Abstract: The present invention relates to a novel process for the preparation of a compound of formula (I), wherein R¹, R², R³, R⁴ and R⁵ are each independently selected from hydrogen, halogen, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₃-C₆-haloalkoxy, nitro, cyano, and pentafluoroethoxy; R⁶ is C₁-C₆-alkyl or C₁-C₆-haloalkyl; by oxidation of a compound of formula (II) with an oxidation agent selected from trifluoroperacetic acid and trichloroperacetic acid in the presence of a catalyst selected from hydroxides, oxides, sulfates, acetates or trifluoroacetates of lithium, magnesium, calcium, strontium, barium, titanium (IV), zinc (II) and manganese (II).
Process for the preparation of 4-sulfinyl-pyrazole derivatives

The present invention relates to a novel process for the preparation of a compound of formula (I),

\[
\begin{array}{c}
\text{R}^6 \text{S} \bigg/ \\
\text{H}_2 \text{N} \bigg/ \\
\text{R}^3 \text{N} \\
\text{R}^1 \\
\text{R}^2 \\
\end{array}
\]

wherein

\(\text{R}^1, \text{R}^2, \text{R}^3, \text{R}^4 \), and \(\text{R}^5 \) are each independently selected from hydrogen, halogen, \(\text{C}_1-\text{C}_4 \)-alkyl, \(\text{C}_1-\text{C}_4 \)-haloalkyl, \(\text{C}_1-\text{C}_4 \)-alkoxy, \(\text{C}_1-\text{C}_4 \)-haloalkoxy, nitro, cyano, and pentafluorothio; and

\(\text{R}^6 \) is \(\text{C}_1-\text{C}_4 \)-alkyl, or \(\text{C}_1-\text{C}_4 \)-haloalkyl;

by oxidation of a compound of formula (II)

\[
\begin{array}{c}
\text{R}^6 \text{S} \\
\text{H}_2 \text{N} \\
\text{R}^3 \\
\text{R}^1 \\
\text{R}^2 \\
\end{array}
\]

wherein \(\text{R}^1, \text{R}^2, \text{R}^3, \text{R}^4, \text{R}^5, \) and \(\text{R}^6 \) are as defined for compounds of formula (I), with an oxidation agent selected from trifluoroperacetic acid and trichloroperacetic acid in the presence of a catalyst selected from hydroxides, oxides, sulfates, acetates or trifluoroacetates of lithium, magnesium, calcium, strontium, barium, titanium (IV), zinc (II) and manganese (II).

4-Sulfinyl-pyrazole derivatives of formula (I) are important pesticides. Especially important 4-sulfinyl-pyrazole derivatives are fipronil and ethiprole.

The preparation of certain phenylpyrazoles carrying a sulfinyl- or sulfonyl-group by oxidation of the sulfur atoms from the corresponding alkylthio, alkenylthio- or alkynylthio compounds is generally given in EP-A1 295177. As possible oxidants, hydrogen peroxide, trifluoroperacetic acid formed in situ from trifluoroacetic acid anhydride and hydro-
gen peroxide, trifluoroperacetic acid anhydride or preferably 3-chloroperbenzoic acid in solvents such as dichloromethane, chloroform, trifluoroacetic acid are mentioned. Alternatively, potassium hydrogenpersulphate or potassium salt of Caro’s acid in solvents such as methanol or water are given as oxidants.

A number of documents deal with the oxidation of a compound of formula (II) with an aim to prepare a compound of formula (I), especially fipronil.

In IPCOM000156770D, the oxidation of a compound of formula (II) with hydrogenperoxide in dichloromethane as solvent and in the presence of trifluoroacetic acid is described. CN 101250158A mentions the catalytic oxidation of a compound of formula (II) with hydrogenperoxide and sulphuric acid in an inert solvent (monochlorobenzene, chloroform), but fails to specify the structure of the catalyst. Similarly, the catalytic oxidation a compound of formula (II) with hydrogenperoxide in dichloromethane is mentioned in Shanghai Chemical Industry 2007, 7 (32), 17, but no details on the structure of the catalyst are given.

CN 101168529A teaches the oxidation of a compound of formula (II) with trichloroisocyanic acid in a solvent mixture of an ionic liquid and acetonitrile in the presence of ruthenium trichloride as catalyst. Similarly, in Journal of Fluorine Chemistry 2006, 127, 948, the oxidation a compound of formula (II) with trichloroisocyanic acid in dichloromethane as solvent is mentioned.

WO 2007/122440 teaches the oxidation of a compound of formula (II) with trichloroacetic acid / hydrogenperoxide in dichloroacetic acid or dichloromethane.

WO 2009/077853 lists a number of agents for the oxidation of a compound of formula (II): trifluoroacetic acid and oxone; trifluoromethane sulfonic acid anhydride and hydrogenperoxide in ethanol; cyclohexylidenebishydroperoxide, sodium iodide and hydrogenperoxide in acetonitrile; cerammoniumbromide, sodium bromate and silica gel in dichloromethane; and hydrogenperoxide plus catalytic amounts of HAuCl4 in methanol.

The above mentioned processes for the oxidation of compounds of formula (II) to yield compounds of formula (I) are not entirely satisfying. Criteria for suitable large-scale oxidation processes are the following: (1) highly selective oxidation to the sulf oxide product of formula (I) (i.e. yielding low amounts of the sulfone by-product wherein the S(=0)R group in compounds of formula (I) is overoxidized to a S(=0)2R group); (2) high yield of compounds of formula (I); (3) inhibition of corrosion due to in situ formation of hydrogen fluoride during the oxidation; (4) high reaction rate of the oxidation (determines the productivity). To date, the by far most appropriate combination to solve is-
sues (1), (2) and (3) is discussed by WO01/30760 that describes the oxidation of a compound of formula (II) with trifluoroperacetic acid in the presence of a corrosion inhibiting compound. However, the reaction rate for that process that determines the productivity is still not as high as desirable for a large-scale technical process.

It was therefore an object of the present invention to provide a new and improved oxidation process of compounds (II) to compound (I). Specifically, it was an object to provide a new and improved oxidation process of compounds (II) to compounds (I) with an improved (higher) reaction rate. In a preferred embodiment, it was an object to provide a new and improved catalytic oxidation process of compounds (II) to compounds (I) wherein the catalyst can be easily removed (e.g. by washing with water) from the reaction product.

Accordingly, the inventive process defined at the outset was found. Surprisingly, the addition of compounds selected from hydroxides, oxides, sulfates, acetates, or trifluoroacetates of lithium, magnesium, calcium, strontium, barium, titanium, zinc and manganese increased the reaction rate significantly, thereby increasing the productivity (produced product per time)

The present invention can be used to prepare fipronil as an intermediate compound for the preparation of butene fipronil (compound III). Butene fipronil is obtained by alkylation of fipronil, as described in CN 3198515.

![Image](image_url)

The substituents have the following meanings:

The term halogen denotes in each case fluorine, bromine, chlorine or iodine, in particular fluorine, chlorine or bromine, preferably chlorine or fluorine.

The term "Cl-C4-alkyl" as used herein refers to a saturated straight-chain or branched hydrocarbon group having 1 to 4 carbon atoms, for example methyl, ethyl, propyl, 1-methylethyl, butyl, 1-methylpropyl, 2-methylpropyl, and 1,1-dimethylethyl.
The term "Ci-C4-haloalkyl" as used herein refers to a straight-chain or branched saturated alkyl group having 1 to 4 carbon atoms (as mentioned above), where some or all of the hydrogen atoms in these groups may be replaced by halogen atoms as mentioned above, such as chloromethyl, bromomethyl, dichloromethyl, trichloromethyl, fluoromethyl, difluoromethyl, trifluoromethyl, chlorofluoromethyl, dichlorofluoromethyl, chlorodifluoromethyl, 1-chloroethyl, 1-bromoethyl, 1-fluoroethyl, 2,2-difluoroethyl, 2,2,2-trifluoroethyl, 2-chloro-2-fluoroethyl, 2-chloro-2,2-difluoroethyl, 2,2-dichloro-2-fluoroethyl, 2,2,2-trichloroethyl, pentafluoroethyl and the like.

The term "Ci,C4-alkoxy" as used herein refers to a straight-chain or branched saturated alkyl group having 1 to 4 carbon atoms (as mentioned above) which is attached via an oxygen atom. Examples include methoxy, ethoxy, OCH2-C2H5, OCH(CH3)2, n-butoxy, OCH(CH3)-C2H5, OCH2-CH(CH3)2, and OC(CH3)3.

The term "Ci,C4-haloalkoxy" as used herein refers to a Ci,C4-alkoxy group as mentioned above wherein the hydrogen atoms are partially or fully substituted by fluorine, chlorine, bromine and/or iodine, i.e., for example, chloromethoxy, dichloromethoxy, trichloromethoxy, fluormethoxy, difluormethoxy, trifluormethoxy, chlorofluormethoxy, dichlorofluormethoxy, chlorodifluormethoxy, 2-fluoroethoxy, 2-chloroethoxy, 2-bromoethoxy, 2-iodoethoxy, 2,2,2-difluoroethoxy, 2,2,2-trifluoroethoxy, 2-chloro-2-fluoroethoxy, 2-chloro-2,2-difluoroethoxy, 2,2-dichloro-2-fluoroethoxy, 2,2,2-trichloroethoxy, pentafluoroethoxy, 2-fluoropropoxy, 3-fluoropropoxy, 2,2-difluoropropoxy, 2,3-difluoropropoxy, 2-chloropropoxy, 3-chloropropoxy, 2,3-dichloropropoxy, 2-bromopropoxy, 3-bromopropoxy, 3,3,3-trifluoropropoxy, 3,3,3-trichloropropoxy, 2,2,3,3,3-pentafluoropropoxy, heptafluoropropoxy, 1-(fluoromethyl)-2-fluoroethoxy, 1-(chloromethyl)-2-chloroethoxy, 1-(bromomethyl)-2-bromoethoxy, 4-fluorobutoxy, 4-chlorobutoxy, 4-bromobutoxy, nonafluorobutoxy, in particular chloromethoxy, fluormethoxy, difluormethoxy, trifluormethoxy,

2-fluoroethoxy, 2-chloroethoxy or 2,2,2-trifluoroethoxy.

With regard to the inventive process, the substituents of compounds of formulae (I) and (II) preferably have the following meanings:

R1 and R5 are preferably selected from halogen and Ci,C4-haloalkyl, even more preferably from chlorine, fluorine and trifluoromethyl, most preferably from chlorine.

R2 and R4 preferably are hydrogen.

R3 preferably is Ci,C4-alkyl, Ci,C4-haloalkyl or pentafluorothio, even more preferably Ci,C4-haloalkyl, and most preferably trifluoromethyl.
R6 preferably is ethyl or trifluoromethyl.
R6 preferably is ethyl.
R6 most preferably is trifluoromethyl.

Most preferably, the substituents of compounds of formulae (I) and (II) have the following meanings:

R1 and R5 are chlorine;
R2 and R4 are hydrogen;
R3 is trifluoromethyl; and
R6 is ethyl or trifluoromethyl, preferably trifluoromethyl.

In an especially preferred embodiment, the inventive process is employed to prepare the compounds 1-1 or 1-2 of Scheme I.

Scheme I

![Scheme I](image)

Most preferably, the inventive process is employed to prepare fipronil.

Compounds of formula (II) can be obtained according to procedures described in the literature, such as in WO 01/30760, WO 05/44806, and EP-A1 295 117.

Suitable oxidating agents are trifluoroperacetic acid (e.g. formed in situ from trifluoroacetic acid and hydrogen peroxide) or trichloroperacetic acid (e.g. formed in situ from trichloroacetic acid and hydrogen peroxide). Preferred is trifluoroperacetic acid. Most preferably, trifluoroperacetic acid formed in situ from trifluoroacetic acid and hydrogen peroxide is used. The hydrogen peroxide generally is used as a 50\% w/w aqueous solution and is generally from about 1.0 to about 2.0 equivalents, preferably about 1.2 to 1.6 equivalents, more preferably about 1.30 to 1.45 equivalents and even more preferably about 1.35 to 1.40 equivalents relative to compounds of formula (II).
The inventive process is preferably conducted in a solvent selected from trifluoroacetic acid, mixtures of trifluoroacetic acid and monochlorobenzene or trifluoroacetic acid and dichloromethane, and mixtures of trichloroacetic acid with a melting point depressant such as monochlorobenzene, monochloroacetic acid, dichloroacetic acid, dichloroethane, and dichloromethane.

If a mixture of trichloroacetic acid and a melting point depressant is used, the melting point depressant generally is used in 20% to 30% w/w of the trichloroacetic acid. Preferably, 1.0 to 2.0 litre of trichloroacetic acid is used per mol of compound of formula (II).

Preferred solvent is trifluoroacetic acid. Preferably, about 10 to about 20 mol of trifluoroacetic acid relative to employed molar amounts of compound (II) is used, more preferably about 14 to 16 molar equivalents, and most preferably about 15.2 to 15.8 molar equivalents.

In a preferred aspect of the present invention, trifluoroacetic acid is used as the solvent and monochlorobenzene is added to reaction mixture upon completion of the reaction, followed by removal of trifluoroacetic acid by azeotropic distillation.

The catalyst is selected from the hydroxides, oxides, sulfates, acetates, or trifluoroacetates of lithium, magnesium, calcium, strontium, barium, titanium (IV), zinc (II) and manganese (II). Examples are: LiOH (lithium hydroxide), Mg(OH)₂ (magnesium hydroxide), Ca(OH)₂ (calcium hydroxide), Sr(OH)₂ (strontium hydroxide), Ba(OH)₂ (barium hydroxide), Mn(OH)₂ (manganese (II) hydroxide), MgO (magnesium oxide), CaO (calcium oxide), BaO (barium oxide), TiO₂ (titanium dioxide), ZnO (zinc (II) oxide), MnO (manganese (II) oxide), magnesium trifluoroacetate, calcium trifluoroacetate, barium trifluoroacetate, strontium trifluoroacetate, zinc trifluoroacetate, manganese trifluoroacetate, magnesium acetate, calcium acetate, barium acetate, strontium acetate, zinc acetate, manganese acetate, magnesium sulfate, calcium sulfate, barium sulfate, strontium sulfate, zinc sulfate, manganese sulfate.

Preferred are catalysts of the list given above which are commercially available.

The metal cation is preferably selected from cations of lithium, magnesium, calcium, strontium, barium, titanium (IV), zinc (II), and manganese (II), most preferably from calcium, barium, strontium and zinc (II). Especially preferred cation is zinc (II).
Preferred catalysts are selected from the group of hydroxides of lithium, magnesium, calcium, strontium, and barium, and oxides of calcium, barium, titanium (IV), zinc (II), and manganese (II).

Preferred are hydroxides of lithium, magnesium, calcium, strontium, and barium, especially of calcium, strontium, and barium.

Preferred are oxides of calcium, barium, titanium (IV), zinc (II), and manganese (II). Most preferred catalysts are ZnO and CaO. Especially preferred is ZnO. Also, especially preferred is CaO.

Preferred are trifluoroacetates of calcium and zinc (II), especially of calcium.

Also preferred are acetates of calcium and zinc (II), especially of calcium.

Preferred are sulfates of magnesium, calcium, strontium, barium, and zinc (II), especially of calcium, strontium, and barium.

The inventive process can be conducted in the presence of a fluoride corrosion inhibitor selected from boric acid, alkali metal borates, and silica, preferably boric acid. In case trifluoroacetic acid is used as a solvent, it is advantageous to conduct the process in the presence of a fluoride corrosion inhibitor. The amount of corrosion inhibiting compound used is generally about 0.01 to 0.99 molar equivalents relative to compound of formula (II), preferably about 0.01 to 0.2 molar equivalents, more preferably about 0.03 to 0.15 molar equivalents, and most preferably about 0.06 to 0.1 molar equivalents.

The inventive process is preferably conducted at temperatures of -40°C to 80°C, more preferably of 0°C to 60°C, even more preferably of 10°C to 30°C, and even more preferably between 10°C to 20°C. Most preferably, the inventive process is conducted at 10°C to 15°C, advantageously at 12°C.

The reaction rate depends upon the temperature, and the favorable effect of increasing the reaction rate can be observed over the whole temperature range. When conducted according to the inventive process, i.e. in the presence of the catalyst, the reaction rate is higher than the rate of a reaction carried out at the same temperature but without addition of catalyst.

If the oxidation reaction is judged to be complete, the reaction is preferably quenched sulfur dioxide, sodium sulfite, or equivalent reagents. In the case trifluoroacetic acid was used as a solvent, it is preferably removed by addition of monochlorbenzene followed
by azeotropic distillation under reduced pressure. In a preferred embodiment, an alcohol such as ethanol, methanol or isopropanol is added to the residue, and warmed to about 80°C until a solution is formed, and then cooled to about 40°C when the compound of formula (I) crystallizes.

The isolated compounds of formula (I) can be purified by a technique such as chromatography, recrystallization and the like, if necessary. Purification of the crude product can also be achieved via filtration over charcoal or silica or washing with water.

The crystallization of the compounds of formula (I) such as ethiprole or fipronil, preferably fipronil, is typically conducted from a solution in a nonpolar, inert, preferably aromatic solvent with nonreactive substituents such as chloro, fluoro, cyano, nitro, Cl-Cs-alkyl, or Cl-Cs-haloalkyl, particularly from a solution in benzene, ethylbenzene, monochlorobenzene, monofluorobenzene, 1,2-dichlorobenzene, 1,3-dichlorobenzene, 1,4-dichlorobenzene, toluene, o-xylene, m-xylene, p-xylene, styrene, i-propyl benzene, n-propyl benzene, 2-chlorotoluene, 3-chlorotoluene, 4-chlorotoluene, tert.-butyl benzene, sec.-butyl benzene, iso-butyl benzene, n-butyl benzene, 1,3-diisopropylbenzene, 1,4-diisopropylbenzene, 1,2-dichloroethane, 2-nitrotoluene, 3-nitrotoluene, 4-nitrotoluene, nitrobenzene, benzonitrile, mesitylene, trifluoromethyl benzene, 1,2-dichloroethane, acetonitrile, dimethylsulfoxide, tetrahydrofuran, acetone, alcohols such as methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, 2-butanol, or tert-butanol, or mixtures thereof, preferably from a solution in monochlorobenzene, dichlorobenzene, ethylbenzene or toluene.

Preferably, the crystallization is done from monochlorobenzene.

Preferably, the crystallization is done from dichlorobenzene.

Preferably, the crystallization is done from ethylbenzene.

Preferably, the crystallization is done from toluene.

It can be advantageous to add about 1 to 30 percent of a polar solvent such as ketons, amides, alcohols, esters or ethers, preferably esters, ketons or ethers, such as acetone, methyl ethyl ketone, pentan-2-one, diethylketone, 4-methyl-2-pentanone, 3-methylbutan-2-one, tert-butyl-methyl-ketone, cyclohexanone, methylacetate, ethylacetate, isopropylacetate, N-butylacetate, isobutylacetate, diethylcarbonate, 2-butoxyethylacetate, dimethylformamide, dimethylacamide, dimethylsulfoxide, nitromethane, nitroethane, water, ethanol, methanol, propan-1-ol, propan-2-ol, butan-1-ol, butan-2-ol, tert-butanol, 2-methyl-propan-1-ol, 2-methyl-propan-2-ol, pentan-3-ol, 2-methyl butan-1-ol, 3-methyl butan-1-ol, 1,2-ethanediol, 1,3-propanediol, 1,2-propandiol, cyclohexanol, dioxane, tetrahydrofuran, diethylether, methyl tert.-butyl ether, 2-methyl tetrahydrofuran, acetonitrile, propionitrile, or mixtures thereof.

Examples
Reactions were conducted according to the procedures given below in example 1, 2 and in the comparative example. The reaction rate was measured by HPLC in all cases to monitor the conversion of the starting material to the desired sulfoxide. The end of the reaction was determined once a sulfide amount >97% and a sulfone amount of >2% was detected by HPLC.

HPLCs were taken on a Hewlett Packard HP 1050, Chemstation, equipped with a Chromolith RP18e, 100 x 3 mm column (Merck), eluent: 450mL water + 330mL acetonitrile + 220mL MeOH + 1mL phosphoric acid, flow: 1,0 ml/min, detection: 220 nm.

Each experiment was done twice. The procedures described in Examples 1 and 2 were used to conduct further preparation experiments with different catalysts and/or different molar equivalents of catalysts by respective modification. The results of the experiments are listed in Table 1 which follows.

Example 1: Preparation of fipronil in the presence of ZnO as a catalyst

Fipronil was obtained by oxidation of 5-amino-3-cyano-1-(2,6-dichloro-4-trifluoromethylphenyl)-4-trifluoromethylthiopyrazole (105.3 g, 0.25 mol) with a 50% w/w aqueous solution of hydrogen peroxide (23.6 g, 0.35 mol) in trifluoroacetic acid (443.4 g, 3.89 mol) in presence of ZnO (4.9 g, 0.06 mol) at 10-12 °C. After completion of reaction after 4 hours (conversion >97% according to HPLC analysis), the reaction was quenched with SO2 before monochlorobenzene was added and trifluoroacetic acid was removed by azeotropic distillation under reduced pressure. The residue was crystallized from monochlorobenzene/ethanol. Ethanol was removed by distillation under reduced pressure and the suspension was filtered at 10 °C. Washing with monochlorobenzene, ethanol/water and water followed by drying under vacuum afforded fipronil as a colorless solid (96 to 97 g, purity >95 weight % according to HPLC).

Example 2: Preparation of fipronil in the presence of ZnO as a catalyst and with addition of a corrosion inhibitor

Fipronil was obtained by oxidation of 5-amino-3-cyano-1-(2,6-dichloro-4-trifluoromethylphenyl)-4-trifluoromethylthiopyrazole (105.3 g, 0.25 mol) with a 50% w/w aqueous solution of hydrogen peroxide (23.6 g, 0.35 mol) in trifluoroacetic acid (443.4 g, 3.89 mol) in presence of boric acid (1.3 g, 0.02 mol) and ZnO (4.9 g, 0.06 mol) at 10-12 °C. After completion of reaction in 4 hours (conversion >97% according to HPLC analysis) the reaction was quenched with SO2 before monochlorobenzene was added and trifluoroacetic acid was removed by azeotropic distillation under reduced
pressure. The residue was crystallized from monochlorobenzene/ethanol. Ethanol was removed by distillation under reduced pressure and the suspension was filtered at 10 °C. Washing with monochlorobenzene, ethanol/water and water followed by drying under vacuum afforded fipronil as a colorless solid (94 to 96 g, purity >95 weight % according to HPLC).

Comparative Example: preparation of fipronil without the addition of a catalyst

The reaction was conducted as described above for example 2, but without the addition of a catalyst. The reaction was completed within 6.5 hours (conversion more than 97% according to HPLC analysis). Fipronil was obtained as a colorless solid (96-97 g, purity >95 weight% according to HPLC).

Table 1: Preparation of Fipronil

<table>
<thead>
<tr>
<th>Example No</th>
<th>Catalyst</th>
<th>mol</th>
<th>B(OH)₃ addition [mol]</th>
<th>Temperature [°C]</th>
<th>Completion of reaction after [hours]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ZnO</td>
<td>0.06</td>
<td>-</td>
<td>10-12 °C</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>ZnO</td>
<td>0.06</td>
<td>0.02</td>
<td>10-12 °C</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>ZnO</td>
<td>0.12</td>
<td>-</td>
<td>10-12 °C</td>
<td>3.5</td>
</tr>
<tr>
<td>4</td>
<td>ZnO</td>
<td>0.03</td>
<td>-</td>
<td>10-12 °C</td>
<td>4.5</td>
</tr>
<tr>
<td>5</td>
<td>ZnO</td>
<td>0.06</td>
<td>-</td>
<td>5-7 °C</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>ZnO</td>
<td>0.06</td>
<td>-</td>
<td>15-17 °C</td>
<td>3.5</td>
</tr>
<tr>
<td>7</td>
<td>CaO</td>
<td>0.06</td>
<td>-</td>
<td>10-12 °C</td>
<td>3-4</td>
</tr>
<tr>
<td>8</td>
<td>CaO</td>
<td>0.06</td>
<td>0.02</td>
<td>10-12 °C</td>
<td>3-4</td>
</tr>
<tr>
<td>9</td>
<td>CaO</td>
<td>0.12</td>
<td>-</td>
<td>10-12 °C</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>CaO</td>
<td>0.03</td>
<td>-</td>
<td>10-12 °C</td>
<td>4</td>
</tr>
<tr>
<td>11</td>
<td>CaO</td>
<td>0.06</td>
<td>-</td>
<td>5-7 °C</td>
<td>5</td>
</tr>
<tr>
<td>12</td>
<td>CaO</td>
<td>0.06</td>
<td>-</td>
<td>15-17 °C</td>
<td>3</td>
</tr>
<tr>
<td>13</td>
<td>BaO</td>
<td>0.06</td>
<td>-</td>
<td>10-12 °C</td>
<td>4.5</td>
</tr>
<tr>
<td>14</td>
<td>MnO</td>
<td>0.06</td>
<td>-</td>
<td>10-12 °C</td>
<td>6</td>
</tr>
<tr>
<td>15</td>
<td>TiO₂</td>
<td>0.06</td>
<td>-</td>
<td>10-12 °C</td>
<td>6.25</td>
</tr>
<tr>
<td>16</td>
<td>Ca(OH)₂</td>
<td>0.06</td>
<td>-</td>
<td>10-12 °C</td>
<td>4</td>
</tr>
<tr>
<td>17</td>
<td>Ca(OH)₂</td>
<td>0.03</td>
<td>-</td>
<td>10-12 °C</td>
<td>5</td>
</tr>
<tr>
<td>Example No</td>
<td>Catalyst</td>
<td>mol</td>
<td>B(OH)₂ addition [mol]</td>
<td>Temperature [°C]</td>
<td>Completion of reaction after [hours]*</td>
</tr>
<tr>
<td>------------</td>
<td>----------------</td>
<td>-----</td>
<td>-----------------------</td>
<td>------------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>18</td>
<td>Mg(OH)₂</td>
<td>0.06</td>
<td>-</td>
<td>10-12 °C</td>
<td>6</td>
</tr>
<tr>
<td>19</td>
<td>LiOH</td>
<td>0.12</td>
<td>-</td>
<td>10-12 °C</td>
<td>6</td>
</tr>
<tr>
<td>20</td>
<td>Ba(OH)₂</td>
<td>0.06</td>
<td>-</td>
<td>10-12 °C</td>
<td>4</td>
</tr>
<tr>
<td>21</td>
<td>Sr(OH)₂</td>
<td>0.06</td>
<td>-</td>
<td>10-12 °C</td>
<td>4</td>
</tr>
<tr>
<td>22</td>
<td>CaSO₄</td>
<td>0.06</td>
<td>-</td>
<td>10-12 °C</td>
<td>6</td>
</tr>
<tr>
<td>23</td>
<td>calcium acetate</td>
<td>0.06</td>
<td>-</td>
<td>10-12 °C</td>
<td>3.5</td>
</tr>
<tr>
<td>Comparative</td>
<td>none</td>
<td></td>
<td>0.02</td>
<td>10-12 °C</td>
<td>6.5</td>
</tr>
</tbody>
</table>

* conversion more than 97% according to HPLC analysis
Claims:

1. Process for the preparation of a compound of formula (I),

\[
\begin{align*}
R^6 & : \text{S} \\
H_2N & : \text{N} \\
R^5 & : \text{R}^1 \\
R^4 & : \text{R}^2 \\
R^3 & : \text{R}^3 \\
R^2 & : \text{R}^2 \\
\end{align*}
\]

wherein

- \(R^1, R^2, R^3, R^4, \) and \(R^5 \) are each independently selected from hydrogen, halogen, \(\text{Ci-C4-alkyl}, \text{Ci-C4-haloalkyl}, \text{Ci-C4-alkoxy}, \text{Ci-C4-haloalkoxy}, \text{nitro}, \text{cyano}, \) and \(\text{pentafluorothio}; \) and
- \(R^6 \) is \(\text{Ci-C4-alkyl}, \) or \(\text{Ci-C4-haloalkyl}; \)

by oxidation of a compound of formula (II)

\[
\begin{align*}
R^6 & : \text{S} \\
H_2N & : \text{N} \\
R^5 & : \text{R}^1 \\
R^4 & : \text{R}^2 \\
R^3 & : \text{R}^3 \\
\end{align*}
\]

wherein \(R^1, R^2, R^3, R^4, R^5, \) and \(R^6 \) are as defined for compounds of formula (I), with an oxidation agent selected from trifluoroperacetic acid and trichloroperacetic acid in the presence of a catalyst selected from hydroxides, oxides, sulfates, acetates or trifluoroacetates of lithium, magnesium, calcium, strontium, barium, titanium (IV), zinc (II) and manganese (II).

2. Process according to claim 1 wherein

- \(R^1 \) and \(R^5 \) are chlorine;
- \(R^2 \) and \(R^4 \) are hydrogen; and
- \(R^3 \) is trifluoromethyl.

3. Process according to claims 1 or 2 wherein

- \(R^6 \) is trifluoromethyl or ethyl.
4. Process according to any of claims 1 to 3, wherein the process is conducted in a solvent selected from trifluoroacetic acid, mixtures of trifluoroacetic acid and monochlorobenzene or trifluoroacetic acid and dichloromethane, and mixtures of trichloroacetic acid with a melting point depressant such as monochlorobenzene, monochloroacetic acid, dichloroacetic acid, dichloroethane, and dichloromethane.

5. Process according to any of claims 1 to 4, wherein the process is conducted in trifluoroacetic acid as a solvent.

6. Process according to any of claims 1 to 5, wherein the metal cation is selected from cations of lithium, magnesium, calcium, strontium, barium, titanium (IV), zinc (II), and manganese (II).

7. Process according to any of claims 1 to 6, wherein the catalyst is selected from the group of hydroxides of lithium, magnesium, calcium, strontium, and barium, and oxides of calcium, barium, titanium (IV), zinc (II), and manganese (II).

8. Process according to any of claims 1 to 7, wherein the catalyst is ZnO or CaO.

9. Process according to any of claims 1 to 8 wherein the process is conducted in the presence of a fluoride corrosion inhibitor selected from boric acid, alkali metal borates, and silica.

10. Process according to any of claims 1 to 9 wherein the process is conducted at temperatures of 0 °C to 40 °C.
INTERNATIONAL SEARCH REPORT

International application No
PCT/EP2010/066162

A. CLASSIFICATION OF SUBJECT MATTER

INV. C07D231/44
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

C07D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, CHEM ABS Data, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>WO 2007/122440 AI (GHARDA CHEMICALS LTD [IN]; GHARDA KEKI HORMUSJI [IN]; MALTE ASHOKKUMAR) 1 November 2007 (2007-11-01) cited in the application the whole document</td>
<td>1-10</td>
</tr>
<tr>
<td>A</td>
<td>WO 01/30760 AI (AVENTIS CROPSCIENCE SA [FR]; CLAEL JEAN LOUIS [FR]; PELTA ISABELLE [F]) 3 May 2001 (2001-05-03) cited in the application on the whole document</td>
<td>1-10</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
 A document defining the general state of the art which is not considered to be of particular relevance
 E earlier document but published on or after the international filing date
 L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 O document referring to an oral disclosure, use, exhibition or other means
 P document published prior to the international filing date but later than the priority date claimed
 T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
 A document member of the same patent family

Date of the actual completion of the international search

9 December 2010

Date of mailing of the international search report

15/12/2010

Name and mailing address of the ISA/
European Patent Office, P.B. 5818 Patentlaan 2
NL-2280 HV Rijswijk
Tel.: (+31-70) 340-2040
Fax: (+31-70) 340-3016

Authorized officer

Marzi, Elena
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>WO 2007122440</td>
<td>01-11-2007</td>
<td>AU 2006342749 Al</td>
<td>01-11-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2069311 Al</td>
<td>17-06-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2009030211 Al</td>
<td>29-01-2009</td>
</tr>
<tr>
<td>WO 0130760</td>
<td>03-05-2001</td>
<td>AT 273961 T</td>
<td>15-09-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 783139 B2</td>
<td>29-09-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 1270700 A</td>
<td>08-05-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BG 65483 Bl</td>
<td>30-09-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 9917518 A</td>
<td>18-06-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2384283 Al</td>
<td>03-05-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1332730 A</td>
<td>23-01-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101445483 A</td>
<td>03-06-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CZ 20021384 A3</td>
<td>14-08-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69919599 D1</td>
<td>23-09-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69919599 T2</td>
<td>11-08-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 1222173 T3</td>
<td>20-09-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1222173 Al</td>
<td>17-07-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2222743 T3</td>
<td>01-02-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HR 20020438 A2</td>
<td>31-08-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IL 149152 A</td>
<td>07-08-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2003512456 T</td>
<td>02-04-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 200200408999 A</td>
<td>30-05-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20060097747 A</td>
<td>14-09-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MX PA02003944 A</td>
<td>15-10-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NZ 517770 A</td>
<td>28-11-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NZ 527896 A</td>
<td>30-07-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PL 354611 Al</td>
<td>09-02-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PT 1222173 E</td>
<td>30-11-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RO 121209 Bl</td>
<td>30-01-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TR 200201072 T2</td>
<td>22-07-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TR 200202806 T2</td>
<td>21-03-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 553936 B</td>
<td>21-09-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UA 73752 C2</td>
<td>15-08-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6620943 Bl</td>
<td>16-09-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZA 200201961 A</td>
<td>28-05-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2709751 Al</td>
<td>25-06-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2231616 Al</td>
<td>29-09-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 2925493 Al</td>
<td>26-06-2009</td>
</tr>
</tbody>
</table>