发明名称

具有过压保护的电压调节器

摘要

描述了一种具有过压保护的电压调节器，该电压调节器在车载电网中被布置在位于第一电压层面上的发电机和位于第二电压层面上的电池之间。在此，作为发电机使用调节电压能够在可预先给定的极限中自由选择的发电机。在输出侧，被构造为同相调节器的电压调节器提供被调节的电压，该电压用于为传统的车载电网及电池供电以及用于对电池进行充电。所述同相调节器配备有电子器件或者智能装置，该电子器件或者智能装置包括微处理器并且分析所输入的关于电压、电流或者负载断开的信息并且定义响应标准以及在达到确定的响应标准时引入于是必需的措施。
1. 在包含至少两个电压层面的车载电网中的具有过压保护的电压调节器，在该车载网络中电压调节器在所述两个电压层面之间被作用，并且在输入侧与发电机相连接并且在输出侧与电池以及与至少一个负载相连接，并且所述电压调节器这样被构造，使得所述电压调节器在输出侧给出被调节的电压，

其特征在于，

所述电压调节器包括电子器件，该电子器件定为可预先给定的响应标准并且检验这些响应标准的达到，并且在达到至少一个响应标准时改变所述电压调节器的调节特性并且在输出侧进行所述电压的提高。

2. 根据权利要求1的电压调节器，其特征在于，所述电压调节器被实施为同相调节器。

3. 根据权利要求1的电压调节器，其特征在于，所述电压调节器被实施为低损耗的降压转换器。

4. 根据权利要求1的电压调节器，其特征在于，所述电压调节器被实施为低损耗的升压转换器。

5. 根据权利要求1、2或3的电压调节器，其特征在于，在自由电电压侧的所设置的电压阈值的超过被定义为所述调节器的响应标准。

6. 根据权利要求1、2或3的电压调节器，其特征在于，在自由电电压侧的确定的电压梯度的超过被定义为同相调节器的响应标准。

7. 根据权利要求1、2或3的电压调节器，其特征在于，由相应的控制器进行的负载关断或者卸载的通知被定义为同相调节器的响应标准。

8. 根据上述权利要求之一的电压调节器，其特征在于，在同相调节器的输出侧，电压被提高大约1/2伏特。

9. 根据权利要求1或6之一的电压调节器，其特征在于，在输出侧的电压一直被提高，直到在输入侧的电压又低于例如45伏特的可预先给定的值。

10. 根据上述权利要求之一的电压调节器，其特征在于，不低于在输出侧的可预先给定的最大电压，其中该最大电压优选地为16.0伏特。
11. 根据上述权利要求之一的电压调节器，其特征在于，在不再存在响应标准之后，在他相调节器的输出侧的输出电压又被降低到标准值。

12. 根据上述权利要求之一的电压调节器，其特征在于，同相调节器给出控制信号，当满足所属的标准时，这些控制信号打开或关闭可预先给定的开关并且因此接通或断开所属的耗电器。

13. 根据上述权利要求之一的电压调节器，其特征在于，邻接输入侧的电压层面位于14-42伏特的范围内，并且在输出侧的电压层面位于14伏特的范围内。

14. 根据上述权利要求之一的电压调节器，其特征在于，邻接输入侧的电压层面位于28-42伏特的范围内，并且在输出侧的电压层面位于28伏特的范围内。

15. 根据上述权利要求之一的电压调节器，其特征在于，邻接输入侧的电压层面位于14伏特的范围内，并且在输出侧的电压层面位于42伏特的范围内。

16. 车载电网，具有至少一个发电机，能够直接与所述发电机连接的负载、电池和能够直接与所述电池连接的负载以及位于所述发电机和该电池之间的电压调节器，其特征在于，所述电压调节器具有根据上述权利要求之一的特征。
具有过压保护的电压调节器

技术领域

本发明从根据主权利要求的前序部分的，具有过压保护的电压调节器出发并且尤其涉及在车载电网中与具有自由电压的发电机共同作用的电压调节器。

背景技术

机动车发电机通常这样来设计，使得它们尽可能好地满足在确定的电压层次 (Spannungsebene)、例如 14 伏特的电压层次和转速集合 (Drehzahlkollektiv) 之内的功率要求。为此，借助发电机调节器这样来调节发电机，使得原则上依赖于转速的输出电压在可能的转速范围之上被保持恒定。在针对例如 14 伏特的第一工作电压所设计的发电机中，在高于第一工作电压的第二工作电压上，能够在效率明显改善的情况下获得更高的功率。然而，所谓的起动转速，也即这样的转速同样随着升高的工作电压而提高，发电机能够从该转速开始输出功率。

从这些已知的相关内容出发，在 DE-OS 198 59 036 中描述了一种用于机动车的车载电网，在该车载电网中使用发电机，该发电机的输出电压或调节电压是可改变的并且能够例如在 14 伏特和 42 伏特之间自由选择。在此，该发电机通过同相调节器与需要例如 14 伏特的恒定电压的车载电网相连接。具有 12 伏特的标称电压的电池也属于该车载电网，该电池应以大约 14 伏特来充电。也能够以高于 14 伏特的电压来驱动的耗电器、例如电加热器、电动冷却风扇等等被连接在发电机侧，并且以 14 至 42 伏特的可变电压来驱动。

已知的是，通常被构建为三相交流发电机的发电机在负载突然关断的情况下可能产生过压。因此，通常给位于车载电网中的发电机分配所谓的“卸载保护” (Load-Dump-Schutz)，该卸载保护例如包括齐纳二极管并且在这些齐纳二极管作用期间降低过压并且防止过压可能导致损害。具有齐纳二极管的发电机的例子在 DE-OS 101 18 846 中示出。
如果在发电机以自由电压来驱动的多电压车载电网中耗电器突然被关断，这可能导致高的电压脉冲，例如在以 42 伏特运行的情况下该电压脉冲可能导致齐纳二极管被损坏。在目前的卸载保护电路中，这些齐纳二极管是针对正向的功率而设计的并且因此只能承担卸载电流的一部分，而本身不受损害。在发电机在较高的电压范围内运行时负载完全关断的情况下，齐纳二极管可能被损坏。

因此，在 DE-OS 101 18 846 中联系多电压车载电网推荐了一种特殊的齐纳二极管布线，其中在卸载情况下齐纳二极管至少部分地在其击穿期间，也即在反向运行期间工作。在此情况下，电压的极限主要通过在反向运行期间工作的那些二极管的齐纳电压来确定。

前面所述的由现有技术公开的解决方案的替代方案或扩展方案可以在于，通过使用较大的二极管或多个二极管的并联电路来获得较大的二极管芯片面积，或者使用包含高阻塞的二极管的卸载保护设备。只要正处于卸载，就能够借助卸载管理来关断对电压敏感的耗电器。同样能够从达到电压阈值开始有有针对性地接通对电压敏感的耗电器。

发明内容

本发明的任务

本发明的任务在于，尤其是即使在具有至少两个电压层面的多电压车载电网中减弱或者完全补偿在强耗电器突然关断（卸载）时出现的电压峰值并且因此获得卸载保护，其中在该多电压车载电网中具有自由电压、即较高电压的一侧不存在电池。按照在例如 14 伏特的第一电压层面 U_{G1min} 和例如 42 伏特的第二（上）电压层面 U_{G1max} 之间的耗电器的需要，将该自由电压调节到可预先给定的额定电压值 U_{GFsoll}，对于该额定电压值适用：

$$ U_{G1min} \leq U_{GFsoll} \leq U_{G1max} $$

电压的高度能够例如由控制器或优选地由电压调节器（DC/DC 转换器）或由同相调节器等等来预先给定。卸载保护的任务通过具有权利要求 1 的特征的电压调节器、优选地同相调节器来解决。

本发明的优点

本发明的优点在于，低成本地在没有附加的布线花费的情况下限制在车载电网中在强耗电器突然关断时出现的卸载能量，并且避免或
者减少对过压保护电路、例如齐纳二极管或其它的车载电网组件、例如发电机调节器、负载调节器、电压调节器、控制器等等的损害或预先损害。在此特别有利的是，自由电压车载电网的卸载能量正好也能够被可靠地限制。

这些优点通过以下方式来实现，即在发电机和车载电网的利用传统车载电网组件以 14 伏特技术构造的并且由于使用 12 伏特铅电池而需要被调节的固定电压的内部之间使用专门的电压调节器、尤其是同相调节器，该电压调节器具有能够触发确定的转换过程的前提。为此，该电压调节器有利地具有电子器件并且有利地具有微处理器，该微处理器在确定的可能预先给定的响应标准时触发转换过程。

本发明的另外的优点通过从属权利要求书中给出的特征来实现。因此，不仅能够针对性车载电网的以自由电压驱动的一侧而且能够针对性以被调节的电压驱动的一侧来确定响应标准。电压调节器的有利的响应标准是：

超过在具有被调节的自由电压的一侧所设置的电压阈值，
超过确定的电压梯度或电压变化，由相应的控制器进行的卸载的通知。

在满足响应标准之一之后，特别有利地在低压侧引入确定的措施，这些措施提高在具有被调节的自由电压的一侧的能量衰减。在此，电压例如被提高可预先给定的值，该值这样来选择，使得不出现对低压耗电器的负面影响。通过在低压侧的随后较高的电流，产生的卸载能量能够被衰减。

在不再满足电压调节器的响应标准之后，在低压侧的电压有利地又被降低并且匹配于随后存在的需要。

附图说明
在附图的唯一的图中示出了具有两个电压层面和布置在其间的电压调节器的车载电网的原理图。
借助该原理图，在下面的描述中更详细地阐述本发明的功能。

具体实施方式
在唯一的图中示出了具有两个不同电压层面的车载电网的原理
图。这两个电压层面例如是具有被调节的电压的 14 伏特层面和具有在例如 14 伏特和 42 伏特的两个电压层面之间的被调节的电压的电压层面。电能的产生借助于用发电机调节器 R 调节的发电机 G 来实现，该发电机的调节电压能够在两个电压层面之间，例如在 14 伏特和 42 伏特之间自由选择。调节电压预先设定优选地由控制器或例如由电压调节器本身或由同相调节器等等直流电压转换器 (DC/DC 转换器) 通过发电机调节器和控制器或电压调节器之间的模拟或数字接口来实现。

负载 L1 连接在发电机 G 上，该负载包括所有的可被供应可变电压的耗电器。这些耗电器例如包括电加热器、电动冷却风扇以及其他耗电器，这些耗电器是对于电压不敏感的并且应以尽可能高的电压来驱动，或者它们的输出功率应通过电压层面的预先设定来调节。耗电器 L1 的接通通常通过操作所分配的、在原理图中用 S1 表示的开关来实现。单个开关 S1 的控制能够借助合适的控制信号 A1 由电压调节器 L 来实现。为了稳定自由的电压侧，可以使一个电容器、优选地双层电容器与发电机 G 并联。

发电机 G 或者位于发电机侧的具有自由电压的电压层面经由电压调节器 L 与第二电压层面相连接。发电机 G 在此给电压调节器 L 供给在 14 伏特和 42 伏特之间的电压。具有例如 14 伏特的被调节的电压的电压层面除了车辆电池 B（通常为铅电池）之外还包括负载 L2。该负载 L2 包括所有的应该被供应被调节的电压的耗电器。这些耗电器又能够通过分别所分配的开关 S2，例如通过能够由电压调节器 L 产生的控制信号 A2 的输入来接通或者关断。

电压调节器，尤其是同相调节器 L 例如是配备有智能装置的电子调节器，该智能装置特别是包括微处理器并且根据所输入的或者本身所检测到的信息构成控制信号 A1、A2 以及必要时构成其它的信号。这些信息例如是在车载电网的初级侧以及次级侧的两个实际电压值 U1、U2。这些实际电压值 U1、U2 由同相调节器本身来检测或者借助合适的、在附图中未示出的电压测量器来确定并且输送给该同相调节器。能够由该同相调节器检测的或者能够被输送给该同相调节器的其它量是在可预先给定的位置处所测量的电流。示例性地给出了在所述两个电压层面中在可选的位置处所测量的电流 I1 以及 I2。能够被输送给同相调节器 L 的另外的信息是由另一个控制器所通知的用 LA 表示的卸载。
电压调节器 L 不仅具有在 14V 车载电网中的电压检测，而且具有在 42V 车载电网中的电压检测，并且附加地具有至少一个电流检测。对于在图中所示的用于具有电压调节器 L 的车载电网的电压调节系统来说，这些数据量也能够实现按照本发明的过压保护，这些量必须存在于同相调节器中，以便该同相调节器的最大功率消耗不被超过。在此，能够可靠地避免在这样的车载电网中出现的问题。在此，电压调节器 L 预先给定 42V 车载电网中的电压层面。如果超过该电压层面确定的△或者超过例如 50V 的固定电压值，则该调节器以下面所描述的方式作出反应。

在卸载时，即在高耗电器、例如 14-42 伏特车载电网中的电加热器突然关断时，可能出现高的电压峰值，因为在该车载电网范围内在发电机和同相调节器之间没有电泳可供用于衰减。由此在不采取附加措施的情况下可能损害车载电网组件。在此涉及发电机调节器、整流二极管、负载调节器、同相调节器、控制器等等。为了明显地减弱或者补偿卸载的影响，可以借助合适的调节器如下来进行：

1. 定义响应标准（Ansprechkriterien）
定义电压调节器的一个或多个响应标准。这样的标准例如是在具有自由电压的车载电网侧所设置的例如 50 伏特的电压阈值的超过、确定的电压梯度的超过或者由相应的另外的控制器进行的卸载或者负载关断 LA 的通知。如果这些响应标准之一被电压调节器 L 识别出，则它必须进行相应的控制并且例如给出控制信号 A1 和/或 A2 中的至少一个。

2. 在低压侧的调节
电压调节器 L 应该在满足按照 1 的响应标准时将 14 伏特侧的电压位置例如从 13.5 伏特提高 0.5 伏特到 14 伏特。由此，较大的电流经由电压调节器 L 被传输到 14 伏特车载电网中并且卸载能量的一部分被衰减。

3. 标准的 14 伏特电压的重建
在电压调节器 L 根据被输送给其的或者由其确定的信息识别出响应标准不再存在之后，在 14 伏特车载电网或者相应的电压层面中电压又被降低到原始值。
通过这种处理方式，自由电压车载电网的卸载能量可以低成本地
在没有附加的布线花费的情况下通过以下方式来限制，即所述能量被转移到 14 伏特侧。因此能够避免或者降低齐纳二极管以及其它的车载电网组件的预先损害。

根据本发明的扩展方案，电压调节器 L、例如同相调节器可以被实施为执行从高到低的电压转换的低损耗的降压转换器或者被实施为升高低电压的低损耗的升压转换器。

本发明例如可以在具有以下特定条件的车载电网中被使用：

在输入侧、即电压调节器 L 的朝向发电机 G 的一侧，电压应该位于从 $U_{G1\text{min}} = 14$ 伏特至 $U_{G1\text{max}} = 42$ 伏特的范围内并且输出侧的电压层面应该位于 14 伏特的范围内。或者在输入侧位于 28 伏特至 42 伏特的范围内并且在输出侧位于 28 伏特的范围内。或者在输入侧位于 14 伏特的范围内并且在输出侧位于 42 伏特的范围内。于是按照在例如 14 伏特的第一电压层面 $U_{G1\text{min}}$ 和例如 42 伏特的第二（上）电压层面 $U_{G1\text{max}}$ 之间的耗电器的需要，自由电压能够被调节到可预先给定的额定电压值 $U_{GF\text{sol}}$，对于该额定电压值适用：

$$U_{G1\text{min}} \leq U_{GF\text{sol}} \leq U_{G1\text{max}}$$

其中该电压的高度可由控制器或电压调节器预先给定。

对于参考标号或者所使用的符号的含义，下列关系适用：

G: 具有被调节的自由电压的发电机
R: 具有用于电压预先给定的数字或模拟接口的发电机调节器
L: 电压调节器，优选地同相调节器
L1: 所有能够以可变电压来驱动的负载的总和
S1: 所有转换具有可变电压的负载的开关的总和
U1: 自由电压
I1: 电压调节器中自由电压侧的电流
A1: 用于 S1 的控制信号
C: 可选的电容器，优选地双层电容器
B: 12 伏特或者 28 伏特电池
L2: 所有以恒定电压驱动的负载的总和
S2: 所有转换具有恒定电压的负载的开关的总和
U2: 被调节的、优选地恒定的电压
I2: 在被调节到恒定电压的一侧来自电压调节器的电流
A2：用于 S2 的控制信号
LA：通知负载关断并且例如来自另一个控制器的信号