
## V. H. ERICHSEN ET AL

APPARATUS FOR THE ATTAINMENT OF REGULAR BURNING OF LIQUID FUEL Filed Sept. 15, 1925



## UNITED STATES PATENT OFFICE.

VILLIAM HENRY ERICHSEN AND GEORG ERNST FALKENTORP, OF COPENHAGEN. DENMARK.

APPARATUS FOR THE ATTAINMENT OF REGULAR BURNING OF LIQUID FUEL.

Application filed September 15, 1925, Serial No. 56,535, and in Denmark May 29, 1925.

burning liquid fuel, e. g. oil, together with surface, and that the pressure of the oil an apparatus for the accomplishment of which has not yet passed the cock cannot be an apparatus for the accomplishment of the method. The object of the invention is to obtain regular and complete burning of oil, particularly heavy oils such as solaroil or the like, in such a way that these oils may be advantageously employed for heating purposes. Through the invention 10 it becomes possible to burn these oils without the formation of soot, and thus the burning of them can be done in stoves, kitchen-ranges and the like appliances erected in private houses and dwellings,

15 with no risk of soiling these latter.

According to the invention this regular complete burning is accomplished mainly through burning the vapours of the liquid fuel along the surface of an incom-20 bustible body which does not touch the liquid fuel, in such a way that this body through the burning will become heated and will be kept at a temperature sufficiently high for allowing its heat radiation to evaporate the 25 liquid fuel from the liquid surface, the liquid fuel being conveyed from below and being kept below the incombustible body. The vapours produced will become ignited by the body and through their burning will keep it at red heat. Thus the process once commen ed will continue uninterrupted.

In order to obtain a homogeneous burning all over the surface of the body and thereby a perfect combustion, the air for combustion must be conveyed fairly homogeneously to the surface of the body, and this is accomplished through the air-supply being forced to pass very close along the sides of the said body, after being conveyed into the space in which the body is placed through the walls of this space, these being

made in the form of front-grates.

It is necessary for the regular working of the apparatus that a fixed but otherwise adjustable quantity of liquid fuel (oil) is supplied per unit of time. A stationary condition will then appear in which the burning vapours will maintain a temperature in the body, just allowing for the evaporation per time unit of the liquid fuel (oil) supplied. The apparatus is accordingly furnished with an arrangement of the feedcock with various possibilities for adjustment, as described below.

The invention comprises a method for that the oil under the cock will have a free transmitted to that part of the oil, which has passed the cock on its way to the com- 60 bustion chamber. The fact is, that if a contrary condition could be supposed, a slight increase in the combustion of the oil would cause an increased supply of oil through the increased pressure of the oil 65 column, and a regular combustion would then be excluded.

With the arrangement proposed here, however, the free surface under the cock would move parallel with the free surface 70 in the combustion chamber, and any variation in the oil-supply would accordingly not occur spontaneously, but only when the cock

adjustment is altered.

The oil is supplied from a reservoir in 75 which the level of the fluid can be kept at a constant height, for instance through supply from a barometrical pipe, possibly with an extension in width at the top, in which the oil is stored.

To obtain an additional regulation step by step, of the amount of heat produced, several burners can be connected to each other to vary the amount of heat produced, with separate regulation for the burners. 35 Combustion cells will then have cocks for separate regulation of the quantity of fluid.

The apparatus can be arranged so that it will serve as a stove, kitchen-range or 90 the like, or for fitting into already erected furnaces and fire-places.

The drawing shows an example of an apparatus constructed in accordance with the invention, viz:

Fig. 1 represents a vertical section through the apparatus, showing also the corresponding arrangement for fuel supply.

Fig. 2 a vertical section through the apparatus on line A-A, and

Fig. 3 a horizontal section through the cock arrangement, on line B-B in Fig. 1.

6 is an incombustible body, for instance kieselguhr (moler stone), placed in a chamber which has a bottom 5 into which leads 105 an inlet channel 3 for the combustible fluid 2, so arranged, that the latter is conveyed to the chamber from below. The body 6 low. which may be shaped otherwise than the A main feature of this arrangement is rectangular flag shown or may be made up 119 of several, may be suitably supported on which is drilled a narrow passage right projections from the bottom 5 or made to through (20) this being brought into servhang up, so that its bottom side is situated ice for adjustment of the quantity of oil supa convenient distance above the bottom 5.

The walls 8 (front grates) of the chamber have openings for the air for combustion, suitably distributed. These are always by an intense mixing of oil-vapours and air body of the cock, this latter position being without the formation of soot. The grate paratus. openings in the walls 8 should preferably 5 be distributed evenly all over the surface present in a large number, the walls 8 can be stant stream through the aperture 22 and executed in some convenient material, retict the hole 19 into the supply pipe 3 with free 20 ulated, perforated or porous.

The air for combustion is conveyed to the bottom of the apparatus through an air pas- is kept at a constant height through supply sage 10, which can be provided with a suit- from a main reservoir 30 arranged in the able draught regulation 11, and from here form of a barometrical pipe, or through 25 the air goes upwards to the space 9 between other suitable arrangements. the grate walls 8 and the outer walls of the apparatus 12, then passing into the combus- on the difference in height between the fluid tion chamber through the grate openings.

36 walls 12 may be placed and packed in sand supplied to the pipe 3 depends on the 115 the apparatus, away from the bottom of the in the reservoir by raising or lowering the apparatus for inspection or cleaning.

The apparatus described above represents adjusting (raising or lowering) the plug 25. a combustion chamber or combustion cell. The drilled plug 25, however, may be read to obtain the above mentioned connection of the apparatus for additional step by adjustment of the fluid supplied being then 40 a combustion chamber or combustion cell, step regulation of the amount of heat pro-uproduced by turning the plug of the cock. duced, several of these cells can be arranged

45 side by side in the same furnace or fire-justment of the plug 25 up or down may 110 of each other, or they may be built together, wrench. for instance through neighbouring cells hav- For cleaning the passage 20 is fitted the ing common outer walls. The cells may be needle 27 which by pressing a button 28

55 and head and plug 17. In the plug is drilled allow for free admission of the air to the a hole 19 which at the bottom leads into the space 24. 60 with two apertures in the body of the cock, voir 1 through the aperture 23, the hole in 125

plied when working the apparatus.

The cock can be adjusted into three main 70 positions, viz, position I, in which the opening 21 corresponds with the aperture 23, placed in such distance from the body that position II in which the opening 21 correa comparatively narrow combustion space 7 sponds with the aperture 22; and position to is left along the surface of the body. Here- III in which the opening 21 is closed by the 75 is obtained, to secure a perfect combustion applied for stopping the working of the ap-

The oil-stream will proceed as follows:

On account of the difference in height the 80 of the wall, and as these openings should oil will pass upwards through the passage most suitably be comparatively small and be 20 into the space 24 and from here in a consurface of the oil 31.

The level of the fluid in the reservoir 1

The amount of fluid supplied depends uplevel in the reservoir and the overflow height The grate walls 8 as well as the outer above the surface 31. The amount of fluid (sand-locks) at the bottom of the apparatus, difference in height between the fluid level see 15 and 16. Thus it is made possible in the reservoir 1 and the upper end 26 of without trouble to lift the upper part of the the narrow passage 20. Accordingly, the apparatus, consisting of the body 6, the amount of fluid supplied is adjusted by algrate walls 8 and the outer walls 12, these tering this difference in height, and this is in themselves forming a complete part of possible either by adjusting the fluid level outlet of the barometrical pipe 30, or by

In the apparatus described here the adplace. The cells may be totally independent be done, for instance, by means of a socket-

For cleaning the passage 20 is fitted the provided with separate air supply passages and in co-operation with a spring 29 can be 115 and fuel supply arrangements for each cell. brought down through the passage 20. The The regulation arrangement is shown in guiding part of the cleansing needle (32) Fig. 1 at the right side. It consists of a is furnished with a number of longitudinal cock fitted into the reservoir with body 18 furrows, not shown in the drawing, which

supply pipe 3 to the combustion cell, the When a cell shall start working the corhole having also an opening 21 through the responding cock is adjusted into position I. side of the plug. This opening corresponds The oil will then pass direct from the reserviz an aperture 23 leading direct into the the cock plug 19 and the supply pipe 3 to reservoir and used when lighting the fire, the bottom 5, and will fill this latter with oil, and an aperture 22 having connection with and the lowermost part of the body 6 will a space 24, open at the top and closed at become moistened with oil. In order to the bottom with a screwed in plug 25, in avoid any oil waste in the furnace the reser1,658,711

to the combustion cell, that the oil cannot rise above the edge of the bottom 5. The cock is then adjusted into position II, and the ignition can now take place by lighting the oil on the moistened part of the body 6 through an opening 14 in the outer wall of the body for fuel vapor and air. the apparatus, this opening being under normal conditions closed with the lid 13. 10 Through the burning the body will now bewhich condition it will radiate heat to the liquid surface below, partly through direct radiation, and partly, but in a less degree, 15 through indirect radiation, and the oil in the supply pipe 3 will commence to evaporate. The rising vapours will meet the in-flow of air at the lower surface of the body 6 and thereby become ignited, so that a rise 20 in the temperature of the body is obtained and with that an accelerated evaporation. The level of the fluid in the supply pipe 3, however, will through this be lowered, and thereby the evaporation and combustion 25 diminish, and as a result the temperature of the body will decrease. A balanced condition will therefore soon appear, in which per time unit the same quantity of fluid fuel will evaporate and burn as is supplied.

By means of the above described regulating device the fuel supply, and, consequently, the combustion may be regulated, a new balanced condition entering at every veloc-

ity of the fuel supply.

The necessary quantity of air to obtain a complete and regular combustion may be regulated by the draught regulating device

When a cell is to be put out of action, the 40 cock is turned to the position III, whereby the supply of fuel is cut off, so that the combustion will successively cease, whereupon the air draught may be cut off by the

draught valve 11.

Experiments have shown that molér bricks form an extraordinarily well adapted material for the body 6. This material is ing coefficient, which is about .06, is more than ten times as favourable as the heat-conducting coefficient of chamotte and the like, which is about .7. Moreover, its very spongy surface leads to an increased density of the air along the same and, consequently, to a higher combustion temperature. We claim:

1. Apparatus for attaining regular com-60 bustion of liquid fuel, comprising a fuel container, a combustion chamber positioned above the fuel container, a refractory body tures. positioned in the combustion chamber, a fuel inlet pipe for the fuel container, a source of fuel connected to the inlet pipe and arranged

voir is situated at such a height as compared to supply fuel to the container at a line below the bottom of the refractory body, and air inlet ports in the combustion chamber, the walls of the combustion chamber being positioned closely adjacent the refractory body 70 to have a mixing space between the walls and

2. Apparatus for attaining regular combustion of liquid fuel, comprising a fuel container, a combustion chamber positioned 75 come heated locally and get red hot, in above the fuel container, a refractory body positioned in the combustion chamber, a fuel inlet pipe for the fuel container, a source of fuel connected to the inlet pipe and arranged to supply fuel to the container at a line below 80 the bottom of the refractory body, and numerous air inlet ports in the combustion chamber distributed over the entire surface of the walls of the chamber, the walls of the combustion chamber being positioned closely 85 adjacent the refractory body to have a mixing space between the walls and the body for fuel vapor and air.

3. Apparatus for attaining regular combustion of liquid fuel, comprising a fuel container, a combustion chamber positioned above the fuel container, a refractory body positioned in the combustion chamber, a fuel inlet pipe for the fuel container, a source of fuel connected to the inlet pipe and arranged 95 to supply fuel to the container at a line below the bottom of the refractory body, an outer casing for the combustion chamber and a sealing base detachably receiving the outer casing and combustion chamber, whereby the 100 chamber, casing, and refractory body can be removed as a unit from the base for permit-

ting cleaning.

4. Apparatus for attaining regular combustion of liquid fuel, comprising a fuel con- 105 tainer, a combustion chamber positioned above the fuel container, a refractory body positioned in the combustion chamber, a fuel inlet pipe for the fuel container, a source of fuel connected to the inlet pipe and arranged 110 to supply fuel to the container at a line below the bottom of the refractory body, air inlet so well heat insulating that it permits a ports in the combustion chamber, the walls limited local heating, which may be ex- of the combustion chamber being positioned plained thereby that its inner heat-conduct- closely adjacent the refractory body to have 115 a mixing space between the walls and the body for fuel vapor and air, and the upper part of the fuel container surrounding the lower part of the refractory body being spaced a small distance apart from this, and means for supplying air for the combustion to the lateral surfaces of the part of the refractory body above the fuel container, so that the combustion only will take place at the said lateral surfaces.

In testimony whereof we affix our signa-

125

VILLIAM HENRY ERICHSEN. GEORG ERNST FALKENTORP.