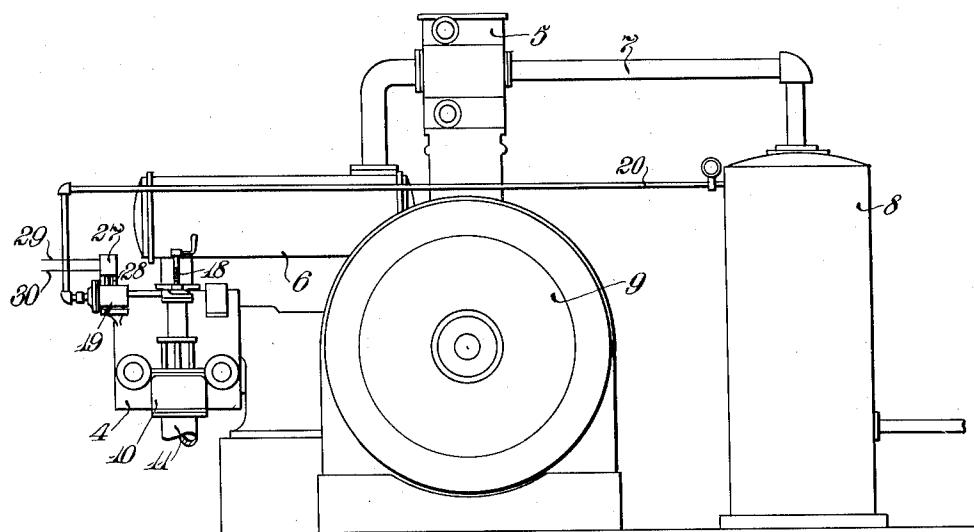
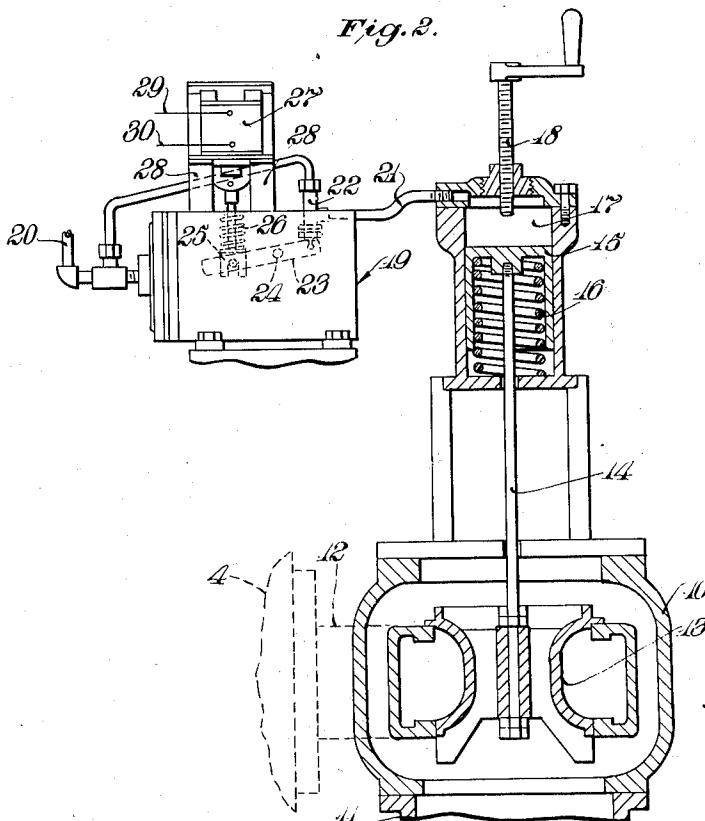


Nov. 6, 1934.

J. W. SANFORD


1,979,286

COMPRESSOR


Filed Jan. 24, 1931

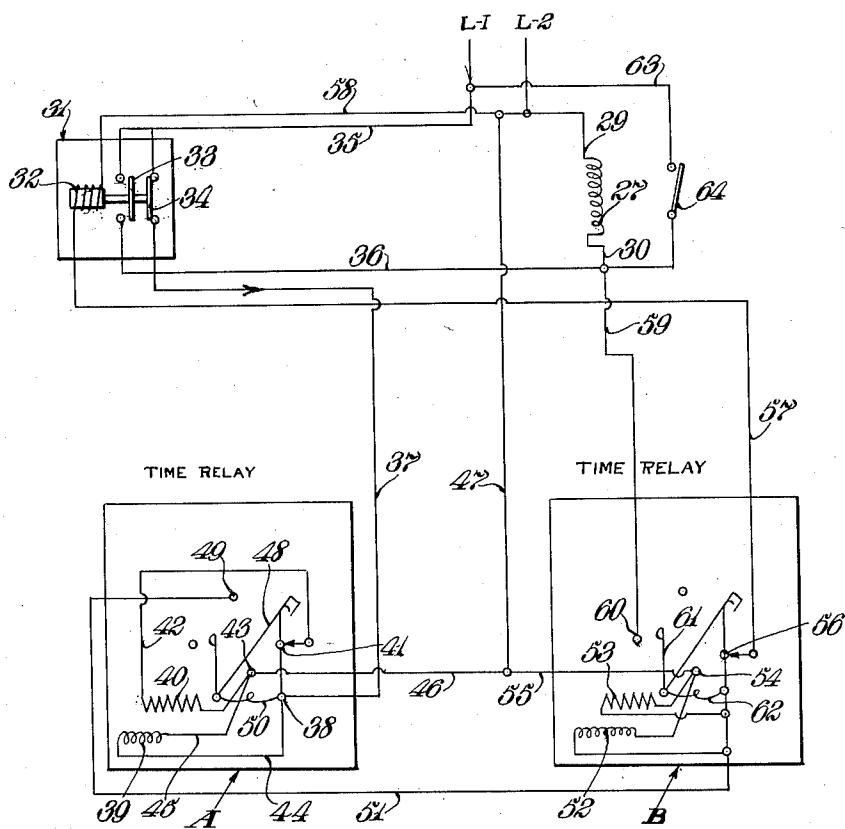
2 Sheets-Sheet 1

Fig. 1.

Fig. 2.

Nov. 6, 1934.

J. W. SANFORD


1,979,286

COMPRESSOR

Filed Jan. 24, 1931

2 Sheets-Sheet 2

Fig. 3.

Inventor:
John W. Sanford.
By Luis A. Maximo.

Attr.

UNITED STATES PATENT OFFICE

1,979,286

COMPRESSOR

John W. Sanford, Chicago, Ill., assignor to
 Sullivan Machinery Company, a corporation of
 Massachusetts

Application January 24, 1931, Serial No. 510,936

24 Claims. (Cl. 230—4)

My invention relates to load controlling devices generally, and more particularly to means for limiting the load on a compressor to a predetermined percentage of full load.

5 It is an object of my invention to provide improved means for controlling the load placed on a motor by a machine driven thereby. A further object is to provide improved electrically operated timing devices for limiting the average 10 load placed on a driving motor by a machine driven thereby. Still another object is to provide an improved automatic compressor control system whereby the average load on the compressor may be limited to a predetermined percentage of 15 full load when desired.

When compressors are driven by electric motors it becomes important to reduce the cost of electric energy required for producing the compressed air to a minimum. The rate charged by some of 20 the power companies is based on the maximum load demand over a specified interval of time, usually four minutes to thirty minutes. With unloading mechanisms of the type heretofore used for automatically loading and unloading the 25 compressor in response to variations in demand for compressed fluid, the compressor and its driving motor may sometimes be caused to run under full load for an interval which may be longer than the maximum demand interval specified by 30 the power company as its basis for rates. This is due to the fact that the usual unloaders operate in response to receiver tank pressure without regard to the power being supplied to the driving motor. It is also a fact in many installations of 35 one or more compressors that the total capacity may be as much as two or three times the average demand for compressed air in order to take care of peak requirements. The inconvenience which might be caused to the user of compressed air if the compressor output were materially limited 40 at a certain time of the day would not be great as compared to the saving in the power bill which might result. Some of the power companies impose a decided penalty on maximum demands for 45 a given interval of time at certain hours of the day, for example, around four to six P. M. In compressor installations at mines where compressed air is employed for operating rock drills and other pneumatic equipment, a reduction of 50 pressure even to seventy-five percent of the normal pressure for a fraction of the day would not be at all serious and it is more important to avoid the penalty imposed on a peak load between four and six P. M. It is therefore one of the primary 55 objects of my invention to provide improved mechanism for controlling a compressor to meet the above conditions, which shall be accurate and of rugged construction. A still further object is to provide improved means for varying the 60 maximum load upon a compressor over a certain

predetermined time interval and to provide means for regulating said time interval and for varying the limiting load. Other objects and advantages of my invention will appear during the course of the following specification and claims.

In the accompanying drawings I have shown for purposes of illustration one form which my invention may assume in practice.

In these drawings,—

Fig. 1 is a diagrammatic view in elevation of parts of a compressor system with which my improved control mechanism may be associated.

Fig. 2 is also a diagrammatic view illustrating an unloader in section and the pilot valve and associated mechanism in elevation.

Fig. 3 is a wiring diagram of the electrical load control apparatus, in an illustrative form.

In carrying out my invention I employ preferably the usual elements of a common type of unloading system involving the use of a fluid actuated total closure intake unloader controlled by a pilot valve.

The pilot valve is designed to operate normally in response to receiver tank pressure to load and unload the compressor, and the function of the pilot valve in unloading the compressor on a predetermined high receiver tank pressure is not interfered with by the addition of the mechanism of my invention. For the purpose of securing a control of the unloaders, a solenoid and spring actuated locking element, as disclosed in my copending application Serial No. 262,520, filed March 17, 1928, now Patent No. 1,786,128, may be used. It will be noted that by the use of the mechanism disclosed in said application, the pilot valve is locked in unloaded position at such times as the solenoid is deenergized and is permitted to function normally to load or unload the compressor whenever the solenoid is energized. My invention contemplates the use of two electrically operated adjustable definite time relays for controlling the energizing circuit of this solenoid so as to cause the same to be alternately energized and deenergized, the period of energization being regulated by the adjustment of one relay, while the period of deenergization is regulated by the other relay. It will thus be seen that the compressor may be unloaded at specified times independent of receiver tank pressure.

Referring to the specific embodiment of my invention illustrated in the drawings, there is shown in Fig. 1 a compressor of the angle compound type having a low pressure cylinder 4 and a high pressure cylinder 5 with an intercooler 6 interposed between the two cylinders. Compressed fluid is discharged from the high pressure cylinder through a line 7 to a usual receiver tank 8. Since the specific construction of the compressor driving motor does not enter into the present invention, it has not been shown in detail, but a direct connected motor is indicated at 9. The 120

unloader illustrated is of the total closure intake type having a casing 10 to which fluid to be compressed is supplied directly from the atmosphere or through a suitable pipe connection 11. Fluid 5 is supplied from this casing to the compressor through a connection 12 under the control of a double seat valve element 13 which is actuated through a stem 14 and piston 15. The valve is normally held in its upper or loaded position by 10 means of a spring 16, thereby permitting fluid to flow freely to the intake of the compressor. The unloader valve is actuated to closed or unloaded position by fluid pressure acting in the cylinder 17 and the amount of movement of this piston is 15 controlled by an adjustable stop 18. For the purpose of controlling pressure in the unloader cylinder 17, my improved control system includes a usual pilot valve mechanism generally indicated at 19 which may be of any of the well 20 known types, the one herein illustrated being of the type known as the Penn pilot valve and more fully illustrated in my Patent No. 1,786,128. This pilot valve mechanism operates in a well known manner in response to a predetermined high 25 pressure in the receiver tank 8, with which it is connected by a line 20, to establish a connection between the receiver tank and the unloader by way of a pipe 21 leading from a three-way valve mechanism 22 on the unloader. The compressor 30 discharge pressure responsive pilot valve mechanism includes a lever 23 pivoted at 24 which operates on the three-way valve 22 to connect the unloader with the receiver or vent the same to atmosphere. Controlling movements of the lever 35 23 are normally automatically effected in response to variations in the compressor discharge pressure, except when a superior control in accordance with my invention is effected. Clockwise movement of the lever from the position in 40 Fig. 2 effects loading. It will of course be understood that when my invention is applied to a compound compressor, any suitable type of unloading system may be used to unload the high pressure cylinder. If desired, a fluid pressure 45 actuated relief valve mechanism for the high pressure cylinder may be connected also to line 21.

As disclosed in the aforesaid application, I have devised a locking element 25 actuated by a spring 26 engaging lever 23 and locking the valve 50 22 in unloading position. For the purpose of retracting this locking element against the force of spring 26, I have attached a suitable solenoid having a coil 27 supported on the pilot valve mechanism by brackets 28 and when this solenoid 55 is energized, the locking element 25 is pulled out of engagement with lever 23, permitting the pilot valve to function normally to load and unload the compressor dependent on receiver tank pressure. In Figs. 1 and 2 I have shown lines 29 and 30 60 leading to the solenoid and adapted to be connected with a source of power through the illustrative form of my improved controlling apparatus which will now be described.

In the wiring diagram of Fig. 3 the solenoid 65 coil 27 is shown at the upper right hand part of the figure and a suitable source of power indicated at L1, L2. The circuit through solenoid coil 27 is controlled directly by a two-pole magnetically operated switch generally designated 31 which has a coil 32 for controlling two switch elements 33 and 34 normally open and closed respectively. The normally open contact member 33 of this switch controls the solenoid circuit and when it is closed by energization of coil 32, 70 current flows from L1 through lines 35, 36 and

30, coil 27 and line 29 to L2. For the purpose of controlling current through coil 32 I have shown in the illustrative embodiment disclosed herein a system involving, for convenience in construction, two adjustable definite time relays generally designated A and B, and the specific mechanical construction of these relays has not been illustrated since such relays are well known in the electrical engineering arts and their structural details do not enter into the present invention. Some of the large manufacturers of electrical equipment have on the market a relay which will accomplish the desired functions. These units may be accurately timed and are of rugged construction so that they are very dependable over a long period of time. Relays A and B are identical in construction and each has a coil adapted when energized to close a switch and a small motor which when energized trips after a definite time delay a pair of switch elements which are respectively adapted for opening a circuit at one contact and closing a circuit at another. When deenergized, the mechanism of the relay automatically resets itself immediately. Certain capabilities of these relays are not 80 employed in the system illustrated, but the convenience of using standard commercial units has led to their selection in the illustrative system.

With the parts in the position shown, current is passing from L1 through line 35 and switch element 34 of the automatic switch, line 37 leading to terminal 38 on relay A. Coils 39 and 40, the latter of which designates the motor in relay A, are energized by parallel circuits one of which leads from terminal 38 through the normally closed contactor 41 of relay A which connects to 40 through a line 42, and thence to terminal 43 of the relay, and coil 39 is connected across terminals 38 and 43 by wires 44 and 45. The circuit is completed back to L2 from terminal 43 by wires 46 and 47. It will be noted that at this time the circuit through coil 27 of the solenoid controlling the unloader is open whereby the pilot valve is locked in unloaded position. After a definite time interval, relay A will trip 100 105 and the switch element 48 will close a circuit at contact 49. Power now flows from L1 through 110 115 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 230 235 240 245 250 255 260 265 270 275 280 285 290 295 300 305 310 315 320 325 330 335 340 345 350 355 360 365 370 375 380 385 390 395 400 405 410 415 420 425 430 435 440 445 450 455 460 465 470 475 480 485 490 495 500 505 510 515 520 525 530 535 540 545 550 555 560 565 570 575 580 585 590 595 600 605 610 615 620 625 630 635 640 645 650 655 660 665 670 675 680 685 690 695 700 705 710 715 720 725 730 735 740 745 750 755 760 765 770 775 780 785 790 795 800 805 810 815 820 825 830 835 840 845 850 855 860 865 870 875 880 885 890 895 900 905 910 915 920 925 930 935 940 945 950 955 960 965 970 975 980 985 990 995 1000 1005 1010 1015 1020 1025 1030 1035 1040 1045 1050 1055 1060 1065 1070 1075 1080 1085 1090 1095 1100 1105 1110 1115 1120 1125 1130 1135 1140 1145 1150 1155 1160 1165 1170 1175 1180 1185 1190 1195 1200 1205 1210 1215 1220 1225 1230 1235 1240 1245 1250 1255 1260 1265 1270 1275 1280 1285 1290 1295 1300 1305 1310 1315 1320 1325 1330 1335 1340 1345 1350 1355 1360 1365 1370 1375 1380 1385 1390 1395 1400 1405 1410 1415 1420 1425 1430 1435 1440 1445 1450 1455 1460 1465 1470 1475 1480 1485 1490 1495 1500 1505 1510 1515 1520 1525 1530 1535 1540 1545 1550 1555 1560 1565 1570 1575 1580 1585 1590 1595 1600 1605 1610 1615 1620 1625 1630 1635 1640 1645 1650 1655 1660 1665 1670 1675 1680 1685 1690 1695 1700 1705 1710 1715 1720 1725 1730 1735 1740 1745 1750 1755 1760 1765 1770 1775 1780 1785 1790 1795 1800 1805 1810 1815 1820 1825 1830 1835 1840 1845 1850 1855 1860 1865 1870 1875 1880 1885 1890 1895 1900 1905 1910 1915 1920 1925 1930 1935 1940 1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 2040 2045 2050 2055 2060 2065 2070 2075 2080 2085 2090 2095 2100 2105 2110 2115 2120 2125 2130 2135 2140 2145 2150 2155 2160 2165 2170 2175 2180 2185 2190 2195 2200 2205 2210 2215 2220 2225 2230 2235 2240 2245 2250 2255 2260 2265 2270 2275 2280 2285 2290 2295 2300 2305 2310 2315 2320 2325 2330 2335 2340 2345 2350 2355 2360 2365 2370 2375 2380 2385 2390 2395 2400 2405 2410 2415 2420 2425 2430 2435 2440 2445 2450 2455 2460 2465 2470 2475 2480 2485 2490 2495 2500 2505 2510 2515 2520 2525 2530 2535 2540 2545 2550 2555 2560 2565 2570 2575 2580 2585 2590 2595 2600 2605 2610 2615 2620 2625 2630 2635 2640 2645 2650 2655 2660 2665 2670 2675 2680 2685 2690 2695 2700 2705 2710 2715 2720 2725 2730 2735 2740 2745 2750 2755 2760 2765 2770 2775 2780 2785 2790 2795 2800 2805 2810 2815 2820 2825 2830 2835 2840 2845 2850 2855 2860 2865 2870 2875 2880 2885 2890 2895 2900 2905 2910 2915 2920 2925 2930 2935 2940 2945 2950 2955 2960 2965 2970 2975 2980 2985 2990 2995 3000 3005 3010 3015 3020 3025 3030 3035 3040 3045 3050 3055 3060 3065 3070 3075 3080 3085 3090 3095 3100 3105 3110 3115 3120 3125 3130 3135 3140 3145 3150 3155 3160 3165 3170 3175 3180 3185 3190 3195 3200 3205 3210 3215 3220 3225 3230 3235 3240 3245 3250 3255 3260 3265 3270 3275 3280 3285 3290 3295 3300 3305 3310 3315 3320 3325 3330 3335 3340 3345 3350 3355 3360 3365 3370 3375 3380 3385 3390 3395 3400 3405 3410 3415 3420 3425 3430 3435 3440 3445 3450 3455 3460 3465 3470 3475 3480 3485 3490 3495 3500 3505 3510 3515 3520 3525 3530 3535 3540 3545 3550 3555 3560 3565 3570 3575 3580 3585 3590 3595 3600 3605 3610 3615 3620 3625 3630 3635 3640 3645 3650 3655 3660 3665 3670 3675 3680 3685 3690 3695 3700 3705 3710 3715 3720 3725 3730 3735 3740 3745 3750 3755 3760 3765 3770 3775 3780 3785 3790 3795 3800 3805 3810 3815 3820 3825 3830 3835 3840 3845 3850 3855 3860 3865 3870 3875 3880 3885 3890 3895 3900 3905 3910 3915 3920 3925 3930 3935 3940 3945 3950 3955 3960 3965 3970 3975 3980 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 4035 4040 4045 4050 4055 4060 4065 4070 4075 4080 4085 4090 4095 4100 4105 4110 4115 4120 4125 4130 4135 4140 4145 4150 4155 4160 4165 4170 4175 4180 4185 4190 4195 4200 4205 4210 4215 4220 4225 4230 4235 4240 4245 4250 4255 4260 4265 4270 4275 4280 4285 4290 4295 4300 4305 4310 4315 4320 4325 4330 4335 4340 4345 4350 4355 4360 4365 4370 4375 4380 4385 4390 4395 4400 4405 4410 4415 4420 4425 4430 4435 4440 4445 4450 4455 4460 4465 4470 4475 4480 4485 4490 4495 4500 4505 4510 4515 4520 4525 4530 4535 4540 4545 4550 4555 4560 4565 4570 4575 4580 4585 4590 4595 4600 4605 4610 4615 4620 4625 4630 4635 4640 4645 4650 4655 4660 4665 4670 4675 4680 4685 4690 4695 4700 4705 4710 4715 4720 4725 4730 4735 4740 4745 4750 4755 4760 4765 4770 4775 4780 4785 4790 4795 4800 4805 4810 4815 4820 4825 4830 4835 4840 4845 4850 4855 4860 4865 4870 4875 4880 4885 4890 4895 4900 4905 4910 4915 4920 4925 4930 4935 4940 4945 4950 4955 4960 4965 4970 4975 4980 4985 4990 4995 5000 5005 5010 5015 5020 5025 5030 5035 5040 5045 5050 5055 5060 5065 5070 5075 5080 5085 5090 5095 5100 5105 5110 5115 5120 5125 5130 5135 5140 5145 5150 5155 5160 5165 5170 5175 5180 5185 5190 5195 5200 5205 5210 5215 5220 5225 5230 5235 5240 5245 5250 5255 5260 5265 5270 5275 5280 5285 5290 5295 5300 5305 5310 5315 5320 5325 5330 5335 5340 5345 5350 5355 5360 5365 5370 5375 5380 5385 5390 5395 5400 5405 5410 5415 5420 5425 5430 5435 5440 5445 5450 5455 5460 5465 5470 5475 5480 5485 5490 5495 5500 5505 5510 5515 5520 5525 5530 5535 5540 5545 5550 5555 5560 5565 5570 5575 5580 5585 5590 5595 5600 5605 5610 5615 5620 5625 5630 5635 5640 5645 5650 5655 5660 5665 5670 5675 5680 5685 5690 5695 5700 5705 5710 5715 5720 5725 5730 5735 5740 5745 5750 5755 5760 5765 5770 5775 5780 5785 5790 5795 5800 5805 5810 5815 5820 5825 5830 5835 5840 5845 5850 5855 5860 5865 5870 5875 5880 5885 5890 5895 5900 5905 5910 5915 5920 5925 5930 5935 5940 5945 5950 5955 5960 5965 5970 5975 5980 5985 5990 5995 6000 6005 6010 6015 6020 6025 6030 6035 6040 6045 6050 6055 6060 6065 6070 6075 6080 6085 6090 6095 6100 6105 6110 6115 6120 6125 6130 6135 6140 6145 6150 6155 6160 6165 6170 6175 6180 6185 6190 6195 6200 6205 6210 6215 6220 6225 6230 6235 6240 6245 6250 6255 6260 6265 6270 6275 6280 6285 6290 6295 6300 6305 6310 6315 6320 6325 6330 6335 6340 6345 6350 6355 6360 6365 6370 6375 6380 6385 6390 6395 6400 6405 6410 6415 6420 6425 6430 6435 6440 6445 6450 6455 6460 6465 6470 6475 6480 6485 6490 6495 6500 6505 6510 6515 6520 6525 6530 6535 6540 6545 6550 6555 6560 6565 6570 6575 6580 6585 6590 6595 6600 6605 6610 6615 6620 6625 6630 6635 6640 6645 6650 6655 6660 6665 6670 6675 6680 6685 6690 6695 6700 6705 6710 6715 6720 6725 6730 6735 6740 6745 6750 6755 6760 6765 6770 6775 6780 6785 6790 6795 6800 6805 6810 6815 6820 6825 6830 6835 6840 6845 6850 6855 6860 6865 6870 6875 6880 6885 6890 6895 6900 6905 6910 6915 6920 6925 6930 6935 6940 6945 6950 6955 6960 6965 6970 6975 6980 6985 6990 6995 7000 7005 7010 7015 7020 7025 7030 7035 7040 7045 7050 7055 7060 7065 7070 7075 7080 7085 7090 7095 7100 7105 7110 7115 7120 7125 7130 7135 7140 7145 7150 7155 7160 7165 7170 7175 7180 7185 7190 7195 7200 7205 7210 7215 7220 7225 7230 7235 7240 7245 7250 7255 7260 7265 7270 7275 7280 7285 7290 7295 7300 7305 7310 7315 7320 7325 7330 7335 7340 7345 7350 7355 7360 7365 7370 7375 7380 7385 7390 7395 7400 7405 7410 7415 7420 7425 7430 7435 7440 7445 7450 7455 7460 7465 7470 7475 7480 7485 7490 7495 7500 7505 7510 7515 7520 7525 7530 7535 7540 7545 7550 7555 7560 7565 7570 7575 7580 7585 7590 7595 7600 7605 7610 7615 7620 7625 7630 7635 7640 7645 7650 7655 7660 7665 7670 7675 7680 7685 7690 7695 7700 7705 7710 7715 7720 7725 7730 7735 7740 7745 7750 7755 7760 7765 7770 7775 7780 7785 7790 7795 7800 7805 7810 7815 7820 7825 7830 7835 7840 7845 7850 7855 7860 7865 7870 7875 7880 7885 7890 7895 7900 7905 7910 7915 7920 7925 7930 7935 7940 7945 7950 7955 7960 7965 7970 7975 7980 7985 7990 7995 8000 8005 8010 8015 8020 8025 8030 8035 8040 8045 8050 8055 8060 8065 8070 8075 8080 8085 8090 8095 8100 8105 8110 8115 8120 8125 8130 8135 8140 8145 8150 8155 8160 8165 8170 8175 8180 8185 8190 8195 8200 8205 8210 8215 8220 8225 8230 8235 8240 8245 8250 8255 8260 8265 8270 8275 8280 8285 8290 8295 8300 8305 8310 8315 8320 8325 8330 8335 8340 8345 8350 8355 8360 8365 8370 8375 8380 8385 8390 8395 8400 8405 8410 8415 8420 8425 8430 8435 8440 8445 8450 8455 8460 8465 8470 8475 8480 8485 8490 8495 8500 8505 8510 8515 8520 8525 8530 8535 8540 8545 8550 8555 8560 8565 8570 8575 8580 8585 8590 8595 8600 8605 8610 8615 8620 8625 8630 8635 8640 8645 8650 8655 8660 8665 8670 8675 8680 8685 8690 8695 8700 8705 8710 8715 8720 8725 8730 8735 8740 8745 8750 8755 8760 8765 8770 8775 8780 8785 8790 8795 8800 8805 8810 8815 8820 8825 8830 8835 8840 8845 8850 8855 8860 8865 8870 8875 8880 8885 8890 8895 8900 8905 8910 8915 8920 8925 8930 8935 8940 8945 8950 8955 8960 8965 8970 8975 8980 8985 8990 8995 9000 9005 9010 9015 9020 9025 9030 9035 9040 9045 9050 9055 9060 9065 9070 9075 9080 9085 9090 9095 9100 9105 9110 9115 9120 9125 9130 9135 9140 9145 9150 9155 9160 9165 9170 9175 9180 9185 9190 9195 9200 9205 9210 9215 9220 9225 9230 9235 9240 9245 9250 9255 9260 9265 9270 9275 9280 9285 9290 9295 9300 9305 9310 9315 9320 9325 9330 9335 9340 9345 9350 9355 9360 9365 9370 9375 9380 9385 9390 9395 9400 9405 9410 9415 9420 9425 9430 9435 9440 9445 9450 9455 9460 9465 9470 9475 9480 9485 9490 9495 9500 9505 9510 9515 9520 9525 9530 9535 9540 9545 9550 9555 9560 9565 9570 9575 9580 9585 9590 9595 9600 9605 9610 9615 9620 9625 9630 9635 9640 9645 9650 9655 9660 9665 9670 9675 9680 9685 9690 9695 9700 9705 9710 9715 9720 9725 9730 9735 9740 9745 9750 9755 9760 9765 9770 9775 9780 9785 9790 9795 9800 9805 9810 9815 9820 9825 9830 9835 9840 9845 9850 9855 9860 9865 9870 9875 9880 9885 9890 9895 9900 9905 9910 9915 9920 9925 9930 9935 9940 9945 9950 9955 9960 9965 9970 9975 9980 9985 9990 9995 10000 10005 10010 10015 10020 10025 10030 10035 10040 10045 10050 10055 10060 10065 10070 10075 10080 10085 10090 10095 10100 10105 10110 10115 10120 10125 10130 10135 10140 10145 10150 10155 10160 10165 10170 10175 10180 10185 10190 10195 10200 10205 10210 10215 10220 10225 10230 10235 10240 10245 10250 10255 10260 10265 10270 10275 10280 10285

the holding circuit for coil 32 will be broken at contact 56 and the double pole switch will return to its initial position as illustrated in the drawings. This deenergizes coil 27 on the pilot 5 valve of the unloader and relay B is also deenergized by opening of circuit at contact member 33 and it returns to initial position. Contact member 34 now causes energization of relay A and the same cycle of operations is repeated over 10 and over.

These relays can be set to trip at any desired time interval and the setting of relay A will control the length of the unloaded period and the setting of relay B will govern the length of the 15 loaded period. By adjusting these relays in any desired manner the proportion of time unloaded to time loaded may be varied as well as the total length of time required for completion of a cycle of operations.

20 The operation of the wiring diagram has already been set forth in conjunction with the description of the different units and connections, and operation of the mechanism shown in Fig. 2 will be readily apparent in view of the above 25 description of the structure.

As a result of my invention it will be evident that improved electrical means have been devised for regulating the maximum average load which may be placed on the compressor and this maximum average may be adjusted to suit different 30 conditions. For example, if it is desired to maintain the peak load at a certain time of the day below fifty percent of the total capacity of the compressor, the relays will be set to trip at equal 35 intervals and thereby ensure that the compressor run completely unloaded half of the time. The integrated power curve over an interval which may be specified by the power company will therefore be materially reduced and the penalty 40 imposed by a peak load at this time of the day will be avoided. Whenever it is desired to cut out the operation of the definite time relays and permit the compressor installation to have a total 45 capacity output, it will be obvious that the solenoid on the unloader pilot valve may be continuously energized by a simple connection such as indicated at 63 for connecting coil 27 directly across L1, L2, control being effected by any suitable switch as indicated at 64. It is to be understood 50 that my invention is not limited to the specific arrangement of equipment involving two definite time relays and a double pole switch for controlling the circuit through the solenoid 27. No doubt, other electrically operated timing 55 devices functioning for example on a principle somewhat analogous to devices for controlling traffic signals or fire alarms may be satisfactorily worked out which will accomplish the desired result.

60 While I have in this application specifically described one form which my invention may assume in practice, it will be understood that this form of the same is shown for purposes of illustration and that the invention may be modified 65 and embodied in various other forms without departing from its spirit or the scope of the appended claims.

What I claim as new and desire to secure by Letters Patent is:

70 1. In combination, a power consuming device, a driving motor therefor, means for varying the power required to drive said device, and means including electrically operated timing devices 75 operating with said power varying means and respectively controlling the duration of increased

and of reduced power demand for automatically periodically reducing the load on said motor to a minimum over predetermined time intervals.

2. In combination, a power consuming device, 80 a driving motor therefor, means for automatically varying the power required to drive said device, and means including electrically operated timing devices cooperating with said power varying means and respectively controlling the duration of increased and of reduced power demand for automatically periodically reducing the load on said motor to a minimum over predetermined time intervals.

3. In combination, a power consuming device, 85 a driving motor therefor, means for varying the power required to drive said device, and means including independently adjustable electrically operated timing devices cooperating with said power varying means and respectively controlling the duration of increased and of reduced power demand for automatically periodically reducing the load on said motor to a minimum over predetermined time intervals.

4. In combination, a power consuming device, 90 a driving motor therefor, fluid pressure operated means for varying the power required to drive the device including an automatic device for controlling said fluid pressure operated means in accordance with the demand imposed on said power consuming device, and electrical means for 100 controlling said automatic device automatically operative to limit the average power required by said power consuming device over a predetermined time interval to a predetermined percentage of full load.

5. In combination, a machine, a motor for driving the same, means for changing the load on said motor caused by said machine having a control means automatically operative to preclude load in excess of a predetermined maximum, an 115 electrically operated device for controlling said automatically operative control means, and controlling means for said electrically operated device automatically operative to limit the average load over a certain time interval to a predetermined percentage of full load.

6. In combination, a machine, an electric motor for driving the same, means for varying the power required to drive said machine, an electromagnetic device for controlling said power varying means 125 operative when deenergized to reduce the load, and when energized to permit an increase in load, a circuit through said electromagnetic device, and automatic means for controlling said circuit to limit the average load to a predetermined percentage of full load.

7. The combination specified in claim 6 wherein there is further provided manually controlled means for selectively effecting continuous energization of said electro-magnetic device independently of said automatic circuit controlling means.

8. In combination, a machine, a motor for driving the same, means for varying the load on said motor due to said machine, an electromagnetic device for controlling said means to effect variation in load when energized and deenergized, a circuit for controlling energization of said device, and automatic control means for said circuit for periodically effecting energization and deenergization of said device whereby the average load on said motor is maintained below a predetermined value.

9. The combination specified in claim 8 wherein the automatic circuit control means comprises

80

85

90

95

100

110

115

120

125

130

135

140

145

150

timing mechanism for alternately opening and closing said circuit.

10. The combination specified in claim 8 wherein in the automatic circuit control means comprises 5 electrically operated timing mechanism for alternately opening and closing said circuit. 80

11. The combination specified in claim 8 wherein in the automatic circuit control means includes two definite time relays interconnected with each 10 other and with said electromagnetic load control device. 85

12. The combination specified in claim 8 wherein in the automatic circuit control means includes two electrically operated definite time relays one 15 of which is set to control the period when said circuit is open and the load on the motor reduced, and the other of which is set to control the period when said circuit is closed and the load permitted to be increased. 90

20. 13. In a compressor control system, a compressor, unloading means for automatically effecting loading and unloading of said compressor in response to variations in compressor discharge pressure and including a compressor discharge 25 pressure responsive pilot mechanism, and electrically operated means acting through said pilot mechanism for automatically effecting unloading of said compressor, while the latter continues to run at normal speed, independently of compressor 30 discharge pressure. 95

25. 14. In a compressor control system, a compressor, unloading means for automatically controlling the load on said compressor in response to variations in compressor discharge pressure including a compressor discharge pressure responsive pilot mechanism, and electrically operated means acting through said pilot mechanism for automatically limiting the average load on said compressor to a predetermined percentage of full 40 load independently of compressor discharge pressure while the compressor is running at normal speed. 100

45. 15. In a compressor control system, a compressor, unloading means for unloading said compressor in response to a predetermined high receiver tank pressure including a receiver tank pressure responsive pilot mechanism, and means for limiting the maximum average load of said compressor over a predetermined time interval to a fraction of full load, including electrically operated mechanism acting through said receiver tank pressure responsive pilot mechanism for holding said compressor completely unloaded for a portion of said interval. 105

50. 16. In a compressor control system, a compressor, an unloading device for unloading said compressor when subjected to pressure, a pilot valve for controlling said unloading device to load and unload the compressor in response to receiver tank 55 pressure, means for controlling said pilot valve to hold the compressor unloaded independently of receiver tank pressure, electromagnetic means for releasing said holding means, and a timing mechanism for controlling the circuit through said electromagnetic means for limiting the maximum average load on said compressor over a predetermined time interval. 110

55. 17. In a compressor control system, the combination specified in claim 16 wherein said timing mechanism includes electrically operated time relays for controlling the circuit through said electromagnetic means. 115

18. In a compressor control system, the combi-

nation specified in claim 16 wherein said timing mechanism comprises a plurality of electrically operated definite time relays and a two-pole automatic switch, said relays and switch being interconnected with each other and with said electromagnetic means whereby the circuit through said electromagnetic means is opened and closed at predetermined time intervals for limiting the maximum average load on said compressor. 120

19. In a compressor control system, the combination specified in claim 16 wherein said timing mechanism is electrically operated and includes means for varying the proportion of time when said circuit is closed to the time when said circuit is open. 125

20. In a compressor control system, a compressor, an unloading device for unloading said compressor when subjected to pressure, a pilot valve for controlling said unloading device for normally loading and unloading the compressor when subjected to pressure, means for locking said pilot valve in unloaded position, electromagnetic means for releasing said locking means when energized, and electrically operated timing mechanism functioning automatically to open and close the 100 circuit through said electromagnetic means intermittently at predetermined time intervals. 130

21. In a compressor control system involving the combination specified in claim 20, a circuit for selectively effecting continuous energization 105 of said electromagnetic means and a manually controlled switch in said circuit. 135

22. In a compressor control system, a compressor, an unloading device for unloading said compressor when subjected to pressure, a pilot valve for controlling said unloading device functioning normally to load and unload the compressor in response to receiver tank pressure, a device for holding said pilot valve in unloaded position, a solenoid for releasing said holding means when 110 energized, automatic electrically controlled means for alternately opening and closing a circuit through said solenoid comprising a double pole switch for directly controlling the circuit through said solenoid, a pair of adjustable time relays one 115 of which is set to control the period during which said circuit is closed and the other controlling the period when said circuit is open, means controlled by said double pole switch for energizing one of said relays, means controlled by such relay for controlling energization of the other relay, and electromagnetic means for actuating said double pole switch in turn controlled by said relays. 120

23. In combination, apparatus constituting a 130 load, a driving motor therefor, means associated with said apparatus for varying the load which it presents, and means for automatically periodically controlling said load varying means to provide alternate periods of increased and diminished 135 load having provision for varying the duration of the periods of increased load while leaving the periods of diminished load the same. 140

24. In combination, apparatus constituting a load, a driving motor therefor, means associated with said apparatus for varying the load which it presents, and means for automatically periodically controlling said load varying means to provide alternate periods of increased and diminished load having provision for varying the duration of the periods of diminished load while leaving the periods of increased load the same. 145

JOHN W. SANFORD.