

(19)

(11)

EP 3 222 632 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:

27.09.2017 Bulletin 2017/39

(21) Application number: 17150631.4

(22) Date of filing: 25.03.2011

(51) Int Cl.:

C07K 16/18 (2006.01)

C12N 5/18 (2006.01)

A61K 39/395 (2006.01)

A61P 35/00 (2006.01)

C12N 15/13 (2006.01)

A61K 39/395 (2006.01)

C07K 16/30 (2006.01)

(84) Designated Contracting States:

**AL AT BE BG CH CY CZ DE DK EE ES FI FR GB
GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO
PL PT RO RS SE SI SK SM TR**

Designated Extension States:

BA ME

(30) Priority: 26.03.2010 US 317964 P

(62) Document number(s) of the earlier application(s) in accordance with Art. 76 EPC:

11760326.6 / 2 552 959

(71) Applicant: **Memorial Sloan-Kettering Cancer Center
New York, NY 10065 (US)**

(72) Inventors:

- **SPRIGGS, David**
New York, NY 10065 (US)
- **THAPI, Dharmarao**
New York, NY 11364 (US)

(74) Representative: **Chapman, Paul Gilmour**

Marks & Clerk LLP

Atholl Exchange

6 Canning Street

Edinburgh EH3 8EG (GB)

Remarks:

•Claims filed after the date of receipt of the divisional application (Rule 68(4) EPC).

•This application was filed on 09-01-2017 as a divisional application to the application mentioned under INID code 62.

(54) ANTIBODIES TO MUC16 AND METHODS OF USE THEREOF

(57) The disclosure provides antibodies, and antigen-binding fragments thereof, that specifically bind to a polypeptide, or antigenic portion thereof, wherein the polypeptide is selected from a) MUC16 ectodomain polypeptide, b) MUC16 cytoplasmic domain polypeptide,

and c) MUC16 extracellular domain polypeptide that contains a cysteine loop polypeptide. The disclosure's antibodies and compositions containing them are useful in diagnostic and therapeutic applications for diseases in which MUC16 is overexpressed, such as cancer.

EP 3 222 632 A1

Description

[0001] This application claims priority to co-pending U.S. provisional Application Serial No. 61/317,964, filed on March 26, 2010, which is herein incorporated by reference in its entirety for all purposes.

[0002] This invention was made with government support under PO1-CA52477-16 awarded by the United States Public Health Service (US PHS). The government has certain rights in the invention.

FIELD OF THE INVENTION

[0003] The invention relates to antibodies, and antigen-binding fragments thereof, that specifically bind to a polypeptide, or antigenic portion thereof, wherein the polypeptide is selected from a) MUC16 ectodomain polypeptide, b) MUC16 cytoplasmic domain polypeptide, and c) MUC16 extracellular domain polypeptide that contains a cysteine loop polypeptide. The invention's antibodies and compositions containing them are useful in diagnostic and therapeutic applications for diseases in which MUC16 is overexpressed, such as cancer.

BACKGROUND OF THE INVENTION

[0004] Cell surface markers and shed antigens are used in the diagnosis of several cancers. For example, the CA125 antigen, recognized by the OC125 antibody, is a tissue-specific, circulating antigen expressed in ovarian cancer. The CA125 antigen is encoded by the MUC16 gene, cloned by Lloyd and Yin. The full-length gene describes a complex tethered mucin protein present primarily in a variety of gynecologic tissues, especially neoplasms. OC125 and other related antibodies react with glycosylation-dependent antigens present exclusively in the cleaved portion of the molecule.

[0005] A serum assay can detect elevated levels of the circulating CA125 antigen in many epithelial ovarian cancer patients, and this antigen, derived using the ovarian cell line OVCA433, is recognized by the OC125 antibody (1-2). The detection of circulating CA125 in serum has proven to be a useful tool for the management of ovarian cancer patients and clinical trials (3-4). However, CA125 is neither sufficiently sensitive nor specific for general cancer screening (5-6). A variety of CA125 linked antibodies including VK8 and M11 have subsequently been defined as present on ovarian cancer cells (7-9). Although these antibodies have been used to develop serum assays and various other studies in ovarian cancer, they have significant shortcomings for clinical use in screening or tissue delivery. These antibodies are not useful as screening tools, nor can they detect the proximal residual MUC16 protein fragment after cleavage. This has limited their diagnostic and therapeutic applications.

[0006] For example, OC125, M11, and most other antibodies prepared against ovarian cancer cell extracts are directed at complex, glycosylation-dependent antigens. These antigens are exclusively present in the shed portion of MUC16 and cannot be employed to follow the biology of the proximal portion of MUC16 and may not accurately reflect tissue distribution since the glycosylation patterns can vary substantially among tissues. Because the vast majority of MUC16-reactive antibodies, including OC125, react with the glycosylation-dependent antigen present exclusively in the cleaved portion of the molecule, the true distribution of MUC16 expression is not known (21). There is currently no antibody available to track the fate of the remaining MUC16 protein fragment after cleavage and CA125 release.

[0007] Thus, there remains a need for the identification of antibodies that are directed against sequences in the peptide backbone of MUC16, and that are useful for diagnosis and treatment of cancers in which MUC16 is expressed and/or overexpressed.

SUMMARY OF THE INVENTION

[0008] The invention provides an antibody, or an antigen-binding fragment thereof, that specifically binds to a polypeptide, or antigenic portion thereof, wherein the polypeptide is selected from the group of a) MUC16 ectodomain polypeptide, b) MUC16 cytoplasmic domain polypeptide, and c) MUC16 extracellular domain polypeptide that contains a cysteine loop polypeptide CQVSTFRSVPNRHHTGVDSLC (SEQ ID NO:19). In one embodiment, the antibody internalizes into a cell. While not intending to limit the invention to a particular sequence of MUC 16 ectodomain, in one embodiment, the MUC16 ectodomain polypeptide comprises a polypeptide selected from the group of Polypeptide 1 NFSPLARRVDR-VAIYEE (SEQ ID NO:01) and Polypeptide 2 TLDRSSVLVDGYSPNRNE (SEQ ID NO:02). In another embodiment, the antibody lacks specific binding to a glycosylated MUC16 extracellular domain. In yet a further embodiment, the antibody specifically binds to the Polypeptide 2 (SEQ ID NO:02) of the MUC16 ectodomain polypeptide, and wherein the antibody comprises a variable heavy (V_H) chain encoded by SEQ ID NO:06, and a variable light (V_L) chain encoded by SEQ ID NO:07. In yet another alternative embodiment, the antibody specifically binds to the Polypeptide 2 (SEQ ID NO:02) of the MUC16 ectodomain polypeptide, and wherein the antibody comprises a variable heavy (V_H) chain encoded by SEQ ID NO:04, and a variable light (V_L) chain encoded by SEQ ID NO:05. In a further embodiment, the antibody specifically binds to the Polypeptide 1 (SEQ ID NO:01) of the MUC16 ectodomain polypeptide, and wherein the antibody comprises

a variable heavy (V_H) chain encoded by SEQ ID NO:08, and a variable light (V_L) chain encoded by at least one of SEQ ID NO:09 and SEQ ID NO:10. In one embodiment, the MUC16 cytoplasmic domain polypeptide comprises VTTRRKKEGEYNVQQ (SEQ ID NO:18). More preferably, but without limitation, the MUC16 cytoplasmic domain polypeptide comprises Polypeptide 3 CGVLVTRRKKEGEYNVQQQ (SEQ ID NO:03). In an alternative embodiment, the MUC16

5 extracellular domain polypeptide that contains a cysteine loop polypeptide comprises CQVSTFRSVPNRHHTGVDSL (SEQ ID NO:19). More preferably, but without limitation, the MUC16 extracellular domain polypeptide comprises Polypeptide 4 KSYF SDCQVSTFRS VPNRHHTGVD SLCNFSP (SEQ ID NO:15). In yet another alternative embodiment, the antibody specifically binds to the Polypeptide 4 (SEQ ID NO:15) of the MUC16 extracellular domain polypeptide, and
10 wherein the antibody comprises a variable heavy (V_H) chain encoded by SEQ ID NO:11, and a variable light (V_L) chain encoded by SEQ ID NO:12. In a further alternative embodiment, the antibody is selected from the group of a chimeric antibody, a monoclonal antibody, a recombinant antibody, an antigen-binding fragment of a recombinant antibody, a humanized antibody, and an antibody displayed upon the surface of a phage. In another embodiment, the antigen-binding fragment is selected from the group of a Fab fragment, a $F(ab')^2$ fragment, and a Fv fragment. In an alternative embodiment, the antibody, or antigen-binding fragment thereof, is covalently linked to a cytotoxic agent or a prodrug of
15 a cytotoxic agent. In a preferred embodiment, the antibody is a monoclonal antibody produced by a hybridoma cell line.
[0009] The invention also provides an isolated monoclonal antibody, or an antigen-binding fragment thereof, produced by a hybridoma cell line, wherein the antibody specifically binds to a polypeptide, or antigenic portion thereof, wherein the polypeptide is selected from the group of a) MUC16 ectodomain polypeptide, b) MUC16 cytoplasmic domain polypeptide, and c) MUC16 extracellular domain polypeptide that contains a cysteine loop polypeptide CQVSTFRSVPNRHHTGVDSL (SEQ ID NO:19). In one embodiment, the MUC16 ectodomain polypeptide comprises Polypeptide 1 (SEQ ID NO:01) and the antibody is selected from the group of 9B11.20.16, 10A2, 2F4, 23D3, 30B1, and 31B2. In an alternative embodiment, the MUC16 ectodomain polypeptide comprises Polypeptide 2 (SEQ ID NO:02), and wherein the antibody is selected from the group of 4H11.2.5, 13H1, 29G9, 9C9.21.5.13, 28F8, 23G12, 9C7.6, 11B6, 25G4, 5C2.17, 4C7,
20 26B2, 4A5.37, 4A2, 25H3, and 28F7.18.10. In yet a further embodiment, the MUC16 cytoplasmic domain polypeptide comprises Polypeptide 3 CGVLVTRRKKEGEYNVQQQ (SEQ ID NO:03), and wherein the antibody is selected from the group of 31A3.5.1, 19D1, 10F6, 22E10, 22F1, 3H8, 22F11, 4D7, 24G12, 19G4, 9A5, 4C2, 31C8, 27G4, and 6H2.
25 In another alternative embodiment, the MUC16 extracellular domain polypeptide comprises Polypeptide 4 KSYF SDCQVSTFRS VPNRHHTGVD SLCNFSP (SEQ ID NO:15), and wherein the antibody is selected from the group of 24B3 and 9C7.

30 [0010] The invention additionally provides a composition comprising (a) any one or more of the antibodies, or antigen-binding fragments thereof, that are described herein, and (b) a pharmaceutically acceptable carrier.

[0011] Also provided by the invention is a hybridoma cell line that produces a monoclonal antibody that specifically binds to a polypeptide, or antigenic portion thereof, selected from the group of a) MUC16 ectodomain polypeptide, b) MUC16 cytoplasmic domain polypeptide, and c) MUC16 extracellular domain polypeptide that contains a cysteine loop polypeptide CQVSTFRSVPNRHHTGVDSL (SEQ ID NO:19).

[0012] The invention additionally provides a method for detecting a disease that comprises overexpression of MUC16 in a subject, comprising a) providing i) a sample from a subject, and ii) any one or more of the antibodies, or antigen-binding fragments thereof, that are described herein, b) contacting the sample with the antibody under conditions for specific binding of the antibody with its antigen, and c) detecting an increased level of binding of the antibody to the sample compared to a control sample lacking the disease, thereby detecting the disease in the subject. In one embodiment, the disease is cancer. In a preferred embodiment, the cancer is selected from the group of ovarian cancer and breast cancer. While not intending to limit the method of detection, in one embodiment, detecting binding of the antibody to the sample is immunohistochemical, enzyme-linked immunosorbent assay (ELISA), fluorescence-activated cell sorting (FACS), Western blot, immunoprecipitation, and/or radiographic imaging.

[0013] Also provided herein is a method for treating a disease that comprises overexpression of MUC16, comprising administering to a subject having the disease a therapeutically effective amount of any one or more of the antibodies, or antigen-binding fragments thereof, that are described herein. In one embodiment, the disease is cancer, as exemplified by ovarian cancer and breast cancer.

[0014] The invention also provides an isolated antibody, or an antigen-binding fragment thereof, that specifically binds to a MUC16 polypeptide or to an antigenic portion thereof, wherein the MUC16 polypeptide is selected from the group of a) TLDRKSVFVGYSQRDD (SEQ ID NO:21), b) KSYFSDCQVLAFRSVSNNNHTGVDSL (SEQ ID NO:22), c) SLYSNCRSLRPKKNGTATGVNAICSYHQ (SEQ ID NO:23), d) KSYFSDCQVNNFRS, e) TLDRSSVLVDGYSQRDD, and f) TLDRSSVLVDGYSQRDD. In one embodiment, the antibody is selected from the group of a monoclonal antibody, a chimeric antibody, a recombinant antibody, an antigen-binding fragment of a recombinant antibody, a humanized antibody, and an antibody displayed upon the surface of a phage. In a preferred embodiment, the antibody is a monoclonal antibody produced by hybridoma cells selected from the group of 12B10-3G10, 10C4-3H5, 10C4-1F2, 10C4-2H8, 10C4-1G7, 17F2-3G5, 17F2-3F6, 17F2-2F9, 17F2-1E11, 12B10-3F7, 12B10-2F6, 12B10-2F10, 25E9-3, 25E9-5, 25E9-1, 25E9-16, 21B8-1H11, 21B8-3G6, 21B8-3H9, 21B8-1G8, 21E1-1E3, 21E1-1G9, 21E1-2G7,

21E1-3G12, 4H1-2E1, 4H1-2E3, 4H1-3E1, 4H1-3H3, 15A8-2E2, 15A8-2E10, 15A8-2E11, 15A8-3D2, 22B5-1F6, 22B5-3G9, 22B5-2G8, and 22B5-3F11. In a particular embodiment, the MUC16 polypeptide is TLDRKSVFVDGYSQNRDD (SEQ ID NO:21), and the antibody comprises a variable heavy (V_H) chain sequence SEQ ID NO:27, and a variable light (V_L) chain sequence SEQ ID NO:29, such as the monoclonal antibody produced by hybridoma cell 12B10-3G10.

5 In an alternative embodiment, the antigen-binding fragment is selected from the group of a Fab fragment, a F(ab')2 fragment, and a Fv fragment. In a more preferred embodiment, the antibody, or antigen-binding fragment thereof, is covalently linked to a cytotoxic agent and/or to a prodrug of a cytotoxic agent. In a further embodiment, the antibody specifically binds to human MUC16 (SEQ ID NO:25). In another embodiment, the antibody internalizes into a cell. In an alternative embodiment, the antibody lacks specific binding to a glycosylated MUC16 extracellular domain.

10 [0015] The invention also provides a composition comprising (a) any one or more of the invention's antibodies and/or antigen-binding fragments thereof, and (b) a pharmaceutically acceptable carrier.

[0016] The invention further provides a hybridoma cell that produces an antibody, or an antigen-binding fragment thereof, that specifically binds to a MUC16 polypeptide or to an antigenic portion thereof, wherein the MUC16 polypeptide is selected from the group of a) TLDRKSVFVDGYSQNRDD (SEQ ID NO:21), b) KSYFSDCQVLAFRSVSNNNNHTGVD-15 SLCNFSP (SEQ ID NO:22), c) SLYSNCRSLRPKKNGTATGVNAICSYHQN (SEQ ID NO:23), d) KSYFSDCQVN-NFRS, e) TLDRSSVLDGYSQNRDD, and f) TLDRSSVLDGYSQNRDD.

[0017] The invention also provides an isolated nucleotide sequence comprising a polynucleotide that encodes at least one of a variable heavy (V_H) chain sequence and the variable light (V_L) chain sequence of an antibody that specifically binds to a MUC16 polypeptide, wherein the MUC16 polypeptide is selected from the group of a) TLDRKSVFVDGYSQNRDD (SEQ ID NO:21), b) KSYFSDCQVLAFRSVSNNNNHTGVD-20 SLCNFSP (SEQ ID NO:22), c) SLYSNCRSLRPKKNGTATGVNAICSYHQN (SEQ ID NO:23), d) KSYFSDCQVN-NFRS, e) TLDRSSVLDGYSQNRDD, and f) TLDRSSVLDGYSQNRDD. In one embodiment, the MUC16 polypeptide is TLDRKSVFVDGYSQNRDD (SEQ ID NO:21) and the polynucleotide encoding the variable heavy (V_H) chain sequence comprises SEQ ID NO:26, and wherein the polynucleotide encoding the variable light (V_L) chain sequence comprises SEQ ID NO:28.

25 [0018] The invention also provides a method for producing an antibody that specifically binds to a MUC16 polypeptide or to an antigenic portion thereof, comprising administering to a subject an immunologically effective amount of a MUC16 polypeptide selected from the group of a) TLDRKSVFVDGYSQNRDD (SEQ ID NO:21), b) KSYFSDCQVLAFRS-VSNNNNHTGVD-25 SLCNFSP (SEQ ID NO:22), c) SLYSNCRSLRPKKNGTATGVNAICSYHQN (SEQ ID NO:23), d) KSYFSDCQVN-NFRS, e) TLDRSSVLDGYSQNRDD, and f) TLDRSSVLDGYSQNRDD.

30 [0019] The invention additionally provides a method for identifying a subject as having disease, comprising determining the level, in a sample from the subject, of specific binding of any one or more of the invention's antibodies and/or antigen-binding fragments thereof, with the MUC16 polypeptide or with the antigenic portion thereof, wherein detecting an altered level of the specific binding relative to a control sample identifies the subject as having disease. In one embodiment, the disease is cancer exemplified by ovarian cancer and breast cancer. In another embodiment, the method further comprises detecting an altered level of binding of the antibody to the sample compared to a control sample. Optionally, the detecting is selected from the group of immunohistochemistry, enzyme-linked immunosorbent assay (ELISA), fluorescence-activated cell sorting (FACS), Western blot, immunoprecipitation, and radiographic imaging.

35 [0020] The invention also provides a method for reducing one or more symptoms of disease comprising administering to a subject in need thereof a therapeutically effective amount of any one or more of the invention's antibodies and/or antigen-binding fragment thereof. In one embodiment, the disease is cancer, exemplified by ovarian cancer and breast cancer. Optionally, the method further comprises detecting a reduction in one or more symptoms of the disease after the administration step.

BRIEF DESCRIPTION OF THE DRAWINGS

45 [0021]

Figure 1: Three MUC16 carboxy terminus peptides were synthesized at the MSKCC Microchemistry Core Facility. Polypeptide 1 is near the putative cleavage site, Polypeptide 2 is before the transmembrane, and Polypeptide 3 is the internal peptide, which is inside the transmembrane.

Figure 2: Comparison staining of high-grade serous ovarian carcinomas using OC125 (left panel) and 4H11 (right panel)

Figure 3: Immunohistochemical scoring of OC125 and 4H11 on tissue microarrays of high-grade ovarian serous carcinoma. Only membranous and/or cytoplasmic staining was considered positive. Score 0: No staining; Score 1: <5% strong or weak; Score 2: 5-50% strong or weak; Score 3: 51-75% strong or 51-100% weak; Score 4: 76-99% strong; Score 5: 100% strong. Figure 3A: OC125 (Score 0); Figure 3B: OC125 (Score 1); Figure 3C: OC125 (Score 2); Figure 3D: OC125 (Score 3); Figure 3E: OC125 (Score 4); Figure 3F: OC125 (Score 5); Figure 3G: 4H11 (Score 0); Figure 3H: 4H11 (Score 1); Figure 3I: 4H11 (Score 2); Figure 3J: 4H11 (Score 3); Figure 3K: 4H11 (Score 4);

Figure 3L: 4H11 (Score 5).

Figure 4: Western blot analysis. Figure 4A: Western blot analysis of GST-ΔMUC16^{c114} fusion protein with monoclonal antibodies 9C9.21.5.13 and 4H11.2.5. Figure 4B: Western blot analysis of SKOV3-phrGFP-ΔMUC16^{c114} and SKOV3-phrGFP-ΔMUC16^{c334} protein extract and probed with monoclonal antibodies 9C9.21.5.13 and 4H11.2.5.

5 Figure 5A: MUC16 carboxy terminus monoclonal antibodies binding affinity on OVCAR3 cells (Panels A-D). Figure 5B: Internalization of radio-labeled 4H11 and OC125 monoclonal antibodies on SKOV3-phrGFP-ΔMUC16^{c334} stable transfected cells.

10 Figure 6A-D: Comparison staining intensities of OC125 and 4H11 monoclonal antibodies on tissue microarrays containing cancers of the prostate (2A, concordant), lung (2B, discordant), breast (2C, discordant), and pancreas (2D, discordant).

Figure 7: FACS analysis as described in the Material and Methods section was performed with commercial antibodies and MUC16 carboxy terminus monoclonal antibodies on OVCAR3 wt, SKOV3-phrGFP-ΔMUC16^{c114} and SKOV3-phrGFP-ΔMUC16^{c334} stable transfected cell lines.

15 Figure 8: Nucleotide sequence encoding antibody variable heavy (V_H) chain and antibody variable light (V_L) chain. (A) 4A5 V_H (SEQ ID NO:04), (B) 4A5 V_L (SEQ ID NO:05), (C) 4H11 V_H (SEQ ID NO:06), (D) 4H11 V_L (SEQ ID NO:07), (E) 9B11 V_H (SEQ ID NO:08), (F) 9B11 V_{L.A} (SEQ ID NO:09), (G) 9B11 V_{L.B} (SEQ ID NO:10), (H) 24B3 V_H (SEQ ID NO:11), (I) 24B3 V_L (SEQ ID NO:12).

20 Figure 9: (A) Homo sapiens MUC16 (GenBank NP_078966) (SEQ ID NO:13), (B) Polypeptide 1 (SEQ ID NO:01), (C) Polypeptide 2 (SEQ ID NO:02), (D) Polypeptide 3 (SEQ ID NO:03), (E) Transmembrane domain (SEQ ID NO:14), (F) Polypeptide 4 (SEQ ID NO:15) containing a cysteine loop polypeptide (SEQ ID NO:19).

Figure 10: Schematic of MUC16 structure.

25 Figure 11. Design and *in vitro* analysis of MUC-CD targeted CARs. (A) Schematic diagram of the first generation 4H11z and second generation 4H11-28z retroviral vectors. 4H11scFv: MUC16 specific scFv derived from the heavy (V_H) and light (V_L) chain variable regions of the monoclonal antibody 4H11; CD8: CD8 hinge and transmembrane domains; CD28: CD28 transmembrane and cytoplasmic signaling domains; ζ chain: T cell receptor ζ chain cytoplasmic signaling domain; LTR: long terminal repeat; black box: CD8 leader sequence; grey box: (Gly₄Ser)₃ linker; arrows indicate start of transcription. (B) FACS analysis of human T cells retrovirally transduced to express either the 4H11z or 19z1 CAR. (C) 4H11z⁺ but not 19z1⁺T cells expand on 3T3(MUC-CD/B7.1) AAPC. CAR⁺ were co-cultured on 3T3(MUC-CD/B7.1) AAPC monolayers at 3 x 10⁶ CAR⁺T cells/well of a 6 well plate. Proliferation of CAR⁺ T cells, normalized to the CAR⁺ T cell fraction as assessed by FACS for the CAR⁺ fraction in combination with viable T cell counts obtained on days 2, 4 and 7, as assessed by trypan blue exclusion assays.

30 Figure 12. *In vitro* comparison of T cells modified to express the first generation 4H11z CAR to T cells modified to express the second generation co-stimulatory 4H11-28z CAR. (A) CAR⁺ T cells were co-cultured on MUC-CD monolayers with (right panel) or without B7.1 (left panel). 3 x 10⁶ CAR⁺T cells were co-cultured on AAPC monolayers in 6 well tissue culture plates in cytokine-free medium. Total viable T cell counts were assessed on days 2, 4 and 7, by trypan blue exclusion assays. 4H11-28z⁺ T cells markedly expanded when compared to 4H11z⁺ T cells upon co-culture with 3T3(MUC-CD) AAPCs, **p=0.0023 (4H11z compared to 4H11-28z). In contrast, both 4H11z⁺ and 4H11-28z⁺ T cells expanded similarly on 3T3(MUC-CD/B7.1) AAPCs, p=0.09, (4H11z compared to 4H11-28z). Control 19-28z⁺ T cells did not proliferate on 3T3(MUC-CD), **p=0.0056 (19-28z compared to 4H11z), **p=0.0011 (19-28z compared to 4H11-28z), or on 3T3(MUC-CD/B7.1), **p=0.0026 (19-28z compared to 4H11z), **p=0.0087 (19-28z compared to 4H11-28z). (B) 4H11-28z⁺ but not 4H11z⁺ T cells secrete IL-2 upon co-culture with 3T3(MUC-CD) AAPCs. Tissue culture supernatants at day 2 following activation on 3T3(MUC-CD) AAPCs were analyzed for cytokine secretion. 4H11-28z⁺ T cells, in contrast to 4H11z⁺ T cells, demonstrated enhanced secretion of IL-2 consistent with T cell co-stimulation mediated through the 4H11-28z CAR. ***p=0.0008 (19z1 or 19-28z compared to 4H11z), **p=0.0026 (19z1 or 19-28z compared to 4H11-28z), **p=0.0046 (4H11z compared to 4H11-28z). Furthermore, both 4H11-28z⁺ and 4H11z⁺T cells secreted IFN γ . *p=0.011 (4H11z compared to 4H11-28z). Control 19z1 and 1928z transduced T cells failed to secrete either IL-2 or IFN γ . **p=0.0034 (19z1 compared to 4H11z), **p=0.036 (19-28z compared to 4H11z), ***p=0.0008 (19-28z compared to 4H11-28z). (C) Expansion of CAR⁺ cells following 3 cycles of stimulation on 3T3(MUC-CD/B7.1). Human T cells transduced to express either 4H11z or 4H11-28z CARs demonstrated a >2 log expansion over 2 cycles of stimulation on 3T3(MUC-CD/B7.1) AAPCs. Arrows indicate 1st and 2nd cycles of restimulation on AAPCs. (D) FACS analysis of the CAR⁺ T cell fraction of 4H11-28z⁺ T cells increased following each weekly cycle of stimulation. (I) FACS following initial transduction, (II) FACS at 7 days following first stimulation on AAPCs, (III) FACS at 7 days following second stimulation on AAPCs. These data are representative of one of three different experiments using three different healthy donor T cell populations, all of which demonstrated similar proliferation and cytokine secretion patterns.

55 Figure 13. MUC-CD targeted T cells specifically expand and lyse MUC-CD⁺ tumor cells. (A) Cytotoxicity assay of 4H11z⁺ and 4H11-28z⁺T cells targeting OV-CAR(MUC-CD) tumor cells demonstrates efficient cytotoxicity mediated by T cells from healthy donors modified to express the first and second generation MUC-CD targeted CARs. Control

T cells modified to express the first and second generation CD19-targeted 19z1 and 19-28z CARs failed to demonstrate significant lysis of target tumor cells. (B) Healthy donor T cells modified to express the 4H11-28z CAR equally lyse primary patient ascites-derived MUC-CD⁺ tumor cells when compared to T cells modified to express the control 19-28z CAR. This data represents 1 or 3 experiments targeting primary tumor cells from 3 ovarian carcinoma patients with similar results. (C) Autologous T cells isolated from peripheral blood, when modified with the 4H11-28z CAR, exhibit significant lysis of autologous MUC-CD⁺ ascites-derived tumor cells when compared to control 19-28z⁺ autologous T cells. These data represent 1 of 3 experiments utilizing T cells and autologous tumor cells from 3 different ovarian carcinoma patients with similar results. (D) Antigen specific proliferation of MUC-CD targeted CFSE labeled T cells after co-culture with OV-CAR3(MUC-CD) tumor cells. CFSE labeled CAR⁺T cells were co-cultured with MUC-CD expressing OV-CAR3 tumor cells at 1:1 ratio for 5 days. Proliferation of CFSE labeled T cells was assessed by FACS demonstrating efficient proliferation of both 4H11z⁺ and 4H11-28z⁺ T cells but not control 19-28z⁺ T cells. (E) CFSE results were further confirmed by absolute T cell numbers assessed on days 2, 4 and 7 following co-culture with OV-CAR3(MUC-CD) tumor cells. (F) FACS analysis of the expression of 4-1BBL on OVCAR3(MUC-CD) cells. OV-CAR3(MUC-CD) cells were stained with anti-human 4-1BBL antibody (thick line) or with isotype control (thin line). FACS analysis demonstrated expression of 4-1BBL on OV-CAR3(MUC-CD) tumor cells. Further FACS analyses failed to reveal expression of the co-stimulatory ligands B7.1, B7.2, or OX-40L.

Figure 14. Eradication of OV-CAR3(MUC-CD) tumors after intra-peritoneal treatment with first and second generation of MUC-CD targeted T cells. (A) Intraperitoneal injection of OV-CAR3(MUC-CD) tumors in untreated SCID-Beige mice results in abdominal distension and nodular peritoneal tumors. SCID-Beige mice were injected intraperitoneally with 3×10^6 OV-CAR3(MUC-CD) cells. At 5 weeks post intraperitoneal injection of OV-CAR3(MUC-CD) tumor cells mice developed ascites as evidenced by a distended abdomen (center panel) when compared to a tumor free mouse (left panel). Post mortem visualization of the peritoneum demonstrates nodular tumor masses (arrows) within the abdominal cavity (right panel). (B) Intraperitoneal injection of 4H11z⁺ and 4H11-28z⁺ T cells either delay tumor progression or fully eradicate disease. Kaplan-Meier survival curve of SCID-Beige mice treated with first or second generation of MUC-CD targeted T cells. SCID-Beige mice were infused ip with 3×10^6 OV-CAR3(MUC-CD) tumor cells on day 1 followed by 3×10^7 4H11z⁺ or 4H11-28z⁺ T cells on day 2. All untreated mice or mice treated with control 19z1⁺ T cells developed established tumors and were sacrificed by day 50. In contrast, 27% of mice treated with either 4H11z⁺ or 4H11-28z⁺ T cells remained without clinical evidence of disease by day 120. *p=0.01 (4H11z compared to 19z1), **p=0.0023 (4H11-28z compared to 19z1), p=0.63 (4H11z compared to 4H11-28z).

Figure 15. MUC-CD targeted 4H11-28z⁺ T cells successfully traffic to ip OV-CAR3(MUC-CD/GFP-FFLuc) tumors following systemic intravenous infusion resulting in equally efficient anti-tumor efficacy when compared to ip 4H11-28z⁺ treated tumor bearing mice. (A) Kaplan-Meier survival curve of SCID-Beige mice treated ip or iv with 4H11-28z⁺ T cells. SCID-Beige mice were injected intraperitoneally with 3×10^6 OV-CAR3(MUC-CD/GFP-FFLuc) tumor cells followed by either iv or ip infusion of 3×10^7 4H11-28z⁺ T cells. Tumor eradication is enhanced after either ip or iv infusion of 4H11-28z⁺ T cells when compared to control treated mice. Both ip and iv 4H11-28z⁺ T cell treated mice exhibited statistically enhanced survival (**p<0.0001 and **p=0.0038, respectively) when compared to 19-28z⁺ T cell treated control cohorts. Conversely, difference in survival between the ip and iv 4H11-28z⁺ T cell cohorts was not statistically significant (p=0.22). (B) BLI of tumor progression of representative ip and iv 4H11-28z⁺ T cell treated mice with ultimately progressive disease following treatment compared to BLI of tumor progression in a representative control 19-28z⁺ T cell treated mouse. (C) Systemically injected CFSE stained 4H11-28z⁺ T cells traffic to advanced ip OV-CAR(MUC-CD) tumors. Presence of iv injected CFSE labeled 19-28z⁺ control T cells (left panel) and 4H11-28z⁺ T cells (right panel) 1 day following infusion into SCID-Beige mice with advanced OV-CAR(MUC-CD) tumors (injected 7 days earlier), as assessed by FACS analysis of single cell OV-CAR3(MUC-CD) tumor suspensions, reveals a marked population of 4H11-28z⁺ but not control 19-28z⁺ T cells within peritoneal OV-CAR3(MUC-CD) tumors.

Figure 16. Eradication of advanced OV-CAR3(MUC-CD) tumors in SCID-Beige mice by ip infusion of 4H11-28z⁺ T cells. SCID-Beige mice were injected ip with 3×10^6 OV-CAR3(MUC-CD/GFP-FFLuc) tumor cells 7 days prior to ip treatment with 3×10^7 4H11-28z⁺ T cells. (A) BLI of 4H11-28z⁺ T cell treated mice with either relapsed disease (middle row) or eradicated disease (bottom row) compared to a representative 19-28z⁺ T cell treated control mouse. (B) Kaplan-Meier survival curve of SCID-Beige mice with advanced OV-CAR3(MUC-CD/GFP-FFLuc) tumors treated ip with 4H11-28z⁺ T cells. All 4H11-28z⁺ T cell treated mice demonstrated enhanced survival when compared to control 19-28z⁺ T cell treated mice (**p=0.0011), with an overall long-term survival of 25% at day 120.

Figure 17: CD8 leader sequence, CD3 zeta chain intracellular domain sequence, (G4S)3 serine-glycine linker sequence, CD8 transmembrane domain sequence, and CD28 transmembrane + intracellular domains (-STOP) sequence.

Figure 18: SFG_4H11z sequence.

Figure 19: SFG-4H11-28z sequence.

Figure 20: (A) Mouse MUC16-CD Peptide 1 (SEQ ID NO:21), Mouse first Cysteine Loop Peptide 2 (SEQ ID NO:22), and Mouse second Cysteine Loop Peptide 3 (SEQ ID NO:23). (B) Alignment of mouse MUC16 (SEQ ID NO:24)

and human MUC16 (SEQ ID NO:25) amino acid sequences. A cysteine was added to the peptide sequence at the N terminus of Peptide 1 and Peptide 3 for better conjugation with KLH.

Figure 21: ID8 extract with 1:10 dilution of Mouse MUC16 monoclonal Primary Supernatants.

Figure 22: BR5-FVB1 extract with 1:10 dilution of Mouse MUC16 monoclonal Primary Supernatants

Figure 23: Western Blot showing 38 hamster's monoclonal antibody Supernatants on ID8 cell extracts.

Figure 24 (A) Nucleotide sequence encoding 12B10-3G10-V_H (SEQ ID NO:26), (B) 12B10-3G10-V_H Amino Acid sequence (SEQ ID NO:27), (C) Nucleotide sequence encoding 12B10-3G10-V_L (SEQ ID NO:28) (Note the VL has an optional *NotI* site added by the primer for cloning, and (D) 12B10-3G10-V_L Amino Acid sequence (SEQ ID NO:29).

Figure 25: FACS Analysis with Purified 12B10-3G10 mAb on ID8 (mouse), OVCAR-3 (human) and BR5-FVB1 (mouse) cell lines.

DEFINITIONS

[0022] To facilitate understanding of the invention, a number of terms are defined below.

[0023] The terms "purified," "isolated," and grammatical equivalents thereof as used herein, refer to the reduction in the amount of at least one undesirable component (such as cell, protein, nucleic acid sequence, carbohydrate, etc.) from a sample, including a reduction by any numerical percentage of from 5% to 100%, such as, but not limited to, from 10% to 100%, from 20% to 100%, from 30% to 100%, from 40% to 100%, from 50% to 100%, from 60% to 100%, from 70% to 100%, from 80% to 100%, and from 90% to 100%. Thus purification results in an "enrichment," i.e., an increase in the amount of a desirable component cell, protein, nucleic acid sequence, carbohydrate, etc.).

[0024] The term "antibody" refers to an immunoglobulin (e.g., IgG, IgM, IgA, IgE, IgD, etc.). The basic functional unit of each antibody is an immunoglobulin (Ig) monomer (containing only one immunoglobulin ("Ig") unit). Included within this definition are polyclonal antibody, monoclonal antibody, and chimeric antibody.

[0025] The variable part of an antibody is its "V domain" (also referred to as "variable region"), and the constant part is its "C domain" (also referred to as "constant region") such as the kappa, lambda, alpha, gamma, delta, epsilon and mu constant regions. The "variable domain" is also referred to as the "F_v region" and is the most important region for binding to antigens. More specifically, variable loops, three each on the light (V_L) and heavy (V_H) chains are responsible for binding to the antigen. These loops are referred to as the "complementarity determining regions" ("CDRs" and "idiotypes.")

[0026] The immunoglobulin (Ig) monomer of an antibody is a "Y"-shaped molecule that contains four polypeptide chains: two light chains and two heavy chains, joined by disulfide bridges.

[0027] Light chains are classified as either (λ) or kappa (κ). A light chain has two successive domains: one constant domain ("C_L") and one variable domain ("V_L"). The variable domain, V_L, is different in each type of antibody and is the active portion of the molecule that binds with the specific antigen. The approximate length of a light chain is 211 to 217 amino acids.

[0028] Each heavy chain has two regions, the *constant region* and the *variable region*. There are five types of mammalian Ig heavy denoted α , δ , ε , γ , and μ . The type of heavy chain present defines the *class* of antibody; these chains are found in IgA, IgD, IgE, IgG, and IgM antibodies, respectively. Distinct heavy chains differ in size and composition; α and γ contain approximately 450 amino acids, while μ and ε have approximately 550 amino acids. Each heavy chain has two regions, the constant region ("C_H") and the variable ("V_H") region. The constant region (C_H) is identical in all antibodies of the same isotype, but differs in antibodies of different isotypes. Heavy chains γ , α and δ have a constant region composed of *three* tandem (in a line) Ig domains, and a hinge region for added flexibility. Heavy chains μ and ε have a constant region composed of *four* immunoglobulin domains. The variable region (V_H) of the heavy chain differs in antibodies produced by different B cells, but is the same for all antibodies produced by a single B cell or B cell clone. The variable region of each heavy chain is approximately 110 amino acids long.

[0029] The term "specifically binds" and "specific binding" when made in reference to the binding of two molecules (e.g. antibody to an antigen, etc.) refer to an interaction of the two molecules that is dependent upon the presence of a particular structure on one or both of the molecules. For example, if an antibody is specific for epitope "A" on the molecule, then the presence of a protein containing epitope A (or free, unlabelled A) in a reaction containing labeled "A" and the antibody will reduce the amount of labeled A bound to the antibody.

[0030] The term "capable of binding" when made in reference to the interaction between a first molecule (such as antibody, polypeptide, glycoprotein, nucleic acid sequence, etc.) and a second molecule (such as antigen, polypeptide, glycoprotein, nucleic acid sequence, etc.) means that the first molecule binds to the second molecule in the presence of suitable concentration of salts, and suitable temperature, and pH. The conditions for binding molecules may be determined using routine and/or commercially available methods

[0031] The terms "antigen," "immunogen," "antigenic," "immunogenic," "antigenically active," "immunologic," and "immunologically active" when made in reference to a molecule, refer to any substance that is capable of inducing a specific humoral immune response (including eliciting a soluble antibody response) and/or cell-mediated immune response

(including eliciting a CTL response). Antigenic peptides preferably contain at least 5, at least 6, at least 7, at least 8, at least 9, and more preferably at least 10 amino acids. To elicit antibody production, in one embodiment, antigens may be conjugated to keyhole limpet hemocyanin (KLH) or fused to glutathione-S-transferase (GST).

[0032] A "cognate antigen" when in reference to an antigen that binds to an antibody, refers to an antigen that is capable of specifically binding to the antibody.

[0033] In one embodiment, the antigen comprises an epitope. The terms "epitope" and "antigenic determinant" refer to a structure on an antigen, which interacts with the binding site of an antibody or T cell receptor as a result of molecular complementarity. An epitope may compete with the intact antigen, from which it is derived, for binding to an antibody.

[0034] As used herein the terms "portion" and "fragment" when made in reference to a nucleic acid sequence or protein sequence refer to a piece of that sequence that may range in size from 2 contiguous nucleotides and amino acids, respectively, to the entire sequence minus one nucleotide and amino acid, respectively.

[0035] A "subject" that may benefit from the invention's methods includes any multicellular animal, preferably a mammal. Mammalian subjects include humans, non-human primates, murines, ovines, bovines, ruminants, lagomorphs, porcines, caprines, equines, canines, felines, aves, etc.). Thus, mammalian subjects are exemplified by mouse, rat, guinea pig, hamster, ferret and chinchilla. The invention's compositions and methods are also useful for a subject "in need of reducing one or more symptoms of a disease, e.g., in need of reducing cancer metastasis and/or in need of reducing one or more symptoms of cancer, includes a subject that exhibits and/or is at risk of exhibiting one or more symptoms of the disease. For Example, subjects may be at risk based on family history, genetic factors, environmental factors, etc. This term includes animal models of the disease. Thus, administering a composition (which reduces a disease and/or which reduces one or more symptoms of a disease) to a subject in need of reducing the disease and/or of reducing one or more symptoms of the disease includes prophylactic administration of the composition (i.e., before the disease and/or one or more symptoms of the disease are detectable) and/or therapeutic administration of the composition (i.e., after the disease and/or one or more symptoms of the disease are detectable). The invention's compositions and methods are also useful for a subject "at risk" for disease (such as cancer) refers to a subject that is predisposed to contracting and/or expressing one or more symptoms of the disease. This predisposition may be genetic (e.g., a particular genetic tendency to expressing one or more symptoms of the disease, such as heritable disorders, etc.), or due to other factors (e.g., environmental conditions, exposures to detrimental compounds, including carcinogens, present in the environment, etc.). The term subject "at risk" includes subjects "suffering from disease," i.e., a subject that is experiencing one or more symptoms of the disease. It is not intended that the present invention be limited to any particular signs or symptoms. Thus, it is intended that the present invention encompass subjects that are experiencing any range of disease, from sub-clinical symptoms to full-blown disease, wherein the subject exhibits at least one of the indicia (e.g., signs and symptoms) associated with the disease.

[0036] "Cancer cell" refers to a cell undergoing early, intermediate or advanced stages of multistep neoplastic progression as previously described (Pitot et al., Fundamentals of Oncology, 15-28 (1978)). This includes cells in early, intermediate and advanced stages of neoplastic progression including "pre-neoplastic cells (i.e., "hyperplastic cells and dysplastic cells), and neoplastic cells in advanced stages of neoplastic progression of a dysplastic cell.

[0037] "Metastatic" cancer cell refers to a cancer cell that is translocated from a primary cancer site (i.e., a location where the cancer cell initially formed from a normal, hyperplastic or dysplastic cell) to a site other than the primary site, where the translocated cancer cell lodges and proliferates.

[0038] "Cancer" refers to a plurality of cancer cells that may or may not be metastatic, such as ovarian cancer, breast cancer, lung cancer, prostate cancer, cervical cancer, pancreatic cancer, colon cancer, stomach cancer, esophagus cancer, mouth cancer, tongue cancer, gum cancer, skin cancer (e.g., melanoma, basal cell carcinoma, Kaposi's sarcoma, etc.), muscle cancer, heart cancer, liver cancer, bronchial cancer, cartilage cancer, bone cancer, testis cancer, kidney cancer, endometrium cancer, uterus cancer, bladder cancer, bone marrow cancer, lymphoma cancer, spleen cancer, thymus cancer, thyroid cancer, brain cancer, neuron cancer, mesothelioma, gall bladder cancer, ocular cancer (e.g., cancer of the cornea, cancer of uvea, cancer of the choroids, cancer of the macula, vitreous humor cancer, etc.), joint cancer (such as synovium cancer), glioblastoma, lymphoma, and leukemia.

[0039] "Sample" and "specimen" as used herein are used in their broadest sense to include any composition that is obtained and/or derived from a biological source, as well as sampling devices (e.g., swabs), which are brought into contact with biological or environmental samples. "Biological samples" include those obtained from a subject, including body fluids (such as urine, blood, plasma, fecal matter, cerebrospinal fluid (CSF), semen, sputum, and saliva), as well as solid tissue. Biological samples also include a cell (such as cell lines, cells isolated from tissue whether or not the isolated cells are cultured after isolation from tissue, fixed cells such as cells fixed for histological and/or immunohistochemical analysis), tissue (such as biopsy material), cell extract, tissue extract, and nucleic acid (e.g., DNA and RNA) isolated from a cell and/or tissue, and the like. These examples are illustrative, and are not to be construed as limiting the sample types applicable to the present invention.

[0040] "Overexpression of MUC16" by a cell of interest (such as a cancer cell) refers to a higher level of MUC16 protein and/or mRNA that is expressed by the cell of interest compared to a control cell (such as a non-cancerous cell, normal

cell, etc.).

[0041] "Internalize" when in reference to a cell refers to entry from the extracellular medium into the cell membrane and/or cytoplasm.

5 [0042] "Glycosylated" when in reference to a sequence (e.g., an amino acid sequence or nucleotide sequence) refers to a sequence that is covalently linked to one or more saccharides.

10 [0043] "Pharmaceutical" and "physiologically tolerable" composition refers to a composition that contains pharmaceutical molecules, *i.e.*, molecules that are capable of administration to or upon a subject and that do not substantially produce an undesirable effect such as, for example, adverse or allergic reactions, dizziness, gastric upset, toxicity and the like, when administered to a subject. Preferably also, the pharmaceutical molecule does not substantially reduce the activity of the invention's compositions. Pharmaceutical molecules include "diluent" (*i.e.*, "carrier") molecules and excipients.

15 [0044] "Immunogenically effective" and "antigenically effective" amount of a molecule interchangeably refer to an amount of the molecule that is capable of inducing a specific humoral immune response (including eliciting a soluble antibody response) and/or cell-mediated immune response (including eliciting a cytotoxic T-lymphocyte (CTL) response).

20 [0045] "Treating" a disease refers to reducing one or more symptoms (such as objective, subjective, pathological, clinical, sub-clinical, etc.) of the disease.

25 [0046] The terms "reduce," "inhibit," "diminish," "suppress," "decrease," and grammatical equivalents (including "lower," "smaller," etc.) when in reference to the level of any molecule (e.g., amino acid sequence, and nucleic acid sequence, antibody, etc.), cell, and/or phenomenon (e.g., disease symptom, binding to a molecule, specificity of binding of two molecules, affinity of binding of two molecules, specificity to cancer, sensitivity to cancer, affinity of binding, enzyme activity, etc.) in a first sample (or in a first subject) relative to a second sample (or relative to a second subject), mean that the quantity of molecule, cell and/or phenomenon in the first sample (or in the first subject) is lower than in the second sample (or in the second subject) by any amount that is statistically significant using any art-accepted statistical method of analysis. In one embodiment, the quantity of molecule, cell and/or phenomenon in the first sample (or in the first subject) is at least 10% lower than, at least 25% lower than, at least 50% lower than, at least 75% lower than, and/or at least 90% lower than the quantity of the same molecule, cell and/or phenomenon in the second sample (or in the second subject). In another embodiment, the quantity of molecule, cell, and/or phenomenon in the first sample (or in the first subject) is lower by any numerical percentage from 5% to 100%, such as, but not limited to, from 10% to 100%, from 20% to 100%, from 30% to 100%, from 40% to 100%, from 50% to 100%, from 60% to 100%, from 70% to 100%, from 80% to 100%, and from 90% to 100% lower than the quantity of the same molecule, cell and/or phenomenon in the second sample (or in the second subject). In one embodiment, the first subject is exemplified by, but not limited to, a subject that has been manipulated using the invention's compositions and/or methods. In a further embodiment, the second subject is exemplified by, but not limited to, a subject that has not been manipulated using the invention's compositions and/or methods. In an alternative embodiment, the second subject is exemplified by, but not limited to, a subject to that has been manipulated, using the invention's compositions and/or methods, at a different dosage and/or for a different duration and/or via a different route of administration compared to the first subject. In one embodiment, the first and second subjects may be the same individual, such as where the effect of different regimens (e.g., of dosages, duration, route of administration, etc.) of the invention's compositions and/or methods is sought to be determined in one individual. In another embodiment, the first and second subjects may be different individuals, such as when comparing the effect of the invention's compositions and/or methods on one individual participating in a clinical trial and another individual in a hospital.

30 [0047] The terms "increase," "elevate," "raise," and grammatical equivalents (including "higher," "greater," etc.) when in reference to the level of any molecule (e.g., amino acid sequence, and nucleic acid sequence, antibody, etc.), cell, and/or phenomenon (e.g., disease symptom, binding to a molecule, specificity of binding of two molecules, affinity of binding of two molecules, specificity to cancer, sensitivity to cancer, affinity of binding, enzyme activity, etc.) in a first sample (or in a first subject) relative to a second sample (or relative to a second subject), mean that the quantity of the molecule, cell and/or phenomenon in the first sample (or in the first subject) is higher than in the second sample (or in the second subject) by any amount that is statistically significant using any art-accepted statistical method of analysis. In one embodiment, the quantity of the molecule, cell and/or phenomenon in the first sample (or in the first subject) is at least 10% greater than, at least 25% greater than, at least 50% greater than, at least 75% greater than, and/or at least 90% greater than the quantity of the same molecule, cell and/or phenomenon in the second sample (or in the second subject). This includes, without limitation, a quantity of molecule, cell, and/or phenomenon in the first sample (or in the first subject) that is at least 10% greater than, at least 15% greater than, at least 20% greater than, at least 25% greater than, at least 30% greater than, at least 35% greater than, at least 40% greater than, at least 45% greater than, at least 50% greater than, at least 55% greater than, at least 60% greater than, at least 65% greater than, at least 70% greater than, at least 75% greater than, at least 80% greater than, at least 85% greater than, at least 90% greater than, and/or at least 95% greater than the quantity of the same molecule, cell and/or phenomenon in the second sample (or in the second subject). In one embodiment, the first subject is exemplified by, but not limited to, a subject that has

been manipulated using the invention's compositions and/or methods. In a further embodiment, the second subject is exemplified by, but not limited to, a subject that has not been manipulated using the invention's compositions and/or methods. In an alternative embodiment, the second subject is exemplified by, but not limited to, a subject to that has been manipulated, using the invention's compositions and/or methods, at a different dosage and/or for a different duration and/or via a different route of administration compared to the first subject. In one embodiment, the first and second subjects may be the same individual, such as where the effect of different regimens (e.g., of dosages, duration, route of administration, etc.) of the invention's compositions and/or methods is sought to be determined in one individual. In another embodiment, the first and second subjects may be different individuals, such as when comparing the effect of the invention's compositions and/or methods on one individual participating in a clinical trial and another individual in a hospital.

[0048] The terms "alter" and "modify" when in reference to the level of any molecule and/or phenomenon refer to an increase or decrease.

[0049] Reference herein to any numerical range expressly includes each numerical value (including fractional numbers and whole numbers) encompassed by that range. To illustrate, and without limitation, reference herein to a range of "at least 50" includes whole numbers of 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, etc., and fractional numbers 50.1, 50.2 50.3, 50.4, 50.5, 50.6, 50.7, 50.8, 50.9, etc. In a further illustration, reference herein to a range of "less than 50" includes whole numbers 49, 48, 47, 46, 45, 44, 43, 42, 41, 40, etc., and fractional numbers 49.9, 49.8, 49.7, 49.6, 49.5, 49.4, 49.3, 49.2, 49.1, 49.0, etc. In yet another illustration, reference herein to a range of from "5 to 10" includes each whole number of 5, 6, 7, 8, 9, and 10, and each fractional number such as 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, etc.

DESCRIPTION OF THE INVENTION

[0050] The invention provides antibodies, and antigen-binding fragments thereof, that specifically bind to a polypeptide, or antigenic portion thereof, wherein the polypeptide is selected from a) MUC16 ectodomain polypeptide, b) MUC16 cytoplasmic domain polypeptide, and c) MUC16 extracellular domain polypeptide that contains a cysteine loop polypeptide. The invention's antibodies and compositions containing them are useful in diagnostic and therapeutic applications for diseases in which MUC16 is overexpressed, such as cancer.

[0051] Using synthetic peptides, the inventors raised novel-specific antibodies to the carboxy-terminal portion of MUC16, retained by the cell, proximal to the putative cleavage site. These antibodies were characterized using fluorescence-activated cell-sorting analysis, enzyme-linked immunoassay, Western blot analysis, and immunohistochemistry. Each of the selected monoclonal antibodies was reactive against recombinant GST- Δ MUC16^{C114} protein and the MUC16 transfected SKOV3 cell line. Three antibodies, 4H11, 9C9, and 4A5 antibodies demonstrated high affinities by Western blot analysis and saturation-binding studies of transfected SKOV3 cells, and displayed antibody internalization. Immunohistochemical positivity with novel antibody 4H11 was similar to OC125, but with important differences, including diffuse positivity in lobular breast cancer and a small percentage of OC125-negative ovarian carcinomas which showed intense and diffuse 4H11 antibody binding.

[0052] The invention's compositions and methods are useful for diagnostic and therapeutic applications, as well as biologic studies such as membrane receptor trafficking and intracellular events. Diagnostic applications include, for example, detection of cancer using immunohistochemical, radiographic imaging, enzyme-linked immunosorbent assay (ELISA), fluorescence-activated cell sorting (FACS), Western blot, and/or immunoprecipitation detection.

[0053] The invention is further described under (A) MUC16, (B) Prior Art Antibodies, (C) Invention's Antibodies, (D) Hybridoma Cell Lines, (E) Conjugates Of The Invention's Antibodies Linked To Cytotoxic Agents And/Or Prodrugs, (F) Detecting Mucl6 Portions And Diagnostic Applications, and (G) Therapeutic Applications.

A. MUC16

[0054] "MUC16," "MUC-16" and "Mucin 16" interchangeably refer to a type I membrane protein that is part of a family of tethered mucins. A schematic of Mucl6 is in Figure 10, and an exemplary human Mucl6 amino acid sequence (SEQ ID NO:13) is shown in Figure 9A. An alignment of mouse MUC16 (SEQ ID NO:24) and human MUC16 (SEQ ID NO:25) amino acid sequences is shown in Figure 20B. The term "type 1 protein" refers to a "membrane protein" that is at least partially embedded in the lipid bilayer of a cell, virus and the like, and that contains a transmembrane domain (TM) sequence embedded in the lipid bilayer of the cell, virus and the like. The portion of the protein on the NH₂-terminal side of the TM domain is exposed on the exterior side of the membrane, and the COOH-terminal portion is exposed on the cytoplasmic side.

[0055] Recently, the sequence of the cDNA-encoding MUC16/CA125 was described by Yin and Lloyd in 2001 and completed by O'Brien in 2002 (10-12). The complete MUC16 protein has various components consisting of a cytoplasmic tail with potential phosphorylation sites, a transmembrane domain, and an external domain proximal to an apparent cleavage site. Distal to the cleavage site, the released external domain contains 16-20 tandem repeats of 156 amino

acids, each with many potential glycosylation sites (11). The overall repeat structure (Figure 10) is well conserved across mammals, but the repeats are not completely identical in exact amino acid composition.

[0056] The MUC16 protein is part of a family of tethered mucins that includes both MUC1 and MUC4 (13). MUC1 is present in a variety of tissues and appears to signal through a beta catenin pathway, interact with EGF receptor, mediates drug resistance and can act as an oncogene (14-17). The MUC4 protein is also expressed in a variety of tissues but is common on neoplasms of the gastrointestinal track (18-20). In contrast, the CA125 antigen has been more restricted in its distribution and is present primarily in gynecologic tissues and overexpressed in Müllerian neoplasms (21). However, the CA125 antigen, recognized by the OC125 antibody, is a heavily glycosylated antigen expressed in the tandem repeat region of the larger MUC16 protein. This glycoprotein is typically shed from a putative cleavage site in the extracellular domain of the MUC16 peptide backbone.

[0057] Thus, "MUC16" protein contains (a) a "cytoplasmic domain," (b) a "transmembrane domain," and (c) a "extracellular domain." The MUC16 extracellular domain contains a cleavage site between a non-glycosylated ectodomain and a large glycosylated ectodomain of tandem repeats.

[0058] The terms "cytoplasmic domain," "cytoplasmic tail," and "CT" are used interchangeably to refer to a protein sequence, and portions thereof, that is on the cytoplasmic side of the lipid bilayer of a cell, virus and the like. Methods for determining the CT of a protein are known in the art Elofsson et al. (2007) *Annu. Rev. Biochem.* 76:125-140; Bernsel et al. (2005) *Protein Science* 14:1723-1728).

[0059] The terms "transmembrane domain" and "TM" are used interchangeably to refer to a protein sequence, and portions thereof, that spans the lipid bilayer of a cell, virus and the like. Methods for determining the TM of a protein are known in the art (Elofsson et al. (2007) *Annu. Rev. Biochem.* 76:125-140; Bernsel et al. (2005) *Protein Science* 14:1723-1728).

[0060] The terms "ectodomain" and "extracellular domain" are interchangeably used when in reference to a membrane protein to refer to the portion of the protein that is exposed on the extracellular side of a lipid bilayer of a cell, virus and the like. Methods for determining the ectodomain of a protein are known in the art (Singer (1990) *Annu. Rev. Cell Biol.* 6:247-296 and High et al. (1993) *J. Cell Biol.* 121:743-750, and McVector software, Oxford Molecular).

[0061] The exemplary Mucl6 of Figure 9 contains (a) a "MUC16 cytoplasmic domain" from amino acid 14476 to 14507, vttr rkkegeynvq qqcpgyyqsh ldledlq (SEQ ID NO:16), that interacts with the intracellular signal transduction machinery; (b) a "MUC16 transmembrane domain" from amino acid 14452 to 14475, fwavilgl agllgvitcl icgvl (SEQ ID NO:14) that spans the plasma membrane; and (c) a "MUC16 extracellular domain" amino acid 1 to 14392 (SEQ ID NO:13) that contains a cleavage site between an non-glycosylated ectodomain and a large glycosylated ectodomain of tandem repeats. The "MUC16 ectodomain" is exemplified by nfsplar rvdrvaiyee flrmtrngtq lqnfldrss vlvdgysprn nepltgnsdl p (SEQ ID NO:17) from amino acid 14394 to 14451 of SEQ ID NO:13 of Figure 9A.

[0062] The exemplary MUC16 ectodomain contains both Polypeptide 1 (nfsplar rvdrvaiyee (SEQ ID NO:01), which is from amino acid 14394 to 14410 of SEQ ID NO:13), and Polypeptide 2 (tldrss vlvdgysprn ne (SEQ ID NO:02), which is from amino acid 14425 to 14442 of SEQ ID NO:13), against which the invention's exemplary antibodies were produced. Polypeptide 3, cgvlvttr rkkegeynvq qq (SEQ ID NO:03) is from amino acid 14472 to 14492 of SEQ ID NO:13, and contains both a transmembrane domain portion (cgvl) and a cytoplasmic domain portion (vttr rkkegeynvq qq (SEQ ID NO:18)). Thus, the CGVL is optional in SEQ ID NO:03, as it is part of the transmembrane domain.

[0063] Polypeptide 4 (ksyf sdcqvstfrs vpnrrhtgvd slcnfspl (SEQ ID NO:15), is located in a non-glycosylated portion of the Mucl6 extracellular domain, is from amino acid 14367 to 14398 of SEQ ID NO:13, and contains a cysteine loop polypeptide cqvstfrs vprnrrhtgvdslc (SEQ ID NO:13).

B. Prior Art Antibodies

[0064] The expression of the MUC16/CA125 antigen has long been associated with gynecologic tissues. "CA125," "CA-125," "Cleaved CA125," and "cleaved CA-125," interchangeably refer to the glycosylated external domain of the tethered mucin MUC16, that is distal to the cleavage site (Payne et al., U.S. Pat. No. 7,202,346). This released external domain contains 16-20 tandem repeats of 156 amino acids, each with potential glycosylation sites. An apparent cysteine-based disulfide loop of 19 amino acids is present in all repeats and the N-terminal end contains a hairbrush structure that is heavily 0-glycosylated (11). The deduced size would be 2.5 MD for the protein part, and with added carbohydrates, this could increase to 5 MD (10, 26).

[0065] CA125, though it is not sensitive or specific enough to be used as a general screening tool, is routinely used to monitor patients with ovarian carcinoma. The tests used to measure CA125 are antibody based detection methods, as are the immunohistochemical stains routinely performed for diagnostic purposes. The epitope specificity of 26 antibodies to MUC16 was studied in the first report from the International Society of Oncodevelopmental Biology and Medicine (ISOBM) TD-1 Workshop and the application of 22 antibodies to immunohistochemistry was reported in the second report from the TD-1 workshop (7, 21). The existing antibodies were grouped as OC125-like, M11-like, or OV197-like and all of the known antibodies recognized CA125 epitopes in the repeating, glycosylated elements in the external

domain of the tethered mucin MUC16, distal to the putative cleavage site.

[0066] The vast majority of MUC16-reactive antibodies, including OC125, react with the glycosylation-dependent antigen present exclusively in the cleaved portion of the molecule so the true distribution of MUC16 expression is not known (21). There is currently no antibody available to track the fate of the remaining MUC16 protein fragment after cleavage and CA125 release.

C. Invention's Antibodies

[0067] In order to better explore the biology of human MUC16, the inventors have derived monoclonal antibodies against the extracellular portion of the MUC16-carboxy terminus, proximal to the putative cleavage site, as well as one monoclonal antibody against the internal cytoplasmic domain. In contrast to prior antibodies, these are derived against the peptide backbone of MUC16 and are not directed at complex glycoprotein epitopes. Since these epitopes are proximal to the cleavage site, they are unlikely to be found in the circulation and provide novel targets for diagnostic methods and therapeutic interventions. Data herein demonstrate the identification and characterization of exemplary antibodies developed against the MUC16 peptide backbone.

[0068] The inventors have developed novel antibodies that are directed at the non-cleaved, non-glycosylated peptide backbone of MUC16. These are exemplified by both 4H11 and 9C9 antibodies, which react with peptide sequences in the non-cleaved ectodomain of MUC16 and are detectable on the surface of ovarian cancer cell lines and in paraffin-fixed tissues from human ovarian cancer surgical specimens. The antibodies show high affinity and are readily internalized by ovarian cancer cells when bound to the ectodomain of MUC16. This suggests that the proximal portion of MUC16 has an independent biology from the more distal, cleaved portion of the mucin. It also suggests that the proximal portions of MUC16 could provide convenient targets for diagnostic and therapeutic interventions. Targeting the peptide backbone of MUC16 provides highly specific tissue delivery for genetically engineered cells, liposomes, or antibody conjugates, including conjugates with the invention's antibodies.

[0069] The invention's antibodies, exemplified by antibody 4H11, are useful as tools in immunohistochemistry. Data herein show that 4H11 is relatively specific to high-grade ovarian serous carcinoma. Invasive lobular breast carcinoma is the major exception and shows extensive MUC16 protein as detected by 4H11. Lobular carcinoma of the breast has unique biology which is characterized by a propensity to metastasize to serosal surfaces (27). Since MUC16 is the cognate binding partner of mesothelin, this may have important implications for lobular cancer (28). The discordance rates for OC125 and 4H11 also suggest that 4H11 might provide additional, independent information from OC125 in a subset of ovarian carcinomas. Some tumors that are negative with OC125 retain cytoplasmic and extracellular portions of the MUC16 glycoprotein, portions of the molecule that are likely involved in transduction of signals potentially important in the malignant phenotype.

[0070] Thus, in one embodiment, the invention provides an isolated antibody, or an antigen-binding fragment thereof, that specifically binds to a polypeptide, or antigenic portion thereof, wherein the polypeptide is exemplified by a) MUC16 ectodomain polypeptide (exemplified by NFSPLAR RVDRVAIYEE FLRMTRNGTQ LQNFTLDRSS VLVDGYSPNR NEPLTGNSDL P (SEQ ID NO:17)), b) MUC16 cytoplasmic domain polypeptide (exemplified by VTTRR RKKEGEYNVQ QQ (SEQ ID NO:18), which is contained within each of CGVLVTTRR RKKEGEYNVQ QQ (SEQ ID NO:03) and LVTTRR RKKEGEYNVQ QQ (SEQ ID NO:20)), and c) MUC16 extracellular domain polypeptide that contains a cysteine loop polypeptide CQVSTFRSVPNRHHTGVDSL (SEQ ID NO:19).

[0071] One advantage of the invention's antibodies is that the antibody internalizes into a cell, thereby being useful in applications for delivery inside a cell, such as disease therapy. "Internalized" when in reference to a molecule that is internalized by a cell refers to passage of the molecule that is in contact with the extracellular surface of a cell membrane across the cell membrane to the intracellular surface of the cell membrane and/or into the cell cytoplasm. Methods for determining internalization are disclosed herein, including the detection of radiolabeled molecule inside the cell (Figure 5B).

[0072] In one embodiment, the invention's antibodies specifically bind to MUC16 ectodomain polypeptide that comprises a polypeptide selected from the group consisting of Polypeptide 1 NFSPLARRVDRVAIYEE (SEQ ID NO:01) and Polypeptide 2 TLDRSSVLVDGYSPNRNE (SEQ ID NO:02). Data herein show that the invention's antibodies specifically bind to GST- Δ MUC16^{c114} (Example 2, Table 1A). The specificity of the invention's antibodies is in contrast to prior art antibodies (e.g., VK8, M11 and OC125 antibodies) that did not bind to GST-4MUC16^{c114} purified protein or cell lysates of the SKOV3-phrGFP- Δ MUC16^{c114} cell line (Example 2, Figure 2).

[0073] In a further embodiment, the invention's antibodies lack specific binding to a glycosylated MUC16 extracellular domain, exemplified by the cleaved CA-125 described in Payne et al., U.S. Pat. No. 7,202,346.

[0074] While not intending to limit the sequence of the V_L and V_H regions of the invention's antibodies, in one embodiment, the antibody specifically binds to the Polypeptide 2 (SEQ ID NO:02) of the MUC16 ectodomain polypeptide, wherein the antibody comprises a variable heavy (V_H) chain encoded by SEQ ID NO:06 (i.e., the antibody 4H11 variable heavy (V_H) chain amino acid sequence of Figure 8), and a variable light (V_L) chain encoded by SEQ ID NO:07 (i.e., the

antibody 4H11 variable light (V_L) chain amino acid sequence of Figure 8). In a particular embodiment, the antibody is chimeric, wherein at least one of the V_L and V_H chains is fused to a human immunoglobulin constant region.

[0075] Also without intending to limit the sequence of the V_L and V_H regions of the invention's antibodies, in one embodiment, the antibody specifically binds to the Polypeptide 2 (SEQ ID NO:02) of the MUC16 ectodomain polypeptide, wherein the antibody comprises a variable heavy (V_H) chain encoded by SEQ ID NO:04 (i.e., the antibody 4A5 variable heavy (V_H) chain nucleotide sequence of Figure 8), and a variable light (V_L) chain encoded by SEQ ID NO:05 (i.e., the antibody 4A5 variable light (V_L) chain nucleotide sequence of Figure 8). In a particular embodiment, the antibody is chimeric wherein at least one of the V_L and V_H chains is covalently linked to a human immunoglobulin constant region.

[0076] Still without intending to limit the sequence of the V_L and V_H regions of the invention's antibodies, in one embodiment, the antibody specifically binds to the Polypeptide 1 (SEQ ID NO:01) of the MUC16 ectodomain polypeptide, wherein the antibody comprises a variable heavy (V_H) chain encoded by SEQ ID NO:08 (i.e., the antibody 9B11 variable heavy (V_H) chain nucleotide sequence of Figure 8), and a variable light (V_L) chain encoded by at least one of SEQ ID NO:09 (i.e., antibody 9B11 variable light ($V_{L,A}$) chain nucleotide sequence of Figure 8), and SEQ ID NO:10 (i.e., the antibody 9B11 variable light ($V_{L,B}$) chain nucleotide sequence of Figure 8). In a particular embodiment, the antibody is chimeric wherein at least one of the V_L and V_H chains is covalently linked to a human immunoglobulin constant region.

[0077] While not intending to restrict the source of antigen to which the invention's antibodies bind, in one embodiment, the MUC16 ectodomain polypeptide is expressed by a cell. Data herein show that the invention's exemplary antibodies bind to SKOV3 cells transduced with phrGFP- Δ MUC16^{c114} (Example 2).

[0078] While not limiting the sequence of antigen to which the invention's antibodies bind, in a further embodiment, the invention's antibodies specifically bind to a MUC16 cytoplasmic domain polypeptide that comprises VTTRR RKKEGEYNVQ QQ (SEQ ID NO:18). In a particular embodiment, the MUC16 cytoplasmic domain polypeptide comprises Polypeptide 3 CGVLVTTRRKKEGEYNVQQQ (SEQ ID NO:03). In some embodiment, the MUC16 cytoplasmic domain polypeptide is expressed by a cell. For example, data herein show that the invention's exemplary antibody binds to SKOV3 cells transduced with phrGFP- Δ MUC16^{c114} (Example 2). In a particular embodiment, the cell is permeabilized to facilitate internalization of the antibody into the cell so that it comes into contact with its cytoplasmic antigen.

[0079] Still without limiting the sequence of antigen to which the invention's antibodies bind, in a further embodiment, the invention's antibodies bind to a MUC16 extracellular domain polypeptide that contains a cysteine loop polypeptide CQVSTFRSVPNRHHTGVDSL (SEQ ID NO:19). In a more preferred embodiment, the MUC16 extracellular domain polypeptide comprises Polypeptide 4 KSYF SDCQVSTFRS VPNRHHTGVD SLCNFSP (SEQ ID NO:15).

[0080] Still without intending to limit the sequence of the V_L and V_H regions of the invention's antibodies, in one embodiment, the antibody specifically binds to Polypeptide 4 (SEQ ID NO:15) of the MUC16 extracellular domain polypeptide, wherein the antibody comprises a variable heavy (V_H) chain encoded by SEQ ID NO:11 (i.e., the antibody 24B3 variable heavy (V_H) chain amino acid sequence of Figure 8), and a variable light (V_L) chain encoded by SEQ ID NO:12 (i.e., the antibody 24B3 variable light (V_L) chain amino acid sequence of Figure 8).

[0081] The invention contemplates chimeric antibodies (see U.S. Pat. No. 7,662,387), monoclonal antibodies, recombinant antibodies, an antigen-binding fragment of a recombinant antibody, a humanized antibody, and an antibody displayed upon the surface of a phage (U.S. Pat. No. 7,202,346). In particular, the invention contemplates antibody fragments that contain the idiotype ("antigen-binding region" or "antigen-binding fragment") of the antibody molecule. For example, such antigen-binding fragments include, but are not limited to, the Fab region, F(ab')2 fragment, pFc' fragment, and Fab' fragments.

[0082] The "Fab region" and "fragment, antigen binding region," interchangeably refer to portion of the antibody arms of the immunoglobulin "Y" that function in binding antigen. The Fab region is composed of one constant and one variable domain from each heavy and light chain of the antibody. Methods are known in the art for the construction of Fab expression libraries (Huse et al., Science, 246:1275-1281 (1989)) to allow rapid and easy identification of monoclonal Fab fragments with the desired specificity. In another embodiment, Fc and Fab fragments can be generated by using the enzyme papain to cleave an immunoglobulin monomer into two Fab fragments and an Fc fragment. The enzyme pepsin cleaves below the hinge region, so a "F(ab')2 fragment" and a "pFc' fragment" is formed. The F(ab')2 fragment can be split into two "Fab' fragments" by mild reduction.

[0083] The invention also contemplates a "single-chain antibody" fragment, i.e., an amino acid sequence having at least one of the variable or complementarity determining regions (CDRs) of the whole antibody, and lacking some or all of the constant domains of the antibody. These constant domains are not necessary for antigen binding, but constitute a major portion of the structure of whole antibodies. Single-chain antibody fragments are smaller than whole antibodies and may therefore have greater capillary permeability than whole antibodies, allowing single-chain antibody fragments to localize and bind to target antigen-binding sites more efficiently. Also, antibody fragments can be produced on a relatively large scale in prokaryotic cells, thus facilitating their production. Furthermore, the relatively small size of single-chain antibody fragments makes them less likely to provoke an immune response in a recipient than whole antibodies. Techniques for the production of single-chain antibodies are known (U.S. 4,946,778). The variable regions of the heavy and light chains can be fused together to form a "single-chain variable fragment" ("scFv fragment"), which is only half

the size of the Fab fragment, yet retains the original specificity of the parent immunoglobulin.

[0084] The "Fc region" and "Fragment, crystallizable region" interchangeably refer to portion of the base of the immunoglobulin "Y" that function in role in modulating immune cell activity. The Fc region is composed of two heavy chains that contribute two or three constant domains depending on the class of the antibody. By binding to specific proteins, the Fc region ensures that each antibody generates an appropriate immune response for a given antigen. The Fc region also binds to various cell receptors, such as Fc receptors, and other immune molecules, such as complement proteins. By doing this, it mediates different physiological effects including opsonization, cell lysis, and degranulation of mast cells, basophils and eosinophils. In an experimental setting, Fc and Fab fragments can be generated in the laboratory by cleaving an immunoglobulin monomer with the enzyme papain into two Fab fragments and an Fc fragment.

[0085] The invention contemplates polyclonal antibodies and monoclonal antibodies. "Polyclonal antibody" refers to an immunoglobulin produced from more than a single clone of plasma cells; in contrast "monoclonal antibody" refers to an immunoglobulin produced from a single clone of plasma cells. Generic methods are available for making polyclonal and monoclonal antibodies that are specific to a desirable polypeptide. For the production of monoclonal and polyclonal antibodies, various host animals can be immunized by injection with the peptide corresponding to any molecule of interest in the present invention, including but not limited to hamsters, rabbits, mice, rats, sheep, goats, etc. For preparation of monoclonal antibodies, any technique that provides for the production of antibody molecules by continuous cell lines in culture may be used (See e.g., Harlow and Lane, *Antibodies: A Laboratory Manual*, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY). These include, but are not limited to, the hybridoma technique originally developed by Köhler and Milstein (Köhler and Milstein, *Nature*, 256:495-497 (1975)), techniques using germ-free animals and utilizing technology such as that described in PCT/US90/02545, as well as the trioma technique, the human B-cell hybridoma technique (See e.g., Kozbor et al., *Immunol. Today*, 4:72 (1983)), and the EBV-hybridoma technique to produce human monoclonal antibodies (Cole et al., in *Monoclonal Antibodies and Cancer Therapy*, Alan R. Liss, Inc., pp. 77-96 (1985)). In some particularly preferred embodiments of the present invention, the present invention provides monoclonal antibodies.

[0086] Also contemplated are chimeric antibodies. As used herein, the term "chimeric antibody" contains portions of two different antibodies, typically of two different species. See, e.g.: U.S. Pat. No. 4,816,567 to Cabilly et al.; U.S. Pat. No. 4,978,745 to Shoemaker et al.; U.S. Pat. No. 4,975,369 to Beavers et al.; and U.S. Pat. No. 4,816,397 to Boss et al. Chimeric antibodies include monovalent, divalent or polyvalent immunoglobulins. A monovalent chimeric antibody is a dimer (HL) formed by a chimeric H chain associated through disulfide bridges with a chimeric L chain. A divalent chimeric antibody is tetramer (H₂L₂) formed by two HL dimers associated through at least one disulfide bridge. A polyvalent chimeric antibody can also be produced, for example, by employing a Hc region that aggregates (e.g., IgM H chain).

[0087] The invention also contemplates "humanized antibodies," i.e., chimeric antibodies that have constant regions derived substantially or exclusively from human antibody constant regions, and variable regions derived substantially or exclusively from the sequence of the variable region from a mammal other than a human. Humanized antibodies preferably have constant regions and variable regions other than the complement determining regions (CDRs) derived substantially or exclusively from the corresponding human antibody regions and CDRs derived substantially or exclusively from a mammal other than a human. Thus, in one embodiment, humanized antibodies are human immunoglobulins (recipient antibody) in which residues from a hypervariable region of the recipient are replaced by residues from a hypervariable region of a non-human species (donor antibody) such as mouse, rat, rabbit or nonhuman primate having the desired specificity, affinity, and capacity. In some instances, Fv framework region (FR) residues of the human immunoglobulin are replaced by corresponding non-human residues. Furthermore, humanized antibodies may comprise residues that are not found in the recipient antibody or in the donor antibody. These modifications are generally made to further refine antibody performance. In general, the humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the hypervariable loops correspond to those of a nonhuman immunoglobulin and all or substantially all of the FR residues are those of a human immunoglobulin sequence. The humanized antibody may also comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin. Humanized antibodies may be generated using methods known in the art, e.g., U.S. Pat. No. 5,225,539 to Winter et al., including using human hybridomas (Cote et al., *Proc. Natl. Acad. Sci. U.S.A.* 80:2026-2030 (1983)) or by transforming human B cells with EBV virus *in vitro* (Cole et al., in *Monoclonal Antibodies and Cancer Therapy*, Alan R. Liss, pp. 77-96 (1985)). Additional methods include, for example, generation of transgenic non-human animals which contain human immunoglobulin chain genes and which are capable of expressing these genes to produce a repertoire of antibodies of various isotypes encoded by the human immunoglobulin genes (U.S. Pat. Nos. 5,545,806; 5,569,825 and 5,625,126). Humanized antibodies may also be made by substituting the complementarity determining regions of, for example, a mouse antibody, into a human framework domain (PCT Pub. No. WO92/22653).

[0088] Importantly, early methods for humanizing antibodies often resulted in antibodies with lower affinity than the non-human antibody starting material. More recent approaches to humanizing antibodies address this problem by making changes to the CDRs. See U.S. Patent Application Publication No. 20040162413, hereby incorporated by reference. In some embodiments, the invention's humanized antibodies contain an optimized heteromeric variable region (e.g. that

may or may not be part of a full antibody other molecule) having equal or higher antigen binding affinity than a donor heteromeric variable region, wherein the donor heteromeric variable region comprises three light chain donor CDRs, and wherein the optimized heteromeric variable region comprises: a) a light chain altered variable region comprising; i) four unvaried human germline light chain framework regions, and ii) three light chain altered variable region CDRs, wherein at least one of the three light chain altered variable region CDRs is a light chain donor CDR variant, and wherein the light chain donor CDR variant comprises a different amino acid at only one, two, three or four positions compared to one of the three light chain donor CDRs (e.g. the at least one light chain donor CDR variant is identical to one of the light chain donor CDRs except for one, two, three or four amino acid differences).

[0089] Chimeric antibodies containing amino acid sequences that are fused to constant regions from human antibodies, or to toxins or to molecules with cytotoxic effect, are known in the art (e.g., U.S. Pat. Nos. 7,585,952; 7,227,002; 7,632,925; 7,501,123; 7,202,346; 6,333,410; 5,475,092; 5,585,499; 5,846,545; 7,202,346; 6,340,701; 6,372,738; 7,202,346; 5,846,545; 5,585,499; 5,475,092; 7,202,346; 7,662,387; 6,429,295; 7,666,425; and 5,057,313).

[0090] Antibodies that are specific for a particular antigen may be screened using methods known in the art (e.g., U.S. Pat. No. 7,202,346) and disclosed herein. For example, In the production of antibodies, screening for the desired antibody can be accomplished by radioimmunoassay, ELISA (enzyme-linked immunosorbent assay), "sandwich" immunoassays, immunoradiometric assays, gel diffusion precipitin reactions, immunodiffusion assays, *in situ* immunoassays (e.g., using colloidal gold, enzyme or radioisotope labels), Western blots, precipitation reactions, agglutination assays (e.g., gel agglutination assays, hemagglutination assays, etc.), complement fixation assays, immunofluorescence assays, protein A assays, and immunoelectrophoresis assays, etc.

[0091] In one embodiment, antibody binding is detected by detecting a label on the primary antibody. In another embodiment, the primary antibody is detected by detecting binding of a secondary antibody or reagent to the primary antibody. In a further embodiment, the secondary antibody is labeled. Many means are known in the art for detecting binding in an immunoassay and are within the scope of the present invention. As is well known in the art, the immunogenic peptide should be provided free of the carrier molecule used in any immunization protocol. For example, if the peptide was conjugated to KLH, it may be conjugated to BSA, or used directly, in a screening assay.

[0092] In one embodiment, the invention's antibodies are monoclonal antibodies produced by a hybridoma cell line. In a particular embodiment, the monoclonal antibody specifically binds to a MUC16 ectodomain polypeptide that comprises Polypeptide 1 (SEQ ID NO:01), as exemplified by the antibody selected from the group consisting of 9B11.20.16, 10A2, 2F4, 23D3, 30B 1, and 31B2 (Tables 1 and 2). In a preferred embodiment, the antibody is 9B 11.

[0093] In another embodiment, the monoclonal antibody specifically binds to a MUC16 ectodomain polypeptide that comprises Polypeptide 2 (SEQ ID NO:02), wherein the antibody is exemplified by 4H11.2.5, 13H1, 29G9, 9C9.21.5.13, 28F8, 23G12, 9C7.6, 11B6, 25G4, 5C2.17, 4C7, 26B2, 4A5.37, 4A2, 25H3, and 28F7.18.10 (Tables 1 and 2). In a preferred embodiment, the antibody is exemplified by 4H11.2.5, 4A5.37, 9C9.21.5.13, 28F7.18.10, 9C7.6, and 5C2.17.

[0094] In a further embodiment, the monoclonal antibody specifically binds to a MUC16 cytoplasmic domain polypeptide that comprises Polypeptide 3 CGVLVTTRRKKEGEYNQQQ (SEQ ID NO:03), wherein the antibody is exemplified by 31A3.5.1, 19D1, 10F6, 22E10, 22F1, 3H8, 22F11, 4D7, 24G12, 19G4, 9A5, 4C2, 31C8, 27G4, and 6H2 (Tables 1 and 2). In a preferred embodiment, the antibody is 31A3.5.1.

[0095] In another embodiment, the monoclonal antibody specifically binds to a MUC16 extracellular domain polypeptide that comprises Polypeptide 4 KSYF SDCQVSTFRS VPNRHHTGVD SLCNFSP (SEQ ID NO:15), wherein the antibody is exemplified by 24B3 and 9C7 (Table 2).

[0096] The invention's antibodies and methods for their use (both diagnostic and therapeutic) are disease specific. "Specificity" of a method and/or molecule for disease, such as "specificity for cancer" which is interchangeably used with "cancer specificity", refers to the proportion (e.g., percentage, fraction, etc.) of negatives (*i.e.*, healthy individuals not having disease) that are correctly identified, *i.e.*, the percentage of healthy subjects who are correctly identified as not having disease. Specificity may be calculated according to the following equation:

$$\text{Specificity} = \text{number of true negatives} / (\text{number of true negatives} + \text{number of false positives}).$$

[0097] Thus, in some embodiments, the invention's compositions and/or methods have a "cancer specificity" greater than 50%, including any numerical value from 51% to 100%, such as 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, and 99%. While a 100% specificity is most desirable, *i.e.*, not predicting anyone from the healthy group as having cancer, it is not necessary. Data herein demonstrate the invention's cancer specificity (Table 3).

[0098] In alternative embodiments, specificity is expressed (together with sensitivity) as a statistical measure of the performance of a binary classification test, such as using a Receiver Operator Characteristic (ROC) curve". For any test,

there is usually a trade-off between specificity and sensitivity. For example: in cancer screening tests of human subjects, it is undesirable to risk falsely identifying healthy people as having cancer (low specificity), due to the high costs. These costs are both physical (unnecessary risky procedures) and financial. This trade-off can be represented graphically using a ROC curve. "Receiver Operator Characteristic curve" and "ROC curve" refer to a plot of the true positive rate (AKA sensitivity) versus true negative rate (AKA 1-specificity). The measured result of the test is represented on the x axis while the y axis represents the number of control (e.g., healthy) or case (e.g., cancer) subjects. For any given cut point (each point along the x axis) a sensitivity and specificity of the assay can be measured. The range of sensitivity and specificity for any given assay can range from 0% to 100%, depending on the selected cut point. For this reason, in some preferred embodiments, the AUC is used as the standard measure of an assay's specificity and/or sensitivity.

5 The "area under the curve" ("AUC") for the ROC curve plot is equal to the probability that a classifier will rank a randomly chosen positive instance higher than a randomly chosen negative one. Thus, AUC is a general measure of a test's ability to successfully discriminate between case (e.g., cancer) and control (e.g., healthy) subjects. Random chance would generate an AUC of 0.5. Therefore, in one embodiment, useful tests preferably have AUC's greater than 0.50, including any value from 0.51 to 1.00, such as from 0.55 to 1.00, from 0.60 to 1.00, from 0.65 to 1.00, from 0.70 to 1.00, from 0.75 to 1.00, from 0.80 to 1.00, from 0.85 to 1.00, from 0.90 to 1.00, from 0.95 to 1.00, and most preferably 1.00. AUC values greater than 0.50 include 0.51, 0.52, 0.52, 0.54, 0.55, 0.56, 0.57, 0.58, 0.59, 0.60, 0.61, 0.62, 0.63, 0.64, 0.65, 0.66, 0.67, 0.68, 0.69, 0.70, 0.71, 0.72, 0.73, 0.74, 0.75, 0.76, 0.77, 0.78, 0.79, 0.80, 0.81, 0.82, 0.83, 0.84, 0.85, 0.86, 0.87, 0.88, 0.89, 0.90, 0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98, and 0.99.

10

15 [0099] The invention's antibodies and methods for their use (both diagnostic and therapeutic) are disease sensitive. "Sensitivity" of a method and/or molecule for disease, such as "sensitivity for cancer" which is interchangeably used with "cancer sensitivity," refers to the proportion (e.g., percentage, fraction, etc.) of positives (i.e., individuals having cancer) that are correctly identified as such (e.g. the percentage of people with cancer who are identified as having the condition). Sensitivity may be calculated according to the following equation: Sensitivity = number of true positives / (number of true positives + number of false negatives).

20 25 [0100] Thus, in some embodiments, the invention's compositions and/or methods have a "disease sensitivity," such as "cancer sensitivity," greater than 50%, including any numerical value from 51% to 100%, such as 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, and 99%. While a 100% sensitivity is most desirable (i.e., predicting all subjects from the cancer group as having cancer), it is not necessary.

30 35 [0101] In alternative embodiments, the invention's compositions and/or methods have a "disease sensitivity," such as "cancer sensitivity," equal to or lower than 50%, including any numerical value from 0% to 50%, such as 1%, 2%, 3%, 4%, 6%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, 21%, 22%, 23%, 24%, 25%, 26%, 27%, 28%, 29%, 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, and 49%.

40 [0102] In some embodiments, sensitivity is expressed (together with specificity) as a statistical measure of the performance of a binary classification test, such as using AUC of a ROC curve, as discussed above with respect to specificity.

D. Hybridoma Cell Lines

45 [0103] In addition to the invention's novel antibodies, the invention also provides hybridoma cell lines that produce these antibodies. "Hybridoma cell" refers to a cell line produced by fusing a specific antibody-producing B cell with a myeloma (B cell cancer) cell that is selected for its ability to grow in tissue culture and for an absence of antibody chain synthesis. The antibodies produced by the hybridoma cell are all of a single specificity and are therefore monoclonal antibodies (in contrast to polyclonal antibodies).

50 55 [0104] In a particular embodiment, the invention provides hybridoma cell lines that produce a monoclonal antibody that specifically binds to a polypeptide, or antigenic portion thereof, selected from the group consisting of a) MUC16 ectodomain polypeptide (e.g., NFSPLAR RVDRVAIYEE FLRMTRNGTQ LQNFTLDRSS VLVDGYSPNR NEPLTGNSLP (SEQ ID NO:17)), b) MUC16 cytoplasmic domain polypeptide (e.g., VTTRR RKKEGEYNVQ QQ (SEQ ID NO:18)), and c) MUC16 extracellular domain polypeptide that contains a cysteine loop polypeptide CQVSTFRSVPNRHHTGVD-SLC (SEQ NO:19). The MUC16 polypeptide SEQ ID NO:18 is contained within LVTTRR RKKEGEYNVQ QQ (SEQ ID NO:20). Thus, SEQ ID NO:20 contains both a transmembrane domain amino acid (L) and a cytoplasmic domain portion VTTRR RKKEGEYNVQ QQ (SEQ ID NO:18), i.e., the L is optional, as it is part of the transmembrane domain. The MUC16 polypeptide SEQ ID NO:18 is also contained within CGVLVTTRR RKKEGEYNVQ QQ (SEQ ID NO:03). Thus, SEQ ID NO:03 contains both a transmembrane domain portion (CGVL) and a cytoplasmic domain portion VTTRR RKKEGEYNVQ QQ (SEQ NO:18), i.e., the CGVL is optional, as it is part of the transmembrane domain.

E. Conjugates Of The Invention's Antibodies Linked To Cytotoxic Agents And/Or Prodrugs

[0105] The invention contemplates conjugate antibodies. A "conjugate" antibody refers to an antibody of the present invention covalently linked to a cytotoxic agent and/or a prodrug of a cytotoxic agent.

5 [0106] "Cytotoxic agent" refers any agent that is capable of reducing the growth of, and/or killing, a target cell. A "prodrug" represents an analog of a cytotoxic agent that substantially lacks cytotoxic activity until subjected to an activation step. Activation steps may include enzymatic cleavage, a chemical activation step such as exposure to a reductant, or a physical activation step such as photolysis.

10 [0107] The covalent linkage between the invention's antibodies and the cytotoxic agent or prodrug can include cleavable linkages such as disulfide bonds, which may advantageously result in cleavage of the covalent linkage within the reducing environment of the target cell. Such conjugates are useful as tumor-cell specific therapeutic agents.

15 [0108] In one embodiment, the cytotoxic agent is a small drug molecule (Payne et al., U.S. Pat. No. 7,202,346). In another embodiment, the cytotoxic agent a maytansinoid, an analog of a maytansinoid, a prodrug of a maytansinoid, or a prodrug of an analog of a maytansinoid (U.S. Pat. Nos. 6,333,410; 5,475,092; 5,585,499; 5,846,545; 7,202,346). In another embodiment, the cytotoxic agent may be a taxane (see U.S. Pat. Nos. 6,340,701 & 6,372,738 & 7,202,346) or CC-1065 analog (see U.S. Pat. Nos. 5,846,545; 5,585,499; 5,475,092 & 7,202,346).

20 [0109] In another embodiment, the cytotoxic agent is exemplified by an auristatin, a DNA minor groove binding agent, a DNA minor groove alkylating agent, an enediyne, a duocarmycin, a maytansinoid, and a vinca alkaloid (U.S. Pat. No. 7,662,387).

25 [0110] In a further embodiment, the cytotoxic agent is an anti-tubulin agent (U.S. Pat. No. 7,662,387). In yet another embodiment, the cytotoxic agent is exemplified by dimethylvaline-valine-dolaisoleuine-dolaproline-phenylalanine-p-phenylenediamine (AFP), dovaline-valine-dolaisoleuine-dolaproline-phenylalanine (MMAF), and monomethyl auristatin E (MAE) (U.S. Pat. No. 7,662,387).

30 [0111] In an additional embodiment the toxic agent is exemplified by radioisotope emitting radiation, immunomodulator, lectin, and toxin (U.S. Pat. No. 6,429,295). In particular, the radioisotope emitting radiation is an alpha-emitter selected from the group consisting of ^{212}Bi , ^{213}Bi , and ^{211}At , or a beta-emitter selected from the group consisting of ^{186}Re and ^{90}Y , or a gamma-emitter ^{131}I (U.S. Pat. No. 7,666,425).

35 [0112] In an alternative embodiment, the toxin is exemplified by ricin, the A-chain of ricin, and pokeweed antiviral protein (U.S. Pat. No. 5,057,313).

40 [0113] In yet another embodiment, the cytotoxic agent is an anti-cancer drug selected from the group consisting of methotrexate, 5-fluorouracil, cycloheximide, daunomycin, doxorubicin, chlorambucil, treimon, phenylenediamine mustard, adriamycin, bleomycin, cytosine arabinoside or Cyclophosphamide (U.S. Pat. No. 5,057,13).

F. Detecting Mucl6 Portions And Diagnostic Applications

45 [0114] The invention provides a method for detecting a disease that comprises overexpression of MUC16 in a subject, wherein the method comprises a) providing i) a sample from a subject, and ii) any one or more of the invention's antibodies, b) contacting the sample with the antibody under conditions for specific binding of the antibody with its cognate antigen, and c) detecting an increased level of binding of the antibody to the sample compared to a control sample lacking the disease, thereby detecting the disease in the subject. Generic methods for detecting disease using antibodies are known in the art (Payne et al., U.S. Pat. No. 7,202,346). The invention's methods are particularly useful in detecting cancer, such as ovarian cancer and breast cancer.

50 [0115] The invention's methods are not limited to a particular approach to detecting binding of the invention's antibodies to their antigens. In one embodiment, detecting binding to the invention's antibodies typically involves using antibodies that are labeled with a detectable moiety, such as radioisotope (e.g., ^3H , ^{14}C , ^{32}P , ^{35}S and/or ^{125}I) fluorescent or chemiluminescent compound (e.g., fluorescein isothiocyanate, rhodamine, and/or luciferin) and/or an enzyme (e.g., alkaline phosphatase, beta-galactosidase and/or horseradish peroxidase).

55 [0116] Methods for conjugating antibodies to a detectable moiety are known in the art (e.g., Hunter, et al., *Nature* 144:945 (1962); David, et al., *Biochemistry* 13:1014 (1974); Pain, et al., *J. Immunol. Meth.* 40:219 (1981); and Nygren, *J. Histochem. and Cytochem.* 30:407 (1982)).

60 [0117] Thus, the invention's antibodies may be employed in immunoassays, such as competitive binding assays, direct and indirect sandwich assays, and immunoprecipitation assays, including immunohistochemistry, enzyme-linked immunosorbent assay (ELISA), fluorescence-activated cell sorting (FACS), and Western blots.

65 [0118] For example, with respect to immunohistochemical detection, data herein demonstrate that antibody 4H11 is useful in detecting high-grade ovarian serous carcinoma, lobular cancer (28), and a subset of ovarian carcinomas that are negative with OC125 and that retain cytoplasmic and extracellular portions of the MUC16 glycoprotein.

70 [0119] The antibodies of the invention also are useful for radiographic *in vivo* imaging, wherein an antibody labeled with a detectable moiety such as a radio-opaque agent or radioisotope is administered to a subject, preferably into the

bloodstream, and the presence and location of the labeled antibody in the host is assayed. This imaging technique is useful in the staging and treatment of malignancies.

[0120] The invention's antibodies are additionally useful as affinity purification agents. In this process, the antibodies are immobilized on a suitable support, such as Sephadex resin or filter paper, using methods well known in the art, to capture and purify molecules that contain antigens that specifically bind to the invention's antibodies.

G. Therapeutic Applications

[0121] The invention provides methods for treating a disease that comprises overexpression of MUC16, comprising administering to a subject having the disease a therapeutically effective amount of any one or more of the invention's antibodies. Generic methods for treating disease with antibodies are known in the art (Payne et al., U.S. Pat. No. 7,202,346). The invention's methods are particularly useful in treating cancer, such as ovarian cancer and breast cancer. These methods are also applicable to primary cancer, metastatic cancer, and recurrent cancer.

[0122] The term "administering" to a subject means providing a molecule to a subject. This may be done using methods known in the art (e.g., Erickson et al., U.S. Patent 6,632,979; Furuta et al., U.S. Patent 6,905,839; Jackobsen et al., U.S. Patent 6,238,878; Simon et al., U.S. Patent 5,851,789). The invention's compositions may be administered prophylactically (*i.e.*, before the observation of disease symptoms) and/or therapeutically (*i.e.*, after the observation of disease symptoms). Administration also may be concomitant with (*i.e.*, at the same time as, or during) manifestation of one or more disease symptoms. Also, the invention's compositions may be administered before, concomitantly with, and/or after administration of another type of drug or therapeutic procedure (e.g., surgery). Methods of administering the invention's compositions include, without limitation, administration in parenteral, oral, intraperitoneal, intranasal, topical and sublingual forms. Parenteral routes of administration include, for example, subcutaneous, intravenous, intramuscular, intrastemal injection, and infusion routes.

[0123] In one embodiment, the invention's compositions comprise a lipid for delivery as liposomes. Methods for generating such compositions are known in the art (Borghouts et al. (2005) J Pept Sci 11, 713-726; Chang et al. (2009) PLoS One 4, e4171; Faisal et al. (2009) Vaccine 27, 6537-6545; Huwyler et al. (2008) Int J Nanomedicine 3, 21-29; Song et al. (2008) Int J Pharm 363, 155-161; Voinea et al. J Cell Mol Med 6, 465-474).

[0124] Antibody treatment of human beings with cancer is known in the art, for example in U.S. Pat. Nos. 5,736,137; 6,333,410; 5,475,092; 5,585,499; 5,846,545; 7,202,346; 6,340,701; 6,372,738; 7,202,346; 5,846,545; 5,585,499; 5,475,092; 7,202,346; 7,662,387; 7,662,387; 6,429,295; 7,666,425; 5,057,313.

[0125] The invention's antibodies may be administered with pharmaceutically acceptable carriers, diluents, and/or excipients. Examples of suitable carriers, diluents and/or excipients include: (1) Dulbecco's phosphate buffered saline, pH about 7.4, containing about 1 mg/ml to 25 mg/ml human serum albumin, (2) 0.9% saline (0.9% w/v NaCl), and (3) 5% (w/v) dextrose.

[0126] The invention's antibodies are typically administered in a therapeutic amount. The terms "therapeutic amount," "pharmaceutically effective amount," "therapeutically effective amount," and "biologically effective amount," are used interchangeably herein to refer to an amount that is sufficient to achieve a desired result, whether quantitative or qualitative. In particular, a pharmaceutically effective amount is that amount that results in the reduction, delay, and/or elimination of undesirable effects (such as pathological, clinical, biochemical and the like) that are associated with disease. For example, a "therapeutic amount that reduces cancer" is an amount that reduces, delays, and/or eliminates one or more symptoms of cancer.

[0127] For example, specific "dosages" of a ""therapeutic amount" will depend on the route of administration, the type of subject being treated, and the physical characteristics of the specific subject under consideration. These factors and their relationship to determining this amount are well known to skilled practitioners in the medical, veterinary, and other related arts. This amount and the method of administration can be tailored to achieve optimal efficacy but will depend on such factors as weight, diet, concurrent medication and other factors, which those skilled in the art will recognize. The dosage amount and frequency are selected to create an effective level of the compound without substantially harmful effects.

[0128] When present in an aqueous dosage form, rather than being lyophilized, the antibody typically will be formulated at a concentration of about 0.1 mg/ml to 100 mg/ml.

[0129] Depending on the type and severity of the disease, about 0.015 to 15 mg of antibody/kg of patient weight is an initial candidate dosage for administration to the patient, whether, for example, by one or more separate administrations, or by continuous infusion. For repeated administrations over several days or longer, depending on the condition, the treatment is repeated until a desired suppression of disease symptoms occurs.

[0130] The methods of the present invention can be practiced *in vitro*, *in vivo*, or *ex vivo*.

EXPERIMENTAL

[0131] The following examples serve to illustrate certain preferred embodiments and aspects of the present invention and are not to be construed as limiting the scope thereof.

5

EXAMPLE 1**Materials And Methods**

10 [0132] The following is a brief description of the exemplary materials and methods used in the subsequent Examples.

Cell Cultures:

15 [0133] OVCAR3, SKOV3, and A2780 cell lines were obtained through the American Type Culture Collection (ATCC, Manassas, VA) and sustained in culture according to the ATCC literature. For the creation of MUC16+ transfected cell lines, the carboxyterminus portion of the MUC16 cDNA was introduced as green fluorescent protein fusion proteins using the Vitality phrGFP vector expression system (Stratagene, La Jolla, CA). Stable cell lines were selected using geneticin (G418, Invitrogen, Grand Island, NY) in their respective culture media and isolated by expression of Green Fluorescence Protein. Stable transfectants were routinely maintained in G418 in their culture media respectively. The 20 Δ MUC16^{c114} transfectants have cell surface expression of MUC16 protein from the putative cleavage site to the carboxyterminus (AA 1776 to 1890) (12).

Monoclonal Preparation:

25 [0134] Using the MUC16 sequence, peptide sequences encoding elements of the Δ MUC16^{c114} amino acid sequence were synthesized at the Memorial Sloan-Kettering Cancer Center (MSKCC) Microchemistry Core Facility. The inventors synthesized 3 polypeptides (Figure 1) and modified Polypeptide 1 and Polypeptide 2 with a cysteine at the N-terminus for better conjugation to KLH. Equal concentrations of the KLH-conjugated peptides were mixed and then used as the 30 immunogen for 5 BALB/c mice. The inventors selected 1 of the 5 mice whose serum showed the highest reactivity to individual peptides by ELISA, and the MSKCC Monoclonal Antibody Core Facility performed the fusion and selected the antibodies using standard protocols. After 10 days of fusion, supernatants were selected and screened for reactivity by ELISA against the individual synthetic peptides.

ELISA:

35

[0135] Sandwich ELISA was performed to see the positivity of the antibodies to individual peptides and GST- Δ MUC16^{c114} fusion protein following routine core facility protocol for ELISA assay.

FACS Analyses:

40

[0136] Adherent target cells were removed by 0.05% Trypsin and 0.1% EDTA, washed, and counted by a hemocytometer. Cells were distributed into multiple Eppendorf tubes with at least $0.5\text{-}1 \times 10^6$ cells per tube. Cells were washed with phosphate buffered saline (PBS) containing 1% FCS and 0.025% Sodium Azide (FACS buffer). For internal FACS staining, cells in the Eppendorf tubes were permeabilized with 1:10 diluted FACS Permeabilizing Solution 2 (BD Biosciences, San Jose, CA) for 10 minutes at room temperature and then washed twice with ice cold FACS buffer. Then they were incubated either without (for second antibody control) or with 1 $\mu\text{g}/\text{tube}$ of bioreactive supernatants of mouse MUC16 monoclonals for 30 minutes on ice. For surface FACS staining, cells were incubated either without (for second antibody control) or with 1 $\mu\text{g}/\text{tube}$ of bioreactive supernatants of MUC16 monoclonals (9B11.20.16, 9C9.21.5.13 and 4H11.2.5), Mouse anti-human OC125 (M3519), Mouse anti-human M11 (M3520) (DakoCytomation, Dako North America Inc., Carpinteria, CA) or VK8 (kindly provided by Dr. Beatrice Yin and Dr. Ken Lloyd, MSKCC, New York, NY) for 30 minutes on ice. Cells in Eppendorf tubes were also surface stained with 1 $\mu\text{g}/\text{tube}$ of non-specific isotype matched control mouse antibodies (13C4 for IgG1 and 4E11 for IgG2b monoclonals obtained from MSKCC Monoclonal Core Facility) and incubated on ice for 30 minutes. All cells were washed three times with FACS buffer. Cells were incubated with 1 $\mu\text{g}/\text{tube}$ of second antibody Goat anti-mouse IgG1-PE or IgG2b-PE for 30 minutes on ice and then washed three times with FACS buffer. The cells were analyzed by a FACS Calibur machine at the MSKCC Flow Cytometry Core Facility.

Western Blot Analysis:

[0137] Stable cell lines were cultured in 10 cm dishes in their respective culture media and incubated with 5% CO₂ at 37°C for 3 days. They were washed twice with ice cold PBS to remove the serum-containing media. Adherent cells were scraped with 1-2 ml of ice cold PBS, and the cells were spun down in an Eppendorf tube at 4°C in an Eppendorf centrifuge. Supernatant was discarded, and the cells were lysed with 0.2 ml of modified Ripa lysis buffer (20 mM Tris-HCl; pH 7.4; 150 mM NaCl; 1% NP-40; 1 mM Na3VO4; 1 mM PMSF; 1 mM DTT; 10 µg/ml leupeptin; and 10 µg/ml aprotinin) for 30 minutes on ice and spun at 4°C for 10 minutes. The soluble solution was separated into a tube and the debris pellet was discarded. Protein concentration was measured using the Bio-Rad Protein Assay (BioRad Laboratories, Hercules, CA).

5 Equal amounts of proteins (GST-MUC16-CD-fusion protein or stable cell line extracts) were separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and transferred to nitrocellulose membrane using a BioRad transfer apparatus in a cold room at 4°C. The membranes were blocked with 3% bovine serum albumin (BSA) in PBS with 0.1% Tween-20 (PBST) at 4°C overnight. Membranes were probed with primary antibody (1:1000 dilution) for 1 hr at room temperature and then washed three times with PBST. Then the membranes were stained with corresponding

10 15 second antibody, anti-Mouse IgG Horse Radish Peroxidase (HRP) linked whole antibody from sheep (GE Healthcare, UK) (1:5000 dilution), for 1 hr at room temperature. Membranes were washed three times with PBST and developed with a Western Lightning® chemiluminescence reagent (ECL, Perkin Elmer, Waltham, MA) for 1-5 minutes at room temperature, and the signals were developed on Kodak BioMax Film.

[0138] Binding and internalization studies with monoclonal antibodies and OVCAR3 and SKOV3 stable transfectants:

[0139] Purified monoclonal antibodies were labeled with ¹³¹I using the iodogen method and purified by size exclusion chromatography (22). Saturation binding studies were performed with radiolabeled antibodies using substrates of intact OVCAR-3 cells. Briefly, 10 test solutions were prepared (in triplicate) and they contained increasing amounts of the radioiodinated antibodies, 3-500 000 cells in a total volume of 500 µL of PBS (0.2 % BSA; pH 7.4). The cells were isolated by rapid filtration through a glass fiber membrane and washed with ice cold tris buffered saline. Cells were counted in a gamma counter with standards of total activity added. For each concentration of radiolabeled antibody, non-specific binding was determined in the presence of 100 nM of the unmodified antibody. The data were analyzed with a least squares regression method (Origin, Microcal, Software Inc., Northampton, MA) to determine the K_d and B_{max} values, and a Scatchard transformation was performed.

[0140] Antibody cell internalization studies were performed with ¹³¹I-4H11 and ¹³¹I-OC125 monoclonal antibodies and SKOV3-phrGFP-ΔMUC16^{c334} stable transfected cells. Briefly, radiolabeled antibody (370 MBq/mg, 100 kcpm) in 2 mL of medium was added to SKOV3 cells plated in a 6-well plate. The plates were incubated at 37°C for up to 24 hours. At various time points, the medium was removed from three wells and the cells washed with 2 x 2 mL PBS. Cell surface bound activity was then stripped and collected with 2 x 2 mL of an ice cold acid wash (100 mM acetic acid 100 mM glycine; pH 3.0). The cells were then dissolved with 2 x 1 ml 1M NaOH and collected. At the end of the study all samples were counted with a gamma counter together with standards, representing the initial amount of radioactivity added. All the media samples were analyzed by ITLC-SG with mobile phases of 5% TCA to determine unbound ¹³¹I.

Tissue microarray (TMA):

[0141] Tissue microarrays were either constructed within our institution or bought from a commercial laboratory if not available internally. Briefly, core-needle biopsies of pre-existing paraffin-embedded tissue were obtained from the so-called donor blocks and then relocated into a recipient paraffin-arrayed "master" block by using the techniques by Kononen et al. and subsequently modified by Hedvat et al (23-24). A manually operated Tissue Arrayer MTA-1 from Beecher Instruments Inc. (Sun Prairie, WI) was used to produce sample circular spots (cores) that measured 0.6 to 1.0 mm in diameter. The cores were arrayed 0.3 to 0.4 mm apart from each other. A layer of control tissues was strategically laid around the actual tissue microarrays in order to avoid edging effects. The specific composition of each tissue microarray is delineated below. Slides of tissue microarrays for ovarian cancer, prostate cancer, adenocarcinoma of the lung, mucinous neoplasms of the pancreas, and invasive ductal and invasive lobular breast carcinoma were prepared by cutting 4 µm sections from formalin-fixed paraffin-embedded tissue. Normal adult and fetal tissue microarrays were obtained from a commercial source (Biomax, US). OVCAR3 cells were used as positive controls.

Immunohistochemistry:

[0142] Immunohistochemistry was performed on the tissue microarrays with both standard OC125 (Ventana, Tuscon, AZ) and the novel monoclonal antibodies. Sections of the tissue microarrays were cut at 4 microns, placed on Superfrost/Plus microscope slides (Fisher brand) and baked in a 60° oven for at least 60 minutes. The slides were then deparaffinized and hydrated to distilled water, soaked in citrate buffer at pH 6.00 for 30 minutes at 97° C, washed in running water for 2-5 minutes, incubated for 5 minutes in 3% hydrogen peroxide diluted in distilled water. Slides were

washed in distilled water for 1 minute, transferred to a bath of phosphate buffered saline (PBS), pH 7.2, for two changes of 5 minutes each and placed in 0.05% BSA diluted in PBS for a minimum of 1 minute. After drying around tissue sections, normal serum was applied at a 1:20 dilution in 2% BSA/PBS and incubated for a minimum of 10 minutes at room temperature in a humidity chamber. The serum was then suctioned off without allowing the sections to dry, and approximately 150 lambda of novel antibody at a dilution of 1:1000 was placed on the tissue. The slide was incubated overnight (approximately 15-18 hours) at 4° C in a humidity chamber. Primary antibody was washed off using three changes of PBS for 10 minutes each. Secondary antibody, biotinylated α -mouse from Vector laboratories (Burlingame, Ca), was applied at 1:500 dilution in 1% BSA/PBS and incubated for 45-60 minutes at room temperature in humidity chamber. The antibody was washed off again using three changes of PBS as above. Slides were then transferred to a bath of diaminobenzidine (DAB), diluted in PBS for 5-15 minutes. The slides were then washed in tap water for 1 minute, counterstained using Harris modified hematoxylin (Fisher), decolorized with 1% acid alcohol and blue in ammonia water, dehydrated with 3 changes each of 95% ethanol, 100% ethanol and xylene for 2 minutes each and coverslipped with permanent mounting medium.

15 **Immunohistochemistry scoring:**

[0143] Commercially available antibodies, such as OC125 and M11, target complex glycosylation-dependent epitopes. Our hypothesis is that glycosylation may be tissue specific; therefore, it was important to examine the utility of the peptide-directed antibodies in paraffin-fixed tissues and survey the prevalence of MUC16 expression. The three candidate 20 antibodies, 4H11, 9C9 and 4A5, were characterized using OVCAR3 cell line pellets. Of the three, the 4H11 antibody showed the strongest, most diffuse and consistent staining pattern at multiple dilutions, with the least amount of background staining and, therefore, was optimized for use in human tissues in the pathology core facility.

[0144] Using 4H11, the inventors stained and scored positivity using tissue microarrays from high-stage, high-grade 25 ovarian serous carcinomas (Figure 2), these tumors being the most common type of ovarian cancer, representing approximately 80-85% of all ovarian carcinomas in Western industrialized nations (25). To test the specificity of the novel antibody, the inventors also stained tissue microarrays of cancers of the prostate, lung, breast, and pancreas and compared their staining intensities with that of OC125 monoclonal antibody (Figure 6A-D). To determine whether there would be any cross-reactivity with normal human tissues, the antibodies were also tested on normal human adult and fetal TMAs.

[0145] All of the stained sections were reviewed by a reference pathologist (KJP). A subset of cores for which there 30 was equivocal staining was also independently scored by a second pathologist (RAS) to ensure consistency in scoring methods. Only cytoplasmic and/or membranous staining was considered positive. If a portion of the cell showed membranous staining, that was considered partial staining. A scoring system was devised to provide a semiquantitative 35 assessment of staining distribution and intensity in individual cores. At the same time, it was designed to be useful for comparing the staining distribution and intensity between OC125 and the novel antibodies. The score incorporated the percentage of cells, the intensity and pattern of the staining according to the following standards: score 0: no staining; score 1: <5% strong or weak; score 2: 5-50% strong or weak; score 3: 51-75% strong or 51-100% weak; score 4: 76-99% 40 strong; and score 5: 100% strong staining (Figure 3). The pathologist first reviewed all tissue microarrays stained with OC125 and scored each core. Then the same cores stained with the novel antibodies were scored 1 to several days 45 after OC125 without reference to the previous results. Direct comparison of the scoring between the stains for each core was made only after all of the scoring was completed. The same process was used for all non-ovarian tissue microarrays. After comparison, core staining was determined to be concordant, equivocal, or discordant based on the point differentials. Concordant cores differed by 0 to 1 point, equivocal cores differed by 2 points, and discordant cores differed by 3 to 5 points. The one exception to this rule was when the difference of 1 point was between a score of 0 and 1, in which case, 50 the differences were considered equivocal. This was in order to truly separate negative cases from even focally positive ones.

EXAMPLE 2

50 **Generation and characterization of anti-MUC16 monoclonal antibodies**

[0146] MUC16-directed monoclonal antibodies were isolated by ELISA-based screening using both the individual peptides and recombinant GST- Δ MUC16^{c114} protein followed by sequential subcloning for single cell clones. **Tables 55 1A and 1B:** MUC16-carboxyterminus monoclonal antibodies showing their reactivity to GST- Δ MUC16^{c114} western, FACS analysis on OVCAR3 wild type cells

Table 1A

ELISA Hybridoma Sups (1:1), (1:10) GST-MucDO Western Sups +/-	Peptide 1		Peptide 2		Peptide 3	
	ELISA Hybridoma Sups (1:1)	ELISA Hybridoma Sups (1:1)	(1:10) GST-MucCD Western +/-	(1:1) OVCAR3 FACS +/-	EISA Hybridoma Sups (1:1)	(1:10) GST MucCD Western +/-
10A2	+	-	IgG1JgM	13H1	Weak	-
23D4	-	-	missing	28F8	+	+
2F4	Weak	-	IgG1JgM	11B6	-	IgM
9B11	Weak	-	IgG1)	4C7	+	-
23D3	Weak	+/-	IgG1JgG2b	28F7	+	+
30B1	-	-	IgG1	9C7	+	IgG1
31B2	+	-	IgM	9C9	+	IgG1, IgG2b
				4H11	+	IgG2b, IgM
				4A2	-	IgG1
				4A5	+	+
				29G9	-	IgG1
				5C2	+	+
				23G12	-	IgG1, IgG2a
				25G4	-	IgG1JgM
				26B2	-	IgG1JgG2bJgM
				25H3	-	IgG1JgM

Table 1B

		Peptide 1		Peptide 2		Peptide 3	
		OVCA3 FACS +/-	Isotype	OVCA3 FACS +/-	Isotype	OVCA3 FACS +/-	Isotype
9B11.20.16	+-	IgG1	9C9.21.5.13	+	IgG2b	31A3.5.1	-
			4H11.2.5	+	IgG2b		IgG1
			9C7.6	+	IgG1		
			5C2.17	+	IgG1		
			4A5.37	+	IgG1		
			28F7.18.10	+	IgG1		

Table 2: Antibodies specific for exemplary portions of MUC16

1. Muc16 Polypeptide 1:

14394

14410

(MUC16 sequence)

17 aa

5 NFSPLARRVDRVAIYEE (SEQ ID NO:01)

Mouse monoclonals which are specific to this peptide are:

9B11.20.16 (IgG1)

10 10A2 (IgG1, IgM)

2F4 (IgG1, IgM)

23D3 (IgG1, IgG2b)

30B1 (IgG1)

31B2 (IgM)

15 2. Muc16 Polypeptide 2:

14425

14442

(MUC16 sequence)

18 aa

TLDRSSVLVDGYSPNRNE (SEQ ID NO:02)

20 Mouse monoclonals which are specific to this peptide are:

4H11.2.5 (IgG2b) 13H1 (IgG1)

2909 (IgG1)

9C9.21.5.13 (IgG2b) 28F8 (IgG1, IgM)

23G12 (IgG1, IgG2a)

9C7.6 (IgG1) 11B6 (IgM)

25G4 (IgG1, IgM)

SC2.17 (IgG1) 4G7 (IgG1)

26B2 (IgG1, IgG2b, IgM)

25 4A5.37 (IgG1) 4A2 (IgG1)

25H3 (IgG1, IgM)

28F7.18.10 (IgG1)

3. Muc16 Polypeptide 3 (SEQ ID NO:03)

14472

14492

(MUC16 sequence)

30 21 aa

CGVLVTTRRRKKEGEYNVQQQ

Mouse monoclonals which are specific to this peptide are:

31A3.5.1 (IgG1) 19D1 (IgG2b)

10F6 (IgG1)

2.2E10 (IgG2b)

22F1 (IgG2b, IgM)

3H8 (IgG1, IgM)

35 22F11 (IgM)

4D7 (IgG3)

24G12 (IgG1, IgM)

19G4 (IgG1, IgM)

9A5 (IgM)

4C2 (IgG1, IgM)

31C8 (IgG2b)

27G4 (IgM)

6H2 (IgG1, IgM)

40 14452

14475

FWAVILIGLAGLLGLITCLICGVL (SEQ ID NO:14) is Transmembrane regions

24 aa

4. Muc16 Polypeptide 4 (SEQ ID NO:15) containing a cysteine loop polypeptide (SEQ NO:19)

45 14367

14398 (MUC16 sequence)

32 aa

KSYFSDQCVSTFRSVPNRHHITGVDSDLNFSP (SEQ ID NO:15)

Mouse monoclonals which are specific to this peptide are:

50 24B3 (IgM)

9C7(IgM)

4F12	IgM kappa
6H6	IgM kappa
25C2	IgM kappa
6E8	IgM kappa
2A3	IgM, IgG1, IgG2b, kappa

(continued)

3. Muc16 Polypeptide 3 (SEQ ID NO:03)

5	2G4	IgM IgG1, kappa
	4C8	IgM, kappa
	2A6	IgG1 kappa
	24G12	IgG1 kappa
10	15O5	IgG1 kappa
	6E2	IgM, IgG1, IgG3, IgG2a, kappa
	7E6	IgM, kappa, lambda
15	7G11	IgM kappa
	20C3	IgG1, IgG2b
	9A3	IgM kappa
	15B6	IgM kappa
20	19O3	IgM kappa
	5H6	IgM, IgG1, IgG2b, kappa
	24A12	IgM kappa
25	2D10	IgG3, IgM kappa
	5B2	IgM, IgG3, IgG2b, IgG2a, IgG1, kappa
	8B6	IgG2a, IgG3, kappa
30	5A11	IgM, kappa
	7D11	light kappa only
	9F10	IgM, kappa
	15D10	IgM, kappa
35	18D2	IgM, kappa
	13A11	IgM, kappa
	1A9	IgM, kappa
40	3B2	IgM, kappa
	24F6	IgM, kappa
	24E4	IgM, kappa
	5A1	IgG2a, IgM, kappa
45	7B9	IgM, kappa
	22F4	IgM, kappa

50 [0147] The identified monoclonal antibodies are listed in Table 1A and Table 2. Each of the selected monoclonal antibodies was reactive against GST- Δ MUC16 c114 . The commercial MUC16-directed antibodies (OC125, M11, or VK8) did not bind to GST- Δ MUC16 c114 in ELISA or Western blotting. The clones were tested in FACS against OVCAR3 ovarian cancer cells and in Western blot analysis against GST- Δ MUC16 c114 (Table 1B), and selected purified monoclonal antibodies were isolated.

55 [0148] The inventors used the OVCAR3 wild type and the SKOV3 cells transduced with phrGFP- Δ MUC16 c114 to characterize the selected antibodies by FACS analysis. All of the selected monoclonal antibodies bound to both cell lines while commercial VK8, M11 and OC125 antibodies bound to the OVCAR3 cells but not to the SKOV3-phrGFP-

Δ MUC16^{c114} cell line. The antibodies against Polypeptide 3 required permeabilization since it is an internal epitope (Figure 7).

[0149] Western blot analysis using the GST- Δ MUC16^{c114} purified protein showed strong binding with 4H11 and 9C9 antibodies (Figure 4A), while the other selected antibodies showed less binding. The SKOV3-phrGFP- Δ MUC16^{c114} 5 transfectant was also positive by Western blot analysis using 4H11 and 9C9 antibodies (Figure 4B). As before, the commercial antibodies did not interact with the GST- Δ MUC16^{c114} purified protein or cell lysates of the SKOV3-phrGFP- Δ MUC16^{c114} cell line.

[0150] The binding of six monoclonal antibodies against OVCAR3 MUC16 were examined in affinity binding studies. Three antibodies-9C7, 5C2 and 28F7-showed only modest levels of binding compared to the nonspecific binding of 10 these antibodies to the OVCAR3 cells, which carry large numbers of MUC16 binding sites. In contrast, 4H11, 9C9, and 4A5 monoclonal antibodies showed highly specific binding affinity, as shown in Figure 5A, with binding affinities of 6.8-8.6 nM against the cell surface epitopes of OVCAR3 cells. The inventors also examined the internalization of antibody bound 15 to cell surface MUC16 protein. The inventors examined internalization in the transfected SKOV3-phrGFP- Δ MUC16^{c334} cell line which bears the carboxy terminus of MUC16, including the 4H11 epitope and a single degenerate tandem repeat sequence to interact with the OC125 antibody. The commercial antibodies OC125, M11, and VK8 all bind to the cell surface of this transduced cell line. The ¹³¹I-labeled 4H11 showed rapid internalization at a high level, whereas ¹³¹I-labeled OC125 antibody was internalized at a much lower rate (Figure 5B).

EXAMPLE 3

20 Immunohistochemistry results:

[0151] Given their highly specific binding affinities, the antibodies 9C9, 4A5, and 4H11 were characterized for utility 25 in immunohistochemistry using OVCAR3 cell lines. Of the three, the 4H11 antibody was selected to be optimized for use in human tissues based on its robust, sensitive and specific staining pattern as compared to the other two antibodies.

A. Ovary

[0152] Two high-stage, high-grade ovarian serous carcinoma tissue microarray slides composed of 419 cores, 30 representing primary, metastatic and recurrent tumors from 40 patients were stained with both OC125 and 4H11 monoclonal antibodies (Figure 2). The OC125 tissue microarrays showed 279 (66%) cores with 3-5 staining, 99 (24%) with 1-2 staining, and 41 (10%) with no staining. The 4H11 tissue microarrays showed 236 (56%) with 3-5 staining, 91 (22%) with 1-2 staining, and 92 (22%) with no staining. The two antibodies were concordant in 233 (56%) cores, equivocal in 35 161 (38%), and discordant in 25 (6%). Of the 25 discordant cores, 12 (48% of discordant cases, 3% of all cases) showed greater 4H11 positivity than OC125. Nine were discordant by a difference of 4 points, and 3 were discordant by a difference of 5 points. There was a total of 186 discordant and equivocal cores together, 48 (26%) of which showed greater staining with 4H11 than OC125. The staining pattern of both 4H11 and OC125 was cytoplasmic and membranous, although the membranous pattern of OC125 was stronger and better defined than 4H11 in the majority of cases. Discordant cases demonstrated higher levels of 4H11 than other cases.

B. Breast Cancer

[0153] A variety of other tissues were also examined for 4H11 staining to test the antibody's specificity. Of the 50 cores of invasive ductal carcinomas of the breast (number of patients unavailable), only 2 (4%) showed a score of 4 or 45 greater 4H11 staining and none had scores of 3-5 for OC125 staining. The staining pattern with OC125 was mostly apical/luminal with some granular cytoplasmic staining. Some tumors with intracytoplasmic lumina also picked up the OC125 stain. 4H11 showed a more diffuse cytoplasmic blush without membranous accentuation.

[0154] In contrast, the invasive lobular breast carcinoma tissue microarray (composed of 179 cores with viable tumor, 50 number of patients unavailable) had frequent MUC16 staining with 4H11. In this tissue microarray, 168 cores (94%) showed no staining for OC125, 5 (3%) showed 1-2 staining, and only 6 (3%) showed a staining intensity of 3. 4H11 staining was different in its distribution pattern, with 49 (27%) showing no staining, 81 (45%) showing 1-2 staining, and 49 (27%) showing 3-4 staining. Neither OC125 nor 4H11 had cores with a staining intensity of 5. The staining pattern was of cytoplasmic, luminal/membranous, or intraluminal for both OC125 and 4H11. The intraluminal pattern was strong 55 and intense for both stains and highlighted the intracytoplasmic lumen that is commonly present in lobular carcinomas. The concordance rates were 34% concordant, 43% equivocal, and 23% discordant. Of the equivocal and discordant cases, there was none in which the OC125 was greater than the 4H11. All 42 discordant cases and 76 of 77 equivocal cases had 4H11 greater than OC125. There was also focal luminal staining with 4H11 in benign breast ducts and lobular carcinoma *in situ*.

C. Lung, pancreatic and prostatic adenocarcinomas

[0155] Tumors from other organs were not reactive with either antibody. The lung adenocarcinoma TMA had 237 cores from 86 patients containing viable tumor. In the pancreatic TMA there were 92 cores from 21 patients containing pancreatic mucinous tumors, including intraductal papillary mucinous neoplasms (IPMN) and invasive ductal carcinomas. In the prostate cancer TMA there were 169 cores (number of patients not available). None of these cancer tissue microarrays had significant binding to either OC125 or 4H11. This information is summarized in Table 3.

Table 3. Staining intensity of OC125 as compared to 4H11 in tissue microarrays

Site	OC125 vs. 4H11 staining intensity score (%)					
	0		1-2		3-5	
	OC125	4H11	OC125	4H11	OC125	4H11
Ovary high grade serous	10	28	24	22	66	56
Breast invasive ductal	68	78	32	18	0	4
Breast invasive lobular	94	27	3	45	3	27
Lung adenocarcinoma	63	77	24	18	13	5
Pancreas mucinous neoplasms	98	88	2	10	0	2
Prostate adenocarcinoma	0	0	0	0	0	0

Score 0: 0% staining; 1: <5% strong or weak; 2: 5-50% strong or weak; 3: 51-75% strong or 51-100% weak; 4 76-99% strong 5: 100% -ong

D. Normal Tissues

[0156] There was no staining with OC125 or 4H11 in normal adult colon, rectum, ectocervix, small intestine, ovary, liver, pancreatic ducts, spleen, kidney, and skin. OC125 and 4H11 both stained endocervical glands (OC125 luminal, 4H11 weak cytoplasmic), esophageal glands (luminal), bronchial epithelium (OC125 luminal, 4H11 intracytoplasmic granules), and thymic corpuscles (cytoplasmic). 4H11 demonstrated weak to moderate staining of the gastric glands, particularly at the crypts, with an intracytoplasmic granular pattern. Other organs that showed punctuate intracytoplasmic staining with 4H11 only were prostate, seminiferous tubules of the testes, and the islet cells of the pancreas. The staining in the pancreatic islets cells was particularly strong and consistent. There was also nonspecific staining of liver, kidney and brain with 4H11. There were no cases that stained with OC125 and not 4H11.

[0157] Similarly, there was no staining with either OC125 or 4H11 in fetal heart, gallbladder, colon, small intestine, liver, rectum, adrenal, thyroid, spleen, skin, bone, epididymis, brain, lung, muscle, smooth muscle, kidney, eye, umbilical cord, and placenta. OC125 only stained thymic corpuscles in a pattern similar to that in adult tissue. 4H11 stained both fetal pancreatic endocrine cells and endocervical glands in a similar pattern to that of their adult counterparts. Islet cells showed a granular cytoplasmic pattern, and endocervical glands showed a linear luminal pattern, which was more similar to the OC125 pattern in the adult tissue.

EXAMPLE 4

Successful eradication of established peritoneal ovarian tumors in SCID-Beige mice following adoptive transfer of T cells genetically targeted to the MUC16 antigen.

[0158] **Purpose:** Most patients diagnosed with ovarian cancer will ultimately die from their disease. For this reason, novel approaches to the treatment of this malignancy are needed. Adoptive transfer of a patient's own T cells, genetically modified *ex vivo* through the introduction of a gene encoding an chimeric antigen receptor (CAR), an artificial T cell receptor, targeted to a tumor associated antigen, is a novel and promising approach to cancer therapy applicable to the treatment of ovarian cancer.

[0159] **Experimental design:** We have generated several CARs targeted to the retained extracellular domain of MUC16, termed MUC-CD, an antigen highly expressed on a majority of ovarian carcinomas. We investigate the *in vitro* biology of human T cells retrovirally transduced to express these CARs by co-culture assays on artificial antigen presenting cells (AAPCs) generated from NIH3T3 fibroblasts genetically modified to express the target MUC-CD antigen, as well as by cytotoxicity assays utilizing the human OV-CAR3(MUC-CD) ovarian tumor cell line and primary patient tumor cells.

Finally, we assess the *in vivo* anti-tumor efficacy of MUC-CD targeted T cells in a SCID-Beige orthotopic, xenogeneic OV-CAR3(MUC-CD) murine tumor model.

[0160] Exemplary sequences used in this work are in Figure 17-19.

[0161] **Results:** CAR modified MUC-CD targeted T cells derived from both healthy donors and ovarian cancer patients exhibited efficient *in vitro* cytolytic activity against both human ovarian cell lines as well as primary ovarian carcinoma cells. MUC-CD targeted T cells may be further expanded *ex vivo* through multiple cycles of co-culture on 3T3(MUC-CD/B7.1) AAPCs. Expanded MUC-CD targeted T cells infused into SCID-Beige mice bearing intraperitoneal human OV-CAR3(MUC-CD) tumors either delayed progression or fully eradicated tumor even in the setting of advanced disease.

[0162] **Conclusion:** These promising pre-clinical studies justify further investigation of MUC-CD targeted T cells as a potential therapeutic approach in the clinical setting treating patients with high risk MUC-16⁺ ovarian carcinomas.

INTRODUCTION

[0163] Ovarian cancer is the sixth most common cancer worldwide and the seventh leading cause of cancer-related deaths in women (1, 2). Despite multimodality therapy with surgery and chemotherapy, most patients with ovarian carcinomas have a poor prognosis. For this reason, alternative approaches to treating this disease are urgently needed.

[0164] Infusion of a patient's own T cells genetically targeted *ex vivo* to antigens expressed on the surface of tumor cells is a promising novel approach to the adoptive immunotherapy of cancer, and one which has only recently been explored in earnest in the clinical setting. T cells may be genetically modified to target tumor associated antigens through the retroviral introduction of genes encoding artificial T cell receptors termed chimeric antigen receptors (CARs). Genetic engineering of T cells to express artificial T cell receptors that direct cytotoxicity toward a tumor cell presents a means to enhance immune recognition and elimination of cancer cells. CARs are most commonly composed of a single chain fragment length antibody (scFv), derived from a murine monoclonal antibody targeting a given tumor associated antigen, fused to a transmembrane domain (typically CD8, CD28, OX-40, and 4-1BB), fused to the TCR ζ chain cytoplasmic signaling domain (3-13). When used to reprogram T-cell specificity, these fusion receptors permit recognition of native antigen. When expressed by the T cells, the resulting construct, upon engagement with the targeted antigen, induces T cell activation, proliferation, and lysis of targeted cells. These fusion receptors transduce a functional antigen-dependent co-stimulatory signal in primary T cells, permitting sustained T-cell proliferation when both endogenous TCR and a chimeric receptor for stimulatory signaling are engaged. To date, preclinical studies utilizing CAR-modified T cells have demonstrated promising results in a wide variety of malignancies (3, 4, 11, 14-18). More recently this approach has been investigated clinically in the form of phase I trials (6, 19-21). These genetic approaches offer a means to enhance immune recognition and elimination of cancer cells.

[0165] Ovarian carcinomas appear to be relatively immunogenic tumors capable of inducing an endogenous immune response based on the fact that long-term prognosis of patients is markedly influenced by the degree and quality of the endogenous immune response to the tumor. Specifically, it has been well documented that the presence of endogenous effector T cells within the ovarian cancer tumor microenvironment directly correlates to prolonged patient survival (22-25). In contrast, increasing numbers of immune suppressive CD4⁺CD25^{hi} regulatory T cells (Tregs) within the tumor, which in turn presumably abrogate the anti-tumor activity of infiltrating effector T cells, correlates with shorter patient survival (26-29). In fact, it appears that it is the ratio of Tregs to effector T cells within the tumor microenvironment which ultimately dictates whether the endogenous immune response to the cancer is of benefit or detriment to the patient (24, 28). In this setting, the ability to generate and subsequently expand a population of tumor targeted effector T cells *ex vivo* which are subsequently infused back into the patient, may in turn skew the Treg to effector T cell ratio to one more favorable to eradicating the disease.

[0166] Mucins are important biomolecules for cellular homeostasis and protection of epithelial surfaces. Changes to expression of mucins in ovarian cancer might be exploited in diagnosis, prognosis and treatment (1). MUC16 is one such mucin which is over expressed on most ovarian carcinomas and is an established surrogate serum marker (CA-125) for the detection and progression of ovarian cancers (30-33). MUC16 is a high-glycosylated mucin composed of a large cleaved and released domain, termed CA-125, consisting of multiple repeat sequences, and a retained domain (MUC-CD) which includes a residual non-repeating extracellular fragment, a transmembrane domain, and a cytoplasmic tail (34). Since the antigen is otherwise only expressed at low levels in the uterus, endometrium, fallopian tubes, ovaries, and serosa of the abdominal and thoracic cavities, MUC16 is a potentially attractive target for immune-based therapies.

[0167] However, the fact that most of the extracellular domain of MUC16 is cleaved and secreted limits the utility of MUC16 as a target antigen on ovarian carcinomas. In fact, to date, all reported MAbs to MUC16 bind to epitopes present on the large secreted CA-125 fraction of the glycoprotein, with none known to bind to the retained extra-cellular fraction (MUC-CD) of the antigen (35-37). Since the MUC-CD fraction of the antigen is retained on cell surface, generating T cells specific to this portion of MUC16 may largely overcome the limitation of MUC16 as a target for adoptive cellular immunotherapy. To this end, we have previously generated a series of murine MAbs specific to the retained MUC-CD extracellular domain (38). Utilizing a hybridoma which expresses one such MAb, 4H11, we have successfully constructed

several CARs specific to the MUC-CD antigen. This invention provides a nucleic acid encoding a chimeric T cell receptor, composed of, at least a zeta chain, a signaling region and a binding element that specifically interacts with a selected target as well as the chimeric T cell receptor comprising a zeta chain portion, a signaling region and a binding element.

[0168] In this report, we demonstrate highly efficient retroviral transduction of these MUC-CD targeted CARs into human T cells with resulting T cells able to specifically target and lyse MUC-CD⁺ tumor cells *in vitro*. Furthermore, we demonstrate efficient MUC-CD targeted T cell expansion *in vitro* through repeated co-culture on NIH (3T3) fibroblasts genetically modified to express MUC-CD and the co-stimulatory ligand B7.1 (CD80). Successful expansion of modified T cells allowed us to subsequently generate sufficient T cell numbers to conduct *in vivo* studies in immune compromised SCID-Beige mice bearing established intraperitoneal MUC-CD⁺ human ovarian tumors. Significantly, in these studies we demonstrate marked anti-tumor efficacy of MUC-CD targeted T cells, both following direct intraperitoneal as well as intravenous injection when compared to either untreated mice, or mice treated with T cells bearing a CAR targeted to an irrelevant antigen. In addition, we demonstrate significant cytotoxicity of 4H11-28z⁺ patient's T cells and healthy donor's T cells targeting primary ascites-derived ovarian carcinoma cells from cancer patients.

[0169] To our knowledge this is the first report wherein T cells genetically targeted to the MUC16 antigen demonstrate marked anti-tumor efficacy against MUC16⁺ tumors either *in vitro* or *in vivo*. These data serve as a rationale for proposing future clinical trials utilizing this approach in patients with high risk ovarian carcinomas.

MATERIALS AND METHODS

20 Cell lines and T cells

[0170] The OV-CAR3 tumor cell line was cultured in RPMI 1640 (Invitrogen, Grand Island, NY) supplemented with 10% heat-inactivated FBS, nonessential amino acids, HEPES buffer, pyruvate, and BME (Invitrogen). The PG13 and gpg29 retroviral producer cell lines were cultured in DMEM (Invitrogen) supplemented with 10% FCS, and NIH-3T3 artificial antigen-presenting cells (AAPC), described previously (3), were cultured in DMEM supplemented with 10% heat-inactivated donor calf serum. T cells were obtained from peripheral blood of healthy donors under IRB approved protocol #95-054, in BD Vacutainer CPT tubes (Becton Dickinson, Franklin Lakes, NJ) as per the manufacturer's instructions. All media were supplemented with 2 mmol/L L-glutamine (Invitrogen), 100 units/mL penicillin, and 100 µg/mL streptomycin (Invitrogen). T cells were cultured RPMI 1640 media as above supplemented with 20 IU/ml IL-2 (Novartis Pharmaceuticals, East Hanover, NJ) and where indicated, medium was supplemented with 10 ng/mL interleukin 15 (R&D Systems, Minneapolis, MN).

Isolation of patients ascites-derived cancer cells

[0171] Primary human ascites-derived cancer cells were obtained from ovarian cancer patients undergoing surgery for newly diagnosed advanced serous ovarian carcinoma under IRB approved protocol #97-134. The tumor cells were isolated from ascitic fluid of patients by centrifugation at 600g for 10 min at room temperature. Cells were washed once with 1x PBS and cultured in RPMI 1640 media supplemented with 10% FBS for future analysis.

40 Generation of the MUC-CD targeted 4H11z and 4H11-28z CARs

[0172] The heavy and light chain variable regions of the 4H11 monoclonal antibody were derived from the hybridoma cell line 4H11. Utilizing cDNA generated from 4H11 RNA we isolated the V_H coding region by RACE PCR utilizing modified primers as described elsewhere (39, 40). The V_L chain variable region was cloned by standard PCR utilizing modified primers as described by Orlandi et al (41, 42). The resulting V_H and V_L fragments were subcloned into the TopoTA PCR 2.1 cloning vector (Invitrogen) and sequenced. The V_H and V_L fragments were subsequently ligated to a (Gly₄Ser)₃ spacer domain, generating the 4H11 scFv and fused to the human CD8 leader peptide (CD8L) by overlapping PCR (9, 41). In order to construct the MUC-CD targeted 4H11 CARs, the coding region of the CD8L-4H11 scFv was fused to the human CD8 hinge and transmembrane domains (to generate the 4H11z CAR), or alternatively to the CD28 transmembrane and cytoplasmic signaling domains (to generate the 4H11-28z CAR), fused to the T cell receptor CD3-ζ signaling domain (3, 9, 43). The resulting CAR constructs were subsequently sub-cloned into the modified MMLV retroviral vector SFG (44). VSV-G pseudotyped retroviral supernatants derived from transduced gpg29 fibroblasts were used to construct stable PG13 gibbon ape leukemia virus (GaLV) envelope-pseudotyped retroviral producing cell lines (41).

55 Retroviral gene transfer

[0173] Isolated healthy donor peripheral blood mononuclear cells (PBMCs) were activated with phytohemagglutinin

(PHA) at 2 μ g/ml (Sigma, St. Louis, MO) and retrovirally transduced on retronectin coated non-tissue culture plates (45). Briefly, six-well non-tissue culture plates (BD Biosciences, San Jose, CA) were coated with RetroNectin (RN) (Takara Biomedicals, Otsu, Japan) as per manufacturer's instructions. Forty-eight hours after PHA activation, aliquots of 1x10⁶ T cells in 1 ml of supplemented RPMI medium were placed in each well of the RN-coated plates, along with 1 ml of SFG retroviral supernatant. T cells were centrifuged daily for 3 consecutive days with fresh retroviral supernatant added daily at 2000g at 30°C for 1hr (45). Gene transfer was assessed on day 7 by FACS.

5 [0174] In order to generate the relevant NIH-3T3 murine fibroblast artificial antigen presenting cells, a MUC-CD construct encoding the retained extracellular, transmembrane and cytoplasmic domains of the MUC-16 antigen was initially subcloned into SFG retroviral vector, SFG(MUC-CD). 3T3(MUC-CD) AAPCs were generated by retroviral transduction 10 of SFG(MUC-CD) into wild-type NIH-3T3 fibroblasts, while 3T3(MUC-CD/B7.1) AAPCs were generated by retroviral transduction of previously established 3T3(B7.1) fibroblasts (41, 46). Highly enriched cell lines were isolated by FACS.

15 [0175] To generate the OV-CAR3(MUC-CD) and OV-CAR3(MUC-CD/GFP-FFLuc) cell lines, we retrovirally transduced the WT OV-CAR3 human ovarian cancer cell line with SFG(GFP-FFLuc) as described previously (47) and/or SFG(MUC-CD) VSV-G pseudotyped retroviral supernatants derived from gpg29 fibroblasts as described elsewhere 20 (44). Resulting tumor cells were sorted by FACS for either MUC-CD expression alone for the OVCAR3(MUC-CD) cell line, or dual MUC-CD and GFP expression for the OVCAR3(MUC-CD/GFP-FFLuc) cell line. MUC-CD expression by FACS was assessed using the 4H11 MAb.

In vitro analyses of CAR⁺ human T cells

25 [0176] To assess *in vitro* expansion and cytokine release upon stimulation, transduced T cells were co-cultured for 7 days after retroviral transduction in 6-well tissue culture plates (BD Biosciences) on confluent NIH 3T3 AAPCs in RPMI medium supplemented with 10% FBS in the absence of supplemented cytokines. In order to generate sufficient numbers of CAR-modified T cells for *in vivo* studies, transduced T cells were co-cultured on B7.1⁺ AAPCs (3T3(MUC-CD/B7.1)) 30 in RPMI medium supplemented with 20 IU IL-2/mL and 10 ng/mL IL-15 as described previously (3, 43). Patients T cells were activated and expanded with human CD3/CD28 beads (DYNAL[®], Invitrogen, Carlsbad, CA) following manufacturer's recommendations.

Western Blot analysis of CAR expression

35 [0177] Western blot analysis of T-cell lysates under reducing conditions with 0.1 mol/L DTT (Sigma) was performed as previously described (46). Briefly, transduced T cells were washed in PBS and resuspended in radioimmunoprecipitation assay (RIPA) buffer (Boston BioProducts, Worcester, MA) with mini complete protease inhibitor as per the manufacturer's instructions (Roche Diagnostics, Indianapolis, IN). Resulting proteins were separated on 12% SDS-PAGE 40 mini gels (Bio-Rad, Hercules, CA) after the addition of 6X reducing loading buffer (Boston BioProducts, Worcester, MA) and heating at 100°C for 10 min. Separated proteins were subsequently transferred to Immobilon membranes and probed using an anti-human CD3 ζ chain monoclonal antibody (BD Biosciences). Antibody binding was detected by probing the blot with goat anti-mouse horse radish peroxidase-conjugated antibody followed by luminescent detection using Western Lighting Chemiluminescence Reagent Plus (Perkin-Elmer Life Sciences, Boston, MA) as per the manufacturer's instructions.

Cytotoxicity assays

45 [0178] *In vitro* modified T cell cytotoxicity was assessed using the DELFIA[®] EuTDA assay (PerkinElmer LAS, Inc, Boston, MA) following manufacturer's recommendations. Cytotoxicity was assessed at 2 hours at effector T cell to target OVCAR3(MUC-CD) or primary tumor cells (E:T) at indicated ratios. Effector T cells in these assays represent the number of CD8⁺ CAR^{*} T cells.

Cytokine detection assays

50 [0179] Cytokine assays were performed as per manufacturer's specifications using a multiplex Human Cytokine Detection assay to detect IL-2 and IFN γ (Millipore Corporation, Billerica, MA) utilizing the Luminex IS100 system. Cytokine concentrations were assessed using IS 2.3 software (Luminex Corp., Austin, TX).

In vivo SCID-Beige mouse tumor models

55 [0180] In all *in vivo* studies, 8-12 week-old FOX CHASE C.B.-17 (SCID-Beige mice) (Taconic, Hudson, NY) were initially injected ip with either 3 x 10⁶ OVCAR3(MUC-CD), or for bioluminescent imaging (BLI) studies 3 x 10⁶ OVCAR3(MUC-CD/GFP-FFLuc).

5 CAR3(MUC-CD/GFP-FFLuc) tumor cells. Subsequently, 3×10^7 CAR⁺ T cells were injected ip or iv on day 1 or 7 following tumor injection as indicated. Mice were monitored for distress as assessed by increasing abdominal girth, ruffled fur, and decreased response to stimuli. Distressed mice were euthanized. All murine studies were done in context of an Institutional Animal Care and Use Committee-approved protocol (#00-05-065).

10 *Bioluminescent imaging (BLI) of OVCAR3(MUC-CD/GFP-FFLuc) tumor cells in SCID-Beige mice*

15 [0181] BLI was performed using Xenogen IVIS imaging system with Living Image software (Xenogen; Alameda, CA). Briefly, OVCAR3(MUC-CD/GFP-FFLuc) tumor bearing mice were injected by ip with D-luciferin (150 mg/kg; Xenogen) suspended in 200 μ l PBS and imaged under 2% isoflurane anesthesia after 10 min. Image acquisition was done on a 25-cm field of view at medium binning level for 0.5-min exposure time (3, 43).

20 *Flow cytometry*

25 [0182] All flow cytometric analyses of T cells and tumor cells was performed using a FACScan cytometer with Cellquest software (BD Biosciences). T cells were analyzed using CAR-specific polyclonal goat Alexa Fluor 647 antibody (Molecular probes, Eugene, OR) phycoerythrin-labeled anti-human CD4, CD8, B7.1 (Caltag Laboratories, Burlingame, CA), B7.2 (Invitrogen, Camarillo, CA), 4-1BBL, and OX40 antibodies (Ancell Corporation, Bayport, MN). 3T3(MUC-CD) and OVCAR3(MUC-CD) cells were stained with Alexa Fluor 647 labeled 4H11 antibody (generated and labeled in the MSKCC 30 monoclonal antibody core facility).

CFSE labeling of CARP T cells

25 [0183] CAR⁺ T cells were stained with CFSE using the CellTrace™ CFSE cell proliferation kit following manufacturer's recommendations (Molecular Probes, Eugene, OR). Proliferation of CFSE labeled T cells was analyzed by FACS. For detection of CFSE labeling T cells *in vivo*, ovarian tumors were macerated through 40 μ m cell strainer (BD Falcon, Franklin Lakes, NJ) and washed twice with 2% FBS/PBS before antibody staining and FACS analysis.

30 *Statistics*

35 [0184] Survival data assessed by log-rank analysis using GraphPad Prism software (GraphPad Prism software, San Diego, CA). Cytokine data were analyzed by Student's one-tailed t-test.

RESULTS

40 [0185] We have constructed SFG retroviral vectors encoding first (4H11z) and second generation (4H11-28z) CARs targeted to the MUC-CD antigen using the 4H11 hybridoma which generates a MAb specific to the MUC-CD antigen (Figure 11A). We confirmed expression of appropriately sized CAR proteins by Western blot analysis of resulting PG-13 retroviral producer cells (SFG-4H11z and SFG-4H11-28z) probed with a ζ -chain specific antibody (data not shown).

45 [0186] In order to assess the function of the first generation 4H11z CAR, healthy donor T cells isolated from peripheral blood were retrovirally transduced to express the 4H11z and control 19z1 CARs (Figure 11B). Function of the 4H11z CAR was assessed by proliferation of 4H11z transduced T cells following co-culture on 3T3(MUC-CD/B7.1) AAPCs. Results demonstrate specific proliferation of 4H11z transduced T cells, when compared to 19z1 modified T cells (Figure 11C). These data are consistent 4H11z CAR mediated specific binding to the MUC-CD antigen and subsequent T cell activation.

50 [0187] Since most malignancies fail to express co-stimulatory ligands, we further modified the 4H11z CAR to express the CD28 transmembrane and cytoplasmic co-stimulatory signaling domains, constructing the second generation 4H11-28z CAR (Figure 11A). To assess whether the 4H11-28z CAR, when expressed by human T cells, was capable of generating both a primary activating signal (termed "signal 1") through the ζ chain, as well as a co-stimulatory signal (termed "signal 2") through the CD28 cytoplasmic domain, which in turn allows for efficient T cell proliferation in the absence of exogenous co-stimulatory ligands, we compared T cell proliferation following co-culture on either 3T3(MUC-CD) or 3T3(MUC-CD/B7.1) AAPCs in the absence of exogenous cytokines. As expected, the second generation 4H11-28z⁺ T cells markedly expanded when compared to 4H11z⁺ T cells upon co-culture with 3T3(MUC-CD) AAPCs. In contrast, both 4H11z⁺ and 4H11-28z⁺ T cells expanded similarly on 3T3(MUC-CD/B7.1) AAPCs (Figure 12A). Co-stimulation mediated by the 4H11-28z CAR was further verified by analysis of day 2 tissue culture supernatants from co-culture experiments on 3T3(MUC-CD) AAPCs demonstrating enhanced IL-2 secretion, a cytokine typically secreted in the context of T cell co-stimulation, when compared to control 19z1⁺ and 19-28z⁺T cells and first generation 4H11z⁺ T cells (Figure 12B). Secretion of IFN γ was comparable between 4H11z⁺ and 4H11-28z activated T cells.

[0188] We next assessed the ability of MUC-CD targeted T cells to expand following weekly re-stimulations through co-culture on 3T3(MUC-CD/B7.1) AAPCs in the context of exogenous IL-2 and IL-15 (3). Both 4H11z⁺ and 4H11-28z⁺ T cells expanded greater than 2 logs over 3 weeks (Figure 12C). T cells transduced with the 4H11-28z were further analyzed by FACS for CAR expression 7 days after initial activation on AAPCs and following two subsequent co-stimulations on AAPCs demonstrating an expected enrichment of the CAR⁺ T cell fraction (Figure 12D). Similar data was generated with expanded 4H11z⁺ T cells (data not shown).

[0189] *In vitro cytotoxicity and proliferation of MUC-CD targeted T cells following co-culture with OV-CAR3(MUC-CD) and freshly isolated ascites derived ovarian tumor cells.*

[0190] In order to assess the ability of 4H11z⁺ and 4H11-28z T cells to target and lyse human ovarian carcinoma tumors, we utilized the human OV-CAR3 cell line which was genetically modified to express the MUC-CD antigen thereby better reflecting the majority of clinical ovarian tumor samples which express the 4H11-targeted MUC-CD antigen (48). We initially verified specific lysis by MUC-CD targeted T cells demonstrating similar significant cytotoxic activity of 4H11z and 4H11-28z CAR modified T cells targeting OV-CAR3(MUC-CD) tumor cells when compared control T cells expressing the irrelevant first and second generation CD19-targeted 19z1 and 1928z CARs (Figure 13A). Healthy donor T cells modified to express the 4H11-28z CAR similarly exhibited lysis of freshly isolated ascites derived MUC-CD⁺ ovarian carcinoma cells when compared to 19-28z transduced T cells (Figure 13B). Moreover, patient's peripheral blood T cells modified to express the 4H11-28z CAR similarly lysed autologous primary MUC-CD⁺ tumor cells derived from the same ascites sample when compared to T cells modified to express the control 19-28z CAR (Figure 13C).

[0191] We further assessed the ability of 4H11z⁺ and 4H11-28z⁺ T cells from healthy donors to proliferate following co-culture on OV-CAR3(MUC-CD) as assessed by FACS of CFSE labeled T cells, as well as absolute T cells numbers over 7 days following co-culture with tumor (Figures 13D and E). Surprisingly, we found that both 4H11z⁺ and 4H11-28z T cells expanded equally well following co-culture with OV-CAR3(MUC-CD) tumor cells suggesting the ability of this tumor cell line to co-stimulate T cells through expression of a co-stimulatory ligand. To address this possibility, we conducted further FACS analyses of OV-CAR3(MUC-CD) tumor cells demonstrating expression of the co-stimulatory 4-1BBL ligand (Figure 13F), but not the B7.1, B7.2, or OX-40L co-stimulatory ligands (data not shown).

[0192] *In vivo anti-tumor activity of MUC-CD targeted T cells in SCID-Beige mice.*

[0193] To assess the *in vivo* anti-tumor activity of 4H11z⁺ and 4H11-28z⁺ T cells, we next generated an orthotopic xenotransplant ovarian cancer tumor model by ip injection of OV-CAR3(MUC-CD) tumor cells into SCID-Beige mice. If left untreated, these mice developed marked ascites and multiple nodular peritoneal tumors by 3 weeks following tumor cell injection (Figure 14A). All untreated tumor bearing mice had to be euthanized by 7 weeks following tumor cell injection due to evidence of distress.

[0194] To assess the *in vivo* anti-tumor efficacy of MUC-CD-targeted T cells, SCID-Beige mice were injected ip with OV-CAR3(MUC-CD/GFP-FFLuc) tumor cells on day 1 followed by ip injection of 4H11z⁺ or 4H11-28z⁺ T cells on day 2. For negative controls, tumor bearing mice were either untreated or treated with T cells modified to express the irrelevant CD19-targeted CAR. Collectively, we found that 27% of all mice treated with MUC-CD targeted T cells (3/11 mice) remained alive without clinical evidence of disease 120 days out from tumor injection with no statistically significant difference in survival when comparing the 4H11z⁺ and 4H11-28z⁺ T cell treated cohorts (Figure 14B). In contrast, both MUC-CD-targeted T cell treated cohorts demonstrated statistically significant enhanced survival when compared to untreated and 19z1⁺ T cell treated control cohorts.

[0195] To assess whether systemically infused MUC-CD-targeted T cells successfully traffic to ip tumors, we next compared ip to iv infusion of 4H11-28z⁺ T cells in SCID-Beige mice bearing ip OV-CAR3(MUC-CD/GFP-FFLuc) tumors. Both ip and iv 4H11-28z⁺ T cell treated mice exhibited statistically enhanced survival when compared to untreated or 19-28z⁺ T cell treated control cohorts as assessed by overall survival (Figure 15A) as well as by BLI of tumor progression (Figure 15B). Furthermore, we found overall survival between the ip and iv treated groups to be statistically equivalent by log rank analysis. These data imply successful trafficking of iv infused 4H11-28z⁺ T cells to peritoneal tumors. We further confirmed trafficking of iv infused CFSE labeled 4H11-28z T cells to the peritoneum by FACS analysis of single cell suspensions of macerated OV-CAR3(MUC-CD) tumors (Figure 15C).

[0196] *In vivo anti-tumor activity of MUC-CD targeted T cells in SCID-Beige mice bearing well established OV-CAR3(MUC-CD/GFP-FFLuc) tumors.*

[0197] To further assess whether 4H11-28z⁺ T cells were able to eradicate more clinically relevant tumor burdens, we next treated SCID-Beige mice bearing well established ip OV-CAR3(MUC-CD/GFP-FFLuc) tumor injected 7 days prior to adoptive T cell therapy. Once more, we found that therapy with MUC-CD targeted T cells markedly eradicated BLI evident disease in all treated mice (Figure 16A) with 5 of 8 treated mice eventually developing relapsed progressive disease, and 3 mice remaining disease free as assessed by BLI imaging (not shown) out to 120 days post-tumor cell infusion (Figure 16B). These data demonstrate potent *in vivo* anti-tumor activity mediated by MUC-CD targeted T cells even in the setting of advanced disease.

DISCUSSION

[0198] Based on extensive analyses of patient tumor samples, ovarian carcinomas appear to be relatively immunogenic tumors. Specifically, researchers have found there to be a direct correlation between prognosis following surgery and chemotherapy and the quantity of tumor infiltrating effector T cells (TILs) in pretreatment tumor samples (25, 49, 50). Furthermore, others have described an inverse correlation between prognosis following therapy and pre-treatment levels of Tregs within the tumor, which in turn presumably inhibit the anti-tumor function of tumor specific effector TILs (26, 28, 51). Both of these findings imply a role for an endogenous effector T cell response to tumor in controlling disease progression both prior to and following initial therapy and strongly support the contention that ovarian carcinomas may be susceptible to killing by adoptive infusion of autologous T cells targeted to ovarian tumor cell antigens.

[0199] While endogenous effector TILs are one source for presumably tumor specific T cells, an alternative approach to adoptive T cell therapy is to isolate autologous peripheral blood T cells which in turn may be genetically modified *ex vivo* to target tumor cell antigens. One such genetic approach is to retrovirally transduce patient T cells with CARs targeted to surface exposed antigens either unique to or over-expressed by the tumor. To this end, promising preclinical studies utilizing this approach in other malignancies have recently been translated into the clinical setting (6, 16, 19, 52). Similarly, we have previously generated CARs targeted to the CD19 antigen expressed on normal B cells as well as most B cell malignancies and are currently conducting clinical trials treating patients with relapsed B cell chronic lymphocytic leukemia and acute lymphoblastic leukemias with autologous T cell modified to express a CD19 specific CAR (53).

[0200] Application of this approach to ovarian carcinomas requires the identification to suitable target antigens expressed on the tumor cell surface. Significantly, other investigators have studied this approach in both the pre-clinical and clinical setting (4, 11, 54-57). Specifically, several groups have demonstrated significant anti-tumor responses to subcutaneous human ovarian carcinoma cell line tumors in immune compromised mice following intratumoral and/or intravenous infusion of T cells expressing CARs specific to the mesothelin and Lewis-Y antigens overexpressed on these tumor cell lines (56, 58, 59). Furthermore, Kershaw et al recently published the results of a phase I clinical trial treating patients with relapsed ovarian carcinomas with autologous T cells modified to express a CAR specific to the alpha-folate receptor (6). The authors of this study found that therapy with targeted T cells was well tolerated, but noted a lack of anti-tumor response in these studies related to poor persistence of modified T cells over time as well as a yet undefined T cell inhibitory factor in the serum of several treated patients.

[0201] In our studies, we have chosen to target the MUC-16 glycoprotein which is over-expressed on a majority of ovarian carcinomas (1, 30, 32, 33). The utility of MUC-16 as a target antigen for adoptive T cell therapy is compromised by the fact that most of the extracellular portion of this molecule is cleaved by the tumor cell, secreted, and may be detected in the serum as the CA-125 tumor marker. However, following cleavage of this secreted fraction of MUC-16, there remains a residual extracellular fraction of the glycoprotein, termed MUC-CD, which is retained on the tumor surface and is therefore an attractive target for immune-based therapies. To this end, we utilized a series of murine hybridomas generated to the MUC-CD antigen to construct CARs specific to MUC-CD. Of these CARs, we identified a CAR generated from the 4H11 murine hybridoma termed 4H11z, which, when expressed in human T cells, following co-culture on 3T3(MUC-CD/B7.1) AACPs, resulted in rapid destruction of AACP monolayers as well as marked modified T cell expansion. Significantly, the antigen to the 4H11 antibody is highly expressed on a majority of pre-treatment ovarian carcinoma surgical tumor samples obtained from patients treated at our institution as assessed by immunohistochemistry (48).

[0202] Optimal T cell activation requires both a primary T cell receptor mediated signal, "signal 1," along with a co-stimulatory "signal 2." Classically, this co-stimulatory signal may be provided by ligation of either B7.1 (CD80) or B7.2 (CD86) on the target cell with the T cell co-stimulatory receptor CD28. Alternatively, co-stimulation may be generated by ligation of 4-1BBL or OX-40L on the target cell with the respective 4-1BB or OX40 co-stimulatory receptors on the T cell (12, 60, 61). Since most tumor cells fail to express co-stimulatory ligands, we and others have previously demonstrated that second generation CARs further incorporating the cytoplasmic signaling domains the co-stimulatory receptors CD28, 4-1BB, and/or OX40 resulted in CARs capable of providing both signal 1 and signal 2 to the T cell upon binding to cognate antigen in the absence of exogenous co-stimulatory ligands (7-10, 12, 13, 15, 16, 62-65). To this end, we constructed a second generation CAR from the 4H11z CAR incorporating the transmembrane and cytoplasmic signaling domain of CD28 as described elsewhere (3, 9, 43). Consistent with previous studies, we found that T cells transduced to express the resulting 4H11-28z CAR, but not the first generation 4H11z CAR, efficiently expanded upon co-culture with 3T3(MUC-CD) fibroblasts in the absence of exogenous co-stimulation consistent with the ability of the 4H11-28z CAR to deliver both signal 1 and signal 2 to the T cell. This conclusion is further supported by the finding that 4H11-28z⁺ T cells secreted significantly higher levels of IL-2, a cytokine indicative of T cell co-stimulation, upon co-culture on 3T3(MUC-CD) fibroblasts when compared to T cells transduced to express the first generation 4H11z CAR.

[0203] We next assessed the ability of 4H11z⁺ and 4H11-28z⁺ T cells to target and lyse human ovarian carcinoma tumor cells. To this end, we initially utilized the OV-CAR3 human ovarian cancer cell line. Since the OV-CAR3 tumor

cell line binds the 4H11 antibody weakly, we further genetically modified the cell line to express MUC-CD (OV-CAR3 (MUC-CD)) to better mimic the clinical setting wherein a majority of clinical ovarian carcinoma tumor specimens highly express the 4H11 MUC-CD antigen (48). We demonstrated that human T cells modified to express either 4H11z or 4H11-28z eradicated OV-CAR3(MUC-CD) tumor cells *in vitro*, and surprisingly observed that both 4H11z⁺ and 4H11-28z

5 T cells expanded following co-culture with tumor *in vitro*. To define the etiology of this unanticipated 4H11z⁺ T cell expansion, we further assessed whether OV-CAR3(MUC-CD) tumor cells expressed co-stimulatory ligands, and found that this tumor cell line expressed 4-1BBL, consistent with our experimental findings as well as with previously published reports demonstrating 4-1BBL expression by a variety of carcinoma cell lines (66-68). In order to further validate the clinical relevance of these findings, we subsequently demonstrated specific *in vitro* lysis of primary ascites-derived tumor 10 cells isolated from untreated ovarian carcinoma patients by both healthy donor allogeneic 4H11-28z⁺ T cells as well as more significantly autologous 4H11-28z⁺ patient peripheral blood T cells. These data strongly support the contention that treatment with autologous 4H11-based CAR⁺ T cells have promise in future clinical applications.

15 [0204] In order to assess the *in vivo* relevance of our *in vitro* findings, we next generated a murine orthotopic OV-CAR3(MUC-CD) tumor model in SCID-Beige mice. We injected mice i.p. with OV-CAR3(MUC-CD) tumor cells and the following day infused 4H11z⁺, 4H11-28z⁺, and control 19z1⁺ T cells i.p. This treatment approach resulted in a significant but similar delay to tumor progression and long-term survival in both the 4H11z⁺ and 4H11-28z⁺ T cell treated cohorts when compared to untreated mice or mice treated with control T cells targeted to the irrelevant CD19 antigen. We next compared ip to iv treatment with 4H11-28z⁺ T cells of orthotopic OV-CAR3(MUC-CD/GFP-FFLuc) bearing mice, and found similar statistically significant survivals of mice over time with either direct ip infusion of T cells or systemic iv 20 infusion of targeted T cells. Significantly, iv treated mice by day 1 following treatment, exhibited successful trafficking of targeted T cells to the peritoneum. These data suggests that adoptive therapy with targeted T cells may be equally efficacious following either a direct infusion into the peritoneum or through systemic iv infusion. These findings further support the future clinical potential of this approach in treating patients both with local relapse of disease as well as metastatic relapse to sites outside of the peritoneum.

25 [0205] Finally, we assessed the ability of 4H11-28z⁺ T cells to eradicate more established disease by delaying modified T cell ip infusion by 7 days, when mice had greater established tumor burdens as assessed by bioluminescent imaging. This experimental setting better reflects the initial clinical setting wherein this adoptive T cell approach would be utilized. Significantly, despite the setting of markedly established disease, 4H11-28z⁺ T cells retained the ability to lyse larger tumor burdens, delay relapse of tumor, and in a significant percentage of mice, fully eradicate disease.

30 [0206] In the studies presented here, we have consistently utilized mixed populations of CD4⁺ and CD8⁺ CAR⁺ T cells to assess both *in vitro* and *in vivo* anti-tumor activity. To this end, ongoing studies will address the role of isolated CD4⁺ and CD8⁺ CAR⁺ T cell subsets in the successful eradication of disease in this SCID-Beige OV-CAR3(MUC-CD) tumor model. The results of these studies may have implications to translating this therapeutic approach to the clinical setting. Furthermore, we acknowledge the limitations associated with the presented SCID-Beige tumor model. Namely, this is 35 a xenotransplant model in an immune compromised mouse. To this end, ongoing studies in our laboratory are focused on generating a more clinically relevant syngeneic immune competent tumor model to better define the biology and anti-tumor efficacy of MUC-CD targeted CAR-modified T cells in the context of an intact immune system.

40 [0207] In conclusion, herein we present the first published data demonstrating the feasibility of targeting MUC-16, an antigen over-expressed on a majority of ovarian carcinomas, through adoptive therapy with genetically modified T cells targeted to the retained MUC-CD portion of the MUC-16 antigen. Further, this report is the first to demonstrate efficient targeting of T cells in an orthotopic, clinically relevant, murine model of ovarian cancer, demonstrating efficacy both by ip and iv infusion of modified T cells. Finally, these data support the further translation of this approach to the clinical setting in the form of a phase I clinical trial in patients with persistent or relapsed ovarian carcinomas following initial therapy with surgery and chemotherapy. [jf]

45

EXAMPLE 5

Raising Mouse MUC16 monoclonal antibodies in mice and hamsters.

50 [0208] We selected 3 different regions of mouse MUC16 genome for which monoclonal antibodies were generated in mouse and hamster. The selected regions of the mouse MUC16 are Peptide 1 (SEQ ID NO:21, ecto region of cytoplasmic domain), Peptide 2 (SEQ ID NO:22, first cysteine loop) and Peptide 3 (SEQ ID NO:23, second cysteine loop) (Figure 20A) and its comparison with human MUC16 is shown in Figure 20B. A cysteine was added to the peptide sequence at the N terminus of Peptide 1 (SEQ ID NO:21) and Peptide 3 (SEQ ID NO:23) for better conjugation with KLH. Individual peptides were conjugated to KLH using Promega kit. These 3 conjugated peptides were pooled and immunized into 5 mice and 4 hamsters. 5 immunizations with a 3 week interval for each immunization were administered. Sera from these animals were tested by ELISA for their specific reactivity with individual peptides (SEQ ID NO:21, 22 and 23). Positive selected animals were allowed to rest for a month and then i.v. boosted with pooled peptides immunogen (SEQ ID

NO:21, 22 and 23) and harvested the spleens after 4 days. Splenocytes were mixed with hybridoma partners and plated into microtiter plates at various clonal densities. Plates were cultured at 37°C 5% CO² for 10 days and then selected the clones. Supernatants from these selected clones were tested by ELISA for their specific reactivity with individual peptides (SEQ ID NO:21, 22 and 23). Positive clonal sups were tested by FACS, western blot and imaging using 2 mouse cell lines (ID8 and BR5-FVB1) and a human cell line (OVCAR-3).

5 [0209] Table 4 shows the summary of mouse and hamster monoclonal antibodies against mouse MUC16 peptide antigens Peptide 1 (SEQ ID NO:21), Peptide 2 (SEQ ID NO:22), and Peptide 3 (SEQ ID NO:23). A very strong antigenic response was seen with Peptide 1 (SEQ ID NO:21).

10

Table 4

Mouse MUC16	Mouse mAbs	Frozen Mouse mAb	
peptide 1	46	16 (3-IgG1; 8-IgG2b; 1-IgM; 4-Unknown isotype)	Animals not iv boosted with peptide 2
Peptide 2	0	0	
peptide 3	6	6 (4-IgG1; 2-IgM)	
Peptide 1,2,3	0	0	
Peptide 1,2	0	0	
peptide 2,3	0	0	
No Peptide	0	0	

Mouse MUC16	Hamster mAbs	Frozen Hamster mAb	
peptide 1	69	21	
Peptide 2	6	6	
peptide 3	7	7	
peptide 1,2,3	2	1	
Peptide 1,2	1	1	
Peptide 2,3	1	0	
No Peptide	10	2	

40 [0210] Details of mouse and hamster mAbs against Peptide 1 (SEQ ID NO:21), Peptide 2 (SEQ ID NO:22), and Peptide 3 (SEQ ID NO:23) are listed in Table 5 and Table 6 respectively.

45

50

55

Table 5

isotype	PEPTIDE	Fusion Well	Cloned	Clones			
-	1	01D01					
-	1	09F07					
IgG 1	1	16A09	no success				
-	1	21A07					
-	1	24G10					
IgG 1	1	10C04		10C4-3H5	10C4-1F2	10C4-2H8	10C4-1G7
IgG 1	1	17F02		17F2-3G5	17F2-3F6	17F2-2F9	17F2-1E11
IgG 2b	1	01A08					
IgG 2b	1	01F08					
IgG 2b	1	12B10		12B10-3F7	12B10-3G10	12B10-2F6	12B10-2F10
IgG 2b	1	17H10					
IgG 2b	1	18D05					
IgG 2b	1	23B12					
IgG 2b	1	25E09		25E9-3	25E9-5	25E9-13	25E9-16
IgM	1	16F12					
IgG 1	3	04A06	no success				
IgG 1	3	05D01					
IgG 1	3	21B08	yes	21B8-1H11	21B8-3G6	21B8-3H9	21B8-1G8
IgG 1	3	21E01		21E1-1E3	21E1-1G9	21E1-2G7	21E1-3G12
IgM	3	08A02					
IgM	3	13E05					

Table 6:

Hamster mAb	Peptide	Cloned			
01H03					
02F02	1				
04E 4					
04G07	1				
04H01	3	4H1-2E1	4H1-2E3	4H1-3E1	4H1-3H3
06A08	1				
06F02	1				
07F08	3				
07H05	2				
09A05					
09E 1	3				
09F08	1				
09H10					
10G06	1				
10H11	1				
11B10	1				
12F09	2				
15A08	1	15A8- 2E2	15A8-2E10	15A8- 2E11	15A8-3D2
15H08	3				
19B05	1				
21H04	3				
22B05	2	22B5- 1F6	22B5-3G9	22B5- 2G8	22B5-3F11
22D11	3				
23G12	1				
25E 8	1				
27H09	3				
28B12	1&2&3				
28C12	2				
30H02	1				
31A11	2				
31C01	2				
33H06	1&2				
34F10	1				
34H05	1				
36C01	1				
36C11					
36E 4	1				
37E 10	1				
10H11	1				

[0211] Hamster antibody 22B05 recognizes mouse (SEQ ID NO:22) and also the corresponding human sequence (SEQ ID NO:15).

[0212] Western blot analysis using mouse IDS and BR5-FVB1 cell extracts were also performed for all the selected monoclonal antibodies as shown in Figure 21 and Figure 22 respectively.

5 [0213] Among the mouse MUC16 monoclonal antibodies, we selected 12B10-3G10 subclone mouse mAb for further screening. Similarly, hamster monoclonal antibodies, 15A8-2E10, 22B5-2G8 and 4H1-2E1 subclones were selected for further screening.

10 [0214] Immunohistochemical analysis was performed with paraffin and cryosections of ID8 (mouse), OVCAR-3 (human), BR5-FVB1 (mouse) cell lines and 13.5 days of Embryo. Paraffin or cryosections were probed with mouse 12B10 mAb, hamster 15A8, hamster 22B5 and hamster 4E1 mAbs to see the early development of mouse MUC16 (Figure 23)

15 [0215] 12B10-3G10 sub clone were further analyzed for single chain Fv fragments. Figure 24 shows 12B10-3G10 V_H and V_L DNA and Amino Acids sequences. Bioreactive supernatants and purified 12B10-3G10 were generated for animal studies and other characterization studies. FACS analysis was performed with purified 12B10-3G10 on ID8, OVCAR3 and BR5-FVB1 cells showing over 90% positivity to both mouse and human MUC16 ecto-domain fragment (Figure 25).

15 REFERENCES CITED IN THE SPECIFICATION AND EXAMPLES 1-3

[0216]

- 20 1. Bast RC, Jr., Feeney M, Lazarus H, Nadler LM, Colvin RB, Knapp RC. Reactivity of a monoclonal antibody with human ovarian carcinoma. *J Clin Invest* 1981;68(5):1331-7.
2. Bast RC, Jr., Klug TL, St John E, Jenison E, Niloff JM, Lazarus H, et al. A radioimmunoassay using a monoclonal antibody to monitor the course of epithelial ovarian cancer. *N Engl J Med* 1983;309(15):883-7.
3. Rustin GJ, Bast RC, Jr., Kelloff GJ, Barrett JC, Carter SK, Nisen PD, et al. Use of CA-125 in clinical trial evaluation of new therapeutic drugs for ovarian cancer. *Clin Cancer Res* 2004;10(11):3919-26.
4. Rosen DG, Wang L, Atkinson JN, Yu Y, Lu KH, Diamandis EP, et al. Potential markers that complement expression of CA125 in epithelial ovarian cancer. *Gynecol Oncol* 2005;99(2):267-77.
5. Bast RC, Jr., Badgwell D, Lu Z, Marquez R, Rosen D, Liu J, et al. New tumor markers: CA125 and beyond. *Int J Gynecol Cancer* 2005;15 Suppl 3:274-81.
- 30 6. Moore RG, MacLaughlan S, Bast RC, Jr. Current state of biomarker development for clinical application in epithelial ovarian cancer. *Gynecol Oncol* 2009.
7. Nustad K, Lebedin Y, Lloyd KO, Shigemasa K, de Brujin HW, Jansson B, et al. Epitopes on CA 125 from cervical mucus and ascites fluid and characterization of six new antibodies. Third report from the ISOBM TD-1 workshop. *Tumour Biol* 2002;23(5):303-14.
8. Fendrick JL, Konishi I, Geary SM, Parmley TH, Quirk JG, Jr., O'Brien TJ. CA125 phosphorylation is associated with its secretion from the WISH human amnion cell line. *Tumour Biol* 1997;18(5):278-89.
- 35 9. Fendrick JL, Staley KA, Gee MK, McDougald SR, Quirk JG, Jr., O'Brien TJ. Characterization of CA 125 synthesized by the human epithelial amnion WISH cell line. *Tumour Biol* 1993;14(5):310-8.
10. O'Brien TJ, Beard JB, Underwood LJ, Shigemasa K. The CA 125 gene: a newly discovered extension of the glycosylated N-terminal domain doubles the size of this extracellular superstructure. *Tumour Biol* 2002;23(3): 154-69.
- 40 11. Yin BW, Dnistrian A, Lloyd KO. Ovarian cancer antigen CA125 is encoded by the MUC16 mucin gene. *Int J Cancer* 2002;98(5):737-40.
12. Yin BW, Lloyd KO. Molecular cloning of the CA125 ovarian cancer antigen: identification as a new mucin, MUC16. *J Biol Chem* 2001;276(29):27371-5.
- 45 13. Hollingsworth M, Swanson B. Mucins in Cancer: protection and control of the cell surface. *Nature Reviews: Cancer* 2004;4(1):45-60.
14. Huang L, Ren J, Chen D, Li Y, Kharbanda S, Kufe D. MUC1 cytoplasmic domain coactivates Wnt target gene transcription and confers transformation. *Cancer Biol Ther* 2003;2(6):702-6.
- 50 15. Li Q, Ren J, Kufe D. Interaction of human MUC1 and beta-catenin is regulated by Lck and ZAP-70 in activated Jurkat T cells. *Biochem Biophys Res Commun* 2004;315(2):471-6.
16. Ren J, Agata N, Chen D, Li Y, Yu WH, Huang L, et al. Human MUC1 carcinoma-associated protein confers resistance to genotoxic anticancer agents. *Cancer Cell* 2004;5(2):163-75.
- 55 17. Ren J, Bharti A, Raina D, Chen W, Ahmad R, Kufe D. MUC1 oncoprotein is targeted to mitochondria by heregulin-induced activation of c-Src and the molecular chaperone HSP90. *Oncogene* 2006;25(1):20-31.
18. Ramsauer VP, Pino V, Farooq A, Carothers Caraway CA, Salas PJ, Caraway KL. Muc4-ErbB2 Complex Formation and Signaling in Polarized CACO-2 Epithelial Cells Indicate That Muc4 Acts as an Unorthodox Ligand for ErbB2. *Mol Biol Cell* 2006.
19. Bafna S, Singh AP, Moniaux N, Eudy JD, Meza JL, Batra SK. MUC4, a multifunctional transmembrane glyco-

protein, induces oncogenic transformation of NIH3T3 mouse fibroblast cells. *Cancer Res* 2008;68(22):9231-8.

20. Ponnusamy MP, Singh AP, Jain M, Chakraborty S, Moniaux N, Batra SK. MUC4 activates HER2 signaling and enhances the motility of human ovarian cancer cells. *Br J Cancer* 2008;99(3):520-6.

5 21. Nap M, Vitali A, Nustad K, Bast RC, Jr., O'Brien TJ, Nilsson O, et al. Immunohistochemical characterization of 22 monoclonal antibodies against the CA125 antigen: 2nd report from the ISOBOm TD-1 Workshop. *Tumour Biol* 1996;17(6):325-31.

10 22. Markwell MA, Fox CF. Surface - specific iodination of membrane proteins of viruses and eucarytic cells using 1,3,4, 6-tetrachloro-3alpha,6alpha-diphenylglycouril. *Biochemistry* 1978;17:4807-4817.

15 23. Kononen J, Bubendorf L, Kallioniemi A, Barlund M, Schraml P, Leighton S, et al. Tissue microarrays for high-throughput molecular profiling of tumor specimens. *Nat Med* 1998;4(7):8447.

20 24. Hedvat CV, Hegde A, Chaganti RS, Chen B, Qin J, Filippa DA, et al. Application of tissue microarray technology to the study of non-Hodgkin's and Hodgkin's lymphoma. *Hum Pathol* 2002;33(10):968-74.

25 25. Soslow RA. Histologic subtypes of ovarian carcinoma: an overview. *Int J Gynecol Pathol* 2008;27(2):161-74.

30 26. O'Brien TJ, Beard JB, Underwood LJ, Dennis RA, Santin AD, York L. The CA 125 gene: an extracellular superstructure dominated by repeat sequences. *Tumour Biol* 2001;22(6):348-66.

35 27. Harris M, Howell A, Chrissohou M, Swindell RI, Hudson M, Sellwood RA. A comparison of the metastatic pattern of infiltrating lobular carcinoma and infiltrating duct carcinoma of the breast. *Br J Cancer* 1984;50(1):23-30.

40 28. Kaneko O, Gong L, Zhang J, Hansen JK, Hassan R, Lee B, et al. A binding domain on mesothelin for CA125/MUC16. *J Biol Chem* 2009;284(6):3739-49.

REFERENCES CITED IN EXAMPLE 4

[0217]

25 1. Singh AP, Senapati S, Ponnusamy MP, et al. Clinical potential of mucins in diagnosis, prognosis, and therapy of ovarian cancer. *Lancet Oncol* 2008;9(11):1076-85.

2. Sun CC, Ramirez PT, Bodurka DC. Quality of life for patients with epithelial ovarian cancer. *Nat Clin Pract Oncol* 2007;4(1):18-29.

30 3. Brentjens RJ, Latouche JB, Santos E, et al. Eradication of systemic B-cell tumors by genetically targeted human T lymphocytes co-stimulated by CD80 and interleukin-15. *Nat Med* 2003;9(3):279-86.

4. Hwu P, Yang JC, Cowherd R, et al. In vivo antitumor activity of T cells redirected with chimeric antibody/T-cell receptor genes. *Cancer Res* 1995;55(15):3369-73.

35 5. Imai C, Mihara K, Andreansky M, et al. Chimeric receptors with 4-1BB signaling capacity provoke potent cytotoxicity against acute lymphoblastic leukemia. *Leukemia* 2004;18(4):676-84.

6. Kershaw MH, Westwood JA, Parker LL, et al. A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer. *Clin Cancer Res* 2006;12(20 Pt 1):6106-15.

40 7. Kochenderfer JN, Feldman SA, Zhao Y, et al. Construction and preclinical evaluation of an anti-CD19 chimeric antigen receptor. *J Immunother* 2009;32(7):689-702.

8. Loskog A, Giandomenico V, Rossig C, Pule M, Dotti G, Brenner MK. Addition of the CD28 signaling domain to chimeric T-cell receptors enhances chimeric T-cell resistance to T regulatory cells. *Leukemia* 2006;20(10):1819-28.

9. Maher J, Brentjens RJ, Gunset G, Riviere I, Sadelain M. Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRzeta /CD28 receptor. *Nat Biotechnol* 2002;20(1):70-5.

45 10. Moeller M, Haynes NM, Trapani JA, et al. A functional role for CD28 costimulation in tumor recognition by single-chain receptor-modified T cells. *Cancer Gene Ther* 2004;11(5):371-9.

11. Parker LL, Do MT, Westwood JA, et al. Expansion and characterization of T cells transduced with a chimeric receptor against ovarian cancer. *Hum Gene Ther* 2000;11(17):2377-87.

50 12. Sadelain M, Brentjens R, Riviere I. The promise and potential pitfalls of chimeric antigen receptors. *Curr Opin Immunol* 2009;21(2):215-23.

13. Stephan MT, Ponomarev V, Brentjens RJ, et al. T cell-encoded CD80 and 4-1BBL induce auto- and transcostimulation, resulting in potent tumor rejection. *Nat Med* 2007;13(12):1440-9.

55 14. Daly T, Royal RE, Kershaw MH, et al. Recognition of human colon cancer by T cells transduced with a chimeric receptor gene. *Cancer Gene Ther* 2000;7(2):284-91.

15. Jensen MC, Cooper LJ, Wu AM, Forman SJ, Raubitschek A. Engineered CD20-specific primary human cytotoxic T lymphocytes for targeting B-cell malignancy. *Cytotherapy* 2003;5(2):131-8.

16. Pule MA, Savoldo B, Myers GD, et al. Virus-specific T cells engineered to coexpress tumor-specific receptors: persistence and antitumor activity in individuals with neuroblastoma. *Nat Med* 2008;14(11):1264-70.

60 17. Savoldo B, Rooney CM, Di Stasi A, et al. Epstein Barr virus specific cytotoxic T lymphocytes expressing the anti-CD3Ozeta artificial chimeric T-cell receptor for immunotherapy of Hodgkin disease. *Blood* 2007;110(7):2620-30.

18. Wang G, Chopra RK, Royal RE, Yang JC, Rosenberg SA, Hwu P. A T cell-independent antitumor response in mice with bone marrow cells retrovirally transduced with an antibody/Fc-gamma chain chimeric receptor gene recognizing a human ovarian cancer antigen. *Nat Med* 1998;4(2):168-72.

5 19. Hollyman D, Stefanski J, Przybylowski M, et al. Manufacturing validation of biologically functional T cells targeted to CD19 antigen for autologous adoptive cell therapy. *J Immunother* 2009;32(2):169-80.

20. Lamers CH, Sleijfer S, Vulto AG, et al. Treatment of metastatic renal cell carcinoma with autologous T-lymphocytes genetically retargeted against carbonic anhydrase IX: first clinical experience. *J Clin Oncol* 2006;24(13):e20-2.

10 21. Till BG, Jensen MC, Wang J, et al. Adoptive immunotherapy for indolent non-Hodgkin lymphoma and mantle cell lymphoma using genetically modified autologous CD20-specific T cells. *Blood* 2008;112(6):2261-71.

15 22. Hamanishi J, Mandai M, Iwasaki M, et al. Programmed cell death 1 ligand 1 and tumor-infiltrating CD8+ T lymphocytes are prognostic factors of human ovarian cancer. *Proc Natl Acad Sci USA* 2007;104(9):3360-5.

20 23. Leffers N, Gooden MJ, de Jong RA, et al. Prognostic significance of tumor-infiltrating T-lymphocytes in primary and metastatic lesions of advanced stage ovarian cancer. *Cancer Immunol Immunother* 2009;58(3):449-59.

25 24. Sato E, Olson SH, Ahn J, et al. Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. *Proc Natl Acad Sci USA* 2005;102(51):18538-43.

30 25. Zhang L, Conejo-Garcia JR, Katsaros D, et al. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. *N Engl J Med* 2003;348(3):203-13.

35 26. Curiel TJ, Coukos G, Zou L, et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. *Nat Med* 2004;10(9):942-9.

40 27. Leffers N, Lambeck AJ, de Graeff P, et al. Survival of ovarian cancer patients overexpressing the tumour antigen p53 is diminished in case of MHC class I down-regulation. *Gynecol Oncol* 2008;110(3):365-73.

45 28. Nelson BH. The impact of T-cell immunity on ovarian cancer outcomes *Immunol Rev* 2008;222:101-16.

50 29. Wolf D, Wolf AM, Rumpold H, et al. The expression of the regulatory T cell-specific forkhead box transcription factor FoxP3 is associated with poor prognosis in ovarian cancer. *Clin Cancer Res* 2005;11(23):8326-31.

55 30. Badgwell D, Bast RC, Jr. Early detection of ovarian cancer. *Dis Markers* 2007;23(5-6):397410.

31. Bast RC, Jr., Badgwell D, Lu Z, et al. New tumor markers: CA125 and beyond. *Int J Gynecol Cancer* 2005; 15 Suppl 3:274-81.

32. Fritsche HA, Bast RC. CA 125 in ovarian cancer: advances and controversy. *Clin Chem* 1998;44(7):1379-80.

33. Krivak TC, Tian C, Rose GS, Armstrong DK, Maxwell GL. A Gynecologic Oncology Group Study of serum CA-125 levels in patients with stage III optimally debulked ovarian cancer treated with intraperitoneal compared to intravenous chemotherapy: an analysis of patients enrolled in GOG 172. *Gynecol Oncol* 2009;115(1):81-5.

34. O'Brien TJ, Beard JB, Underwood LJ, Dennis RA, Santin AD, York L. The CA 125 gene: an extracellular superstructure dominated by repeat sequences. *Tumour Biol* 2001;22(6):348-66.

35 35. Bellone S, Anfossi S, O'Brien TJ, et al. Generation of CA125-specific cytotoxic T lymphocytes in human leukocyte antigen-A2.1-positive healthy donors and patients with advanced ovarian cancer. *Am J Obstet Gynecol* 2009;200(1):75 el-10.

36. Berek JS. Immunotherapy of ovarian cancer with antibodies: a focus on oregovomab. *Expert Opin Biol Ther* 2004;4(7): 1159-65.

37. O'Brien TJ, Tanimoto H, Konishi I, Gee M. More than 15 years of CA 125: what is known about the antigen, its structure and its function. *Int J Biol Markers* 1998;13(4):188-95.

38. Rao TD, Park KJ, Smith-Jones P, et al. Novel monoclonal antibodies against proximal (carboxy-terminal) portions of MUC16 (submitted to Applied Immunohistochemistry and Molecular Morphometry).

39. Wang Z, Raifu M, Howard M, et al. Universal PCR amplification of mouse immunoglobulin gene variable regions: the design of degenerate primers and an assessment of the effect of DNA polymerase 3' to 5' exonuclease activity. *J Immunol Methods* 2000;233(1-2):167-77.

40. Doenecke A, Winnacker EL, Hallek M. Rapid amplification of cDNA ends (RACE) improves the PCR-based isolation of immunoglobulin variable region genes from murine and human lymphoma cells and cell lines. *Leukemia* 1997;11(10):1787-92.

41. Gong MC, Latouche JB, Krause A, Heston WD, Bander NH, Sadelain M. Cancer patient T cells genetically targeted to prostate-specific membrane antigen specifically lyse prostate cancer cells and release cytokines in response to prostate-specific membrane antigen. *Neoplasia* 1999;1(2):123-7.

42. Orlandi R, Gussow DH, Jones PT, Winter G. Cloning immunoglobulin variable domains for expression by the polymerase chain reaction. *Proc Natl Acad Sci USA* 1989;86(10):3833-7.

43. Brentjens RJ, Santos E, Nikhamin Y, et al. Genetically targeted T cells eradicate systemic acute lymphoblastic leukemia xenografts. *Clin Cancer Res* 2007;13(18 Pt 1):5426-35.

44. Riviere I, Brose K, Mulligan RC. Effects of retroviral vector design on expression of human adenosine deaminase

in murine bone marrow transplant recipients engrafted with genetically modified cells. *Proc Natl Acad Sci USA* 1995;92(15):6733-7.

45. Quintas-Cardama A, Yeh RK, Hollyman D, et al. Multifactorial optimization of gammaretroviral gene transfer into human T lymphocytes for clinical application. *Hum Gene Ther* 2007;18(12):1253-60.

5 46. Latouche JB, Sadelain M. Induction of human cytotoxic T lymphocytes by artificial antigen-presenting cells. *Nat Biotechnol* 2000;18(4):405-9.

10 47. Santos EB, Yeh R, Lee J, et al. Sensitive *in vivo* imaging of T cells using a membrane-bound *Gaussia princeps* luciferase. *Nat Med* 2009;15(3):338-44.

15 48. Park KJ, Soslow R, Lirkov I, Rao TD, D S. The extracellular portion of the MUC16 cytoplasmic domain is detectable in ovarian carcinomas using novel monoclonal antibody, 4H11. *Mod Pathol*, 2008; 21(1s):217A-218A.

49. Raspollini MR, Castiglione F, Rossi Degl'innocenti D, et al. Tumour-infiltrating gamma/delta T-lymphocytes are correlated with a brief disease-free interval in advanced ovarian serous carcinoma. *Ann Oncol* 2005;16(4):590-6.

50. Tomsova M, Melichar B, Sedlakova I, Steiner I. Prognostic significance of CD3+ tumor-infiltrating lymphocytes in ovarian carcinoma. *Gynecol Oncol* 2008;108(2):415-20.

15 51. Woo EY, Chu CS, Goletz TJ, et al. Regulatory CD4(+)CD25(+) T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer. *Cancer Res* 2001;61(12):4766-72.

20 52. Lamers CH, Langeveld SC, Groot-van Ruijen CM, Debets R, Sleijfer S, Gratama JW. Gene-modified T cells for adoptive immunotherapy of renal cell cancer maintain transgene-specific immune functions *in vivo*. *Cancer Immunol Immunother* 2007;56(12):1875-83.

25 53. Brentjens R, Hollyman D, Weiss M, et al. A Phase I trial for the treatment of chemo-refractory chronic lymphocytic leukemia with CD19-targeted autologous T cells. *Molecular Therapy* 2008;16:S15.

54. Barber A, Zhang T, DeMars LR, Conejo-Garcia J, Roby KF, Sentman CL. Chimeric NKG2D receptor-bearing T cells as immunotherapy for ovarian cancer. *Cancer Res* 2007;67(10):5003-8.

30 55. Barber A, Zhang T, Sentman CL. Immunotherapy with chimeric NKG2D receptors leads to long-term tumor-free survival and development of host antitumor immunity in murine ovarian cancer. *J Immunol* 2008;180(1):72-8.

56. Carpenito C, Milone MC, Hassan R, et al. Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD 137 domains. *Proc Natl Acad Sci USA* 2009;106(9):3360-5.

35 57. Kershaw MH, Westwood JA, Hwu P. Dual-specific T cells combine proliferation and antitumor activity. *Nat Biotechnol* 2002;20(12):1221-7.

58. Hung CF, Wu TC, Monie A, Roden R. Antigen-specific immunotherapy of cervical and ovarian cancer. *Immunol Rev* 2008;222:43-69.

59. Westwood JA, Smyth MJ, Teng MW, et al. Adoptive transfer of T cells modified with a humanized chimeric receptor gene inhibits growth of Lewis-Y-expressing tumors in mice. *Proc Natl Acad Sci USA* 2005;102(52):19051-6.

60. Habib-Agahi M, Jaberipour M, Searle PF. 4-1BBL costimulation retrieves CD28 expression in activated T cells. *Cell Immunol* 2009;256(1-2):39-46.

35 61. Habib-Agahi M, Phan TT, Searle PF. Co-stimulation with 4-1BB ligand allows extended T-cell proliferation, synergizes with CD80/CD86 and can reactivate anergic T cells. *Int Immunol* 2007;19(12):1383-94.

62. Brentjens RJ, Sadelain M. Somatic cell engineering and the immunotherapy of leukemias and lymphomas. *Adv Pharmacol* 2004;51:347-70.

40 63. Finney HM, Akbar AN, Lawson AD. Activation of resting human primary T cells with chimeric receptors: costimulation from CD28, inducible costimulator, CD134, and CD137 in series with signals from the TCR zeta chain. *J Immunol* 2004;172(1):104-13.

64. Sadelain M, Riviere I, Brentjens R. Targeting tumours with genetically enhanced T lymphocytes. *Nat Rev Cancer* 2003;3(1):35-45.

45 65. Wilkie S, Picco G, Foster J, et al. Retargeting of human T cells to tumor-associated MUC1: the evolution of a chimeric antigen receptor. *J Immunol* 2008;180(7):4901-9.

66. Li Q, Ai J, Song Z, Liu J, Shan B. 4-1BB (CD137) ligand enhanced anti-tumor immune response against mouse forestomach carcinoma *in vivo*. *Cell Mol Immunol* 2008;5(5):379-84.

50 67. Salih HR, Kosowski SG, Haluska VF, et al. Constitutive expression of functional 4-1BB (CD137) ligand on carcinoma cells. *J Immunol* 2000;165(5):2903-10.

68. Wan YL, Zheng SS, Zhao ZC, Li MW, Jia CK, Zhang H. Expression of co-stimulator 4-1BB molecule in hepatocellular carcinoma and adjacent non-tumor liver tissue, and its possible role in tumor immunity. *World J Gastroenterol* 2004;10(2):195-9.

55 [0218] Each and every publication and patent mentioned in the above specification is herein incorporated by reference in its entirety for all purposes. Various modifications and variations of the described methods and system of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with specific embodiments, the invention as claimed should not be unduly

limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention which are obvious to those skilled in the art and in fields related thereto are intended to be within the scope of the following claims.

[0219] The present invention will now be further defined by way of the following numbered clauses:

5 1. An isolated antibody, or an antigen-binding fragment thereof, that specifically binds to a MUC16 polypeptide or to an antigenic portion thereof, wherein the MUC16 polypeptide is selected from the group consisting of

10 a) TLDRKSVFVDGYSQRDD (SEQ ID NO:21),
b) KSYFSDCQVLAFRSVSNNNNHTGVDSLNFSP (SEQ ID NO:22), and
c) SLYSNCRSLRPKKNGTATGVNAICSYHQN (SEQ ID NO:23).

15 2. The antibody of Clause 1, wherein the antibody is selected from the group consisting of a monoclonal antibody, a chimeric antibody, a recombinant antibody, an antigen-binding fragment of a recombinant antibody, a humanized antibody, and an antibody displayed upon the surface of a phage.

20 3. The antibody of Clause 2, wherein the antibody is a monoclonal antibody.

25 4. The antibody of Clause 3, wherein the monoclonal antibody is produced by hybridoma cells selected from the group consisting of 12B10-3G10, 10C4-3H5, 10C4-1F2, 10C4-2H8, 10C4-1G7, 17F2-3G5, 17F2-3F6, 17F2-2F9, 17F2-1E11, 12B10-3F7, 12B10-2F6, 12B10-2F10, 25E9-3, 25E9-5, 25E9-1, 25E9-16, 21B8-1H11, 21B8-3G6, 21B8-3H9, 21B8-1G8, 21E1-1E3, 21E1-1G9, 21E1-2G7, 21E1-3G12, 4H1-2E1, 4H1-2E3, 4H1-3E1, 4H1-3H3, 15A8-2E2, 15A8-2E10, 15A8-2E11, 15A8-3D2, 22B5-1F6, 22B5-3G9, 22B5-2G8, and 22B5-3F11.

30 5. The antibody of Clause 1, wherein the MUC16 polypeptide is TLDRKSVFVDGYSQRDD (SEQ ID NO:21).

35 6. The antibody of Clause 5, wherein the antibody comprises a variable heavy (VH) chain sequence SEQ ID NO:27, and a variable light (V_L) chain sequence SEQ ID NO:29.

40 7. The antibody of Clause 6, wherein the antibody is a monoclonal antibody produced by hybridoma cell 12B10-3G10.

45 8. The antibody of Clause 1, wherein the antigen-binding fragment is selected from the group consisting of a Fab fragment, a F(ab')2 fragment, and a Fv fragment.

50 9. The antibody of Clause 1, wherein the antibody, or antigen-binding fragment thereof, is covalently linked to a cytotoxic agent or a prodrug of a cytotoxic agent.

55 10. The antibody of Clause 1, wherein the antibody specifically binds to human MUC16 (SEQ ID NO:25).

60 11. The antibody of Clause 1, wherein the antibody internalizes into a cell.

65 12. The antibody of Clause 1, wherein the antibody lacks specific binding to a glycosylated MUC16 extracellular domain.

70 13. A composition comprising (a) the antibody, or antigen-binding fragment thereof, of Clause 1, and (b) a pharmaceutically acceptable carrier.

75 14. A hybridoma cell that produces an antibody, or an antigen-binding fragment thereof, that specifically binds to a MUC16 polypeptide or to an antigenic portion thereof, wherein the MUC16 polypeptide is selected from the group consisting of

80 a) TLDRKSVFVDGYSQRDD (SEQ ID NO:21),
b) KSYFSDCQVLAFRSVSNNNNHTGVDSLNFSP (SEQ ID NO:22), and
c) SLYSNCRSLRPKKNGTATGVNAICSYHQN (SEQ TD NO:23).

15. An isolated nucleotide sequence comprising a polynucleotide that encodes at least one of a variable heavy (VH) chain sequence and the variable light (VL) chain sequence of an antibody that specifically binds to a MUC16 polypeptide, wherein the MUC16 polypeptide is selected from the group consisting of

5 a) TLDRKSVFVDGYSQNRDD (SEQ ID NO:21),
 b) KSYFSDCQVLAFRSVSNNNNHTGVDSLNFSP (SEQ ID NO:22), and
 c) SLYSNCRSLRPKKNGTATGVNAICSYHQ (SEQ ID NO:23).

10 16. The nucleotide sequence of Clause 15, wherein the MUC16 polypeptide is TLDRKSVFVDGYSQNRDD (SEQ ID NO:21).

15 17. The nucleotide sequence of Clause 16, wherein the polynucleotide encoding the variable heavy (VH) chain sequence comprises SEQ ID NO:26, and wherein the polynucleotide encoding the variable light (VL) chain sequence comprises SEQ ID NO:28.

20 18. A method for producing an antibody that specifically binds to a MUC16 polypeptide or to an antigenic portion thereof, comprising administering to a subject an immunologically effective amount of a MUC16 polypeptide selected from the group consisting of

25 a) TLDRKS VFVDGYS QNRDD (SEQ ID NO:21),
 b) KSYFSDCQVLAFRSVSNN NHTGVDSLNFSP (SEQ ID NO:22), and
 c) SLYSNCRSLRPKKNGTATGVNAICSYHQ (SEQ ID NO:23).

30 19. A method for identifying a subject as having disease, comprising determining the level, in a sample from the subject, of specific binding of the antibody of Clause 1 with the MUC16 polypeptide or with the antigenic portion thereof, wherein detecting an altered level of the specific binding relative to a control sample identifies the subject as having disease.

35 20. The method of Clause 19, wherein the disease is cancer.

40 21. The method of Clause 20, wherein the cancer is selected from the group consisting of ovarian cancer and breast cancer.

45 22. The method of Clause 19, further comprising detecting an altered level of binding of the antibody to the sample compared to a control sample.

50 23. The method of Clause 19, wherein the detecting is selected from the group consisting of immunohistochemistry, enzyme-linked immunosorbent assay (ELISA), fluorescence-activated cell sorting (FACS), Western blot, immunoprecipitation, and radiographic imaging.

55 24. A method for reducing one or more symptoms of disease comprising administering to a subject in need thereof a therapeutically effective amount of the antibody of Clause 1.

 25. The method of Clause 24, wherein the disease is cancer.

 26. The method of Clause 25, wherein the cancer is selected from the group consisting of ovarian cancer and breast cancer.

 27. The method of Clause 24, further comprising detecting a reduction in one or more symptoms of the disease after the administration.

SEQUENCE LISTING

<110> MEMORIAL SLOAN-KETTERING CANCER CENTER
Spriggs, David
Thapi, Dharmarao

<120> Antibodies to MUC16 and Methods of Use Thereof

<130> PC/PE955419EPA

<140> 11760326.6
<141> 2011-03-25

<150> PCT/US11/30025
<151> 2011-03-25

<150> US 61/317,964
<151> 2010-03-26

<160> 40

<170> PatentIn version 3.5

<210> 1
<211> 17
<212> PRT
<213> Artificial Sequence

<220>

<223> Synthetic

<400> 1

Asn Phe Ser Pro Leu Ala Arg Arg Val Asp Arg Val Ala Ile Tyr Glu
1 5 10 15

Glu

<210> 2
<211> 18
<212> PRT
<213> Artificial Sequence

<220>

<223> Synthetic

<400> 2

Thr Leu Asp Arg Ser Ser Val Leu Val Asp Gly Tyr Ser Pro Asn Arg
1 5 10 15

Asn Glu

<210> 3
<211> 21
<212> PRT
<213> Artificial Sequence

<220>

<223> Synthetic

<400> 3

Cys Gly Val Leu Val Thr Thr Arg Arg Arg Lys Lys Glu Gly Glu Tyr
1 5 10 15

10 Asn Val Gln Gln Gln

<210> 4

<210> 4

<211> 388
<212> DNA

<212> DNA

<220>

<223> Synthetic

20 <400> 4

gtgaaqct

tgtgcagcct ctggattcac tttcagaaac tatgccatgt cctgggttcg cctgagtccg 120
gagatgaggc tggagtgggt cgcaaccatt agcagtgctg gtggttacat cttctattct 180
gacagtgtgc agggacgatt caccatttcc agagacaatg ccaagaacac cctccacttg 240
caaatgggca gtctgaggtc tggggacacg gccatgtatt actgtgcaag gcagggattt 300
ggtaactacg gtgattacta tgctatggac tactggggcc aagggaccac ggtcaccgtc 360
tcctca 366

35 <210> 5

<211> 339

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 5

gacattgagc tcacccagtc tccatcctcc ctggctgtgt cagcaggaga gaaggtcaact 60
atgagctgca aatccagtc gagtctgctc aacagttagaa cccgaaagaa ccagttggct 120
tggtaccagc aaaaaacagg acagtctcct gaactgctga tctactgggc atccactcgg 180
caatctgggg tccctgatcg cttcacaggc agtggatctg ggacagattt cactctcacc 240
atcagcagtg tgcaaggctga agacctggca gtttattact gccagcaatc ttataatcta 300
ctcacgttgc gtctctggac caagctggag atcaaacgg 339

55 <210> 6

<211> 366

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

5 <400> 6
gtgaagctgc aggagtcaagg gggaggcttc gtgaagcctg gagggtccct caaagtctcc 60
tgtgcagcct ctggattcac tttcagtagc tatgccatgt cctgggttcg cctgagtccg 120
10 gagatgaggc tggagtgggt cgcaaccatt agcagtgctg gtggttacat cttctattct 180
gacagtgtgc agggacgatt caccattcc agagacaatg ccaagaacac cctgcacctg 240
caaatggca gtctgaggtc tggggacacg gccatgtatt actgtgcaag gcagggatt 300
15 ggttaactacg gtgattacta tgctatggac tactggggcc aagggaccac ggtcaccgtc 360
tcctca 366

20 <210> 7
<211> 339
<212> DNA
<213> Artificial Sequence

40 <210> 8
<211> 348
<212> DNA
<213> Artificial Sequence

```

<210> 9
<211> 339
<212> DNA
<213> Artificial Sequence
5
<220>
<223> Synthetic

<400> 9
10 gacattgagc tcacccagtc tccatcctcc ctggctgtgt cagcaggaga gaaggtcact 60
atgagctgca aatccagtca gagtctgctc aacagtagaa cccgaaagaa ccagttggct
15 tggtaccagc aaaaaccagg acagtctcct gaactgctga tctactggc atccactagg 180
caatctggag tccctgatcg ct当地caggc agtggatctg ggacagattt cactctcacc
20 atcagcagtg tgcaggctga agacctggca gtttattact gccagcaatc ttataatcta 300
ctcacgttgc gt当地ggac caagctggag gt当地aaacgg 339

<210> 10
<211> 216
<212> DNA
25 <213> Artificial Sequence

<220>
<223> Synthetic

<400> 10
30 gacattgagc tcacccagtc tccaaagctc ct当地taca aggttccaa cc当地tttct 60
ggggtcccag acaggttcag tggcagtggc tc当地ggacag attt当地act caagatcagc
35 agagtggagg ct当地ggatct gggagttat tactgcttc aaggttcaca t当地ccgtgg 180
acgttcggc gagggaccaa gctggagatc aaacgg 216

<210> 11
<211> 354
<212> DNA
40 <213> Artificial Sequence

<220>
<223> Synthetic
45
<400> 11
gaggtgaagc tggaggagtc aggacctgaa ct当地tgaagc ct当地ggcttc agtgaagata 60
tc当地tgc当地agg cttctggta ctc当地tact ggctacttta tgaactgggt gaagc当地acc
50 catggaaaga gc当地tggatg gattggacgt attaatcctt acaatggc当地 tacttctac
aatcagaagt tc当地cggc当地a ggc当地acaatg actgttagaca aatc当地tctac cacagccc当地
55 atggagctcc t当地agc当地tgc当地 atctgaggac tctgc当地tct attattgtgg aaaggggaaat
tactacggcc cttt当地tta ct当地ggccaa gggaccacgg tc当地ccgtctc ct当地a 354

```

```

<210> 12
<211> 333
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 12
gacattgagc tcacccagtc tccatcttat cttgctgcat ctcctgaaga aaccattact 60
attaaattgca gggcaagtaa gagcattagc aaatatttag cctggtatca aaagaaaacot
gggaaaacta ataagcttct tatctactct ggatccactt tgcaatctgg aattccatca 120
aggttcagtg gcagtggtatc tggcacatc ttcactctca ccatcagtag cctggagcct 180
gaagattttg caatgttata ctgtcaacag cataatgaat acccgtggac gttcggtgga 240
gggaccaagc tggagatcaa acggggccgccc gca 300
333

<210> 13
<211> 14507
<212> PRT
<213> Homo sapiens

<400> 13

Met Leu Lys Pro Ser Gly Leu Pro Gly Ser Ser Ser Pro Thr Arg Ser
1 5 10 15

Leu Met Thr Gly Ser Arg Ser Thr Lys Ala Thr Pro Glu Met Asp Ser
20 25 30

Gly Leu Thr Gly Ala Thr Leu Ser Pro Lys Thr Ser Thr Gly Ala Ile
35 40 45

Val Val Thr Glu His Thr Leu Pro Phe Thr Ser Pro Asp Lys Thr Leu
50 55 60

Ala Ser Pro Thr Ser Ser Val Val Gly Arg Thr Thr Gln Ser Leu Gly
65 70 75 80

Val Met Ser Ser Ala Leu Pro Glu Ser Thr Ser Arg Gly Met Thr His
85 90 95

Ser Glu Gln Arg Thr Ser Pro Ser Leu Ser Pro Gln Val Asn Gly Thr
100 105 110

Pro Ser Arg Asn Tyr Pro Ala Thr Ser Met Val Ser Gly Leu Ser Ser
115 120 125

Pro Arg Thr Arg Thr Ser Ser Thr Glu Gly Asn Phe Thr Lys Glu Ala

```

EP 3 222 632 A1

	130	135	140
5	Ser Thr Tyr Thr Leu Thr Val Glu Thr Thr Ser Gly Pro Val Thr Glu 145 150 155 160		
	Lys Tyr Thr Val Pro Thr Glu Thr Ser Thr Thr Glu Gly Asp Ser Thr 165 170 175		
10	Glu Thr Pro Trp Asp Thr Arg Tyr Ile Pro Val Lys Ile Thr Ser Pro 180 185 190		
15	Met Lys Thr Phe Ala Asp Ser Thr Ala Ser Lys Glu Asn Ala Pro Val 195 200 205		
	Ser Met Thr Pro Ala Glu Thr Thr Val Thr Asp Ser His Thr Pro Gly 210 215 220		
20	Arg Thr Asn Pro Ser Phe Gly Thr Leu Tyr Ser Ser Phe Leu Asp Leu 225 230 235 240		
25	Ser Pro Lys Gly Thr Pro Asn Ser Arg Gly Glu Thr Ser Leu Glu Leu 245 250 255		
30	Ile Leu Ser Thr Thr Gly Tyr Pro Phe Ser Ser Pro Glu Pro Gly Ser 260 265 270		
	Ala Gly His Ser Arg Ile Ser Thr Ser Ala Pro Leu Ser Ser Ser Ala 275 280 285		
35	Ser Val Leu Asp Asn Lys Ile Ser Glu Thr Ser Ile Phe Ser Gly Gln 290 295 300		
40	Ser Leu Thr Ser Pro Leu Ser Pro Gly Val Pro Glu Ala Arg Ala Ser 305 310 315 320		
45	Thr Met Pro Asn Ser Ala Ile Pro Phe Ser Met Thr Leu Ser Asn Ala 325 330 335		
	Glu Thr Ser Ala Glu Arg Val Arg Ser Thr Ile Ser Ser Leu Gly Thr 340 345 350		
50	Pro Ser Ile Ser Thr Lys Gln Thr Ala Glu Thr Ile Leu Thr Phe His 355 360 365		
55	Ala Phe Ala Glu Thr Met Asp Ile Pro Ser Thr His Ile Ala Lys Thr 370 375 380		

EP 3 222 632 A1

Leu Ala Ser Glu Trp Leu Gly Ser Pro Gly Thr Leu Gly Gly Thr Ser
385 390 395 400

5 Thr Ser Ala Leu Thr Thr Ser Pro Ser Thr Thr Leu Val Ser Glu
405 410 415

10 Glu Thr Asn Thr His His Ser Thr Ser Gly Lys Glu Thr Glu Gly Thr
420 425 430

Leu Asn Thr Ser Met Thr Pro Leu Glu Thr Ser Ala Pro Gly Glu Glu
435 440 445

15 Ser Glu Met Thr Ala Thr Leu Val Pro Thr Leu Gly Phe Thr Thr Leu
450 455 460

20 Asp Ser Lys Ile Arg Ser Pro Ser Gln Val Ser Ser Ser His Pro Thr
465 470 475 480

25 Arg Glu Leu Arg Thr Thr Gly Ser Thr Ser Gly Arg Gln Ser Ser Ser
485 490 495

Thr Ala Ala His Gly Ser Ser Asp Ile Leu Arg Ala Thr Thr Ser Ser
500 505 510

30 Thr Ser Lys Ala Ser Ser Trp Thr Ser Glu Ser Thr Ala Gln Gln Phe
515 520 525

35 Ser Glu Pro Gln His Thr Gln Trp Val Glu Thr Ser Pro Ser Met Lys
530 535 540

40 Thr Glu Arg Pro Pro Ala Ser Thr Ser Val Ala Ala Pro Ile Thr Thr
545 550 555 560

45 Ser Val Pro Ser Val Val Ser Gly Phe Thr Thr Leu Lys Thr Ser Ser
565 570 575

50 Thr Lys Gly Ile Trp Leu Glu Glu Thr Ser Ala Asp Thr Leu Ile Gly
580 585 590

Glu Ser Thr Ala Gly Pro Thr Thr His Gln Phe Ala Val Pro Thr Gly
595 600 605

55 Ile Ser Met Thr Gly Gly Ser Ser Thr Arg Gly Ser Gln Gly Thr Thr
610 615 620

His Leu Leu Thr Arg Ala Thr Ala Ser Ser Glu Thr Ser Ala Asp Leu
625 630 635 640

EP 3 222 632 A1

Thr Leu Ala Thr Asn Gly Val Pro Val Ser Val Ser Pro Ala Val Ser
645 650 655

5 Lys Thr Ala Ala Gly Ser Ser Pro Pro Gly Gly Thr Lys Pro Ser Tyr
660 665 670

10 Thr Met Val Ser Ser Val Ile Pro Glu Thr Ser Ser Leu Gln Ser Ser
675 680 685

Ala Phe Arg Glu Gly Thr Ser Leu Gly Leu Thr Pro Leu Asn Thr Arg
690 695 700

15 His Pro Phe Ser Ser Pro Glu Pro Asp Ser Ala Gly His Thr Lys Ile
705 710 715 720

20 Ser Thr Ser Ile Pro Leu Leu Ser Ser Ala Ser Val Leu Glu Asp Lys
725 730 735

25 Val Ser Ala Thr Ser Thr Phe Ser His His Lys Ala Thr Ser Ser Ile
740 745 750

25 Thr Thr Gly Thr Pro Glu Ile Ser Thr Lys Thr Lys Pro Ser Ser Ala
755 760 765

30 Val Leu Ser Ser Met Thr Leu Ser Asn Ala Ala Thr Ser Pro Glu Arg
770 775 780

35 Val Arg Asn Ala Thr Ser Pro Leu Thr His Pro Ser Pro Ser Gly Glu
785 790 795 800

40 Glu Thr Ala Gly Ser Val Leu Thr Leu Ser Thr Ser Ala Glu Thr Thr
805 810 815

40 Asp Ser Pro Asn Ile His Pro Thr Gly Thr Leu Thr Ser Glu Ser Ser
820 825 830

45 Glu Ser Pro Ser Thr Leu Ser Leu Pro Ser Val Ser Gly Val Lys Thr
835 840 845

50 Thr Phe Ser Ser Ser Thr Pro Ser Thr His Leu Phe Thr Ser Gly Glu
850 855 860

55 Glu Thr Glu Glu Thr Ser Asn Pro Ser Val Ser Gln Pro Glu Thr Ser
865 870 875 880

55 Val Ser Arg Val Arg Thr Thr Leu Ala Ser Thr Ser Val Pro Thr Pro
885 890 895

EP 3 222 632 A1

Val Phe Pro Thr Met Asp Thr Trp Pro Thr Arg Ser Ala Gln Phe Ser
 900 905 910

5 Ser Ser His Leu Val Ser Glu Leu Arg Ala Thr Ser Ser Thr Ser Val
 915 920 925

10 Thr Asn Ser Thr Gly Ser Ala Leu Pro Lys Ile Ser His Leu Thr Gly
 930 935 940

15 Thr Ala Thr Met Ser Gln Thr Asn Arg Asp Thr Phe Asn Asp Ser Ala
 945 950 955 960

20 Ala Pro Gln Ser Thr Thr Trp Pro Glu Thr Ser Pro Arg Phe Lys Thr
 965 970 975

25 Gly Leu Pro Ser Ala Thr Thr Thr Val Ser Thr Ser Ala Thr Ser Leu
 980 985 990

30 Ser Ala Thr Val Met Val Ser Lys Phe Thr Ser Pro Ala Thr Ser Ser
 995 1000 1005

35 Met Glu Ala Thr Ser Ile Arg Glu Pro Ser Thr Thr Ile Leu Thr
 1010 1015 1020

40 Thr Glu Thr Thr Asn Gly Pro Gly Ser Met Ala Val Ala Ser Thr
 1025 1030 1035

45 Asn Ile Pro Ile Gly Lys Gly Tyr Ile Thr Glu Gly Arg Leu Asp
 1040 1045 1050

50 Thr Ser His Leu Pro Ile Gly Thr Thr Ala Ser Ser Glu Thr Ser
 1055 1060 1065

55 Met Asp Phe Thr Met Ala Lys Glu Ser Val Ser Met Ser Val Ser
 1070 1075 1080

Pro Ser Gln Ser Met Asp Ala Ala Gly Ser Ser Thr Pro Gly Arg
 1085 1090 1095

Thr Ser Gln Phe Val Asp Thr Phe Ser Asp Asp Val Tyr His Leu
 1100 1105 1110

Thr Ser Arg Glu Ile Thr Ile Pro Arg Asp Gly Thr Ser Ser Ala
 1115 1120 1125

Leu Thr Pro Gln Met Thr Ala Thr His Pro Pro Ser Pro Asp Pro

EP 3 222 632 A1

	1130	1135	1140
5	Gly Ser Ala Arg Ser Thr Trp Leu Gly Ile Leu Ser Ser Ser Pro 1145 1150 1155		
	Ser Ser Pro Thr Pro Lys Val Thr Met Ser Ser Thr Phe Ser Thr 1160 1165 1170		
10	Gln Arg Val Thr Thr Ser Met Ile Met Asp Thr Val Glu Thr Ser 1175 1180 1185		
15	Arg Trp Asn Met Pro Asn Leu Pro Ser Thr Thr Ser Leu Thr Pro 1190 1195 1200		
20	Ser Asn Ile Pro Thr Ser Gly Ala Ile Gly Lys Ser Thr Leu Val 1205 1210 1215		
	Pro Leu Asp Thr Pro Ser Pro Ala Thr Ser Leu Glu Ala Ser Glu 1220 1225 1230		
25	Gly Gly Leu Pro Thr Leu Ser Thr Tyr Pro Glu Ser Thr Asn Thr 1235 1240 1245		
30	Pro Ser Ile His Leu Gly Ala His Ala Ser Ser Glu Ser Pro Ser 1250 1255 1260		
	Thr Ile Lys Leu Thr Met Ala Ser Val Val Lys Pro Gly Ser Tyr 1265 1270 1275		
35	Thr Pro Leu Thr Phe Pro Ser Ile Glu Thr His Ile His Val Ser 1280 1285 1290		
40	Thr Ala Arg Met Ala Tyr Ser Ser Gly Ser Ser Pro Glu Met Thr 1295 1300 1305		
45	Ala Pro Gly Glu Thr Asn Thr Gly Ser Thr Trp Asp Pro Thr Thr 1310 1315 1320		
	Tyr Ile Thr Thr Thr Asp Pro Lys Asp Thr Ser Ser Ala Gln Val 1325 1330 1335		
50	Ser Thr Pro His Ser Val Arg Thr Leu Arg Thr Thr Glu Asn His 1340 1345 1350		
55	Pro Lys Thr Glu Ser Ala Thr Pro Ala Ala Tyr Ser Gly Ser Pro 1355 1360 1365		

EP 3 222 632 A1

10	Lys	Ile	Ser	Ser	Ser	Pro	Asn	Leu	Thr	Ser	Pro	Ala	Thr	Lys	Ala
	1370						1375					1380			
5	Trp	Thr	Ile	Thr	Asp	Thr	Thr	Glu	His	Ser	Thr	Gln	Leu	His	Tyr
	1385						1390					1395			
10	Thr	Lys	Leu	Ala	Glu	Lys	Ser	Ser	Gly	Phe	Glu	Thr	Gln	Ser	Ala
	1400						1405					1410			
15	Pro	Gly	Pro	Val	Ser	Val	Val	Ile	Pro	Thr	Ser	Pro	Thr	Ile	Gly
	1415						1420					1425			
20	Ser	Ser	Thr	Leu	Glu	Leu	Thr	Ser	Asp	Val	Pro	Gly	Glu	Pro	Leu
	1430						1435					1440			
25	Val	Leu	Ala	Pro	Ser	Glu	Gln	Thr	Thr	Ile	Thr	Leu	Pro	Met	Ala
	1445						1450					1455			
30	Thr	Trp	Leu	Ser	Thr	Ser	Leu	Thr	Glu	Glu	Met	Ala	Ser	Thr	Asp
	1460						1465					1470			
35	Leu	Asp	Ile	Ser	Ser	Pro	Ser	Ser	Pro	Met	Ser	Thr	Phe	Ala	Ile
	1475						1480					1485			
40	Phe	Pro	Pro	Met	Ser	Thr	Pro	Ser	His	Glu	Leu	Ser	Lys	Ser	Glu
	1490						1495					1500			
45	Ala	Asp	Thr	Ser	Ala	Ile	Arg	Asn	Thr	Asp	Ser	Thr	Thr	Leu	Asp
	1505						1510					1515			
50	Gln	His	Leu	Gly	Ile	Arg	Ser	Leu	Gly	Arg	Thr	Gly	Asp	Leu	Thr
	1520						1525					1530			
55	Thr	Val	Pro	Ile	Thr	Pro	Leu	Thr	Thr	Thr	Trp	Thr	Ser	Val	Ile
	1535						1540					1545			
60	Glu	His	Ser	Thr	Gln	Ala	Gln	Asp	Thr	Leu	Ser	Ala	Thr	Met	Ser
	1550						1555					1560			
65	Pro	Thr	His	Val	Thr	Gln	Ser	Leu	Lys	Asp	Gln	Thr	Ser	Ile	Pro
	1565						1570					1575			
70	Ala	Ser	Ala	Ser	Pro	Ser	His	Leu	Thr	Glu	Val	Tyr	Pro	Glu	Leu
	1580						1585					1590			
75	Gly	Thr	Gln	Gly	Arg	Ser	Ser	Ser	Glu	Ala	Thr	Thr	Phe	Trp	Lys
	1595						1600					1605			

EP 3 222 632 A1

Pro	Ser	Thr	Asp	Thr	Leu	Ser	Arg	Glu	Ile	Glu	Thr	Gly	Pro	Thr
1610						1615							1620	
5														
Asn	Ile	Gln	Ser	Thr	Pro	Pro	Met	Asp	Asn	Thr	Thr	Thr	Gly	Ser
1625						1630							1635	
10														
Ser	Ser	Ser	Gly	Val	Thr	Leu	Gly	Ile	Ala	His	Leu	Pro	Ile	Gly
1640						1645						1650		
15														
Thr	Ser	Ser	Pro	Ala	Glu	Thr	Ser	Thr	Asn	Met	Ala	Leu	Glu	Arg
1655						1660						1665		
Arg	Ser	Ser	Thr	Ala	Thr	Val	Ser	Met	Ala	Gly	Thr	Met	Gly	Leu
1670						1675						1680		
20														
Leu	Val	Thr	Ser	Ala	Pro	Gly	Arg	Ser	Ile	Ser	Gln	Ser	Leu	Gly
1685						1690						1695		
25														
Arg	Val	Ser	Ser	Val	Leu	Ser	Glu	Ser	Thr	Thr	Glu	Gly	Val	Thr
1700						1705						1710		
Asp	Ser	Ser	Lys	Gly	Ser	Ser	Pro	Arg	Leu	Asn	Thr	Gln	Gly	Asn
1715						1720						1725		
30														
Thr	Ala	Leu	Ser	Ser	Ser	Leu	Glu	Pro	Ser	Tyr	Ala	Glu	Gly	Ser
1730						1735						1740		
Gln	Met	Ser	Thr	Ser	Ile	Pro	Leu	Thr	Ser	Ser	Pro	Thr	Thr	Pro
35	1745					1750						1755		
40														
Asp	Val	Glu	Phe	Ile	Gly	Gly	Ser	Thr	Phe	Trp	Thr	Lys	Glu	Val
1760						1765						1770		
Thr	Thr	Val	Met	Thr	Ser	Asp	Ile	Ser	Lys	Ser	Ser	Ala	Arg	Thr
1775						1780						1785		
45														
Glu	Ser	Ser	Ser	Ala	Thr	Leu	Met	Ser	Thr	Ala	Leu	Gly	Ser	Thr
1790						1795						1800		
Glu	Asn	Thr	Gly	Lys	Glu	Lys	Leu	Arg	Thr	Ala	Ser	Met	Asp	Leu
50	1805					1810						1815		
55														
Pro	Ser	Pro	Thr	Pro	Ser	Met	Glu	Val	Thr	Pro	Trp	Ile	Ser	Leu
1820						1825						1830		
Thr	Leu	Ser	Asn	Ala	Pro	Asn	Thr	Thr	Asp	Ser	Leu	Asp	Leu	Ser
1835						1840						1845		

His	Gly	Val	His	Thr	Ser	Ser	Ala	Gly	Thr	Leu	Ala	Thr	Asp	Arg	
1850							1855					1860			
5	Ser	Leu	Asn	Thr	Gly	Val	Thr	Arg	Ala	Ser	Arg	Leu	Glu	Asn	Gly
	1865						1870					1875			
10	Ser	Asp	Thr	Ser	Ser	Lys	Ser	Leu	Ser	Met	Gly	Asn	Ser	Thr	His
	1880						1885					1890			
15	Thr	Ser	Met	Thr	Tyr	Thr	Glu	Lys	Ser	Glu	Val	Ser	Ser	Ser	Ile
	1895						1900					1905			
20	His	Pro	Arg	Pro	Glu	Thr	Ser	Ala	Pro	Gly	Ala	Glu	Thr	Thr	Leu
	1910						1915					1920			
25	Thr	Ser	Thr	Pro	Gly	Asn	Arg	Ala	Ile	Ser	Leu	Thr	Leu	Pro	Phe
	1925						1930					1935			
30	Ser	Ser	Ile	Pro	Val	Glu	Glu	Val	Ile	Ser	Thr	Gly	Ile	Thr	Ser
	1940						1945					1950			
35	Gly	Pro	Asp	Ile	Asn	Ser	Ala	Pro	Met	Thr	His	Ser	Pro	Ile	Thr
	1955						1960					1965			
40	Pro	Pro	Thr	Ile	Val	Trp	Thr	Ser	Thr	Gly	Thr	Ile	Glu	Gln	Ser
	1970						1975					1980			
45	Thr	Gln	Pro	Leu	His	Ala	Val	Ser	Ser	Glu	Lys	Val	Ser	Val	Gln
	1985						1990					1995			
50	Thr	Gln	Ser	Thr	Pro	Tyr	Val	Asn	Ser	Val	Ala	Val	Ser	Ala	Ser
	2000						2005					2010			
55	Pro	Thr	His	Glu	Asn	Ser	Val	Ser	Ser	Gly	Ser	Ser	Thr	Ser	Ser
	2015						2020					2025			
60	Pro	Tyr	Ser	Ser	Ala	Ser	Leu	Glu	Ser	Leu	Asp	Ser	Thr	Ile	Ser
	2030						2035					2040			
65	Arg	Arg	Asn	Ala	Ile	Thr	Ser	Trp	Leu	Trp	Asp	Leu	Thr	Thr	Ser
	2045						2050					2055			
70	Leu	Pro	Thr	Thr	Thr	Trp	Pro	Ser	Thr	Ser	Leu	Ser	Glu	Ala	Leu
	2060						2065					2070			
75	Ser	Ser	Gly	His	Ser	Gly	Val	Ser	Asn	Pro	Ser	Ser	Thr	Thr	Thr

EP 3 222 632 A1

2075

2080

2085

Arg	Asn	Pro	Glu	Thr	Glu	Thr	His	Gly	Pro	Gln	Asn	Thr	Ala	Ala
2105					2110							2115		

15 Thr Pro Val Gly Ala Ser Ile Ser Ser Glu Val Pro Leu Pro Met
2135 2140 2145

20 Ala Ile Thr Ser Arg Ser Asp Val Ser Gly Leu Thr Ser Glu Ser
2150 2155 2160

Thr Ala Asn Pro Ser Leu Gly Thr Ala Ser Ser Ala Gly Thr Lys
2165 2170 2175

25 Leu Thr Arg Thr Ile Ser Leu Pro Thr Ser Glu Ser Leu Val Ser
2180 2185 2190

30 Phe Arg Met Asn Lys Asp Pro Trp Thr Val Ser Ile Pro Leu Gly
2195 2200 2205

Ser His Pro Thr Thr Asn Thr Glu Thr Ser Ile Pro Val Asn Ser
2210 2215 2220

Ala Gly Pro Pro Gly Leu Ser Thr Val Ala Ser Asp Val Ile Asp
 2225 2230 2235

40 Thr Pro Ser Asp Gly Ala Glu Ser Ile Pro Thr Val Ser Phe Ser

Lys Thr Thr His Ser Phe Arg Thr Ile Ser Ser Leu Thr His Glu
6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688

Leu Thr Ser Arg Val Thr Pro Ile Pro Gly Asp Trp Met Ser Ser

55 Ala Met Ser Thr Lys Pro Thr Gly Ala Ser Pro Ser Ile Thr Leu

EP 3 222 632 A1

5	Gly Glu Arg Arg Thr Ile Thr Ser Ala Ala Pro Thr Thr Ser Pro 2315 2320 2325
10	Ile Val Leu Thr Ala Ser Phe Thr Glu Thr Ser Thr Val Ser Leu 2330 2335 2340
15	Asp Asn Glu Thr Thr Val Lys Thr Ser Asp Ile Leu Asp Ala Arg 2345 2350 2355
20	Lys Thr Asn Glu Leu Pro Ser Asp Ser Ser Ser Ser Asp Leu 2360 2365 2370
25	Ile Asn Thr Ser Ile Ala Ser Ser Thr Met Asp Val Thr Lys Thr 2375 2380 2385
30	Ala Ser Ile Ser Pro Thr Ser Ile Ser Gly Met Thr Ala Ser Ser 2390 2395 2400
35	Ser Pro Ser Leu Phe Ser Ser Asp Arg Pro Gln Val Pro Thr Ser 2405 2410 2415
40	Thr Thr Glu Thr Asn Thr Ala Thr Ser Pro Ser Val Ser Ser Asn 2420 2425 2430
45	Thr Tyr Ser Leu Asp Gly Gly Ser Asn Val Gly Gly Thr Pro Ser 2435 2440 2445
50	Thr Leu Pro Pro Phe Thr Ile Thr His Pro Val Glu Thr Ser Ser 2450 2455 2460
55	Ala Leu Leu Ala Trp Ser Arg Pro Val Arg Thr Phe Ser Thr Met 2465 2470 2475
60	Val Ser Thr Asp Thr Ala Ser Gly Glu Asn Pro Thr Ser Ser Asn 2480 2485 2490
65	Ser Val Val Thr Ser Val Pro Ala Pro Gly Thr Trp Thr Ser Val 2495 2500 2505
70	Gly Ser Thr Thr Asp Leu Pro Ala Met Gly Phe Leu Lys Thr Ser 2510 2515 2520
75	Pro Ala Gly Glu Ala His Ser Leu Leu Ala Ser Thr Ile Glu Pro 2525 2530 2535
80	Ala Thr Ala Phe Thr Pro His Leu Ser Ala Ala Val Val Thr Gly 2540 2545 2550

EP 3 222 632 A1

Ser Ser Ala Thr Ser Glu Ala Ser Leu Leu Thr Thr Ser Glu Ser
 2555 2560 2565

5 Lys Ala Ile His Ser Ser Pro Gln Thr Pro Thr Thr Pro Thr Ser
 2570 2575 2580

10 Gly Ala Asn Trp Glu Thr Ser Ala Thr Pro Glu Ser Leu Leu Val
 2585 2590 2595

15 Val Thr Glu Thr Ser Asp Thr Thr Leu Thr Ser Lys Ile Leu Val
 2600 2605 2610

20 Thr Asp Thr Ile Leu Phe Ser Thr Val Ser Thr Pro Pro Ser Lys
 2615 2620 2625

25 Phe Pro Ser Thr Gly Thr Leu Ser Gly Ala Ser Phe Pro Thr Leu
 2630 2635 2640

30 Leu Pro Asp Thr Pro Ala Ile Pro Leu Thr Ala Thr Glu Pro Thr
 2645 2650 2655

35 Ser Ser Leu Ala Thr Ser Phe Asp Ser Thr Pro Leu Val Thr Ile
 2660 2665 2670

40 Ala Ser Asp Ser Leu Gly Thr Val Pro Glu Thr Thr Leu Thr Met
 2675 2680 2685

45 Ser Glu Thr Ser Asn Gly Asp Ala Leu Val Leu Lys Thr Val Ser
 2690 2695 2700

50 Asn Pro Asp Arg Ser Ile Pro Gly Ile Thr Ile Gln Gly Val Thr
 2705 2710 2715

55 Glu Ser Pro Leu His Pro Ser Ser Thr Ser Pro Ser Lys Ile Val
 2720 2725 2730

Ala Pro Arg Asn Thr Thr Tyr Glu Gly Ser Ile Thr Val Ala Leu
 2735 2740 2745

50 Ser Thr Leu Pro Ala Gly Thr Thr Gly Ser Leu Val Phe Ser Gln
 2750 2755 2760

55 Ser Ser Glu Asn Ser Glu Thr Thr Ala Leu Val Asp Ser Ser Ala
 2765 2770 2775

Gly Leu Glu Arg Ala Ser Val Met Pro Leu Thr Thr Gly Ser Gln
 2780 2785 2790

EP 3 222 632 A1

Gly Met Ala Ser Ser Gly Gly Ile Arg Ser Gly Ser Thr His Ser
 2795 2800 2805

5 Thr Gly Thr Lys Thr Phe Ser Ser Leu Pro Leu Thr Met Asn Pro
 2810 2815 2820

10 Gly Glu Val Thr Ala Met Ser Glu Ile Thr Thr Asn Arg Leu Thr
 2825 2830 2835

15 Ala Thr Gln Ser Thr Ala Pro Lys Gly Ile Pro Val Lys Pro Thr
 2840 2845 2850

20 Ser Ala Glu Ser Gly Leu Leu Thr Pro Val Ser Ala Ser Ser Ser
 2855 2860 2865

25 Pro Ser Lys Ala Phe Ala Ser Leu Thr Thr Ala Pro Pro Thr Trp
 2870 2875 2880

30 Gly Ile Pro Gln Ser Thr Leu Thr Phe Glu Phe Ser Glu Val Pro
 2885 2890 2895

35 Ser Leu Asp Thr Lys Ser Ala Ser Leu Pro Thr Pro Gly Gln Ser
 2900 2905 2910

40 Leu Asn Thr Ile Pro Asp Ser Asp Ala Ser Thr Ala Ser Ser Ser
 2915 2920 2925

45 Leu Ser Lys Ser Pro Glu Lys Asn Pro Arg Ala Arg Met Met Thr
 2930 2935 2940

50 Ser Thr Lys Ala Ile Ser Ala Ser Ser Phe Gln Ser Thr Gly Phe
 2945 2950 2955

55 Thr Glu Thr Pro Glu Gly Ser Ala Ser Pro Ser Met Ala Gly His
 2960 2965 2970

60 Glu Pro Arg Val Pro Thr Ser Gly Thr Gly Asp Pro Arg Tyr Ala
 2975 2980 2985

65 Ser Glu Ser Met Ser Tyr Pro Asp Pro Ser Lys Ala Ser Ser Ala
 2990 2995 3000

70 Met Thr Ser Thr Ser Leu Ala Ser Lys Leu Thr Thr Leu Phe Ser
 3005 3010 3015

75 Thr Gly Gln Ala Ala Arg Ser Gly Ser Ser Ser Ser Pro Ile Ser

EP 3 222 632 A1

3020	3025	3030											
Ser	Thr	Glu	Lys	Glu	Thr	Ser	Phe	Leu	Ser	Pro	Thr	Ala	Ser
3035					3040						3045		
Ser	Arg	Lys	Thr	Ser	Leu	Phe	Leu	Gly	Pro	Ser	Met	Ala	Arg
3050					3055						3060		
Pro	Asn	Ile	Leu	Val	His	Leu	Gln	Thr	Ser	Ala	Leu	Thr	Leu
3065					3070						3075		
Pro	Thr	Ser	Thr	Leu	Asn	Met	Ser	Gln	Glu	Glu	Pro	Pro	Glu
3080					3085						3090		
Thr	Ser	Ser	Gln	Thr	Ile	Ala	Glu	Glu	Glu	Gly	Thr	Thr	Ala
3095					3100						3105		
Thr	Gln	Thr	Leu	Thr	Phe	Thr	Pro	Ser	Glu	Thr	Pro	Thr	Ser
3110					3115						3120		
Leu	Pro	Val	Ser	Ser	Pro	Thr	Glu	Pro	Thr	Ala	Arg	Arg	Lys
3125					3130						3135		
Ser	Pro	Glu	Thr	Trp	Ala	Ser	Ser	Ile	Ser	Val	Pro	Ala	Lys
3140					3145						3150		
Ser	Leu	Val	Glu	Thr	Thr	Asp	Gly	Thr	Leu	Val	Thr	Thr	Ile
3155					3160						3165		
Met	Ser	Ser	Gln	Ala	Ala	Gln	Gly	Asn	Ser	Thr	Trp	Pro	Ala
3170					3175						3180		
Ala	Glu	Glu	Thr	Gly	Ser	Ser	Pro	Ala	Gly	Thr	Ser	Pro	Gly
3185					3190						3195		
Pro	Glu	Met	Ser	Thr	Thr	Leu	Lys	Ile	Met	Ser	Ser	Lys	Glu
3200					3205						3210		
Ser	Ile	Ser	Pro	Glu	Ile	Arg	Ser	Thr	Val	Arg	Asn	Ser	Pro
3215					3220						3225		
Lys	Thr	Pro	Glu	Thr	Thr	Val	Pro	Met	Glu	Thr	Thr	Val	Glu
3230					3235						3240		
Val	Thr	Leu	Gln	Ser	Thr	Ala	Leu	Gly	Ser	Gly	Ser	Thr	Ser
3245					3250						3255		

EP 3 222 632 A1

	Ile Ser His Leu Pro Thr Gly	Thr Thr Ser Pro Thr	Lys Ser Pro
	3260	3265	3270
5	Thr Glu Asn Met Leu Ala Thr	Glu Arg Val Ser Leu	Ser Pro Ser
	3275	3280	3285
10	Pro Pro Glu Ala Trp Thr Asn	Leu Tyr Ser Gly Thr	Pro Gly Gly
	3290	3295	3300
	Thr Arg Gln Ser Leu Ala Thr	Met Ser Ser Val Ser	Leu Glu Ser
	3305	3310	3315
15	Pro Thr Ala Arg Ser Ile Thr	Gly Thr Gly Gln Gln	Ser Ser Pro
	3320	3325	3330
20	Glu Leu Val Ser Lys Thr Thr	Gly Met Glu Phe Ser	Met Trp His
	3335	3340	3345
25	Gly Ser Thr Gly Gly Thr Thr	Gly Asp Thr His Val	Ser Leu Ser
	3350	3355	3360
	Thr Ser Ser Asn Ile Leu Glu	Asp Pro Val Thr Ser	Pro Asn Ser
	3365	3370	3375
30	Val Ser Ser Leu Thr Asp Lys	Ser Lys His Lys Thr	Glu Thr Trp
	3380	3385	3390
35	Val Ser Thr Thr Ala Ile Pro	Ser Thr Val Leu Asn	Asn Lys Ile
	3395	3400	3405
	Met Ala Ala Glu Gln Gln	Thr Ser Arg Ser Val Asp	Glu Ala Tyr
	3410	3415	3420
40	Ser Ser Thr Ser Ser Trp Ser	Asp Gln Thr Ser Gly	Ser Asp Ile
	3425	3430	3435
45	Thr Leu Gly Ala Ser Pro Asp	Val Thr Asn Thr Leu	Tyr Ile Thr
	3440	3445	3450
50	Ser Thr Ala Gln Thr Thr Ser	Leu Val Ser Leu Pro	Ser Gly Asp
	3455	3460	3465
	Gln Gly Ile Thr Ser Leu Thr	Asn Pro Ser Gly Gly	Lys Thr Ser
	3470	3475	3480
55	Ser Ala Ser Ser Val Thr Ser	Pro Ser Ile Gly Leu	Glu Thr Leu
	3485	3490	3495

EP 3 222 632 A1

Arg Ala Asn Val Ser Ala Val Lys Ser Asp Ile Ala Pro Thr Ala		
3500	3505	3510
5 Gly His Leu Ser Gln Thr Ser Ser Pro Ala Glu Val Ser Ile Leu		
3515	3520	3525
10 Asp Val Thr Thr Ala Pro Thr Pro Gly Ile Ser Thr Thr Ile Thr		
3530	3535	3540
15 Thr Met Gly Thr Asn Ser Ile Ser Thr Thr Thr Pro Asn Pro Glu		
3545	3550	3555
20 Val Gly Met Ser Thr Met Asp Ser Thr Pro Ala Thr Glu Arg Arg		
3560	3565	3570
25 Thr Thr Ser Thr Glu His Pro Ser Thr Trp Ser Ser Thr Ala Ala		
3575	3580	3585
30 Ser Asp Ser Trp Thr Val Thr Asp Met Thr Ser Asn Leu Lys Val		
3590	3595	3600
35 Ala Arg Ser Pro Gly Thr Ile Ser Thr Met His Thr Thr Ser Phe		
3605	3610	3615
40 Leu Ala Ser Ser Thr Glu Leu Asp Ser Met Ser Thr Pro His Gly		
3620	3625	3630
45 Arg Ile Thr Val Ile Gly Thr Ser Leu Val Thr Pro Ser Ser Asp		
3635	3640	3645
50 Ala Ser Ala Val Lys Thr Glu Thr Ser Thr Ser Glu Arg Thr Leu		
3650	3655	3660
55 Ser Pro Ser Asp Thr Thr Ala Ser Thr Pro Ile Ser Thr Phe Ser		
3665	3670	3675
60 Arg Val Gln Arg Met Ser Ile Ser Val Pro Asp Ile Leu Ser Thr		
3680	3685	3690
65 Ser Trp Thr Pro Ser Ser Thr Glu Ala Glu Asp Val Pro Val Ser		
3695	3700	3705
70 Met Val Ser Thr Asp His Ala Ser Thr Lys Thr Asp Pro Asn Thr		
3710	3715	3720
75 Pro Leu Ser Thr Phe Leu Phe Asp Ser Leu Ser Thr Leu Asp Trp		
3725	3730	3735

EP 3 222 632 A1

Asp	Thr	Gly	Arg	Ser	Leu	Ser	Ser	Ala	Thr	Ala	Thr	Thr	Ser	Ala
3740						3745							3750	
5														
Pro	Gln	Gly	Ala	Thr	Thr	Pro	Gln	Glu	Leu	Thr	Leu	Glu	Thr	Met
3755						3760						3765		
10														
Ile	Ser	Pro	Ala	Thr	Ser	Gln	Leu	Pro	Phe	Ser	Ile	Gly	His	Ile
3770						3775						3780		
15														
Thr	Ser	Ala	Val	Thr	Pro	Ala	Ala	Met	Ala	Arg	Ser	Ser	Gly	Val
3785						3790						3795		
20														
Thr	Phe	Ser	Arg	Pro	Asp	Pro	Thr	Ser	Lys	Lys	Ala	Glu	Gln	Thr
3800						3805						3810		
25														
Ser	Thr	Gln	Leu	Pro	Thr	Thr	Thr	Ser	Ala	His	Pro	Gly	Gln	Val
3815						3820						3825		
30														
Pro	Arg	Ser	Ala	Ala	Thr	Thr	Leu	Asp	Val	Ile	Pro	His	Thr	Ala
3830						3835						3840		
35														
Lys	Thr	Pro	Asp	Ala	Thr	Phe	Gln	Arg	Gln	Gly	Gln	Thr	Ala	Leu
3845						3850						3855		
40														
Thr	Thr	Glu	Ala	Arg	Ala	Thr	Ser	Asp	Ser	Trp	Asn	Glu	Lys	Glu
3860						3865						3870		
45														
Lys	Ser	Thr	Pro	Ser	Ala	Pro	Trp	Ile	Thr	Glu	Met	Met	Asn	Ser
3875						3880						3885		
50														
Val	Ser	Glu	Asp	Thr	Ile	Lys	Glu	Val	Thr	Ser	Ser	Ser	Ser	Val
3890						3895						3900		
55														
Leu	Arg	Thr	Leu	Asn	Thr	Leu	Asp	Ile	Asn	Leu	Glu	Ser	Gly	Thr
3905						3910						3915		
60														
Thr	Ser	Ser	Pro	Ser	Trp	Lys	Ser	Ser	Pro	Tyr	Glu	Arg	Ile	Ala
3920						3925						3930		
65														
Pro	Ser	Glu	Ser	Thr	Thr	Asp	Lys	Glu	Ala	Ile	His	Pro	Ser	Thr
3935						3940						3945		
70														
Asn	Thr	Val	Glu	Thr	Thr	Gly	Trp	Val	Thr	Ser	Ser	Glu	His	Ala
3950						3955						3960		
75														
Ser	His	Ser	Thr	Ile	Pro	Ala	His	Ser	Ala	Ser	Ser	Lys	Leu	Thr

EP 3 222 632 A1

3965

3970

3975

5	Ser Pro Val Val Thr Thr Ser Thr Arg Glu Gln Ala Ile Val Ser 3980 3985 3990
10	Met Ser Thr Thr Trp Pro Glu Ser Thr Arg Ala Arg Thr Glu 3995 4000 4005
15	Pro Asn Ser Phe Leu Thr Ile Glu Leu Arg Asp Val Ser Pro Tyr 4010 4015 4020
20	Met Asp Thr Ser Ser Thr Thr Gln Thr Ser Ile Ile Ser Ser Pro 4025 4030 4035
25	Gly Ser Thr Ala Ile Thr Lys Gly Pro Arg Thr Glu Ile Thr Ser 4040 4045 4050
30	Ser Lys Arg Ile Ser Ser Ser Phe Leu Ala Gln Ser Met Arg Ser 4055 4060 4065
35	Ser Asp Ser Pro Ser Glu Ala Ile Thr Arg Leu Ser Asn Phe Pro 4070 4075 4080
40	Ala Met Thr Glu Ser Gly Gly Met Ile Leu Ala Met Gln Thr Ser 4085 4090 4095
45	Pro Pro Gly Ala Thr Ser Leu Ser Ala Pro Thr Leu Asp Thr Ser 4100 4105 4110
50	Ala Thr Ala Ser Trp Thr Gly Thr Pro Leu Ala Thr Thr Gln Arg 4115 4120 4125
55	Phe Thr Tyr Ser Glu Lys Thr Thr Leu Phe Ser Lys Gly Pro Glu 4130 4135 4140
60	Asp Thr Ser Gln Pro Ser Pro Pro Ser Val Glu Glu Thr Ser Ser 4145 4150 4155
65	Ser Ser Ser Leu Val Pro Ile His Ala Thr Thr Ser Pro Ser Asn 4160 4165 4170
70	Ile Leu Leu Thr Ser Gln Gly His Ser Pro Ser Ser Thr Pro Pro 4175 4180 4185
75	Val Thr Ser Val Phe Leu Ser Glu Thr Ser Gly Leu Gly Lys Thr 4190 4195 4200

EP 3 222 632 A1

5	Thr Asp Met Ser Arg Ile Ser Leu Glu Pro Gly Thr Ser Leu Pro	4205	4210	4215
10	Pro Asn Leu Ser Ser Thr Ala Gly Glu Ala Leu Ser Thr Tyr Glu	4220	4225	4230
15	Ala Ser Arg Asp Thr Lys Ala Ile His His Ser Ala Asp Thr Ala	4235	4240	4245
20	Val Thr Asn Met Glu Ala Thr Ser Ser Glu Tyr Ser Pro Ile Pro	4250	4255	4260
25	Gly His Thr Lys Pro Ser Lys Ala Thr Ser Pro Leu Val Thr Ser	4265	4270	4275
30	His Ile Met Gly Asp Ile Thr Ser Ser Thr Ser Val Phe Gly Ser	4280	4285	4290
35	Ser Glu Thr Thr Glu Ile Glu Thr Val Ser Ser Val Asn Gln Gly	4295	4300	4305
40	Leu Gln Glu Arg Ser Thr Ser Gln Val Ala Ser Ser Ala Thr Glu	4310	4315	4320
45	Thr Ser Thr Val Ile Thr His Val Ser Ser Gly Asp Ala Thr Thr	4325	4330	4335
50	His Val Thr Lys Thr Gln Ala Thr Phe Ser Ser Gly Thr Ser Ile	4340	4345	4350
55	Ser Ser Pro His Gln Phe Ile Thr Ser Thr Asn Thr Phe Thr Asp	4355	4360	4365
60	Val Ser Thr Asn Pro Ser Thr Ser Leu Ile Met Thr Glu Ser Ser	4370	4375	4380
65	Gly Val Thr Ile Thr Thr Gln Thr Gly Pro Thr Gly Ala Ala Thr	4385	4390	4395
70	Gln Gly Pro Tyr Leu Leu Asp Thr Ser Thr Met Pro Tyr Leu Thr	4400	4405	4410
75	Glu Thr Pro Leu Ala Val Thr Pro Asp Phe Met Gln Ser Glu Lys	4415	4420	4425
80	Thr Thr Leu Ile Ser Lys Gly Pro Lys Asp Val Ser Trp Thr Ser	4430	4435	4440

EP 3 222 632 A1

5	Pro Pro Ser Val Ala Glu Thr Ser Tyr Pro Ser Ser Leu Thr Pro 4445 4450 4455
10	Phe Leu Val Thr Thr Ile Pro Pro Ala Thr Ser Thr Leu Gln Gly 4460 4465 4470
15	Gln His Thr Ser Ser Pro Val Ser Ala Thr Ser Val Leu Thr Ser 4475 4480 4485
20	Gly Leu Val Lys Thr Thr Asp Met Leu Asn Thr Ser Met Glu Pro 4490 4495 4500
25	Val Thr Asn Ser Pro Gln Asn Leu Asn Asn Pro Ser Asn Glu Ile 4505 4510 4515
30	Leu Ala Thr Leu Ala Ala Thr Thr Asp Ile Glu Thr Ile His Pro 4520 4525 4530
35	Ser Ile Asn Lys Ala Val Thr Asn Met Gly Thr Ala Ser Ser Ala 4535 4540 4545
40	His Val Leu His Ser Thr Leu Pro Val Ser Ser Glu Pro Ser Thr 4550 4555 4560
45	Ala Thr Ser Pro Met Val Pro Ala Ser Ser Met Gly Asp Ala Leu 4565 4570 4575
50	Ala Ser Ile Ser Ile Pro Gly Ser Glu Thr Thr Asp Ile Glu Gly 4580 4585 4590
55	Glu Pro Thr Ser Ser Leu Thr Ala Gly Arg Lys Glu Asn Ser Thr 4595 4600 4605
60	Leu Gln Glu Met Asn Ser Thr Thr Glu Ser Asn Ile Ile Leu Ser 4610 4615 4620
65	Asn Val Ser Val Gly Ala Ile Thr Glu Ala Thr Lys Met Glu Val 4625 4630 4635
70	Pro Ser Phe Asp Ala Thr Phe Ile Pro Thr Pro Ala Gln Ser Thr 4640 4645 4650
75	Lys Phe Pro Asp Ile Phe Ser Val Ala Ser Ser Arg Leu Ser Asn 4655 4660 4665
80	Ser Pro Pro Met Thr Ile Ser Thr His Met Thr Thr Thr Gln Thr 4670 4675 4680

EP 3 222 632 A1

	Gly	Ser	Ser	Gly	Ala	Thr	Ser	Lys	Ile	Pro	Leu	Ala	Leu	Asp	Thr
	4685						4690						4695		
5	Ser	Thr	Leu	Glu	Thr	Ser	Ala	Gly	Thr	Pro	Ser	Val	Val	Thr	Glu
	4700						4705						4710		
10	Gly	Phe	Ala	His	Ser	Lys	Ile	Thr	Thr	Ala	Met	Asn	Asn	Asp	Val
	4715						4720						4725		
15	Lys	Asp	Val	Ser	Gln	Thr	Asn	Pro	Pro	Phe	Gln	Asp	Glu	Ala	Ser
	4730						4735						4740		
20	Ser	Pro	Ser	Ser	Gln	Ala	Pro	Val	Leu	Val	Thr	Thr	Leu	Pro	Ser
	4745						4750						4755		
25	Ser	Val	Ala	Phe	Thr	Pro	Gln	Trp	His	Ser	Thr	Ser	Ser	Pro	Val
	4760						4765						4770		
30	Ser	Met	Ser	Ser	Val	Leu	Thr	Ser	Ser	Leu	Val	Lys	Thr	Ala	Gly
	4775						4780						4785		
35	Lys	Val	Asp	Thr	Ser	Leu	Glu	Thr	Val	Thr	Ser	Ser	Pro	Gln	Ser
	4790						4795						4800		
40	Met	Ser	Asn	Thr	Leu	Asp	Asp	Ile	Ser	Val	Thr	Ser	Ala	Ala	Thr
	4805						4810						4815		
45	Thr	Asp	Ile	Glu	Thr	Thr	His	Pro	Ser	Ile	Asn	Thr	Val	Val	Thr
	4820						4825						4830		
50	Asn	Val	Gly	Thr	Thr	Gly	Ser	Ala	Phe	Glu	Ser	His	Ser	Thr	Val
	4835						4840						4845		
55	Ser	Ala	Tyr	Pro	Glu	Pro	Ser	Lys	Val	Thr	Ser	Pro	Asn	Val	Thr
	4850						4855						4860		
60	Thr	Ser	Thr	Met	Glu	Asp	Thr	Thr	Ile	Ser	Arg	Ser	Ile	Pro	Lys
	4865						4870						4875		
65	Ser	Ser	Lys	Thr	Thr	Arg	Thr	Glu	Thr	Glu	Thr	Thr	Ser	Ser	Leu
	4880						4885						4890		
70	Thr	Pro	Lys	Leu	Arg	Glu	Thr	Ser	Ile	Ser	Gln	Glu	Ile	Thr	Ser
	4895						4900						4905		
75	Ser	Thr	Glu	Thr	Ser	Thr	Val	Pro	Tyr	Lys	Glu	Leu	Thr	Gly	Ala

EP 3 222 632 A1

4910

4915

4920

5 Thr Thr Glu Val Ser Arg Thr Asp Val Thr Ser Ser Ser Ser Thr
 4925 4930 4935

10 Ser Phe Pro Gly Pro Asp Gln Ser Thr Val Ser Leu Asp Ile Ser
 4940 4945 4950

15 Thr Glu Thr Asn Thr Arg Leu Ser Thr Ser Pro Ile Met Thr Glu
 4955 4960 4965

20 Ser Ala Glu Ile Thr Ile Thr Thr Gln Thr Gly Pro His Gly Ala
 4970 4975 4980

25 Thr Ser Gln Asp Thr Phe Thr Met Asp Pro Ser Asn Thr Thr Pro
 4985 4990 4995

30 Gln Ala Gly Ile His Ser Ala Met Thr His Gly Phe Ser Gln Leu
 5000 5005 5010

35 Asp Val Thr Thr Leu Met Ser Arg Ile Pro Gln Asp Val Ser Trp
 5015 5020 5025

40 Thr Ser Pro Pro Ser Val Asp Lys Thr Ser Ser Pro Ser Ser Phe
 5030 5035 5040

45 Leu Ser Ser Pro Ala Met Thr Thr Pro Ser Leu Ile Ser Ser Thr
 5045 5050 5055

50 Leu Pro Glu Asp Lys Leu Ser Ser Pro Met Thr Ser Leu Leu Thr
 5060 5065 5070

55 Ser Gly Leu Val Lys Ile Thr Asp Ile Leu Arg Thr Arg Leu Glu
 5075 5080 5085

60 Pro Val Thr Ser Ser Leu Pro Asn Phe Ser Ser Thr Ser Asp Lys
 5090 5095 5100

65 Ile Leu Ala Thr Ser Lys Asp Ser Lys Asp Thr Lys Glu Ile Phe
 5105 5110 5115

70 Pro Ser Ile Asn Thr Glu Glu Thr Asn Val Lys Ala Asn Asn Ser
 5120 5125 5130

75 Gly His Glu Ser His Ser Pro Ala Leu Ala Asp Ser Glu Thr Pro
 5135 5140 5145

EP 3 222 632 A1

5	Lys Ala Thr Thr Gln Met Val Ile Thr Thr Thr Val Gly Asp Pro	5150	5155	5160
10	Ala Pro Ser Thr Ser Met Pro Val His Gly Ser Ser Glu Thr Thr	5165	5170	5175
15	Asn Ile Lys Arg Glu Pro Thr Tyr Phe Leu Thr Pro Arg Leu Arg	5180	5185	5190
20	Glu Thr Ser Thr Ser Gln Glu Ser Ser Phe Pro Thr Asp Thr Ser	5195	5200	5205
25	Phe Leu Leu Ser Lys Val Pro Thr Gly Thr Ile Thr Glu Val Ser	5210	5215	5220
30	Ser Thr Gly Val Asn Ser Ser Ser Lys Ile Ser Thr Pro Asp His	5225	5230	5235
35	Asp Lys Ser Thr Val Pro Pro Asp Thr Phe Thr Gly Glu Ile Pro	5240	5245	5250
40	Arg Val Phe Thr Ser Ser Ile Lys Thr Lys Ser Ala Glu Met Thr	5255	5260	5265
45	Ile Thr Thr Gln Ala Ser Pro Pro Glu Ser Ala Ser His Ser Thr	5270	5275	5280
50	Leu Pro Leu Asp Thr Ser Thr Thr Leu Ser Gln Gly Gly Thr His	5285	5290	5295
55	Ser Thr Val Thr Gln Gly Phe Pro Tyr Ser Glu Val Thr Thr Leu	5300	5305	5310
60	Met Gly Met Gly Pro Gly Asn Val Ser Trp Met Thr Thr Pro Pro	5315	5320	5325
65	Val Glu Glu Thr Ser Ser Val Ser Ser Leu Met Ser Ser Pro Ala	5330	5335	5340
70	Met Thr Ser Pro Ser Pro Val Ser Ser Thr Ser Pro Gln Ser Ile	5345	5350	5355
75	Pro Ser Ser Pro Leu Pro Val Thr Ala Leu Pro Thr Ser Val Leu	5360	5365	5370
80	Val Thr Thr Thr Asp Val Leu Gly Thr Thr Ser Pro Glu Ser Val	5375	5380	5385

EP 3 222 632 A1

5	Thr Ser Ser Pro Pro Asn Leu Ser Ser Ile Thr His Glu Arg Pro	5390	5395	5400
10	Ala Thr Tyr Lys Asp Thr Ala His Thr Glu Ala Ala Met His His	5405	5410	5415
15	Ser Thr Asn Thr Ala Val Thr Asn Val Gly Thr Ser Gly Ser Gly	5420	5425	5430
20	His Lys Ser Gln Ser Ser Val Leu Ala Asp Ser Glu Thr Ser Lys	5435	5440	5445
25	Ala Thr Pro Leu Met Ser Thr Thr Ser Thr Leu Gly Asp Thr Ser	5450	5455	5460
30	Val Ser Thr Ser Thr Pro Asn Ile Ser Gln Thr Asn Gln Ile Gln	5465	5470	5475
35	Thr Glu Pro Thr Ala Ser Leu Ser Pro Arg Leu Arg Glu Ser Ser	5480	5485	5490
40	Thr Ser Glu Lys Thr Ser Ser Thr Thr Glu Thr Asn Thr Ala Phe	5495	5500	5505
45	Ser Tyr Val Pro Thr Gly Ala Ile Thr Gln Ala Ser Arg Thr Glu	5510	5515	5520
50	Ile Ser Ser Ser Arg Thr Ser Ile Ser Asp Leu Asp Arg Pro Thr	5525	5530	5535
55	Ile Ala Pro Asp Ile Ser Thr Gly Met Ile Thr Arg Leu Phe Thr	5540	5545	5550
60	Ser Pro Ile Met Thr Lys Ser Ala Glu Met Thr Val Thr Thr Gln	5555	5560	5565
65	Thr Thr Thr Pro Gly Ala Thr Ser Gln Gly Ile Leu Pro Trp Asp	5570	5575	5580
70	Thr Ser Thr Thr Leu Phe Gln Gly Gly Thr His Ser Thr Val Ser	5585	5590	5595
75	Gln Gly Phe Pro His Ser Glu Ile Thr Thr Leu Arg Ser Arg Thr	5600	5605	5610
80	Pro Gly Asp Val Ser Trp Met Thr Thr Pro Pro Val Glu Glu Thr	5615	5620	5625

EP 3 222 632 A1

Ser Ser Gly Phe Ser Leu Met Ser Pro Ser Met Thr Ser Pro Ser
 5630 5635 5640

5 Pro Val Ser Ser Thr Ser Pro Glu Ser Ile Pro Ser Ser Pro Leu
 5645 5650 5655

10 Pro Val Thr Ala Leu Leu Thr Ser Val Leu Val Thr Thr Thr Asn
 5660 5665 5670

15 Val Leu Gly Thr Thr Ser Pro Glu Pro Val Thr Ser Ser Pro Pro
 5675 5680 5685

20 Asn Leu Ser Ser Pro Thr Gln Glu Arg Leu Thr Thr Tyr Lys Asp
 5690 5695 5700

25 Thr Ala His Thr Glu Ala Met His Ala Ser Met His Thr Asn Thr
 5705 5710 5715

Ala Val Ala Asn Val Gly Thr Ser Ile Ser Gly His Glu Ser Gln
 5720 5725 5730

30 Ser Ser Val Pro Ala Asp Ser His Thr Ser Lys Ala Thr Ser Pro
 5735 5740 5745

35 Met Gly Ile Thr Phe Ala Met Gly Asp Thr Ser Val Ser Thr Ser
 5750 5755 5760

Thr Pro Ala Phe Phe Glu Thr Arg Ile Gln Thr Glu Ser Thr Ser
 5765 5770 5775

40 Ser Leu Ile Pro Gly Leu Arg Asp Thr Arg Thr Ser Glu Glu Ile
 5780 5785 5790

Asn Thr Val Thr Glu Thr Ser Thr Val Leu Ser Glu Val Pro Thr
 5795 5800 5805

45 Thr Thr Thr Thr Glu Val Ser Arg Thr Glu Val Ile Thr Ser Ser
 5810 5815 5820

50 Arg Thr Thr Ile Ser Gly Pro Asp His Ser Lys Met Ser Pro Tyr
 5825 5830 5835

Ile Ser Thr Glu Thr Ile Thr Arg Leu Ser Thr Phe Pro Phe Val
 5840 5845 5850

55 Thr Gly Ser Thr Glu Met Ala Ile Thr Asn Gln Thr Gly Pro Ile

EP 3 222 632 A1

5855	5860	5865
Gly Thr Ile Ser Gln Ala Thr Leu Thr Leu Asp Thr Ser Ser Thr		
5	5870	5875
5880		
Ala Ser Trp Glu Gly Thr His Ser Pro Val Thr Gln Arg Phe Pro		
5885 5890 5895		
His Ser Glu Glu Thr Thr Thr Met Ser Arg Ser Thr Lys Gly Val		
5900 5905 5910		
15 Ser Trp Gln Ser Pro Pro Ser Val Glu Glu Thr Ser Ser Pro Ser		
5915 5920 5925		
20 Ser Pro Val Pro Leu Pro Ala Ile Thr Ser His Ser Ser Leu Tyr		
5930 5935 5940		
Ser Ala Val Ser Gly Ser Ser Pro Thr Ser Ala Leu Pro Val Thr		
5945 5950 5955		
25 Ser Leu Leu Thr Ser Gly Arg Arg Lys Thr Ile Asp Met Leu Asp		
5960 5965 5970		
30 Thr His Ser Glu Leu Val Thr Ser Ser Leu Pro Ser Ala Ser Ser		
5975 5980 5985		
35 Phe Ser Gly Glu Ile Leu Thr Ser Glu Ala Ser Thr Asn Thr Glu		
5990 5995 6000		
40 Thr Ile His Phe Ser Glu Asn Thr Ala Glu Thr Asn Met Gly Thr		
6005 6010 6015		
45 Thr Asn Ser Met His Lys Leu His Ser Ser Val Ser Ile His Ser		
6020 6025 6030		
Gln Pro Ser Gly His Thr Pro Pro Lys Val Thr Gly Ser Met Met		
50 6035 6040 6045		
55 Glu Asp Ala Ile Val Ser Thr Ser Thr Pro Gly Ser Pro Glu Thr		
6050 6055 6060		
Lys Asn Val Asp Arg Asp Ser Thr Ser Pro Leu Thr Pro Glu Leu		
5065 6070 6075		
Lys Glu Asp Ser Thr Ala Leu Val Met Asn Ser Thr Thr Glu Ser		
5080 6085 6090		

EP 3 222 632 A1

Asn	Thr	Val	Phe	Ser	Ser	Val	Ser	Leu	Asp	Ala	Ala	Thr	Glu	Val	
6095						6100						6105			
5	Ser	Arg	Ala	Glu	Val	Thr	Tyr	Tyr	Asp	Pro	Thr	Phe	Met	Pro	Ala
	6110					6115						6120			
10	Ser	Ala	Gln	Ser	Thr	Lys	Ser	Pro	Asp	Ile	Ser	Pro	Glu	Ala	Ser
	6125					6130						6135			
15	Ser	Ser	His	Ser	Asn	Ser	Pro	Pro	Leu	Thr	Ile	Ser	Thr	His	Lys
	6140					6145						6150			
20	Thr	Ile	Ala	Thr	Gln	Thr	Gly	Pro	Ser	Gly	Val	Thr	Ser	Leu	Gly
	6155					6160						6165			
25	Gln	Leu	Thr	Leu	Asp	Thr	Ser	Thr	Ile	Ala	Thr	Ser	Ala	Gly	Thr
	6170					6175						6180			
30	Pro	Ser	Ala	Arg	Thr	Gln	Asp	Phe	Val	Asp	Ser	Glu	Thr	Thr	Ser
	6185					6190						6195			
35	Val	Met	Asn	Asn	Asp	Leu	Asn	Asp	Val	Leu	Lys	Thr	Ser	Pro	Phe
	6200					6205						6210			
40	Ser	Ala	Glu	Glu	Ala	Asn	Ser	Leu	Ser	Ser	Gln	Ala	Pro	Leu	Leu
	6215					6220						6225			
45	Val	Thr	Thr	Ser	Pro	Ser	Pro	Val	Thr	Ser	Thr	Leu	Gln	Glu	His
	6230					6235						6240			
50	Ser	Thr	Ser	Ser	Leu	Val	Ser	Val	Thr	Ser	Val	Pro	Thr	Pro	Thr
	6245					6250						6255			
55	Leu	Ala	Lys	Ile	Thr	Asp	Met	Asp	Thr	Asn	Leu	Glu	Pro	Val	Thr
	6260					6265						6270			
60	Arg	Ser	Pro	Gln	Asn	Leu	Arg	Asn	Thr	Leu	Ala	Thr	Ser	Glu	Ala
	6275					6280						6285			
65	Thr	Thr	Asp	Thr	His	Thr	Met	His	Pro	Ser	Ile	Asn	Thr	Ala	Val
	6290					6295						6300			
70	Ala	Asn	Val	Gly	Thr	Thr	Ser	Ser	Pro	Asn	Glu	Phe	Tyr	Phe	Thr
	6305					6310						6315			
75	Val	Ser	Pro	Asp	Ser	Asp	Pro	Tyr	Lys	Ala	Thr	Ser	Ala	Val	Val
	6320					6325						6330			

EP 3 222 632 A1

1	Ile	Thr	Ser	Thr	Ser	Gly	Asp	Ser	Ile	Val	Ser	Thr	Ser	Met	Pro
	6335							6340						6345	
5	Arg	Ser	Ser	Ala	Met	Lys	Lys	Ile	Glu	Ser	Glu	Thr	Thr	Phe	Ser
	6350							6355						6360	
10	Leu	Ile	Phe	Arg	Leu	Arg	Glu	Thr	Ser	Thr	Ser	Gln	Lys	Ile	Gly
	6365							6370						6375	
15	Ser	Ser	Ser	Asp	Thr	Ser	Thr	Val	Phe	Asp	Lys	Ala	Phe	Thr	Ala
	6380							6385						6390	
20	Ala	Thr	Thr	Glu	Val	Ser	Arg	Thr	Glu	Leu	Thr	Ser	Ser	Ser	Arg
	6395							6400						6405	
25	Thr	Ser	Ile	Gln	Gly	Thr	Glu	Lys	Pro	Thr	Met	Ser	Pro	Asp	Thr
	6410							6415						6420	
30	Ser	Thr	Arg	Ser	Val	Thr	Met	Leu	Ser	Thr	Phe	Ala	Gly	Leu	Thr
	6425							6430						6435	
35	Lys	Ser	Glu	Glu	Arg	Thr	Ile	Ala	Thr	Gln	Thr	Gly	Pro	His	Arg
	6440							6445						6450	
40	Ala	Thr	Ser	Gln	Gly	Thr	Leu	Thr	Trp	Asp	Thr	Ser	Ile	Thr	Thr
	6455							6460						6465	
45	Ser	Gln	Ala	Gly	Thr	His	Ser	Ala	Met	Thr	His	Gly	Phe	Ser	Gln
	6470							6475						6480	
50	Leu	Asp	Leu	Ser	Thr	Leu	Thr	Ser	Arg	Val	Pro	Glu	Tyr	Ile	Ser
	6485							6490						6495	
55	Gly	Thr	Ser	Pro	Pro	Ser	Val	Glu	Lys	Thr	Ser	Ser	Ser	Ser	Ser
	6500							6505						6510	
60	Leu	Leu	Ser	Leu	Pro	Ala	Ile	Thr	Ser	Pro	Ser	Pro	Val	Pro	Thr
	6515							6520						6525	
65	Thr	Leu	Pro	Glu	Ser	Arg	Pro	Ser	Ser	Pro	Val	His	Leu	Thr	Ser
	6530							6535						6540	
70	Leu	Pro	Thr	Ser	Gly	Leu	Val	Lys	Thr	Thr	Asp	Met	Leu	Ala	Ser
	6545							6550						6555	
75	Val	Ala	Ser	Leu	Pro	Pro	Asn	Leu	Gly	Ser	Thr	Ser	His	Lys	Ile
	6560							6565						6570	

EP 3 222 632 A1

Pro Thr Thr Ser Glu Asp Ile Lys Asp Thr Glu Lys Met Tyr Pro
 6575 6580 6585

5 Ser Thr Asn Ile Ala Val Thr Asn Val Gly Thr Thr Thr Ser Glu
 6590 6595 6600

10 Lys Glu Ser Tyr Ser Ser Val Pro Ala Tyr Ser Glu Pro Pro Lys
 6605 6610 6615

15 Val Thr Ser Pro Met Val Thr Ser Phe Asn Ile Arg Asp Thr Ile
 6620 6625 6630

20 Val Ser Thr Ser Met Pro Gly Ser Ser Glu Ile Thr Arg Ile Glu
 6635 6640 6645

25 Met Glu Ser Thr Phe Ser Leu Ala His Gly Leu Lys Gly Thr Ser
 6650 6655 6660

30 Thr Ser Gln Asp Pro Ile Val Ser Thr Glu Lys Ser Ala Val Leu
 6665 6670 6675

35 His Lys Leu Thr Thr Gly Ala Thr Glu Thr Ser Arg Thr Glu Val
 6680 6685 6690

40 Ala Ser Ser Arg Arg Thr Ser Ile Pro Gly Pro Asp His Ser Thr
 6695 6700 6705

45 Glu Ser Pro Asp Ile Ser Thr Glu Val Ile Pro Ser Leu Pro Ile
 6710 6715 6720

50 Ser Leu Gly Ile Thr Glu Ser Ser Asn Met Thr Ile Ile Thr Arg
 6725 6730 6735

55 Thr Gly Pro Pro Leu Gly Ser Thr Ser Gln Gly Thr Phe Thr Leu
 6740 6745 6750

Asp Thr Pro Thr Thr Ser Ser Arg Ala Gly Thr His Ser Met Ala
 6755 6760 6765

Thr Gln Glu Phe Pro His Ser Glu Met Thr Thr Val Met Asn Lys
 6770 6775 6780

Asp Pro Glu Ile Leu Ser Trp Thr Ile Pro Pro Ser Ile Glu Lys
 6785 6790 6795

Thr Ser Phe Ser Ser Ser Leu Met Pro Ser Pro Ala Met Thr Ser

EP 3 222 632 A1

	6800	6805	6810
5	Pro Pro Val Ser Ser Thr Leu Pro Lys Thr Ile His Thr Thr Pro 6815 6820 6825		
	Ser Pro Met Thr Ser Leu Leu Thr Pro Ser Leu Val Met Thr Thr 6830 6835 6840		
10	Asp Thr Leu Gly Thr Ser Pro Glu Pro Thr Thr Ser Ser Pro Pro 6845 6850 6855		
15	Asn Leu Ser Ser Thr Ser His Glu Ile Leu Thr Thr Asp Glu Asp 6860 6865 6870		
20	Thr Thr Ala Ile Glu Ala Met His Pro Ser Thr Ser Thr Ala Ala 6875 6880 6885		
	Thr Asn Val Glu Thr Thr Ser Ser Gly His Gly Ser Gln Ser Ser 6890 6895 6900		
25	Val Leu Ala Asp Ser Glu Lys Thr Lys Ala Thr Ala Pro Met Asp 6905 6910 6915		
30	Thr Thr Ser Thr Met Gly His Thr Thr Val Ser Thr Ser Met Ser 6920 6925 6930		
	Val Ser Ser Glu Thr Thr Lys Ile Lys Arg Glu Ser Thr Tyr Ser 6935 6940 6945		
35	Leu Thr Pro Gly Leu Arg Glu Thr Ser Ile Ser Gln Asn Ala Ser 6950 6955 6960		
40	Phe Ser Thr Asp Thr Ser Ile Val Leu Ser Glu Val Pro Thr Gly 6965 6970 6975		
45	Thr Thr Ala Glu Val Ser Arg Thr Glu Val Thr Ser Ser Gly Arg 6980 6985 6990		
	Thr Ser Ile Pro Gly Pro Ser Gln Ser Thr Val Leu Pro Glu Ile 6995 7000 7005		
50	Ser Thr Arg Thr Met Thr Arg Leu Phe Ala Ser Pro Thr Met Thr 7010 7015 7020		
55	Glu Ser Ala Glu Met Thr Ile Pro Thr Gln Thr Gly Pro Ser Gly 7025 7030 7035		

EP 3 222 632 A1

Ser Thr Ser Gln Asp Thr Leu Thr Leu Asp Thr Ser Thr Thr Lys
 7040 7045 7050

5 Ser Gln Ala Lys Thr His Ser Thr Leu Thr Gln Arg Phe Pro His
 7055 7060 7065

10 Ser Glu Met Thr Thr Leu Met Ser Arg Gly Pro Gly Asp Met Ser
 7070 7075 7080

15 Trp Gln Ser Ser Pro Ser Leu Glu Asn Pro Ser Ser Leu Pro Ser
 7085 7090 7095

20 Leu Leu Ser Leu Pro Ala Thr Thr Ser Pro Pro Pro Ile Ser Ser
 7100 7105 7110

25 Thr Leu Pro Val Thr Ile Ser Ser Ser Pro Leu Pro Val Thr Ser
 7115 7120 7125

30 Leu Leu Thr Ser Ser Pro Val Thr Thr Thr Asp Met Leu His Thr
 7130 7135 7140

35 Ser Pro Glu Leu Val Thr Ser Ser Pro Pro Lys Leu Ser His Thr
 7145 7150 7155

40 Ser Asp Glu Arg Leu Thr Thr Gly Lys Asp Thr Thr Asn Thr Glu
 7160 7165 7170

45 Ala Val His Pro Ser Thr Asn Thr Ala Ala Ser Asn Val Glu Ile
 7175 7180 7185

50 Pro Ser Ser Gly His Glu Ser Pro Ser Ser Ala Leu Ala Asp Ser
 7190 7195 7200

55 Glu Thr Ser Lys Ala Thr Ser Pro Met Phe Ile Thr Ser Thr Gln
 7205 7210 7215

60 Glu Asp Thr Thr Val Ala Ile Ser Thr Pro His Phe Leu Glu Thr
 7220 7225 7230

65 Ser Arg Ile Gln Lys Glu Ser Ile Ser Ser Leu Ser Pro Lys Leu
 7235 7240 7245

70 Arg Glu Thr Gly Ser Ser Val Glu Thr Ser Ser Ala Ile Glu Thr
 7250 7255 7260

75 Ser Ala Val Leu Ser Glu Val Ser Ile Gly Ala Thr Thr Glu Ile
 7265 7270 7275

EP 3 222 632 A1

Ser Arg Thr Glu Val Thr Ser Ser Ser Arg Thr Ser Ile Ser Gly
 7280 7285 7290

5 Ser Ala Glu Ser Thr Met Leu Pro Glu Ile Ser Thr Thr Arg Lys
 7295 7300 7305

10 Ile Ile Lys Phe Pro Thr Ser Pro Ile Leu Ala Glu Ser Ser Gly
 7310 7315 7320

15 Met Thr Ile Lys Thr Gln Thr Ser Pro Pro Gly Ser Thr Ser Gly
 7325 7330 7335

20 Ser Thr Phe Thr Leu Asp Thr Ser Thr Thr Pro Ser Leu Val Ile
 7340 7345 7350

25 Thr His Ser Thr Met Thr Gln Arg Leu Pro His Ser Glu Ile Thr
 7355 7360 7365

30 Thr Leu Val Ser Arg Gly Ala Gly Asp Val Pro Arg Pro Ser Ser
 7370 7375 7380

35 Leu Pro Val Glu Glu Thr Ser Pro Pro Ser Ser Gln Leu Ser Leu
 7385 7390 7395

40 Ser Ala Met Ile Ser Pro Ser Pro Val Ser Ser Thr Leu Pro Ala
 7400 7405 7410

45 Ser Ser His Ser Ser Ser Ala Ser Val Thr Ser Leu Leu Thr Pro
 7415 7420 7425

50 Gly Gln Val Lys Thr Thr Glu Val Leu Asp Ala Ser Ala Glu Pro
 7430 7435 7440

55 Glu Thr Ser Ser Pro Pro Ser Leu Ser Ser Thr Ser Val Glu Ile
 7445 7450 7455

60 Leu Ala Thr Ser Glu Val Thr Thr Asp Thr Glu Lys Ile His Pro
 7460 7465 7470

65 Phe Ser Asn Thr Ala Val Thr Lys Val Gly Thr Ser Ser Ser Gly
 7475 7480 7485

70 His Glu Ser Pro Ser Ser Val Leu Pro Asp Ser Glu Thr Thr Lys
 7490 7495 7500

75 Ala Thr Ser Ala Met Gly Thr Ile Ser Ile Met Gly Asp Thr Ser
 7505 7510 7515

EP 3 222 632 A1

Val Ser Thr Leu Thr Pro Ala Leu Ser Asn Thr Arg Lys Ile Gln
7520 7525 7530

5 Ser Glu Pro Ala Ser Ser Leu Thr Thr Arg Leu Arg Glu Thr Ser
7535 7540 7545

10 Thr Ser Glu Glu Thr Ser Leu Ala Thr Glu Ala Asn Thr Val Leu
7550 7555 7560

15 Ser Lys Val Ser Thr Gly Ala Thr Thr Glu Val Ser Arg Thr Glu
7565 7570 7575

20 Ala Ile Ser Phe Ser Arg Thr Ser Met Ser Gly Pro Glu Gln Ser
7580 7585 7590

25 Thr Met Ser Gln Asp Ile Ser Ile Gly Thr Ile Pro Arg Ile Ser
7595 7600 7605

30 Ala Ser Ser Val Leu Thr Glu Ser Ala Lys Met Thr Ile Thr Thr
7610 7615 7620

35 Gln Thr Gly Pro Ser Glu Ser Thr Leu Glu Ser Thr Leu Asn Leu
7625 7630 7635

40 Asn Thr Ala Thr Thr Pro Ser Trp Val Glu Thr His Ser Ile Val
7640 7645 7650

45 Ile Gln Gly Phe Pro His Pro Glu Met Thr Thr Ser Met Gly Arg
7655 7660 7665

50 Gly Pro Gly Gly Val Ser Trp Pro Ser Pro Pro Phe Val Lys Glu
7670 7675 7680

55 Thr Ser Pro Pro Ser Ser Pro Leu Ser Leu Pro Ala Val Thr Ser
7685 7690 7695

Pro His Pro Val Ser Thr Thr Phe Leu Ala His Ile Pro Pro Ser
7700 7705 7710

Pro Leu Pro Val Thr Ser Leu Leu Thr Ser Gly Pro Ala Thr Thr
7715 7720 7725

Thr Asp Ile Leu Gly Thr Ser Thr Glu Pro Gly Thr Ser Ser Ser
7730 7735 7740

Ser Ser Leu Ser Thr Thr Ser His Glu Arg Leu Thr Thr Tyr Lys

EP 3 222 632 A1

	7745	7750	7755
5	Asp Thr Ala His Thr Glu Ala Val His Pro Ser Thr Asn Thr Gly 7760 7765 7770		
	Gly Thr Asn Val Ala Thr Thr Ser Ser Gly Tyr Lys Ser Gln Ser 7775 7780 7785		
10	Ser Val Leu Ala Asp Ser Ser Pro Met Cys Thr Thr Ser Thr Met 7790 7795 7800		
15	Gly Asp Thr Ser Val Leu Thr Ser Thr Pro Ala Phe Leu Glu Thr 7805 7810 7815		
20	Arg Arg Ile Gln Thr Glu Leu Ala Ser Ser Leu Thr Pro Gly Leu 7820 7825 7830		
	Arg Glu Ser Ser Gly Ser Glu Gly Thr Ser Ser Gly Thr Lys Met 7835 7840 7845		
25	Ser Thr Val Leu Ser Lys Val Pro Thr Gly Ala Thr Thr Glu Ile 7850 7855 7860		
30	Ser Lys Glu Asp Val Thr Ser Ile Pro Gly Pro Ala Gln Ser Thr 7865 7870 7875		
35	Ile Ser Pro Asp Ile Ser Thr Arg Thr Val Ser Trp Phe Ser Thr 7880 7885 7890		
	Ser Pro Val Met Thr Glu Ser Ala Glu Ile Thr Met Asn Thr His 7895 7900 7905		
40	Thr Ser Pro Leu Gly Ala Thr Thr Gln Gly Thr Ser Thr Leu Asp 7910 7915 7920		
45	Thr Ser Ser Thr Thr Ser Leu Thr Met Thr His Ser Thr Ile Ser 7925 7930 7935		
50	Gln Gly Phe Ser His Ser Gln Met Ser Thr Leu Met Arg Arg Gly 7940 7945 7950		
	Pro Glu Asp Val Ser Trp Met Ser Pro Pro Leu Leu Glu Lys Thr 7955 7960 7965		
55	Arg Pro Ser Phe Ser Leu Met Ser Ser Pro Ala Thr Thr Ser Pro 7970 7975 7980		

EP 3 222 632 A1

Ser Pro Val Ser Ser Thr Leu Pro Glu Ser Ile Ser Ser Ser Pro
 7985 7990 7995

5 Leu Pro Val Thr Ser Leu Leu Thr Ser Gly Leu Ala Lys Thr Thr
 8000 8005 8010

10 Asp Met Leu His Lys Ser Ser Glu Pro Val Thr Asn Ser Pro Ala
 8015 8020 8025

Asn Leu Ser Ser Thr Ser Val Glu Ile Leu Ala Thr Ser Glu Val
 8030 8035 8040

15 Thr Thr Asp Thr Glu Lys Thr His Pro Ser Ser Asn Arg Thr Val
 8045 8050 8055

20 Thr Asp Val Gly Thr Ser Ser Ser Gly His Glu Ser Thr Ser Phe
 8060 8065 8070

25 Val Leu Ala Asp Ser Gln Thr Ser Lys Val Thr Ser Pro Met Val
 8075 8080 8085

Ile Thr Ser Thr Met Glu Asp Thr Ser Val Ser Thr Ser Thr Pro
 8090 8095 8100

30 Gly Phe Phe Glu Thr Ser Arg Ile Gln Thr Glu Pro Thr Ser Ser
 8105 8110 8115

35 Leu Thr Leu Gly Leu Arg Lys Thr Ser Ser Ser Glu Gly Thr Ser
 8120 8125 8130

Leu Ala Thr Glu Met Ser Thr Val Leu Ser Gly Val Pro Thr Gly
 8135 8140 8145

40 Ala Thr Ala Glu Val Ser Arg Thr Glu Val Thr Ser Ser Ser Arg
 8150 8155 8160

45 Thr Ser Ile Ser Gly Phe Ala Gln Leu Thr Val Ser Pro Glu Thr
 8165 8170 8175

50 Ser Thr Glu Thr Ile Thr Arg Leu Pro Thr Ser Ser Ile Met Thr
 8180 8185 8190

Glu Ser Ala Glu Met Met Ile Lys Thr Gln Thr Asp Pro Pro Gly
 8195 8200 8205

55 Ser Thr Pro Glu Ser Thr His Thr Val Asp Ile Ser Thr Thr Pro
 8210 8215 8220

EP 3 222 632 A1

Asn	Trp	Val	Glu	Thr	His	Ser	Thr	Val	Thr	Gln	Arg	Phe	Ser	His
8225						8230					8235			
5														
Ser	Glu	Met	Thr	Thr	Leu	Val	Ser	Arg	Ser	Pro	Gly	Asp	Met	Leu
8240						8245					8250			
10														
Trp	Pro	Ser	Gln	Ser	Ser	Val	Glu	Glu	Thr	Ser	Ser	Ala	Ser	Ser
8255						8260					8265			
15														
Leu	Leu	Ser	Leu	Pro	Ala	Thr	Thr	Ser	Pro	Ser	Pro	Val	Ser	Ser
8270						8275					8280			
20														
Thr	Leu	Val	Glu	Asp	Phe	Pro	Ser	Ala	Ser	Leu	Pro	Val	Thr	Ser
8285						8290					8295			
25														
Leu	Leu	Asn	Pro	Gly	Leu	Val	Ile	Thr	Thr	Asp	Arg	Met	Gly	Ile
8300						8305					8310			
30														
Ser	Arg	Glu	Pro	Gly	Thr	Ser	Ser	Thr	Ser	Asn	Leu	Ser	Ser	Thr
8315						8320					8325			
35														
Ser	His	Glu	Arg	Leu	Thr	Thr	Leu	Glu	Asp	Thr	Val	Asp	Thr	Glu
8330						8335					8340			
40														
Asp	Met	Gln	Pro	Ser	Thr	His	Thr	Ala	Val	Thr	Asn	Val	Arg	Thr
8345						8350					8355			
45														
Ser	Ile	Ser	Gly	His	Glu	Ser	Gln	Ser	Ser	Val	Leu	Ser	Asp	Ser
8360						8365					8370			
50														
Glu	Thr	Pro	Lys	Ala	Thr	Ser	Pro	Met	Gly	Thr	Thr	Tyr	Thr	Met
8375						8380					8385			
55														
Gly	Glu	Thr	Ser	Val	Ser	Ile	Ser	Thr	Ser	Asp	Phe	Phe	Glu	Thr
8390						8395					8400			
60														
Ser	Arg	Ile	Gln	Ile	Glu	Pro	Thr	Ser	Ser	Leu	Thr	Ser	Gly	Leu
8405						8410					8415			
65														
Arg	Glu	Thr	Ser	Ser	Ser	Glu	Arg	Ile	Ser	Ser	Ala	Thr	Glu	Gly
8420						8425					8430			
70														
Ser	Thr	Val	Leu	Ser	Glu	Val	Pro	Ser	Gly	Ala	Thr	Thr	Glu	Val
8435						8440					8445			
75														
Ser	Arg	Thr	Glu	Val	Ile	Ser	Ser	Arg	Gly	Thr	Ser	Met	Ser	Gly
8450						8455					8460			

EP 3 222 632 A1

5	Pro	Asp	Gln	Phe	Thr	Ile	Ser	Pro	Asp	Ile	Ser	Thr	Glu	Ala	Ile
	8465							8470					8475		
10	Thr	Arg	Leu	Ser	Thr	Ser	Pro	Ile	Met	Thr	Glu	Ser	Ala	Glu	Ser
	8480							8485				8490			
15	Ala	Ile	Thr	Ile	Glu	Thr	Gly	Ser	Pro	Gly	Ala	Thr	Ser	Glu	Gly
	8495							8500				8505			
20	Thr	Leu	Thr	Leu	Asp	Thr	Ser	Thr	Thr	Thr	Phe	Trp	Ser	Gly	Thr
	8510							8515				8520			
25	His	Ser	Thr	Ala	Ser	Pro	Gly	Phe	Ser	His	Ser	Glu	Met	Thr	Thr
	8525							8530				8535			
30	Leu	Met	Ser	Arg	Thr	Pro	Gly	Asp	Val	Pro	Trp	Pro	Ser	Leu	Pro
	8540							8545				8550			
35	Ser	Val	Glu	Glu	Ala	Ser	Ser	Val	Ser	Ser	Ser	Leu	Ser	Ser	Pro
	8555							8560				8565			
40	Ala	Met	Thr	Ser	Thr	Ser	Phe	Phe	Ser	Thr	Leu	Pro	Glu	Ser	Ile
	8570							8575				8580			
45	Ser	Ser	Ser	Pro	His	Pro	Val	Thr	Ala	Leu	Leu	Thr	Leu	Gly	Pro
	8585							8590				8595			
50	Val	Lys	Thr	Thr	Asp	Met	Leu	Arg	Thr	Ser	Ser	Glu	Pro	Glu	Thr
	8600							8605				8610			
55	Ser	Ser	Pro	Pro	Asn	Leu	Ser	Ser	Thr	Ser	Ala	Glu	Ile	Leu	Ala
	8615							8620				8625			
60	Thr	Ser	Glu	Val	Thr	Lys	Asp	Arg	Glu	Lys	Ile	His	Pro	Ser	Ser
	8630							8635				8640			
65	Asn	Thr	Pro	Val	Val	Asn	Val	Gly	Thr	Val	Ile	Tyr	Lys	His	Leu
	8645							8650				8655			
70	Ser	Pro	Ser	Ser	Val	Leu	Ala	Asp	Leu	Val	Thr	Thr	Lys	Pro	Thr
	8660							8665				8670			
75	Ser	Pro	Met	Ala	Thr	Thr	Ser	Thr	Leu	Gly	Asn	Thr	Ser	Val	Ser
	8675							8680				8685			
80	Thr	Ser	Thr	Pro	Ala	Phe	Pro	Glu	Thr	Met	Met	Thr	Gln	Pro	Thr

EP 3 222 632 A1

8690

8695

8700

5	Ser Ser Leu Thr Ser Gly Leu Arg Glu Ile Ser Thr Ser Gln Glu 8705 8710 8715
10	Thr Ser Ser Ala Thr Glu Arg Ser Ala Ser Leu Ser Gly Met Pro 8720 8725 8730
15	Thr Gly Ala Thr Thr Lys Val Ser Arg Thr Glu Ala Leu Ser Leu 8735 8740 8745
20	Gly Arg Thr Ser Thr Pro Gly Pro Ala Gln Ser Thr Ile Ser Pro 8750 8755 8760
25	Glu Ile Ser Thr Glu Thr Ile Thr Arg Ile Ser Thr Pro Leu Thr 8765 8770 8775
30	Thr Thr Gly Ser Ala Glu Met Thr Ile Thr Pro Lys Thr Gly His 8780 8785 8790
35	Ser Gly Ala Ser Ser Gln Gly Thr Phe Thr Leu Asp Thr Ser Ser 8795 8800 8805
40	Arg Ala Ser Trp Pro Gly Thr His Ser Ala Ala Thr His Arg Ser 8810 8815 8820
45	Pro His Ser Gly Met Thr Thr Pro Met Ser Arg Gly Pro Glu Asp 8825 8830 8835
50	Val Ser Trp Pro Ser Arg Pro Ser Val Glu Lys Thr Ser Pro Pro 8840 8845 8850
55	Ser Ser Leu Val Ser Leu Ser Ala Val Thr Ser Pro Ser Pro Leu 8855 8860 8865
60	Tyr Ser Thr Pro Ser Glu Ser Ser His Ser Ser Pro Leu Arg Val 8870 8875 8880
65	Thr Ser Leu Phe Thr Pro Val Met Met Lys Thr Thr Asp Met Leu 8885 8890 8895
70	Asp Thr Ser Leu Glu Pro Val Thr Thr Ser Pro Pro Ser Met Asn 8900 8905 8910
75	Ile Thr Ser Asp Glu Ser Leu Ala Thr Ser Lys Ala Thr Met Glu 8915 8920 8925

EP 3 222 632 A1

5	Thr Glu Ala Ile Gln Leu Ser Glu Asn Thr Ala Val Thr Gln Met	8930	8935	8940
10	Gly Thr Ile Ser Ala Arg Gln Glu Phe Tyr Ser Ser Tyr Pro Gly	8945	8950	8955
15	Leu Pro Glu Pro Ser Lys Val Thr Ser Pro Val Val Thr Ser Ser	8960	8965	8970
20	Thr Ile Lys Asp Ile Val Ser Thr Thr Ile Pro Ala Ser Ser Glu	8975	8980	8985
25	Ile Thr Arg Ile Glu Met Glu Ser Thr Ser Thr Leu Thr Pro Thr	8990	8995	9000
30	Pro Arg Glu Thr Ser Thr Ser Gln Glu Ile His Ser Ala Thr Lys	9005	9010	9015
35	Pro Ser Thr Val Pro Tyr Lys Ala Leu Thr Ser Ala Thr Ile Glu	9020	9025	9030
40	Asp Ser Met Thr Gln Val Met Ser Ser Ser Arg Gly Pro Ser Pro	9035	9040	9045
45	Asp Gln Ser Thr Met Ser Gln Asp Ile Ser Thr Glu Val Ile Thr	9050	9055	9060
50	Arg Leu Ser Thr Ser Pro Ile Lys Thr Glu Ser Thr Glu Met Thr	9065	9070	9075
55	Ile Thr Thr Gln Thr Gly Ser Pro Gly Ala Thr Ser Arg Gly Thr	9080	9085	9090
60	Leu Thr Leu Asp Thr Ser Thr Thr Phe Met Ser Gly Thr His Ser	9095	9100	9105
65	Thr Ala Ser Gln Gly Phe Ser His Ser Gln Met Thr Ala Leu Met	9110	9115	9120
70	Ser Arg Thr Pro Gly Asp Val Pro Trp Leu Ser His Pro Ser Val	9125	9130	9135
75	Glu Glu Ala Ser Ser Ala Ser Phe Ser Leu Ser Ser Pro Val Met	9140	9145	9150
80	Thr Ser Ser Ser Pro Val Ser Ser Thr Leu Pro Asp Ser Ile His	9155	9160	9165

EP 3 222 632 A1

5	Ser	Ser	Ser	Leu	Pro	Val	Thr	Ser	Leu	Leu	Thr	Ser	Gly	Leu	Val
	9170						9175					9180			
10	Lys	Thr	Thr	Glu	Leu	Leu	Gly	Thr	Ser	Ser	Glu	Pro	Glu	Thr	Ser
	9185						9190					9195			
15	Ser	Pro	Pro	Asn	Leu	Ser	Ser	Thr	Ser	Ala	Glu	Ile	Leu	Ala	Ile
	9200						9205					9210			
20	Thr	Glu	Val	Thr	Thr	Asp	Thr	Glu	Lys	Leu	Glu	Met	Thr	Asn	Val
	9215						9220					9225			
25	Val	Thr	Ser	Gly	Tyr	Thr	His	Glu	Ser	Pro	Ser	Ser	Val	Leu	Ala
	9230						9235					9240			
30	Asp	Ser	Val	Thr	Thr	Lys	Ala	Thr	Ser	Ser	Met	Gly	Ile	Thr	Tyr
	9245						9250					9255			
35	Pro	Thr	Gly	Asp	Thr	Asn	Val	Leu	Thr	Ser	Thr	Pro	Ala	Phe	Ser
	9260						9265					9270			
40	Asp	Thr	Ser	Arg	Ile	Gln	Thr	Lys	Ser	Lys	Leu	Ser	Leu	Thr	Pro
	9275						9280					9285			
45	Gly	Leu	Met	Glu	Thr	Ser	Ile	Ser	Glu	Glu	Thr	Ser	Ser	Ala	Thr
	9290						9295					9300			
50	Glu	Lys	Ser	Thr	Val	Leu	Ser	Ser	Val	Pro	Thr	Gly	Ala	Thr	Thr
	9305						9310					9315			
55	Glu	Val	Ser	Arg	Thr	Glu	Ala	Ile	Ser	Ser	Ser	Arg	Thr	Ser	Ile
	9320						9325					9330			
60	Pro	Gly	Pro	Ala	Gln	Ser	Thr	Met	Ser	Ser	Asp	Thr	Ser	Met	Glu
	9335						9340					9345			
65	Thr	Ile	Thr	Arg	Ile	Ser	Thr	Pro	Leu	Thr	Arg	Lys	Glu	Ser	Thr
	9350						9355					9360			
70	Asp	Met	Ala	Ile	Thr	Pro	Lys	Thr	Gly	Pro	Ser	Gly	Ala	Thr	Ser
	9365						9370					9375			
75	Gln	Gly	Thr	Phe	Thr	Leu	Asp	Ser	Ser	Ser	Thr	Ala	Ser	Trp	Pro
	9380						9385					9390			
80	Gly	Thr	His	Ser	Ala	Thr	Thr	Gln	Arg	Phe	Pro	Gln	Ser	Val	Val
	9395						9400					9405			

EP 3 222 632 A1

5	Thr	Thr	Pro	Met	Ser	Arg	Gly	Pro	Glu	Asp	Val	Ser	Trp	Pro	Ser
	9410						9415						9420		
10	Pro	Leu	Ser	Val	Glu	Lys	Asn	Ser	Pro	Pro	Ser	Ser	Leu	Val	Ser
	9425						9430						9435		
15	Ser	Ser	Ser	Val	Thr	Ser	Pro	Ser	Pro	Leu	Tyr	Ser	Thr	Pro	Ser
	9440						9445						9450		
20	Gly	Ser	Ser	His	Ser	Ser	Pro	Val	Pro	Val	Thr	Ser	Leu	Phe	Thr
	9455						9460						9465		
25	Ser	Ile	Met	Met	Lys	Ala	Thr	Asp	Met	Leu	Asp	Ala	Ser	Leu	Glu
	9470						9475						9480		
30	Pro	Glu	Thr	Thr	Ser	Ala	Pro	Asn	Met	Asn	Ile	Thr	Ser	Asp	Glu
	9485						9490						9495		
35	Ser	Leu	Ala	Ala	Ser	Lys	Ala	Thr	Thr	Glu	Thr	Glu	Ala	Ile	His
	9500						9505						9510		
40	Val	Phe	Glu	Asn	Thr	Ala	Ala	Ser	His	Val	Glu	Thr	Thr	Ser	Ala
	9515						9520						9525		
45	Thr	Glu	Glu	Leu	Tyr	Ser	Ser	Ser	Pro	Gly	Phe	Ser	Glu	Pro	Thr
	9530						9535						9540		
50	Lys	Val	Ile	Ser	Pro	Val	Val	Thr	Ser	Ser	Ser	Ile	Arg	Asp	Asn
	9545						9550						9555		
55	Met	Val	Ser	Thr	Thr	Met	Pro	Gly	Ser	Ser	Gly	Ile	Thr	Arg	Ile
	9560						9565						9570		
60	Glu	Ile	Glu	Ser	Met	Ser	Ser	Leu	Thr	Pro	Gly	Leu	Arg	Glu	Thr
	9575						9580						9585		
65	Arg	Thr	Ser	Gln	Asp	Ile	Thr	Ser	Ser	Thr	Glu	Thr	Ser	Thr	Val
	9590						9595						9600		
70	Leu	Tyr	Lys	Met	Pro	Ser	Gly	Ala	Thr	Pro	Glu	Val	Ser	Arg	Thr
	9605						9610						9615		
75	Glu	Val	Met	Pro	Ser	Ser	Arg	Thr	Ser	Ile	Pro	Gly	Pro	Ala	Gln
	9620						9625						9630		
80	Ser	Thr	Met	Ser	Leu	Asp	Ile	Ser	Asp	Glu	Val	Val	Thr	Arg	Leu

EP 3 222 632 A1

9635	9640	9645
5		
Ser Thr Ser Pro Ile Met Thr Glu Ser Ala Glu Ile Thr Ile Thr 9650 9655 9660		
10		
Thr Gln Thr Gly Tyr Ser Leu Ala Thr Ser Gln Val Thr Leu Pro 9665 9670 9675		
15		
Leu Gly Thr Ser Met Thr Phe Leu Ser Gly Thr His Ser Thr Met 9680 9685 9690		
20		
Ser Gln Gly Leu Ser His Ser Glu Met Thr Asn Leu Met Ser Arg 9695 9700 9705		
Gly Pro Glu Ser Leu Ser Trp Thr Ser Pro Arg Phe Val Glu Thr 9710 9715 9720		
25		
Thr Arg Ser Ser Ser Ser Leu Thr Ser Leu Pro Leu Thr Thr Ser 9725 9730 9735		
30		
Leu Ser Pro Val Ser Ser Thr Leu Leu Asp Ser Ser Pro Ser Ser 9740 9745 9750		
35		
Pro Leu Pro Val Thr Ser Leu Ile Leu Pro Gly Leu Val Lys Thr 9755 9760 9765		
40		
Thr Glu Val Leu Asp Thr Ser Ser Glu Pro Lys Thr Ser Ser Ser 9770 9775 9780		
45		
Pro Asn Leu Ser Ser Thr Ser Val Glu Ile Pro Ala Thr Ser Glu 9785 9790 9795		
50		
Ile Met Thr Asp Thr Glu Lys Ile His Pro Ser Ser Asn Thr Ala 9800 9805 9810		
55		
Val Ala Lys Val Arg Thr Ser Ser Ser Val His Glu Ser His Ser 9815 9820 9825		
Ser Val Leu Ala Asp Ser Glu Thr Thr Ile Thr Ile Pro Ser Met 9830 9835 9840		
60		
Gly Ile Thr Ser Ala Val Asp Asp Thr Thr Val Phe Thr Ser Asn 9845 9850 9855		
65		
Pro Ala Phe Ser Glu Thr Arg Arg Ile Pro Thr Glu Pro Thr Phe 9860 9865 9870		

EP 3 222 632 A1

Ser	Leu	Thr	Pro	Gly	Phe	Arg	Glu	Thr	Ser	Thr	Ser	Glu	Glu	Thr
9875							9880					9885		
5														
Thr	Ser	Ile	Thr	Glu	Thr	Ser	Ala	Val	Leu	Tyr	Gly	Val	Pro	Thr
9890							9895					9900		
10														
Ser	Ala	Thr	Thr	Glu	Val	Ser	Met	Thr	Glu	Ile	Met	Ser	Ser	Asn
9905						9910						9915		
15														
Arg	Ile	His	Ile	Pro	Asp	Ser	Asp	Gln	Ser	Thr	Met	Ser	Pro	Asp
9920						9925						9930		
20														
Ile	Ile	Thr	Glu	Val	Ile	Thr	Arg	Leu	Ser	Ser	Ser	Ser	Met	Met
9935						9940						9945		
25														
Ser	Glu	Ser	Thr	Gln	Met	Thr	Ile	Thr	Thr	Gln	Lys	Ser	Ser	Pro
9950						9955						9960		
30														
Gly	Ala	Thr	Ala	Gln	Ser	Thr	Leu	Thr	Leu	Ala	Thr	Thr	Thr	Ala
9965						9970						9975		
35														
Pro	Leu	Ala	Arg	Thr	His	Ser	Thr	Val	Pro	Pro	Arg	Phe	Leu	His
9980						9985						9990		
40														
Ser	Glu	Met	Thr	Thr	Leu	Met	Ser	Arg	Ser	Pro	Glu	Asn	Pro	Ser
9995						10000						10005		
45														
Trp	Lys	Ser	Ser	Leu	Phe	Val	Glu	Lys	Thr	Ser	Ser	Ser	Ser	Ser
10010						10015						10020		
50														
Leu	Leu	Ser	Leu	Pro	Val	Thr	Thr	Ser	Pro	Ser	Val	Ser	Ser	Thr
10025						10030						10035		
55														
Leu	Pro	Gln	Ser	Ile	Pro	Ser	Ser	Ser	Phe	Ser	Val	Thr	Ser	Leu
10040						10045						10050		
60														
Leu	Thr	Pro	Gly	Met	Val	Lys	Thr	Thr	Asp	Thr	Ser	Thr	Glu	Pro
10055						10060						10065		
65														
Gly	Thr	Ser	Leu	Ser	Pro	Asn	Leu	Ser	Gly	Thr	Ser	Val	Glu	Ile
10070						10075						10080		
70														
Leu	Ala	Ala	Ser	Glu	Val	Thr	Thr	Asp	Thr	Glu	Lys	Ile	His	Pro
10085						10090						10095		
75														
Ser	Ser	Ser	Met	Ala	Val	Thr	Asn	Val	Gly	Thr	Thr	Ser	Ser	Gly
10100						10105						10110		

EP 3 222 632 A1

His Glu Leu Tyr Ser Ser Val Ser Ile His Ser Glu Pro Ser Lys
 10115 10120 10125

5 Ala Thr Tyr Pro Val Gly Thr Pro Ser Ser Met Ala Glu Thr Ser
 10130 10135 10140

10 Ile Ser Thr Ser Met Pro Ala Asn Phe Glu Thr Thr Gly Phe Glu
 10145 10150 10155

Ala Glu Pro Phe Ser His Leu Thr Ser Gly Phe Arg Lys Thr Asn
 10160 10165 10170

15 Met Ser Leu Asp Thr Ser Ser Val Thr Pro Thr Asn Thr Pro Ser
 10175 10180 10185

20 Ser Pro Gly Ser Thr His Leu Leu Gln Ser Ser Lys Thr Asp Phe
 10190 10195 10200

25 Thr Ser Ser Ala Lys Thr Ser Ser Pro Asp Trp Pro Pro Ala Ser
 10205 10210 10215

Gln Tyr Thr Glu Ile Pro Val Asp Ile Ile Thr Pro Phe Asn Ala
 10220 10225 10230

30 Ser Pro Ser Ile Thr Glu Ser Thr Gly Ile Thr Ser Phe Pro Glu
 10235 10240 10245

35 Ser Arg Phe Thr Met Ser Val Thr Glu Ser Thr His His Leu Ser
 10250 10255 10260

40 Thr Asp Leu Leu Pro Ser Ala Glu Thr Ile Ser Thr Gly Thr Val
 10265 10270 10275

Met Pro Ser Leu Ser Glu Ala Met Thr Ser Phe Ala Thr Thr Gly
 10280 10285 10290

45 Val Pro Arg Ala Ile Ser Gly Ser Gly Ser Pro Phe Ser Arg Thr
 10295 10300 10305

50 Glu Ser Gly Pro Gly Asp Ala Thr Leu Ser Thr Ile Ala Glu Ser
 10310 10315 10320

Leu Pro Ser Ser Thr Pro Val Pro Phe Ser Ser Ser Thr Phe Thr
 10325 10330 10335

55 Thr Thr Asp Ser Ser Thr Ile Pro Ala Leu His Glu Ile Thr Ser
 10340 10345 10350

EP 3 222 632 A1

Ser Ser Ala Thr Pro Tyr Arg Val Asp Thr Ser Leu Gly Thr Glu
 10355 10360 10365

5 Ser Ser Thr Thr Glu Gly Arg Leu Val Met Val Ser Thr Leu Asp
 10370 10375 10380

10 Thr Ser Ser Gln Pro Gly Arg Thr Ser Ser Ser Pro Ile Leu Asp
 10385 10390 10395

15 Thr Arg Met Thr Glu Ser Val Glu Leu Gly Thr Val Thr Ser Ala
 10400 10405 10410

20 Tyr Gln Val Pro Ser Leu Ser Thr Arg Leu Thr Arg Thr Asp Gly
 10415 10420 10425

25 Ile Met Glu His Ile Thr Lys Ile Pro Asn Glu Ala Ala His Arg
 10430 10435 10440

30 Gly Thr Ile Arg Pro Val Lys Gly Pro Gln Thr Ser Thr Ser Pro
 10445 10450 10455

35 Ala Ser Pro Lys Gly Leu His Thr Gly Gly Thr Lys Arg Met Glu
 10460 10465 10470

40 Thr Thr Thr Thr Ala Leu Lys Thr Thr Thr Thr Ala Leu Lys Thr
 10475 10480 10485

45 Thr Ser Arg Ala Thr Leu Thr Thr Ser Val Tyr Thr Pro Thr Leu
 10490 10495 10500

50 Gly Thr Leu Thr Pro Leu Asn Ala Ser Met Gln Met Ala Ser Thr
 10505 10510 10515

55 Ile Pro Thr Glu Met Met Ile Thr Thr Pro Tyr Val Phe Pro Asp
 10520 10525 10530

Val Pro Glu Thr Thr Ser Ser Leu Ala Thr Ser Leu Gly Ala Glu
 10535 10540 10545

50 Thr Ser Thr Ala Leu Pro Arg Thr Thr Pro Ser Val Phe Asn Arg
 10550 10555 10560

55 Glu Ser Glu Thr Thr Ala Ser Leu Val Ser Arg Ser Gly Ala Glu
 10565 10570 10575

Arg Ser Pro Val Ile Gln Thr Leu Asp Val Ser Ser Ser Glu Pro

EP 3 222 632 A1

10580	10585	10590	
Asp Thr Thr Ala Ser Trp Val Ile His Pro Ala Glu Thr Ile Pro			
5	10595	10600	10605
Thr Val Ser Lys Thr Thr Pro Asn Phe Phe His Ser Glu Leu Asp			
10	10610	10615	10620
Thr Val Ser Ser Thr Ala Thr Ser His Gly Ala Asp Val Ser Ser			
15	10625	10630	10635
Ala Ile Pro Thr Asn Ile Ser Pro Ser Glu Leu Asp Ala Leu Thr			
20	10640	10645	10650
Pro Leu Val Thr Ile Ser Gly Thr Asp Thr Ser Thr Phe Pro			
25	10655	10660	10665
Thr Leu Thr Lys Ser Pro His Glu Thr Glu Thr Arg Thr Thr Trp			
30	10670	10675	10680
Leu Thr His Pro Ala Glu Thr Ser Ser Thr Ile Pro Arg Thr Ile			
35	10685	10690	10695
Pro Asn Phe Ser His His Glu Ser Asp Ala Thr Pro Ser Ile Ala			
40	10700	10705	10710
Thr Ser Pro Gly Ala Glu Thr Ser Ser Ala Ile Pro Ile Met Thr			
45	10715	10720	10725
Val Ser Pro Gly Ala Glu Asp Leu Val Thr Ser Gln Val Thr Ser			
50	10730	10735	10740
Ser Gly Thr Asp Arg Asn Met Thr Ile Pro Thr Leu Thr Leu Ser			
55	10745	10750	10755
Pro Gly Glu Pro Lys Thr Ile Ala Ser Leu Val Thr His Pro Glu			
60	10760	10765	10770
Ala Gln Thr Ser Ser Ala Ile Pro Thr Ser Thr Ile Ser Pro Ala			
65	10775	10780	10785
Val Ser Arg Leu Val Thr Ser Met Val Thr Ser Leu Ala Ala Lys			
70	10790	10795	10800
Thr Ser Thr Thr Asn Arg Ala Leu Thr Asn Ser Pro Gly Glu Pro			
75	10805	10810	10815

EP 3 222 632 A1

Ala Thr Thr Val Ser Leu Val Thr His Pro Ala Gln Thr Ser Pro
10820 10825 10830

5 Thr Val Pro Trp Thr Thr Ser Ile Phe Phe His Ser Lys Ser Asp
10835 10840 10845

10 Thr Thr Pro Ser Met Thr Thr Ser His Gly Ala Glu Ser Ser Ser
10850 10855 10860

Ala Val Pro Thr Pro Thr Val Ser Thr Glu Val Pro Gly Val Val
10865 10870 10875

15 Thr Pro Leu Val Thr Ser Ser Arg Ala Val Ile Ser Thr Thr Ile
10880 10885 10890

20 Pro Ile Leu Thr Leu Ser Pro Gly Glu Pro Glu Thr Thr Pro Ser
10895 10900 10905

25 Met Ala Thr Ser His Gly Glu Glu Ala Ser Ser Ala Ile Pro Thr
10910 10915 10920

Pro Thr Val Ser Pro Gly Val Pro Gly Val Val Thr Ser Leu Val
10925 10930 10935

30 Thr Ser Ser Arg Ala Val Thr Ser Thr Thr Ile Pro Ile Leu Thr
10940 10945 10950

35 Phe Ser Leu Gly Glu Pro Glu Thr Thr Pro Ser Met Ala Thr Ser
10955 10960 10965

40 His Gly Thr Glu Ala Gly Ser Ala Val Pro Thr Val Leu Pro Glu
10970 10975 10980

45 Val Pro Gly Met Val Thr Ser Leu Val Ala Ser Ser Arg Ala Val
10985 10990 10995

50 Thr Ser Thr Thr Leu Pro Thr Leu Thr Leu Ser Pro Gly Glu Pro
11000 11005 11010

Glu Thr Thr Pro Ser Met Ala Thr Ser His Gly Ala Glu Ala Ser
11015 11020 11025

55 Ser Thr Val Pro Thr Val Ser Pro Glu Val Pro Gly Val Val Thr
11030 11035 11040

Ser Leu Val Thr Ser Ser Ser Gly Val Asn Ser Thr Ser Ile Pro
11045 11050 11055

EP 3 222 632 A1

Thr Leu Ile Leu Ser Pro Gly Glu Leu Glu Thr Thr Pro Ser Met
 11060 11065 11070

5 Ala Thr Ser His Gly Ala Glu Ala Ser Ser Ala Val Pro Thr Pro
 11075 11080 11085

10 Thr Val Ser Pro Gly Val Ser Gly Val Val Thr Pro Leu Val Thr
 11090 11095 11100

15 Ser Ser Arg Ala Val Thr Ser Thr Thr Ile Pro Ile Leu Thr Leu
 11105 11110 11115

20 Ser Ser Ser Glu Pro Glu Thr Thr Pro Ser Met Ala Thr Ser His
 11120 11125 11130

25 Gly Val Glu Ala Ser Ser Ala Val Leu Thr Val Ser Pro Glu Val
 11135 11140 11145

30 Pro Gly Met Val Thr Ser Leu Val Thr Ser Ser Arg Ala Val Thr
 11150 11155 11160

35 Ser Thr Thr Ile Pro Thr Leu Thr Ile Ser Ser Asp Glu Pro Glu
 11165 11170 11175

40 Thr Thr Thr Ser Leu Val Thr His Ser Glu Ala Lys Met Ile Ser
 11180 11185 11190

45 Ala Ile Pro Thr Leu Ala Val Ser Pro Thr Val Gln Gly Leu Val
 11195 11200 11205

50 Thr Ser Leu Val Thr Ser Ser Gly Ser Glu Thr Ser Ala Phe Ser
 11210 11215 11220

55 Asn Leu Thr Val Ala Ser Ser Gln Pro Glu Thr Ile Asp Ser Trp
 11225 11230 11235

Val Ala His Pro Gly Thr Glu Ala Ser Ser Val Val Pro Thr Leu
 11240 11245 11250

55 Thr Val Ser Thr Gly Glu Pro Phe Thr Asn Ile Ser Leu Val Thr
 11255 11260 11265

His Pro Ala Glu Ser Ser Ser Thr Leu Pro Arg Thr Thr Ser Arg
 11270 11275 11280

55 Phe Ser His Ser Glu Leu Asp Thr Met Pro Ser Thr Val Thr Ser
 11285 11290 11295

EP 3 222 632 A1

Pro	Glu	Ala	Glu	Ser	Ser	Ser	Ala	Ile	Ser	Thr	Thr	Ile	Ser	Pro	
11300							11305					11310			
5	Gly	Ile	Pro	Gly	Val	Leu	Thr	Ser	Leu	Val	Thr	Ser	Ser	Gly	Arg
	11315						11320					11325			
10	Asp	Ile	Ser	Ala	Thr	Phe	Pro	Thr	Val	Pro	Glu	Ser	Pro	His	Glu
	11330						11335					11340			
15	Ser	Glu	Ala	Thr	Ala	Ser	Trp	Val	Thr	His	Pro	Ala	Val	Thr	Ser
	11345						11350					11355			
20	Thr	Thr	Val	Pro	Arg	Thr	Thr	Pro	Asn	Tyr	Ser	His	Ser	Glu	Pro
	11360						11365					11370			
25	Asp	Thr	Thr	Pro	Ser	Ile	Ala	Thr	Ser	Pro	Gly	Ala	Glu	Ala	Thr
	11375						11380					11385			
30	Ser	Asp	Phe	Pro	Thr	Ile	Thr	Val	Ser	Pro	Asp	Val	Pro	Asp	Met
	11390						11395					11400			
35	Val	Thr	Ser	Gln	Val	Thr	Ser	Ser	Gly	Thr	Asp	Thr	Ser	Ile	Thr
	11405						11410					11415			
40	Ile	Pro	Thr	Leu	Thr	Leu	Ser	Ser	Gly	Glu	Pro	Glu	Thr	Thr	Thr
	11420						11425					11430			
45	Ser	Phe	Ile	Thr	Tyr	Ser	Glu	Thr	His	Thr	Ser	Ser	Ala	Ile	Pro
	11435						11440					11445			
50	Thr	Leu	Pro	Val	Ser	Pro	Gly	Ala	Ser	Lys	Met	Leu	Thr	Ser	Leu
	11450						11455					11460			
55	Val	Ile	Ser	Ser	Gly	Thr	Asp	Ser	Thr	Thr	Thr	Phe	Pro	Thr	Leu
	11465						11470					11475			
60	Thr	Glu	Thr	Pro	Tyr	Glu	Pro	Glu	Thr	Thr	Ala	Ile	Gln	Leu	Ile
	11480						11485					11490			
65	His	Pro	Ala	Glu	Thr	Asn	Thr	Met	Val	Pro	Arg	Thr	Thr	Pro	Lys
	11495						11500					11505			
70	Phe	Ser	His	Ser	Lys	Ser	Asp	Thr	Thr	Leu	Pro	Val	Ala	Ile	Thr
	11510						11515					11520			
75	Ser	Pro	Gly	Pro	Glu	Ala	Ser	Ser	Ala	Val	Ser	Thr	Thr	Thr	Ile

EP 3 222 632 A1

11525	11530	11535
Ser Pro Asp Met Ser Asp Leu Val Thr Ser Leu Val Pro Ser Ser		
5	11540	11545 11550
Gly Thr Asp Thr Ser Thr Thr Phe Pro Thr Leu Ser Glu Thr Pro		
10	11555	11560 11565
Tyr Glu Pro Glu Thr Thr Ala Thr Trp Leu Thr His Pro Ala Glu		
15	11570	11575 11580
Thr Ser Thr Thr Val Ser Gly Thr Ile Pro Asn Phe Ser His Arg		
20	11585	11590 11595
Gly Ser Asp Thr Ala Pro Ser Met Val Thr Ser Pro Gly Val Asp		
25	11600	11605 11610
Thr Arg Ser Gly Val Pro Thr Thr Thr Ile Pro Pro Ser Ile Pro		
30	11615	11620 11625
Gly Val Val Thr Ser Gln Val Thr Ser Ser Ala Thr Asp Thr Ser		
35	11630	11635 11640
Thr Ala Ile Pro Thr Leu Thr Pro Ser Pro Gly Glu Pro Glu Thr		
40	11645	11650 11655
Thr Ala Ser Ser Ala Thr His Pro Gly Thr Gln Thr Gly Phe Thr		
45	11660	11665 11670
Val Pro Ile Arg Thr Val Pro Ser Ser Glu Pro Asp Thr Met Ala		
50	11675	11680 11685
Ser Trp Val Thr His Pro Pro Gln Thr Ser Thr Pro Val Ser Arg		
55	11690	11695 11700
Thr Thr Ser Ser Phe Ser His Ser Ser Pro Asp Ala Thr Pro Val		
60	11705	11710 11715
Met Ala Thr Ser Pro Arg Thr Glu Ala Ser Ser Ala Val Leu Thr		
65	11720	11725 11730
Thr Ile Ser Pro Gly Ala Pro Glu Met Val Thr Ser Gln Ile Thr		
70	11735	11740 11745
Ser Ser Gly Ala Ala Thr Ser Thr Thr Val Pro Thr Leu Thr His		
75	11750	11755 11760

EP 3 222 632 A1

Ser Pro Gly Met Pro Glu Thr Thr Ala Leu Leu Ser Thr His Pro
 11765 11770 11775

5 Arg Thr Glu Thr Ser Lys Thr Phe Pro Ala Ser Thr Val Phe Pro
 11780 11785 11790

10 Gln Val Ser Glu Thr Thr Ala Ser Leu Thr Ile Arg Pro Gly Ala
 11795 11800 11805

15 Glu Thr Ser Thr Ala Leu Pro Thr Gln Thr Thr Ser Ser Leu Phe
 11810 11815 11820

20 Thr Leu Leu Val Thr Gly Thr Ser Arg Val Asp Leu Ser Pro Thr
 11825 11830 11835

25 Ala Ser Pro Gly Val Ser Ala Lys Thr Ala Pro Leu Ser Thr His
 11840 11845 11850

30 Pro Gly Thr Glu Thr Ser Thr Met Ile Pro Thr Ser Thr Leu Ser
 11855 11860 11865

35 Leu Gly Leu Leu Glu Thr Thr Gly Leu Leu Ala Thr Ser Ser Ser
 11870 11875 11880

40 Ala Glu Thr Ser Thr Ser Thr Leu Thr Leu Thr Val Ser Pro Ala
 11885 11890 11895

45 Val Ser Gly Leu Ser Ser Ala Ser Ile Thr Thr Asp Lys Pro Gln
 11900 11905 11910

50 Thr Val Thr Ser Trp Asn Thr Glu Thr Ser Pro Ser Val Thr Ser
 11915 11920 11925

55 Val Gly Pro Pro Glu Phe Ser Arg Thr Val Thr Gly Thr Thr Met
 11930 11935 11940

Thr Leu Ile Pro Ser Glu Met Pro Thr Pro Pro Lys Thr Ser His
 11945 11950 11955

Gly Glu Gly Val Ser Pro Thr Thr Ile Leu Arg Thr Thr Met Val
 11960 11965 11970

Glu Ala Thr Asn Leu Ala Thr Thr Gly Ser Ser Pro Thr Val Ala
 11975 11980 11985

Lys Thr Thr Thr Phe Asn Thr Leu Ala Gly Ser Leu Phe Thr
 11990 11995 12000

EP 3 222 632 A1

Pro Leu Thr Thr Pro Gly Met Ser Thr Leu Ala Ser Glu Ser Val
 12005 12010 12015

5 Thr Ser Arg Thr Ser Tyr Asn His Arg Ser Trp Ile Ser Thr Thr
 12020 12025 12030

10 Ser Ser Tyr Asn Arg Arg Tyr Trp Thr Pro Ala Thr Ser Thr Pro
 12035 12040 12045

Val Thr Ser Thr Phe Ser Pro Gly Ile Ser Thr Ser Ser Ile Pro
 12050 12055 12060

15 Ser Ser Thr Ala Ala Thr Val Pro Phe Met Val Pro Phe Thr Leu
 12065 12070 12075

20 Asn Phe Thr Ile Thr Asn Leu Gln Tyr Glu Glu Asp Met Arg His
 12080 12085 12090

25 Pro Gly Ser Arg Lys Phe Asn Ala Thr Glu Arg Glu Leu Gln Gly
 12095 12100 12105

Leu Leu Lys Pro Leu Phe Arg Asn Ser Ser Leu Glu Tyr Leu Tyr
 12110 12115 12120

30 Ser Gly Cys Arg Leu Ala Ser Leu Arg Pro Glu Lys Asp Ser Ser
 12125 12130 12135

35 Ala Thr Ala Val Asp Ala Ile Cys Thr His Arg Pro Asp Pro Glu
 12140 12145 12150

40 Asp Leu Gly Leu Asp Arg Glu Arg Leu Tyr Trp Glu Leu Ser Asn
 12155 12160 12165

45 Leu Thr Asn Gly Ile Gln Glu Leu Gly Pro Tyr Thr Leu Asp Arg
 12170 12175 12180

Asn Ser Leu Tyr Val Asn Gly Phe Thr His Arg Ser Ser Met Pro
 12185 12190 12195

50 Thr Thr Ser Thr Pro Gly Thr Ser Thr Val Asp Val Gly Thr Ser
 12200 12205 12210

Gly Thr Pro Ser Ser Ser Pro Ser Pro Thr Thr Ala Gly Pro Leu
 12215 12220 12225

55 Leu Met Pro Phe Thr Leu Asn Phe Thr Ile Thr Asn Leu Gln Tyr
 12230 12235 12240

EP 3 222 632 A1

12245	Glu Glu Asp Met Arg Arg Thr Gly Ser Arg Lys Phe Asn Thr Met	12250	12255	
5	Glu Ser Val Leu Gln Gly Leu Leu Lys Pro Leu Phe Lys Asn Thr	12260	12265	12270
10	Ser Val Gly Pro Leu Tyr Ser Gly Cys Arg Leu Thr Leu Leu Arg	12275	12280	12285
15	Pro Glu Lys Asp Gly Ala Ala Thr Gly Val Asp Ala Ile Cys Thr	12290	12295	12300
20	His Arg Leu Asp Pro Lys Ser Pro Gly Leu Asn Arg Glu Gln Leu	12305	12310	12315
25	Tyr Trp Glu Leu Ser Lys Leu Thr Asn Asp Ile Glu Glu Leu Gly	12320	12325	12330
30	Pro Tyr Thr Leu Asp Arg Asn Ser Leu Tyr Val Asn Gly Phe Thr	12335	12340	12345
35	His Gln Ser Ser Val Ser Thr Thr Ser Thr Pro Gly Thr Ser Thr	12350	12355	12360
40	Val Asp Leu Arg Thr Ser Gly Thr Pro Ser Ser Leu Ser Ser Pro	12365	12370	12375
45	Thr Ile Met Ala Ala Gly Pro Leu Leu Val Pro Phe Thr Leu Asn	12380	12385	12390
50	Phe Thr Ile Thr Asn Leu Gln Tyr Gly Glu Asp Met Gly His Pro	12395	12400	12405
55	Gly Ser Arg Lys Phe Asn Thr Thr Glu Arg Val Leu Gln Gly Leu	12410	12415	12420
60	Leu Gly Pro Ile Phe Lys Asn Thr Ser Val Gly Pro Leu Tyr Ser	12425	12430	12435
65	Gly Cys Arg Leu Thr Ser Leu Arg Ser Glu Lys Asp Gly Ala Ala	12440	12445	12450
70	Thr Gly Val Asp Ala Ile Cys Ile His His Leu Asp Pro Lys Ser	12455	12460	12465
75	Pro Gly Leu Asn Arg Glu Arg Leu Tyr Trp Glu Leu Ser Gln Leu			

EP 3 222 632 A1

12470	12475	12480
5		
Thr Asn Gly Ile Lys Glu Leu	Gly Pro Tyr Thr Leu	Asp Arg Asn
12485	12490	12495
10		
Ser Leu Tyr Val Asn Gly Phe	Thr His Arg Thr Ser	Val Pro Thr
12500	12505	12510
15		
Ser Ser Thr Pro Gly Thr Ser	Thr Val Asp Leu Gly	Thr Ser Gly
12515	12520	12525
20		
Thr Pro Phe Ser Leu Pro Ser	Pro Ala Thr Ala Gly	Pro Leu Leu
12530	12535	12540
Val Leu Phe Thr Leu Asn Phe	Thr Ile Thr Asn Leu	Lys Tyr Glu
12545	12550	12555
25		
Glu Asp Met His Arg Pro Gly	Ser Arg Lys Phe Asn	Thr Thr Glu
12560	12565	12570
30		
Arg Val Leu Gln Thr Leu Leu	Gly Pro Met Phe Lys	Asn Thr Ser
12575	12580	12585
Val Gly Leu Leu Tyr Ser Gly	Cys Arg Leu Thr Leu	Leu Arg Ser
12590	12595	12600
35		
Glu Lys Asp Gly Ala Ala Thr	Gly Val Asp Ala Ile	Cys Thr His
12605	12610	12615
Arg Leu Asp Pro Lys Ser Pro	Gly Val Asp Arg Glu	Gln Leu Tyr
12620	12625	12630
40		
Trp Glu Leu Ser Gln Leu Thr	Asn Gly Ile Lys Glu	Leu Gly Pro
12635	12640	12645
Tyr Thr Leu Asp Arg Asn Ser	Leu Tyr Val Asn Gly	Phe Thr His
12650	12655	12660
45		
Trp Ile Pro Val Pro Thr Ser	Ser Thr Pro Gly Thr	Ser Thr Val
12665	12670	12675
50		
Asp Leu Gly Ser Gly Thr Pro	Ser Ser Leu Pro Ser	Pro Thr Thr
12680	12685	12690
55		
Ala Gly Pro Leu Leu Val Pro	Phe Thr Leu Asn Phe	Thr Ile Thr
12695	12700	12705

EP 3 222 632 A1

Asn	Leu	Lys	Tyr	Glu	Glu	Asp	Met	His	Cys	Pro	Gly	Ser	Arg	Lys	
12710						12715					12720				
5	Phe	Asn	Thr	Thr	Glu	Arg	Val	Leu	Gln	Ser	Leu	Leu	Gly	Pro	Met
	12725						12730					12735			
10	Phe	Lys	Asn	Thr	Ser	Val	Gly	Pro	Leu	Tyr	Ser	Gly	Cys	Arg	Leu
	12740						12745					12750			
15	Thr	Leu	Leu	Arg	Ser	Glu	Lys	Asp	Gly	Ala	Ala	Thr	Gly	Val	Asp
	12755						12760					12765			
20	Ala	Ile	Cys	Thr	His	Arg	Leu	Asp	Pro	Lys	Ser	Pro	Gly	Val	Asp
	12770						12775					12780			
25	Arg	Glu	Gln	Leu	Tyr	Trp	Glu	Leu	Ser	Gln	Leu	Thr	Asn	Gly	Ile
	12785						12790					12795			
30	Lys	Glu	Leu	Gly	Pro	Tyr	Thr	Leu	Asp	Arg	Asn	Ser	Leu	Tyr	Val
	12800						12805					12810			
35	Asn	Gly	Phe	Thr	His	Gln	Thr	Ser	Ala	Pro	Asn	Thr	Ser	Thr	Pro
	12815						12820					12825			
40	Gly	Thr	Ser	Thr	Val	Asp	Leu	Gly	Thr	Ser	Gly	Thr	Pro	Ser	Ser
	12830						12835					12840			
45	Leu	Pro	Ser	Pro	Thr	Ser	Ala	Gly	Pro	Leu	Leu	Val	Pro	Phe	Thr
	12845						12850					12855			
50	Leu	Asn	Phe	Thr	Ile	Thr	Asn	Leu	Gln	Tyr	Glu	Glu	Asp	Met	His
	12860						12865					12870			
55	His	Pro	Gly	Ser	Arg	Lys	Phe	Asn	Thr	Thr	Glu	Arg	Val	Leu	Gln
	12875						12880					12885			
60	Gly	Leu	Leu	Gly	Pro	Met	Phe	Lys	Asn	Thr	Ser	Val	Gly	Leu	Leu
	12890						12895					12900			
65	Tyr	Ser	Gly	Cys	Arg	Leu	Thr	Leu	Leu	Arg	Pro	Glu	Lys	Asn	Gly
	12905						12910					12915			
70	Ala	Ala	Thr	Gly	Met	Asp	Ala	Ile	Cys	Ser	His	Arg	Leu	Asp	Pro
	12920						12925					12930			
75	Lys	Ser	Pro	Gly	Leu	Asn	Arg	Glu	Gln	Leu	Tyr	Trp	Glu	Leu	Ser
	12935						12940					12945			

EP 3 222 632 A1

Gln	Leu	Thr	His	Gly	Ile	Lys	Glu	Leu	Gly	Pro	Tyr	Thr	Leu	Asp	
12950						12955						12960			
5	Arg	Asn	Ser	Leu	Tyr	Val	Asn	Gly	Phe	Thr	His	Arg	Ser	Ser	Val
	12965						12970					12975			
10	Ala	Pro	Thr	Ser	Thr	Pro	Gly	Thr	Ser	Thr	Val	Asp	Leu	Gly	Thr
	12980						12985					12990			
15	Ser	Gly	Thr	Pro	Ser	Ser	Leu	Pro	Ser	Pro	Thr	Thr	Ala	Val	Pro
	12995						13000					13005			
20	Leu	Leu	Val	Pro	Phe	Thr	Leu	Asn	Phe	Thr	Ile	Thr	Asn	Leu	Gln
	13010						13015					13020			
25	Tyr	Gly	Glu	Asp	Met	Arg	His	Pro	Gly	Ser	Arg	Lys	Phe	Asn	Thr
	13025						13030					13035			
30	Thr	Glu	Arg	Val	Leu	Gln	Gly	Leu	Leu	Gly	Pro	Leu	Phe	Lys	Asn
	13040						13045					13050			
35	Ser	Ser	Val	Gly	Pro	Leu	Tyr	Ser	Gly	Cys	Arg	Leu	Ile	Ser	Leu
	13055						13060					13065			
40	Arg	Ser	Glu	Lys	Asp	Gly	Ala	Ala	Thr	Gly	Val	Asp	Ala	Ile	Cys
	13070						13075					13080			
45	Thr	His	His	Leu	Asn	Pro	Gln	Ser	Pro	Gly	Leu	Asp	Arg	Glu	Gln
	13085						13090					13095			
50	Leu	Tyr	Trp	Gln	Leu	Ser	Gln	Met	Thr	Asn	Gly	Ile	Lys	Glu	Leu
	13100						13105					13110			
55	Gly	Pro	Tyr	Thr	Leu	Asp	Arg	Asn	Ser	Leu	Tyr	Val	Asn	Gly	Phe
	13115						13120					13125			
60	Thr	His	Arg	Ser	Ser	Gly	Leu	Thr	Thr	Ser	Thr	Pro	Trp	Thr	Ser
	13130						13135					13140			
65	Thr	Val	Asp	Leu	Gly	Thr	Ser	Gly	Thr	Pro	Ser	Pro	Val	Pro	Ser
	13145						13150					13155			
70	Pro	Thr	Thr	Thr	Gly	Pro	Leu	Leu	Val	Pro	Phe	Thr	Leu	Asn	Phe
	13160						13165					13170			
75	Thr	Ile	Thr	Asn	Leu	Gln	Tyr	Glu	Glu	Asn	Met	Gly	His	Pro	Gly
	13175						13180					13185			

EP 3 222 632 A1

Ser Arg Lys Phe Asn Ile Thr Glu Ser Val Leu Gln Gly Leu Leu
 13190 13195 13200

5 Lys Pro Leu Phe Lys Ser Thr Ser Val Gly Pro Leu Tyr Ser Gly
 13205 13210 13215

10 Cys Arg Leu Thr Leu Leu Arg Pro Glu Lys Asp Gly Val Ala Thr
 13220 13225 13230

15 Arg Val Asp Ala Ile Cys Thr His Arg Pro Asp Pro Lys Ile Pro
 13235 13240 13245

20 Gly Leu Asp Arg Gln Gln Leu Tyr Trp Glu Leu Ser Gln Leu Thr
 13250 13255 13260

25 His Ser Ile Thr Glu Leu Gly Pro Tyr Thr Leu Asp Arg Asp Ser
 13265 13270 13275

30 Leu Tyr Val Asn Gly Phe Thr Gln Arg Ser Ser Val Pro Thr Thr
 13280 13285 13290

35 Ser Thr Pro Gly Thr Phe Thr Val Gln Pro Glu Thr Ser Glu Thr
 13295 13300 13305

40 Pro Ser Ser Leu Pro Gly Pro Thr Ala Thr Gly Pro Val Leu Leu
 13310 13315 13320

45 Pro Phe Thr Leu Asn Phe Thr Ile Thr Asn Leu Gln Tyr Glu Glu
 13325 13330 13335

50 Asp Met Arg Arg Pro Gly Ser Arg Lys Phe Asn Thr Thr Glu Arg
 13340 13345 13350

55 Val Leu Gln Gly Leu Leu Met Pro Leu Phe Lys Asn Thr Ser Val
 13355 13360 13365

Ser Ser Leu Tyr Ser Gly Cys Arg Leu Thr Leu Leu Arg Pro Glu
 13370 13375 13380

Lys Asp Gly Ala Ala Thr Arg Val Asp Ala Val Cys Thr His Arg
 13385 13390 13395

Pro Asp Pro Lys Ser Pro Gly Leu Asp Arg Glu Arg Leu Tyr Trp
 13400 13405 13410

Lys Leu Ser Gln Leu Thr His Gly Ile Thr Glu Leu Gly Pro Tyr

EP 3 222 632 A1

13415	13420	13425
5		
Thr Leu Asp Arg His Ser Leu	Tyr Val Asn Gly Phe	Thr His Gln
13430	13435	13440
10		
Ser Ser Met Thr Thr Thr Arg	Thr Pro Asp Thr Ser	Thr Met His
13445	13450	13455
15		
Leu Ala Thr Ser Arg Thr Pro	Ala Ser Leu Ser Gly	Pro Met Thr
13460	13465	13470
20		
Ala Ser Pro Leu Leu Val Leu	Phe Thr Ile Asn Phe	Thr Ile Thr
13475	13480	13485
25		
Asn Leu Arg Tyr Glu Glu Asn	Met His His Pro Gly	Ser Arg Lys
13490	13495	13500
30		
Phe Asn Thr Thr Glu Arg Val	Leu Gln Gly Leu Leu	Arg Pro Val
13505	13510	13515
35		
Phe Lys Asn Thr Ser Val Gly	Pro Leu Tyr Ser Gly	Cys Arg Leu
13520	13525	13530
40		
Thr Leu Leu Arg Pro Lys Lys	Asp Gly Ala Ala Thr	Lys Val Asp
13535	13540	13545
45		
Ala Ile Cys Thr Tyr Arg Pro	Asp Pro Lys Ser Pro	Gly Leu Asp
13550	13555	13560
50		
Arg Glu Gln Leu Tyr Trp Glu	Leu Ser Gln Leu Thr	His Ser Ile
13565	13570	13575
55		
Thr Glu Leu Gly Pro Tyr Thr	Leu Asp Arg Asp Ser	Leu Tyr Val
13580	13585	13590
60		
Asn Gly Phe Thr Gln Arg Ser	Ser Val Pro Thr Thr	Ser Ile Pro
13595	13600	13605
65		
Gly Thr Pro Thr Val Asp Leu	Gly Thr Ser Gly Thr	Pro Val Ser
13610	13615	13620
70		
Lys Pro Gly Pro Ser Ala Ala	Ser Pro Leu Leu Val	Leu Phe Thr
13625	13630	13635
75		
Leu Asn Phe Thr Ile Thr Asn	Leu Arg Tyr Glu Glu	Asn Met Gln
13640	13645	13650

EP 3 222 632 A1

His	Pro	Gly	Ser	Arg	Lys	Phe	Asn	Thr	Thr	Glu	Arg	Val	Leu	Gln	
13655						13660						13665			
5	Gly	Leu	Leu	Arg	Ser	Leu	Phe	Lys	Ser	Thr	Ser	Val	Gly	Pro	Leu
	13670						13675					13680			
10	Tyr	Ser	Gly	Cys	Arg	Leu	Thr	Leu	Leu	Arg	Pro	Glu	Lys	Asp	Gly
	13685						13690					13695			
15	Thr	Ala	Thr	Gly	Val	Asp	Ala	Ile	Cys	Thr	His	His	Pro	Asp	Pro
	13700						13705					13710			
20	Lys	Ser	Pro	Arg	Leu	Asp	Arg	Glu	Gln	Leu	Tyr	Trp	Glu	Leu	Ser
	13715						13720					13725			
25	Gln	Leu	Thr	His	Asn	Ile	Thr	Glu	Leu	Gly	Pro	Tyr	Ala	Leu	Asp
	13730						13735					13740			
30	Asn	Asp	Ser	Leu	Phe	Val	Asn	Gly	Phe	Thr	His	Arg	Ser	Ser	Val
	13745						13750					13755			
35	Ser	Thr	Thr	Ser	Thr	Pro	Gly	Thr	Pro	Thr	Val	Tyr	Leu	Gly	Ala
	13760						13765					13770			
40	Ser	Lys	Thr	Pro	Ala	Ser	Ile	Phe	Gly	Pro	Ser	Ala	Ala	Ser	His
	13775						13780					13785			
45	Leu	Leu	Ile	Leu	Phe	Thr	Leu	Asn	Phe	Thr	Ile	Thr	Asn	Leu	Arg
	13790						13795					13800			
50	Tyr	Glu	Glu	Asn	Met	Trp	Pro	Gly	Ser	Arg	Lys	Phe	Asn	Thr	Thr
	13805						13810					13815			
55	Glu	Arg	Val	Leu	Gln	Gly	Leu	Leu	Arg	Pro	Leu	Phe	Lys	Asn	Thr
	13820						13825					13830			
60	Ser	Val	Gly	Pro	Leu	Tyr	Ser	Gly	Cys	Arg	Leu	Thr	Leu	Leu	Arg
	13835						13840					13845			
65	Pro	Glu	Lys	Asp	Gly	Glu	Ala	Thr	Gly	Val	Asp	Ala	Ile	Cys	Thr
	13850						13855					13860			
70	His	Arg	Pro	Asp	Pro	Thr	Gly	Pro	Gly	Leu	Asp	Arg	Glu	Gln	Leu
	13865						13870					13875			
75	Tyr	Leu	Glu	Leu	Ser	Gln	Leu	Thr	His	Ser	Ile	Thr	Glu	Leu	Gly
	13880						13885					13890			

EP 3 222 632 A1

Pro	Tyr	Thr	Leu	Asp	Arg	Asp	Ser	Leu	Tyr	Val	Asn	Gly	Phe	Thr
13895							13900					13905		
5														
His	Arg	Ser	Ser	Val	Pro	Thr	Thr	Ser	Thr	Gly	Val	Val	Ser	Glu
13910						13915					13920			
10														
Glu	Pro	Phe	Thr	Leu	Asn	Phe	Thr	Ile	Asn	Asn	Leu	Arg	Tyr	Met
13925						13930					13935			
15														
Ala	Asp	Met	Gly	Gln	Pro	Gly	Ser	Leu	Lys	Phe	Asn	Ile	Thr	Asp
13940						13945					13950			
20														
Asn	Val	Met	Gln	His	Leu	Leu	Ser	Pro	Leu	Phe	Gln	Arg	Ser	Ser
13955						13960					13965			
25														
Leu	Gly	Ala	Arg	Tyr	Thr	Gly	Cys	Arg	Val	Ile	Ala	Leu	Arg	Ser
13970						13975					13980			
30														
Val	Lys	Asn	Gly	Ala	Glu	Thr	Arg	Val	Asp	Leu	Leu	Cys	Thr	Tyr
13985						13990					13995			
35														
Leu	Gln	Pro	Leu	Ser	Gly	Pro	Gly	Leu	Pro	Ile	Lys	Gln	Val	Phe
14000						14005					14010			
40														
His	Glu	Leu	Ser	Gln	Gln	Thr	His	Gly	Ile	Thr	Arg	Leu	Gly	Pro
14015						14020					14025			
45														
Tyr	Ser	Leu	Asp	Lys	Asp	Ser	Leu	Tyr	Leu	Asn	Gly	Tyr	Asn	Glu
14030						14035					14040			
50														
Pro	Gly	Pro	Asp	Glu	Pro	Pro	Thr	Thr	Pro	Lys	Pro	Ala	Thr	Thr
14045						14050					14055			
55														
Phe	Leu	Pro	Pro	Leu	Ser	Glu	Ala	Thr	Thr	Ala	Met	Gly	Tyr	His
14060						14065					14070			
60														
Leu	Lys	Thr	Leu	Thr	Leu	Asn	Phe	Thr	Ile	Ser	Asn	Leu	Gln	Tyr
14075						14080					14085			
65														
Ser	Pro	Asp	Met	Gly	Lys	Gly	Ser	Ala	Thr	Phe	Asn	Ser	Thr	Glu
14090						14095					14100			
70														
Gly	Val	Leu	Gln	His	Leu	Leu	Arg	Pro	Leu	Phe	Gln	Lys	Ser	Ser
14105						14110					14115			
75														
Met	Gly	Pro	Phe	Tyr	Leu	Gly	Cys	Gln	Leu	Ile	Ser	Leu	Arg	Pro
14120						14125					14130			

EP 3 222 632 A1

5	Glu	Lys	Asp	Gly	Ala	Ala	Thr	Gly	Val	Asp	Thr	Thr	Cys	Thr	Tyr
	14135						14140						14145		
10	His	Pro	Asp	Pro	Val	Gly	Pro	Gly	Leu	Asp	Ile	Gln	Gln	Leu	Tyr
	14150						14155						14160		
15	Trp	Glu	Leu	Ser	Gln	Leu	Thr	His	Gly	Val	Thr	Gln	Leu	Gly	Phe
	14165						14170						14175		
20	Tyr	Val	Leu	Asp	Arg	Asp	Ser	Leu	Phe	Ile	Asn	Gly	Tyr	Ala	Pro
	14180						14185						14190		
25	Gln	Asn	Leu	Ser	Ile	Arg	Gly	Glu	Tyr	Gln	Ile	Asn	Phe	His	Ile
	14195						14200						14205		
30	Val	Asn	Trp	Asn	Leu	Ser	Asn	Pro	Asp	Pro	Thr	Ser	Ser	Glu	Tyr
	14210						14215						14220		
35	Ile	Thr	Leu	Leu	Arg	Asp	Ile	Gln	Asp	Lys	Val	Thr	Thr	Leu	Tyr
	14225						14230						14235		
40	Lys	Gly	Ser	Gln	Leu	His	Asp	Thr	Phe	Arg	Phe	Cys	Leu	Val	Thr
	14240						14245						14250		
45	Asn	Leu	Thr	Met	Asp	Ser	Val	Leu	Val	Thr	Val	Lys	Ala	Leu	Phe
	14255						14260						14265		
50	Ser	Ser	Asn	Leu	Asp	Pro	Ser	Leu	Val	Glu	Gln	Val	Phe	Leu	Asp
	14270						14275						14280		
55	Lys	Thr	Leu	Asn	Ala	Ser	Phe	His	Trp	Leu	Gly	Ser	Thr	Tyr	Gln
	14285						14290						14295		
60	Leu	Val	Asp	Ile	His	Val	Thr	Glu	Met	Glu	Ser	Ser	Val	Tyr	Gln
	14300						14305						14310		
65	Pro	Thr	Ser	Ser	Ser	Ser	Thr	Gln	His	Phe	Tyr	Leu	Asn	Phe	Thr
	14315						14320						14325		
70	Ile	Thr	Asn	Leu	Pro	Tyr	Ser	Gln	Asp	Lys	Ala	Gln	Pro	Gly	Thr
	14330						14335						14340		
75	Thr	Asn	Tyr	Gln	Arg	Asn	Lys	Arg	Asn	Ile	Glu	Asp	Ala	Leu	Asn
	14345						14350						14355		
80	Gln	Leu	Phe	Arg	Asn	Ser	Ser	Ile	Lys	Ser	Tyr	Phe	Ser	Asp	Cys

EP 3 222 632 A1

14360 14365 14370

Gln Val Ser Thr Phe Arg Ser Val Pro Asn Arg His His Thr Gly
14375 14380 14385

Val Asp Ser Leu Cys Asn Phe Ser Pro Leu Ala Arg Arg Val Asp
14390 14395 14400

10

Arg	Val	Ala	Ile	Tyr	Glu	Glu	Phe	Leu	Arg	Met	Thr	Arg	Asn	Gly
14405					14410						14415			

15

Thr	Gln	Leu	Gln	Asn	Phe	Thr	Leu	Asp	Arg	Ser	Ser	Val	Leu	Val
14420						14425						14430		

20

Asp Gly Tyr Ser Pro Asn Arg Asn Glu Pro Leu Thr Gly Asn Ser
 14435 14440 14445

20

Asp Leu Pro Phe Trp Ala Val Ile Leu Ile Gly Leu Ala Gly Leu
 14450 14455 14460

25

Leu Gly Val Ile Thr Cys Leu Ile Cys Gly Val Leu Val Thr Thr
14465 14470 14475

30

Arg Arg Arg Lys Lys Glu Gly Glu Tyr Asn Val Gln Gln Gln Cys
14480 14485 14490

Pro Gly Tyr Tyr Gln Ser His Leu Asp Leu Glu Asp Leu Gln
14495 14500 14505

35

<210> 14
<211> 24
<212> PRT
<213> Artificial Sequence

40

<220>

1400 14

Phe Trp Ala Val Ile Leu Ile Gly Leu Ala Gly Leu Leu Gly Leu Ile
1 5 10 15

Thr Cys Leu Ile Cys Gly Val Leu
20

50

<210> 15
<211> 32
<212> PRT
<213> Artificial Sequence

<400> 18

Val	Thr	Thr	Arg	Arg	Arg	Lys	Lys	Glu	Gly	Glu	Tyr	Asn	Val	Gln	Gln
1			5					10					15		

5

Gln

10 <210> 19

<211> 21

<212> PRT

<213> Artificial Sequence

15 <220>

<223> Synthetic

<400> 19

Cys	Gln	Val	Ser	Thr	Phe	Arg	Ser	Val	Pro	Asn	Arg	His	His	Thr	Gly
1				5				10				15			

20

Val Asp Ser Leu Cys
20

25

<210> 20

<211> 18

<212> PRT

30 <213> Artificial Sequence

<220>

<223> Synthetic

<400> 20

Leu	Val	Thr	Thr	Arg	Arg	Arg	Lys	Lys	Glu	Gly	Glu	Tyr	Asn	Val	Gln
1				5					10				15		

35

Gln Gln

40

<210> 21

<211> 18

45 <212> PRT

<213> Mus musculus

<400> 21

Thr	Leu	Asp	Arg	Lys	Ser	Val	Phe	Val	Asp	Gly	Tyr	Ser	Gln	Asn	Arg
1				5				10					15		

50

Asp Asp

55

<210> 22

<211> 33
 <212> PRT
 <213> Mus musculus

5 <400> 22

Lys Ser Tyr Phe Ser Asp Cys Gln Val Leu Ala Phe Arg Ser Val Ser
 1 5 10 15

10 Asn Asn Asn Asn His Thr Gly Val Asp Ser Leu Cys Asn Phe Ser Pro
 20 25 30

15 Leu

20

<210> 23
 <211> 31
 <212> PRT
 <213> Mus musculus

25 <400> 23

Ser Leu Tyr Ser Asn Cys Arg Leu Ala Ser Leu Arg Pro Lys Lys Asn
 1 5 10 15

30 Gly Thr Ala Thr Gly Val Asn Ala Ile Cys Ser Tyr His Gln Asn
 20 25 30

35

<210> 24
 <211> 402
 <212> PRT
 <213> Mus musculus

40 <400> 24

His Leu Ile Arg Pro Leu Val Gln Asn Glu Ser Leu Tyr Ser Asn Cys
 1 5 10 15

45

Arg Leu Ala Ser Leu Arg Pro Lys Lys Asn Gly Thr Ala Thr Gly Val
 20 25 30

50

Asn Ala Ile Cys Ser Tyr His Gln Asn Pro Asp His Pro Glu Leu Asp
 35 40 45

Thr Gln Glu Leu Tyr Thr Lys Leu Thr Gln Leu Thr Gln Gly Val Thr
 50 55 60

55

Gln Leu Gly Ser Tyr Met Leu Asp Gln Asn Ser Ile Tyr Val Asn Gly
 65 70 75 80

55

Tyr Val Pro Leu Asn Ile Thr Ile Gln Gly Lys Tyr Gln Leu Asn Phe
 85 90 95

EP 3 222 632 A1

	Cys Ile Ile Asn Trp Asn Leu Asn Asn Thr Asp Pro Thr Ser Ser Glu			
	100	105	110	
5	Tyr Ile Thr Leu Glu Arg Asp Ile Glu Asp Lys Val Thr Thr Leu Tyr			
	115	120	125	
10	Thr Gly Ser Gln Leu Lys Glu Val Phe Gln Ser Cys Leu Val Thr Asn			
	130	135	140	
15	Met Thr Ser Gly Ser Thr Val Val Thr Leu Glu Ala Leu Phe Ser Ser			
	145	150	155	160
20	His Leu Asp Pro Asn Leu Val Lys Gln Val Phe Leu Asn Lys Thr Leu			
	165	170	175	
25	Asn Ala Ser Ser His Trp Leu Gly Ala Thr Tyr Gln Leu Lys Asp Leu			
	180	185	190	
30	His Val Ile Asp Met Lys Thr Ser Ile Leu Leu Pro Ala Glu Ile Pro			
	195	200	205	
35	Thr Thr Ser Ser Ser Gln His Phe Asn Leu Asn Phe Thr Ile Thr			
	210	215	220	
40	Asn Leu Pro Tyr Ser Gln Asp Ile Ala Gln Pro Ser Thr Thr Lys Tyr			
	225	230	235	240
45	Gln Gln Thr Lys Arg Ser Ile Glu Asn Ala Leu Asn Gln Leu Phe Arg			
	245	250	255	
50	Asn Ser Ser Ile Lys Ser Tyr Phe Ser Asp Cys Gln Val Leu Ala Phe			
	260	265	270	
55	Arg Ser Val Ser Asn Asn Asn His Thr Gly Val Asp Ser Leu Cys			
	275	280	285	
60	Asn Phe Ser Pro Leu Ala Arg Arg Val Asp Arg Val Ala Ile Tyr Glu			
	290	295	300	
65	Glu Phe Leu Arg Met Thr His Asn Gly Thr Gln Leu Leu Asn Phe Thr			
	305	310	315	320
70	Leu Asp Arg Lys Ser Val Phe Val Asp Gly Tyr Ser Gln Asn Arg Asp			
	325	330	335	
75	Asp Asp Val Met Lys Asn Ser Gly Leu Pro Phe Trp Ala Ile Ile Leu			
	340	345	350	

Ile Cys Leu Ala Val Leu Leu Val Ile Thr Cys Leu Met Cys Cys
 355 360 365

5 Phe Leu Val Thr Val Cys Arg Arg Lys Lys Glu Gly Asp Tyr Gln Val
 370 375 380

10 Gln Arg His Arg Leu Ala Tyr Tyr Leu Ser His Leu Asp Leu Arg Lys
 385 390 395 400

Leu Gln

15 <210> 25
 <211> 400
 <212> PRT
 <213> Homo sapiens

20 <400> 25

His Leu Leu Arg Pro Leu Phe Gln Lys Ser Ser Met Gly Pro Phe Tyr
 1 5 10 15

25 Leu Gly Cys Gln Leu Ile Ser Leu Arg Pro Glu Lys Asp Gly Ala Ala
 20 25 30

30 Thr Gly Val Asp Thr Thr Cys Thr Tyr His Pro Asp Pro Val Gly Pro
 35 40 45

35 Gly Leu Asp Ile Gln Gln Leu Tyr Trp Glu Leu Ser Gln Leu Thr His
 50 55 60

40 Gly Val Thr Gln Leu Gly Phe Tyr Val Leu Asp Arg Asp Ser Leu Phe
 65 70 75 80

45 Ile Asn Gly Tyr Ala Pro Gln Asn Leu Ser Ile Arg Gly Glu Tyr Gln
 85 90 95

50 Ile Asn Phe His Ile Val Asn Trp Asn Leu Ser Asn Pro Asp Pro Thr
 100 105 110

55 Ser Ser Glu Tyr Ile Thr Leu Leu Arg Asp Ile Gln Asp Lys Val Thr
 115 120 125

Thr Leu Tyr Lys Gly Ser Gln Leu His Asp Thr Phe Arg Phe Cys Leu
 130 135 140

55 Val Thr Asn Leu Thr Met Asp Ser Val Leu Val Thr Val Lys Ala Leu
 145 150 155 160

EP 3 222 632 A1

Phe Ser Ser Asn Leu Asp Pro Ser Leu Val Glu Gln Val Phe Leu Asp
 165 170 175

5 Lys Thr Leu Asn Ala Ser Phe His Trp Leu Gly Ser Thr Tyr Gln Leu
 180 185 190

10 Val Asp Ile His Val Thr Glu Met Glu Ser Ser Val Tyr Gln Pro Thr
 195 200 205

Ser Ser Ser Ser Thr Gln His Phe Tyr Leu Asn Phe Thr Ile Thr Asn
 210 215 220

15 Leu Pro Tyr Ser Gln Asp Lys Ala Gln Pro Gly Thr Thr Asn Tyr Gln
 225 230 235 240

20 Arg Asn Lys Arg Asn Ile Glu Asp Ala Leu Asn Gln Leu Phe Arg Asn
 245 250 255

25 Ser Ser Ile Lys Ser Tyr Phe Ser Asp Cys Gln Val Ser Thr Phe Arg
 260 265 270

Ser Val Pro Asn Arg His His Thr Gly Val Asp Ser Leu Cys Asn Phe
 275 280 285

30 Ser Pro Leu Ala Arg Arg Val Asp Arg Val Ala Ile Tyr Glu Glu Phe
 290 295 300

35 Leu Arg Met Thr Arg Asn Gly Thr Gln Leu Gln Asn Phe Thr Leu Asp
 305 310 315 320

40 Arg Ser Ser Val Leu Val Asp Gly Tyr Ser Pro Asn Arg Asn Glu Pro
 325 330 335

Leu Thr Gly Asn Ser Asp Leu Pro Phe Trp Ala Val Ile Leu Ile Gly
 340 345 350

45 Leu Ala Gly Leu Leu Gly Val Ile Thr Cys Leu Ile Cys Gly Val Leu
 355 360 365

50 Val Thr Thr Arg Arg Lys Lys Glu Gly Glu Tyr Asn Val Gln Gln
 370 375 380

Gln Cys Pro Gly Tyr Tyr Gln Ser His Leu Asp Leu Glu Asp Leu Gln
 385 390 395 400

55 <210> 26

<211> 360
<212> DNA
<213> Artificial Sequence

5 <220>
<223> Synthetic

<400> 26

gaggtgaagc tggaggagtc aggtggagga ttggtcagc ctaaaggatc attgaaactc 60
tcatgtgccg cctctggttt caccttcaat acctatgccg tgcactgggt ccgccaggct 120
ccagggaaagg gtatgaaatg gggtgctcgc ataagaagta aaagtggaaa ttatgcaaca 180
tattatgccg attcagtgaa agacagattc accatctcca gaaatgattc acagagcatg 240
ctctatctgc aaatgaacaa cctgaaaact gaggacacag ccatatatta ctgtgtgaga 300
gcgggtaaca acggggccctt tccttactgg qgccaaggga ccacggtcac cgtctcctca 360

<210> 27

<211> 120

<212> PRT

<213> Artificial Sequence

<220>
<223> Synthetic

<400> 27

30 Glu Val Lys Leu Glu Glu Ser Gly Gly Gly Leu Val Gln Pro Lys Gly
1 5 10 15

Ser Leu Lys Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Asn Thr Tyr
20 25 30

35

Ala Val His Trp Val Arg Gln Ala Pro Gly Lys Gly Met Glu Trp Val
35 40 45

40 Ala Arg Ile Arg Ser Lys Ser Gly Asn Tyr Ala Thr Tyr Tyr Ala Asp
50 55 60

45 Ser Val Lys Asp Arg Phe Thr Ile Ser Arg Asn Asp Ser Gln Ser Met
 65 70 75 80

Leu Tyr Leu Gln Met Asn Asn Leu Lys Thr Glu Asp Thr Ala Ile Tyr
85 90 95

50

Tyr Cys Val Arg Ala Gly Asn Asn Gly Ala Phe Pro Tyr Trp Gly Gln
100 105 110

55 Gly Thr Thr Val Thr Val Ser Ser
115 120

<210> 28
 <211> 330
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Synthetic

<400> 28
 gacattgagc tcacccagtc tccatcctca ctgtctgcat ctctgggagg cagagtcacc 60
 atcacttgca aggctagcca agatattaag aagtatataag cttggtagcca acacaaggcct 120
 ggaaaaactc ctcgactact catacatttc acatctacat tacagacagg catcccatca 180
 aggttcagtg gacgtgggtc tgggagagac tattccttca gcatcagcaa cctggagtct 240
 gaagatattg caacttatta ttgtctacag tatgatagtc tgtacacgtt cggagggggg 300
 accaagctgg agatcaaacg ggccggccgca 330

<210> 29
 <211> 110
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> Synthetic

<400> 29

Asp	Ile	Glu	Leu	Thr	Gln	Ser	Pro	Ser	Ser	Leu	Ser	Ala	Ser	Leu	Gly
1				5					10				15		

Gly	Arg	Val	Thr	Ile	Thr	Cys	Lys	Ala	Ser	Gln	Asp	Ile	Lys	Lys	Tyr
							20		25				30		

Ile	Ala	Trp	Tyr	Gln	His	Lys	Pro	Gly	Lys	Thr	Pro	Arg	Leu	Leu	Ile
						35		40				45			

His	Phe	Thr	Ser	Thr	Leu	Gln	Thr	Gly	Ile	Pro	Ser	Arg	Phe	Ser	Gly
						50		55				60			

Arg	Gly	Ser	Gly	Arg	Asp	Tyr	Ser	Phe	Ser	Ile	Ser	Asn	Leu	Glu	Ser
					65		70			75			80		

Glu	Asp	Ile	Ala	Thr	Tyr	Tyr	Cys	Leu	Gln	Tyr	Asp	Ser	Leu	Tyr	Thr
							85		90				95		

Phe	Gly	Gly	Gly	Thr	Lys	Leu	Glu	Ile	Lys	Arg	Ala	Ala	Ala		
						100		105				110			

<210> 30
 <211> 14
 <212> PRT

<213> Artificial Sequence
 <220>
 <223> Synthetic
 5 <400> 30

Lys Ser Tyr Phe Ser Asp Cys Gln Val Asn Asn Phe Arg Ser		
1	5	10

10 <210> 31
 <211> 18
 <212> PRT
 <213> Artificial Sequence

15 <220>
 <223> Synthetic
 <400> 31

Thr Leu Asp Arg Ser Ser Val Leu Val Asp Gly Tyr Ser Gln Asn Arg			
1	5	10	15

20 Asp Asp

25 <210> 32
 <211> 57
 <212> DNA
 <213> Artificial Sequence

30 <220>
 <223> CD8 leader sequence
 <400> 32

atggctctcc cagtgactgc cctactgctt cccctagcgc ttctcctgca tgcagag	57
--	----

35 <210> 33
 <211> 335
 <212> DNA
 <213> Artificial Sequence

40 <220>
 <223> CD3 zeta chain intracellular domain
 <400> 33

agagtgaagt tcagcaggag cgccagagccc cccgcgtacc agcagggcca gaaccagctc	60
--	----

45 tataacgagc tcaatctagg acgaagagag gactacgtatg ttttggacaa gagacgtggc
 cgggaccctg agatgggggg aaagccgaga aggaagaacc ctcaggaagg cctgtacaat
 gaactgcaga aagataagat ggcggaggcc tacagtgaga ttggatgaa aggcgagcgc

50 240

55 cggaggggca aggggcacga tggccttac cagggtctca gtacagccac caaggacacc
 tacgacgccc ttcacatgca ggccctgccc cctcg
 <210> 34
 <211> 45

<212> DNA		
<213> Artificial Sequence		
5 <220>		
<223> (G4S)3 serine-glycine linker		
<400> 34 ggtggaggtg gatcaggtgg aggtggatct ggtggaggtg gatct 45		
10 <210> 35		
<211> 225		
<212> DNA		
<213> Artificial Sequence		
15 <220>		
<223> CD8 transmembrane domain		
<400> 35 gcgccgcac ccaccacgac gccagcgccg cgaccaccaa ccccgccgccc cacgatcg 60		
20 tcgcagcccc tgtccctgcg cccagaggcg tgccggccag cggcgggggg cgcagtgcac 120		
acgagggggc tggacttcgc ctgtgatatac tacatctggg cgccttggc cgggacttgt 180		
ggggtccttc tcctgtcaact gttatcacc cttaactgca accac 225		
25 <210> 36		
<211> 223		
<212> DNA		
30 <213> Artificial Sequence		
<220>		
<223> CD28 transmembrane + intracellular domains (-STOP)		
<400> 36		
35 caattgaagt tatgtatcct ctccttacc tagacaatga gaagagcaat ggaaccatta 60		
tccatgtgaa agggaaacac cttgtccaa gtcccttatt tcccgaccc tctaagccct 120		
tttgggtgct ggtgggtggtt ggtggagtcc tggcttgcta tagcttgcta gtaacagtgg 180		
40 cctttattat tttctgggtg aggagtaaga ggagcaggct cct 223		
45 <210> 37		
<211> 7726		
<212> DNA		
45 <213> Artificial Sequence		
<220>		
<223> SFG_4H11z forward sequence		
50 <400> 37		
ggatccggat tagtccaatt tgttaaagac aggatatcag tggtccaggc tctagtttg 60		
actcaacaat atcaccagct gaagcctata gagtacgagc catagataaa ataaaagatt 120		
55 ttattnagtc tccagaaaaa gggggaaatg aaagacccca cctgttaggtt tggcaagcta 180		
gcttaagtaa cgccattttcaaggcatgg aaaaatacat aactgagaat agagaagttc 240		

	agatcaaggt caggaacaga tggAACAGCT gaatATGGGC caaacaggat atctgtggta	300
	agcagttcct gcccccggctc agggccaaga acagatggaa cagctgaata tggccaaac	360
5	aggatatctg tggtaAGCAG ttccTgcccc ggctcaggGC caagaacaga tggTccccAG	420
	atgcggtcca gcccTcAGCA gtttctAGAG aaccatcaga tggTccagg gtgccccAG	480
	gacctgaaat gaccctgtgc cttatttGAA ctaaccaATC agttcgcttc tcgcttctgt	540
10	tcgCGCGCTT ctgctccccG agctcaataa aagAGCCAC aaccCCTCAC tcggggcGAC	600
	agtccTCCGA ttgactgAGT cgccccGGTA cccgtgtATC caataAAACCC tcttgcAGTT	660
15	gcatccGACT tgggtctcg ctgTTcCTTG ggaggGTCTC ctctgAGTGA ttgactACCC	720
	gtcAGCgggg gtctttcaca catgcAGCAT gtatcaAAAT taatttggTT tttttctta	780
20	agtatttaca ttaaatggcc atagtactta aagttacatt ggcttCCTTG aaataAAACAT	840
	ggagtattca gaatgtgtca taaatattTC taattttaAG atagtatCTC cattggCTT	900
25	ctacttttc ttttattttt ttttgcCTC tgcTTccat ttgttGTTGT tggTTtttGT	960
	ttgtttGTTt gttgggtggT tggtaattt tttttAAAG atcctacACT atagttcaAG	1020
	ctagactatt agctactCTG taACCCAGGG tgacCTTGAA gtcATGGGTa gcctgctGTT	1080
30	ttAGCCTCC cacatctaAG attacAGGTa tgAGCTATCA ttttggTATt attgattGAT	1140
	tgattgattG atgtgtgtGT gtgtgattGT gtttGTTGTgt gtgactGTGA aaatgtgtGT	1200
35	atgggtgtGT gtGAATgtGT gtatgtatGT gtgtgtGTGA gtgtgtGTGT gtgtgtGTGC	1260
	atgtgtgtGT gtgtgactGT gtctatGTgt atgactGTgt gtgtgtGTGT gtgtgtGTGT	1320
	gtgtgtGTGT gtgtgtGTGT gttgtaaaa aatattCTAT ggtAGTgAGA gccaACGCTC	1380
40	cggatcAGGT gtcAGGTTGG ttttGAGAC agAGTCTTC acttagCTTG gaattcACTG	1440
	gcccgtGTT tacaACGTcg tgactGGGAA aaccCTGGCG ttacccaACT taatcgCCTT	1500
	gcAGCACATC cccCTTcGC cAGCTGGCGT aatAGCgAAg aggCCGcAC cgatcgCCCT	1560
45	tcccaacAGT tgCGCAGCCT gaatGGCGAA tggcgcCTGA tgcggTATTt tctcCTTAAG	1620
	catctgtGCG gtatTTcaca ccgcataTGG tgcaCTCTCA gtacaATCTG ctctgatGCC	1680
	gcataGTTAA gccaGCCCCG acACCCGCCA acACCCGCTG acgcGCCCTG acggGCTTGT	1740
50	ctgctcccGG catccGCTTA cAGACAAGCT gtgaccGTCT ccggGAGCTG catgtgtcAG	1800
	aggTTTcAC cgtcatcACC gaaACGCGCG atgacgAAAG ggctcGTGA tacgcCTTATT	1860
	tttataGGTT aatgtcatGA taataatGGT ttcttagACG tcaggTGGCA ctTTTcGGGG	1920
	aaatgtGCGC ggaACCCCTA tttgtttatt ttTctaaATA cattcaaATA tGtATCCGCT	1980
	catgagacAA taACCCtGAT aaatGCTCA ataataATTGA AAAAGGAAGA gtatgAGTAT	2040
55	tcaacATTc cgtgtcgccc ttattccCTT ttttgcGGCA ttttgcCTTC ctgttttGc	2100
	tcACCCAGAA acgctGGTGA aagtaAAAGA tgctGAAGAT cagttGGGTG cacgAGTGGG	2160

ttacatcgaa	ctggatctca	acagcgtaa	gatcctttag	agtttcgccc	ccgaagaacg	2220
ttttccaatg	atgagcactt	ttaaagttct	gctatgtggc	gcggatttat	cccgatttga	2280
5	cgcgggcaa	gagcaactcg	gtcgccgcat	acactattct	cagaatgact	tggttgagta
ctcaccagtc	acagaaaago	atcttacgga	tggcatgaca	gtaagagaat	tatgcagtgc	2400
10	tgccataacc	atgagtgata	acactgcggc	caacttactt	ctgacaacga	tcggaggacc
gaaggagcta	accgctttt	tgcacaacat	gggggatcat	gtaactcgcc	ttgatcgttg	2520
ggaaccggag	ctgaatgaag	ccataccaaa	cgacgagcgt	gacaccacga	tgcctgttagc	2580
15	aatggcaaca	acgttgcgca	aactattaac	tggcgaacta	cttactctag	cttccggca
acaattaata	gactggatgg	aggcgataa	agttgcagga	ccacttctgc	gctcgccct	2700
20	tccggctggc	tggtttattt	ctgataaattc	tggagccggt	gagcgtgggt	ctcgccgtat
cattgcagca	ctggggccag	atggtaagcc	ctcccgatc	gtagttatct	acacgacggg	2820
gagtcaggca	actatggatg	aacgaaatag	acagatcgct	gagataggtg	cctcactgtat	2880
taagcattgg	taactgtcag	accaagttt	ctcatatata	cttttagattt	atttaaaact	2940
25	tcatttttaa	tttaaaagga	tctaggtgaa	gatcctttt	gataatctca	tgaccaaaaat
cccttaacgt	gagtttcgt	tccactgagc	gtcagacccc	gtagaaaaga	tcaaaggatc	3060
ttctttagat	ccttttttc	tgcgctaat	ctgctgcttgc	caaacaaaaa	aaccaccgct	3120
30	accagcggtg	gttgtttgc	cggataaga	gctaccaact	cttttccga	aggtaactgg
cttcagcaga	gcgcagatac	caaatactgt	ccttctagtg	tagccgtat	taggccacca	3240
cttcaagaac	tctgttagcac	cgcctacata	cctcgctctg	ctaattctgt	taccagtggc	3300
45	tgctgccagt	ggcgataagt	cgtgttttac	cgggttggac	tcaagacgt	agttaccgg
taaggcgcag	cggcgggct	gaacgggggg	ttcgtgcaca	cagccagct	tggagcgaac	3420
gacctacacc	gaactgagat	acctacagcg	tgagcattga	gaaagcgcca	cgtttccga	3480
50	agggagaaaag	gcggacaggt	atccggtaag	cggcagggtc	ggaacaggag	agcgcacgag
ggagcttcca	gggggaaacg	cctggtatct	ttatagtcct	gtcgggtttc	gccacctctg	3600
acttgagcgt	cgattttgt	gatgctcgtc	agggggcg	agcctatgga	aaaacgcccag	3660
caacgcggcc	tttttacggt	tcctggcctt	ttgctggcct	tttgctcaca	tgttctttcc	3720
55	tgcgttatcc	cctgattctg	tggataaccg	tattaccgccc	tttgagtgag	ctgataaccgc
tcgcccgcagc	cgaacgaccg	agcgcagcga	gtcagtgagc	gaggaagcgg	aagagcgccc	3840
aatacgcaaa	ccgcctctcc	ccgcgcgttg	gccgattcat	taatgcagct	ggcacgacag	3900
gttcccgac	tggaaagcgg	gcagtgagcg	caacgcaatt	aatgtgagtt	agctcactca	3960
ttaggcaccc	caggctttac	actttatgct	tccggctcg	atgttgtgtg	gaattgtgag	4020

	cggtataacaa ttccacacag gaaacagcta tgaccatgt tacgccaagc tttgcttta	4080
	ggagtttcct aatacatccc aaactcaa atataaaagca tttgacttgt tctatgccct	4140
5	agggggcggg gggaaagctaa gccagctttt tttaacattt aaaatgttaa ttccatttt	4200
	aatgcacaga tgttttatt tcataagggt ttcaatgtgc atgaatgctg caatattcct	4260
	gttaccaaag ctatgtataaa taaaataga taaacgtgga aattacttag agtttctgtc	4320
10	atataacgttt ctttcctcag ttgacaacat aaatgcgctg ctgagcaagc cagtttgcatt	4380
	ctgtcaggat caatttccca ttatgccagt catattaatt actagtcaat tagttgattt	4440
	ttattttga catatacatg tgaatgaaag accccacctg taggtttggc aagctagctt	4500
15	aagtaacgcc attttgcag gcatggaaaa atacataact gagaatagaa aagttcagat	4560
	caaggtcagg aacagatgga acagctgaat atgggcaaaa caggatatct gtggtaagca	4620
	gttcctgccc cggctcaggg ccaagaacag atggaacagc tgaatatggg ccaaacagga	4680
20	tatctgtggt aagcagttcc tgccccggct cagggcaag aacagatggt cccagatgc	4740
	ggtccagccc tcagcagttt cttagagaacc atcagatgtt tccagggtgc cccaggacc	4800
	tgaaatgacc ctgtgcctt tttgaactaa ccaatcagtt cgcttcgc ttctgttcgc	4860
25	gcccgttatgc tccccgagct caataaaaga gcccacaacc cctcaactgg ggcgccagtc	4920
	ctccgattga ctgagtcgcc cgggtacccg tgtatccat aaacccttgc gcaatgttgc	4980
30	ccgacttgcgt gtctcgctgt tccctggag ggtctcctct gagtgattga ctacccgtca	5040
	gcgggggtct ttcatttggg ggctcgccgg ggatcgggag acccctgccc agggaccacc	5100
	gaccaccac cgggaggtaa gctggccagc aacttatctg tgtctgtccg attgtctagt	5160
35	gtctatgact gattttatgc gcttcgtcg gtactagtta gctaactagc tctgtatctg	5220
	gcggaccctgt ggtggaaactg acgagttcgg aacacccggc cgcaaccctg ggagacgtcc	5280
	cagggacttc gggggccgtt tttgtggccc gacctgagtc ctaaaatccc gatcggttag	5340
40	gactcttgg tgcacccccc ttagaggagg gatatgtggt tctggtagga gacgagaacc	5400
	taaaacagtt cccgcctccg tctgaatttt tgcttcgggt ttgggaccga agccgcgcgg	5460
	cgcgtttgt ctgctgcagc atcgttctgt gttgtctctg tctgactgtg tttctgtatt	5520
45	tgtctgaaaa tatggggcccg ggctagactg ttaccactcc cttaagtttgc accttaggtc	5580
	actggaaaga tgtcgagcgg atcgctaca accagtcggt agatgtcaag aagagacgtt	5640
	gggttacctt ctgcttgca gaatggccaa cctttaacgt cggatggccgg cgagacggca	5700
50	cctttaaccg agacctcattc acccaggtta agatcaaggt ctttcacct ggccgcattg	5760
	gacacccaga ccaggtcccc tacatcgta cctggaaagc cttggctttt gaccccccctc	5820
	cctgggtcaa gccctttgtt caccctaagc ctccgcctcc ttttcctcca tccggccccgt	5880
55	ctctccccct tgaacactcct cgttcgaccc cgccctcgatc ctccctttat ccagccctca	5940

	ctccttctct aggcgcccc atatggccat atgagatctt atatggggca ccccccggcc	6000
	ttgtaaactt ccctgaccct gacatgacaa gagttactaa cagccctct ctccaagctc	6060
5	acttacaggc tctctactta gtccagcacg aagtctggag acctctggcg gcagcctacc	6120
	aagaacaact ggaccgaccc gtggcaccc acccttaccg agtcggcgac acagtgtgg	6180
	tccgcccaca ccagactaag aacctagaac ctcgctggaa aggacattac acagtctgc	6240
10	tgaccacccc caccggccctc aaagttagacg gcatgcacgc ttggatacac gccggccacg	6300
	tgaaggctgc cgaccgggg ggtggaccat cctctagact gccatggctc tcccagtgac	6360
15	tgccctactg cttcccttag cgcttctct gcatgcacag gtgaagctgc aggagtcagg	6420
	gggaggcttc gtgaaggctg gagggtccct caaagtctcc tgtgcacccct ctggattcac	6480
	tttcagtagc tatgccatgt cctgggttcg cctgagtcgg gagatgaggc tggagtgggt	6540
20	cgcaaccatt agcagtgcgt gtggttacat cttctattct gacagtgtgc agggacgatt	6600
	caccatttcc agagacaatg ccaagaacac cctgcacccgt caaatggca gtctgaggc	6660
	tggggacacg gccatgtatt actgtgcaag gcagggattt ggtaactacg gtgattacta	6720
25	tgctatggac tactggggcc aagggaccac ggtcaccgtc tcctcagggt gagggtggatc	6780
	aggtgtgggt ggtatctgggt gagggtggatc tgacattggag ctcacccagt ctccatccctc	6840
	cctggctgtg tcagcaggag agaaggtcac tatgagctgc aaatccagtc agagtctgct	6900
30	caacagtaga acccgaaaga accagtggc ttggtaccag caaaaaccag gacagtctcc	6960
	tgaactgctg atctactggg catccactag gcaatctggc gtccctgatc gttcacagg	7020
	cagtggatct gggacagatt tcactctcac catcagcagt gtgcaggctg aagacctggc	7080
35	agtttattac tgccagcaat cttataatct actcacgttc ggtcctggga ccaagctgga	7140
	gatcaaacgg gggccgcac ccaccacgac gccagcgccg cgaccacaa cccggcgcc	7200
	cacgatcgcg tcgcagcccc tgtccctgcg cccagaggcg tgccggccag cggcgggggg	7260
40	cgcagtcac acgagggggc tggacttcgc ctgtgatatac tacatctggg cggcccttggc	7320
	cgggacttgt ggggtcccttc tcctgtcaact ggttatcacc ctttactgca accacagagt	7380
45	gaagttcagc aggagcgcag agccccccgc gtaccagcag ggccagaacc agctctataa	7440
	cgagctcaat ctaggacgaa gagaggagta cgatgtttt gacaagagac gtggccggga	7500
	ccctgagatg gggggaaagc cgagaaggaa gaaccctcag gaaggcctgt acaatgaact	7560
50	gcagaaagat aagatggcgg aggctacag tgagattggg atgaaaggcg agcgccggag	7620
	gggcaagggg cacgatggcc tttaccaggc tctcagtcaca gccaccaagg acacctacga	7680
	cggcccttcac atgcaggccc tgccccctcg ctaacagcca ctcgag	7726

55

<211> 7726
 <212> DNA
 <213> Artificial Sequence

5 <220>
 <223> SFG_4H11z reverse sequence

<400> 38

cctaggccta atcaggtaa acaattctg tcctatagtc accaggtccg agatcaaaac	60
tgagttgtta tagtggtcga ctccggatat ctcatgctcg gatatctattt tattttctaa	120
aataaatcag aggtctttt ccccccattac tttctgggtt ggacatccaa accgttcgat	180
cgaattcatt gcggtaaaac gttccgtacc ttttatgtt ttgactctta tctcttcaag	240
tctagttcca gtccttgcgtt accttgcga cttatacccg gtttgccta tagacaccat	300
tcgtcaagga cggggccgag tcccggtct tgcgtacattt gtcgacttat acccggtttt	360
tcctatagac accattcgta aaggacgggg ccgagtcccg gttcttgcgtt accaggggtc	420
tacgcccaggc cgggagtcgt caaagatctc ttggtagtct acaaagggtcc cacgggttc	480
ctggacttta ctgggacacg gaataaactt gattggtagt tcaagcgaag agcgaagaca	540
agcgcgcgaa gacgaggggc tcgagttatt ttctcggtt ttggggagtg agccccgcgg	600
tcaggaggct aactgactca gccccccat gggcacatag gttatgggg agaacgtcaa	660
cgtaggctga acaccagagc gacaaggaac cctcccaagag gagactcaact aactgtatgg	720
cagtcgcccc cagaaagtgt gtacgtcgta catagtttta attaaaccaa aaaaaagaat	780
tcataaatgt aatttaccgg tatcatgaat ttcaatgtaa ccgaaggaac tttatggta	840
cctcataagt cttacacagt atttataaag attaaaatttca tatcatagag gtaaccgaaa	900
gatgaaaaag aaaataaaaaa aaaacaggag acagaaggta aacaacaaca acaacaaca	960
aacaaacaaa caaccaacca accaattaaa aaaaaatttca taggatgtga tatcaagtcc	1020
gatctgataa tcgatgagac attgggtccc actggaaactt cagtacccat cggacgacaa	1080
aatcggagg gtgttagattc taatgtccat actcgatagt aaaaaccata taactaacta	1140
actaactaac tacacacaca cacactaaca caaacacaca cactgacact tttacacaca	1200
tacccacaca cacttacaca catacataca cacacacact cacacacaca cacacacacg	1260
tacacacaca cacactgaca cagatacaca tactgacaca cacacacaca cacacacaca	1320
cacacacaca cacacacaca caacactttt ttataagata ccatcactct cgggtgcgag	1380
gccgagtcga cagtccaaacc aaaaactctg tctcagaaag tgaatcgaac cttaagtgcac	1440
cggcagcaaa atgttgcagc actgaccctt ttgggaccgc aatgggttga attagcggaa	1500
cgtcgtag ggggaaagcg gtcgaccgca ttatcgcttc tccggcgtg gctagcggga	1560
agggttgtca acgcgtcgga cttaccgctt accgcggact acgcataaaa agaggaatgc	1620
gtagacacgc cataaaagtgt ggcgtatacc acgtgagagt catgttagac gagactacgg	1680

	cgtatcaatt cggtcggggc tgtggcggt tgtggcgac tgccgcccac	1740
	gacgagggcc gtaggcgaat gtctgttcga cactggcaga ggccctcgac gtacacagtc	1800
5	tccaaaagtgcagtagtgg ctttgcgcgc tactgcttgc cggagcact atgcggataa	1860
	aaatatccaa ttacagtact attattacca aagaatctgc agtccaccgt gaaaagcccc	1920
	tttacacgcgccttgggat aaacaaataa aaagatttat gtaagtttat acataggcga	1980
10	gtactctgtt attgggacta tttacgaagt tattataact ttttccttct catactcata	2040
	agttgtaaag gcacacgcggg aataaggaa aaaacgcgcgt aaaacggaag gacaaaaacg	2100
15	agtgggtctt tgccaccact ttcattttct acgacttcta gtcaacccac gtgctcaccc	2160
	aatgttagctt gaccttagagt tgtgcgcatt ctaggaactc tcaaaaagcgg ggcttcttgc	2220
	aaaaggttac tactcgtgaa aatttcaaga cgatacaccg cgccataata gggcataact	2280
20	gcggcccggtt ctgcgttgago cagcggcgta tgtgataaga gtcttactga accaactcat	2340
	gagtggtcag tgtctttcg tagaatgcct accgtactgt cattctctta atacgtcacg	2400
	acggtattgg tactcaactat tgtgacgcgg gttgaatgaa gactgttgct agcactcctgg	2460
25	cttcctcgat tggcgaaaaaa acgtgttgta cccccctagta cattgagcgg aactagcaac	2520
	ccttggcctc gacttacttc ggtatggttt gctgctcgca ctgtggtgct acggacatcg	2580
	ttaccgttgcgt tgcaacgcgt ttgataatttgccttgcgttgcgttgcgttgcgttgcgttgcgt	2640
30	tgttaattat ctgacctaco tccgcctatt tcaacgtcct ggtgaagacg cgagccggaa	2700
	aggccgaccg accaaataaac gactatttag acctcggcca ctcgcacccca gagcgccata	2760
	gtAACGTCGT gaccccggttaccattcg gaggcatag catcaataga tgtgctgccc	2820
35	ctcagtccgt tgataacctac ttgctttatc tgtctagcga ctctatccac ggagtgacta	2880
	attcgtaacc attgacagtc tggttcaaat gagtatataat gaaatctaac taaattttga	2940
40	agtaaaaatt aaattttcct agatccactt ctagaaaaaa ctattagagt actggtttta	3000
	ggaaattgca ctcaaaagca aggtgactcg cagtctgggg catctttct agtttccat	3060
	aagaactcta ggaaaaaaag acgcgcatttta gacgacgaac gtttgggggg ttgggtggcga	3120
45	tggtcgcccac caaaacaaacg gcctagttct cgatggttga gaaaaaggct tccattgacc	3180
	gaagtcgtct cgcgtctatg gtttatgaca ggaagatcac atcggcatca atccgggttgt	3240
	gaagttcttg agacatcgtg gcggatgtat ggagcgagac gattaggaca atggtcacccg	3300
50	acgacggtca cgcgtattca gcacagaatg gcccaacctg agttctgcta tcaatggcct	3360
	attccgcgtc gccagccccga cttgcccccc aagcacgtgt gtcgggtcga acctcgcttg	3420
55	ctggatgtgg cttgactcta tggatgtcgc actcgtaact ctttcgggt gcgaagggt	3480
	tccctcttccgcctgtcca taggcccattc gccgtcccaag cttgtcctc tcgcgtgctc	3540

	cctcgaaggt ccccctttgc ggaccataga aatatcagga cagccaaag cggtggagac	3600
5	tgaactcgca gctaaaaaca ctacgagcag tccccccgccc tcggataacct tttgcggtc	3660
	gttgcgccgg aaaaatgcca aggaccggaa aacgaccggaa aaacgagtgt acaagaaagg	3720
	acgcaatagg ggactaagac acctattggc ataatggcgg aaactcactc gactatggcgg	3780
10	agcggcgctcg gcttgctggc tcgcgtcgct cagtcactcg ctcctcgcc ttctcgccggg	3840
	ttatgcgttt ggccggagagg ggccgcacac cggctaagta attacgtcga ccgtgctgtc	3900
	caaaggcgtg acctttcgcc cgtcactcgct gttgcgttaa ttacactcaa tcgagtgagt	3960
15	aatccgtggg gtccgaaatg tgaaatacga aggccgagca tacaacacac cttaacactc	4020
	gcctattgtt aaagtgtgtc ctttgcgtat actggacta atgcgttcg aaacgagaat	4080
	cctcaaagga ttatgttaggg tttgagtttataatttcgt aaactgaaca agatacgggaa	4140
20	tccccccccc cccttcgatt cggtcgaaaa aaattgtaaa ttttacaatt aaggtaaaat	4200
	ttacgtgtct acaaaaataa agtattccca aagttacacg tacttacgac gttataagga	4260
	caatggtttc gatcatattt attttatct atttgcaccc ttaatgaatc tcaaagacag	4320
25	taattgcaaa ggaaggagtc aactgttgc tttacgcgac gactcggtcg gtcaaacgt	4380
	gacagtccta gttaaagggt aatacggtca gtataattaa tgatcagtta atcaactaaa	4440
	aataaaaact gtatatgtac acttacttgc tgggggtggac atccaaaccg ttgcgtcgaa	4500
30	ttcattgcgg taaaacgttc cgtacccccc tatgtattga ctcttatctt ttcaagtcta	4560
	gttccagtcc ttgtctacct tgtcactta taccgggttt gtcctataga caccattcg	4620
	caaggacggg gccgagtc ctttgcgttc taccttgcgtg acttataccg ggtttgtcct	4680
35	atagacacca ttctgtcaagg acggggccga gtcccggttc ttgtctacca ggggtctacg	4740
	ccaggtcggg agtcgtcaaa gatctcttgg tagtctacaa aggtcccacg gggttcctgg	4800
	actttactgg gacacggaaat aaacttgatt ggttagtcaa gcgaagagcg aagacaagcg	4860
40	cgcgaatacg aggggctcga gttattttct cgggtgttgg ggagtgagcc cgcggcgtcag	4920
	gaggctaact gactcagcgg gcccatgggc acataggta tttggagaa cgtcaacgt	4980
	ggctgaacac cagagcgaca aggaaccctc ccagaggaga ctcactaact gatggcagt	5040
45	cgcggccaga aagtaaaccgc ccgagcaggc cctagccctc tggggacggg tccctgggtgg	5100
	ctgggtgggtg gccctccatt cgaccgggtcg ttgaatagac acagacaggc taacagatca	5160
	cagatactga ctaaaaatacg cggacgcagc catgatcaat cgattgatcg agacatagac	5220
50	cgcctggcga ccaccttgac tgctcaagcc ttgtggcccg gcgttggac cctctgcagg	5280
	gtccctgaag cccccggcaa aaacaccggg ctggactcag gattttaggg ctagcaaatc	5340
55	ctgagaaacc acgtgggggg aatctcctcc ctatacacca agaccatcct ctgctttgg	5400
	attttgtcaa gggccggagggc agacttaaaa acgaaagccaa aaccctggct tcggcgccggc	5460

5	gcgcaagaaca gacgacgtcg tagcaagaca caacagagac agactgacac aaagacataa	5520
	acagactttt atacccgggc ccgatctgac aatggtgagg gaattcaaac tggaatccag	5580
10	tgaccttct acagctcgcc tagcgagtgt tggtcagcca tctacagttc ttctctgcaa	5640
	cccaatggaa gacgagacgt cttaccgggtt ggaaattgca gcctaccggc gctctgcccgt	5700
15	ggaaattggc tctggagtag tgggtccaat tctagttcca gaaaagtgg a cggggcgtac	5760
	ctgtgggtct ggtccagggg atgttagcact ggacccttcg gaaccgaaaaa ctggggggag	5820
	ggaccaggatt cggaaacat gtgggattcg gaggcggagg agaaggaggt aggccggggca	5880
20	gagaggggg a cttggagga gcaagctggg gcccggctag gagggaaata ggtcgggagt	5940
	gaggaagaga tccgcgggg tataccggta tactctagaa tatacccggtt gggggcgggg	6000
	aacatttcaa gggactggg ctgtactgtt ctcaatgatt gtcgggaga gaggttcgag	6060
25	tgaatgtccg agagatgaat caggtcgtgc ttccagaccc tcggagaccgc cgtcggatgg	6120
	ttcttggta cctggctggc caccatggag tggaaatggc tcagccgctg tgtcacaccc	6180
	aggcggatgtt ggtctgatcc ttggatctt gggcggactt tcctggaaatg tgtcaggacg	6240
30	actgggtgggg gtggcgggag tttcatctgc cgtacgtcg aacctatgtg cggcgggtgc	6300
	acttccgacg gctggggccca ccacctggta ggagatctga cggtaccggag agggtcactg	6360
	acgggatgac gaaggggatc gcgaagagga cgtacgtctc cacttcgacg tcctcagtc	6420
35	ccctccgaag cacttcggac ctcccaggaa gtttcagagg acacgtcggaa gacctaagt	6480
	aaagtcatcg atacggtaca ggacccaagc ggactcaggc ctctactccg acctcacc	6540
	gcgttggtaa tcgtcacgac caccaatgtaa gaagataaga ctgtcacacg tccctgctaa	6600
	gtggtaaagg tctctgttac gtttcttggc ggacgtggac gtttaccctt cagactccag	6660
40	acccctgtgc cggtaataa tgacacgttc cgtccctaaa ccattgatgc cactaatgt	6720
	acgataacctg atgaccccg tttccctggc ccagtggcag aggagtccac ctccaccc	6780
	tccaccccca cctagaccac ctccaccc tagtgcactc gagtgggtca gaggttaggag	6840
	ggaccggacac agtcgtcctc tttccctggc atactcgacg ttttaggtcag tctcagacg	6900
45	gttgcatact tgggtttct tggtaaccg aaccatggc gttttggc ctgtcagagg	6960
	acttgacgac tagatgaccc gtaggtgatc cgttagaccc cagggactag cgaagtgtcc	7020
	gtcacccataa ccctgtctaa agtgagatgt gtagtcgtca cacgtccgac ttctggacc	7080
50	tcaaataatg acggtcgtta gaatattaga tgagtgcag ccaggaccct gtttcgaccc	7140
	ctagttggcc cggccggcgtg ggtgggtctg cggtcggc gctgggtggtt gggccggcgg	7200
55	gtgctagcgc agcgtcgggg acagggacgc gggtctccgc acggccggc gccggcccc	7260
	gcgtcacgtg tgctcccccg acctgaagcg gacactatacg atgtagaccc gcgggaaccc	7320

5	gccctgaaca ccccaggaag aggacagtga ccaatagtgg gaaatgacgt tggtgtctca	7380
	cttcaagtgc tcctcgctc tcggggggcg catggcgctc cgggtcttgg tcgagatatt	7440
	gctcgagttt gatactgctt ctatcctcat gctacaaaac ctgttctctg caccggccct	7500
	gggactctac ccccctttcg gctttcctt ctggggagtc cttccggaca tggtaacttga	7560
10	cgttttcta ttctaccgccc tccggatgtc actctaaccct tactttccgc tcgcggcctc	7620
	cccgttcccc gtgctaccgg aatggtccc agagtcatgt cggtggttcc tggatgct	7680
	gcgggaagtg tacgtccggc acgggggagc gattgtcggt gagctc	7726
15	<210> 39	
	<211> 7831	
	<212> DNA	
	<213> Artificial Sequence	
20	<220>	
	<223> SFG_4H11-28z forward sequence	
	<400> 39	
	ggatccggat tagtccaatt tggtaaagac aggtatcag tggtccaggc tctagtttg	60
25	actcaacaat atcaccagct gaagcctata gagtacgagc catagataaa ataaaagatt	120
	ttattttagtc tccagaaaaaa ggggggaatg aaagacccca cctgttaggtt tggcaagcta	180
	gcttaagtaa cgccatttttcaaggcatgg aaaaatacat aactgagaat agagaagttc	240
30	agatcaaggt caggaacaga tggAACAGCT gaatatgggc caaacaggat atctgtggta	300
	agcagttcct gccccggctc agggccaaga acagatggaa cagctgaata tggccaaac	360
	aggatatctg tggtaagcag ttctgtcccc ggctcaggc caagaacaga tggtccccag	420
35	atgcggtcca gcccctcagca gtttcttagag aaccatcaga tggccagg gtgccccaaag	480
	gacctgaaat gaccctgtgc cttatttcaa ctaaccaatc agttcgcttc tcgcttctgt	540
	tcgcgcgtt ctgctccccg agctcaataa aagagccac aaccctcac tcggggcgcc	600
40	agtccctccga ttgactgagt cggccggta cccgtgtatc caataaaccc tcttgcagtt	660
	gcatccgact tgggtctcg ctgttccttgg ggggggtctc ctctgagtga ttgactaccc	720
	gtcagcgggg gtctttcaca catgcagcat gtatcaaaat taatttggtt tttttctta	780
45	agtatttaca ttaaatggcc atagtactta aagttacatt ggcttccttgg aaataaacat	840
	ggagtattca gaatgtgtca taaatatttc taattttaag atagtatctc cattggcttt	900
	ctacttttc ttttattttt ttttgcctc tggcttccat ttgttgggtt tggacttgc	960
50	ttgtttgttt gttgggtgg tggtaattt tttttaaag atcctacact atagtcaag	1020
	ctagactatt agctactctg taaccctagg tgaccttggaa gtcatggta gcctgctgtt	1080
55	ttagccttcc cacatctaag attacaggta tgagctatca tttttggat attgattgat	1140
	tgattgattg atgtgtgtgt gtgtgattgt gtttggatgt gtgactgtga aatgtgtgt	1200

	atgggtgtgt gtgaatgtgt gtatgtatgt gtgtgtgtga gtgtgtgtgt gtgtgtgtgc	1260
	atgtgtgtgt gtgtgactgt gtctatgtgt atgactgtgt gtgtgtgtgt gtgtgtgtgt	1320
5	gtgtgtgtgt gtgtgtgtgt gttgtaaaaa aatattctat gtagtgaga gccaacgctc	1380
	cggtcaggt gtcaggttgg ttttgagac agagtcttc acttagcttgaattcactg	1440
	gccgtcggtt tacaacgtcg tgactggaa aaccctggcg ttacccaact taatcgccct	1500
10	gcagcacatc ccccttcgc cagctggcgt aatagcgaag aggccgcac cgatcgccct	1560
	tcccaacagt tgcgcagcct gaatggcgaa tggcgccgtga tgccgttatt tctccttacg	1620
15	catctgtcggtgtatcaca ccgcataatgg tgactctca gtacaatctg ctctgatgcc	1680
	gcatagttaa gccagccccg acaccgcaca acacccgctg acgcgcctg acgggcttgt	1740
	ctgctcccggtatccgcttacgacaagct gtgaccgtct ccggagctg catgtgtcag	1800
20	aggtttcac cgtcatcacc gaaacgcgcg atgacgaaag ggcctgtga tacgcctatt	1860
	tttataggtt aatgtcatga taataatggt ttcttagacg tcaggtggca ctttcgggg	1920
	aaatgtgcgc ggaaccccta tttgttatt tttctaaata cattcaaata tgtatccgt	1980
25	catgagacaa taaccctgat aaatgcttca ataatattga aaaaggaaga gtatgagttat	2040
	tcaacatttc cgtgtcgccc ttattccctt tttgcggca tttgccttc ctgttttgc	2100
	tcacccagaa acgctggtga aagtaaaaga tgctgaagat cagttgggtg cacgagtggg	2160
30	ttacatcgaa ctggatctca acagcgtaa gatcctttag agtttcgccc cggaaacg	2220
	ttttccaaatg atgagcactt ttaaaggctt gctatgtggc gcggtattat cccgtattga	2280
	cgccgggcaa gagcaactcg gtcgcgcac acactattct cagaatgact tggttgagta	2340
35	ctcaccagtc acagaaaagc atcttacgga tggcatgaca gtaagagaat tatgcagtgc	2400
	tgccataacc atgagtgata acactgcggc caacttactt ctgacaacga tcggaggacc	2460
40	gaaggagcta accgctttt tgcacaacat gggggatcat gtaactcgcc ttgatcggttgc	2520
	ggaaccggag ctgaatgaag ccataccaaa cgacgagcgt gacaccacga tgcctgttagc	2580
	aatggcaaca acgttgcgc aactattaac tggcgacta cttactcttag cttccggca	2640
45	acaattaata gactggatgg aggccgataa agttgcagga ccacttctgc gtcggccct	2700
	tccggctggc tggttattt ctgataaattc tggagccgggt gagcgtgggt ctgcgggtat	2760
	cattgcagca ctggggccag atggtaagcc ctcccgatc gtagttatct acacgacggg	2820
50	gagtcaggca actatggatg aacgaaatag acagatcgct gagataggtg cctcactgtat	2880
	taagcattgg taactgtcag accaagttta ctcataatata cttagattt atttaaaact	2940
	tcatttttaa tttaaaagga tcttaggtgaa gatcctttt gataatctca tgaccaaaat	3000
55	cccttaacgt gagtttcgt tccactgagc gtcagacccc gtagaaaaga tcaaaggatc	3060

	ttcttgagat ccttttttc tgcgctaat ctgctgcttg caaacaaaaa aaccaccgct	3120
	accagcggtg gtttggttgc cgatcaaga gctaccaact cttttccga aggttaactgg	3180
5	cttcagcaga gcgcagatac caaatactgt ctttctagtg tagccgtgt taggccacca	3240
	cttcaagaac tctgttagcac cgctacata cctcgctctg ctaatcctgt taccagtggc	3300
10	tgctgccagt ggcgataagt cgtgtttac cgggttggac tcaagacgt agttaccgga	3360
	taaggcgcag cggtcgggct gaacgggggg ttcgtgcaca cagccagct tggagcgaac	3420
	gacctacacc gaactgagat acctacagcg tgagcattga gaaagcgcca cgcttccgaa	3480
15	agggagaaaag gcggacaggt atccgtaag cggcagggtc ggaacaggag agcgcacgag	3540
	ggagcttcca gggggaaacg cctggtatct ttatagtcct gtcgggttcc gccacctctg	3600
	acttgagcgt cgattttgt gatgctcgta agggggggcgg agcctatgga aaaacgccag	3660
20	caacgcggcc ttttacggt tctggcctt ttgctggcct tttgctcaca ttttcttcc	3720
	tgcgttatcc cctgattctg tggataaccg tattaccgccc tttgagttagtgcataaccgc	3780
	tcgcccgcagc cgaacgaccg agcgcagcga gtcagttagc gaggaagcgg aagagcgccc	3840
25	aatacgcaaa ccgcctctcc ccgcgcgttg gccgattcat taatgcagct ggcacgacag	3900
	gtttccgcac tggaaagcgg gcaatgcgg caacgcattt aatgtgagtt agtcactca	3960
	ttaggcaccc caggcttac actttatgct tccggctcgat atgttgtgtg gaatttgttag	4020
30	cgatataacaa ttccacacag gaaacagcta tgaccatgat tacgccaagc tttgctctta	4080
	ggagtttcct aatacatccc aaactcaa atataaagca tttgacttgt tctatgccct	4140
	agggggcggg gggaaagctaa gccagcttt ttaacattt aaaatgttaa ttccatttttta	4200
35	aatgcacaga ttttttatt tcataagggt ttcaatgtgc atgaatgctg caatattcc	4260
	gttaccaaag ctatgtataaa taaaataga taaacgtggaa aattacttag agttctgtc	4320
	atataacgttt ctttcctcag ttgacaacat aaatgcgtcg ctgagcaagc cagtttgcatt	4380
40	ctgtcaggat caatttccca ttatgccagt catattaatt actatgtcaat tagttgattt	4440
	ttattttga catatacatg tgaatgaaag accccacctg taggtttggc aagctagctt	4500
	aagtaacgcc attttgcag gcatggaaaa atacataact gagaatagaa aagttcagat	4560
45	caaggtcagg aacagatggaa acagctgaat atggccaaa caggatctgt gtggtaagca	4620
	gttcctgccc cggctcaggc ccaagaacag atgaaacagc tgaatatggg ccaaacaggg	4680
	tatctgtggt aagcagttcc tgccccggct cagggccaaag aacagatggt ccccgatgc	4740
50	ggtccagccc tcagcagttt ctatgtacc atcagatgtt tccagggtgc cccaggacc	4800
	tgaaatgacc ctgtgcctt tttgaactaa ccaatcagtt cgcttctcgat ttctgttcgc	4860
55	gctgttatgc tccccgagct caataaaaga gcccacaacc cctcactcggt ggcgcccagtc	4920
	ctccgattga ctgagtcgccc cgggtacccg tttatccaaat aaacccttgc gcaatgtgc	4980

	ccgacttgtg gtctcgctgt tccttggag ggtctcctct gagtgattga ctacccgtca	5040
	gcgggggtct ttcatttggg ggctcgcccg ggatcggag acccctgccc agggaccacc	5100
5	gaccaccac cgggaggtaa gctggccagc aacttatctg tgtctgtccg attgtctagt	5160
	gtctatgact gattttatgc gcctgcgtcg gtactagtta gctaactagc tctgtatctg	5220
	gcggaccgt ggtggaactg acgagttcgg aacacccggc cgcaaccctg ggagacgtcc	5280
10	cagggacttc gggggccgtt tttgtggccc gacctgagtc ctaaaatccc gatcgtttag	5340
	gactcttgg tgcacccccc ttagaggagg gatatgtggt tctggtagga gacgagaacc	5400
15	taaaacagtt cccgcctccg tctgaatttt tgcttgcgtt ttgggaccga agccgcgcg	5460
	cgcgtctgt ctgctgcaga atcgttctgt gttgtctctg tctgactgtg tttctgtatt	5520
	tgtctgaaaa tatgggcccgg ggctagactg ttaccactcc cttaaatggt accttaggtc	5580
20	actggaaaga tgcgagcgg atcgctcaca accagtcggt agatgtcaag aagagacgtt	5640
	gggttacatt ctgctctgca gaatggccaa cctttaacgt cggatggccg cgagacggca	5700
	cctttaaccg agacccatc acccaggtta agatcaaggt cttttcacct ggccgcgt	5760
25	gacacccaga ccaggtcccc tacatcgta cctggaaagc cttggctttt gaccccccctc	5820
	cctgggtcaa gccctttgta caccctaagc ctccgcctcc tttcctcca tccggcccg	5880
	ctctccccct tgaacctcct cgttcgaccc cgcctcgatc ctcccttat ccagccctca	5940
30	ctccttcctt aggccccc atatggccat atgagatctt atatggggca ccccccggcc	6000
	ttgtaaactt ccctgaccct gacatgacaa gagttactaa cagccctct ctccaagctc	6060
35	acttacaggc tctctactta gtccagcacg aagtctggag acctctggcg gcagcctacc	6120
	aagaacaact ggaccgaccg gtggcaccc acccttaccg agtcggcgac acagtgtgg	6180
	tccgcccaca ccagactaag aacctagaac ctcgctggaa aggacccctac acagtcctgc	6240
40	tgaccacccc caccgcctc aaagtagacg gcatcgacgc ttggatacac gccgcccacg	6300
	tgaaggctgc cgaccccccgg ggtggaccat cctctagact gccatggctc tcccaactgac	6360
	tgccctactg cttcccccactg cgcttctcct gcatgcagag gtgaagctgc aggagtcagg	6420
45	gggaggcttc gtgaaggctg gagggtccct caaaatctcc tgtgcagcct ctggattcac	6480
	tttcagtagc tatgccatgt cctgggttcg cctgagtcgg gagatgaggc tggagtggt	6540
	cgcaaccatt agcagtgcgt gtggttacat cttctattct gacagtgtgc agggacgatt	6600
50	caccatttcc agagacaatg ccaagaacac cctgcacctg caaatggca gtctgaggc	6660
	tggggacacg gccatgtatt actgtgcaag gcagggattt ggtaactacg gtgattacta	6720
55	tgctatggac tactggggcc aagggaccac ggtcaccgtc tcctcaggtg gaggtggatc	6780
	agggtggaggt ggatctggtg gaggtggatc tgacatttag ctcacccagt ctccatcctc	6840

5	cctggctgtg tcagcaggag agaaggcac tatgagctgc aaatccagtc agagtctgct	6900
	caacagtaga acccgaaaga accagttggc ttggtaccag caaaaaccag gacagtctcc	6960
10	tgaactgctg atctactggg catccactag gcaatctgga gtccctgatc gcttcacagg	7020
	cagtggatct gggacagatt tcactctcac catcagcagt gtgcaggctg aagacctggc	7080
15	agtttattac tgccagcaat cttataatct actcacgttc ggtcctggga ccaagctgga	7140
	gatcaaacgg gcggccgcaa ttgaagttat gtatccctcct cttacctag acaatgagaa	7200
20	gagcaatgga accattatcc atgtgaaagg gaaacacctt tgtccaagtc ccctatttcc	7260
	cggaccttct aagccctttt gggtgctggt ggtgggtggt ggagtccctgg cttgctata	7320
25	cttgctagta acagtggcct ttattatccc ctgggtgagg agtaagagga gcaggctcct	7380
	gcacagtgac tacatgaaca tgactccccg cccccccggg cccacccgca agcattacca	7440
30	gccctatgcc ccaccacgca acttcgcagc ctatcgctcc agagtgaagt tcagcaggag	7500
	cgcagagccc cccgcgtacc agcagggcca gaaccagctc tataacgaga tcaatctagg	7560
	acgaagagag gagtacgatg tttggacaa gagacgtggc cgggaccctg agatgggggg	7620
35	aaagccgaga aggaagaacc ctcaggaagg cctgtacaat gaactgcaga aagataagat	7680
	ggcggaggcc tacagtgaga ttggatgaa aggcgagcgc cggagggca agggcacga	7740
	tggccttac cagggtctca gtacagccac caaggacacc tacgacgccc ttcacatgca	7800
	ggccctgccc cctcgctaac agccactcga g	7831
	<210> 40	
	<211> 7831	
	<212> DNA	
40	<213> Artificial Sequence	
	<220>	
	<223> SFG_4H11-28z reverse sequence	
45	 	
	<400> 40	
	cctaggccta atcaggttaa acaatttctg tcctatagtc accaggtccg agatcaaaac	60
	tgagtttta tagtggtcga ctccggatata ctcatgctcg gtatctatcc tattttctaa	120
50	aataaatcag aggtcttttt ccccccttac tttctgggtt ggacatccaa accgttcgat	180
	cgaattcatt gcggtaaaac gttccgtacc ttttatgta ttgactctta tctcttcaag	240
	tctagttcca gtccttgcct accttgcga cttatacccg gtttgccta tagacaccat	300
	tcgtcaagga cggggccgag tcccggtct tgcgtacattt gtcgacttat acccggtttg	360
55	tcctatagac accattcgca aaggacgggg ccgagtcctt gttcttgcct accaggggtc	420
	tacgccaggt cgggagtcgt caaagatctc ttggtagtct acaaaggatcc cacgggttc	480
	ctggacttta ctgggacacg gaataaactt gattggtagtcaagcgaag agcgaagaca	540
	agcgcgccaa gacgaggggc tcgagttatt ttctcggttg ttgggagtg agccccgcgg	600

	tcaggaggct aactgactca gcgggcccatt gggcacatag gttatttggg agaacgtcaa	660
5	cgtaggctga acaccagago gacaaggaac cctcccagag gagactcaact aactgatggg	720
	cagtcgcccc cagaaaagtgt gtacgtcgta catagttta attaaaccaa aaaaaagaat	780
	tcataaaatgt aatttaccgg tatcatgaat ttcaatgtaa ccgaaggaac tttatttgtaa	840
10	cctcataagt cttacacagt atttataaag attaaaatttc tatcatagag gtaaccgaaa	900
	gatgaaaaag aaaataaaaaa aaaacaggag acagaaggta aacaacaaca acaacaaaca	960
	aacaaacaaa caaccaacca accaattaaa aaaaaatttc taggatgtga tatcaagttc	1020
15	gatctgataa tcgatgagac attgggtccc actggaaactt cagtagccat cggacgacaa	1080
	aatcggaagg gtgttagattc taatgtccat actcgatagt aaaaaccata taactaacta	1140
	actaactaac tacacacacaca cacactaaca caaacacaca cactgacact tttacacacaca	1200
20	tacccacacaca cacttacacaca catacataaca cacacacacact cacacacacaca cacacacacg	1260
	tacacacacaca cacactgaca cagatacaca tactgacaca cacacacacaca cacacacacaca	1320
	cacacacacaca cacacacacaca caacactttt ttataagata ccatcaactt cggttgcgag	1380
25	gccgagtcca cagtccaaacc aaaaactctg tctcagaaag tgaatcgaac cttaagtgac	1440
	cggcagcaaa atgttgcagc actgaccctt ttgggaccgc aatgggttga attagcggaa	1500
	cgtcgtgttag gggaaagcg gtcgaccgca ttatcgcttc tccggcgtg gctagcggga	1560
30	agggttgtca acgcgtcgga cttaccgctt accgcggact acgcataaaa agaggaatgc	1620
	gtagacacgc cataaaagtgt ggcgtataacc acgtgagagt catgttagac gagactacgg	1680
	cgtatcaatt cggcggggc tgtggcggt tgtggcgac tgccggac tgcccaaca	1740
35	gacgagggcc gtaggcgaat gtctgttcga cactggcaga ggcctcgac gtacacagt	1800
	tccaaaagtgc cagactgtgg ctttgcgcgc tactgcttc cggagcact atgcggataa	1860
40	aaatatccaa ttacagtact attattacca aagaatctgc agtccaccgt gaaaagcccc	1920
	tttacacgcg ccttggggat aaacaaataa aaagatttat gtaagtttat acataggcga	1980
	gtactctgtt attgggacta tttacgaagt tattataact tttccttct catactcata	2040
45	agttgtaaag gcacagcggg aataaggaa aaaacgcgtt aaaacggaag gacaaaaacg	2100
	agtgggtctt tgcgaccact ttcattttct acgacttcta gtcaacccac gtgctcaccc	2160
	aatgttagctt gaccttagagt tgtcgccatt ctaggaactc tcaaaaagcgg ggcttcttgc	2220
50	aaaaggttac tactcgtgaa aatttcaaga cgatacaccg cgccataata gggcataact	2280
	gcggcccggtt ctcgttgago cagcggcgta tgtgataaga gtcttactga accaactcat	2340
55	gagtggtcag tgtctttcg tagaatgcct accgtactgt cattcttta atacgtcacg	2400
	acggtattgg tactcactat tgtgacgccc gttgaatgaa gactgttgct agcctcctgg	2460

	cttcctcgat tggcgaaaaa acgtgttga ccccctagta cattgagcg aactagcaac	2520
	ccttggcctc gacttacttc ggtatggttt gctgctcgca ctgtggtgc acggacatcg	2580
5	ttaccgttgt tgcaacgcgt ttgataattg accgcttgat gaatgagatc gaagggccgt	2640
	tgttaattat ctgacacctacc tccgcctatt tcaacgtcct ggtgaagacg cgagccggga	2700
	aggccgaccg accaaataac gactatttag acctcgccca ctcgcaccca gagcgccata	2760
10	gtaacgtcgt gaccccggtc taccattcg gagggcatacg catcaataga tgtgctgccc	2820
	ctcagtcgt tgatacctac ttgctttatc tgtctagcga ctctatccac ggagtgacta	2880
	attcgtaacc attgacagtc tggttcaa at gagtatata gaaatcta ac taaat tttga	2940
15	agtaaaaatt aaat tttcct agatccactt ctaggaaaaaa ctattagatc actggtttta	3000
	gggaattgca ctcaaaagca aggtgactcg cagtctgggg catctttct agtttcctag	3060
20	aagaactcta ggaaaaaaag acgcgcattt aacgcacgaac gtttggggg ttggggcga	3120
	tggtcgcccac caaacaacacg gcttagttct cgatggttga gaaaaaggct tccattgacc	3180
	gaagtcgtct cgcgtctatg gtttatgaca ggaagatc ac atcggcatca atccgggtgt	3240
25	gaagttcttg agacatcg tgcggatgtat ggagcgagac gattaggaca atggtcacccg	3300
	acgacggtca ccgcatttca gcacagaatg gcccaacctg agttctgcta tcaatggcct	3360
	attccgcgtc gcaagccccga cttggccccc aagcacgtgt gtcgggtcga acctcgcttgc	3420
30	ctggatgtgg ctgactcta tggatgtcgc actcgtaact ctttcgcgtt gcaaggggct	3480
	tcccttttc cgcctgtcca taggcattt cccgtcccaag cttgtcctc tcgcgtgctc	3540
	cctcgaaggt cccctttgc ggaccataga aatatcagga cagccaaag cggggagac	3600
35	tgaactcgca gctaaaaaca ctacgagcag tccccccgac tcggataacct ttttgcggc	3660
	gttgcgcggg aaaaatgcca aggaccggaa aacgaccggaa aaacgagtgt acaagaaagg	3720
	acgcaatagg ggactaagac acctattggc ataatggcgg aaactcactc gactatggcg	3780
40	agcggcgctcg gcttgcgtggc tcgcgtcgct cagtcactcg ctcctcgac ttctcgccgg	3840
	ttatgcgttt ggccggagagg ggccgcacac cggctaagta attacgtcga ccgtgctgctc	3900
	caaaggggctg accttcgccc cgtcactcg cttgcgttta ttacactcaa tcgagtgagt	3960
45	aatccgtgg gtcggaaatg tgaaatacga aggccgagca tacaacacac cttaacactc	4020
	gcctattgtt aaagtgtgtc cttgtcgat actggacta atgcgggtcg aaacgagaat	4080
	cctcaaagga ttatgttaggg tttgagttta tatatttcgt aaactgaaca agatacggga	4140
50	tccccccccc cccttcgatt cggcgaaaaaa aaattgtaaa ttttacaatt aaggtaaaat	4200
	ttacgtgtct acaaaaaataa agtattccca aagttacacg tacttacgac gttataagga	4260
	caatggtttc gatcatattt attttatct atttgcaccc ttaatgaatc tcaaagacag	4320
55	taattgcaaa ggaaggagtc aactgttga tttacgcgac gactcggtcg gtcaaacgt	4380

	gacagtccta	gttaaagggt	aatacggtca	gtataattaa	tgatcagtta	atcaactaaa	4440
	aataaaaaact	gtatatgtac	acttactttc	tggggtggac	atccaaacccg	ttcgatcgaa	4500
5	ttcattgcgg	taaaacgttc	cgtacctttt	tatgtattga	ctcttatctt	ttcaagtctta	4560
	gttccagtc	ttgtctacct	tgtcgactta	tacccggttt	gtcctataga	caccattcgt	4620
	caaggacggg	gccgagtc	ggttctgtc	taccttgc	acttataccc	ggtttgtcct	4680
10	atagacacca	ttcgtcaagg	acggggccga	gtcccggttc	ttgtctacca	ggggtctacg	4740
	ccaggtcggg	agtcgtcaaa	gatctttgg	tagtctacaa	aggtcccacg	gggttcctgg	4800
15	actttactgg	gacacggaat	aaacttgatt	ggttagtcaa	gcgaagagcg	aagacaagcg	4860
	cgcgaatacg	aggggctcga	gttattttct	cgggtgttgg	ggagtgagcc	ccgcggcgtcag	4920
	gaggctaact	gactcagcgg	gcccatgggc	acataggta	tttgggagaa	cgtcaacgta	4980
20	ggctgaacac	cagagcgaca	aggaaccctc	ccagaggaga	ctcactaact	gatgggcagt	5040
	cgcccccaga	aagtaaacc	ccgagcaggc	cctagccctc	tggggacggg	tccctggtgg	5100
	atgggtggtg	gccttccatt	cgaccggc	ttgaatagac	acagacaggc	taacagatca	5160
25	cagatactga	ctaaaatacg	cggacgc	catgatcaat	cgattgatcg	agacatagac	5220
	cgcctggca	ccaccc	tgctcaagcc	ttgtggccg	gcgttggac	cctctgcagg	5280
	gtccctgaag	cccccgca	aaacaccggg	ctggactcag	gattttaggg	ctagcaaatc	5340
30	ctgagaaacc	acgtgggggg	aatctctcc	ctatacacca	agaccatcct	ctgctcttgg	5400
	attttgtcaa	gggcggaggc	agacttaaaa	acgaaagcca	aaccctggct	tcggcgcggc	5460
	gcgcagaaca	gacgacgtc	tagcaagaca	caacagagac	agactgacac	aaagacataa	5520
35	acagactttt	ataccgggc	ccgatctgac	aatggtgagg	gaattcaa	tggaaatccag	5580
	tgaccttct	acagctcgcc	tagcgagtgt	tggtcagcca	tctacagtcc	ttctctgcaa	5640
40	cccaatggaa	gacgagacgt	cttaccgg	ggaaattgca	gcctaccggc	gctctgcgt	5700
	ggaaattggc	tctggagtag	tgggtccaa	tctagttcca	gaaaagtgg	ccgggcgtac	5760
	ctgtgggtct	ggtccagggg	atgtactc	ggacccttc	gaaccgaaaa	ctggggggag	5820
45	ggacc	cgaaaacat	gtgggattcg	gaggcggagg	agaaggaggt	aggcggggca	5880
	gagagggg	acttggagga	gcaagctgg	gcggagctag	gagggaaata	gtcggggagt	5940
	gaggaagaga	tccgcgggg	tataccgta	tactctagaa	tatacccg	ggggcgggg	6000
50	aacatttcaa	gggactgg	ctgtactgtt	ctcaatgatt	gtcggggaga	gaggttcgag	6060
	tgaatgtcc	agagatgaat	caggtcgtc	ttcagac	tggagaccgc	cgtcggatgg	6120
	ttcttgtga	cctggctggc	caccatggag	tggaaatggc	tcagccgctg	tgtcacaccc	6180
55	aggcggctgt	ggtctgattc	ttggatctt	gagcgac	ttctggaatg	tgtcaggacg	6240

actgggtgggg	gtggcgggag	tttcatctgc	cgtacgtcg	aacctatgtg	cgccgggtgc	6300	
acttccgacg	gctggggccc	ccacacctggta	ggagatctga	cggtaccgag	agggtcactg	6360	
5	acgggatgac	gaaggggatc	gcgaagagga	cgtacgtctc	cacttcgacg	tcctcagtc	6420
ccctccgaag	cacttcggac	ctcccaggga	gtttcagagg	acacgtcgg	gacctaagt	6480	
10	aaagtcatcg	atacggtaca	ggacccaagc	ggactcaggc	ctctactccg	acctcaccca	6540
gcgttggtaa	tcgtcacgac	caccaatgt	gaagataaga	ctgtcacacg	tccctgctaa	6600	
15	gtggtaaagg	tctctgttac	ggttcttgt	ggacgtggac	gtttacccgt	cagactccag	6660
acccctgtgc	cggtacataa	tgacacgttc	cgtccctaaa	ccattgatgc	cactaatgt	6720	
20	acgataacctg	atgaccccg	ttccctggtg	ccagtggcag	aggagtccac	ctccacctag	6780
tccacctcca	cctagaccac	ctccacctag	actgttaactc	gagtgggtca	gaggtaggag	6840	
25	ggaccgacac	agtcgtcctc	tattccagt	atactcgacg	tttaggtcag	tctcagacga	6900
gttgcacat	tggcatttct	tggtcaaccg	aaccatggtc	gtttttggtc	ctgtcagagg	6960	
acttgcac	tagatgaccc	gttagtgatc	cgttagaccc	cagggactag	cgaagtgtcc	7020	
25	gtcacctaga	ccctgtctaa	agtgagagtg	gtagtcgtca	cacgtccgac	ttctggaccg	7080
tcaaataatg	acggtcgta	gaatattaga	tgagtcaag	ccaggaccct	gttgcaccc	7140	
30	ctagttgcc	cgccggcg	aacttcaata	cataggagga	ggaatggatc	tgttactctt	7200
ctcgttacct	tggtaatagg	tacactttcc	cttgtggaa	acaggttcag	gggataaagg	7260	
gcctggaga	ttcgggaaaa	cccacgacca	ccaccaacca	cctcaggacc	gaacgatata	7320	
35	gaacgatcat	tgtcaccgga	aataataaaa	gacccactcc	tcattctcct	cgtccgagga	7380
cgtgtcactg	atgtacttgt	actgaggggc	ggcggggccc	gggtgggcgt	tcgtaatgg	7440	
40	cgggatacgg	ggtgtgcgc	tgaagcgtcg	gatagcgagg	tctcaattca	agtcgtcctc	7500
gcgtctcgg	ggcgcacatgg	tgcgtccgg	cttggtcgag	atattgctcg	agttagatcc	7560	
45	tgcttctc	ctcatgctac	aaaacctgtt	ctctgcacccg	gccctggac	tctacccccc	7620
tttcggatct	tccttcttgg	gagtccttcc	ggacatgtta	cttgacgtct	ttctattcta	7680	
ccgcctccgg	atgtcactct	aaccctactt	tccgctcgag	gcctcccccgt	tccccgtgt	7740	
50	accggaaatg	gtcccagagt	catgtcggtg	gttcctgtgg	atgctgcggg	aagtgtacgt	7800
ccgggacggg	ggagcgtattg	tcggtgagct	c			7831	

Claims

55 1. A single chain variable fragment (scFv) comprising the CDRs of a VH chain sequence encoded by SEQ ID NO:06 and of a VL chain sequence encoded by SEQ ID NO:07.

2. A scFv comprising a variable heavy ("VH") chain and a variable light ("VL") chain, wherein

(a) all or substantially all of the hypervariable loops of the VH chain and VL chain correspond to those of a nonhuman immunoglobulin, wherein the nonhuman immunoglobulin comprises a VH chain sequence encoded by SEQ ID NO: 06 and a VL chain sequence encoded by SEQ ID NO: 07; and
5 (b) all or substantially all of the framework region residues of the VH chain and VL chain are those of a human immunoglobulin sequence.

3. A scFv comprising a VH chain sequence encoded by SEQ ID NO:06 and a VL chain sequence encoded by SEQ ID NO:07.
- 10 4. The scFv of claim 2, wherein the VH chain and the VL chain are of a humanized antibody or antigen-binding fragment thereof, wherein the humanized antibody or antigen-binding fragment thereof is made by substituting the complementarity determining regions of an antibody comprising a VH chain sequence encoded by SEQ ID NO:06 and a VL chain sequence encoded by SEQ ID NO:07 into a human framework domain, wherein the humanized antibody or antigen-binding fragment thereof specifically binds to the MUC16 polypeptide of SEQ ID NO:02 or to an antigenic portion thereof.
- 15 5. The scFv of claim 1, further comprising human framework domain residues.
- 20 6. The scFv of claim 5, wherein the scFv comprises a framework domain in which human framework domain residues are replaced by corresponding nonhuman residues.
7. The scFv of any one of claims 1 to 6, wherein the scFv specifically binds to the MUC16 polypeptide of SEQ ID NO:02 or to an antigenic portion thereof.
- 25 8. A chimeric antigen receptor (CAR) comprising the scFv of any one of claims 1 to 7.
9. The CAR of claim 8, further comprising a transmembrane domain and a T cell receptor ζ chain cytoplasmic signaling domain.
- 30 10. The CAR of claim 9, wherein the scFv is fused to the transmembrane domain, and wherein the transmembrane domain is fused to the T cell receptor ζ chain cytoplasmic signaling domain.
11. The CAR of claim 9 or 10, further comprising a cytoplasmic signaling domain of a co-stimulatory receptor, wherein the co-stimulatory receptor comprises CD28, 4-1BB or OX40.
- 35 12. The CAR of any one of claims 8 to 11, comprising in amino- to carboxy-terminal order, the scFv, a human CD28 transmembrane domain and cytoplasmic signaling domain, and a CD3-zeta signaling domain.
- 40 13. The CAR of any one of claims 8 to 12, comprising in amino- to carboxy-terminal order: a human CD8 leader peptide, the scFv comprising the VH chain sequence encoded by SEQ ID NO:06 and the VL chain sequence encoded by SEQ ID NO:07, a human CD8 hinge domain, a human CD8 transmembrane domain, and a CD3-zeta signaling domain.
- 45 14. The CAR of any one of claims 8 to 12, consisting essentially of, in amino- to carboxy-terminal order: a human CD8 leader peptide, the scFv comprising the VH chain sequence encoded by SEQ ID NO:06 and the VL chain sequence encoded by SEQ ID NO:07, a human CD8 hinge domain, a human CD8 transmembrane domain, and a CD3-zeta signaling domain.
- 50 15. The CAR of any one of claims 8 to 12, comprising in amino- to carboxy-terminal order: a human CD8 leader peptide, the scFv comprising the VH chain sequence encoded by SEQ ID NO:06 and the VL chain sequence encoded by SEQ ID NO:07, a human CD28 transmembrane domain, a human CD28 intracellular domain, and a CD3-zeta signaling domain.
- 55 16. The CAR of any one of claims 8 to 12, consisting essentially of, in amino- to carboxy-terminal order: a human CD8 leader peptide, the scFv comprising the VH chain sequence encoded by SEQ ID NO:06 and the VL chain sequence encoded by SEQ ID NO:07, a human CD28 transmembrane domain, a human CD28 intracellular domain, and a CD3-zeta signaling domain.

17. The CAR of any one of claims 8 to 12, comprising in amino- to carboxy-terminal order: a human CD8 leader peptide, a VH chain sequence encoded by SEQ ID NO:06, a spacer encoded by SEQ ID NO:34, a VL chain sequence encoded by SEQ ID NO:07, a human CD8 hinge domain, a human CD8 transmembrane domain, and a CD3-zeta signaling domain.

5

18. The CAR of any one of claims 8 to 12, comprising in amino- to carboxy-terminal order: a human CD8 leader peptide, a VH chain sequence encoded by SEQ ID NO:06, a spacer encoded by SEQ ID NO:34, a VL chain sequence encoded by SEQ ID NO:07, a human CD28 transmembrane domain, a human CD28 intracellular domain, and a CD3-zeta signaling domain.

10

19. A T cell expressing the CAR of any one of claims 8 to 18.

20. The T cell of claim 19 for use in treating a cancer in which MUC16 is expressed.

15 21. The T cell for use of claim 20, wherein the T cell is for administration to the subject intraperitoneally or intravenously.

22. The T cell for use of claim 20 or 21, wherein the cancer is ovarian cancer.

20

25

30

35

40

45

50

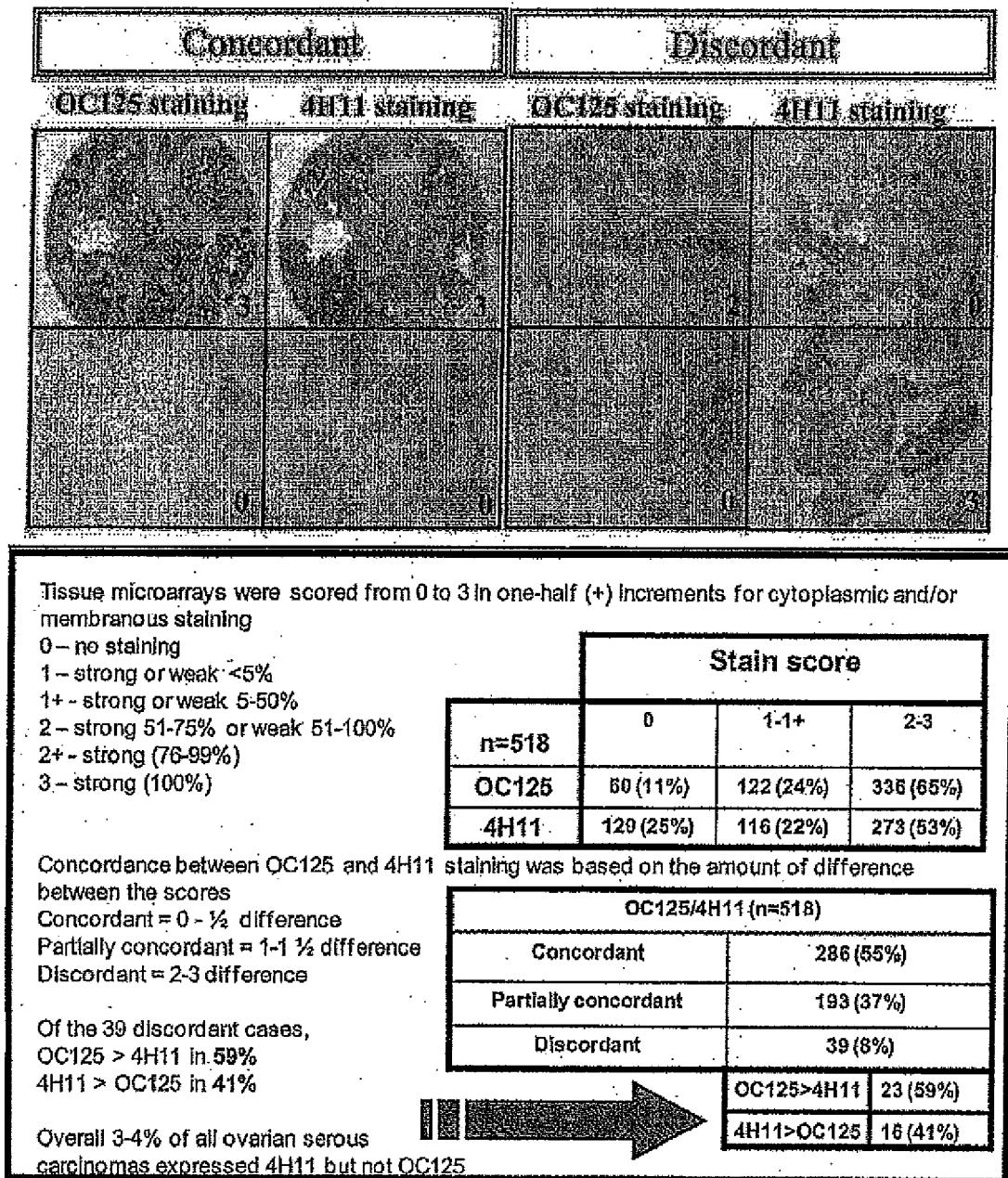
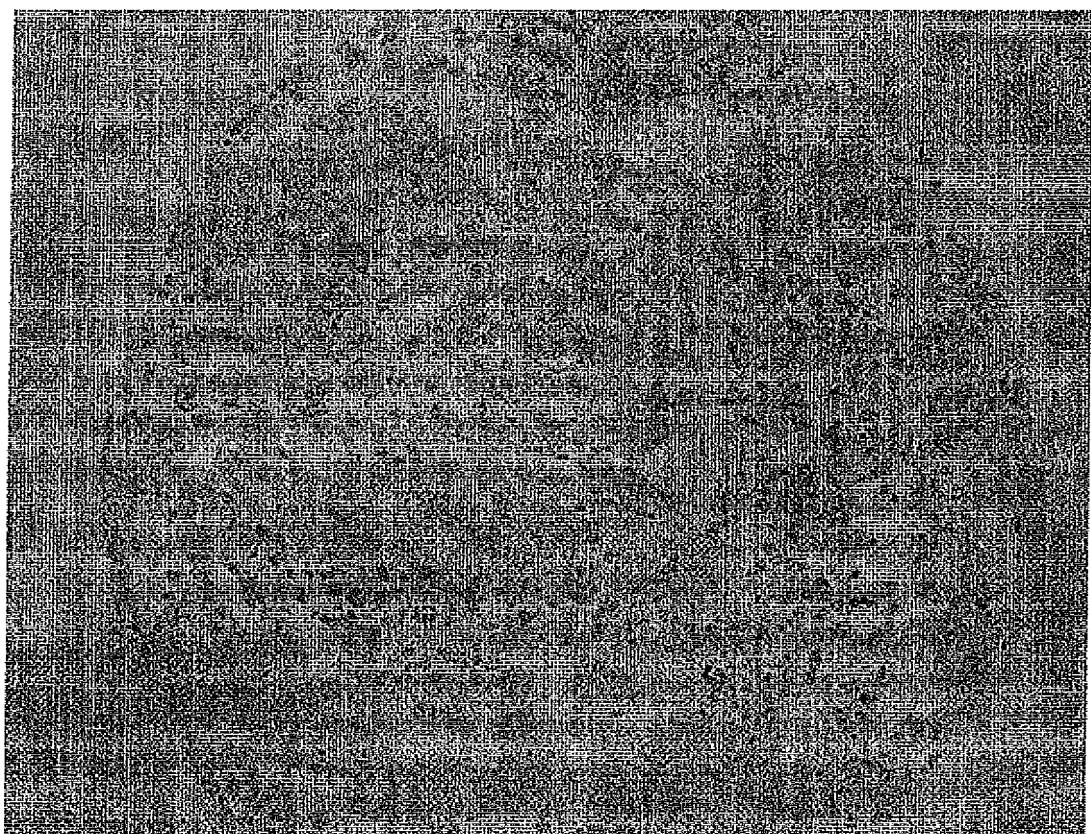
55

Peptide 1 near Cleavage Site:
NFSPLARRVDRVAIYEE (SEQ ID NO:01)

Peptide 2 before Transmembrane:
TLDRSSVLVDGYSPNRNE (SEQ ID NO:02)

Peptide 3 inside Transmembrane:
CGVLVTTRRRKKEGEYNVQQQ (SEQ ID NO:03)

FIGURE 1

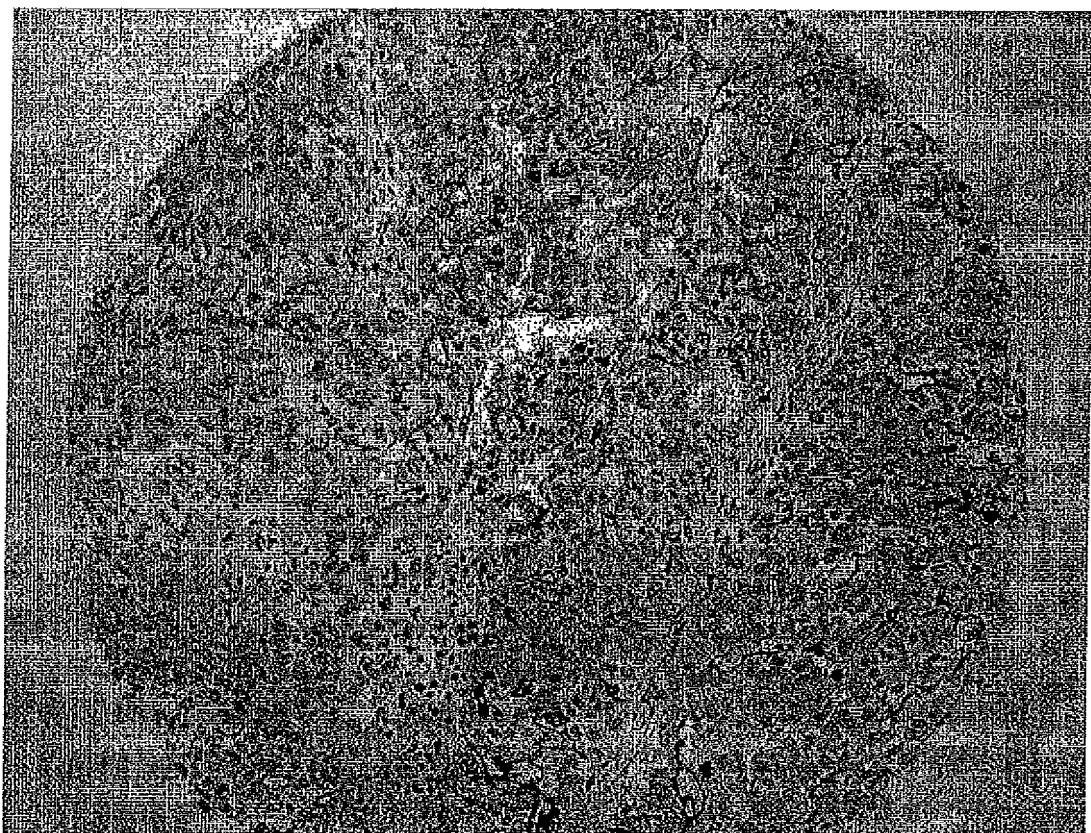
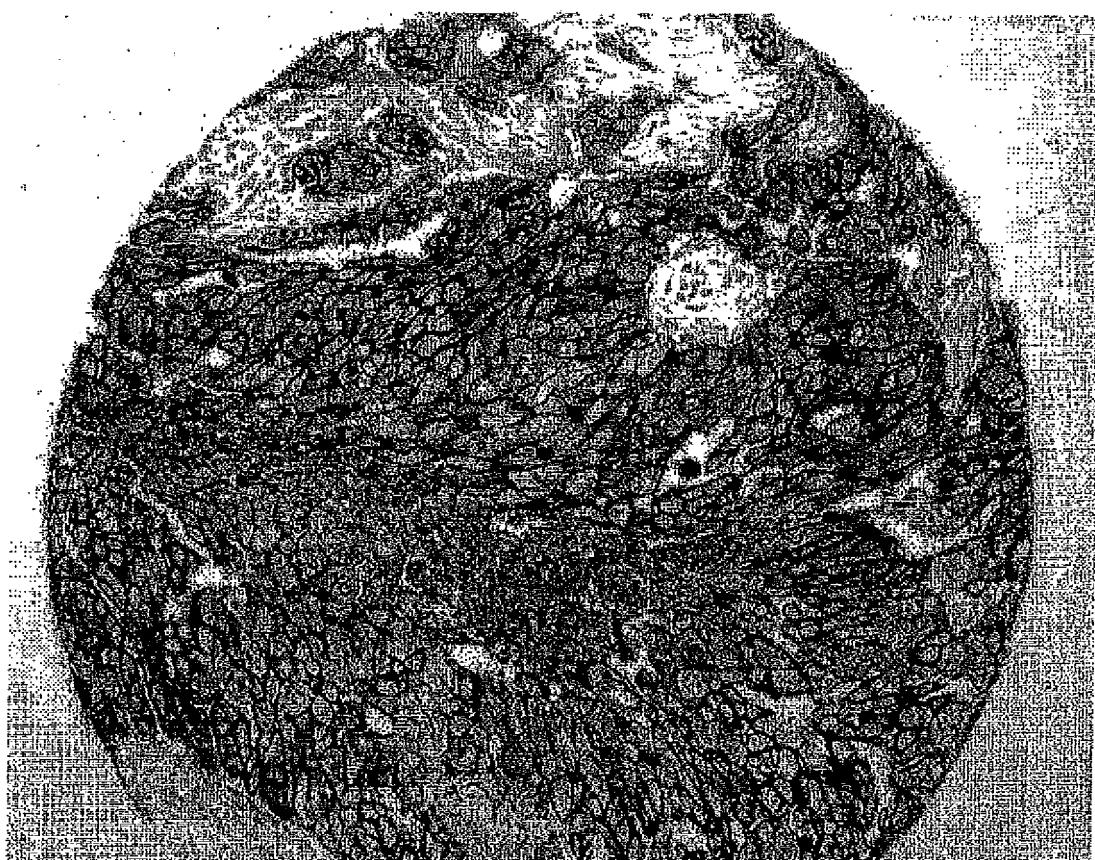
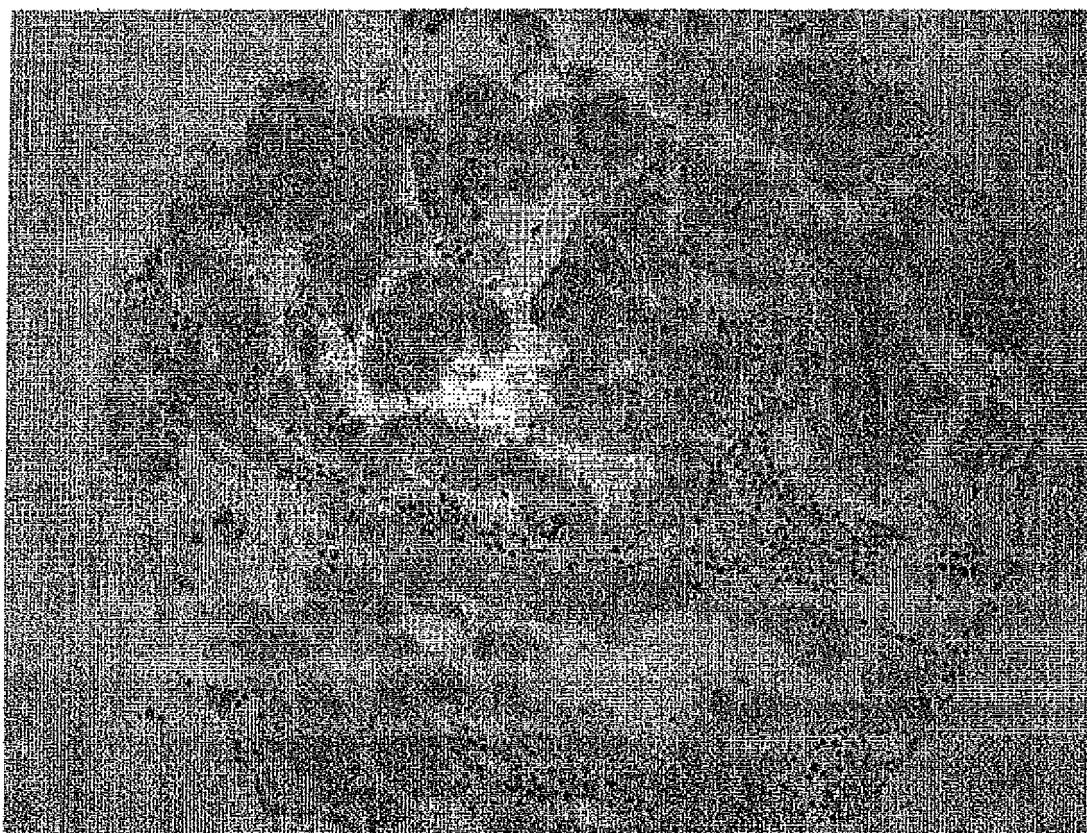
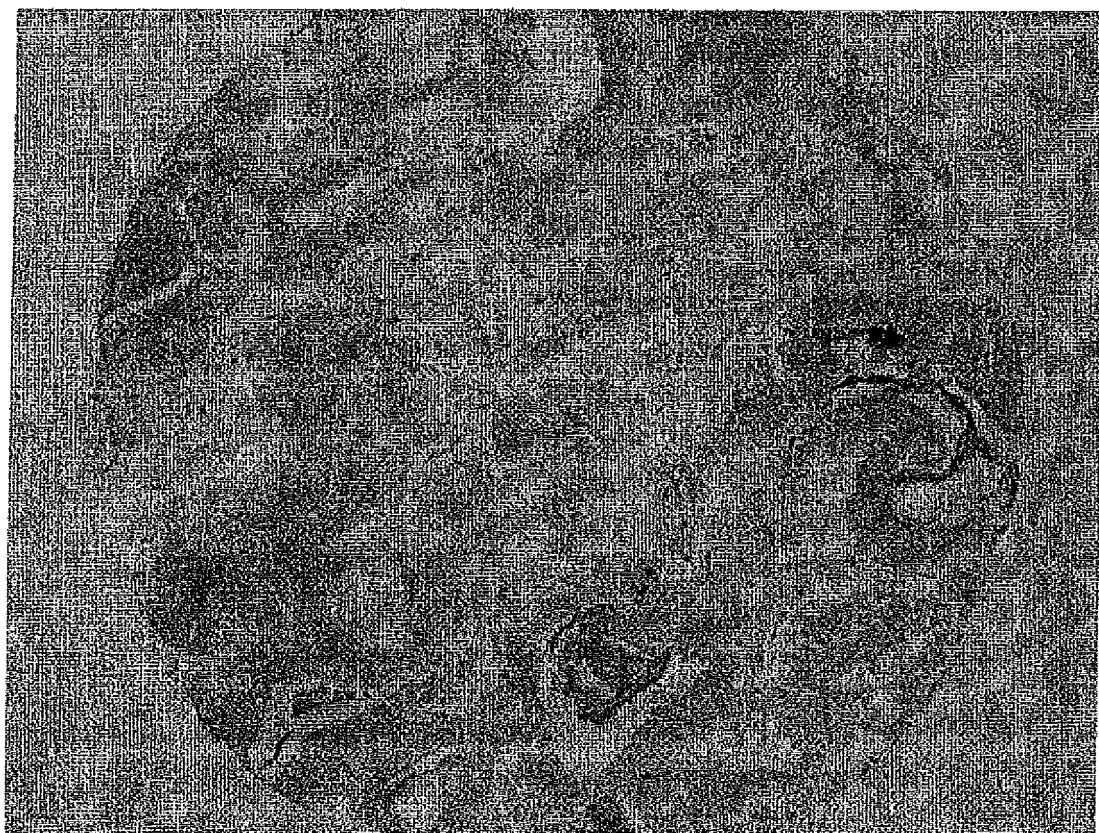

FIGURE 2

FIGURE 3A

FIGURE 3B


FIGURE 3C


FIGURE 3D


FIGURE 3E

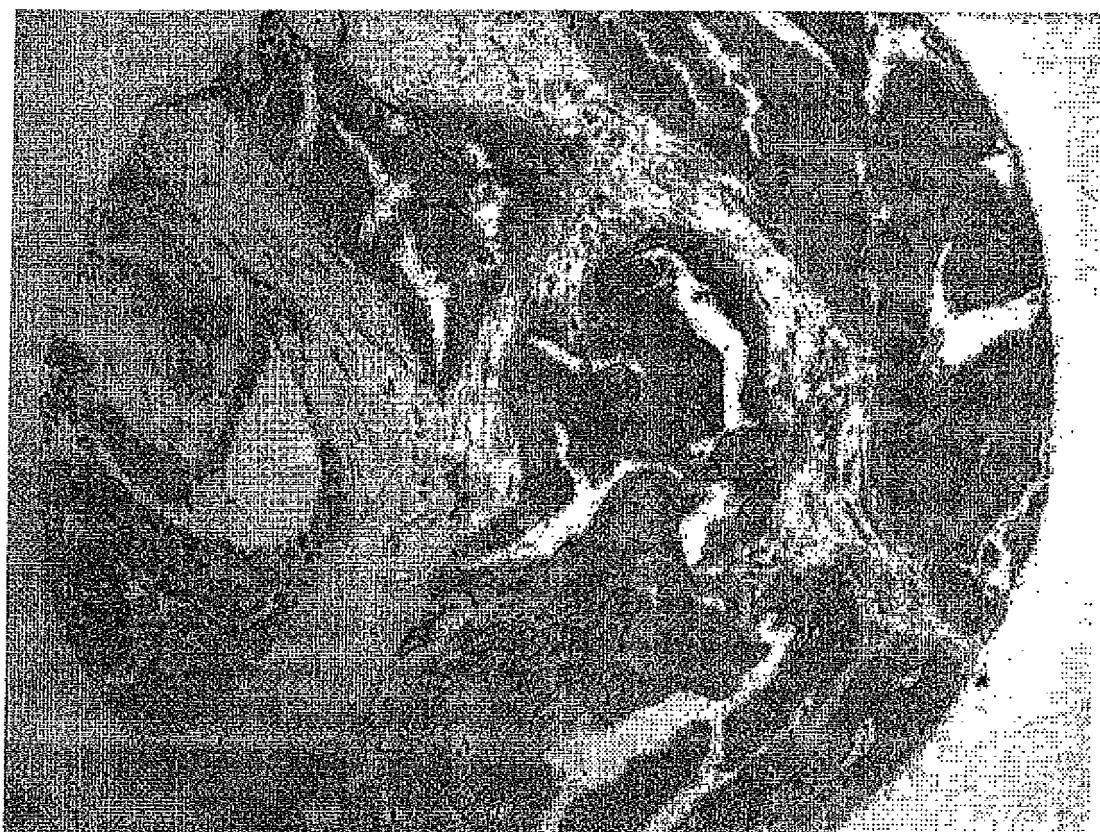
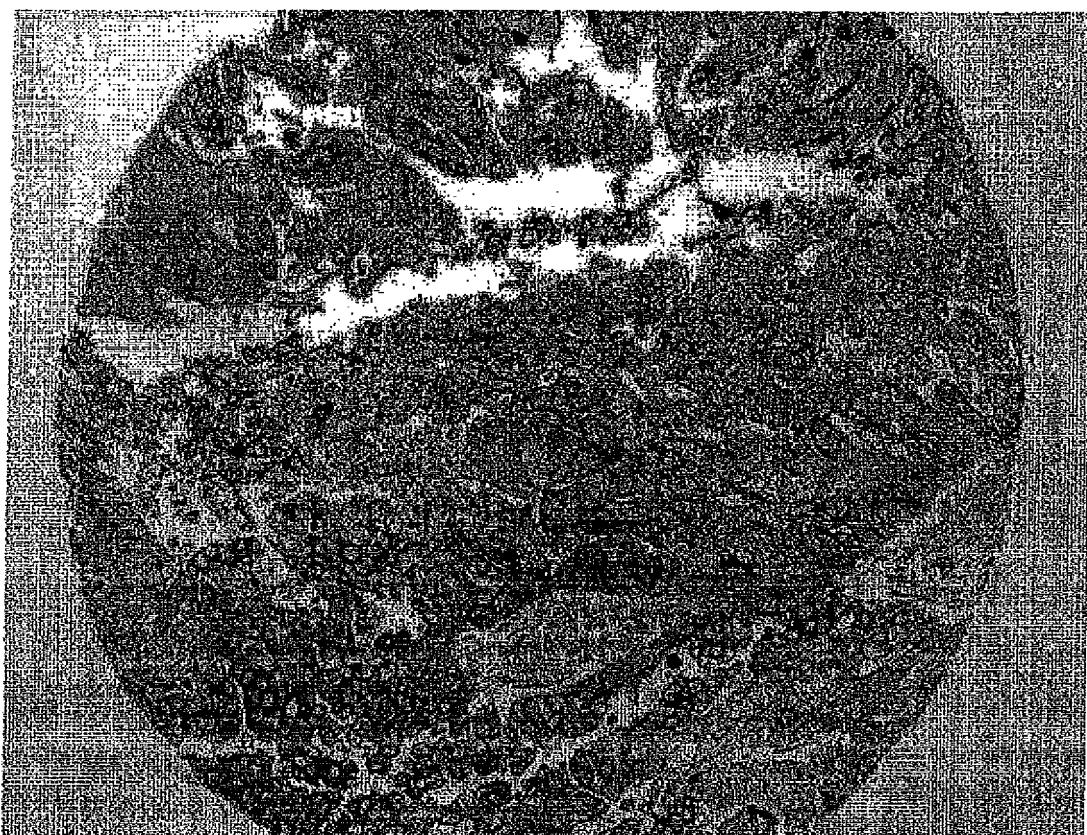
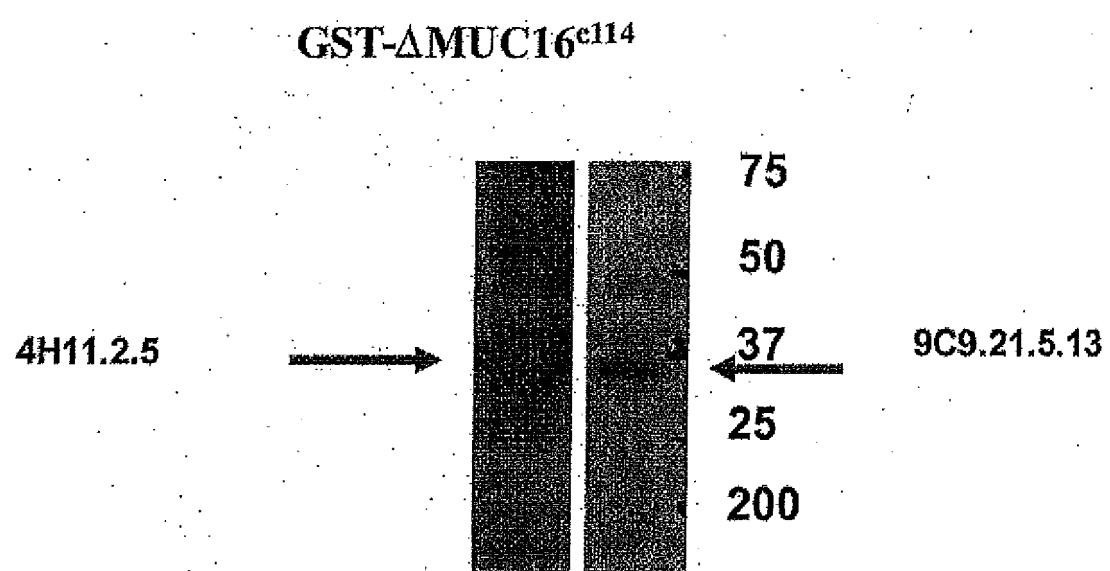

FIGURE 3F

FIGURE 3G


FIGURE 3H


FIGURE 3I


FIGURE 3J

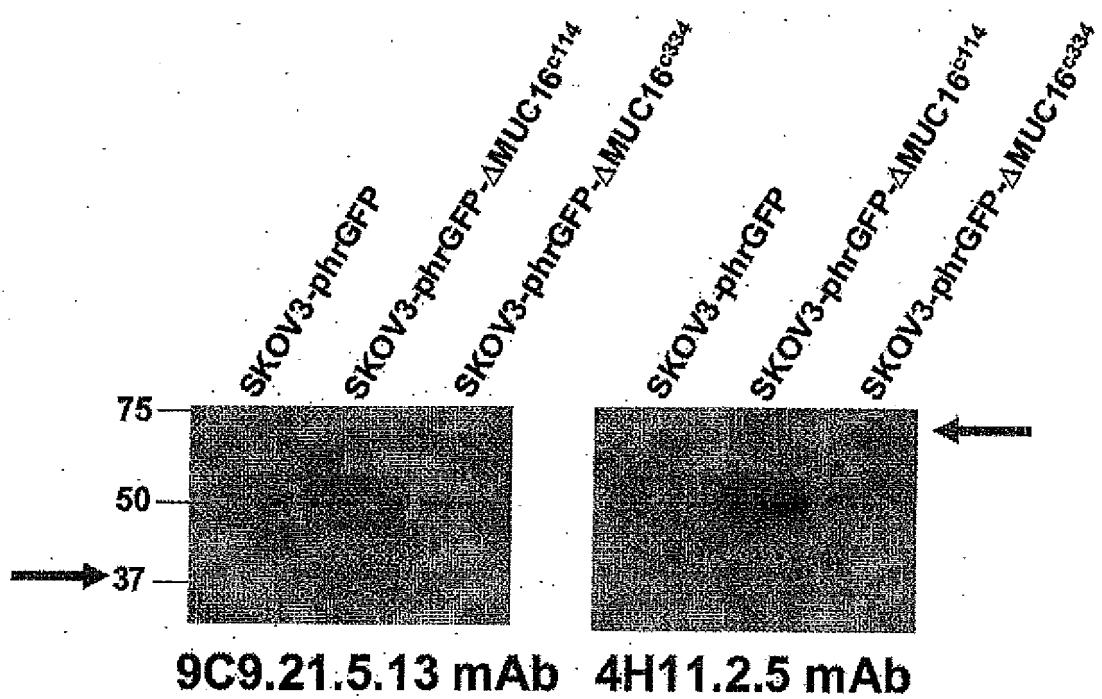

FIGURE 3K

FIGURE 3L

FIGURE 4A

FIGURE 4B

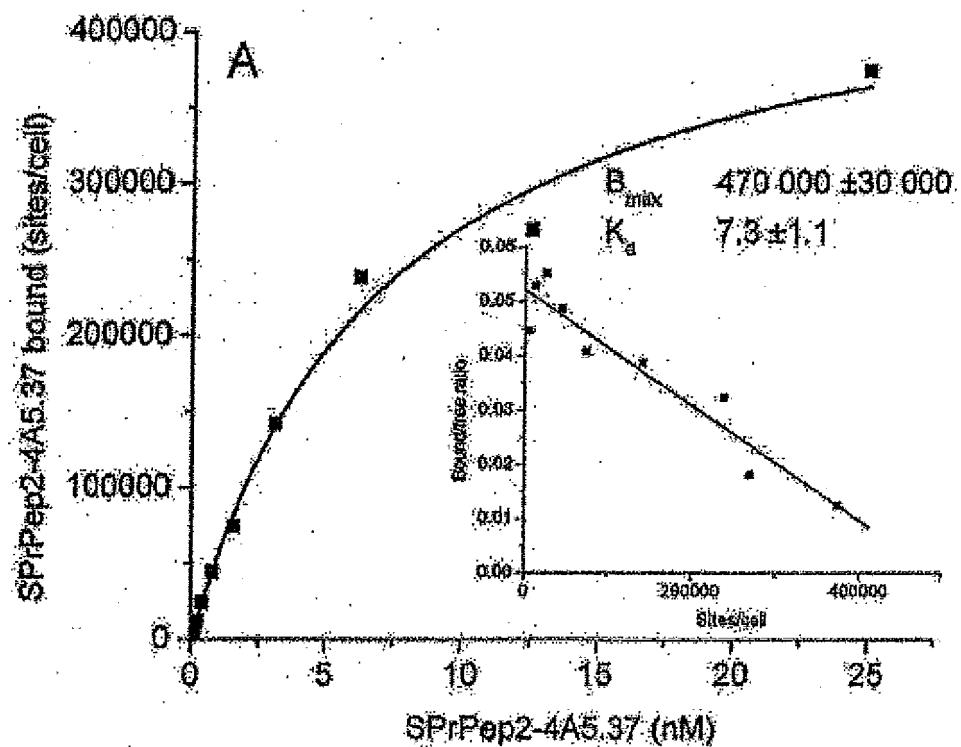
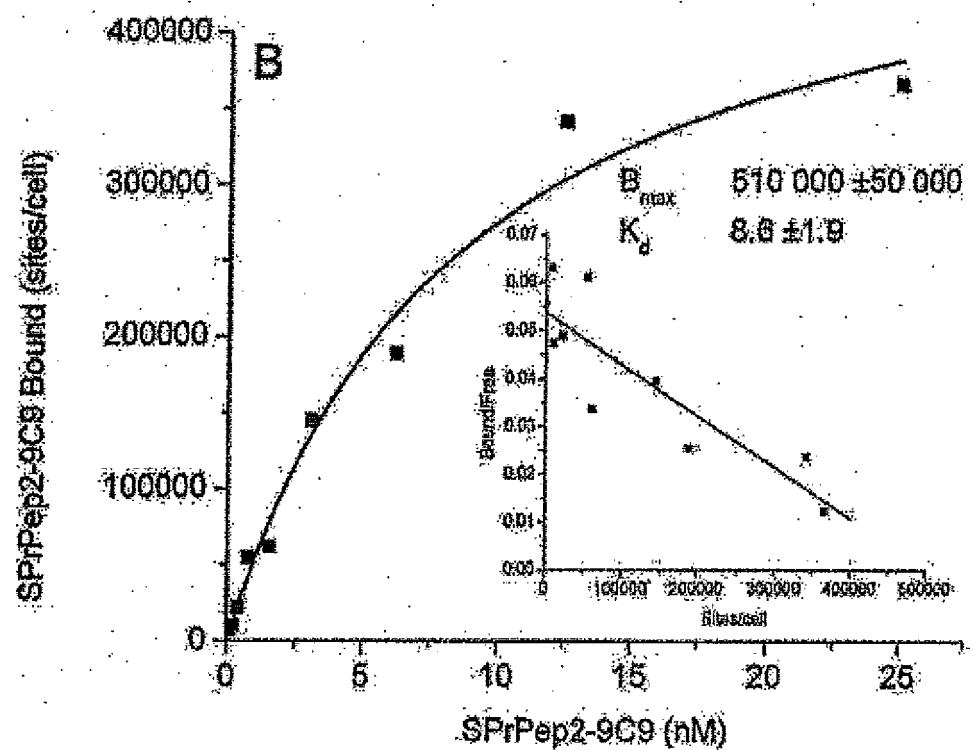



FIGURE 5A, PANEL A

FIGURE 5A, PANEL B

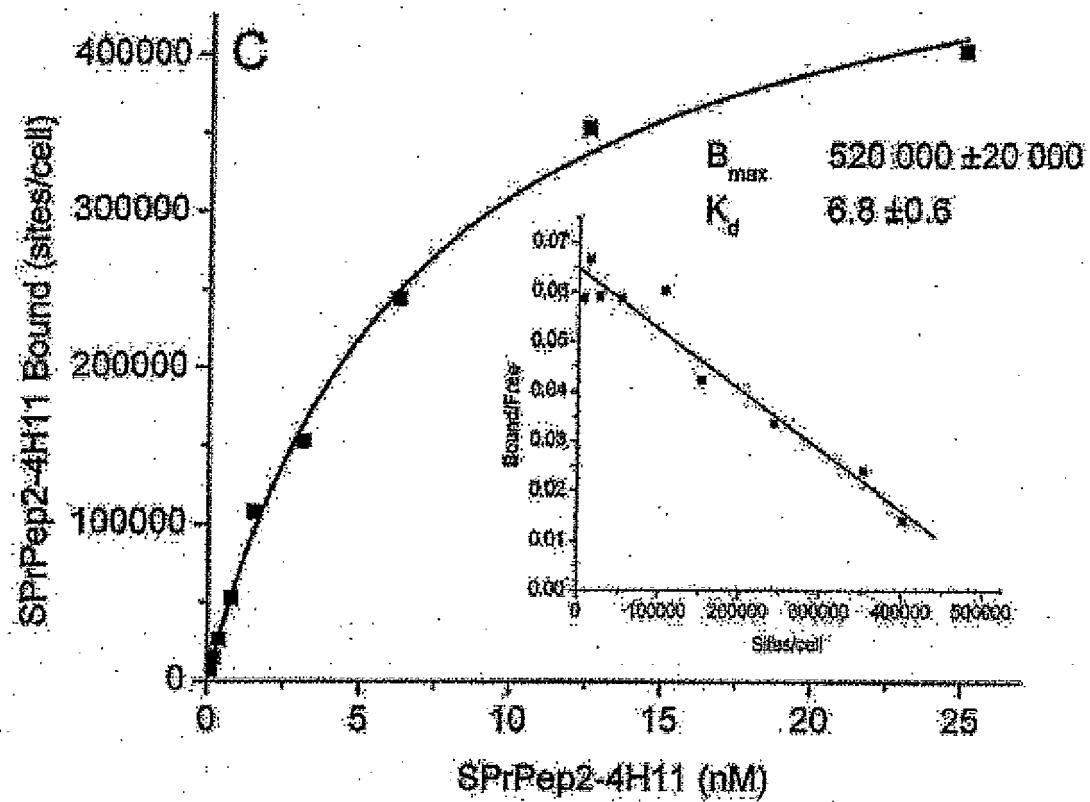
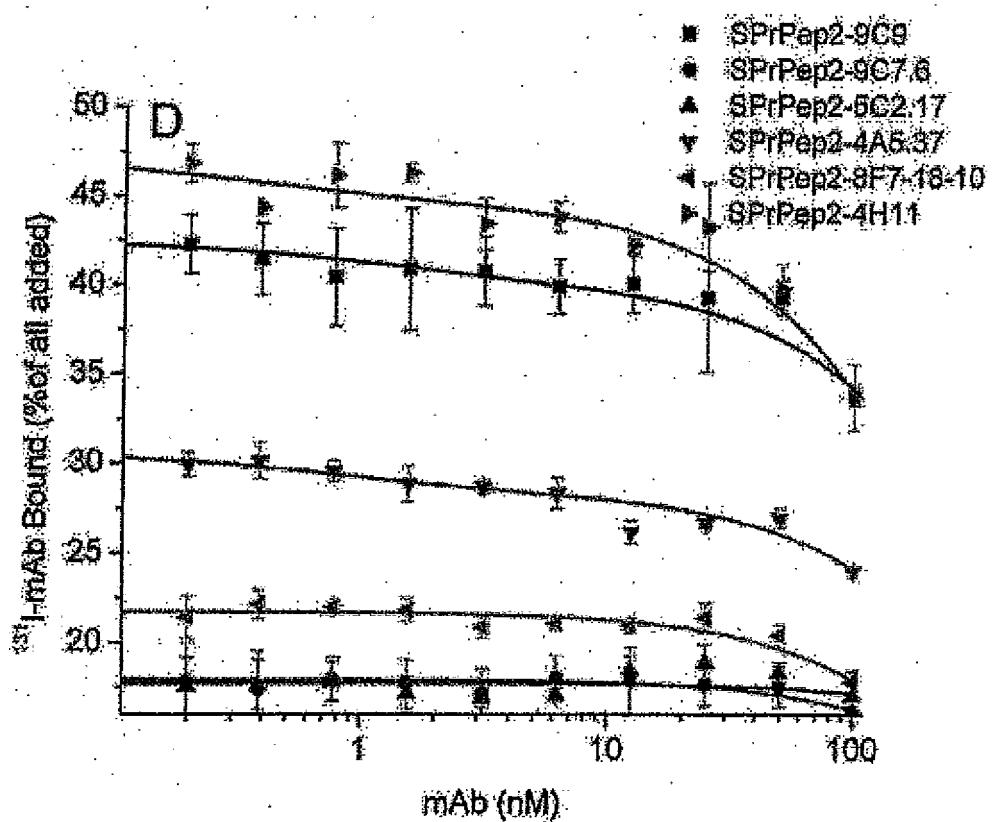
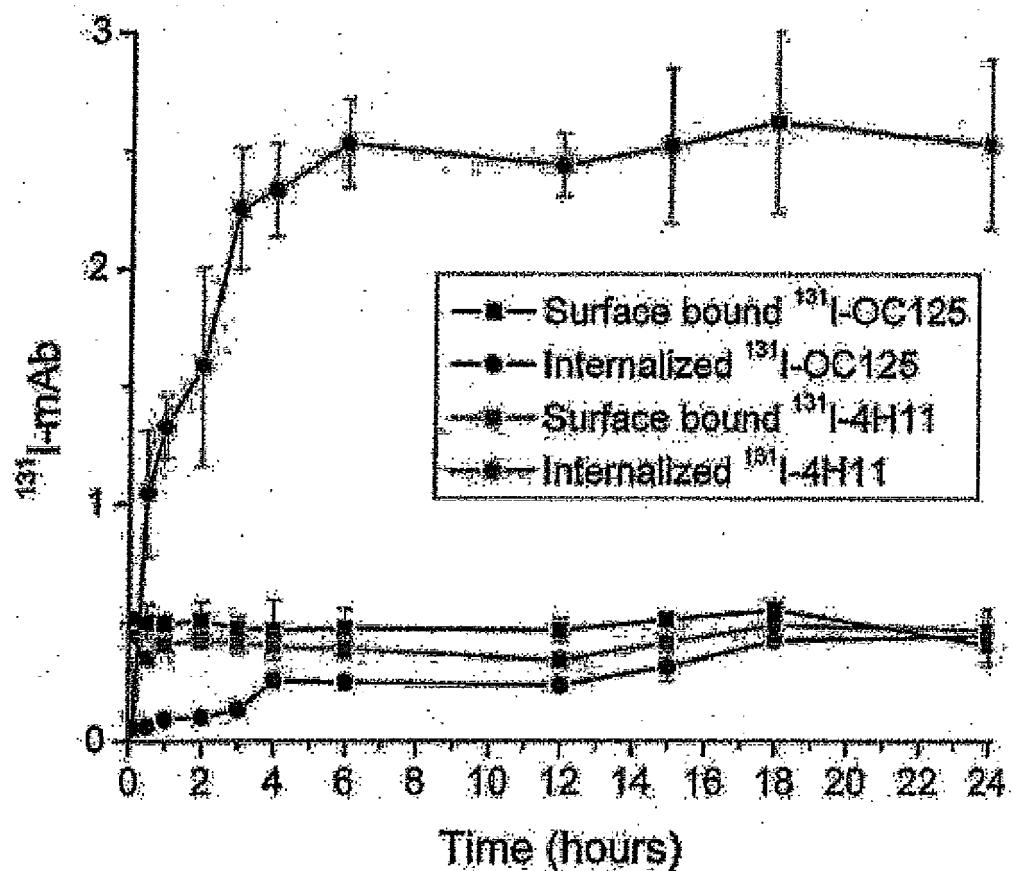


FIGURE 5A, PANEL C

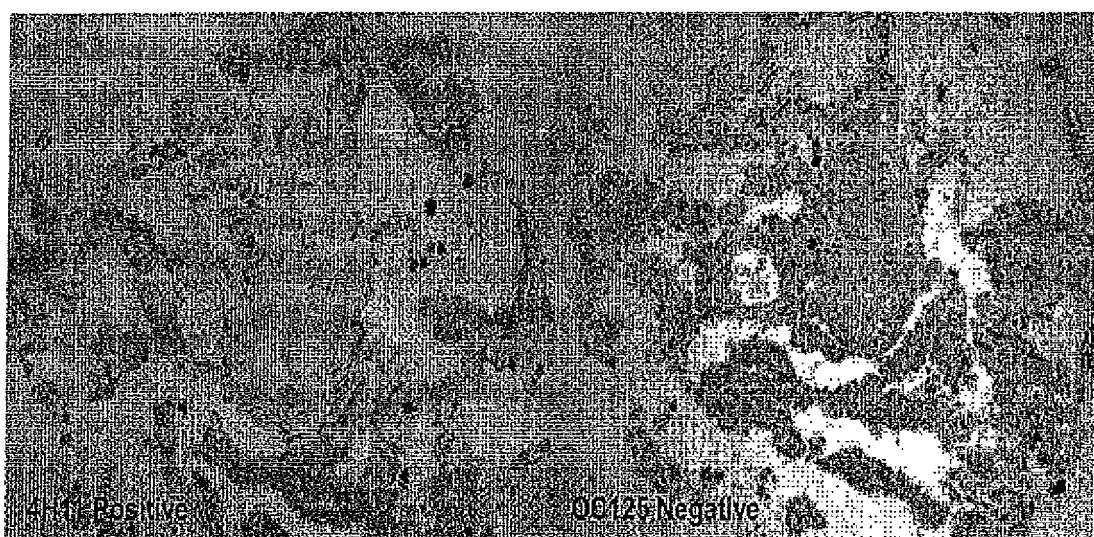

FIGURE 5A, PANEL D

FIGURE 5B

FIGURE 6A

FIGURE 6B

FIGURE 6C

FIGURE 6D

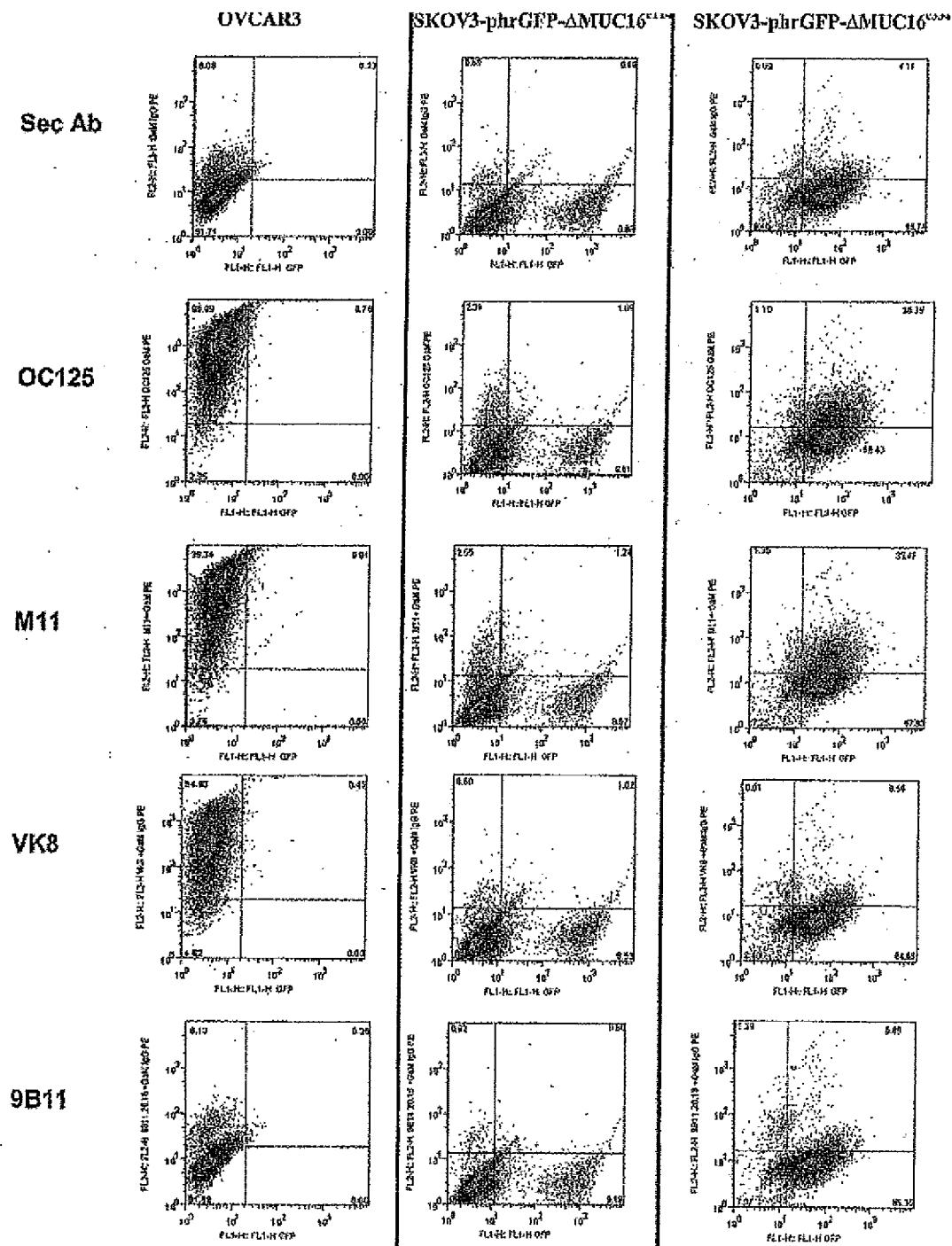


FIGURE 7, PAGE 1 OF 2

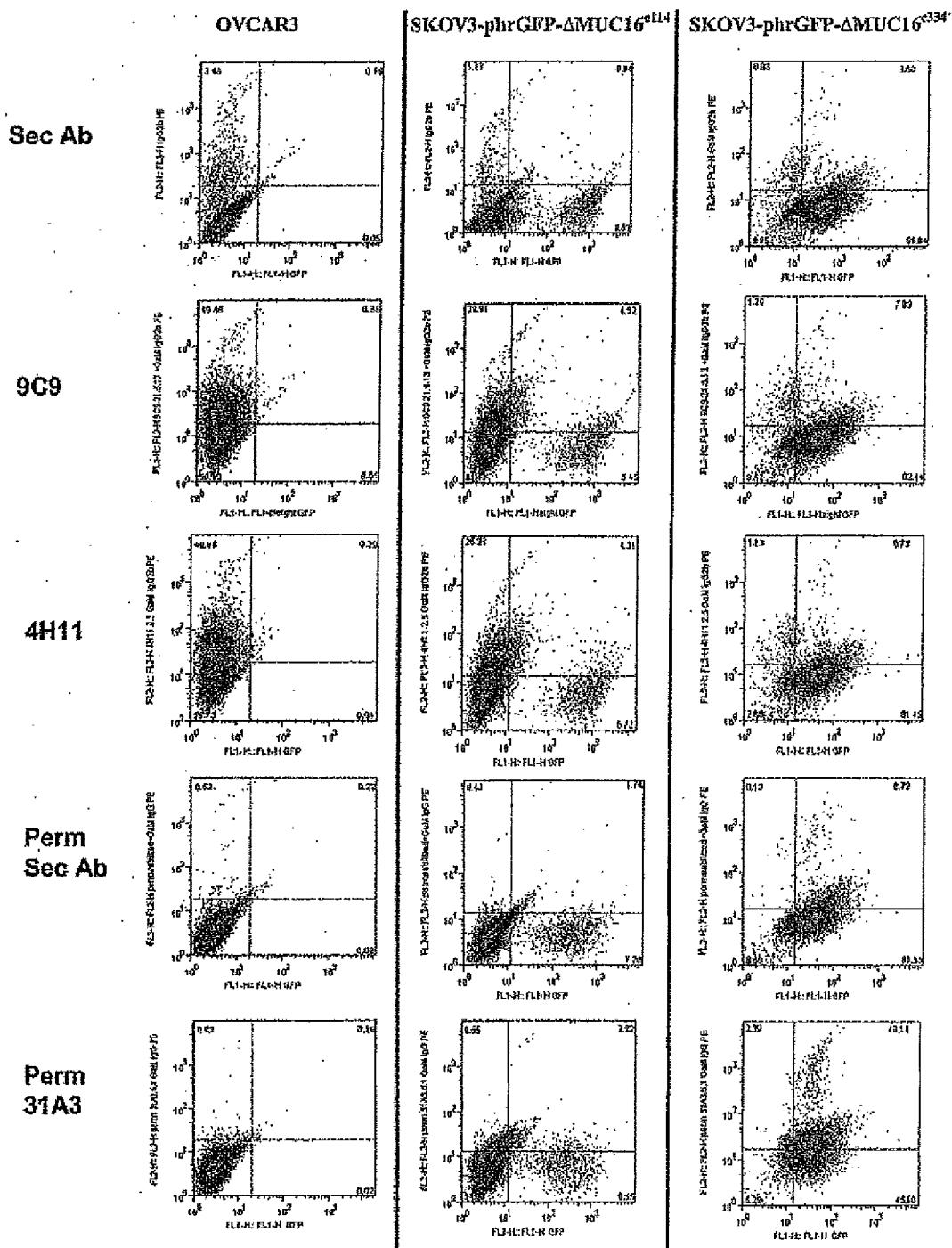


FIGURE 7, PAGE 2 OF 2

(A) 4A5 VH (SEQ ID NO:04)

gtgaagctggaggagtcaaggggaggcttcgtgaagcctggagggccctcaaaatctctgtgcagcctctggattcac
 tttcagaaaactatgccatgtctctgggttcgcctgagtcggagatgaggctggagtggtcgcaacattagcagtgcgtg
 gtggttacatcttcttattctgacagtgtgcaggacattcaccattccagagacaatgccaagaacaccctcacttg
 caaatgggcagtctgaggtctgggacacggccatgttattactgtgcaggcaggatttggtaactacggtattacta
 tgctatggactactgggccaagggaccacggtcaccgtctcctca

(B) 4A5 VL (SEQ ID NO:05)

gacattgagctcaccaggctccatcctccctggctgtgcagcaggagagaaggtaactatgagctgcaaattcagtc
 gagtcgtcaacagtagaaaccgaaagaaccaggatggctggtaccagcaaaaaacaggacagtctctgaactgtga
 tctactggcatccactcggcaatctgggtccctgatcgttcacaggcagtggatctggacagatttacttcacc
 atcagcagtgtgcaggctgaagacctggcagtttattactgccagcaatcttataatctactcacgttcggctctggac
 caagctggagatcaaacgg

(C) 4H11 VH (SEQ ID NO:06)

gtgaagctgcaggaggcaggggaggcttcgtgaagcctggagggccctcaaaagtctctgtgcagcctctggattcac
 ttcagtagctatgccatgtctgggttcgcctgagtcggagatgaggctggatgggtcgcaaccattagcagtgcgtg
 gtggttacatcttcttattctgacagtgtgcaggacattcaccattccagagacaatgccaagaacaccctgcacctg
 caaatgggcagtctgaggtctgggacacggccatgttattactgtgcaggcaggatttggtaactacggtattacta
 tgctatggactactgggccaagggaccacggtcaccgtctcctca

(D) 4H11 VL (SEQ ID NO:07)

gacattgagctcaccaggctccatcctccctggctgtgcagcaggagagaaggtaactatgagctgcaaattcagtc
 gagtcgtcaacagtagaaaccgaaagaaccaggatgggttggtaccagcaaaaaaccaggacagtctctgaactgtga
 tctactggcatccactaggcaatctggagtcctgatcgttcacaggcagtggatctggacagatttacttcacc
 atcagcagtgtgcaggctgaagacctggcagtttattactgccagcaatcttataatctactcacgttcggctctggac
 caagctggaggtcaaacgg

(E) 9B11 VH (SEQ ID NO:08)

gtgaagctggaggaggcaggggaggacttgggtgaagcctggagggccctgaaactctctgtgcagtcattctggattcac
 ttcagtagccattccatgtctggattcgtcagactccagagaagaggctagagtgggtcgcatccgtgagtagtggtga
 gttaggatctactattcggacagtgtgaaggccgattcaccgtcaccagagaaaaatgacagggaaacaccctgttattgtta
 atgagtagtctgaggctgaggacacggccatgttattatgtggaaaggagacaggatattttatgcttggacaattgggg
 ccaagggaccacggtcaccgtctcctca

(F) 9B11 VL.A (SEQ ID NO:09)

gacattgagctcaccaggctccatcctccctggctgtgcagcaggagagaaggtaactatgagctgcaaattcagtc
 gagtcgtcaacagtagaaaccgaaagaaccaggatggctggtaccagcaaaaaaccaggacagtctctgaactgtga
 tctactggcatccactaggcaatctggagtcctgatcgttcacaggcagtggatctggacagatttacttcacc
 atcagcagtgtgcaggctgaagacctggcagtttattactgccagcaatcttataatctactcacgttcggctctggac
 caagctggaggtcaaacgg

(G) 9B11 VL.B (SEQ ID NO:10)

gacattgagctcaccaggctccatcctgatcacaaggttccaaccgatattctgggtccagacaggttcag
 tggcagtggatcaggacagattcacactcaagatcagcagagtggaggctgaggatctggagtttattactgcttca
 aaggttcacatgttccgtggacgttcggtgaggaccacgtggagatcaaacgg

FIGURE 8 (1 of 2)

(H) 24B3-VH (SEQ ID NO:11)

GAGGTGAAGCTGGAGGAGTCAGGACCTGAAGCTGGTGAAGCCTGGGCTTCAGTGAAGATATCCTGCAAGGCTCTGGTTA
CTCATTACTGGCTACTTTATGAACTGGGTGAAGCAGACCCATGAAAGAGCCTTGAGTGATTGGACGTATTAATCCTT
ACAATGGTGCCTACTTCTACAATCAGAAGTTCACGGCAAGGCCACAATGACTGTAGACAAATCCTCTACCACAGCCAC
ATGGAGCTCCTGAGCCTGACATCTGAGGACTCTGCAGTCTATTATTGTGAAAGGGAAATTACTACGGCCCCTTGATTA
CTGGGGCCAAGGGACCAACGGTCACCGTCTCCTCA

(I) 24B3-VL (SEQ ID NO:12)

GACATTGAGCTCACCCAGTCTCCATCTTATCTTGCTGCATCTCCTGAAGAAACCATTAATTGCAGGGCAAGTAA
GAGCATTAGCAAATATTAGCCTGGTATCAAAAGAAACCTGGAAAACATAATAAGCTTCTTATCTACTCTGGATCAGCTT
TGCAATCTGGAATTCCATCAAGGTTCAAGGTTCAAGTGGCAGTGGATCTGGTACAGATTTCACTCTCACCACAGTAGCCTGGAGCCT
GAAGATTTGCAATGTATTACTGTCAACAGCATAATGAATACCGTGGACGTTGGAGGGACCAAGCTGGAGATCAA
ACGGGCGGGCGCA

FIGURE 8 (2 of 2)

(A) Homo sapiens MUCIN-16 (GenBank NP_078966) (SEQ ID NO:13)

1 mlkpsglpgs ssptrs1mtg srstkatpem dsgltgatls pktstgaiivv tehtlpfts
 61 dkltasptss vvgrttqslg vmssalpest srgmthseqr tpslspqvn gtpsrnypa
 121 smwsglsspr trtsstegnf tkeastytl vettsgpvte kytvptetst tegdstetp
 181 dtryipvkit spmktfadst askenapvsm tpaettvtds htpgrtnpsf gtlyssfld
 241 spkgtpnsrg etslelilst tgypfsspep gsaghrist saplssssavv ldnkisets
 301 fsgqsltspl spgvpearas ttmpnsaipfs mtlsnaetsa ervrstissl gtpsistkq
 361 aetiltfhaf aetmdipsth iaktlasewl gspgtlgts tsalttspstt vseetn
 421 hhstsgkete gtlntsmpl etsapgeese mtatlvp1lg fttldskirs psqvssshp
 481 relrttgsts grqssstaah gssdilratt sstekasswt sestaqqfse pqhtqwvet
 541 psmkterppa stsvaapitt svpsvvsgft tlktssstkgi wleetsadtl igestagpt
 601 hqfavptgis mtggsstrgs qgtthlltra tassetsadl tlatngvpvs vspavskta
 661 gssppggtkp sytmvssvip etsslqssaf regtslgltp lntrhpfssp epdsaghtk
 721 stsipllssa svledkvsat stfshhkats sittgtpeis tktpkssavl ssmtlsnaa
 781 spervrnats plthpspsge etagsvlts tsaettdspn ihptgtltse ssespstls
 841 psvsgvkttf ssstpsthlf tsgeeteets npsvsqpets vsvrvttlas tsvptpvfp
 901 mdtwptrsaq fssshlvsel ratsstsvtn stgsalpkis hltgtatmsq tnrdfnd
 961 apqsttwpet sprfktglps atttvstsat sisatvmvsk ftspatssme atsirepst
 1021 ilttettngp gsmavastni pigkyiteg rldtshlpig ttassetsmd ftmakesvs
 1081 svspsqsmda agsstpgrts qfvdtfsddv yhlttsreiti prdtssalt pqmtathpp
 1141 pdpgsarstw lgilssspss ptpkvtmsst fstqrvttsm imdtvetsrw nmpnlpstt
 1201 ltpsniptsg aigkstlvpl dtpspatsle aseggliplts typestntps ihlgahass
 1261 spstikltma svvkpgsytp ltfpsiethi hvstarmays sgsspemtap getntgstw
 1321 ptyitttdp kdtssaqvst phsvrtlrrt enhpktesat paaysgspki ssspnltsp
 1381 tkawtitdtt ehstqlhytk laekssgfet qsapgpvsvv iptsptigss tleltdvp
 1441 eplvlapseq ttitlpmatw ltslsteema stdldissps spmstfaifp pmstpshel
 1501 kseadtsair ntdsttldqh lgirslgrtg dlttvpitpl tttwtsvieh stqaqdtls
 1561 tmspthvtqs 1kdqtsipas aspshltevy pelgtqgrss seattfwkps tdtlsreie
 1621 gptniqstpp mdnttgsss sgvtlgiah pigtsspaet stnmalerrs statvsmag
 1681 mgllvtsapg rsisqslgrv ssvlsestte gvttdsskgss prlntqgnta lsslepsy
 1741 egsgmsttsip ltsspttpdv efiggstfwt kevttvmtsd iskssartes ssatlmsta
 1801 gstentgkek lrtasmdlps ptpsmevtpw isltlsnapn ttdsdlshg vhtssagtl
 1861 tdrslntgvt rasrlengsd tsskslsmgn sthtsmtye ksevsssihp rpetsapga
 1921 ttltstpgnr aisltlpfss ipveevistg itsgpdinsa pmthspitpp tivwtstgt
 1981 eqstqplhav ssekvsqvtq stpyvnsvav sasphensv ssgsstsspy ssaslesld
 2041 tisrrnaits wlwdltslp tttwpstsls ealssghsgv snpssttgef plfsaasts
 2101 akgrnpetet hgpqntaast lntdassvtg lsetpvgasi ssevplpmal tsrsvdsvgl
 2161 sestanpslg tassagtklt rtislptses lvsfrmnkdp wtvsiplgsh pttntetsi
 2221 vnsagppgls tvasdvidtp sdgaesiptv sfspspdtev ttishfpekt thsfrtiss
 2281 theltsrvtip gdwmssam stkpptgasps itlgerrtit saapttspiv ltaasftets
 2341 vsldnettvk tsdildarkt nelpsdssss sdlintsias stmdvtktas isptsisgm
 2401 assspslfss drpqvptstt etntatpsv ssntysldgg snvggtpstl ppftithpv
 2461 tssallawsr pvrftstmvs tdtasgenpt ssnsvvtsvp apgtwtsgs ttdlpamgf
 2521 ktspageahs llastiepat aftphlsaav vtgssatsea sl1ttseska ihsspqptpt

FIGURE 9 (page 1 of 6)

2581 ptsganwets atpesllvvt etsdttltsk ilvtdtilfs tvstppskfp stgtlsgas
 2641 ptllpdtpai pltateptss latsfdstpl vtiasdslt vpettltmse tsngdalvl
 2701 tvsnpdrsip gitiqgvtes plhpsstspk kivaprntty egsitvalst 1pagttgsl
 2761 fsqssenset talvdssagl erasvmpktt gsqgmassgg irsgsthstg tktfsslpl
 2821 mnpgevtams eittnrltat qstapkgipv kptsaesgl tpsassssps kafaslitta
 2881 ptwgipqst1 tfefsevpsl dtkasalptp gqslntipds dastasssls kspeknpra
 2941 mmtstkaisa ssfqstgkte tpegsaspsm agheprvpts gtgdpryase smsydpdk
 3001 ssamtstsla skltlfstg qaarsgssss pislsteket sflsptasts rkts1flgp
 3061 marqpnilvh lqtsaltlsp tstlnmsqee ppeletssqti aeeegtaet qtlftpse
 3121 ptsllpvssp teptarrkss petwassivs paktslvett dgtlvttikm ssqaaqgns
 3181 wpapaeetgs spagtspgsp emsttlkims skepsispei rstdvrnspwk tpevvpm
 3241 tvepvqlqst algsgstsis hlptgtspt ksptenmlat ervslspsp eawtnlysg
 3301 pggtrqslat mssvlespt arsitgtgqq sspelvsktt gmefsmwhgs tggtdgdth
 3361 slstssnile dpvtspnsvs sltdkskhkt etwvsttaip stvlnnkima aeqqtsrv
 3421 eaysstssws dgtsgsdtl gaspdvtntl yitstaqts lvslpsgdgg itsltnpsg
 3481 ktssassvts psigletlra nvsavksdia ptaghlsqts spaevsildv ttaptgis
 3541 tittmgtnsi sttpnpevg mstmdstpat errttstehp stwsstaasd swtvtdmts
 3601 lkvarspgti stmhhtsfla ssteldsmst phgritvigt slvtpssdas avktetsts
 3661 rtlspsdttta stpistfsrv qrmsisvpdi 1stswtpsst eaedvpvsmv stdhastkt
 3721 pntplstflf dslstldwdt grslssatats tsapqgattp qeltletmis patsqlpfs
 3781 ghitsavtpa amarssgvtf srpdptskka eqtstqlptt tsahpgqvpr saatldvi
 3841 htaktpdatf qrqgqtalld earatsdsw ekekstpsap witemmnsvs edtikevts
 3901 ssvlrlntl dinlesgtts spswksspye riapsesttd keaihpstrnt vettgwvts
 3961 ehashstipa hsassklsp vvttstreqa ivsmsttwp estrartepn sfltielrd
 4021 spymdtsstt qtsiisspgs taitkgprte itsskriss flaqsmrssi spseaitrl
 4081 nfpamtesgg milamqtsp gatlsaptl dtsataswtg tpltattqrft ysekttlfs
 4141 gpedtsqspsp psveetssss slvpihatts psnilltsqg hpsstppvt svflsetsg
 4201 gktdmsris lepgtslppn lsstageals tyeasrdtka ihhsadtavt nmeatssey
 4261 pipgkpk atsplvtshi mgditsstev fgssetteie tvssvnqglq erstsqvas
 4321 atetstvith vssgdatthv tktqatfssg tsissphqfi tstntftdvs tnpstslim
 4381 essgvtittq tgptgaatqg pylldtstmp yltetplavt pdfmqsektt liskgpkdv
 4441 wteppsvaet sypssltpfl vttippatst lqgqhtsspv satsvltsqg vkttdmlnt
 4501 mepvtspqgn lnnpsneila tlaattdiet ihpsinkavt nmgtassahv lhstlpvss
 4561 pstatspmvp assmgdalas isipgsettd iegeptsslt agrkenstlq emnssstesn
 4621 ilsnvsvgai teatkmevps fdatfippta qstkfpldfs vassrlsnsp pmtisthmt
 4681 tqtgssgats kiplaldst letsagtpsv vtegahski ttamnndvkd vsqtnppfq
 4741 easspssqap vlvttlpssv aftpqwhsts spvsmssvlt ssvlvtagkv dtsletvts
 4801 pqsmstldd isvtsaattd ietthpsint vvtvngttgs afeshstvsa ypepskvts
 4861 nvttstmedt tisrsipkss kttrtetett ssltpklret sisqeitsst etstvpyke
 4921 tggattevsrt dvtssesstsf pgpdqstvsl distetnrl stspimtesa eitittqg
 4981 hgatsqdtft mdpsnttpqa gihsamthgf sqldvttlms ripqdvswwt ppsvdktss
 5041 ssflssspamt tpslisstlp edklsspmts lltsqglvkit dirlrtrlepv tsslpnfss
 5101 sdkilatskd skdtkeifps inteetnvka nnsgheshsp aladsetpka ttqmvittt
 5161 gdapstsmpl vhgssettni kreptyfltp rlretstsqe ssfptdtsfl lskvptgti

FIGURE 9 (page 2 of 6)

5221 evsstgvnss skistpdhdk stvppdtftg eiprvftssi ktksaemtit tqasppesa
 5281 hstpldtst tlsqggthst vtqgfpysev ttlmgmgn vswmtnpve etssvssl
 5341 spamtspspv satspqips splvtalpt svlvtttdvl gttspesvts sppnlssit
 5401 erpatykdta hteaamhhst ntavtnvgts gsghksqssv ladsetskat plmsststl
 5461 dtsvststpn isqtngiqte ptaslsprlr esstsektss ttetntafsy vptgaitqa
 5521 rteisssrts isdldrptia pdistgmitr lftspimtks aemtvttqtt tpgatsqgi
 5581 pwdtsttlfq ggthstvsqg fphseittlr srtpgdvswm tppveetss gfslmuspam
 5641 spspvsstsp esipssplpv talltsvlvt ttnvlgttsp epvtssppnl ssptqerlt
 5701 ykdtahteam hasmhtntav anvgtsisgh esqssvpads htskatspmg itfamgdts
 5761 ststpaffet riqtestssl ipglrdtrts eeintvtets tvlsevptt ttevsrtev
 5821 tssrttisgp dhskmspyis tetitrlstf pfvtgstema itnqtpigl isqatltld
 5881 sstaswegth spvtqrpfhs eetttmsrst kgvswqssps veetsspssp vplaitsh
 5941 slysavsgss ptsalpvtsl ltsgrktid mldthselvt ssllpsassfs geiltseas
 6001 ntetihfsen taetnmgttn smhkhssvs ihsqpsgshp pkvtgsmmmed aivststpg
 6061 petknvdrds tspltpelke dstalvmnst tesntvfssv sldaatevsr aevtyydpt
 6121 mpasaqstks pdispeasss hsnspoltis thktiatqtg psgvtslgql tldtstiat
 6181 agtpgartqd fvdsettsvm nndlndvlkt spfsaeeans lssqapllvt tpspvtst
 6241 qehstsslvs vtsvptptla kitdmtnle pvtrspqnlr ntlatseatt dthtmhpsi
 6301 tavanvgtts spnefyftvs pdsdpkykats avvitstsgd sivstsmprs samkkiese
 6361 tfslifrlre tstsqkigss sdtstvfdka ftaattevsr teltsrssrtq iggtiekptm
 6421 pdtstrsvtm lsfagltks eertiatqtg phratsqgtl twdtsittsq agthsamth
 6481 fsqldlistl srpheyisgt sppsvektss sssllslpai tpspvpptt pesrpsspv
 6541 ltslptsgiv kttdmblasva slppnlgs ts hkipttsedi kdtekmypt niaavnvgt
 6601 tsekesyssv payseppkv spmvtsfnir dtivstsmg sseitrieme stfslahgl
 6661 gtstsqdplv steksaavlhk lttgatetsr tevassrrts ipgpdhstes pdistevip
 6721 lpislgites snmtiitrtg pplgstsqgt ftldpttss ragthsmatq efphsemmt
 6781 mnkdpeilsw tippsiekts fssslmpspa mtsppvsstl pktihttpsp mtslltpsl
 6841 mtttgtsp epttssppnl sstsheilts dedttaieam hpststaatt vettssghg
 6901 qssvladsek tkatapmdtt stmghttvt smavssettk ikrestyslt pglrettsis
 6961 nasfstdtsi vlsevptggt aevsrtetvts sgrtsipgps qstvlppeist rtmtrlfas
 7021 tmtesaemti ptqtpgsgst sqdtltdts ttksqakths tltqrphse mtllmsrgp
 7081 dmswqsspsl enpsslpsll slpattsp pp isstlpvtis ssplpvtsll tsspvtttd
 7141 lhtspelvts sppkshtsd erlttgkdtt nteavhpstn taasnveips sghepsssa
 7201 adsetskats pmfitstqed ttvaistphf letsriqkes isslspklre tgssvetss
 7261 ietsavlsev sigatteisr tevtssrrts isgsaestml peisttrkii kfptspila
 7321 ssemktqg sppgstsest ftldtsttpp lwithsttq rlphseittl vergagdvp
 7381 psslveets ppssqlspsa mispspvsst lpasshsssa svtslltpqg vkttevlda
 7441 aepetsspps lsstsvsila tsevtttdtek ihpfsntavt kvgtsssghe spssvlpds
 7501 ttktasamgt isimgdtsvs tltpalsntr kiqseplass ttrlretsts eetslatea
 7561 tvlsvkstga ttevsrteai sfsrtsmgsp eqstmsqdis igtiprisas svltessakm
 7621 ittqtpgsses tlelnlnt attpswveth siviqgfph emttsmgrp ggvswpspp
 7681 vketsppssp lslpavtph pvtflahi ppsplpvtsl lsgpatttd ilgtstepg
 7741 ssssslistts herlattykdt ahteaavhpst ntggtrnvatt ssgyksqssv ladsspmot
 7801 stmgdtsvlt stpafletrr iqtelasslt pglressgse gtssgkms vlskvptga

FIGURE 9 (page 3 of 6)

7861 teiskedvts ipgpaqstis pdistrtvsw fstspvmtes aeitmnnhts plgattqgt
 7921 tltdssttsl tmthstisqg fshsgmstlm rrgpedvswm sppllektrp sfslmsspa
 7981 tpspvsstl pesissplp vtslltsgla kttdmlhkss epvtnspanl sstsveila
 8041 sevtdtekt hpssnrvtd vgtsssghes tsfvladsgt skvtspmvit stmedtsvs
 8101 stpgffetsr iqteptsslt lglrktsse gtslateemst vlsqvptgat aevrtevt
 8161 ssrtsisgfa qltvspetst etitrlnptss imtesaemmi ktqtdppgat pesthtvdi
 8221 ttpnwveths tvtqrfshse mtllvrsrpg dmlwpsqssv eetssassll slpattsp
 8281 vsstlvedfp saslpvtsll npglvittdr mgisreppts stsnlsstsh erlttledt
 8341 dtedmopsth tavtnvrtsi sghesqssvl sdsetpkats pmgttytmge tsvsistsd
 8401 fetsriqiep tssltsqlre tssserissa tegstvlsev psgattevsr tevissrgt
 8461 msgpdqftis pdisteairt lstdspimtes aesaitietg spgatsegts tldtsttf
 8521 sghstaspg fshsemstlm srtpgdvpwp slpsveeass vsslssspam tstsffstl
 8581 esisssphpv talltgpvk ttdmlrtsse petssppnls stsaeilats evtdreki
 8641 pssntpvnv gtviykhlpv ssvladlvtt kptspmmats tlgntsvsts tpafpetmm
 8701 qptssltsgl reistsqets satersasls gmptgattkv srtealslgr tstdpgpaqs
 8761 ispeisteti tristplttt gsaemtikpk tghsgassqg tfldtssra swpgthsaa
 8821 hrsphsgmtt pmsrgpedvs wpsrpsvekt sppsslvslls avtspsplys tpsesshh
 8881 lrvtslftpv mmkttmdl dt slepvttspp smnitsdesl atskatmete aiqlsenta
 8941 tqmgtisarq efyssypglp epskvtspyv tsstikdivs ttipasseit riemestst
 9001 tptprests qeihsatkps tvpykaltsa tiedsmtgym sssrgpspdq stmsqdist
 9061 vitrlstspi ktestemtit tqtgspgats rgtltdtst tfmsgthsta sqgfshsqm
 9121 almsrtpgdv pwlsbpsvee assasfslls pvmtssspvs stlpdsihss slpvtssll
 9181 glvkttellg tssepetssp pnlsstsaei laitevttt eklemtnvvt sgythesps
 9241 vladsvttka tssmgitypt gdtnvlstp afsdtsriqt ksklsltpgl metsiseet
 9301 satekstvls svptgattev srteassisr tsipgpaqst mssdtstmeti tristpltr
 9361 estdmaitpk tgpsgatsqg tfldsssta swpgthsatt qrfpqsvtt pmsrgpedv
 9421 wpsplsvekn sppsslvslls svtspsplys tpsgsshssp vptstlftsi mmkattmdl
 9481 slepettsap nmnitsdesl aaskattete aihvfentaa shvettsate elyssspgf
 9541 eptkvispvv tsssirdnmv sttmpgssgi triiesmss ltpglretrt sqditsste
 9601 stvlykmpsg atpevsrtev mpssrtsiqg paqstmsldi sdevvtrlst spimtesae
 9661 tittqtgysl atsqvtlplg tsmtflsgth stmsqglshs emtnlmsrgp eslswtspr
 9721 vettrsssl tslpltslls pvsstlldss pssplpvtsl ilpglvktte vldtssepk
 9781 ssspnlssts veipatseim tdtekihpss ntavakvrt ssvheshssv ladsett
 9841 psmgitsavd dttvftsnpa fsetrripte ptfsltpgfr etstseetts itetsavly
 9901 vptsattevs mteimssnri hipdsdqstm spdiitevit rlssssmmse stqmtittql
 9961 sspgataqst ltlatttapl arthstvppr flhsemstlm srspenpswk sslfvekts
 10021 sssllslpvt tpsvsstlp qsipsssfsv tslltpgmvk ttdtstepgt slspnlsqt
 10081 veilaasevt tdtekihpss smavtnvgtt ssghelyssv sihsepkskat ypvgtppss
 10141 etsistsmpa nfettgfeae pfshltsgfr ktnmstdtss vptntpssp gsthllqss
 10201 tdftssakts spdwpasqy teipvdiitp fnaspites tgitsfpesr ftmsvtest
 10261 hlstdllpsa etistgtvmp slseamtsfa ttgvpraisg sgspfsrtes gpgdatlst
 10321 aeslpsstpv pfssstftt dsstipalhe itsssatpyr vdtsgtess ttegrlvmm
 10381 tltdssqpgt tssspildtr mtesvelgtv tsayqvpsls trlrrtdgim ehitkipne
 10441 ahrgtirpvk gpqtstspas pkglhtggtk rmetttalk tttalkits ratltsvyt

FIGURE 9 (page 4 of 6)

10501 ptlgtltpln asmgmastip temmittpyv fpdvpettss latslgaets talprttpe
 10561 fnresettas lvsrsgaers pviqtlvdss sepdttaswv ihpaetipty sktpnffk
 10621 eldtvsstat shgadvssai ptnispeld altplvtisg tdtsttfptl tksphetet
 10681 ttwlthpaet sstiprtipn fshhesdatp siatspgae ssaipimtv pgaedlvts
 10741 vtssgtdrnm tiptltspg eptkiaslv hpeaqtsai ptstispav rlvtsmvts
 10801 aaktsttnra ltnspgepat tvslvthpaq tsptvpwtts iffhsksdtt psmttshga
 10861 sssavptptv stevgvvtp lvtssravis ttipiltlsp geppetpsma tshgeeass
 10921 iptptvsgv pgvvtslvts sravtsttip iltfslgepe ttpsmatshg teagsavpt
 10981 lpevgmvtv lvassravts ttlpttlsp geppetpsma tshgaaesst vptvspevp
 11041 vvtstlvts gvnstsipl ilspgelett psmatshgaa assavptptv spgvsgvvt
 11101 lvtssravts ttipiltlss sepetpsma tshgveassa vltvspevpg mvtstlvts
 11161 avtsttiptl tissdepett tslvthseak misaiptlav sptvqglvts lvtssgset
 11221 afsnltvass qpetidswva hpgteassvv ptltvstgep ftnislvtlp aessstlpr
 11281 tsrfshseld tmpstvtspe aesssaistt ispgipgvlt slvtssgrdi satfptvpe
 11341 pheseatasw vthpavtstt vprtttynysh sepdttsia tsgaeatstf fptitvspd
 11401 pdmvtsqvtsgt sgttsitip tltlssgepe tttsfitlyse htssaiptl pvsqgaskm
 11461 tsolvissgtd sttfptlte tpyepettai qlihpaetnt mvprrtpkfs hksdttlp
 11521 aitspgpeas savsttisp dmsdlvtslv pssgtdtstt fptlsetpye pettawlt
 11581 paetsttvsg tipnfshrgs dtapsmtsp gvdtrsgvpt ttippsipgv vtsqvtssa
 11641 dtstaiplt pspgepetta ssathpgtqf gftvpirtvp ssepdtmasw vthppqtst
 11701 vsrttssfsf sspdatpvma tsprteassa vlttispgap emvtsqitss gaatsttv
 11761 lthspgmpet tallsthprt etsktpast vfpqvsetta slirpgae stalptqtt
 11821 slftllvtgt srvidlspas pgvsaktapl sthpgtetst miptstlslg llettglla
 11881 ssaetstst ltlvspavv glssasittd kpqtvtsnt etspsvtsvg ppefsrtvt
 11941 ttmtlipsem ptpkptshge gvspttilrt tmveatnlat tgssptvakt ttfntlag
 12001 lftplttpgm stlassesvts rtsynhrswi sttssynrry wtpatstpvt stfsgist
 12061 sipsstaatv pfmvpftlnf titnlqyeed mhrpgsrkfn aterelqgll kplfrnssl
 12121 ylysgcrlas lrpekdssat avdaicthrp dpedlgldre rlywelsnlt ngiqelgpy
 12181 ldrnslyvng fthrssmptt stpgtstvdv gtsqtpsssp spttagpllm pftlnftit
 12241 lqyeedmrert garkfntmes vlggllkplf kntsvgplys gcrllt1rpe kdgaatgvd
 12301 icthrldpks pglnreqlyw elskltndie elgpytldr slyvngfthq ssvsttstp
 12361 tstvdlrtsg tpssllspti maagpllpf tlnftitnlq ygedmghpgs rkfntrerv
 12421 qgllgpifkn tsvgplysgc rltslrsek gaatgvdaic ihhldpkspg lnrerlywe
 12481 sqlngikel gpytldrns1 yvngfthrt vptsstpgts tvdlgtsgtp fslpspata
 12541 pllvlftrlnf titnlqyeed mhrpgsrkfn ttervlqtl1 gpmfkntsvg llysgcrlt
 12601 lrsekdgaaat gvdaicthrl dpkspgvdre qlywelsqlt ngikelgpyt ldrnslyvn
 12661 fthwipvpts stpgtstvd1 gsgtpsslps pttagpllp ftnftitnl kyeedmhcp
 12721 srkfntterv lqsl1gpmfk ntsgvplysg crl1l1rsek dgaatgvdaicthrlpks
 12781 gvdreqlywe lsqltngike lgytldrns lyvngfthqt sapntstpgt stvdlgtsg
 12841 psslpsptsa gpl1vpftln ftitnlqye dmhhpgsrkf ntcrvlggl lgpmfknts
 12901 gllysgcrlt llrpeknngaa tgmdaicsh1 ldpkspglnr eqlywelsql thgikelgp
 12961 tldrnslyvn gfthrssvap tstpgtstvd lgtsgtpssl pspttavpl1 vpftlnfti
 13021 nlqygedmrh pgsrkfntte rvlqgllgpl fknssvgply scrlis1rs ekdgaatgv
 13081 aicthhlnpq spgldreqly wqlsqmtngi kelgpytldr nslyvngfth rssglst

FIGURE 9 (page 5 of 6)

13141 wtstvdlgts gtpspvpspt ttgpllvpft lnftitnlqy eenmghpgsr kfnitesvl
 13201 gllkplfkst svplysgcr ltllrpekdg vatrvdaict hrpdpkipgl drqglywel
 13261 qlthsitelg pytldrdsly vngftqrssv pttstpgtft vqpetsetps slpgptatg
 13321 vllpftlnft itnlqyeedm rrpgrskfnt tervlqgllm plfkntsvss lysgrcltl
 13381 rpekdgaatr vdavcthrpd pkspgldrer lywklsqlth gitelgpytl drhslyvng
 13441 thqssmtttr tpdstmhla tsrtpas1sg pmtaspl1vl ftinftitnl ryeenmhhp
 13501 srkfntterv lqgllrpvfk ntsgvplysg crtl1lrpkk dgaatkvdai ctyrpdiks
 13561 gldreqlywe lsqlthsite lgytldrds lyvngftqrs svpttsipgt ptvdlgtsg
 13621 pvsckpgpsaa spl1vlftln ftitnlryee nmqhpgrkf nttervlqgl lrs1fksts
 13681 gplysgcrlt l1rpekdgt a tgvdaict hh pdpksp1ldr eqlywelsql thnitelgp
 13741 aldnndslfvn gfhrrssvst tstpgtptvy lgasktpasi fgpsaashll ilftlnfti
 13801 nlryeenmwp gsrkfntter vlgg1lrplf kntsvgplys gcr1t1lrpe kdgeatgvd
 13861 icthrpdp tg p1gldreqlyl elsqlthsit elgpyt1ldr slyvngfthr ssvpttstg
 13921 vseepftlnf tinnlrymad mgqpgs1kfn itdnvmqhll splfqrss1g arytcrv1
 13981 lrsvkngaaet rvndlctylq plsgpgplik qvhelsqqt hg1tr1gpys ldkd1lyln
 14041 yneppgdepp ttpkpat1fl pplseattam gyhlkt1ln ftisnlqy1sp dm1gkgsatf
 14101 stegvlqhll rplfqkssmg pfylgcqlis 1rpekdgaat gdttctyhp dpvgpgldi
 14161 qlywelsqlt hgvtqlgf1v 1drd1sfing yapqnl1s1rg eyqinfhivn wl1snpdpt
 14221 seyit1lr1di qdkvttlykg sqlhdtfrfc lvt1nl1mdsv lvtvkalfss nldps1veq
 14281 fldktlnasf hwlgstyqlv dihvtemess vyqptsssst qhfyl1nftit nl1pysqdka
 14341 pg1t1nyqrnk rniedalnql frnss1ksyf sdcqvstfrs v1pn1rhhtgvd slcnfspla
 14401 rvdrvaiyee flrmtrngtq lqnft1drss v1vdgyspn1 nepltgnsdl pfwav11ig
 14461 ag1lgvitcl icg1vlvttrr rkkegeynvq qqcpqyyqsh ldled1q

(B) Peptide 1

14394 14410
nfsplar rvdrvaiyee (SEQ ID NO:01)

(C) Peptide 2

14425 14442
t1drss v1vdgyspn1 ne (SEQ ID NO:02)

(D) Peptide 3

14472 14492
cg1vlvttrr rkkegeynvq qq (SEQ ID NO:03)

(E) Transmembrane Region:

14452 14475
fwav11ig1 ag1lgvitcl icg1vl (SEQ ID NO:14)

(F) Peptide containing the cysteine loop peptide:

14367 14398
ksyf sdcqvstfrs v1pn1rhhtgvd slcnfspl (SEQ ID NO:15)

FIGURE 9 (page 6 of 6)

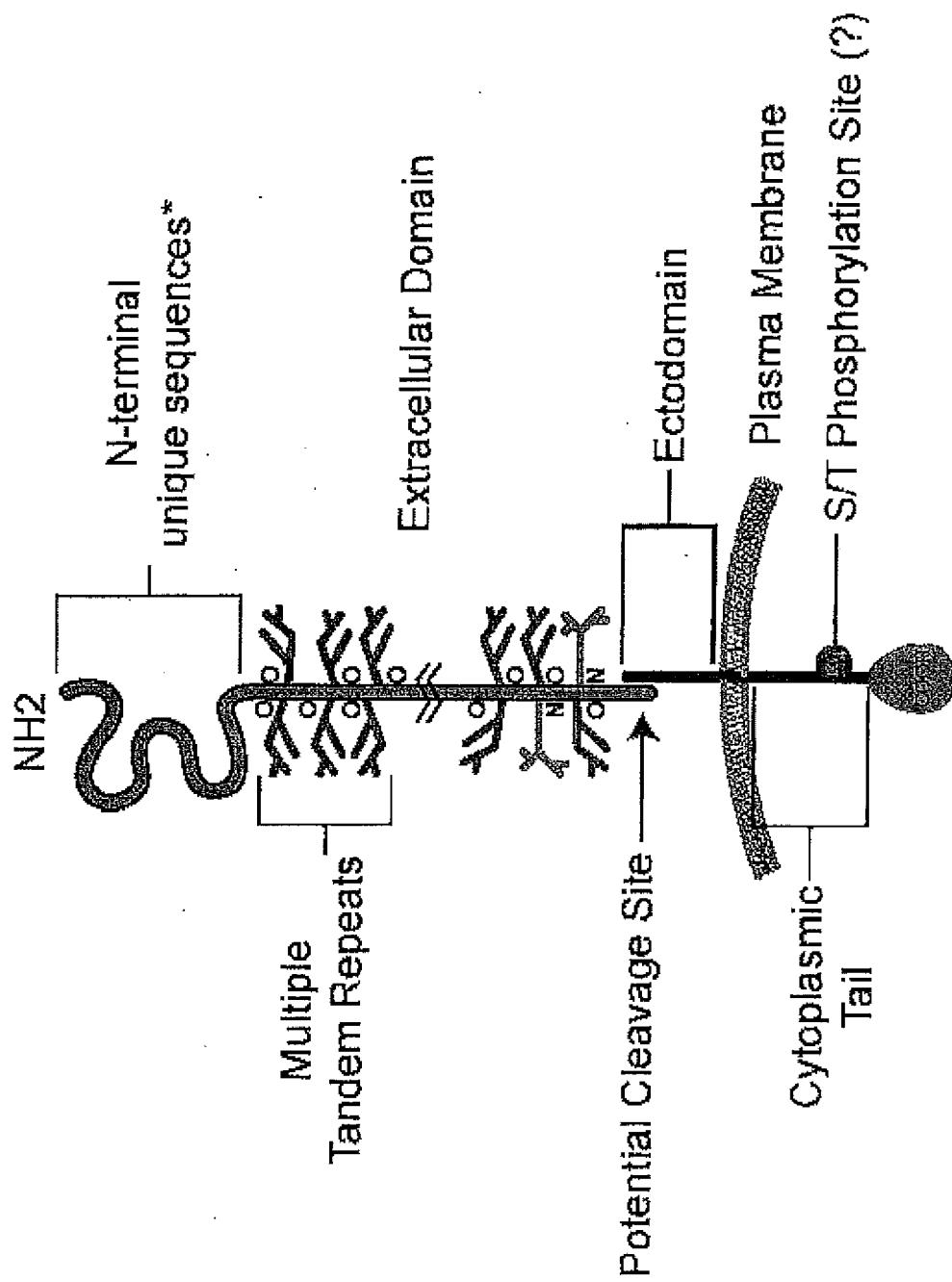


Figure 10

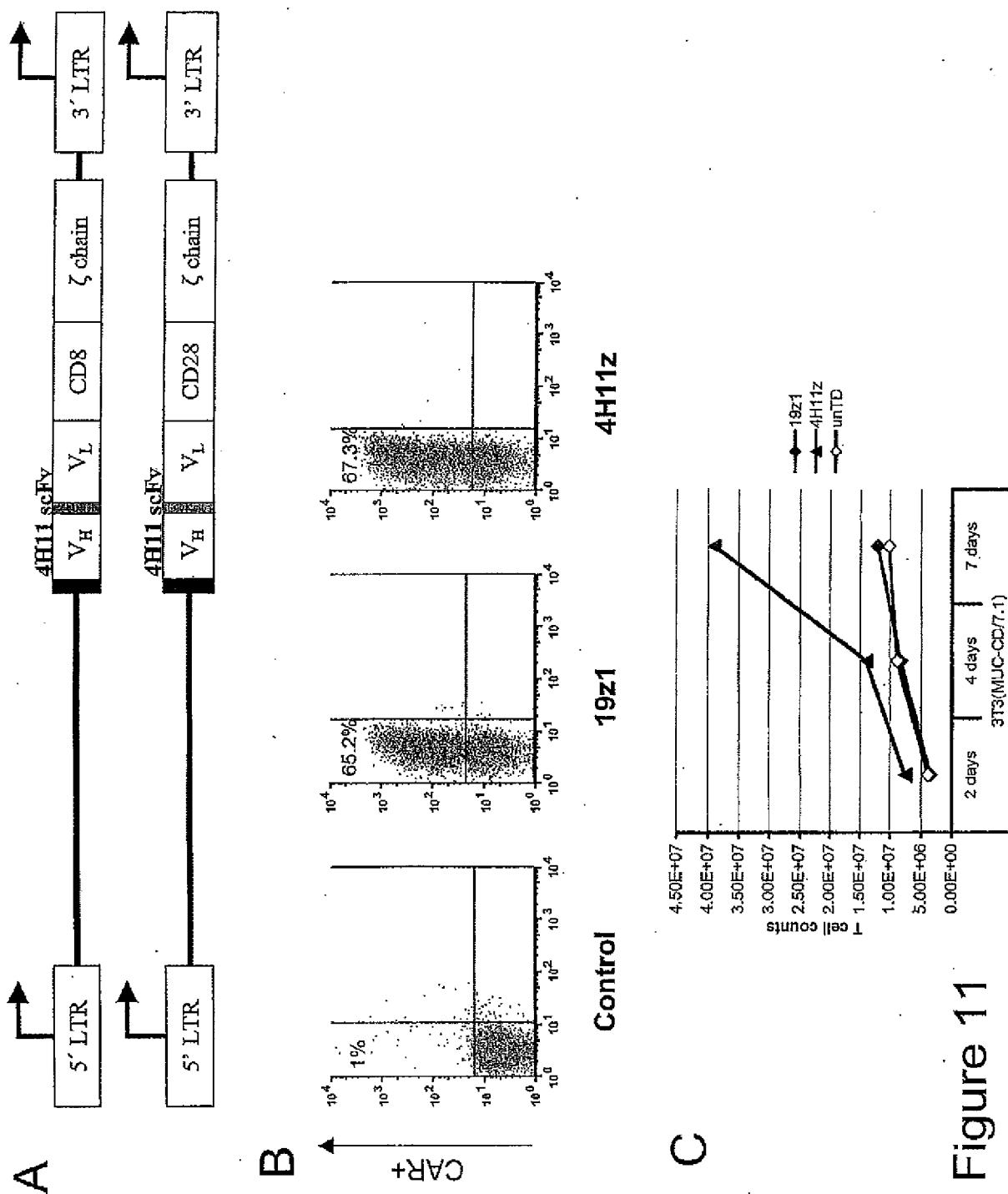


Figure 11

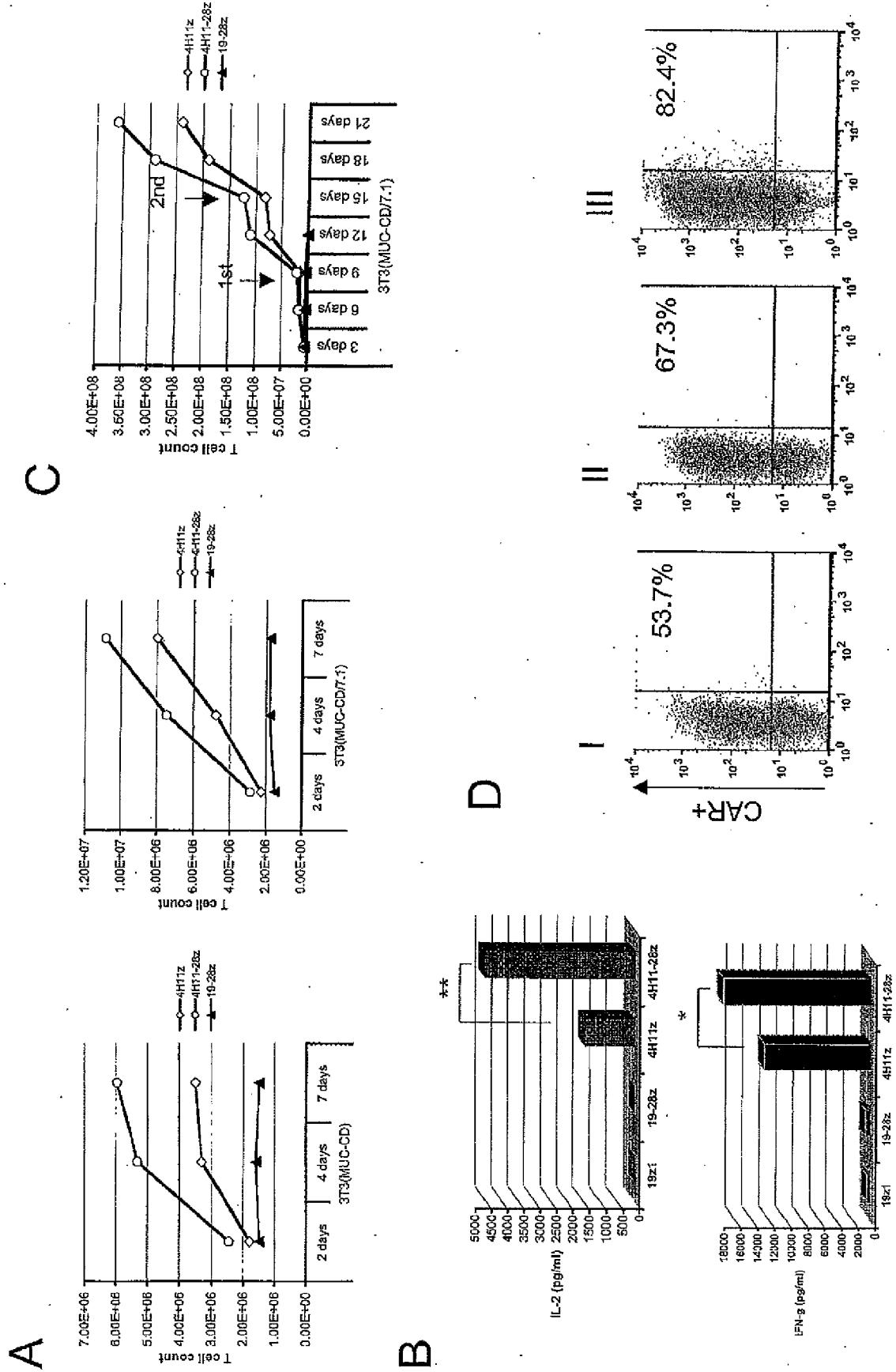


Figure 12

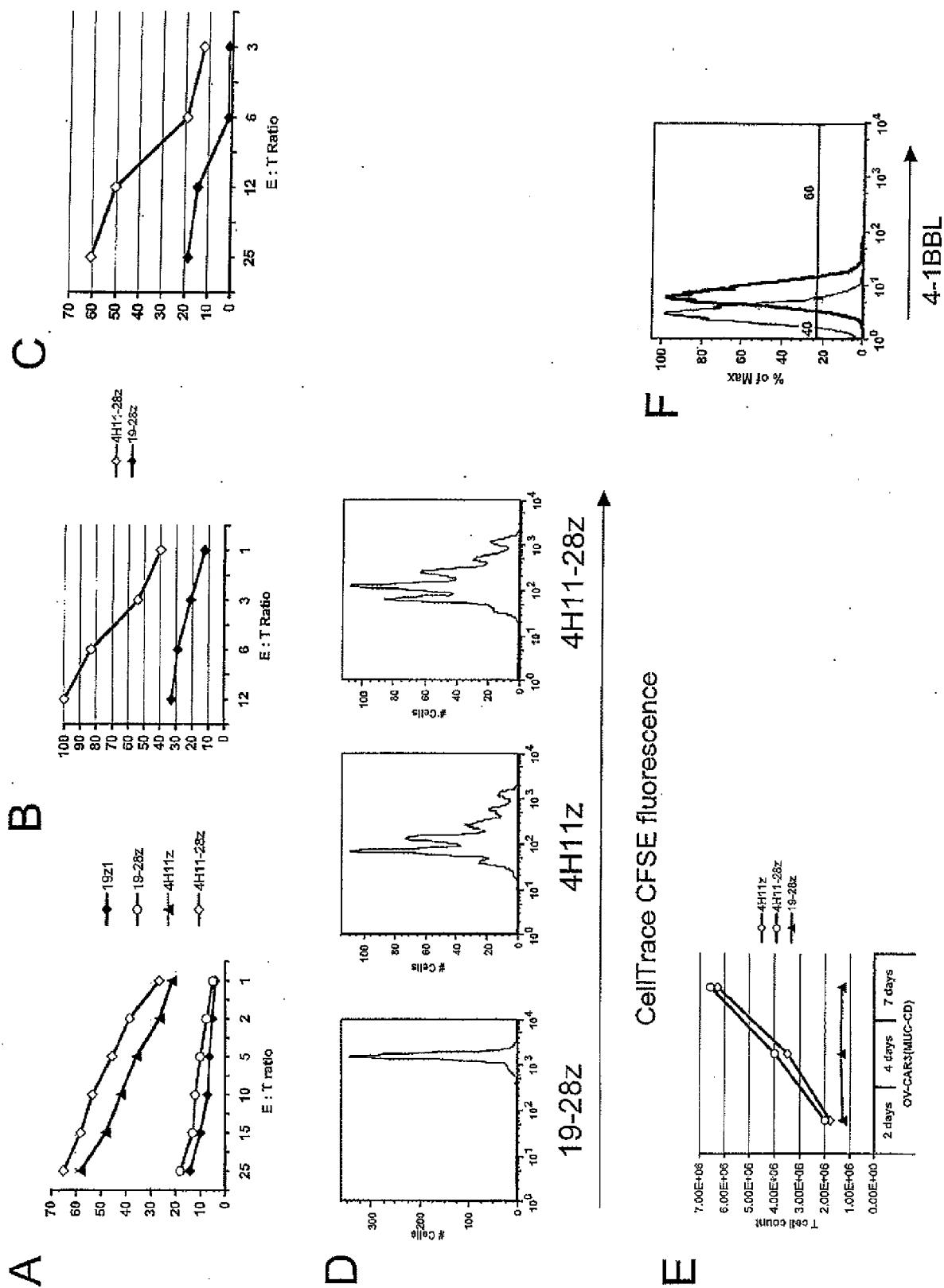


Figure 13

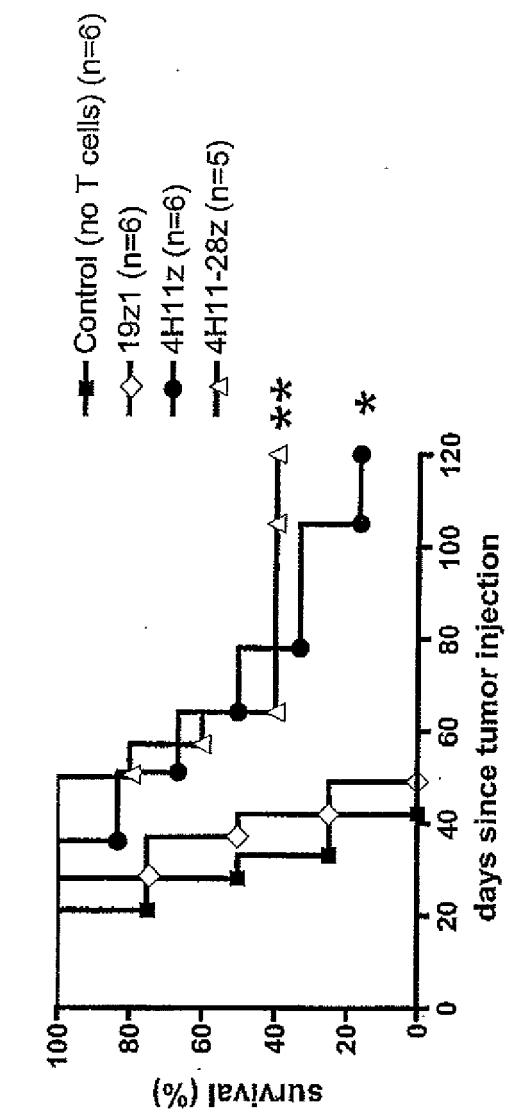
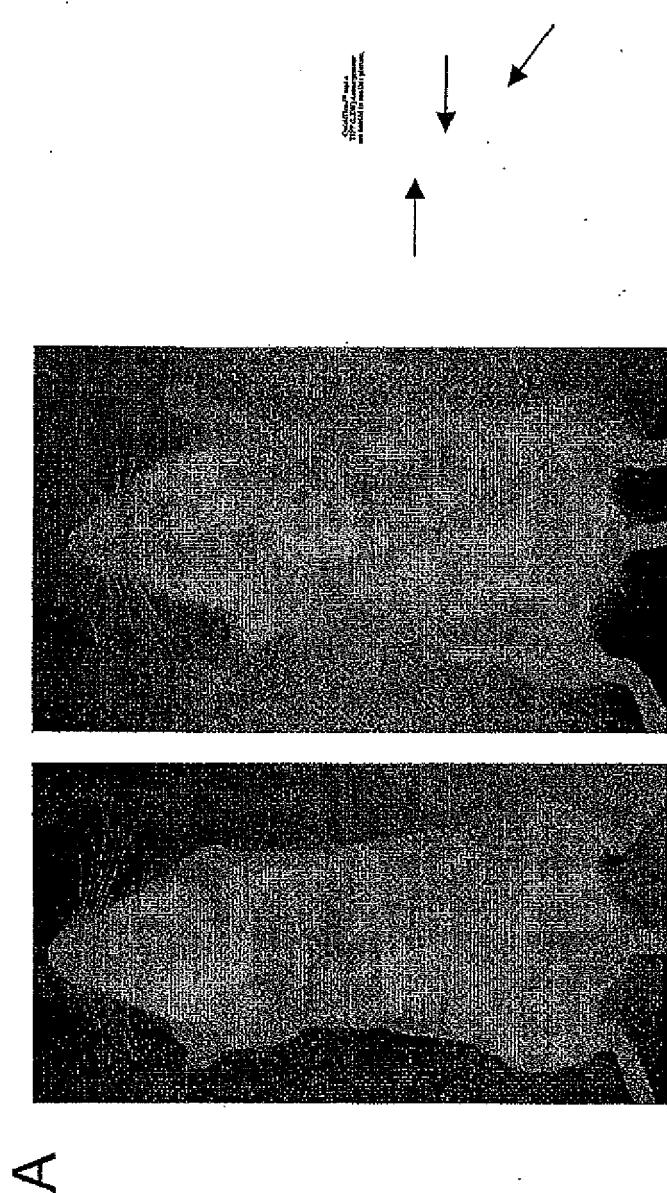



Figure 14

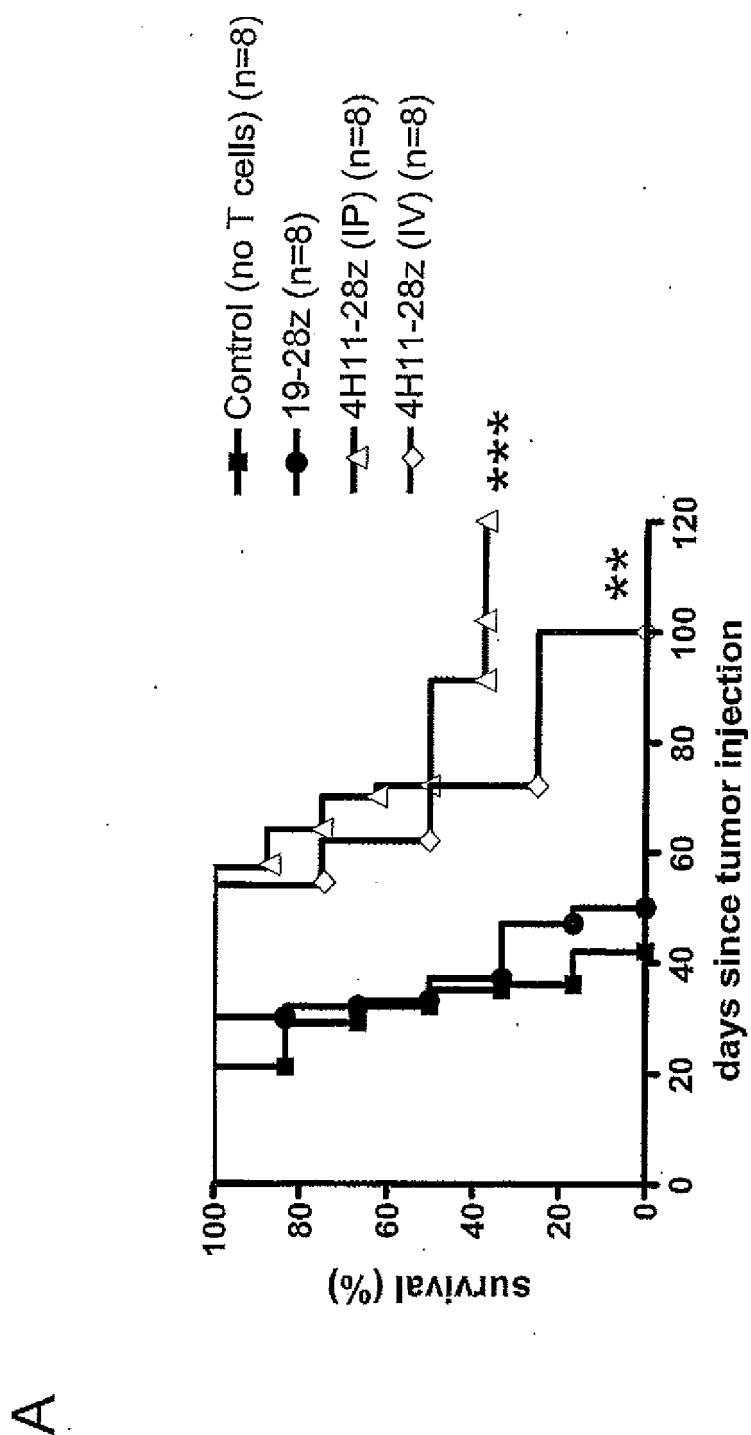
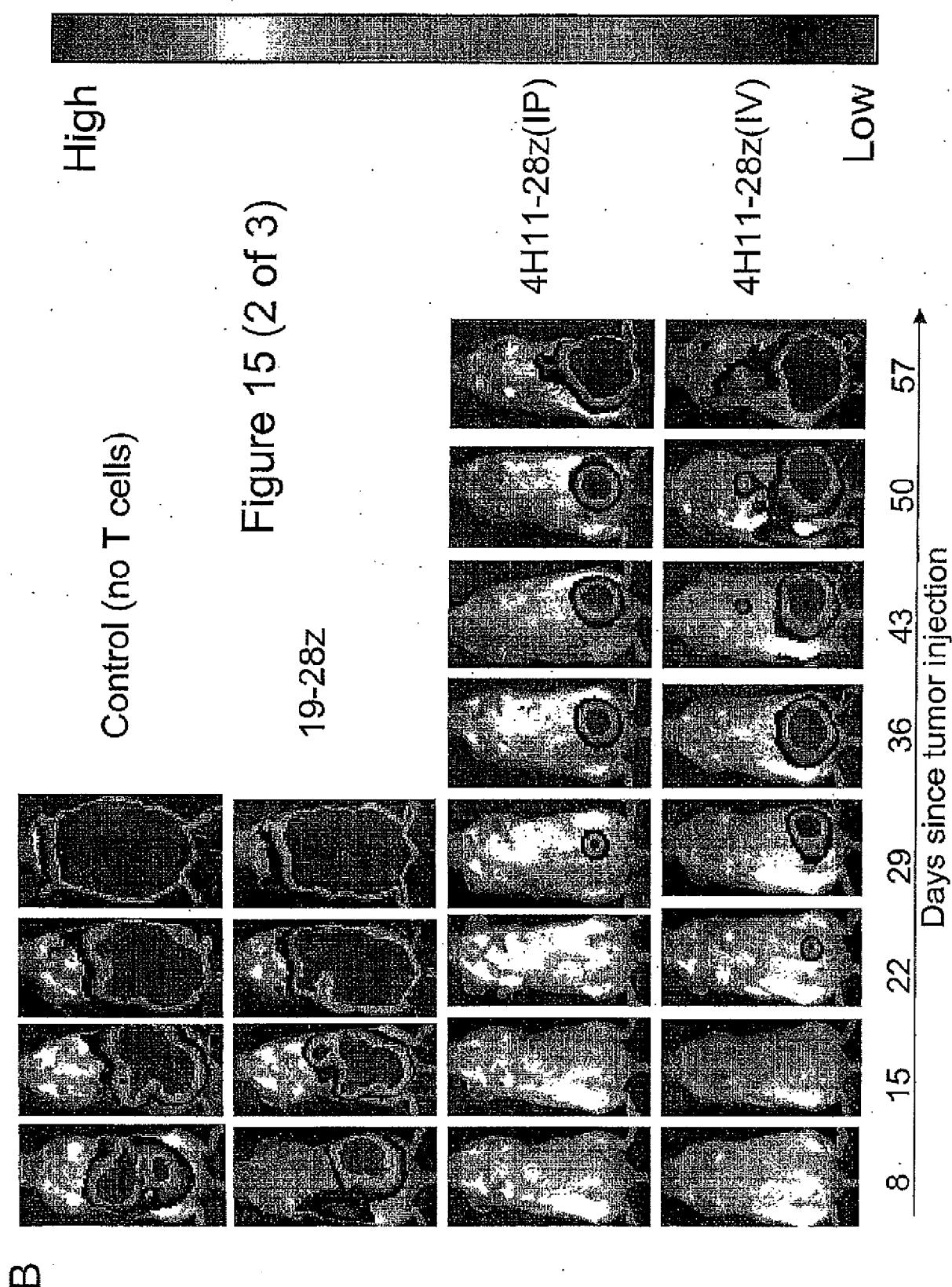



Figure 15 (1 of 3)

B

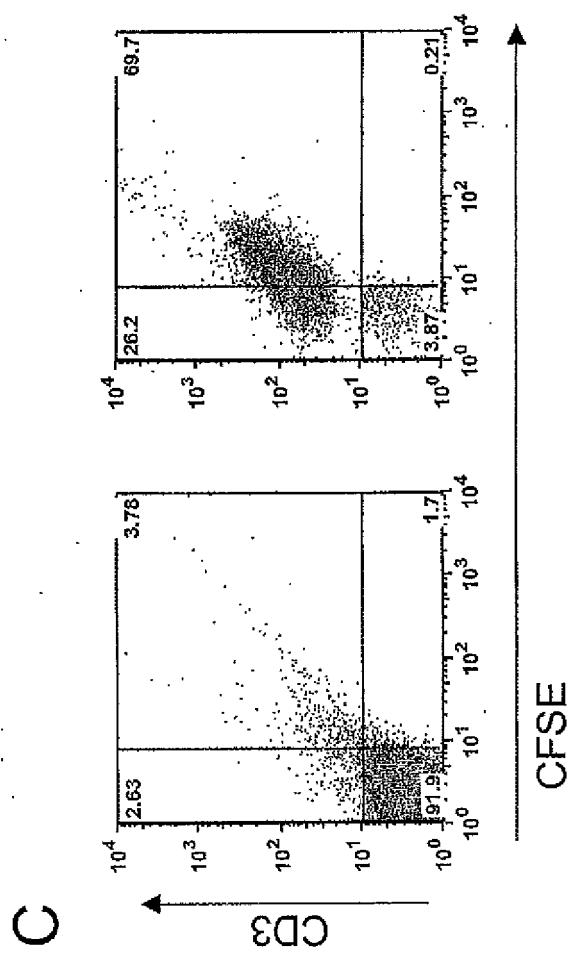


Figure 15 (3 of 3)

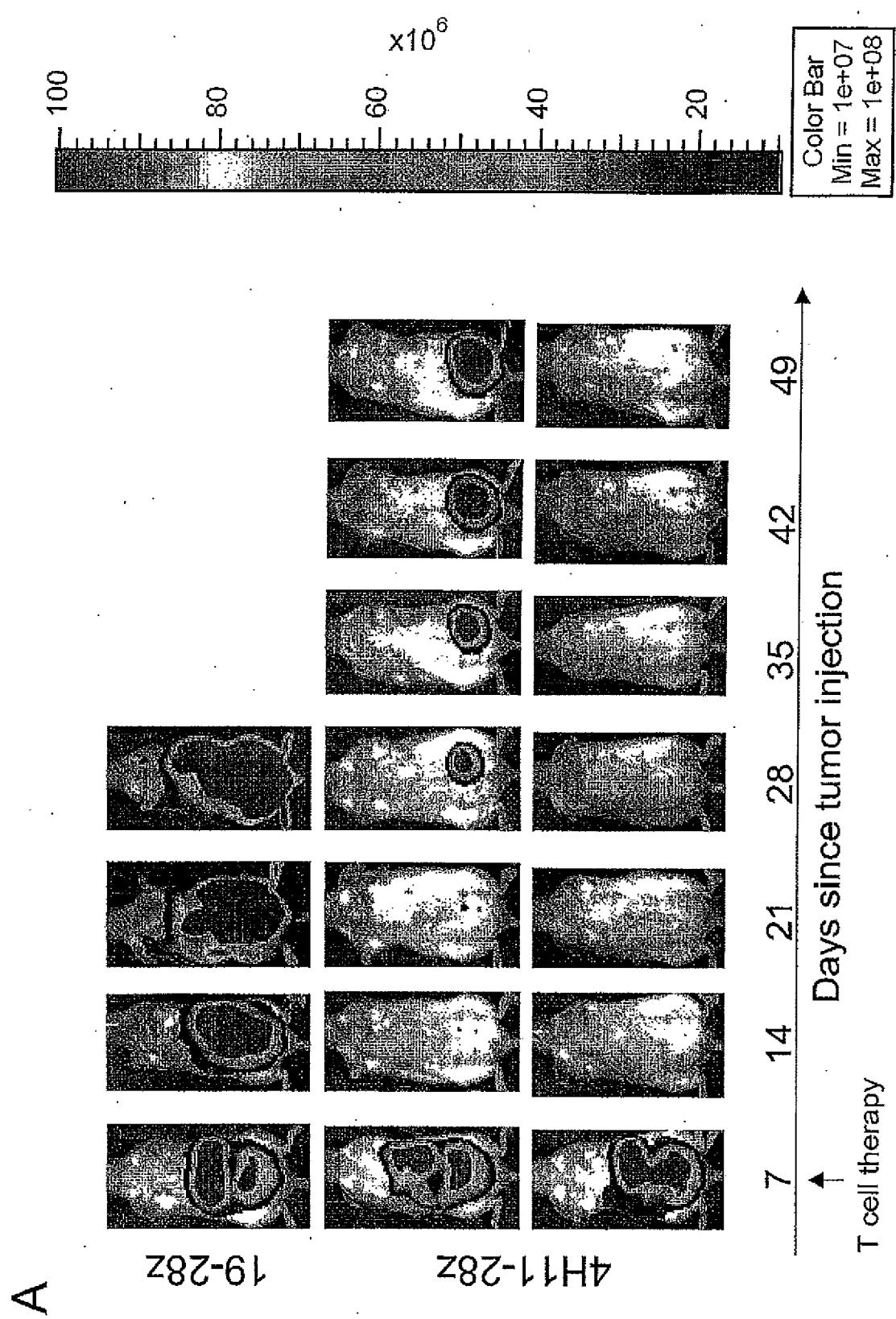


Figure 16 (1 of 2)

A

B

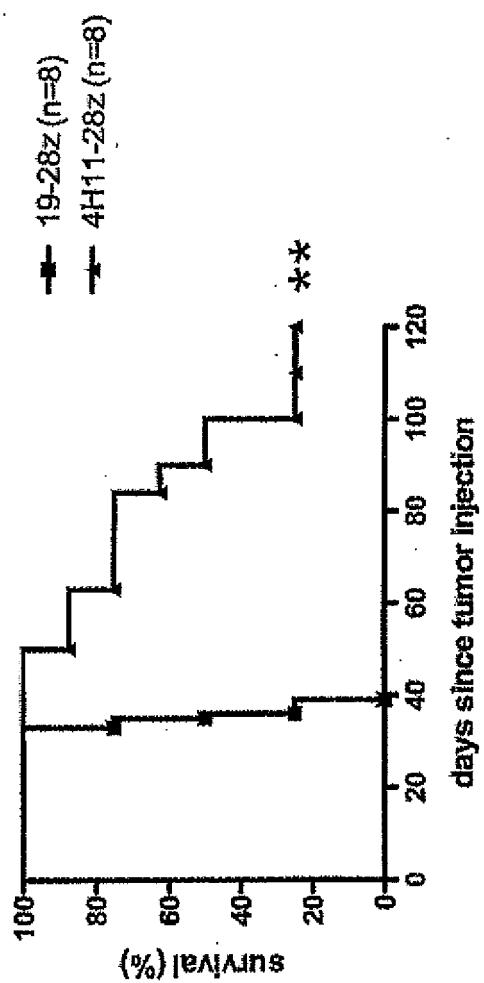


Figure 16 (2 of 2)

CD8 leader sequence

ATGGCTC TCCCAGTGAC TGCCCTACTG CTTCCCTAG CGCTTCTCCT GCATGCAGAG

CD3 zeta chain intracellular domain

AGAGT GAAGTTCAAGC AGGAGCGCAG AGCCCCCGC GTACCAGCAG GGCCAGAAC AGCTCTATAA
CGAGGCTCAAT CTAGGACGAA GAGAGGAGTA CGATGTTTG GACAAGAGAC GTGGCCGGGA CCCTGAGATG
GGGGGAAAGC CGAGAAGGAA GAACCCCTCAG GAAGGCCCTGT ACAATGAAC CCACAAAGAT AAGATGGCG
AGGCCTACAG TGAGATTGGG ATGAAAGGCG AGGCCCGGAG GGGCAAGGGG CACGATGGCC TTTACCAAGGG
TCTCAGTACA GCCACCAAGG ACACCTACGA CGCCCTTCAC ATGCAGGCC
TGCCCCCTCG

(G4S)3 serine-glycine linker

gene ~~GGCCCTTCTTCAC~~ AGGTGGCCACCTT CGATGTTGGTGGAGGTGGATC

CD8 transmembrane domain

CGGGCCGCAC CCACCAACGAC GCCAGCGCCG CGACCACCAA CCCCGGCCGC CACGATCGCG TCGCAGCCCC
TGTCCCTGCG CCCAGAGGCG TGCCGGCCAG CGGGGGGGGG CGCAGTGCAC ACGAGGGGGC TGGACTTCGC
CTGTGATATCTACATCTGGG CGCCCTTGGC CGGGACTTGT GGGGTCTTC TCCTGTCACT GGTTATCACC
CTTTACTGCA ACCAC

CD28 transmembrane + intracellular domains (-STOP)

CAA TTGAAGTTAT GTATCCTCCT CCTTACCTAG ACAATGAGAA GAGCAATGGA ACCATTATCC
ATGTGAAAGG GAAACACCTT TGTCCAAGTC CCCTATTCC CGGACCTTCT AAGCCCTTT GGGTGCTGGT
GGTGGTTGGT GGAGTCCTGG CTTGCTATAG CTTGCTAGTA ACAGTGGCCT TTATTATTT CTGGGTGAGG
AGTAAGAGGA GCAGGCTCCT

Figure 17

BamHI			
1	GATTCGGAT TAGCCGATT TGTAGTACAG AGCTTACAACT GCTAGTTTG ACTCAGCAAT ATCACCAGCT GAAAGCTTATA GAGCTACGAGC	CTTACGATAT CTCAGCTGCG	
101	CCTAGCCATA ATCAGCTTA ACAAATCTG TCCATTAGTC ACCAGGTGCG AAGATGAAAC TCAAGTAAAC TCGATGTTTA TAGTGTGCGA	CTTCAGTATA CGTACGTTTG	
201	CAAGATATA ATTAAGAT TTAATTAGTC TCCGAAATA AGATGAACTT CCCCCCTTAC TTTCTGGGTG GCACTCAAA CGATGCGAT	CGATGAAAC	
301	GTTCGGTAC TTTTAACTT AACTGAACT AGATGAACT AGATGAACT TGGACTCTTA TCTCTTCAAG TCTAGTCTCA	CGGGCTGCTG ACCTTGCTGA	CGATGCGGCA
401	AGCAGTCTC GCCCGGCTC AGGGCTAGA ACGATGAAAG CAGCTGATA TGGCTGAAAC TGGCTGAAAC AGGATATCTG TGTGAGCTAG	GTCTGCTGCTG ACCTTGCTGA	CGATGCGGCA
501	TGCTCAAGG CGGGGGCGAG TCCCTGGTCTC TGTGACTCTT GTCGACTAT ACCCGGTTTG TCTTATGAC ACCATCGTC	AGGATGCGG	CGATGCGGCA
601	CGAGAACAGA TGGTCCCCAG ATGGCTCCA GCGCTCAGA GTTTCAGA AACCTTACAGA TGTTCAGG GTGCCCCAG	CGATGCGGCA	CGATGCGGCA
701	GTTCCTGCTC ACCAGGCTC TACGGCTC CCGGGTCTG TGGCTGCTG AGCAAGTCA CGTACGCTGA	CGATGCGGCA	CGATGCGGCA
801	GTATTTGAA CTAAACCC AGCTTCTGAA CGGGGGCTC AAGGGGGG CAGAAGTGT GTACGCTGTA	CGATGCGGCA	CGATGCGGCA
901	TCACGAGCT AACTGACTA CGGGGGCTC GGGGGCTAG GTTATTTGG CGTCTTACA CGTCTTACA	CGATGCGGCA	CGATGCGGCA
1001	CTCTGAGTA TTGACTAACCG GTTCACTGGG GTTCTTACA CGTCTTACA	CGATGCGGCA	CGATGCGGCA
1101	ATGGTACTA AACTGACTA CGGGGGCTC AAGGGGGG CAGAAGTGT GTACGCTGTA	CGATGCGGCA	CGATGCGGCA
1201	TATGTCCTA TAACTGACTA AAAACCTAA TAACTGACTA ACTAATCAC	CGATGCGGCA	CGATGCGGCA
1301	ATGGTGTGT GTGAAATGTT GTATGTTAGT GTGGTGTGT GTGGTGTGT	CGATGCGGCA	CGATGCGGCA
1401	TTCCTGAGA C AGAGCTTC ACTTCTGTT GATTCAGCTG GCGGTGCTTT TACAAGCTG TGCTGGAA AACCTTCTG	CGATGCGGCA	CGATGCGGCA
1501	AAAGCTCTG TCTCAGAAG TGAATCTAAC CTTAAGTGCAC CGCCAGCAA ATGGTGTGTG ACTGTCCTG	CGATGCGGCA	CGATGCGGCA
1601	CGCGACATC CCCTTCTCCCG CAGCTGGGT AATTCGGAAG AGCCCGGCGAC	CGATGCGGCA	CGATGCGGCA
1701	TGGGGTATT TCTCTTAACT CGTCTTACG CGGCTTACG TCACTCTCA CGATGCGGCA	CGATGCGGCA	CGATGCGGCA
1801	ACGCCATAA AGAGGAAATC GTAGCTTAACT CGGGCTTCTG AGCCGCTTGTG AGCCGGCTG	CGATGCGGCA	CGATGCGGCA
1901	TCTCTGGAA CTGGGGGG AAATGGCGC GGAACCCCTA TTGGTTAACT CGATGCGGCA	CGATGCGGCA	CGATGCGGCA
2001	AATGCTCTA ATTAATCTA AATGAACTA GTTACGCGC CCTTGGGAA CGATGCGGCA	CGATGCGGCA	CGATGCGGCA
	TTTACGAAAGT TAACTAATC TTTCTTCTT CGATGCGGCA	CGATGCGGCA	CGATGCGGCA

Figure 18 (1 of 5)

Figure 18 (2 of 5)

Figure 18 (3 of 5)

Figure 18 (4 of 5)

Page 18 (5 of 5)

1	CCATGGCCGAT TAGGCCATT TGTTTAAGAC AGGATATCG AGGTCCAGGC TGTGTCAGGC CTTACGGGCTA ATCGGTTAA ACATTTTCG TCCGAGAA AGCTTAACTT CATAGTTAA ATTAAGGTT TTAATTAACG TCCGAGAA AGCTTAACTT GTATCPATT TATTTCTAA AATAATCG AGCTTAACTT CTCGGGAAAG CAAGGCTGG TAAATACAT AACTGAAAT AGAGAGGTC AGCTTAACTT GTCGCCATAC TTGTTATGTA TTGACTCTTA TCTCTTCAG TCTACTTCC AGCGATCTT GCGCGGGTC AGGGCCAGA CGGTGTTAA AGAGAGGAA TGTCAGGA CGGCGCCAG TOCCGGGTT TCTTACCTT CGGACTTAA CAAGAAGCA TGGCGCCAG AGGGCGGAA GCGCGGCTCT CTCGGCTAC GTCGGCTT AGCGCTT AGTGGCTTC CGGAGGCTCT CTCGGCTAC CTTATGTA CTAAACAT AGTGGCTTC CGGAGGCTCT CTCGGCTAC GAATGACTT GATGGTGT AGTGGCTTC CGGAGGCTCT CTCGGCTAC AGTCCTCGCA TTGACTGAA CGCCCGGTTA CGTAAACCC TCGAGGACTT AACTGACTCA CGGGGGCTCT GGGGGCTCT CTCTGAGCT TACGCTCC TACGCTCC TACGCTCC GAGGCTACT AACGCTCC TACGCTCC TACGCTCC ATATGACTT AACGCTCC TACGCTCC TACGCTCC TATCAGAA TACGCTCC CGGAGGCTCT AACGCTCC CTATCTTCTT TACGCTCC TACGCTCC TACGCTCC 901 CTACCTTTC TTATTTCTC TGTGTTCTC TGTGTTCTC GATGAAAG AAATAAAAG AGAACAGGAG AGAACAGGAA ATATGACTT AACGCTCC TACGCTCC TACGCTCC 1001 TACGATGAA TACGCTCC TACGCTCC TACGCTCC ATTACGGTA TGTGTTCTC TTGTTCTC TGTGTTCTC TAATGCTCA ATCGGTTCTC TTGTTCTC TGTGTTCTC 1101 TACGATGAA TGTGTTCTC TTGTTCTC TGTGTTCTC 1201 ATGGGTGTT GTGAGTGT GTATGTTGTT GTGTTGTT TACCGCTCA CACTACATA CACTACATA CACACACT GTTGTTGTT GTGAGTGT GTATGTTGTT GTGTTGTT CACACACA CACACACA CACACACA 1301 TACGATGAA AACATCTT GGTGTTGTT CACACACA CACACACA CACACACA B201	TCTAGTTTG ACTCACAAAT ATCACAGCT TGTGTTCTC GAGGCTTAA AGTGTGAAAG TGTGTTCTC TGTGTTCTC CTTACGGGAA ATAGGTTAA ATAGGTTAA ATAGGTTAA GTCGGGCTCT CGGAGGCTCT CGGAGGCTCT CGGAGGCTCT TGTGTTCTC TGTGTTCTC TGTGTTCTC TGTGTTCTC ACGGCTCTT ACGGCTCTT ACGGCTCTT ACGGCTCTT ACGGCTCTT ACGGCTCTT ACGGCTCTT ACGGCTCTT TGTGTTCTC TGTGTTCTC TGTGTTCTC TGTGTTCTC AGGGTCTAC CGTAAAGG TGTGTTCTC TGTGTTCTC TCGAGGAAAG TGTGTTCTC TGTGTTCTC TGTGTTCTC TCGAGGAAAG TGTGTTCTC TGTGTTCTC TGTGTTCTC 1401 TTTTGACAC AGAGCTTC ACTTAGGTT GAACTGCTTG AAAAACTCTC TTTCAGAAG TGAATGCAAC CTTAAGTCAC CGGAGGAA GAGGCTCTC CGGGAGGAG GTCGAGGAAAG TGTGTTCTC TGTGTTCTC TGTGTTCTC TGTGTTCTC TGTGTTCTC ACGGCTCTT ACGGCTCTT ACGGCTCTT ACGGCTCTT TGTGTTCTC TGTGTTCTC TGTGTTCTC TGTGTTCTC AGGGTCTAC CGTAAAGG TGTGTTCTC TGTGTTCTC TCGAGGAAAG TGTGTTCTC TGTGTTCTC TGTGTTCTC 1501 TGTGTTCTC TGTGTTCTC TGTGTTCTC TGTGTTCTC AGGGTCTAC CGTAAAGG TGTGTTCTC TGTGTTCTC TCGAGGAAAG TGTGTTCTC TGTGTTCTC TGTGTTCTC 1601 TGTGTTCTC TGTGTTCTC TGTGTTCTC TGTGTTCTC ACGGCTCTT ACGGCTCTT ACGGCTCTT ACGGCTCTT TGTGTTCTC TGTGTTCTC TGTGTTCTC TGTGTTCTC AGGGTCTAC CGTAAAGG TGTGTTCTC TGTGTTCTC TCGAGGAAAG TGTGTTCTC TGTGTTCTC TGTGTTCTC 1701 TGTGTTCTC TGTGTTCTC TGTGTTCTC TGTGTTCTC AGGGTCTAC CGTAAAGG TGTGTTCTC TGTGTTCTC TCGAGGAAAG TGTGTTCTC TGTGTTCTC TGTGTTCTC 1801 TGTGTTCTC TGTGTTCTC TGTGTTCTC TGTGTTCTC AGGGTCTAC CGTAAAGG TGTGTTCTC TGTGTTCTC TCGAGGAAAG TGTGTTCTC TGTGTTCTC TGTGTTCTC 1901 TGTGTTCTC TGTGTTCTC TGTGTTCTC TGTGTTCTC AGGGTCTAC CGTAAAGG TGTGTTCTC TGTGTTCTC TCGAGGAAAG TGTGTTCTC TGTGTTCTC TGTGTTCTC 2001 TGTGTTCTC TGTGTTCTC TGTGTTCTC TGTGTTCTC AGGGTCTAC CGTAAAGG TGTGTTCTC TGTGTTCTC TCGAGGAAAG TGTGTTCTC TGTGTTCTC TGTGTTCTC
---	---	--

Figure 19 (1 of 6)

2101	TCACCCAGAA AGCTGGTG AAGTAAAGA TCTCTGAGAT CAGTGGGG TGCTGGGG CACGAGCTGA CUGGAACTCA ACAGGCTAA GATGCCCTGAG
2201	AGTGGGGCTT TGGGACCACT TTCCATTTCTT AGGACTCTTA GTCACCCAC GGTATGGCC CGGGTATAT CGCTGCGATT TGGTGGGATT CGCCTGGAA GAGGAACTCG
2301	TCAALGGCG GCGTCTGTC AAGAGGTTAC TACTCTGAA ATTTCGAA GAGCTACTC CAGATGAGA TGGTGGAA CTCACAGTC GCGCCGCGTT CGCGGGCG
2401	TCGGCGCGTA TGTGATAGAA GCTCTGAGA ACCGACTAT CAGTGGGGTG TGCTGGGGTG TAGATGGAA TGGCTGACA GTCAGGAAAT ATTACGTCAG
2501	TCGGCGCGTC ATGGATGATA ACAGCTGGC CAGTGGGGTG TGCTGGGGTG CGGGGGGGTA CGGGGGGGTG GAGGAGCTG GTCAGGAA
2601	TCGGCGCGTC ATGGATGATA ACAGCTGGC CAGTGGGGTG TGCTGGGGTG CGGGGGGGTA CGGGGGGGTG GAGGAGCTG GTCAGGAA
2701	TGGTGGGGTG AGCGCTGAG GAGGAGCTG TGGTGGGGTG CGGGGGGGTA CGGGGGGGTG GAGGAGCTG GTCAGGAA
2801	TCGGCGCGTC AGCGCTGAG GAGGAGCTG TGGTGGGGTG CGGGGGGGTA CGGGGGGGTG GAGGAGCTG GTCAGGAA
2901	TCGGCGCGTC AGCGCTGAG GAGGAGCTG TGGTGGGGTG CGGGGGGGTA CGGGGGGGTG GAGGAGCTG GTCAGGAA
3001	TCGGCGCGTC AGCGCTGAG GAGGAGCTG TGGTGGGGTG CGGGGGGGTA CGGGGGGGTG GAGGAGCTG GTCAGGAA
3101	TCGGCGCGTC AGCGCTGAG GAGGAGCTG TGGTGGGGTG CGGGGGGGTA CGGGGGGGTG GAGGAGCTG GTCAGGAA
3201	TCGGCGCGTC AGCGCTGAG GAGGAGCTG TGGTGGGGTG CGGGGGGGTA CGGGGGGGTG GAGGAGCTG GTCAGGAA
3301	TCGGCGCGTC AGCGCTGAG GAGGAGCTG TGGTGGGGTG CGGGGGGGTA CGGGGGGGTG GAGGAGCTG GTCAGGAA
3401	TCGGCGCGTC AGCGCTGAG GAGGAGCTG TGGTGGGGTG CGGGGGGGTA CGGGGGGGTG GAGGAGCTG GTCAGGAA
3501	TCGGCGCGTC AGCGCTGAG GAGGAGCTG TGGTGGGGTG CGGGGGGGTA CGGGGGGGTG GAGGAGCTG GTCAGGAA
3601	TCGGCGCGTC AGCGCTGAG GAGGAGCTG TGGTGGGGTG CGGGGGGGTA CGGGGGGGTG GAGGAGCTG GTCAGGAA
3701	TCGGCGCGTC AGCGCTGAG GAGGAGCTG TGGTGGGGTG CGGGGGGGTA CGGGGGGGTG GAGGAGCTG GTCAGGAA
3801	TCGGCGCGTC AGCGCTGAG GAGGAGCTG TGGTGGGGTG CGGGGGGGTA CGGGGGGGTG GAGGAGCTG GTCAGGAA
3901	TCGGCGCGTC AGCGCTGAG GAGGAGCTG TGGTGGGGTG CGGGGGGGTA CGGGGGGGTG GAGGAGCTG GTCAGGAA
4001	TCGGCGCGTC AGCGCTGAG GAGGAGCTG TGGTGGGGTG CGGGGGGGTA CGGGGGGGTG GAGGAGCTG GTCAGGAA
4101	TCGGCGCGTC AGCGCTGAG GAGGAGCTG TGGTGGGGTG CGGGGGGGTA CGGGGGGGTG GAGGAGCTG GTCAGGAA
4201	TCGGCGCGTC AGCGCTGAG GAGGAGCTG TGGTGGGGTG CGGGGGGGTA CGGGGGGGTG GAGGAGCTG GTCAGGAA

Figure 19 (2 of 6)

4301	ATTACTTACG AGTTTCTTC ATTACAGTT CCTTCTCTAG TTGACACAT AATTCGCTG CTGAGGAAGC CAGTTCGCTG CTGAGGAAAT CTTATTCGCA
4401	TTATGAACT TCAAAGGAG TAATGCAA GGAGGAATC AACTCTGTTA TTACGTTAAG ACCCACCTG TAGGTGTCG AGCTAGCTT
4501	TTATGCGCTT CATACTTATT ACTACTTAT TAGTGTATT TTATTTGA CATATACATG TGAATGAAAG ACCCTACTG ACTTACTTC TGGGTGGAC ATCCAAACCG TTGATGCGAA
4601	AGTAGACGC ATTTGGAG GGTGTTAA ATTACAACT ATTACAACTA TTGATGTTA CTCTATCTT TTGATGTTA AGCTGAAAT ATCCGAACT ATCCGTTTC
4701	TTGATGCGC ATTTGGAG GGTGTTAA ATTACAACT ATTACAACTA TTGATGTTA CTCTATCTT TTGATGTTA AGCTGAAAT ATCCGAACT ATCCGTTTC
4801	TGAAATGACC CTGGCTCTTA TTGATGAA CAACTAATG CGCTTCGGC TTCTCTTCG GCTCTATCTC TCCCGGAGCT CTTGACTTA TCCCGGAGCT CCGCTCTTCG
4901	ACTTACTTG GACACGAAAT AACCTGTT GGTGTTAA CTGAGGAACT CGGTGCTCC CGGTGAACT CGGTGAACT AACCCCTG TGTATTTCTC GGTGTTAACT GGTGTTAACT
5001	CTCTACTGG GGCGCCMTC CTCCGATTA CTGAGGAACT CGGTGCTCC CGGTGAACT CGGTGAACT AACCCCTG TGTATTTCTC GGTGTTAACT GGTGTTAACT
5101	GGAGTGAGC CGGCGCTAG GAGCTGACT GCTCTGGC CGGTGAACT CGGTGAACT AACCCCTG TGTATTTCTC GGTGTTAACT GGTGTTAACT
5201	TTCTTGGAGG GGTCTCTCTC GAGTGTGA CTACCGCTCA GGCGGGGTT TTCTTGGAGG GGTCTCTCTC GAGTGTGA CTACCGCTCA GGCGGGGTT TTCTTGGAGG GGTCTCTCTC
5301	AGGAGCCCTC CCAGAGGAGA CTCAGCTACT GATGGGCACT CGCCCTGGCA CGCTCTGAC TGTCTGACCC TTGCTGGCG CGTCTGGCG CCTCTGGCG
5401	CGCCCTGGCG CGGAGGAACT CGCTCTGGCA CGCTCTGAC AACTTATCTG TGTCTGACCC TTGCTGGCG CGTCTGGCG CCTCTGGCG
5501	CGTAACTTACG TCTTGTGAGC AGACATAGC CGCTCTGGCA CGCTCTGAC TGTCTGACCC TTGCTGGCG CGTCTGGCG CCTCTGGCG
5601	TTGTGAGCTT TCTTGTGAGC AGACATAGC CGCTCTGGCA CGCTCTGAC TGTCTGACCC TTGCTGGCG CGTCTGGCG CCTCTGGCG
5701	TTTTTGCTCA AGGCTTCTTATT TGTCTGAGA TATGGGGCTTG CGCTCTGGCA CGCTCTGAC TGTCTGACCC TTGCTGGCG CGTCTGGCG
5801	AGACTGACAC AGACATAGC CGCTCTGGCA CGCTCTGAC TGTCTGACCC TTGCTGGCG CGTCTGGCG CCTCTGGCG
5901	ATGCTCTACAG ACCAGCTGAG AGACATAGC CGCTCTGGCA CGCTCTGAC TGTCTGACCC TTGCTGGCG CGTCTGGCG
6001	TTGGGAGCTT TTGCTGAGCA TCTACAGTC TCTCTGCA CTCAGGAA GAGCTGGAGT TTGCTGGCG CGTCTGGCG

Figure 19 (3 of 6)

Figure 19 (4 of 6)

(G4S) 3 Glycine-Serine linker								
6801	CAGCTGCTAC TGTACCTGG CTCACCCAGT CTCATCCCG CTCGGGCTG TCGAGGAGG AGAGAGTCAC TGTCTGGC AATTCGGC AGAGTCCTG CTGACCGAC TGTGAAACG GAGTGGCTCA GAGCTAGG	VI						
6901	CAACAGAGA TGGTACCGC TGGTACCGC CAATACCCAG GACAGTCCTG TGTACCTGG AGTCTACCG CAGTGGCTCA GTCAGGAGG ACTTCGAC GTCGCTCT TGGCTTCTC TGGCTTCTC	VI						
7001	GTCGCTATC GTCGCTGG CTCGCTGGT GTCAGAGATC TCACTGTCAC CTCAGGAGT GTCAGGAGC GTCAGGAGC GTCAGGAGC CAGCTGCTG CTCAGCTG	VI						
7101	CTTCATTCCT AAGCACCGTC GGTGGCCCTG GTCAGCTGG GTCAGCTGG GTCAGCTGG GTCAGCTGG GTCAGCTGG GTCAGCTGG GAAATAGA TGGTGGCA GTCAGCTGG GTCAGCTGG GTCAGCTGG GTCAGCTGG GTCAGCTGG GTCAGCTGG GTCAGCTGG GTCAGCTGG	VI	Not I					
7201	GAGCAATGG ACCATTATCC ATGTGAAAG GAAACACCTT TGTGCAAGTC CTCAGCTTC CTCAGCTTC CTCAGCTTC CTCAGCTTC CTCTGTAACCT TGGTAAATGG TACACCTTC CTCAGCTTC CTCAGCTTC CTCAGCTTC CTCAGCTTC CTCAGCTTC CTCAGCTTC CTCAGCTTC	VI		CD28 transmembrane + intracellular domains (-STOP)				
7301	GGAGTCCTGG CTGGCTAGA ACACCTGGCT TATTTATTTT CTGGTGGAGG AGTAAAGGGA GCACTAGTCAC TACATGAA CCTCAGGACC GAAAGGATAC TGTACCCGA AATTAATAAA GACCCACTCC TCACTCTCT CTCGCGAGAA CTCGTCAGTC ATGTCAGTC	VI		CD28 transmembrane + intracellular domains (-STOP)				
7401	TGACTCCCG CGCGCCGGG CCCACCCGCA AGGATTACCA GCGCTTAAGGCC CGCACACCGC ACTTCGAGC CTCAGCTCC AGAGTCAGTC ACTGAGGGCC GCGGGCC CGGGTGGGGT TGTATCTGG CGGATTCAGG CGGGTGGGG TGTACCTGG CTCAGCTTC CTCAGCTTC CD3 zeta chain intracellular domain	VI						
7501	GGAGAGGGCC CGCGGGTACCC AGGAGGGCGA GACGGGGCGA TATAACCCGG TCAATCTGG AGTAAAGAG GAGTCAGTC GCGTCCTGG CGGGTGGGG TGTACCTGG CGGGTGGGG TGTACCTGG AGTAAAGAG GAGTCAGTC CTCAGCTTC CTCAGCTTC CD3 zeta chain intracellular domain	VI						
7601	GGAGACCTG AGAGAGGAGG AAGGGGGGG AAGGAGGAGG CCCTGAGGG CCCTGAGGG TGTATGAGG GAGTCAGTC GCCCTGGGAC TGTACCCGGC TGTACCCGGC TGTACCCGGC TGTACCCGGC TGTACCCGGC TGTACCCGGC TGTACCCGGC CD3 zeta chain intracellular domain	VI						

Figure 19 (5 of 6)

Figure 19 (6 of 6)

Figure 20A

1. Mouse MUC16-CD Peptide 1 (SEQ ID NO:21):

TLDRKSVFVDGYSQNRDD 19 AA

2. Mouse 1st Cysteine Loop peptide 2 (SEQ ID NO:22):

KSYFSDQ**QVLAFRSVSNNNNHTGVDSL**Q**NFSPL** 33 AA

3. Mouse 2nd Cysteine Loop peptide 3 (SEQ ID NO:23):

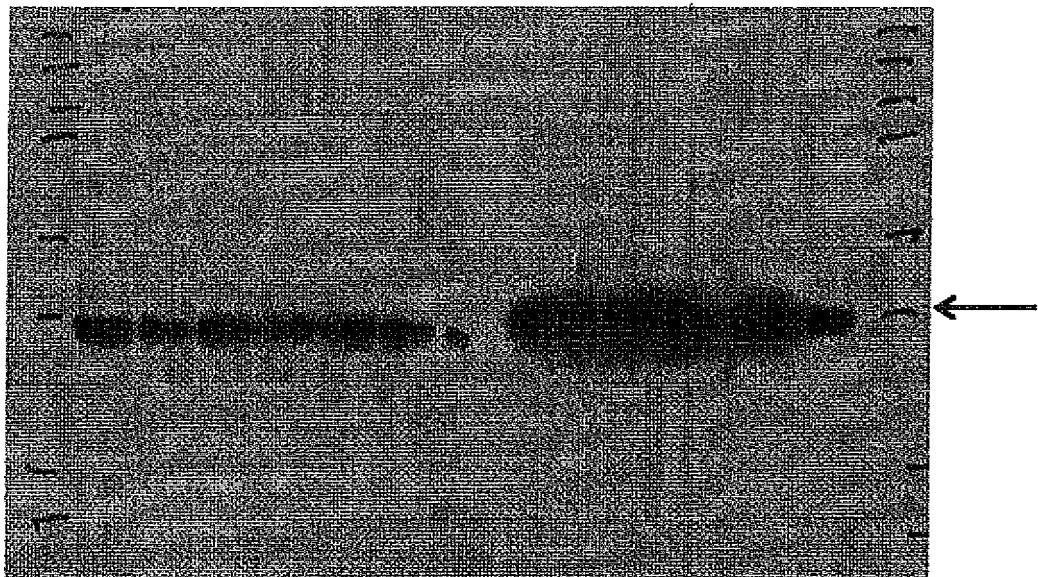

SLYSNQ**RLASLRPKKNGTATGVNA**Q**SYHQN** 32 AA

Figure 20B
Alignment of mouse MUC16 (SEQ ID NO:24) and human MUC16 (SEQ ID NO:25) amino acid sequences

Figure 21

Mouse MUC16 CD Peptide 1

ID1 9F7 16A9 21A7 24G10 10C4 17F2 1A8 1F8 12B10 17H10 18D5 23B12
1 2 3 4 5 6 7 8 9 10 11 12 13

Mouse MUC16 CL Peptide 3

25E9 16F12 4A6 5D1 21B8 21E1 8A1 13E5 23G4 21D3 FB XX 4H11hu
14 15 16 17 18 19 20 21 22 23 24 25 26

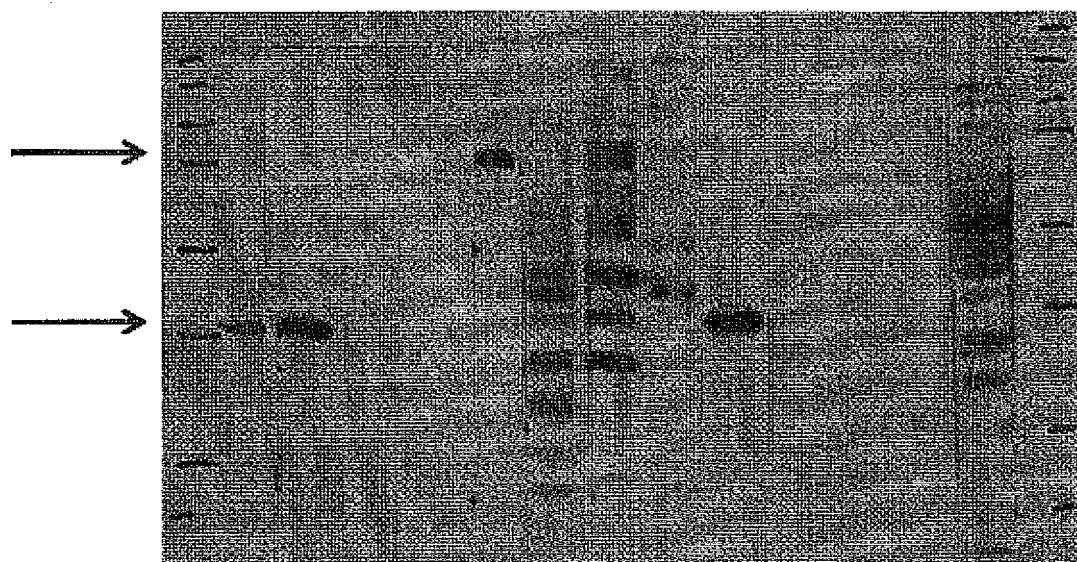


Figure 22

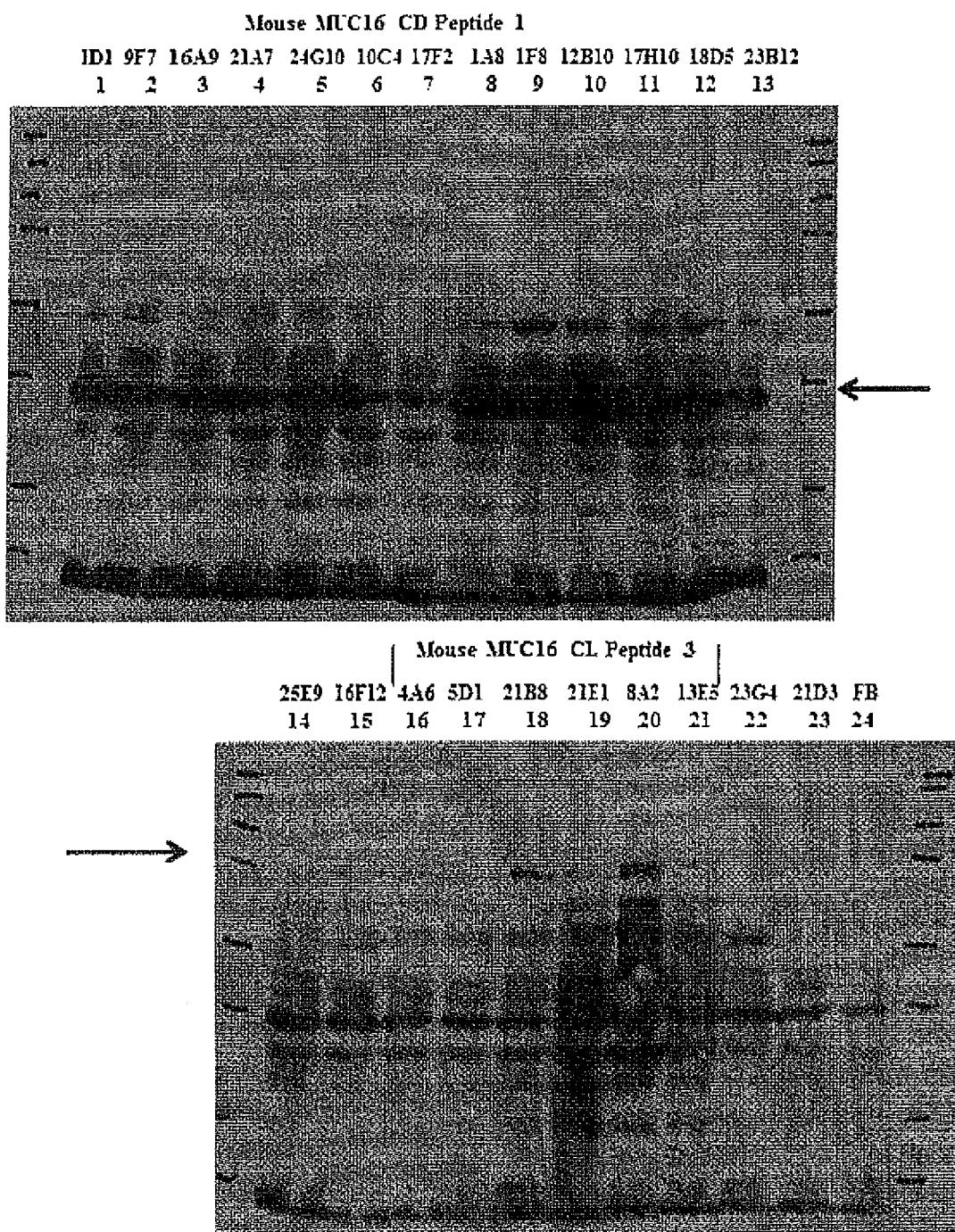
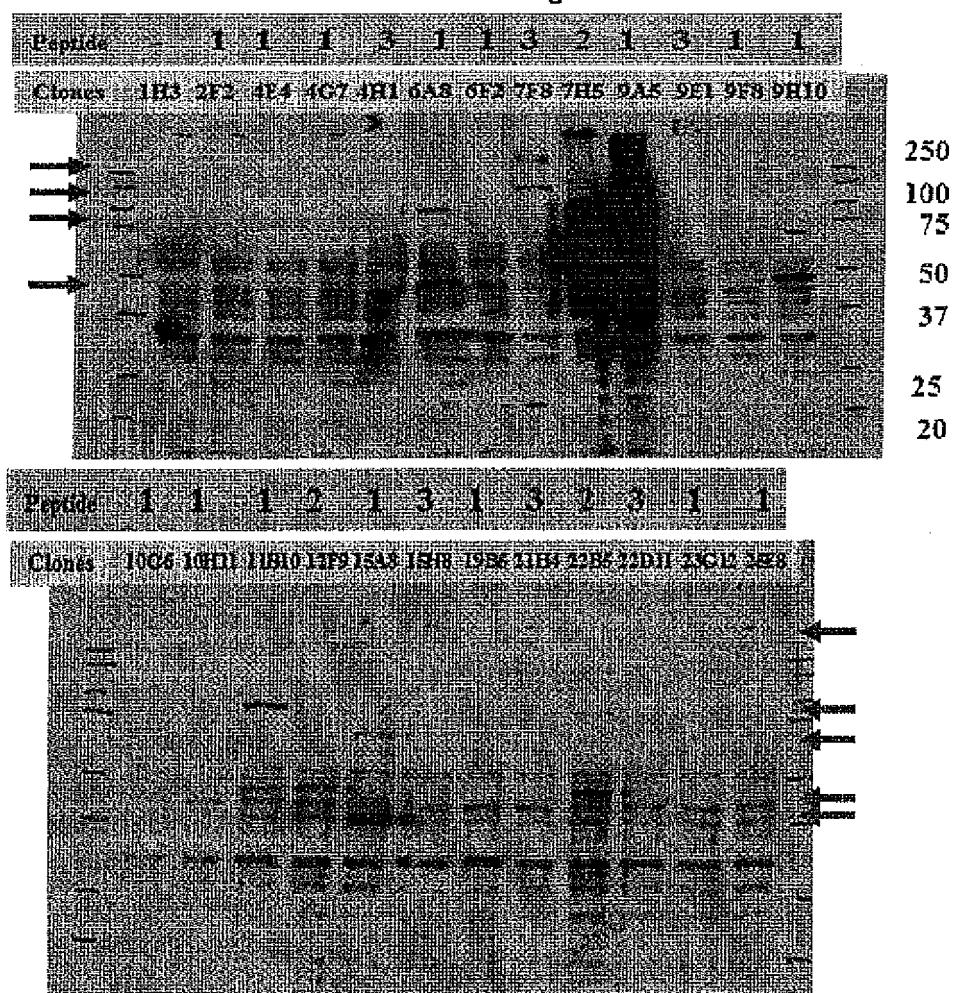
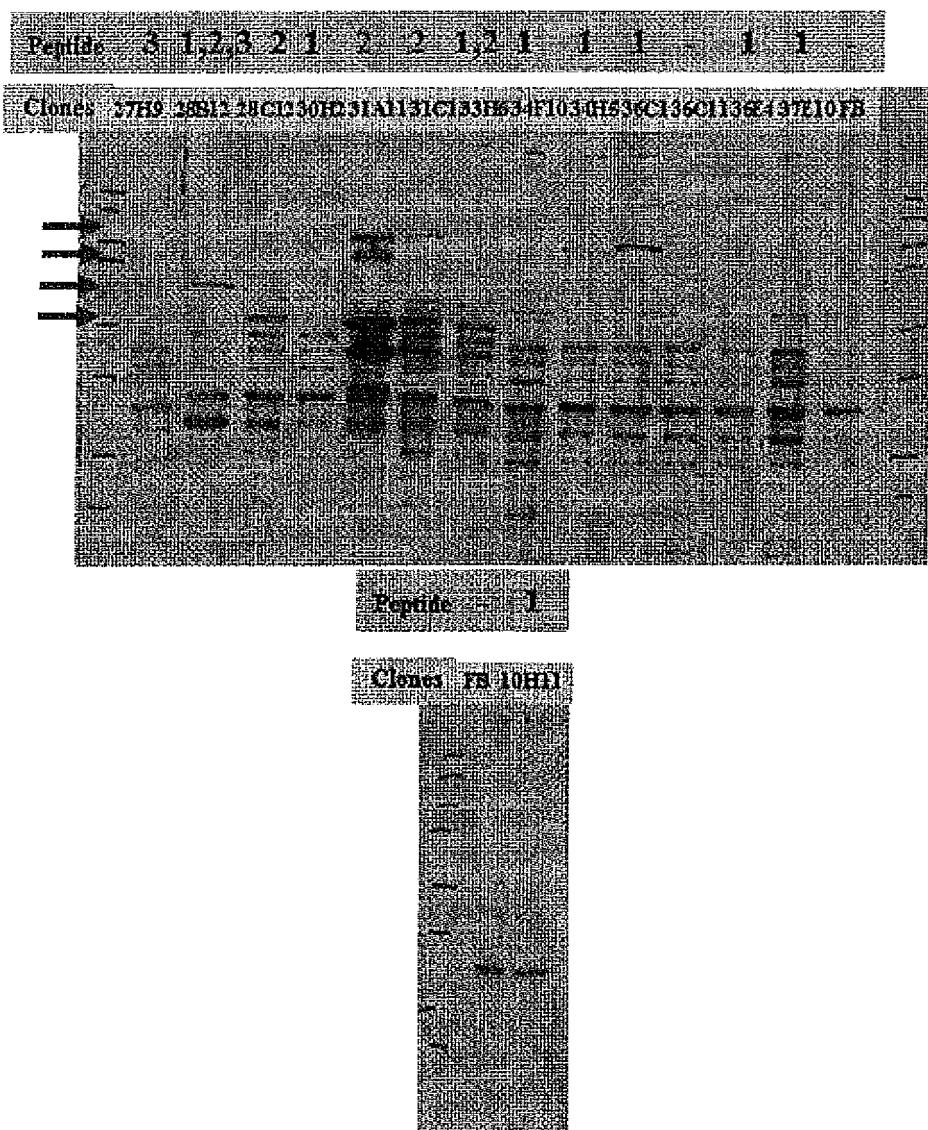




Figure 23

A. Nucleotide sequence encoding 12B10.3G10-V_H (SEQ ID NO:26)

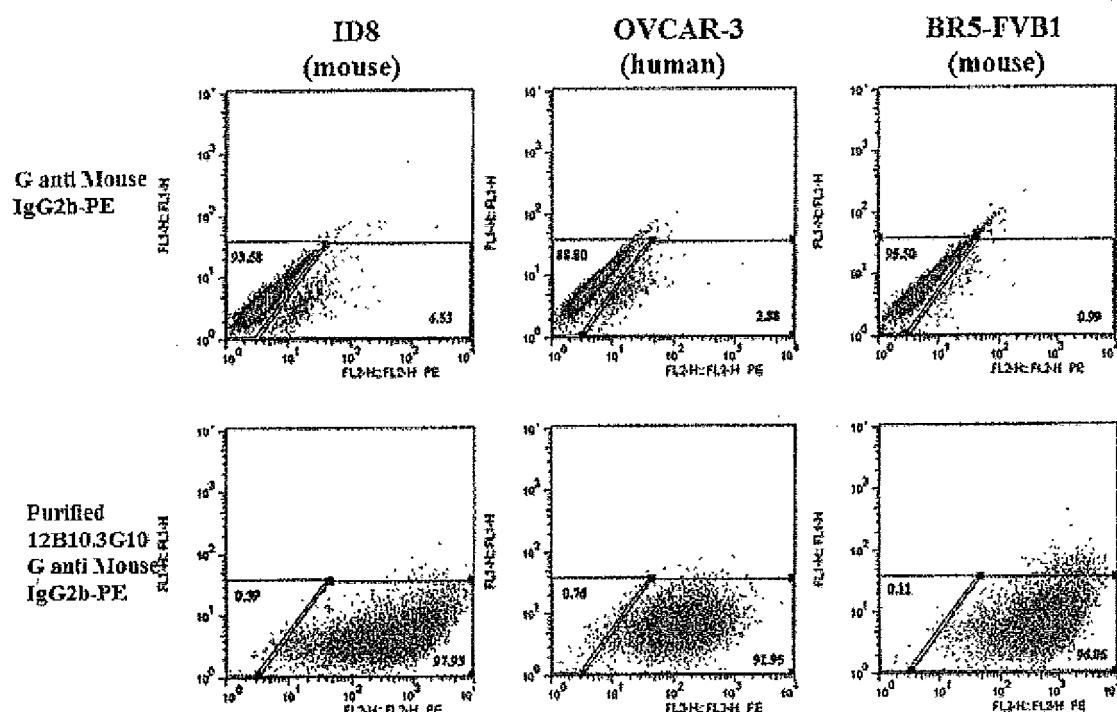
GAGGTGAAGCTGGAGGAGTCAGCTGGAGGATTGGTGCAGCCTAAAGGATCAITGAAACTCTCATGTGCCGCTCTGGTTCACTTCATACCTATGCCGTGCACIGGGTCCGGCCAGGCTCCAGGAAGGGTATGGAATGGGTTCTCGCATTAAGAAGTAAAGTGGAAATTATGCAACATATTATGCCGATTCACTGAAAGACAGATTCAACCATCTCCAGAAATGATTCAACAGAGCATGCTATCTGCAAAATGAAACACCTGAAAAGTCAAGGACACAGCCATATTAACTGTCTGAGAGCGGGTAACACGGGGCCTTCTTACTGGGGCAAGGGACCACGGTCACCCCTCTCCTCA

B. 12B10.3G10-V_H Amino Acid sequence (SEQ ID NO:27)

EVKLEESGGGLVQPKGSLKLSCAASQFTFNTYAVHWVRQAPGKGMEMVARIRSKSGNYATYYADSVKDRFTISRNDQSMLYLQMNNLKTEDTAIYYCVRAGNNGAFPYWGQGTVTVSS

C. Nucleotide sequence encoding 12B10.3G10-V_L (SEQ ID NO:28)

Note the V_L has an optional *NotI* site added by the primer for cloning.


GACATTGAGCTCACCCAGTCCTCCATCTCACTGTCTGCATCTCTGGAGGCAGAGTCACCATCACTTGCAAGGCTAGCCAAGATATTAAGAAGTATATAGCTGGTACCAACACAAGCCTGGAAAAAPCTCCTCGACTACTCATACATTTCACATCTACATTAACAGACAGGCATCCCATCAAGGTTCAAGGTTCAAGGCTAGTGGACGTTGGCTCTGGAGAGAGACTATTCCCTCAGCCTCAGCAACGCAACCTGGAGTCAGAAGATATTGCAACTTATTATGCTACAGTTACAGTTACGTTATGATAGTGTACACCGTTCCGGAGGGGGGACCAAGCTGGAGATCAAACGGGGCGGCCCA

D. 12B10.3G10-V_L Amino Acid sequence (SEQ ID NO:29)

DIELTQSPSSLSASLGGRVTITCKASQDIKKYIAWYQHKPGKTPRLLIHFTSTLQTGIPS
RFSGRGSGRDYSFSISNLESEDIATYYCLQYDSLTYTFGGGTKLEIKRAAA

Figure 24

Figure 25

EUROPEAN SEARCH REPORT

Application Number

EP 17 15 0631

5

DOCUMENTS CONSIDERED TO BE RELEVANT			
Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (IPC)
10 X	US 2004/057952 A1 (PAYNE GILLIAN [US] ET AL) 25 March 2004 (2004-03-25) * whole document, especially paragraphs [0011, 0014-0015, 0067, 0076, 0091-0095]; Examples 1, 8, 10, 13-14; Figure 2B; SEQ ID NO: 14 *	2,8-22	INV. C07K16/18 C12N15/13 C12N5/18 A61K39/395 A61P35/00 C07K16/30
15 A	-----	1,3-7	
20 X,D,P	RAO THAPI DHARMA ET AL: "Novel Monoclonal Antibodies Against the Proximal (Carboxy-Terminal) Portions of MUC16", APPLIED IMMUNOHISTOCHEM, LIPPINCOTT WILLIAMS AND WILKINS, PHILADELPHIA, PA, US, vol. 18, no. 5, October 2010 (2010-10), pages 462-472, XP008163430, ISSN: 1062-3345, DOI: 10.1097/PAI.0B013E3181DBFCD2 * the whole document *	1-22	
25	-----		
30			TECHNICAL FIELDS SEARCHED (IPC)
35			C07K A61K A61P
40			
45			
50 2	The present search report has been drawn up for all claims		
55	Place of search The Hague	Date of completion of the search 11 July 2017	Examiner Luyten, Kattie
CATEGORY OF CITED DOCUMENTS			
X : particularly relevant if taken alone Y : particularly relevant if combined with another document of the same category A : technological background O : non-written disclosure P : intermediate document			
T : theory or principle underlying the invention E : earlier patent document, but published on, or after the filing date D : document cited in the application L : document cited for other reasons & : member of the same patent family, corresponding document			

**ANNEX TO THE EUROPEAN SEARCH REPORT
ON EUROPEAN PATENT APPLICATION NO.**

EP 17 15 0631

5 This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

11-07-2017

10	Patent document cited in search report	Publication date	Patent family member(s)	Publication date
15	US 2004057952 A1	25-03-2004	AU 2003247762 A1 CA 2491017 A1 EP 1536814 A2 JP 2006502110 A US 2004057952 A1 WO 2004005470 A2	23-01-2004 15-01-2004 08-06-2005 19-01-2006 25-03-2004 15-01-2004
20				
25				
30				
35				
40				
45				
50				
55				

EPO FORM P0459

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 61317964 A [0001]
- US 7202346 B, Payne [0064] [0073] [0081] [0089] [0090] [0108] [0114] [0121] [0124]
- US 7662387 B [0081] [0089] [0109] [0110] [0124]
- US 4946778 A [0083]
- US 9002545 W [0085]
- US 4816567 A, Cabilly [0086]
- US 4978745 A, Shoemaker [0086]
- US 4975369 A, Beavers [0086]
- US 4816397 A, Boss [0086]
- US 5225539 A, Winter [0087]
- US 5545806 A [0087]
- US 5569825 A [0087]
- US 5625126 A [0087]
- WO 9222653 A [0087]
- US 20040162413 A [0088]
- US 7585952 B [0089]
- US 7227002 B [0089]
- US 7632925 B [0089]
- US 7501123 B [0089]
- US 6333410 B [0089] [0108] [0124]
- US 5475092 A [0089] [0108] [0124]
- US 5585499 A [0089] [0108] [0124]
- US 5846545 A [0089] [0108] [0124]
- US 6340701 B [0089] [0108] [0124]
- US 6372738 B [0089] [0108] [0124]
- US 6429295 B [0089] [0111] [0124]
- US 7666425 B [0089] [0111] [0124]
- US 5057313 A [0089] [0112] [0124]
- US 505713 A [0113]
- US 6632979 B, Erickson [0122]
- US 6905839 B, Furuta [0122]
- US 6238878 B, Jackobsen [0122]
- US 5851789 A, Simon [0122]
- US 5736137 A [0124]

Non-patent literature cited in the description

- PITOT et al. *Fundamentals of Oncology*, 1978, 15-25 [0036]
- ELOFSSON et al. *Annu. Rev. Biochem.*, 2007, vol. 76, 125-140 [0058] [0059]
- BERNSEL et al. *Protein Science*, 2005, vol. 14, 1723-1728 [0058] [0059]
- SINGER. *Annu. Rev. Cell Biol.*, 1990, vol. 6, 247-296 [0060]
- HIGH et al. *J. Cell Biol.*, 1993, vol. 121, 743-750 [0060]
- HUSE et al. *Science*, 1989, vol. 246, 1275-1281 [0082]
- HARLOW ; LANE. *Antibodies: A Laboratory Manual*. Cold Spring Harbor Laboratory Press [0085]
- KÖHLER ; MILSTEIN. *Nature*, 1975, vol. 256, 495-497 [0085]
- KOZBOR et al. *Immunol. Today*, 1983, vol. 4, 72 [0085]
- COLE et al. *Monoclonal Antibodies and Cancer Therapy*. Alan R. Liss, Inc, 1985, 77-96 [0085]
- COTE et al. *Proc. Natl. Acad. Sci. U.S.A.*, 1983, vol. 80, 2026-2030 [0087]
- COLE et al. *Monoclonal Antibodies and Cancer Therapy*. Alan R. Liss, 1985, 77-96 [0087]
- HUNTER et al. *Nature*, 1962, vol. 144, 945 [0116]
- DAVID. *Biochemistry*, 1974, vol. 13, 1014 [0116]
- PAIN et al. *J. Immunol. Meth.*, 1981, vol. 40, 219 [0116]
- NYGREN. *J. Histochem. and Cytochem.*, 1982, vol. 30, 407 [0116]
- BORGHOUTS et al. *J Pept Sci*, 2005, vol. 11, 713-726 [0123]
- CHANG et al. *PLoS One*, 2009, vol. 4, e4171 [0123]
- FAISAL et al. *Vaccine*, 2009, vol. 27, 6537-6545 [0123]
- HUWYLER et al. *Int J Nanomedicine*, 2008, vol. 3, 21-29 [0123]
- SONG et al. *Int J Pharm*, 2008, vol. 363, 155-161 [0123]
- VOINEA et al. *J Cell Mol Med*, vol. 6, 465-474 [0123]
- BAST RC, JR. ; FEENEY M ; LAZARUS H ; NADLER LM ; COLVIN RB ; KNAPP RC. Reactivity of a monoclonal antibody with human ovarian carcinoma. *J Clin Invest*, 1981, vol. 68 (5), 1331-7 [0216]
- BAST RC, JR. ; KLUG TL ; ST JOHN E ; JENISON E ; NILOFF JM ; LAZARUS H et al. A radioimmunoassay using a monoclonal antibody to monitor the course of epithelial ovarian cancer. *N Engl J Med*, 1983, vol. 309 (15), 883-7 [0216]

- **RUSTIN GJ ; BAST RC, JR. ; KELLOFF GJ ; BARRETT JC ; CARTER SK ; NISEN PD et al.** Use of CA-125 in clinical trial evaluation of new therapeutic drugs for ovarian cancer. *Clin Cancer Res*, 2004, vol. 10 (11), 3919-26 [0216]
- **ROSEN DG ; WANG L ; ATKINSON JN ; YU Y ; LU KH ; DIAMANDIS EP et al.** Potential markers that complement expression of CA125 in epithelial ovarian cancer. *Gynecol Oncol*, 2005, vol. 99 (2), 267-77 [0216]
- **BAST RC, JR. ; BADGWELL D ; LU Z ; MARQUEZ R ; ROSEN D ; LIU J et al.** New tumor markers: CA125 and beyond. *Int J Gynecol Cancer*, 2005, vol. 15 (3), 274-81 [0216]
- **MOORE RG ; MACLAUGHLAN S ; BAST RC, JR.** Current state of biomarker development for clinical application in epithelial ovarian cancer. *Gynecol Oncol*, 2009 [0216]
- **NUSTAD K ; LEBEDIN Y ; LLOYD KO ; SHIGEMASA K ; DE BRUIJN HW ; JANSSON B et al.** Epitopes on CA 125 from cervical mucus and ascites fluid and characterization of six new antibodies. Third report from the ISOBM TD-1 workshop. *Tumour Biol*, 2002, vol. 23 (5), 303-14 [0216]
- **FENDRICK JL ; KONISHI I ; GEARY SM ; PARMLEY TH ; QUIRK JG, JR. ; O'BRIEN TJ.** CA125 phosphorylation is associated with its secretion from the WISH human amnion cell line. *Tumour Biol*, 1997, vol. 18 (5), 278-89 [0216]
- **FENDRICK JL ; STALEY KA ; GEE MK ; MCDOUGAL SR ; QUIRK JG, JR. ; O'BRIEN TJ.** Characterization of CA 125 synthesized by the human epithelial amnion WISH cell line. *Tumour Biol*, 1993, vol. 14 (5), 310-8 [0216]
- **O'BRIEN TJ ; BEARD JB ; UNDERWOOD LJ ; SHIGEMASA K.** The CA 125 gene: a newly discovered extension of the glycosylated N-terminal domain doubles the size of this extracellular superstructure. *Tumour Biol*, 2002, vol. 23 (3), 154-69 [0216]
- **YIN BW ; DNISTRIAN A ; LLOYD KO.** Ovarian cancer antigen CA125 is encoded by the MUC16 mucin gene. *Int J Cancer*, 2002, vol. 98 (5), 737-40 [0216]
- **YIN BW ; LLOYD KO.** Molecular cloning of the CA125 ovarian cancer antigen: identification as a new mucin, MUC16. *J Biol Chem*, 2001, vol. 276 (29), 27371-5 [0216]
- **HOLLINGSWORTH M ; SWANSON B.** Mucins in Cancer: protection and control of the cell surface. *Nature Reviews: Cancer*, 2004, vol. 4 (1), 45-60 [0216]
- **HUANG L ; REN J ; CHEN D ; LI Y ; KHARBANDA S ; KUFE D.** MUC1 cytoplasmic domain coactivates Wnt target gene transcription and confers transformation. *Cancer Biol Ther*, 2003, vol. 2 (6), 702-6 [0216]
- **LI Q ; REN J ; KUFE D.** Interaction of human MUC1 and beta-catenin is regulated by Lck and ZAP-70 in activated Jurkat T cells. *Biochem Biophys Res Commun*, 2004, vol. 315 (2), 471-6 [0216]
- **REN J ; AGATA N ; CHEN D ; LI Y ; YU WH ; HUANG L et al.** Human MUC1 carcinoma-associated protein confers resistance to genotoxic anticancer agents. *Cancer Cell*, 2004, vol. 5 (2), 163-75 [0216]
- **REN J ; BHARTI A ; RAINA D ; CHEN W ; AHMAD R ; KUFE D.** MUC1 oncoprotein is targeted to mitochondria by heregulin-induced activation of c-Src and the molecular chaperone HSP90. *Oncogene*, 2006, vol. 25 (1), 20-31 [0216]
- **RAMSAUER VP ; PINO V ; FAROOQ A ; CAROTHERS CARRAWAY CA ; SALAS PJ ; CARRAWAY KL.** Muc4-ErbB2 Complex Formation and Signaling in Polarized CACO-2 Epithelial Cells Indicate That Muc4 Acts as an Unorthodox Ligand for ErbB2. *Mol Biol Cell*, 2006 [0216]
- **BAFNA S ; SINGH AP ; MONIAUX N ; EUDY JD ; MEZA JL ; BATRA SK.** MUC4, a multifunctional transmembrane glycoprotein, induces oncogenic transformation of NIH3T3 mouse fibroblast cells. *Cancer Res*, 2008, vol. 68 (22), 9231-8 [0216]
- **PONNUSAMY MP ; SINGH AP ; JAIN M ; CHAKRABORTY S ; MONIAUX N ; BATRA SK.** MUC4 activates HER2 signaling and enhances the motility of human ovarian cancer cells. *Br J Cancer*, 2008, vol. 99 (3), 520-6 [0216]
- **NAP M ; VITALI A ; NUSTAD K ; BAST RC, JR. ; O'BRIEN TJ ; NILSSON O et al.** Immunohistochemical characterization of 22 monoclonal antibodies against the CA125 antigen: 2nd report from the ISOBM TD-1 Workshop. *Tumour Biol*, 1996, vol. 17 (6), 325-31 [0216]
- **MARKWELL MA ; FOX CF.** Surface - specific iodination of membrane proteins of viruses and eucaryotic cells using 1,3,4, 6-tetrachloro-3alpha,6alpha-diphenylglycouril. *Biochemistry*, 1978, vol. 17, 4807-4817 [0216]
- **KONONEN J ; BUBENDORF L ; KALLIONIEMI A ; BARLUND M ; SCHRAML P ; LEIGHTON S et al.** Tissue microarrays for high-throughput molecular profiling of tumor specimens. *Nat Med*, 1998, vol. 4 (7), 8447 [0216]
- **HEDVAT CV ; HEGDE A ; CHAGANTI RS ; CHEN B ; QIN J ; FILIPPA DA et al.** Application of tissue microarray technology to the study of non-Hodgkin's and Hodgkin's lymphoma. *Hum Pathol*, 2002, vol. 33 (10), 968-74 [0216]
- **SOSLOW RA.** Histologic subtypes of ovarian carcinoma: an overview. *Int J Gynecol Pathol*, 2008, vol. 27 (2), 161-74 [0216]
- **O'BRIEN TJ ; BEARD JB ; UNDERWOOD LJ ; DENNIS RA ; SANTIN AD ; YORK L.** The CA 125 gene: an extracellular superstructure dominated by repeat sequences. *Tumour Biol*, 2001, vol. 22 (6), 348-66 [0216] [0217]

- **HARRIS M ; HOWELL A ; CHRISSEHOUM M ; SWINDELL RI ; HUDSON M ; SELLWOOD RA.** A comparison of the metastatic pattern of infiltrating lobular carcinoma and infiltrating duct carcinoma of the breast. *Br J Cancer*, 1984, vol. 50 (1), 23-30 [0216]
- **KANEKO O ; GONG L ; ZHANG J ; HANSEN JK ; HASSAN R ; LEE B et al.** A binding domain on mesothelin for CA125/MUC16. *J Biol Chem*, 2009, vol. 284 (6), 3739-49 [0216]
- **SINGH AP ; SENAPATI S ; PONNUSAMY MP et al.** Clinical potential of mucins in diagnosis, prognosis, and therapy of ovarian cancer. *Lancet Oncol*, 2008, vol. 9 (11), 1076-85 [0217]
- **SUN CC ; RAMIREZ PT ; BODURKA DC.** Quality of life for patients with epithelial ovarian cancer. *Nat Clin Pract Oncol*, 2007, vol. 4 (1), 18-29 [0217]
- **BRENTJENS RJ ; LATOUCHE JB ; SANTOS E et al.** Eradication of systemic B-cell tumors by genetically targeted human T lymphocytes co-stimulated by CD80 and interleukin-15. *Nat Med*, 2003, vol. 9 (3), 279-86 [0217]
- **HWU P ; YANG JC ; COWHERD R et al.** In vivo antitumor activity of T cells redirected with chimeric antibody/T-cell receptor genes. *Cancer Res*, 1995, vol. 55 (15), 3369-73 [0217]
- **IMAI C ; MIHARA K ; ANDREANSKY M et al.** Chimeric receptors with 4-1BB signaling capacity provoke potent cytotoxicity against acute lymphoblastic leukemia. *Leukemia*, 2004, vol. 18 (4), 676-84 [0217]
- **KERSHAW MH ; WESTWOOD JA ; PARKER LL et al.** A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer. *Clin Cancer Res*, 2006, vol. 12 (20), 6106-15 [0217]
- **KOCHENDERFER JN ; FELDMAN SA ; ZHAO Y et al.** Construction and preclinical evaluation of an anti-CD19 chimeric antigen receptor. *J Immunother*, 2009, vol. 32 (7), 689-702 [0217]
- **LOSKOG A ; GIANDOMENICO V ; ROSSIG C ; PULE M ; DOTTI G ; BRENNER MK.** Addition of the CD28 signaling domain to chimeric T-cell receptors enhances chimeric T-cell resistance to T regulatory cells. *Leukemia*, 2006, vol. 20 (10), 1819-28 [0217]
- **MAHER J ; BRENTJENS RJ ; GUNSET G ; RIVIERE I ; SADELAIN M.** Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRzeta /CD28 receptor. *Nat Biotechnol*, 2002, vol. 20 (1), 70-5 [0217]
- **MOELLER M ; HAYNES NM ; TRAPANI JA et al.** A functional role for CD28 costimulation in tumor recognition by single-chain receptor-modified T cells. *Cancer Gene Ther*, 2004, vol. 11 (5), 371-9 [0217]
- **PARKER LL ; DO MT ; WESTWOOD JA et al.** Expansion and characterization of T cells transduced with a chimeric receptor against ovarian cancer. *Hum Gene Ther*, 2000, vol. 11 (17), 2377-87 [0217]
- **SADELAIN M ; BRENTJENS R ; RIVIERE I.** The promise and potential pitfalls of chimeric antigen receptors. *Curr Opin Immunol*, 2009, vol. 21 (2), 215-23 [0217]
- **STEPHAN MT ; PONOMAREV V ; BRENTJENS RJ et al.** T cell-encoded CD80 and 4-1BBL induce auto- and transcostimulation, resulting in potent tumor rejection. *Nat Med*, 2007, vol. 13 (12), 1440-9 [0217]
- **DALY T ; ROYAL RE ; KERSHAW MH et al.** Recognition of human colon cancer by T cells transduced with a chimeric receptor gene. *Cancer Gene Ther*, 2000, vol. 7 (2), 284-91 [0217]
- **JENSEN MC ; COOPER LJ ; WU AM ; FORMAN SJ ; RAUBITSCHEK A.** Engineered CD20-specific primary human cytotoxic T lymphocytes for targeting B-cell malignancy. *Cytotherapy*, 2003, vol. 5 (2), 131-8 [0217]
- **PULE MA ; SAVOLDO B ; MYERS GD et al.** Virus-specific T cells engineered to coexpress tumor-specific receptors: persistence and antitumor activity in individuals with neuroblastoma. *Nat Med*, 2008, vol. 14 (11), 1264-70 [0217]
- **SAVOLDO B ; ROONEY CM ; DISTASI A et al.** Epstein Barr virus specific cytotoxic T lymphocytes expressing the anti-CD3Ozeta artificial chimeric T-cell receptor for immunotherapy of Hodgkin disease. *Blood*, 2007, vol. 110 (7), 2620-30 [0217]
- **WANG G ; CHOPRA RK ; ROYAL RE ; YANG JC ; ROSENBERG SA ; HWU P.** A T cell-independent antitumor response in mice with bone marrow cells retrovirally transduced with an antibody/Fc-gamma chain chimeric receptor gene recognizing a human ovarian cancer antigen. *Nat Med*, 1998, vol. 4 (2), 168-72 [0217]
- **HOLLYMAN D ; STEFANSKI J ; PRZYBYLOWSKI M et al.** Manufacturing validation of biologically functional T cells targeted to CD19 antigen for autologous adoptive cell therapy. *J Immunother*, 2009, vol. 32 (2), 169-80 [0217]
- **LAMERS CH ; SLEIJFER S ; VULTO AG et al.** Treatment of metastatic renal cell carcinoma with autologous T-lymphocytes genetically retargeted against carbonic anhydrase IX: first clinical experience. *J Clin Oncol*, 2006, vol. 24 (13), e20-2 [0217]
- **TILL BG ; JENSEN MC ; WANG J et al.** Adoptive immunotherapy for indolent non-Hodgkin lymphoma and mantle cell lymphoma using genetically modified autologous CD20-specific T cells. *Blood*, 2008, vol. 112 (6), 2261-71 [0217]
- **HAMANISHI J ; MANDAI M ; IWASAKI M et al.** Programmed cell death 1 ligand 1 and tumor-infiltrating CD8+ T lymphocytes are prognostic factors of human ovarian cancer. *Proc Natl Acad Sci USA*, 2007, vol. 104 (9), 3360-5 [0217]

- **LEFFERS N ; GOODEN MJ ; DE JONG RA et al.** Prognostic significance of tumor-infiltrating T-lymphocytes in primary and metastatic lesions of advanced stage ovarian cancer. *Cancer Immunol Immunother*, 2009, vol. 58 (3), 449-59 [0217]
- **SATO E ; OLSON SH ; AHN J et al.** Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. *Proc Natl Acad Sci USA*, 2005, vol. 102 (51), 18538-43 [0217]
- **ZHANG L ; CONEJO-GARCIA JR ; KATSAROS D et al.** Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. *N Engl J Med*, 2003, vol. 348 (3), 203-13 [0217]
- **CURIEL TJ ; COUKOS G ; ZOU L et al.** Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. *Nat Med*, 2004, vol. 10 (9), 942-9 [0217]
- **LEFFERS N ; LAMBECK AJ ; DE GRAEFF P et al.** Survival of ovarian cancer patients overexpressing the tumour antigen p53 is diminished in case of MHC class I down-regulation. *Gynecol Oncol*, 2008, vol. 110 (3), 365-73 [0217]
- **NELSON BH.** The impact of T-cell immunity on ovarian cancer outcomes. *Immunol Rev*, 2008, vol. 222, 101-16 [0217]
- **WOLF D ; WOLF AM ; RUMPOLD H et al.** The expression of the regulatory T cell-specific forkhead box transcription factor FoxP3 is associated with poor prognosis in ovarian cancer. *Clin Cancer Res*, 2005, vol. 11 (23), 8326-31 [0217]
- **BADGWELL D ; BAST RC, JR.** Early detection of ovarian cancer. *Dis Markers*, 2007, vol. 23 (5-6), 397410 [0217]
- **BAST RC, JR. ; BADGWELL D ; LU Z et al.** New tumor markers: CA125 and beyond. *Int J Gynecol Cancer*, 2005, vol. 15 (3), 274-81 [0217]
- **FRITSCHE HA ; BAST RC.** CA 125 in ovarian cancer: advances and controversy. *Clin Chem*, 1998, vol. 44 (7), 1379-80 [0217]
- **KRIVAK TC ; TIAN C ; ROSE GS ; ARMSTRONG DK ; MAXWELL GL.** A Gynecologic Oncology Group Study of serum CA-125 levels in patients with stage III optimally debulked ovarian cancer treated with intraperitoneal compared to intravenous chemotherapy: an analysis of patients enrolled in GOG 172. *Gynecol Oncol*, 2009, vol. 115 (1), 81-5 [0217]
- **BELLONE S ; ANFOSSI S ; O'BRIEN TJ et al.** Generation of CA125-specific cytotoxic T lymphocytes in human leukocyte antigen-A2.1-positive healthy donors and patients with advanced ovarian cancer. *Am J Obstet Gynecol*, 2009, vol. 200 (1), e1-10 [0217]
- **BEREK JS.** Immunotherapy of ovarian cancer with antibodies: a focus on oregovomab. *Expert Opin Biol Ther*, 2004, vol. 4 (7), 1159-65 [0217]
- **O'BRIEN TJ ; TANIMOTO H ; KONISHI I ; GEE M.** More than 15 years of CA 125: what is known about the antigen, its structure and its function. *Int J Biol Markers*, 1998, vol. 13 (4), 188-95 [0217]
- **RAO TD ; PARK KJ ; SMITH-JONES P et al.** Novel monoclonal antibodies against proximal (carboxy-terminal) portions of MUC16 (submitted to Applied Immunohistochemistry and Molecular Morphometry) [0217]
- **WANG Z ; RAI FU M ; HOWARD M et al.** Universal PCR amplification of mouse immunoglobulin gene variable regions: the design of degenerate primers and an assessment of the effect of DNA polymerase 3' to 5' exonuclease activity. *J Immunol Methods*, 2000, vol. 233 (1-2), 167-77 [0217]
- **DOENECKE A ; WINNACKER EL ; HALLEK M.** Rapid amplification of cDNA ends (RACE) improves the PCR-based isolation of immunoglobulin variable region genes from murine and human lymphoma cells and cell lines. *Leukemia*, 1997, vol. 11 (10), 1787-92 [0217]
- **GONG MC ; LATOUCHE JB ; KRAUSE A ; HESTON WD ; BANDER NH ; SADELAIN M.** Cancer patient T cells genetically targeted to prostate-specific membrane antigen specifically lyse prostate cancer cells and release cytokines in response to prostate-specific membrane antigen. *Neoplasia*, 1999, vol. 1 (2), 123-7 [0217]
- **ORLANDI R ; GUSSOW DH ; JONES PT ; WINTER G.** Cloning immunoglobulin variable domains for expression by the polymerase chain reaction. *Proc Natl Acad Sci USA*, 1989, vol. 86 (10), 3833-7 [0217]
- **BRENTJENS RJ ; SANTOS E ; NIKHAMIN Y et al.** Genetically targeted T cells eradicate systemic acute lymphoblastic leukemia xenografts. *Clin Cancer Res*, 2007, vol. 13 (18), 5426-35 [0217]
- **RIVIERE I ; BROSE K ; MULLIGAN RC.** Effects of retroviral vector design on expression of human adenosine deaminase in murine bone marrow transplant recipients engrafted with genetically modified cells. *Proc Natl Acad Sci USA*, 1995, vol. 92 (15), 6733-7 [0217]
- **QUINTAS-CARDAMA A ; YEH RK ; HOLLYMAN D et al.** Multifactorial optimization of gammaretroviral gene transfer into human T lymphocytes for clinical application. *Hum Gene Ther*, 2007, vol. 18 (12), 1253-60 [0217]
- **LATOUCHE JB ; SADELAIN M.** Induction of human cytotoxic T lymphocytes by artificial antigen-presenting cells. *Nat Biotechnol*, 2000, vol. 18 (4), 405-9 [0217]
- **SANTOS EB ; YEH R ; LEE J et al.** Sensitive in vivo imaging of T cells using a membrane-bound *Gaussia princeps* luciferase. *Nat Med*, 2009, vol. 15 (3), 338-44 [0217]

- **PARK KJ ; SOSLOW R ; LINKOV I ; RAO TD. D S.** The extracellular portion of the MUC16 cytoplasmic domain is detectable in ovarian carcinomas using novel monoclonal antibody, 4H11. *Mod Pathol*, 2008, vol. 21 (1s), 217A-218A [0217]
- **RASPOLLINI MR ; CASTIGLIONE F ; ROSSI DEGL'INNOCENTI D et al.** Tumour-infiltrating gamma/delta T-lymphocytes are correlated with a brief disease-free interval in advanced ovarian serous carcinoma. *Ann Oncol*, 2005, vol. 16 (4), 590-6 [0217]
- **TOMSOVA M ; MELICHAR B ; SEDLAKOVA I ; STEINER I.** Prognostic significance of CD3+ tumor-infiltrating lymphocytes in ovarian carcinoma. *Gynecol Oncol*, 2008, vol. 108 (2), 415-20 [0217]
- **WOO EY ; CHU CS ; GOLETZ TJ et al.** Regulatory CD4(+)CD25(+) T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer. *Cancer Res*, 2001, vol. 61 (12), 4766-72 [0217]
- **LAMERS CH ; LANGEVELD SC ; GROOT-VAN RUIJVEN CM ; DEBETS R ; SLEIJFER S ; GRATAMA JW.** Gene-modified T cells for adoptive immunotherapy of renal cell cancer maintain transgene-specific immune functions in vivo. *Cancer Immunol Immunother*, 2007, vol. 56 (12), 1875-83 [0217]
- **BRENTJENS RJ ; HOLLYMAN D ; WEISS M et al.** A Phase I trial for the treatment of chemo-refractory chronic lymphocytic leukemia with CD19-targeted autologous T cells. *Molecular Therapy*, 2008, vol. 16, S15 [0217]
- **BARBER A ; ZHANG T ; DEMARS LR ; CONEJO-GARCIA J ; ROBY KF ; SENTMAN CL.** Chimeric NKG2D receptor-bearing T cells as immunotherapy for ovarian cancer. *Cancer Res*, 2007, vol. 67 (10), 5003-8 [0217]
- **BARBER A ; ZHANG T ; SENTMAN CL.** Immunotherapy with chimeric NKG2D receptors leads to long-term tumor-free survival and development of host antitumor immunity in murine ovarian cancer. *J Immunol*, 2008, vol. 180 (1), 72-8 [0217]
- **CARPENITO C ; MILONE MC ; HASSAN R et al.** Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD 137 domains. *Proc Natl Acad Sci USA*, 2009, vol. 106 (9), 3360-5 [0217]
- **KERSHAW MH ; WESTWOOD JA ; HWU P.** Dual-specific T cells combine proliferation and antitumor activity. *Nat Biotechnol*, 2002, vol. 20 (12), 1221-7 [0217]
- **HUNG CF ; WU TC ; MONIE A ; RODEN R.** Antigen-specific immunotherapy of cervical and ovarian cancer. *Immunol Rev*, 2008, vol. 222, 43-69 [0217]
- **WESTWOOD JA ; SMYTH MJ ; TENG MW et al.** Adoptive transfer of T cells modified with a humanized chimeric receptor gene inhibits growth of Lewis-Y-expressing tumors in mice. *Proc Natl Acad Sci USA*, 2005, vol. 102 (52), 19051-6 [0217]
- **HABIB-AGAHI M ; JABERIPOUR M ; SEARLE PF.** 4-1BBL costimulation retrieves CD28 expression in activated T cells. *Cell Immunol*, 2009, vol. 256 (1-2), 39-46 [0217]
- **HABIB-AGAHI M ; PHAN TT ; SEARLE PF.** Co-stimulation with 4-1BB ligand allows extended T-cell proliferation, synergizes with CD80/CD86 and can reactivate anergic T cells. *Int Immunol*, 2007, vol. 19 (12), 1383-94 [0217]
- **BRENTJENS RJ ; SADELAIN M.** Somatic cell engineering and the immunotherapy of leukemias and lymphomas. *Adv Pharmacol*, 2004, vol. 51, 347-70 [0217]
- **FINNEY HM ; AKBARAN ; LAWSON AD.** Activation of resting human primary T cells with chimeric receptors: costimulation from CD28, inducible costimulator, CD134, and CD137 in series with signals from the TCR zeta chain. *J Immunol*, 2004, vol. 172 (1), 104-13 [0217]
- **SADELAIN M ; RIVIERE I ; BRENTJENS R.** Targeting tumours with genetically enhanced T lymphocytes. *Nat Rev Cancer*, 2003, vol. 3 (1), 35-45 [0217]
- **WILKIE S ; PICCO G ; FOSTER J et al.** Retargeting of human T cells to tumor-associated MUC1: the evolution of a chimeric antigen receptor. *J Immunol*, 2008, vol. 180 (7), 4901-9 [0217]
- **LI Q ; AI J ; SONG Z ; LIU J ; SHAN B.** 4-1BB (CD137) ligand enhanced anti-tumor immune response against mouse forestomach carcinoma in vivo. *Cell Mol Immunol*, 2008, vol. 5 (5), 379-84 [0217]
- **SALIH HR ; KOSOWSKI SG ; HALUSKA VF et al.** Constitutive expression of functional 4-1BB (CD137) ligand on carcinoma cells. *J Immunol*, 2000, vol. 165 (5), 2903-10 [0217]
- **WAN YL ; ZHENG SS ; ZHAO ZC ; LI MW ; JIA CK ; ZHANG H.** Expression of co-stimulator 4-1BB molecule in hepatocellular carcinoma and adjacent non-tumor liver tissue, and its possible role in tumor immunity. *World J Gastroenterol*, 2004, vol. 10 (2), 195-9 [0217]

摘要

本公開提供了特異性結合多肽或其抗原性部分的抗體及其抗原結合片段，其中所述多肽選自：**a)MUC16 胞外域多肽，b)MUC16 細胞質結構域多肽，及 c)含有半胱氨酸環多肽的 MUC16 細胞外結構域多肽。**本公開的抗體及含有它們的組合物可用於 **MUC16** 過表達的疾病例如癌症的診斷及治療應用。