</td>
</tr>
<tr>
<td>BA</td>
<td>Bosnien-Herzegowina</td>
<td>Georgien</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>Ghana</td>
</tr>
<tr>
<td>BE</td>
<td>Belgien</td>
<td>Guinea</td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>Griechenland</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgarien</td>
<td>Ungarn</td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
<td>Irland</td>
</tr>
<tr>
<td>BR</td>
<td>Brasilien</td>
<td>Israel</td>
</tr>
<tr>
<td>BY</td>
<td>Belarus</td>
<td>Island</td>
</tr>
<tr>
<td>CA</td>
<td>Kanada</td>
<td>Italien</td>
</tr>
<tr>
<td>CF</td>
<td>Zentralafrikanische Republik</td>
<td>Japan</td>
</tr>
<tr>
<td>CG</td>
<td>Kongo</td>
<td>Kenia</td>
</tr>
<tr>
<td>CH</td>
<td>Schweiz</td>
<td>Kirgistan</td>
</tr>
<tr>
<td>CI</td>
<td>Côte d'Ivoire</td>
<td>Demokratische Volksrepublik</td>
</tr>
<tr>
<td>CM</td>
<td>Kamerun</td>
<td>Korea</td>
</tr>
<tr>
<td>CN</td>
<td>China</td>
<td>Republik Korea</td>
</tr>
<tr>
<td>CU</td>
<td>Kuba</td>
<td>Kasachstan</td>
</tr>
<tr>
<td>CZ</td>
<td>Tschechische Republik</td>
<td>St. Lucia</td>
</tr>
<tr>
<td>DE</td>
<td>Deutschland</td>
<td>Liechtenstein</td>
</tr>
<tr>
<td>DK</td>
<td>Dänemark</td>
<td>Sri Lanka</td>
</tr>
<tr>
<td>EE</td>
<td>Estland</td>
<td>Liberia</td>
</tr>
<tr>
<td>LS</td>
<td>Lesotho</td>
<td>Lissabon</td>
</tr>
<tr>
<td>LT</td>
<td>Litauen</td>
<td>Lutsenburg</td>
</tr>
<tr>
<td>LU</td>
<td>Lissabon</td>
<td>Lottland</td>
</tr>
<tr>
<td>MC</td>
<td>Monaco</td>
<td>Moldau</td>
</tr>
<tr>
<td>MG</td>
<td>Madagaskar</td>
<td>Moldau</td>
</tr>
<tr>
<td>MK</td>
<td>Die ehemalige jugoslawische Republik Macedonien</td>
<td>Moldau</td>
</tr>
<tr>
<td>ML</td>
<td>Mali</td>
<td>Mongolei</td>
</tr>
<tr>
<td>MN</td>
<td>Mongolei</td>
<td>Mauretanien</td>
</tr>
<tr>
<td>MW</td>
<td>Malawi</td>
<td>Mexiko</td>
</tr>
<tr>
<td>MY</td>
<td>Malaysia</td>
<td>Meyer</td>
</tr>
<tr>
<td>NL</td>
<td>Niederlande</td>
<td>Norwegen</td>
</tr>
<tr>
<td>NZ</td>
<td>Neuseeland</td>
<td>Polen</td>
</tr>
<tr>
<td>PL</td>
<td>Polen</td>
<td>Portugal</td>
</tr>
<tr>
<td>RO</td>
<td>rumänien</td>
<td>Russland</td>
</tr>
<tr>
<td>RU</td>
<td>Russische Föderation</td>
<td>Sudan</td>
</tr>
<tr>
<td>SD</td>
<td>Sudan</td>
<td>Schweden</td>
</tr>
<tr>
<td>SE</td>
<td>Schweden</td>
<td>Singapur</td>
</tr>
<tr>
<td>SI</td>
<td>Slowenien</td>
<td>Slowakei</td>
</tr>
<tr>
<td>SK</td>
<td>Slowakei</td>
<td>Senegal</td>
</tr>
<tr>
<td>SN</td>
<td>Senegal</td>
<td>Schweiz</td>
</tr>
<tr>
<td>SZ</td>
<td>Schweiz</td>
<td>Tschad</td>
</tr>
<tr>
<td>TG</td>
<td>Togo</td>
<td>Tadschikistan</td>
</tr>
<tr>
<td>TM</td>
<td>Turkmenistan</td>
<td>Türkmenistan</td>
</tr>
<tr>
<td>TR</td>
<td>Türkei</td>
<td>Trinidad und Tobago</td>
</tr>
<tr>
<td>UA</td>
<td>Ukraine</td>
<td>Uganda</td>
</tr>
<tr>
<td>UG</td>
<td>Uganda</td>
<td>Vereinigte Staaten von Amerika</td>
</tr>
<tr>
<td>UZ</td>
<td>Usbekistan</td>
<td>Vietnam</td>
</tr>
<tr>
<td>VN</td>
<td>Vietnam</td>
<td>Jugoslawien</td>
</tr>
<tr>
<td>YU</td>
<td>Jugoslawien</td>
<td>Zimbabwe</td>
</tr>
</tbody>
</table>
Beschreibung

Abfallverwertungsverfahren

5 Die Erfindung betrifft ein Verfahren zur Verwertung von Abfall gemäß dem Oberbegriff des Patentanspruchs I und einen nach diesem Verfahren hergestellten Brennstoff.

15 Unter stofflicher Verwertung versteht man auch die Aufbereitung des Abfalls zu einem sekundären Rohstoff, der dann energiewirtschaftlich genutzt wird. D.h., man versteht unter der Herstellung des Ersatzbrennstoffes eine stoffliche Verwertung, die von der direkten Verbrennung des Abfalls zu unterscheiden ist.

20 Die derzeit am häufigsten angewandte Art der Abfallverwertung besteht darin, den Abfall direkt in thermischen Verbrennungsanlagen zu verbrennen. Die Verbrennung

Bei diesem in der P 198 07 539 beschriebenen Verfahren erfolgt die biologische Aufbereitung durch einen aeroben Abbau der Organik des aufbereiteten Abfalls.

Der Erfindung liegt die Aufgabe zugrunde, das vorbeschriebene Verfahren derart weiterzubilden, daß der biologische Abbau der organischen Bestandteile des zu behandelnden Stoffgemisches bei minimalem vorrichtungstechnischen Aufwand möglichst vollständig durchführbar ist. Desweiteren soll durch das Verfahren ein Feststoff erhalten werden, der sich durch einen hohen Heizwert und eine geringe Eluierbarkeit auszeichnet.

Diese Aufgabe wird durch ein Verfahren mit den Merkmalen des Patentanspruchs 1 und durch einen nach diesem Verfahren hergestellten, kompaktierten Feststoff gelöst.

Die aerobe Hydrolyse ist per se bereits beispielsweise aus der WO 97/27158 A1 bekannt. Dabei wird das aufzubereitende Stoffgemisch in einem Reaktor mit Luft und einer Auswaschflüssigkeit (Wasser) beaufschlagt. Durch die Einwirkung des Luftsaüerstoffes und die gleichzeitig eingestellte Feuchtigkeit erfolgt eine aerobe, thermophile
Erwärmung des Stoffgemisches, so daß die Biozellen aufgebrochen und die freigesetzten organischen Substanzen durch die Waschflüssigkeit abtransportiert werden. In dem bekannten Reaktor wird das Stoffgemisch mittels eines Förder-/Rührwerks quer zur Luft und zur Auswaschflüssigkeit durch den Reaktor geführt.

Der Trockensubstanzanteil im aufbereiteten Abfall läßt sich weiter erhöhen, wenn die Kompaktierung mit einer Entwässerung der verbleibenden kohlenstoffreichen Fraktion einhergeht.

Der Reaktor zur Durchführung der Hydrolyse hat einen besonders einfachen Aufbau, wenn das Stoffgemisch diesen geschichtet durchläuft und dabei geeignete Maßnahmen getroffen werden, um eine Kanal- oder Kaminbildung innerhalb des Haufwerkes zu verhindern, und Scherkräfte in das Stoffgemisch einzuleiten. Dies kann beispielsweise durch ein Rührwerk, durch impulsartiges oder periodisches Aufbringen von Kräften ins Haufwerk oder auf sonstige Weise erfolgen. Prinzipiell ist jeder an dem Stand der Technik
bekannte Perkolator zur Durchführung einer aeroben Hydrolyse einsetzbar.

Die Energiebilanz des Systems läßt sich weiter verbessern, wenn die beladene Auswaschflüssigkeit einer Abwasserreinigungsanlage mit Biogasreaktor zugeführt wird, so daß die aus dem Biogas gewonnene Energie teilweise in den Prozeß zurückgeführt werden kann. Bei entsprechender Prozeßführung ist das erfindungsgemäße Verfahren nahezu energieautark.

Die Kompaktierung des einer Hydrolyse unterzogenen und aerob getrockneten Abfalls schließt eine Brikettierung oder Pelletierung in einer Presse ein, so daß der Anteil an Trockensubstanz weiter erhöht werden kann. Bei der Brikettierung wird das Stoffgemisch nochmals erwärmt, so daß eine weitere Trocknung erfolgt. Desweiteren Verschmelzen die Kunststoffbestandteile beim Pelletieren/Brikettieren miteinander, so daß die Festigkeit des Formkörpers erhöht und die Eluierbarkeit verringert wird.

Der so erhaltene Ersatzbrennstoff ist nicht eluierbar, nicht atmungsaktiv und zeichnet sich durch einen hohen Heizwert aus. Dieser Ersatzbrennstoff kann beispielsweise einer Vergasung zugeführt werden. Das bei der Vergasung entstehende Gas, das etwa 1/3 des Heizwertes von Erdgas hat, kann anschließend energetisch oder stofflich
verwertet werden. Verwertungen sind beispielsweise die Energiesubstitution in Kraftwerken und Zementwerken oder die Verwendung bei der Herstellung von Methanol oder als Reduktionsmittel in Stahlwerken.

Sonstige vorteilhafte Weiterbildungen der Erfindung sind Gegenstand der weiteren Unteransprüche.

Im folgenden werden bevorzugte Ausführungsbeispiele der Erfindung anhand schematischer Zeichnungen näher erläutert. Es zeigen:

Fig. 1 und 2 Grobschemata des erfindungsgemäßen Verfahrens;
Fig. 3 ein Fließschema der mechanischen Aufbereitung des Verfahrens aus Figur 1;
Fig. 4 ein Fließschema der biologischen Aufbereitung des Verfahrens aus Figur 1;
Fig. 5 eine Darstellung einer Anlage zur Durchführung einer aeroben Hydrolyse und einer Trocknung sowie einer Aufbereitung der bei der Hydrolyse verwendeten fluiden Medien;
Fig. 6 eine Darstellung eines Trockners und
Fig. 7 und 8 alternative Verfahrensabläufe.

Gemäß dem in Figur 1 dargestellten Grundfließschema wird der angelieferte Abfall, beispielsweise Siedlungsabfall zunächst einer mechanischen Aufbereitung unterzogen. Dabei wird der Abfall beispielsweise aufgerissen, gesiebt
und es werden Störstoffe, Inertstoffe sowie Metalle abgeschieden.

Eine nach dem Siebvorgang anfallende kohlenstofffreie Fraktion (Siebdurchgang) wird einer biologischen Stabilisierung und einer Trocknung zugeführt, bei der organische Bestandteile des Abfalls abgebaut werden. Der Siebüberlauf enthält häufig nur einen geringen Anteil an Organik, so daß auf die biologische Stabilisierung verzichtet werden und diese Fraktion direkt einer Kompaktierung oder einer sonstigen Verwertung zugeführt werden kann.

Die biologische Stabilisierung kann beispielsweise eine aerobe Hydrolyse durch Zugabe einer Auswaschflüssigkeit und/oder eine sich anschließende Trocknung enthalten.

Die biologisch stabilisierte, kohlenstoffreiche Abfallfraktion und ggf. der Siebüberlauf werden anschließend einer Kompaktierungseinrichtung zugeführt und zu einem Formkörper kompaktiert. Diese Kompaktierungseinrichtung kann beispielsweise eine Extruder-/Strangpresse sein. Durch die Kompaktierung erfolgt eine weitere Entwässerung der Abfallfraktion, wobei aufgrund der während des Kompaktierungsvorgang eingetragenen Energie eine Erwärmung und Nachtrocknung sowie eine Verschmelzung der Kunststoffbestandteile erfolgen kann. Wie in Fig. 1 gezeichnet angedeutet ist, kann der Kompaktierungsschritt auch umgangen werden.

Während der vorbeschriebenen Verfahrensschritte verwendetes oder anfallendes Wasser wird gereinigt und organische Bestandteile in einem anaeroben Vorgang zu Biogas verwandelt.
Der sich nach der Kompaktierung ergebene Feststoff (Pellet, Schnitzel, Briketts) kann prinzipiell auf unterschiedliche Weisen weiterverarbeitet bzw. -verwendet werden.

Da der Feststoff nach der Kompaktierung praktisch nicht mehr eluierbar und nicht atmungsaktiv ist, kann dieser ohne großen Aufwand in Hausmülldeponien abgelagert werden.

Alternativ zur Ablagerung in einer Deponie kann der kompaktierte Feststoff als Ersatzbrennstoff in einer energieintensiven Anlage, beispielsweise einer Hausmüllverbrennungsanlage eingesetzt werden.

Der Feststoff (Ersatzbrennstoff) kann auch direkt einer stofflichen Verwertung, beispielsweise in einem Zementwerk zugeführt werden.

Im folgenden wird anhand des in Figur 2 dargestellten Verfahrensschemas ein erstes Ausführungsbeispiel des erfindungsgemäßen Verfahrens detaillierter beschrieben.

Der angelieferte Abfall 2, beispielsweise Hausmüll, Biomüll, gewerblicher Müll oder sonstige, einen Anteil an Organik enthaltende Stoffgemische wird angeliefert und zunächst einer mechanischen Aufbereitung 4 unterzogen. Diese mechanische Aufbereitung enthält Klassierschritte,

Die Feinkornfraktion 6 wird einer biologischen Stabilisierung 10 durch eine aerobe Hydrolyse mittels Luftsaure und Wasser oder einer sonstigen Auswaschflüssigkeit zugeführt. Die Auswaschflüssigkeit wird erfindungsgemäß einer Abwasserreinigungsanlage zugeführt, die eine Biogasanlage enthalten kann. In dieser erfolgt die Umsetzung der organischen Bestandteile der Auswaschflüssigkeit in Biogas.

Bei der biologischen Stabilisierung 10 und der damit verbundenen Abwasseraufbereitung wird auch ein erheblicher Anteil an Inertstoffen, beispielsweise Sand oder sonstige Mineralstoffen abgeschieden, der im angelieferten Abfall vorhanden ist.

Die biologisch stabilisierte, noch feuchte Feinkornfraktion wird dann einer biologischen oder thermischen Trocknung 12 durch Zuführung von Luft zugeführt, wobei aufgrund der thermophilen Erwärmung des Stoffgemisches Wasserdampf ausgetragen wird.

Die entfeuchtete Feinkornfraktion wird anschließend einer Kompaktierung 14 zugeführt, bei der einerseits eine weitere Entwässerung erfolgt und andererseits das Stoffgemisch in eine gewünschte geometrische Form gebracht wird. Nach der Kompaktierung und Entwässerung liegt ein Feststoff oder Ersatzbrennstoff vor, der den eingangs genannten weiteren Verwertungen beispielsweise einer Vergassung 18 zugeführt werden kann. Alternativ kann der Fest-
oder Ersatzbrennstoff 16 auch in einer Deponie gelagert
oder einer Hausmüllverbrennungsanlage zugeführt werden.

Die bei der mechanischen Aufbereitung anfallende
Grobkornfraktion 8 wird ebenfalls von den Störstoffen und
den Sekundärrohstoffen befreit und anschließend direkt
der Kompaktierung 14 zugeführt. Dies ist möglich, da
diese Grobkornfraktion erfahrungsgemäß einen geringen An-
teil an Organik und Feuchtigkeit enthält, so daß die bio-
logische Stabilisierung und Trocknung entfallen kann.
Selbstverständlich könnte diese Grobkornfraktion nach ei-
er nochmaligen Zerkleinerung dem vorbeschriebenen Stoff-
strom hinzugefügt werden. Prinzipiell können die Grob-
kornfraktion und die Feinkornfraktion nach der biologi-
ischen Stabilisierung auch direkt, d. h. ohne Kompaktie-
 rung der Weiterverwertung zugeführt werden.

Einzelheiten der vorbeschriebenen Verfahrensschritte
werden nunmehr anhand der Ablaufschemata gemäß den Figu-
ren 2 und 3 erläutert.

In Figur 3 ist ein Fließbild der mechanischen Aufbe-
reitung des in Figur 2 dargestellten Prozess gezeigt.

Der angelieferte Abfall 2 wird zunächst mit einer ge-
eigneten Waage 20 gewogen, um die Abfallaufbereitungsge-
bühren zu bestimmen und einen Überblick über die Menge an
angelieferten Abfall für die Prozeßsteuerung zu erhalten.

Der angelieferte Abfall 2 wird dann einer Material-
aufgabe 22 der Prozeßanlage oder einem Bunker zugeführt
und dort abgeladen.

Das aus dem Bunker oder der Materialaufgabe 22 abge-
zogenen Stoffgemisch (Abfall) hat etwa 60 Gew. % Trocken-
substanz d.h., etwa 40 % des angelieferten Materials sind

Die Feinkornfraktion, d.h. der Siebdurchgang 26 wird einer Metallabscheidung 30 zugeführt, in der Eisen- und Nichteisenmetalle abgeschieden werden. Die Abscheidung der Eisenmetalle erfolgt beispielsweise durch Magnete, während die Nichteisenmetalle in der Regel über Schwerkraftsichter abtrennbar sind.

Die derart aufbereitete Feinkornfraktion wird dann in einem Zwischenbunker 32 zwischengelagert. Diese Feinkornfraktion enthält etwa 60 Gewichtsprozent des angelieferten Abfalls.

Der Siebüberlauf, d.h. etwa die verbleibenden 40 % des angelieferten Abfalls wird zunächst ebenfalls einer Einrichtung 30 zur Metallabscheidung zugeführt und die ausgeschiedenen Eisen- und Nichteisenmetalle einer weiteren Verwendung zugeführt. Diese abgeschiedenen Metalle können etwa 1 Gew. % des angelieferten Abfalls ausmachen.

Nach der Metallabscheidung werden Störstoffe aus der Grobkornfraktion entfernt. Diese Störstoffe können bei Siedlungsmüll beispielsweise Elektrogeräte, Fahrräder,
Granitsteine etc. sein und können ebenfalls etwa 1 Gew. % der angelieferten Abfallmenge betragen.

Das Abführen der Störstoffe erfolgt in der Regel auf einem Sortierband wobei einer automatisierten Störstoffentfernung in der Regel noch eine Handnachsortierung nachgeschaltet ist.

Diese hochkalorische Fraktion wird einem weiteren Zwischenbunker 36 zugeführt. Durch die Zwischenlagerung der beiden heizwertreichen Fraktionen in den beiden Zwischenbunkern 32 und 36 erfolgt eine Art Homogenisierung der einzelnen angelieferten Chargen, so daß Schwankungen in der Abfallzusammensetzung und -qualität in gewissem Maße ausgleichbar sind.

Die während der einzelnen, vorbeschriebenen mechanischen Bearbeitungsschritte anfallende Abluft 38 wird, wie in Figur 3 punktiert angedeutet, abgesaugt und – wie im folgenden noch näher beschrieben, einer Abluftreinigung zugeführt.

Bei den mit W, X, Y gekennzeichneten Zwischenschritten liegen somit ein Anteil an Abluft 38 (W), eine von Metallen und Inertstoffen befreite Feinkornfraktion
(Siebdurchgang 26) (X) und ein von Metallen, Inertstoffen sowie Störstoffen befreiter und zerkleinelter Siebüberlauf 28 (Y) vor.

Demzufolge wird die im Zwischenbunker 32 aufbewahrte Feinkornfraktion (Siebdurchgang 26) zunächst einem oder mehreren hintereinandergeschalteten Reaktoren 39 (Perkolator, Trockner) zugeführt, in denen eine aerobe Hydrolyse des zugeführten Stoffgemisches und eine nachgeschaltete Trocknung/Entwässerung erfolgt.

In einem sich anschließenden Trocknungsvorgang, auf den im folgenden noch näher eingegangen wird, kann eine Entwässerung bzw. Trocknung durch aerobe Erwärmung des der Hydrolyse unterzogenen Stoffgemisches erfolgen. Am
Ausgang des Reaktors 39 liegt dann ein Stoffgemisch an, das einen wesentlich erhöhten Trockensubstanzanteil hat. Die Trocknung kann auch im gleichen Reaktor wie die Perkolation oder in einem eigenen Trockner durchgeführt werden.

Die Kompaktierungseinrichtung 42 kann beispielsweise eine Hochdruckpresse, beispielsweise eine Extruder/Strangpresse aufweisen sein, über die eine Vorentwässerung des Produkts 40 erfolgt. Desweiteren wird durch die in das Zwischenprodukt 40 während des Kompaktierungsvorganges eingetragene Energie das Stoffgemisch erwärmt, so daß eine Nachtrocknung erfolgen kann.

Diese Nachtrocknung kann durch eine sich anschließende Kühl trocknung 44 unterstützt werden, in der das nach der Kompaktierung vorliegende Produkt abgekühlt und weiteres Wasser ausgetragen wird.

Nach der Kompaktierung/Trocknung liegt ein Produkt 46 vor, das trockenstabil, nicht atmungsaktiv und praktisch nicht mehr eluierbar ist. Dieses Produkt kann - wie vorstehend erwähnt - in einer Deponie abgelagert, als Ersatzbrennstoff verbrannt, einer stofflichen Verwertung oder einer Vergasung zugeführt werden. Nach dem erfindungsgemäßen Verfahren werden etwa 50 Gew.% des angelie-
ferten Abfalls 2 zu einem heizwertreichen Produkt 46 weiterverarbeitet. Der Heizwert dieses Produkts liegt zwischen 11.000 und 14.000 kj/kg.

30 Die bei der Hydrolyse im Reaktor 39, während der Trocknung und während der Kompaktierung und Kühl- trocknung entstehende Abluft wird der Abluft 38 hinzugefügt und einer Abluftreinigung (Biofilter) 48 zugeführt, in der Feststoffe ausgewaschen werden und die Abluft einer biologischen Reinigung mittels aeroben Mikroorganismen unterzogen wird.

Die vom Sand befreite Auswaschflüssigkeit 50 wird einer Abwasseraufbereitungseinrichtung 80 zugeführt, der eine Biogasanlage 120 zugeordnet ist. In der Abwasseraufbereitungseinrichtung 80 werden Stör- und Inertstoffe abgeschieden und in der Biogasanlage 120 die organischen Anteile der Auswaschflüssigkeit in Biogas umgesetzt.

Das während der Abwasseraufbereitung anfallende, nicht mehr zu reinigende Abwasser wird aus dem Prozeß
ausgeschieden und kann etwa 20 Gew. % der angelieferten Menge ausmachen.

Gemäß dem vorbeschriebenen Massenflußschema wird der angelieferte Abfall zum überwiegenden Teil in mittelbar oder unmittelbar weiterverwertbare Komponenten aufgespalten, wobei der Prozeß aufgrund des gewonnenen Biogases und des gewonnenen Brennstoffes weitestgehend energieautark arbeiten kann.

Figur 5 zeigt einen Querschnitt durch einen Reaktor 39 wie er beim erfindungsgemäßen Verfahren eingesetzt werden kann.

Die aerobe Hydrolyse (aerobe biogene Reaktion/Perkolation) erfolgt in dem Reaktor 39, dem das aufzubereitende Stoffgemisch 2 über eine Materialeintrageinrichtung 4 zugeführt wird. Der Reaktor 1 ist als abgeschlossener Behälter ausgeführt, so daß die im folgenden noch näher beschriebenen Stoffströme über Schleusen-, Ventileinrichtungen etc. zugeführt werden.

In der Darstellung gem. Fig. 5 ist die Eintrageinrichtung 58 an dem in Schwerkraftrichtung gesehen oberen Endabschnitt des Reaktors 39 angeordnet.

Im unteren Bereich des Reaktors 39 ist eine Austrageinrichtung 60 ausgebildet, über die das aufbereitete
und biologisch aufgeschlossene Stoffgemisch aus dem Reaktor 39 abführbar ist.

Im Sammler 64 münden ein Luftanschluß 68 und ein Auswaschflüssigkeits-Austritt 70. Im Kopfbereich des Reaktors 39 sind ein weiterer Luftanschluß 72 und ein Auswaschmittel-Verteiler 74 angeordnet.

Der in Figur 5 untere Luftanschluß 68 ist mit einer Luftfördereinrichtung 78 verbunden. Je nach Bauart der Luftfördereinrichtung 78 (Gebläse, Verdichter) läßt sich innerhalb des Reaktors 39 eine Strömung 80 vom unteren Luftanschluß 68 zum oberen Luftanschluß 72 oder eine Strömung 82 in umgekehrter Richtung vom oberen Luftanschluß 72 zum unteren Luftanschluß 68 einstellen. D.h., entsprechend der Bauart der Luftfördereinrichtung 78 wird das im Reaktor 39 aufgenommene Stoffgemisch in der Darstellung Figur 5 von unten nach oben oder von oben nach unten mit Luft durchströmt.
Die Auswaschflüssigkeitsströmung erfolgt in Schwerkraftrichtung, d.h. von dem im Rektor 39 oben angeordneten Verteiler 74 zum Austritt 70.

Die aus dem Rektor 39 austretende Auswaschflüssigkeit wird über eine im folgenden noch näher beschriebene Abwasseraufbereitungseinrichtung 80 aufbereitet und dann im Kreislauf zurück zum Verteiler 74 geführt.

Zum besseren Verständnis sei nunmehr die einzelnen vorbeschriebenen Bauelementen der erfindungsgemäßen Vorrichtung detaillierter erläutert.

Das eintretende Stoffgemisch 2 wurde wie zuvor beschrieben mechanisch aufbereitet, so daß es eine vorbestimmte maximale Partikelgröße aufweist. Dieses aufbereitete Stoffgemisch wird über geeignete Fördereinrichtungen, beispielsweise Förderbänder 90 der Eintrageeinrichtung 58 zugeführt, über die eine Verteilung des Stoffgemisches 2 über den Rektorquerschnitt erfolgt. Beim ge-
zeichnet Ausführungsbeispiel hat die Eintrageinrichtung 58 einen Querförderer 92, über den das Stoffgemisch in der Zeichenebene und quer zur Zeichenebene verteilt und über den Querschnitt verteilten Materialabwurftrichtern 94 dem Reaktor 39 zugeführt wird.

Durch Ansteuerung der Materialabwurftrichter 40 oder der Querförderer 92 wird das Stoffgemisch 2 schichtweise in den Reaktor 39 eingebracht, so daß praktisch auf dem Siebboden 62 n-Schichten 96 übereinander liegend angeordnet sind.

Die Füllhöhe H des Reaktors 39 ist so gewählt, daß sich der Verteiler 74 für die Auswaschflüssigkeit oberhalb des Haufwerks befindet. Der Verteiler 74 kann beispielsweise eine Vielzahl von über den Reaktorquerschnitt verteilten Sprühköpfen 98 aufweisen, über die die Auswaschflüssigkeit gleichmäßig über der obersten Schicht 96 verteilbar ist.

Die Austrageinrichtung 60 ist bei dem in Figur 5 dargestellten Ausführungsbeispiel als Horizontalförderer ausgebildet, der derart ausgelegt ist, daß die jeweils untere, auf dem Siebboden 62 aufliegende Stoffgemischschicht in Horizontalrichtung abführbar ist. Bei dem dargestellten Reaktor 1 ist die Austrageinrichtung 60 als Schub- oder Kratzboden ausgeführt, wie er beispielsweise in der WO 95/20554 A1 beschrieben ist. Derartige Schubböden werden beispielsweise in Klärschlammssilos, Kompostierungsanlagen etc. eingesetzt und sind aus dem Stand der Technik bekannt, so daß im folgenden lediglich die wesentlichen Bauelemente beschrieben werden.

Um die Extraktionsbedingungen im Reaktor 39 konstant zu halten, entspricht die Schichtdicke des Materialaus-
trags etwa der Schichtdicke des Materialauftrags, so daß die Füllhöhe \(H \) im wesentlichen konstant bleibt.

Wie bereits eingangs erwähnt, kann ein Teil des Materialaustrags 82 als Umlaufgut 86 zur Fördereinrichtung 90 oder direkt zur Eintrageinrichtung 58 zurückgeführt werden. Prinzipiell ist auch möglich, den gesamten Materialauftrag 82 als Umlaufgut 86 zu fahren, so daß das Stoffgemisch den Reaktor 39 mehrmals durchläuft und erst nach beispielsweise 4 Durchläufen als Zwischenprodukt 40 abgeführt wird.

Der unterhalb der Austrageinrichtung 60 angeordnete Siebboden 82 hat eine Maschenweite \(Z \), die in Abhängigkeit von der Zusammensetzung und Partikelgröße des aufzubereitenden Stoffgemisches gewählt ist. Die Konstruktion der Austragseinrichtung 60 ist so gewählt, daß der Siebboden 62 gereinigt wird, so daß ein Zusatzen der Maschen verhindert ist.

Durch den schichtförmigen Materialaustrag wird bewirkt, daß sich das Stoffgemisch in Vertikalrichtung schichtweise von oben nach unten (Pfeil in Figur 5) durch den Reaktor 39 bewegt.

Bei dem in Figur 5 dargestellten Ausführungsbeispiel wird die Kanalbildung im wesentlichen durch die Bewegung der Austrageinrichtung 60 verhindert und die Scherkräfte zur Neubildung der Haufwerk-Oberflächen und zum Aufschluß der Partikel werden über die Förderelemente zum Transport des Umlaufguts 86 eingeleitet.

Die von den Störstoffen befreite Auswaschflüssigkeit wird dann einem Anaerobfermenter 120, beispielsweise einer

Vorversuche zeigten, daß bei der Behandlung von einer Tonne zugeführten Hausmülls ca. 80 Nm³ Biogas mit einem Energieinhalt von 6,5 kWh gewonnen werden können.

Bei dem vorbeschriebenen Ausführungsbeispiel ist dem Reaktor 39 eine Abwasserreinigungsanlage 80 zugeordnet. Alternativ könnte die Auswaschflüssigkeit auch in eine bestehende Kläranlage eingebunden werden oder direkt in die Kanalisation eingeleitet oder einem anderen Behandlungsschritt zugeführt werden. Als Zulauf würde dann Frisch- oder Betriebswasser oder ein schwach belastetes Abwasser benutzt.

Im Anschluß an den Anaerobfermenter 120 schließt sich eine zweistufige aerobe Nachbehandlung 124 an, wobei Faulwasser aus der Biogasanlage zur Minimierung der Restfracht nachbehandelt und Stickstoff eliminiert wird.

Das dabei entstehende befachtete Abwasser 126 wird je nach Belastung und geltenden gesetzlichen Vorschriften an einer weiteren Behandlungsstufe zugeführt oder direkt in die Kanalisation eingeleitet. Die in der aeroben Biologie 124 gereinigte Auswaschflüssigkeit wird dann über den Verteiler 74 dem Reaktor 39 zugeführt. Wie in Figur 5 angedeutet ist, kann ein Teilstrom des Faulwassers aus dem Anaerob-Fermenter 120 unter Umgebung der 2-stufigen
aeroben Biologie 124 direkt dem Verteiler 74 zugeführt werden, um katalytisch auf den biologischen Aufschluß im Reaktor 39 zu wirken.

Durch die erfindungsgemäße Strömungsführung innerhalb des Reaktors 39 stellt sich eine aerobe Hydrolyse ein, wobei durch die das Stoffgemisch 2 durchströmende Luft und die über die Auswaschflüssigkeit eingestellte Feuchtigkeit des Stoffgemisches eine aerobe, thermophile Erwärmung stattfindet, durch die die Zellen der Organik aufgebrochen und die freigesetzten organischen Substanzen durch die Auswaschflüssigkeit ausgetragen werden.

Als Auswaschflüssigkeit wird Wasser verwendet, das nach dem Anfahren der Anlage und dem Erreichen nahezu stationärer Prozeßparameter durch während der aeroben Behandlung aufgelöste Salze in einen sauren Zustand über-

Wie in Figur 5 angedeutet ist, wird das sich innerhalb des Reaktors 39 befindliche Stoffgemisch 2 durch die Austragseinrichtung 60 mit stoßförmigen, sich wellenförmig in Haufwerk fortpflanzenden Impulsen beaufschlagt, so daß Kräfte in das Stoffgemisch eingeleitet werden, durch die etwa auftretende Strömungskanäle der Auswaschflüssigkeit und der Luft zerstört werden. Die Größe dieser Kräfte ist dabei so ausgelegt, daß sie einerseits groß genug sind, um diese Kanäle und Kamine zu zerstören, andererseits jedoch nicht zu einer Veränderung des Schichtaufbaus führen.

des Kohlenstoffes und die Abführung des Wasserdampfes wird die Restfeuchte des Stoffgemisches reduziert, wobei sich der gewünschte Trockensubstanzanteil auf einfache Weise durch die Dauer der aeroben Trocknung einstellen läßt.

Im Unterschied zum Reaktor aus Figur 5 hat der Trockner 128 aus Figur 6 keinen Verteiler 74 zum Aufbringen von Auswaschflüssigkeit.

Beim aeroben Trockner 128 ist wiederum eine Teilrückführung des am Ausgang des Trockners 128 anliegenden Trockengutes 130 als Umlaufgut 132 und/oder die Abführung eines getrockneten Produktes 134 vorgesehen. Das zutrocknende Stoffgemisch durchläuft den Trockner 128 vorzugsweise wiederum geschichtet, wobei die Kanalbildung wieder durch impulsförmig aufgebrachte Kräfte unterbunden wird.
Selbstverständlich könnte dieses 2-stufige Verfahren auch durch zwei hintereinander geschaltete Reaktoren 39 gemäß Fig. 5 durchgeführt werden, wobei im ersten Reaktor die Hydrolyse durch Zuführung von Luft und Auswaschflüssigkeit erfolgt, während im zweiten nachgeschalteten Reaktor 39 lediglich die Trocknung durch Zuführung von Luft erfolgt.

Anstelle der Hydrolyse und Trocknung in einem einzigen Reaktor 39 oder in zwei hintereinander geschalteten Reaktoren 39 könnten auch mehrere Reaktoren der Bauart gemäß Figur 5 und mehrere Reaktoren der Bauart gemäß Figur 6 in Serie hintereinander geschaltet werden, so daß sich praktisch ein Hydrolyseblock und ein Trocknungsblock ausbildet.

Diesen beiden Blöcken kann jeweils eine gemeinsame Materialzuführung- und Materialaussträgeinrichtung zugeordnet sein, so daß sich die Füllung der einzelnen Reaktoren frei wählen läßt.

Wie aus den Fließbildern gemäß den Figuren 1 bis 4 hervorgeht, wird bei dieser Variante des erfindungsgemäßen Verfahrens vorgesehen, daß der hochkalorische Siebüberlauf direkt der Kompaktierung zugeführt wird, während der einen hohen organischen Anteil enthaltende Siebdurchgang zunächst einer biologischen Stabilisierung unterzogen wird.

Bei bestimmten Anwendungsfällen wird es erforderlich sein, daß ein Teil des aufbereiteten Abfalls in einer Hausmülldeponie abgelagert wird. In diesem Fall bietet es sich an, daß der Siebüberlauf nach der Kompaktierung als Ersatzbrennstoff verbrannt oder einer Vergasung zugeführt wird. Die biologisch stabilisierte Fraktion (Siebdurchgang) wird dann vorzugsweise kompaktiert und
als nicht eluierbares und nicht atmungsaktives Produkt auf einer Deponie abgelagert.

Das Mengenverhältnis zwischen dem Ersatzbrennstoff und dem auf einer Deponie abzulagernden Produkt läßt sich dann durch gezielte Wahl der Siebweite einstellen. Auf entsprechende Weise ließ sich eine Aufteilung eines nach der erfindungsgemäßen Verfahren hergestellten Produktes in einen Ersatzbrennstoff für eine thermische Verwertung und ein auf einer Hausmülldeponie abzulagerndes Produkt vornehmen.

Die Figuren 7 und 8 zeigen Fließschemata derartiger alternativer Verfahrensvarianten.

Bei dem in Figur 7 dargestellten Verfahren wird der Abfall bei der mechanischen Aufbereitung über eine Siebtrommel in eine Grobkornfraktion und eine Feinkornfraktion aufgeteilt.

Die Grobkornfraktion wird nach dem Entfernen von Störstoffen etc. einer Kompaktierung zugeführt und die dabei entstehenden entwässerten Pellets, Schnitzel oder Briketts als Ersatzmittel fossiler Brennstoffe vergast.

Die Feinkornfraktion durchläuft die biologische Stabilisierung mit einer aeroben Hydrolyse, einer aeroben Trocknung und einem anschließenden Kompaktierungsschritt, wobei die entstehenden Briketts oder Pellets auf einer Deponie abgelagert werden.

Der Mengenanteil des der Deponierung und der Vergasung zugeführten, aufbereiteten Abfalls kann über die Siebweite eingestellt werden.
Bei dem in Figur 8 dargestellten Ausführungsbeispiel wird die biologisch stabilisierte und pelletisierte Feinkornfraktion ebenfalls auf einer Deponie abgelagert, während die Grobkornfraktion im Unterschied zu dem in Figur 7 dargestellten Verfahren einer thermischen Verwertung, beispielsweise einer Hausmüllverbrennungsanlage zugeführt wird.

Selbstverständlich kann - ähnlich wie bei dem in Figur 2 dargestellten Ausführungsbeispiel - die Grobkornfraktion nach einer Verkleinerung oder vor der Kompaktierung wieder mit der Feinkornfraktion zusammen geführt werden, so daß der gesamte, von Störstoffen befreite und biologisch stabilisierte Abfall vergast, einer thermischen Verwertung zugeführt oder auf einer Deponie abgelagert wird.

Die vorbeschriebene mechanisch-biologische Aufbereitung (MBA) stellt eine sinnvolle Alternative zur Müllverbrennung dar. Das bei der MBA erhaltene Produkt zeichnet sich durch einen hohen Heizwert aus, wobei die vernachlässigbare Eluierbarkeit und, die geringe Atmungsaktivität die Möglichkeit eröffnen, das Produkt ohne aufwendige Maßnahmen in einer Deponie abzulagern, wobei aufgrund des nahezu inerten Verhaltens des Produktes kein Sickerwasserproblem auftreten kann.

Das erfindungsgemäße Verfahrenskonzept ist ein wichtiger Schritt zu ökologisch und ökonomisch sinnvolle Nutzung der Zivilisationsabfälle mit weitgehender Nutzung des Energieinhaltes, so daß fossile Energieresourcen eingespart werden könnten. Das Verfahren zeichnet sich durch folgende Vorteile aus:

- die Anlage zur Durchführung des Verfahrens könnte auf oder in der Nähe von Mülldeponien betrieben werden,
so daß die Entsorgung unvermeidbarer Abfälle unter Nutzung der schon vorhandenen Infrastruktur der Müllabfuhr gesichert ist;
- das Verfahren ermöglicht eine stoffliche und energetische Verwertung auf hohem Entsorgungsniveau unter Kostenbegrenzung für die Abfallentsorgung;
- die mechanisch-biologische Vorbehandlung reduziert die Geruchsemission, die Menge an organischer Trockensubstanz und die Kosten für die anschließende Entwässerung;
- das Verfahren führt zur frühen Abtrennung von relativ sauberen Fraktionen von Inertstoffen;
- durch das Verfahren läßt sich fossile Energie durch Biogas substituieren und
- erfindungsgemäß wird ein lagerbarer Sekundärrohstoff oder ein Brennstoff mit höherem Energiegehalt als die Ausgangsstoffe erzeugt.

Ansprüche

1. Verfahren zur Verwertung von Abfall, wobei dieser einer Trennung unterzogen wird, bei der als Sekundärrohstoff verwendbare Bestandteile abgetrennt werden und eine verbleibende, einen vorbestimmten Partikeldurchmesser nicht überschreitende Fraktion (Feinkornfraktion) thermisch oder biologisch weiterbehandelt wird, gekennzeichnet durch die Schritte:

- Abtrennen von organischen Substanzen von der Fraktion mittels einer aeroben Hydrolyse und

- Kompaktieren der verbleibenden kohlenstoffreichen Fraktion zu einem Ersatzbrennstoff oder nichteluiierbaren Körper.

2. Verfahren nach Patentanspruch 1, dadurch gekennzeichnet, daß die Kompaktierung eine Entwässerung der kohlenstoffreichen Fraktion bewirkt.

3. Verfahren nach Patentanspruch 1 oder 2, dadurch gekennzeichnet, daß sich an die Hydrolyse eine Trocknung anschließt.

5. Verfahren nach Patentanspruch 3 oder 4, dadurch gekennzeichnet, daß die Hydrolyse in einem Reaktor (39) erfolgt, in dem die Fraktion von einem Materialeintrag (58) zu einem Materialaustrag (60) geführt und von einer Auswaschflüssigkeit und Luft durchströmt wird.

7. Verfahren nach einem der Patentansprüche 3 bis 6, dadurch gekennzeichnet, daß die beladene Auswaschflüssigkeit einer Abwasserreinigungsanlage (80) mit Biogasreaktor (120) zugeführt und anschließend zum Reaktor (39) zurückgeführt wird, wobei die Energie des gewonnenen Biogases zumindest teilweise zur Durchführung des vorbeschriebenen Verfahrens verwendet wird.

11. Verfahren nach einem der vorhergehenden Patentansprüche, dadurch gekennzeichnet, daß die Kompaktierung
(14) eine Pelletisierung oder Brikettierung beinhaltet.

Abfall

mechanische Aufbereitung

Siebüberlauf

Siebdurchgang

aerobe Hydrolyse

Trocknung

Kompaktierung Pellet, Brikett

Deponie

Kompaktierung Pellet, Brikett

Vergasung

Fig. 7
Abfall

mechanische Aufbereitung

Trocknung

Kompaktierung, Pellet, Brikett

Deponie

Siebüberlauf

Siebdurchgang

aerobe Hydrolyse

Kompaktierung, Pellet, Brikett

Verbrennung

Fig. 8
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 C10L5/46 B03B9/06 B09B3/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 C10L B09B B03B C05F F23G

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>P, X</td>
<td>WO 99 38618 A (ANDERS) 5 August 1999 (1999-08-05) the whole document</td>
<td>1-12</td>
</tr>
<tr>
<td>X</td>
<td>WO 90 12103 A (EREcta AG ET AL) 18 October 1990 (1990-10-18) the whole document</td>
<td>1,3, 10-12</td>
</tr>
<tr>
<td>Y A</td>
<td>WO 97 27158 A (WIDMER ET AL) 31 July 1997 (1997-07-31) cited in the application abstract page 8, line 27 -page 9, line 31; figure 1</td>
<td>5, 7 8 5 1,7</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of box C.

Patient family members are listed in annex.

* Special categories of cited documents:
 * "A" document defining the general state of the art which is not considered to be of particular relevance
 * "E" earlier document but published on or after the international filing date
 * "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 * "O" document referring to an oral disclosure, use, exhibition or other means
 * "P" document published prior to the international filing date but later than the priority date claimed

* Ti later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 * "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 * "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

* "A" document member of the same patent family

Date of the actual completion of the international search

14 April 2000

Date of mailing of the international search report

25/04/2000

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epc nl,
Fax: (+31-70) 340-3016

Authorized officer

Van der Zee, W
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>DE 26 42 451 A (KNEER) 23 March 1978 (1978-03-23) page 6, line 28 – page 7, line 26 page 10, line 9 – page 11, line 16; figure</td>
<td>1-5, 8, 10, 12</td>
</tr>
<tr>
<td>A</td>
<td>DE 43 29 711 A (FORSCHUNGS- & ENTWICKLUNGZENTRUM SONDERMÜLL) 9 March 1995 (1995-03-09) abstract column 2, line 57 – column 5, line 17; figure</td>
<td>1, 10, 12</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>WO 9938618 A</td>
<td>05-08-1999</td>
<td>DE 19807539 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2825499 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 5449890 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE 8901311 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT 183489 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 715298 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 1445297 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2244090 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1209794 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 59700352 D</td>
</tr>
<tr>
<td>DE 19648731 A</td>
<td>28-05-1998</td>
<td>NONE</td>
</tr>
<tr>
<td>DE 2642451 A</td>
<td>23-03-1978</td>
<td>NONE</td>
</tr>
<tr>
<td>DE 4329711 A</td>
<td>09-03-1995</td>
<td>NONE</td>
</tr>
</tbody>
</table>
INTERNATIONALER RECHERCHENBERICHT

A. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES

<table>
<thead>
<tr>
<th>IPK</th>
<th>C1OL5/46</th>
<th>B03B9/06</th>
<th>B09B3/00</th>
</tr>
</thead>
</table>

Nach der internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RESECHRIETE GEBIETE

Rechercheierte Mindestdruckstoff (Klassifikationssystem und Klassifikationszeichen)

<table>
<thead>
<tr>
<th>IPK</th>
<th>C1OL</th>
<th>B09B</th>
<th>B03B</th>
<th>C05F</th>
<th>F23G</th>
</tr>
</thead>
</table>

Rechercheierte aber nicht zum Mindestdruckstoff gehörige Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

C. ALS WESENTLICH ANGESEHENH UNTERLAGEN

<table>
<thead>
<tr>
<th>Kategorie*</th>
<th>Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile</th>
<th>Betr. Anspruch Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>WO 90 12103 A (ERECTA AG ET AL) 18. Oktober 1990 (1990-10-18) das ganze Dokument</td>
<td>1, 3, 10-12</td>
</tr>
</tbody>
</table>

X Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

X Siehe Anhang Patentfamilie

* Besondere Kategorien von angegebenen Veröffentlichungen :
 A Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besondere bedeutam anzuweisen ist
 E älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist
 L Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelsfrei erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
 O Veröffentlichung, die sich auf eine mögliche Entfernung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
 P Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem bezugsnach Prioritätsdatum veröffentlicht worden ist

X Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis der Erfindung zugrunde liegende Prinzipien oder der ihr zugrunde liegenden Theorie angegeben ist

X Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden

X Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann nahelegend ist

X Mitglied derselben Patentfamilie ist

Datum des Abschlusses der Internationalen Recherche

14. April 2000

Absendetermin des Internationalen Recherchenberichts

25/04/2000

Name und Postanschrift der Internationalen Recherchenbehörde

Europäische Patentämter, P.B. 5818 Patentamt 2 NL – 2330 HV Rijswijk
Tel: (+31-70) 340-2040, Tx. 31 651 epc nl, Fax: (+31-70) 340-3016

Bevollmächtigter Bediensteter

Van der Zee, W
<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile</th>
<th>Btr. Anspruch Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>DE 43 29 711 A (FORSCHUNGS- & ENTWICKLUNGszENTRUM SONDERMÜLL) 9. März 1995 (1995-03-09) Zusammenfassung Spalte 2, Zeile 57 - Spalte 5, Zeile 17; Abbildung</td>
<td>1,10,12</td>
</tr>
<tr>
<td>Im Recherchenbericht angeführtes Patentdokument</td>
<td>Datum der Veröffentlichung</td>
<td>Mitglieder der Patentfamilie</td>
</tr>
<tr>
<td>---</td>
<td>---------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>WO 9938618 A</td>
<td>05-08-1999</td>
<td>DE 19807539 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2825499 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 5449890 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE 8901311 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT 183489 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 715298 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 1445297 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2244090 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1209794 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 59700352 D</td>
</tr>
<tr>
<td>DE 19648731 A</td>
<td>28-05-1998</td>
<td>KEINE</td>
</tr>
<tr>
<td>DE 2642451 A</td>
<td>23-03-1978</td>
<td>KEINE</td>
</tr>
<tr>
<td>DE 4329711 A</td>
<td>09-03-1995</td>
<td>KEINE</td>
</tr>
</tbody>
</table>