0 03/104943 A2

=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date

(10) International Publication Number

18 December 2003 (18.12.2003) PCT WO 03/104943 A2
(51) International Patent Classification’: GO6F CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL,, IN, IS, JP, KE, KG, KP, KR, KZ, LC,
(21) International Application Number: PCT/US03/18386 LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,

(22) International Filing Date: 10 June 2003 (10.06.2003)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/388,407 11 June 2002 (11.06.2002) US

(71) Applicant and

(72) Inventor: PANDYA, Ashish, A. [IN/US]; 4318 Lafayette

Drive, El Dorado Hills, CA 95762 (US).

(74) Agent: LEAL, Peter, R.; Gray Cary Ware & Frirdenrich
LLP, Patent Department, 1755 Embarcadero Road, Palo
Alto, CA 94303 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,

MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE,

SG, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU,

ZA, 7ZM, ZW.
(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Burasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO,
SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM,
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: HIGH PERFORMANCE IP PROCESSOR FOR TCP/IP, RDMA AND IP STORAGE APPLICATIONS

n 11 1L

Packet
Scheduler

Input |-\
Queue :>

170

IP/Storage Session Cache
&

Memory Controller

-
1704

Output (R
Queue

1712

SAN ms Storage Host/ ‘
S;cu.{rity Packet = Fiow/ = Fabric
ngine “ RDMA Interface
Controller ﬂ ontrollel &

Control Plane Processor

IP Network

ﬁ 1711 Application Processor

(57) Abstract: An architecture provides capabilities to transport and process Internet Protocol (IP) packets from Layer (2) through
full TCP/IP termination and deep packet inspection through Layer (7). A set of engines performs pass-through packet classification,
policy processing and/or security processing enabling packet streaming through the architecture at nearly the full line rate. A sched-
uler schedules packets to packet processors for processing, based at least in part on the classification. An internal memory or local
session database cache stores a TCP/IP session information database and may also store a storage information session database for
a certain number of active sessions. The session information that is not in the internal memory is stored and retrieved to/from an
additional memory. An application running on an initiator or target can in certain instantiations register a region of memory, which
is made available to its peer(s) for access directly without substantial host intervention through RDMA data transfer.

10

15

20

25

30

WO 03/104943 PCT/US03/18386

HIGH PERFORMANCE IP PROCESSOR FOR TCP/IP, RDMA AND IP STORAGE
APPLICATIONS

RELATED APPLICATIONS
Priority is claimed to Provisional Application Serial No. 60/388,407, filed on June 11, 2002.
U.S. Patent Application number not yet assigned filed on June 10, 2003 entitled High

Performance IP Processor Using RDMA, U.S. Patent Application number not yet assigned
filed on June 10, 2003 entitied TCP/IP Processor and Engine Using RDMA, U.S. Patent
Application number not yet assigned filed on June 10, 2003 entitled IP Storage Processor
and Engine Therefor Using RDMA, U.S. Patent Application number not yet assigned filed on
June 10, 2003 entitled A Memory System For A High Performance IP Processor, U.S. Patent
Application number not yet assigned filed on June 10, 2003 entitled Data Processing System
Using Internet Protocols and RDMA, U.S. Patent Application number not yet assigned filed
on June 10, 2003 entitled High Performance IP Processor, U.S. Patent Application number
not yet assigned filed on June 10, 2003 entitled Data Processing System Using Internet
Protocols, are related to the foregoing provisional application.

BACKGROUND OF THE INVENTION
This invention relates generally to storage networking semiconductors and in particular to a

high performance network storage processor that is used to create Internet Protocol (IP)

based storage networks.

Internet protocol (IP) is the most prevalent networking protocol deployed across various
networks like local area networks (LANs), metro area networks (MANs) and wide area
networks (WANSs). Storage area networks (SANs) are predominantly based on Fibre
Channel (FC) technology. There is a need to create IP based storage networks.

When transporting block storage traffic on IP designed to transport data streams, the data
streams are transported using Transmission Control Protocol (TCP) that is layered to run on
top of IP. TCP/IP is a reliable connection/session oriented protocol implemented in software
within the operating systems. TCP/IP software stack is very slow to handle the high line
rates that will be deployed in future. Currently, a 1 GHz processor based server running
TCP/IP stack, with a 1Gbps network connection, would use 50-70% or more of the
processor cycles, leaving minimal cycles available for the processor to allocate to the

10

15

20

25

30

WO 03/104943 PCT/US03/18386

2

applications that run on the server. This overhead is not tolerable when transporting storage
data over TCP/IP as well as for high performance IP networks. Hence, new hardware
solutions would accelerate the TCP/IP stack to carry storage and network data traffic and be
competitive to FC based solutions. In addition to the TCP protocol. other protocols such as
SCTP and UDP protocols can be used, as well as other protocols appropriate for
transporting data streams.

SUMMARY OF THE INVENTION
| describe a high performance hardware processor that sharply reduces the TCP/IP protocol

stack overhead from host processor and enables a high line rate storage and data transport
solution based on IP.

Traditionally, TCP/IP networking stack is implemented inside the operating system kernel as
a software stack. The software TCP/IP stack implementation consumes, as mentioned
above, more than 50% of the processing cycles available in a 1 GHz processor when
serving a 1Gbps network. The overhead comes from various aspects of the software
TCP/IP stack including checksum calculation, memory buffer copy, processor interrupts on
packet arrival, session establishment, session tear down and other reliable transport
services. The software stack overhead becomes prohibitive at higher lines rates. Similar
issues occur in networks with lower line rates, like wireless networks, that use lower
performance host processors. A hardware implementation can remove the overhead from
the host processor.

The software TCP/IP networking stack provided by the operating systems uses up a
majority of the host processor cycles. TCP/IP is a reliable transport that can be run on
unreliable data links. Hence, when a network packet is dropped or has errors, TCP does the
retransmission of the packets. The errors in packets are detected using checksum that is
carried within the packet. The recipient of a TCP packet performs the checksum of the
received packet and compares that to the received checksum. This is an expensive
compute intensive operation perfomed on each packet involving each received byte in the
packet. The packets between a source and destination may arrive out of order and the TCP
layer performs ordering of the data stream before presenting it to the upper layers. 1P
packets may also be fragmented based on the maximum transfer unit (MTU) of the link layer
and hence the recipient is expected to de-fragment the packets. These functions resultin
temporarily storing the out of order packets, fragmented packets or unacknowledged packets

10

15

20

25

30

WO 03/104943 PCT/US03/18386

3

in memory on the network card for example. When the line rates increase to above 1Gbps,
the memory size overhead and memory speed bottleneck resulting from these add
significant cost to the network cards and also cause huge performance overhead. Another
function that consumes a lot of processor resources is the copying of the data to/from the
network card buffers, kemel buffers and the application buffers.

Microprocessors are increasingly achieving their high performance and speed using deep
pipelining and super scalar architectures. Interrupting these processors on arrival of small
packets will cause severe performance degradation due to context switching overhead,
pipeline flushes and refilling of the pipelines. Hence interrupting the processors should be
minimized to the most essentialinterrupts only. When the block storage traffic is transported
over TCP/IP networks, these performance issues become critical, severely impacting the
throughput and the latency of the storage fraffic. Hence the processor intervention in the
entire process of transporting storage traffic needs to be minimized for IP based storage
solutions to have comparable performance and latency as other specialized network
architectures like fibre channel, which are specified with a view to a hardware
implementation. Emerging IP based storage standards like iSCSI, FCIP, iFCP, and others
(like NFS, CIFS, DAFS, HTTP, XML, XML derivatives (such as Voice XML, EBXML,
Microsoft SOAP and others), SGML, and HTML formats) encapsulate the storage and data
traffic in TCP/IP segments. However, there usually isn't alignment relationship between the
TCP segments and the protocol data units that are encapsulated by TCP packets. This
becomes an issue when the packets arrive out of order, which is a very frequent event in
today’s networks. The storage and data blocks cannot be extracted from the out of order
packets for use until the intermediate packets in the stream arrive which will cause the
network adapters to store these packets in the memory, retrieve them and order them when
the intermediate packets arrive. This can be expensive from the size of the memory storage
required and also the performance that the memory subsystem is expected to support,
particularly at line rates above 1Gbps. This overhead can be removed if each TCP segment
can uniquely identify the protocol data unit and its sequence. This can allow the packets to
be directly transferred to their end memory location in the host system. Host processor
intervention should also be minimized in the transfer of large blocks of data that may be
transferred to the storage subsystems or being shared with other processors in a clustering
environment or other client server environment. The processor should be interrupted only
on storage command boundaries to minimize the impact.

10

15

20

25

30

WO 03/104943 : PCT/US03/18386

4

The IP processor set forth herein eliminates or sharply reduces the effect of various issues
outlined above through innovative architectural features and the design. The described
processor architecture provides features to terminate the TCP traffic carrying the storage
and data payload thereby eliminating or sharply reducing the TCP/IP networking stack
overhead on the host processor, resulting in packet streaming architecture that allows
packets to pass through from input to output with minimal latency. To enable high line rate
storage or data traffic being carried over IP requires maintaining the transmission control
block information for various connections (sessions) that are traditionally maintained by host
kernel or driver software. As used in this patent, the term “IP session” means a session for a
session oriented protocol that runs on IP. Examples are TCP/IP, SCTP/IP, and the like.
Accessing session information for each packet adds significant processing overhead. The
described architecture creates a high performance memory subsystem that significantly
reduces this overhead. The architecture of the processor provides capabilities for intelligent
flow control that minimizes interrupts to the host processor primarily at the command or data
transfer completion boundary.

Today, no TCP/IP processor is offered with security.

The described processor architecture also provides integrated security features. When the
storage traffic is carried on a network from the server to the storage arrays in a SAN or other
storage system, it is exposed to various security vulnerabilities that a direct attached storage
system does not have to deal with. This processor allows for in stream encryption and
decryption of the storage traffic thereby allowing high line rates and at the same time offering
confidentiality of the storage data traffic.

Classification of network traffic is another task that consumes up to half of the processing
cycles available on packet processors leaving few cycles for deep packet inspection and
processing. IP based storage traffic by the nature of the protocol requires high speed low
latency deep packet processing. The described IP processor significantly reduces the
classification overhead by providing a programmable classification engine.

Tremendous growth in the storage capacity and storage networks have created storage area
management as a major cost item for IT departments. Policy based storage management is
required to contain management costs. The described programmable classification engine
allows deployment of storage policies that can be enforced on packet, transaction, flow and

10

15

20

25

WO 03/104943 PCT/US03/18386

5

command boundaries. This will have significant improvement in storage area management
costs.

The programmable IP processor architecture also offers enough headroom to allow
customer specific applications to be deployed. These applications may belongto multiple
categories e.g. network management, storage firewall or other security capabilities,
bandwidth management, quality of service, virtualization, performance monitoring, zoning,
LUN masking and the like.

BRIEF DESCRIPTION OF THE DRAWINGS
Fig. 1 illustrates a layered SCSI architecture and interaction between respective layers

located between initiator and target systems.

Fig. 2 illustrates the layered SCSI architecture with iSCSI and TCP/IP based transport
between initiator and target systems.

Fig. 3 illustrates an OS| stack comparison of software based TCP/IP stack with hardware -
oriented protocols like Fibre channel.

Fig. 4 illustrates an OS| stack with a hardware based TCP/IP implementation for providing
performance parity with the other non-IP hardware oriented protocols.

Fig. 5 illustrates a host software stack illustrating operating system layers implementing
networking and storage stacks.

Fig. 6 illustrates software TCP stack data transfers.

Fig. 7 illustrates remote direct memory access data transfers using TCP/IP offload from the
host processor as described inthis patent.

Fig. 8 illustrates host software SCSI storage stack layers for transporting block storage data
over IP networks.

Fig. 9 illustrates certain iSCSI storage network layer stack details of an embodiment of the
invention.

10

15

20

WO 03/104943 PCT/US03/18386

6

Fig. 10 illustrates TCP/IP network stack functional details of an embodiment of the invention.

Fig. 11 illustrates an iSCSI storage data flow through various elements of an embodiment of
the invention.

Fig. 12 illustrates iSCSI storage data structures useful in the invention.

Fig. 13 illustrates a TCP/IP Transmission Control Block data structure for a session
database entry useful in an embodiment of the invention.

Fig. 14 illustrates an iSCSI session database structure useful in an embodiment of the
invention.

Fig. 15 illustrates iSCSI session memory structure useful in an embodiment of the invention.

Fig. 16 illustrates a high-level architectural block diagram of an IP network application
processor useful in an embodiment of the invention.

Fig. 17 illustrates a detailed view of the architectural block diagram of the IP network
application processor of Fig. 16.

Fig. 18 illustrates an input queue and controller for one embodiment of the IP processor.

Fig. 19 illustrates a packet scheduler, sequencer and load balancer useful in one
embodiment of the IP processor.

Fig. 20 illustrates a packet classification engine, including a policy engine block of one
embodiment of the IP storage processor.

Fig. 21 broadly illustrates an embodiment of the SAN packet processor block of one
embodiment of an IP processor at a high-level.

Fig. 22 illustrates an embodiment of the SAN packet processor block of the described IP
processor in further detail.

Fig. 23 illustrates an embodiment of the programmable TCP/IP processor engine which can
be used as part of the described SAN packet processor.

10

15

20

WO 03/104943 PCT/US03/18386

7

Fig. 24 illustrates an embodiment of the programmable IP Storage processor engine which
can be used as part of the described SAN packet processor.

Fig. 25 illustrates an embodiment of an output queue block of the programmable 1P
processor of Fig. 17.

Fig. 26 illustrates an embodiment of the storage flow controlier and RDMA controller.

Fig. 27 illustrates an embodiment of the host interface controller block of the |P processor
useful in an embodiment of the invention.

Fig. 28 illustrates an embodiment of the security engine.

Fig. 29 illustrates an embodiment of a memory and controller useful in the described

processor.

Fig. 30 illustrates a data structure useable in an embodiment of the described classification
engine.

Fig. 31 illustrates a storage read flow between initiator and target.

Fig. 32 illustrates a read data packet flow through pipeline stages of the described
processor. ‘

Fig. 33 illustrates a storage write operation flow between initiator and target.

Fig. 34 illustrates a write data packet flow through pipeline stages of the described
processor.

Fig. 35 illustrates a storage read flow between initiator and target using the remote DMA
(RDMA) capability between initiator and target.

Fig. 36 illustrates a read data packet flow between initiator and target using RDMA through

pipeline stages of the described processor.

Fig. 37 illustrates a storage write flow between initiator and target using RDMA capability.

10

15

20

25

WO 03/104943 PCT/US03/18386

8

Fig. 38 illustrates a write data packet flow using RDMA through pipeline stages of the

. described processor.

Fig. 39 illustrates an initiator command flow in more detail through pipeline stages of the
described processor.

Fig. 40 illustrates a read packet data flow through pipeline stages of the described processor
in more detail.

Fig. 41 illustrates a write data flow through pipeline stages of the described processor in
more detail. '

Fig. 42 illustrates a read data packet flow when the packet is in cipher text or is otherwise a
secure packet through pipeline stages of the described processor.

Fig. 43 illustrates a write data packet flow when the packet is in cipher text or is otherwise a
secure packet through pipeline stages of the described processor of one embodiment of the
invention.

Fig. 44 illustrates a RDMA buffer advertisement flow through pipeline stages of the
described processor.

Fig. 45 illustrates a RDMA write flow through pipeline stages of the described processor in
more detail.

Fig. 46 illustrates a RDMA Read data flow through pipeline stages of the described
processor in more detail.

Fig. 47 illustrates steps of a session creation flow through pipeline stages of the described
processor.

Fig. 48 illustrates steps of a session tear down flow through pipeline stages of the described
processor.

Fig. 49 illustrates a session creation and session teardown steps from a target perspective
through pipeline stages of the described processor.

10

15

20

25

WO 03/104943 PCT/US03/18386

9

Fig. 50 illustrates an R2T command flow in a target subsystem through pipeline stages of the
described processor.

Fig. 51 illustrates a write data flow in a target subsystem through pipeline stages of the
described processor.

Fig. 52 illustrates a target read data flow through the pipeline stages of the described
processor.

DESCRIPTION

| provide a new high performance and low latency way of implementing a TCP/IP stack in
hardware to relieve the host processor of the severe performance impact of a software
TCP/IP stack. This hardware TCP/IP stack is then interfaced with additional processing
elements to enable high performance and low latency IP based storage applications.

This can be implemented in a variety of forms to provide benefits of TCP/IP termination, high
performance and low latency IP storage capabilities, remote DMA (RDMA) capabilities,
security capabilities, programmable dassification and policy processing features and the
like. Following are some of the embodiments that can implement this:

Server

The described architecture may be embodied in a high performance server environment
providing hardware based TCP/IP functions that relieve the host server processor or
processors of TCP/IP software and performance overhead. The IP processor may be a
companion processor to a server chipset, providing the high performance networking
interface with hardware TCP/IP. Servers can be in various form factors like blade servers,’
appliance servers, file servers, thin servers, clustered servers, database server, game
server, grid computing server, VOIP server, wireless gateway server, security server,
network attached storage server or traditional servers. The current embodiment would allow
creation of a high performance network interface on the server motherboard.

Companion Processor to a server Chipset

The server environment may also leverage the high performance IP storage processing
capability of the described processor, besides high performance TCP/IP and/or RDMA
capabilities. In such an embodiment the processor may be a companion processor to a

10

15

20

25

WO 03/104943 PCT/US03/18386

10

server chipset providing high performance network storage I/O capability besides the TCP/IP
offloading from the server processor. This embadiment would allow creation of high
performance IP based network storage I/O on the motherboard. In other words it would
enabie IP SAN on the motherboard.

Storage System Chipsets

The processor may also be used as a companion of a chipsetin a storage system, which
may be a storage array (or some other appropriate storage system or subsystem) controller,
which performs the storage data server functionality in a storage networking environment.
The processor would provide IP network storage capability to the storage array controllerto
network in an IP based SAN. The configuration may be similar to that ina server
environment, with additional capabilitiesin the system to access the storage arrays and
provide other storage-centric functionality.

Server/Storage Host Adapter Card

The IP processor may also be embedded in a server host adapter card providing high speed
TCP/IP networking. The same adapter card may also be able to offer high speed network
storage capability for IP based storage networks. The adapter card may be used in
traditional servers and may also be used as blades in a blade server configuration. The
processor may also be used in adapters in a storage array (or other storage system or
subsystem) front end providing |P based storage networking capabilities.

Processor Chipset Component

The TCP/IP processor may be embodied inside a processor chipset, providing the TCP/IP
offloading capability. Such a configuration may be used in the high end servers,
workstations or high performance personal computers that interface with high speed
networks. Such an embodiment could also include |P storage or RDMA capabilities or
combination of this invention to provide IP based storage networking and/or TCP/IP with
RDMA capability embedded in the chipset. The usage of multiple capabilities of the
described architecture can be made independert of using other capabilities in this or other
embodiments, as a trade-off of feature requirements, developmenttimeline and cost, silicon
die cost and the like.

10

15

20

25

30

WO 03/104943 PCT/US03/18386

11

Storage or SAN System or Subsystem Switching Line Cards

The IP processor may also be used to create high performance, low latency IP SAN
switching system (or other storage system or subsystem) line cards. The processor may be
used as the main processor teminating and originating IP-based storage traffic to/from the
line card. This processor would work with the switching system fabric controller, which may
act like a host, to transport the terminated storage traffic, based on their IP destination, to the
appropriate switch line card as determined by the forwarding information base present in the
switch system. Such a switching system may support purely IP based networking or may
support multi-protocol support, allow interfacing with IP based SAN along with other data
center SAN fabrics like Fibre channel. A very similar configuration could exist inside a
gateway controller system, that terminates IP storage traffic from LAN or WAN and
originates new sessions to carry the storage traffic into a SAN, which may be IP based SAN
or more likely a SAN built from other fabrics inside a data center like Fibre channel. The
processor could also be embodied in a SAN gateway controller.

Storage Appliance

Storage networks management costs are increasing rapidly. The ability to manage the
significant growth in the networks and the storage capacity would require creating special
appliances which would be providing the storage area management functionality. The
described management appliances for high performance IP based SAN, would implement
my high performance IP processor, to be able to perform its functions on the storage traffic
transported inside TCP/IP packets. These systems would require a high performance
processor to do deep packet inspection and extract the storage payload in the IP traffic to
provide policy based management and enforcement functions. The security, programmable
classification and policy engines along with the high speed TCP/IP and IP storage engines
described would enable these appliances and other embodiments described in this patent to
perform deep packet inspection and classification and apply the policies that are necessary
on a packet by packet basis at high line rates at low latency. Further these capabilities can
enable creating storage management appliances that can perform their functions like
virtualization, policy based management, security enforcement, access control, intrusion
detection, bandwidth management, traffic shaping, quality of service, anti-spam, virus
detection, encryption, decryption, LUN masking, zoning, link aggregation and the like in-
band to the storage area network traffic. Similar policy based management, and security

10

15

20

25

30

WO 03/104943 PCT/US03/18386

12

operations or functionality may also be supported inside the other embodiments described in
this patent.

Clustered Environments

Server systems are used in a clustered environment to increase the system performance
and scalability for applications like clustered data bases and the like. The applications
running on high performance cluster servers require ability to share data at high speeds for
inter-process communication. Transporting this inter-process communicationtraffic on a
traditional software TCP/IP network between cluster processors suffers from severe
performance overhead. Hence, specialized fabrics like Fibre channel have been used in
such configurations. However, a TCP/IP based fabric which can allow direct memory access
between the communicating processes’ memory, can be used by applications that operate
on any TCP/IP network without being changed to specialized fabrics like fibre channel. The
described IP processor with its high performance TCP/IP processing capability and the
RDMA features, can be embodied in a cluster server environment to provide the benefits of
high performance and low latency direct memory to memory data transfers. This
embodiment may also be used to create global clustering and can also be used to enable
data transfers in grid computers and grid networks.

Additional Embodiments

The processor architecture can be partially implemented in software and partially in
hardware. The performance needs and cost implications can drive trade-offs for hardware
and software partitioning of the overall system architecture of this invention. ltis also
possible to implement this architecture as a combination of chip sets along with the
hardware and software partitioning or independert of the partitioning. For example the
security processor and the classification engines could be on separate chips and provide
similar functions. This can result in lower silicon cost of the IP processor including the
development and manufacturing cost, but it may in some instances increase the part count
in the system and may increase the footprint and the total solution cost. Security and
classification engines could be separate chips as well. As used herein, a chip set may mean
a multiple-chip chip set, or a chip set that includes only a single chip, depending on the
application.

The storage flow controller and the queues could be maintained in software on the host or
may become part of another chip in the chipset. Hence, multiple ways of partitioning this

10

15

20

25

30

WO 03/104943 PCT/US03/18386

13

architecture are feasible to accomplish the high performance IP based storage and TCP/IP
offload applications that will be required with the coming high performance processors inthe
future. The storage engine description has been given with respect to iSCS!, however, with
TCP/IP and storage engine programmability, classifier programmability and the storage flow
controller along with the control processor, other IP storage protocols like iFCP, FCIP and
others can be implemented with the appropriate firmware. iSCSI operations may also be IP
Storage operations. The high performance IP processor core may be coupled with multiple
input output ports of lower line rates, matching the total throughput to create multi-port IP
processor embodiment as well.

It is feasible to use this architecture for high performance TCP/IP offloading from the main
processor without using the storage engines. This can result in a silicon and system solution
for next generation high performance networks for the data and telecom applications. The
TCP/IP engine can be augmented with application specific packet accelerators and leverage
the core architecture to derive new flavors of this processor. It is possible to change the
storage engine with another application specific accelerator like a firewall engine or a route
look-up engine or a telecom/network acceleration engine, along with the other capabilities of
this invention and target this processor architecture for telecom/networking and other
applications.

Detailed Description

Storage costs and demand have been increasing at a rapid pace over the last several years.
This is expected to grow at the same rate in the foreseeable future. With the advent of e-
business, availability of the data at any time and anywhere irrespective of the server or
system downtime is critical. This is driving a strong need to move the server attached
storage onto a network to provide storage consolidation, availability of data and ease of
management of the data. The storage area networks (SANs) are today predominantly
based on Fibre Channel technology, that provide various benefits like low latency and high
performance with its hardware oriented stacks compared to TCP/IP technology.

Some system transport block storage traffic on IP designed to transport data streams. The
data streams are transported using Transmission Control Protocol (TCP) that is layered to

run on top of IP. TCP/IP is a reliable connection oriented protocol implemented in software
within the operating systems. A TCP/IP software stack is slow to handle the high line rates

10

15

20

25

30

WO 03/104943 PCT/US03/18386

14

that will be deployed in the future. New hardware solutions will accelerate the TCP/IP stack
to carry storage and network traffic and be competitive to FC based solutions.

The prevalent storage protocol in high performance servers, workstations and storage
controllers and arrays is SCSI protocol which has been around for 20 years. SCSI
architecture is built as layered protocol architecture. Fig. 1 illustrates the various SCSI
architecture layers within an initiator, block 101, and target subsystems, block 102. As used
in patent, the terms “initiator” and “target” mean a data processing apparatus, or a
subsystem or system including them. The terms “initiator” and “target’ can also meana
client or a server or a peer. Likewise, the term “peer” can mean a peer data processing
apparatus, or a subsystem or system thered. A “remote peer” can be a peer located across
the world or across the room.

The initiator and target subsystems in Fig. 1 interact with each other using the SCSI
application protocol layer, block 103, which is used to provide a client-server request and
response transactions. It also provides device service request and response between the
initiator and the target mass storage device which may take many forms like a disk arrays,
tape drives, and the like. Traditionally, the target and initiator are interconnected using the
SCSI bus architecture carrying the SCSI protocol, block 104. The SCSI protocol layer is the
transport layer that allows the client and the server to interact with each other using the SCSI
application protocol. The transport layer must present the same semantics to the upper
layer so that the upper layer protocols and application can stay fransport protocol
independent.

Fig. 2 illustrates the SCSI application layer on top of IP based transport layers. An IETF
standards track protocol, iSCSI (SCSI over IP) is an attempt to provide IP based storage
transport protocol. There are other similar attempts including FCIP (FC encapsulated in IP),
iFCP(FC over IP) and others. Many of these protocols layer on top of TCP/IP as the
transport mechanism, in a manner similar to that illustrated in Fig. 2. As illustrated in Fig. 2,
the iSCSI protocol services layer, block 204, provides the layered interface to the SCSI
application layer, block 203. iSCSI carries SCSI commands and data as iSCS! protocol data
units (PDUs) as defined by the standard. These protocol data units then canbe transported
over the network using TCP/IP, block 205, or the like. The standard does not specify the
means of implementing the underlying transport that carries iSCSI PDUs. Fig. 2 illustrates
iSCSI layered on TCP/IP which provides the transportfor the iSCSI PDUs.

10

15

20

25

30

WO 03/104943 PCT/US03/18386

15

The IP based storage protocol like iISCSI can be layered in software on top of a software
based TCP/IP stack. However, such an implementation would suffer serious performance
penalties arising from software TCP/IP and the storage protocol layered on top of that. Such
an implementation would severely impact the performance of the host processor and may
make the processor unusable for any other tasks at line rates above 1Gbps. Hence, we
would implement the TCP/IP stack in hardware, relieving the host processor, on which the
storage protocol can be built. The storage protocol, like iSCSI, can be built in software
running on the host processor or may, as described in this patent, be accelerated using
hardware implementation. A software iSCSI stack will present many interrupts to the host
processor to extract PDUs from received TCP segments to be able to act on them. Such an
implementation will suffer severe performance penalties for reasons similar to those for
which a software based TCP stack would. The described processor provides a high
performance and low latency architecture to transport Storage protocol on a TCP/IP based
network that eliminates or greatly reduces the performance penalty on the hostprocessor,
and the resulting latency impact.

Fig. 3 illustrates a comparison of the TCP/IP stack to Fibre channel as referenced to the OSI
networking stack. The TCP/IP stack, block 303, as discussed earlier in the Summary of the
Invention section of this patent, has performance problems resulting from the software
implementation on the hosts. Compared to that, specialized networking protocols like Fibre
channel, block 304, and others are designed to be implemented in hardware. The hardware
implementation allows the networking solutions to be higher performance than the IP based
solution. However, the ubiquitous nature of IP and the familiarity of IP from the IT users’ and
developers’ perspective makes IP more suitable for wide spread deployment. This can be
accomplished if the performance penalties resulting from TCP/IP are reduced to be
equivalent to those of the other competing specialized protocols. Fig. 4 illustrates a protocol
level layering in hardware and software that is used for TCP/IP, block 403, to become
competitive to the other illustrated specialized protocols.

Fig. 5 illustrates a host operating system stack using a hardware based TCP/IP and storage
protocol implementation of this patent. The protocol is implemented such thatit can be
introduced into the host operating system stack, block 513, such that the operating system
layers above it are unchanged. This allows the SCSI application protocols to operate
without any change. The driver layer, block 515, and the stack underneath for IP based

10

15

20

25

30

WO 03/104943 PCT/US03/18386

16

storage interface, block 501, will represent a similar interface as a non-networked SCSI
interface, blocks 506 and 503 or Fibre Channel interface, block 502.

Fig. 6 illustrates the data transfers involved in a software TCP/IP stack. Such an
implementation of the TCP/IP stack carries huge performance penalties from memory copy
of the data transfers. The figure illustrates data transfer between client and server
networking stacks. User level application buffers, block 601, that need to be transported
from the client to the server or vice versa, go through the various levels of data transfers
shown. The user application buffers on the source get copied into the OS kernel space
buffers, block 602. This data then gets copied to the network driver buffers, block 603, from
where it gets DMA-transferred to the network interface card (NIC) or the host bus adapter
(HBA) buffers, block 604. The buffer copy operations involve the host processor and use up
valuable processor cycles. Further, the data being transferred goes through checksum
calculations on the host using up additional computing cycles from the host. The data
movement into and out of the system memory on the host multiple times creates a memory
bandwidth bottleneck as well. The data transferred to the NIC/HBA is then sent on to the
network, block 609, and reachesthe destination system. At the destination system the data
packet traverses through the software networking stack in the opposite direction as the host
though following similar buffer copies and checksum operations. Such implementation of
TCPJIP stack is very inefficient for block storage data transfers and for clustering
applications where a large amount of data may be transferred between the source and the
destination.

Fig. 7 illustrates the networking stack in an initiator and in a target with features that allow
remote direct memory access (RDMA) features of the architecture described in this patent.
The following can be called an RDMA capability or an RDMA mechanism or an RDMA
function. In such a system the application running on the initiator or target registers a region
of memory, block 702, which is made available to its peer(s) for access directly from the
NIC/HBA without substantial host intervention. These applications would also let their
peer(s) know about the memory regions being available for RDMA, block 708. Once both
peers of the communication are ready to use the RDMA mechanism, the data transfer from
RDMA regions can happen with essentially zero copy overhead from the source to the
destination without substantial host intervention if NIC/HBA hardware in the peers implement
RDMA capability. The source, or initiator, would inform its peer of its desire to read or write

10

15

20

25

30

WO 03/104943 PCT/US03/18386

17

specific RDMA enabled buffers and then let the destination or target, push or pull the data
to/from its RDMA buffers. The initiator and the target NIC/HBA would then transport the data
using the TCP/IP hardware implementation described in this patent, RMDA 703, TCP/IP
offload 704, RMDA 708 and TCP/IP offload 709, between each other without substantial
intervention of the host processors, thereby significantly reducing the processor overhead.
This mechanism would significantly reduce the TCP/IP processing overhead on the host
processor and eliminate the need for multiple buffer copies for the data transfer illustrated in
Fig. 6. RDMA enabled systems would thus allow the system, whether fast or slow, to
perform the data transfer without creating a performance bottleneck forits peer. RDMA
capability implemented in this processor in storage over IP solution eliminates host
intervention except usually at the data transfer start and termination. This relieves the host
processors in both target and initiator systems to perform useful tasks without being
interrupted at each packet arrival or transfer. RDMA implementation also allows the system
to be secure and prevent unauthorized access. This is accomplished by registering the
exported memory regions with the HBA/NIC with their access control keys along with the
region IDs. The HBA/NIC performs the address translation of the memory region request
from the remote host to the RDMA buffer, performs security operations such as security key
verification and then allows the data transfer. This processing is performed off the host
processor in the processor of this invention residing on the HBA/NIC or as a companion
processor to the host processor on the motherboard, for example. This capability can also
be used for large data transfers for server clustering applications as well as client server
applications. Real time media applications transferring large amounts of data between a
source or initiator and a destination or target can benefit from this.

Fig. 8 illustrates the host file system and SCSI stack implemented in software. As indicated
earlier the IP based storage stack, blocks 805, 806, 807, 808 and 809, should represent a
consistent interface to the SCSI layers, blocks 803 and 804, as that provided by SCSI
transport layer, block 811, or Fibre channel transport, block810. This figure illustrates high
level requirements that are imposed on the IP based storage implementation from a system
level, besides those imposed by various issues of IP which is not designed to transport
performance sensitive block data.

Fig. 9 illustrates the iSCSI stack in more detail fronﬁ that illustrated in Fig. 8. The iSCSI stack
blocks 805 though 809, should provide an OS defined driver interface level functionality to

10

15

20

25

30

WO 03/104943 PCT/US03/18386

18

the SCSI command consolidation layer blocks 803 & 804, such that the behavior of this layer
and other layers on top of it are unchanged. Fig. 9 illusirates a set of functions that would be
implemented to provide IP storage capabilities. Thefunctions that provide the iSCSI
functionality are groupedinto related sets of functions, although there can be many
variations of these as any person skilled in this area would appreciate. There are a set of
functions that are required to meet the standard (e.g. target and initiator login and logout)
functions, block 916, connection establishment and teardown functions, block 905. The
figure illustrates functions that allow the OS SCSI software stack to discover the iSCSI
device, block 916, set and get options/parameters, blocks 903 and 909, to start the device,
block 913 and release the device, block 911. Besides the control functions discussed
earlier, the iISCS| implementation provides bulk data transfer functions, through queues 912
and 917, to transport the PDUs specified by the iSCSI standard. The iSCSI stack may also
include direc data transfer/placement (DDT) or RDMA functions or combination thereof,
block 918, which are used by the initiator and target systems to perform substantially zero
buffer copy and host intervention-less data transfers including storage and other bulk block
data transfers. The SCSI commands and the block data transfers related to these are
implemented as command queues, blocks 912 and 917, which get executed on the
described“ processor. The host is interrupted primarily on the command completion. The
completed commands are queued for the host to act on at a time convenient to the host.
The figure illustrates the iSCSI protocol layer and the driver layer layered on the TCP/IP
stack, blocks 907 and 908, which is also implemented off the host processor on the IP
processor system described herein.

Fig. 10 illustrates the TCP/IP stack functionality that is implemented in the described IP
processor system. These functions provide an interface to the upper layer protocol functions
to carry the IP storage traffic as well as other applications that can benefit from direct OS
TCPI/IP bypass, RDMA or network sockets direct capabilities or combination thereof to utilize
the high performance TCP/IP implementation of this processor. The TCP/IP stack provides
capabilities to send and receive upper layer data, blocks 1017 and 1031, and command
PDUs, establish the transport connections and teardown functions, block 1021, send and
receive data transfer functions, checksum functions, block 1019, as well as error handling
functions, block 1022, and segmenting and sequencing and windowing operations, block
1023. Certain functions like checksum verification/creation touch every byte of the data
transfer whereas some functions that transport the data packets and update the

10

15

20

25

30

WO 03/104943 PCT/US03/18386

19

transmission control block or session data base are invoked for each packet of the data
transfer. The session DB, biock 1025, is used to maintain various information regarding the
active sessions/connections along with the TCP/IP state information. The TCP layer is built
on top of IP layer that provides the IP functionality as required by the standard. This layer
provides functions to fragment/de-fragment, block 1033, the packets as per the path MTU,
providing the route and forwarding information, block 1032, as well as interface to other
functions necessary for communicating errors like, for example, ICMP, block 1029. The IP
layer interfaces with the Ethernet layer or other media access layer technology to transport
the TCP/IP packets onto the network. The lower layer is illustrated as Ethernet in various
figures in this description, but could be other technologies like SONET, for instance, to
transport the packets over SONET on MANs/WANs. Ethemet may aiso be used in similar
applications, but may be used more so within a LAN and dedicated local SAN environments,
for example.

Fig. 11 illustrates the iSCSI data flow. The figure illustrates the receive and transmit path of
the data flow. The Host's SCSI command layer working with the iSCSI driver, both depicted
in block 1101, would schedule the commands to be processed to the command scheduler,
block 1108, in the storage flow controller seen in more detail in Fig. 26. The command
scheduler 1108 schedules the new commands for operation in the processor described in
more detail in Fig. 17. A new command that is meant for the target device with an existing
connection gets en-queued to that existing connection, block 1111. When the connection to
the target device does not exist, a new command is en-queued on to the unassigned
command queue, block 1102. The session/connection establishment process like that
shown in Fig. 47 and blocks 905 and 1006 is then called fo connect to the target. Once the
connection is established the corresponding command from the queue 1102 gets en-queued
to the newly created connection command queue 1111 by the command scheduler 1108 as
illustrated in the figure. Once a command reaches a stage of execution, the receive 1107 or
transmit 1109 path is activated depending on whether the command is a read or a write
transaction. The state of the connection/session which the command is transported is used
to record the progress of the command execution in the session database as described
subsequently. The buffers associated with the data transfer may be locked till such time as
the transfer is completed. If the RDMA mechanism is used to transfer the data between the
initiator and the target, appropriate region buffers identifiers, access control keys and related
RDMA state data is maintained in memory on board the processor and may also be

10

15

20

25

30

WO 03/104943 PCT/US03/18386

20

maintained in off-chip memory depending on the implementation chosen. As the data
transfer, which may be over muitiple TCP segments, associated with the command is
completed the status of the command execution is passed onto the host SCSI layer which
then does the appropriate processing. This may involve releasing the buffers being used for
data transfers to the applications, statistics update, and the like. During transfer, the iSCSI
PDUs are transmitted by the transmit engines, block 1109, working with the transmit
command engines, block 1110, that interpret the PDU and perform appropriate operations
like retrieving the application buffers from the host memory using DMA to the storage
processor and keeping the storage command flow information in the iSCSI connection
database updated with the progress. As used in this patent the term “engine” can be a data
processor or a part of a data processor, appropriate for the function or use of the engine.
Similarly, the receive engines, block 1107, interpret the received command into new
requests, response, errors or other command or data PDUs that need to be acted on
appropriately. These receive engines working with the command engines, block 1106, route
the read data or received data to the appropriate allocated application buffer through direct
data transfer/placement or RDMA control information maintained for the session in the iSCSI
session table. On command completion the control to the respective buffers, blocks 1103
and 1112, is released for the application to use. Receive and transmit engines can be the
SAN packet processors 1706(a) to 1706(n) of Fig. 17 of this IP processor working with the
session information recorded in the session data base entries 1704, which can be viewed as
a global memory as viewed from the TCP/IP processor of Fig. 23 or the IP processor of

Fig. 24 The same engines can get reused for different packets and commands with the
appropriate storage flow context provided by the session database discussed in more detail
below with respect to block 1704 and portion of session database in 1708 of Fig. 17. For
clarification, the terms IP network application processor, IP Storage processor, IP Storage
network application processor and IP processor can be the same entity, depending on the
appli‘cation. An IP network application processor core or an IP storage network application
processor core can be the same entity, depending on the application.

Similarly a control command can use the transmit path whereas the received response
would use the receive path. Similar engines can exist on the initiator as well as the target.
The data flow direction is different depending on whether it is the initiator or the target.
However, primarily similar data flow exists on both initiator and target with additional steps at
the target. The target needs to perform additional operations to reserve the buffers needed

10

15

20

25

30

PCT/US03/18386

WO 03/104943

21

to get the data of a write command, for instance, or may need to prepare the read data
before the data is provided to the initiator. Similar instances would exist in case of an
intermediate device, although, in such a device, which may be a switch or an appliance,
some level of virtualization or frame filtering or such other operation may be performed that
may require termination of the session on one side and originating sessions on the other.
This functionality is supported by this architecture but not illustrated explicitly in this figure,
inasmuch as it is well within the knowledge of one of ordinary skill in the art.

Fig. 12 through Fig. 15 illustrate certain protocol information regarding transport sessions
and how that information may be stored in a database in memory.

Fig. 12 illustrates the data structures that are maintained for iISCSI protocol and associated
TCP/IP connections. The data belonging to each iSCS! session, block 1201, which is
essentially a nexus of initiator and target connections, is carried on the appropriate
connection, block 1202. Dependent commands are scheduled on the queues of the same
connection to maintain the ordering of the commands, block 1203. However, unrelated
commands can be assigned to different transport connection. It is possible to have all the
commands be queued to the same connection, ¥ the implementation supports only one
connection per session. However, multiple connections per session are feasible to support
line trunking between the initiator and the target. For example, in some applications, the
initiator and the target will be in communication with each other and will decide through
negotiation to accept multiple connections. In others, the initiator and target will ‘
communicate through only one session or connection. Fig. 13 and Fig. 14 illustrate the
TCP/IP and iSCSI session data base or transmission control block per session and
connection. These entries may be carried as separate tables or may be carried together as
a composite table as seen subsequently with respect to Figs. 23, 24, 26 and 29 depending
on the implementation chosen and the functionalityimplemented e.g. TCP/IP only, TCP/IP
with RDMA, IP Storage only, IP storage with TCP/IP, IP Storage with RDMA and the like.
Various engines that perform TCP/IP and storage flow control use all or some of these fields
or more fields not shown, to direct the block data transfer over TCP/IP. The appropriate
fields are updated as the connection progresses through the multiple states during the
course of data transfer. Fig. 15 illustrates one method of storing the transmission control
entries in a memory subsystem that consists of an on-chip session cache, blocks 1501 and

10

15

20

25

30

PCT/US03/18386

WO 03/104943

22

1502, and off-chip session memory, blocks 1503, 1504, 1505, 1506 and 1507, that retains
the state information necessary for continuous progress of the data transfers.

Fig. 16 illustrates the IP processor architecture at a high level of abstraction. The processor
consists of modular and scalable IP network application processor core, block 1603. Its
functional blocks provide the functionality for enabling high speed storage and data transport
over IP networks. The processor core can include an intelligent flow controller, a
programmable classification engine and a storage/network policy engine. Each can be
considered an individual processor or any combination of them can be implemented as a
single processor. The disclosed processor also includes a security processing block to
provide high line rate encryption and decryption functionality for the network packets. This,
likewise, can be a single processor, or combined with the others mentioned above. - The
disclosed processor includes a memory subsystem, includinga memory controller interface,
which manages the on chip session cache/memory, and a memory controller, block 1602,
which manages accesses to the off chip memory which may be SRAM, DRAM, FLASH,
ROM, EEPROM, DDR SDRAM, RDRAM, FCRAM, QDR SRAM, or other derivatives of static
or dynamic random access memory or a combination thereof. The IP processor includes
appropriate system interfaces to allow it to be used in the targeted market segments,
providing the right media interfaces, block 1601, for LAN, SAN, WAN and MAN networks,
and similar networks, and appropriate host interface, block 1606. The media interface block
and the host interface block may bein a multi-port form where some of the ports may serve
the redundancy and fail-over functions in the networks and systems in which the disclosed
processor is used. The processor also may contain the coprocessor interface block 1605,
for extending the capabilities of the main processor for example creating a multi-processor
system. The system controller interface of block 1604 allows this processor to interface with
an off-the-shelf microcontroller that can act as the system controller for the system in which
the disclosed processor may be used. The processor architecture also support a control
plane processor on board, that could act as the system controller or session manager. The
system controller interface may still be provided to enable the use of an external processor.
Such a version of this processor may not include the control processor for die cost reasons.
There are various types of the core architecture that can be created, targeting specific
system requirements, for example server adapters or storage controllers or switch line cards
or other networking systems. The primary differences would be as discussed in the earlier
sections of this patent. These processor blocks provide capabilities and performance to

10

15

20

25

30

WO 03/104943 PCT/US03/18386

23

achieve the high performance IP based storage using standard protocols like iSCSI, FCIP,
iFCP and the like. The detailed architecture of these blocks will be discussed in the
following description.

Fig. 17 illustrates the IP processor architecture in more detail. The architecture provides
capabilities to process incoming IP packets from the media access control (MAC) layer, or
other appropriate layer, through full TCP/IP termination and deep packet inspection. This
block diagram does not show the MAC layer block 1601, or blocks 1602, 1604 or 1605 of
Fig. 16. The MAC layer interface blocks to the input queue, block 1701, and output queue,
block 1712, of the processor in the media interface, block 1601, shown in Fig. 16. The MAC
functionality could be standards based, with the specific type dependent on the network.
Ethernet and Packet over SONET are examples of the most widely used interfaces today
which may be included on the same silicon or a different version of the processor created
with each.

The block diagram in Fig. 17 illustrates input queue and output queue blocks 1701 and 1712
as two separate blocks. The functionality may be provided using a combined block. The
input queue block‘1 701 oonsists of the logic, control and storage to retrieve the incoming
packets from the MAC interface block. Block 1701 queues the packets as they arrive from
the interface and creates appropriate markers to identify start of the packet, end of the
packet and other attributes like a fragmented packet or a secure packet, and the like,
working with the packet scheduler 1702 and the classification engine 1703. The packet
scheduler 1702, can retrieve the packets from the input queue controller and passes them
for classification to the classification engine. The classification block 1703, is shown to
follow the scheduler, however from a logical perspective the classification engine receives
the packet from the input queue, classifies the packet and provides the classification tag to
the packet, which is then scheduled by the scheduler to the processor array

1706(a) . . .1706(n). Thus the classification engine can act as a pass-through classification
engine, sustaining the flow of the packets through its structure at the full line rate. The
classification engine is a programmable engine that classifies the packets received from the
network in various categories and tags the packet with the classification result for the
scheduler and the other packet processors to use. Classification of the network traffic is a
very compute intensive activity which can take up to half of the processor cycles available in
a packet processor. This integrated classification engine is programmable to perform Layer

10

15

20

25

30

WO 03/104943 PCT/US03/18386

24

2 through Layer 7 inspection. The fields to be classified are programmed in with expected
values for comparison and the action associated with them if there is a match. The classifier
collects the classification walk results and can present these as a tag to the packet
identifying the classification result as seen subsequently with respect to Fig. 30. Thisis
much like a tree structure and is understood as a “walk.” The classified packets are then
provided to the scheduler 1702 as the next phase of the processing pipeline:

The packet scheduler block 1702 includes a state controllerand sequencer that assign
packets to appropriate execution engines on the disclosed processor. The execution
engines are the SAN packet processors, block 1706(a) through 1706(n), including the
TCP/IP and/or storage engines as well as the storage flow/RDMA controller, block 1708 or
host bypass and/or other appropriate processors, depend on the desired implementation.
For clarity, the term “/”, when used to designate hardware componernts in this patent, can
mean “and/or’ as appropriate. For example, the component “storage flow/RDMA controller”
can be a storage flow and RDMA controller, a storage flow 'controller, oran RDMA controller,
as appropriate for the implementation. The scheduler 1702 also maintains the packet order
through the processor where the state dependency from a packetto a packet on the same
connection/session is important for corect processing of the incoming packets. The
scheduler maintains various tables to track the progress of the scheduled packets through
the processor until packet retirement. The scheduler also receives commands that need to
be scheduled to the packet processors on the outgoing commands and packets from the
host processor or switch fabric controller or interface.

The TCP/IP and storage engines along with programmable packet processors are together
labeled as the SAN Packet Processors 1706(a) through 1706(n) in Fig. 17. These packet
processors are engines that are independent pregrammable entities that serve a specific
role. Alternatively, two or more of them can be implemented as a single processor
depending on the desired implementation. The TCP/IP engine of Fig. 23 and the storage
engines of Fig. 24 are configured in this example as coprocessors to the programmable
packet processor engine block 2101 of Fig. 21. This architecture can thus be applied with
relative ease to applications other than storage by substituting/removing for the storage
engine for reasons of cost, manufacturability, market segment and the like. Ina pure
networking environment the storage engine could be removed, leaving the packet processor
with a dedicated TCP/IP engine and be applied for the networking traffic, which will face the

10

15

20

25

30

WO 03/104943 PCT/US03/18386

25

same processing overhead from TCP/IP software stacks. Alternatively one or more of the
engines may be dropped for desired implementation e.g. for processor supporting only IP
Storage functions may drop TCP/IP engine and/or packet engine which may be in a
separate chip. Hence, multiple variationsof the core scalable and modular architecture are
possible. The core architecture can thus be leveraged in applications beside the storage
over IP applications by substituting the storage engine with other dedicated engines, for
example a high performance network security and policy engine, a high performance routing
engine, a high performance network management engine, deep packet inspection engine
providing string search, an engine for XML, an engine for virtualization, and the like,
providing support for an application specific acceleration. The processing capability of this
IP processor can be scaled by scaling the number of SAN Packet Processor blocks 1706 (a)
through 1706 (n) in the chip to meet the line rate requirements of the network interface. The
primary limitation from the scalability would come from the silicon real-estate required and
the limits imposed by the silicon process technologies. Fundamentally this architecture is
scalable to very high line rates by adding more SAN packet processor blocks thereby
increasing the processing capability. Other means of achieving a similar result is to increase
the clock frequency of operation of the processor to that feasible within the process
technology limits.

Fig. 17 also illustrates the IP session cache/memory and the memory controller block 1704.
This cache can be viewed as an internal memory or local session database cache. This
block is used to cache and store the TCP/IP session database and also the storage session
database for a certain number of active sessions. The number of sessions that can be
cached is a direct result of the chosen silicon real-estate and what is economically feasible
to manufacture. The sessions that are not on chip, are stored and retrieved to/from off chip
memory, viewed as an external memory, using a high performance memory controller block
which can be part of block 1704 or otherwise. Various processing elements of this
processor share this controller using a high speed internal bus to store and retrieve the
session information. The memory controller can also be used to temporarily store packets
that may be fragmented or when the host interface or outbound queues are backed-up. The
controller may also be used to store statistics information or any other information that may
be collected by the disclosed processor or the applications running on the disclosed or host
processor.

10

15

20

25

30

PCT/US03/18386

WO 03/104943

26

The processor block diagram of Fig. 17 also illustrates host interface block 171 0, host input
queue, block 1707 and host output queue, block 1709 as well as the storage flow / RDMA
controller, block 1708. These blocks provide the functions that are required to transfer data
to and from the host (also called “peer”) memory or switch fabric. These blocks also provide
features that allow the host based drivers to schedule the commands, retrieve incoming
status, retrieve the session database entry, program the disclosed processor, and the like to
enable capabilities like sockets direct architecture, full TCP/IP termination, IP storage offload
and the like capabilities with or without using RDMA. The host interface controller 1710,
seen in greater detail in Fig. 27, provides the configuration registers, DMA engines for direct
memory to memory data transfer, the host command block that performs some of the above
tasks, along with the host interface transaction controller and the host interrupt controller.
The host input and output queues 1707, 1709 provide the queuing for incoming and outgoing
packets. The storage flow and RDMA controller block 1708 provides the functionality
neceséary for the host to queue the commands to the disclosed processor, which then takes
these commands and executes them, interrupting the host processor on command
termination. The RDMA controller portion of block 1708 provides various capabilities
necessary for enabling remote direct memory access. It has tables that include information
such as RDMA region, access keys, and virtual address translation functionality. The RDMA
engine inside this block performs the data transfer and interprets the received RDMA
commands to perform the transaction if the transaction is allowed. The storage flow
controller of block 1708 also keeps track of the state of the progress of various commands
that have been scheduled as the data transfer happens between the target and the initiator.
The storage flow controller schedules the commands for execution and also provides the
command completion information to the host drivers. The above can be considered RDMA
capability and can be implemented as described or by implementing as individual
processors, depending on designer’s choice. Also, additional functions can be added to or
removed from those described without departing from the spirit or the scope of this patent.

The control plane processor block 1711 of this processor is used to provide relatively slow
path functionality for TCP/IP and/or storage protocols which may include error processing
with ICMP protocol, name resolution, address resolution protocol, and it may also be
programmed to perform session initiation/teardown acting as a session controller/connection
manger, login and parameter exchange, and the like. This control plane processor could be
off chip to provide the system developer a choice of the control plane processor, or may be

10

15

20

25

30

WO 03/104943 PCT/US03/18386

27

on chip to provide an integrated solution. If the control plane processor is off-chip, then an
interface block would be created or integrated herein that would allow this processor to
interface with the control plane processor and perform data and command transfers. The
internal bus structures and functional block interconnections may be different than illustrated
for all the detailed figures for performance, die cost requirements and the like and not depart
from the spirit and the scope of this patent.

Capabilities described above for Fig. 17 blocks with more detail below, enable a packet
streaming architecture that allows packets to pass through from input to output with minimal
latency, with in-stream processing by various processing resources of the disclosed
processor.

Fig. 18 illustrates the input queue and controller block shown generally at 1701 of Fig. 17 in
more detail. The core functionality of this block is to accept the incoming packets from
multiple input ports, Ports 1 to N, in blocks 1801 and 1802(i) to 1802(n), and to queue them
using a fixed or programmable priority on the input packet queue, block 1810, from where
the packets get de-queued for classifier, scheduler and further packet processing through
scheduler I/F blocks 1807-1814. The input queue controller interfaces with each of the input
ports (Port 1 through Port N in a multi-port implementation), and queues the packets to the
input packet queue 1810. The packet en-queue controller and marker block 1804 may
provide fixed priority functions or may be programmable to allow different policies to be
applied to different interfaces based on various characteristics like port speed, the network
interface of the port, the port priority and others that may be appropriate. Various modes of
priority may be programmable like round-robin, weighted round-robin or others. The input
packet de-queue controller 1812 de-queues the packets and provides them to the packet
scheduler, block 1702 of Fig. 17 via scheduler I/F 1814. The scheduler schedules the
packets to the SAN packet processors 1706 (a) — 1706 (n) once the packets have been
classified by the classification engine 1703 of Fig. 17. The encrypted packets can be
classified as encrypted first and passed on to the security engine 1705 of Fig. 17 by the
secure packet interface block 1813 of Fig. 18. for authentication and/or decryption if the
implementation includes security processing otherwise the security interfaces may not be
present and an external security processor would be used to perform similar functions. The
decrypted packets from clear packet interface, block 1811, are then provided to the input
queue through block 1812 from which the packet follows the same route as a clear packet.

10

15

20

25

30

WO 03/104943 PCT/US03/18386

28

The fragmented IP packets may be stored on-chip in the fragmented packet store and
controller buffers, block 1808, or may be stored in the internal or external memory. When
the last fragment arrives, the fragment controller of block 1806, working with the
classification engine and the scheduler of Fig. 17, merges these fragments to assemble the
complete packet. Once the fragmented packet is combined to form a complete packet, the
packet is scheduled into the input packet queue via block 1804 and is then processed by the
packet de-queue controlier, block 1812, to be passed on to various other processing stages
of this processor. The input queue controller of Fig. 18 assigns a packet tag/descriptor to
each incoming packet which is managed by the attribute manager of block 1809 which uses
the packet descriptor fields like the packet start, size, buffer address, along with any other
security information from classification engine, and stored in the packet attributes and tag
array of block 1808. The packet tag and atiributes are used to control the flow of the packet
through the processor by the scheduler and other elements of the processor in an efficient
manner through interfaces 1807, 1811, 1813 and 1814

Fig. 19 illustrates the packet scheduler and sequencer 1702 of Fig. 17 in more detail. This
block is responsible for scheduling packets and tasks to the execution resources of this
processor and thus also acts as a load balancer. The scheduler retrieves the packet
headers from the header queue, block 1902, from the input queue controlier 1901 to pass
them to the classification engine 1703 of Feb. 17 which returns the classification results to
the classifier queue, block 1909, that are then used by the rest of the processor engines.
The classification engine may be presented primarily with the headers, but if deep packet
inspection is also programmed, the classification engine may receive the complete packets
which it routes to the scheduler after classification. The scheduler comprises a classification
controller/scheduler, block 1908, which manages the execution of the packets through the
classification engine. This block 1908 of Fig. 19 provides the commands to the input queue
controller, block 1901, in case of fragmented packets or secure packets, to perform the
appropriate actions for such packets e.g. schedule an encrypted packet to the security
engine of Fig. 17. The scheduler state control and the sequencer, block 1916, receive state
information of various transactions/operations active inside the processor and provide
instructions for the next set of operations. For instance, the scheduler retrieves the packets
from the input packet queue of block 1903, and schedules these packets in the appropriate
resource queue depending on the results of the classification received from the classifier or
directs the packet to the packet memory, block 1913 or 1704 through 1906, creating a

10

15

20

25

30

WO 03/104943 PCT/US03/18386

29

packet descriptor/tag which may be used to retrieve the packet when appropriate resource
needs it to performs its operations at or after scheduling. The state control and sequencer
block 1916 instructs/directs the packets with their classification result, block 1914, to be
stored in the packet memory, block 1913, from where the packets get retrieved when they
are scheduled for operation. The state controller and the sequencer identify the execution
resource that should receive the packet for operation and creates a command and assigns
this command with the packet tag to the resource queues, blocks 1917 (Control Plane), 1918
(port i-port n), 1919 (bypass) and 1920 (host) of Fig. 19. The priority selector 1921 is a
programmable block that retrieves the commands and the packet tag from the respective
queues based on the assigned priority and passes this to the packet fetch and command
controller, block 1922. This block retrieves the packet from the packet memory store 1913
along with the classification results and schedules the packet transfer to the appropriate
resource on the high performance processor command and packet busses such as at 1926
when the resource is ready for operation. The bus interface blocks, like command bus
interface controller 1905, of the respective recipients interpret the command and accept the
packet and the classification tag for operation. These execution engines inform the
scheduler when the packet operation is complete and when the packet is scheduled for its
end destination (either the host bus interface, or the output interface or control plane
interface, etc.). This allows the scheduler to retire the packet from its state with the help of
retirement engine of block 1904 and frees up the resource entry for this session in the
resource allocation table, block 1923. The resource allocation table is used by the
sequencer to assign the received packets to specific resources, depending on the current
state of internal state of these resources, e.g. the session database cache entry buffered in
the SAN packet processor engine, the connection ID of the current packet being executed in
the resource, and the like. Thus packets that are dependent on an ordered execution get
assigned primarily to the same resource, which improves memory traffic and performance by
using the current DB state in the session memory in the processor and not have to retrieve
new session entries. The sequencer also has interface to the memory controller, block
1906, for queuing of packets that are fragmented packets and/or for the case in which the
scheduler queues get backed-up due to a packet processing bottleneck down stream, which
may be caused by specific applications that are executed on packets that take more time
than that allocated to maintain a full line rate performance, or for the case in which any other
downstream systems get full, unable to sustain the line rate.

10

15

20

25

30

WO 03/104943 PCT/US03/18386

30

If the classifier is implemented before the scheduler as discussed above with respect to

Fig. 17 where the classification engine receives the packet from the input queue, items 1901,
1902, 1908, 1909 and 1910 would be in the classifier, or may not be needed, depending on
the particular design. The appropriate coupling from the classifier to/from the scheduler
blocks 1903, 1907, 1914 and 1915 may be created in such a scenario and the classifier
coupled directly to the input queue block of Fig. 18.

Fig. 20 illustrates the packet classification engine shown generally at 1703 of Fig. 17.
Classification of the packets into their various attributes is a very compute intensive
operation. The classifier can be a programmable processor that examines various fields of
the received packet to identify the type of the packet, the protocol type e.g. IP, ICMP, TCP,
UDP etc, the port addresses, the source and destination fields, etc. The classifier can be
used to test a particular field or a set of fields in the header or the payload. The block
diagram illustrates a content addressable memory based classifier. However, as discussed
earlier this could be a programmable processor as well. The primary differences are the
performance and complexity of implementation of the engine. The classifier gets the input
packets through the scheduler from the input queues, blocks 2005 and 2004 of Fig. 20. The
input buffers 2004 queue the packets/descriptor and/or the packet headers that need to be
classified. Then the classification sequencer 2003 fetches the next available packet in the
queue and extracts the appropriate packet fields based on the global field descriptor sets,
block 2007, which are, or can be, programmed. Then the classifier passes these fields to
the content addressable memory (CAM) array, block 2009, to perform the classification. As
the fields are passed through the CAM array, the match of these fields identifies next set of
fields to be compared and potentially their bit field location. The match in the CAM array
results in the action/event tag, which is collected by the result compiler, (where “compiling” is
used in the sense of “collecting”) block 2014 and also acted on as an action that may require
updating the data in the memory array, block 2013, associated with specific CAM condition
or rule match. This may include performing an arithmetic logic unit (ALU) operation, block
2017, which can be considered one example of an execution resource) on this field e.g.
increment or decrement the condition match and the like. The CAM arrays are programmed
with the fields, their expected values and the action on match, including next field to
compare, through the database initialization block 2011, accessible for programming through
the host or the control plane processor interfaces 1710, 1711. Once the classification
reaches a leaf node the classification is complete and the classification tag is generated that

10

15

20

25

30

WO 03/104943 PCT/US03/18386

31

identifies the path traversed that can then be used by other engines of the IP processor
avoid performing the same classification tasks. For example a classification tag may include
the flow or session ID, protocol type indication e.g. TCP/UDP/ICMP efc., value indicatng
whether to processes, bypass, drop packet, drop session, and the like, or may also include
the specific firmware code routine pointer for the execution resource to start packet
processing or may include signature of the classification path traversed or the like. The
classification tag fields are chosen based on processor implementation and functionaly.
The classifier retirement queue, block 2015, holds the packets/descriptors of packets that
are classified and classification tag and are waiting to be retrieved by the scheduler. The
classification data base can be extended using database extension interface and pipeline
control logic block 2006. This allows systems that need extensibility for a larger
classification database to be built. The classification engine with the action interpreter, the
ALU and range matching block of 2012 also provide capabilities to program

storage / network policies / actions that need to be taken if certain policies are met. The
policies can be implemented in the form of rule and action tables. The policies get compiled
and programmed in the classification engine through the host interface along with the
classification tables. The database interface and pipeline control 2006 could be
implemented to couple to companion processor to extend the size of the classificatior/policy
engine.

Fig. 21 illustrates the SAN Packet Processor shown generally at 1706 (a) through 1706 (n)
of Fig. 17. A packet processor can be a specially designed packet processor, or it can be
any suitable processor such as an ARM, MIPS, StrongARM, X86, PowerPC, Pentium
processor, or any other processor that serves the fundtions described herein. This is also
referred as the packet processor complex in various sections of this patent. This packet
processor comprises a packet engine, block 2101, which is generally a RISC machine with
target instructions for packet processing or a TCP/IP engine, block 2102 oran IP storage
engine, block 2103 or a combination thereof. . These engines can be configured as
coprocessors to the packet engine or can be independentengines. Fig. 22 illustrates the
packet engine in more detail. The packet engine is a generally RISC machine as indicated
above with instruction memory, block 2202, and Data Memory, block 2206, (both of which
can be RAM) that are used to hold the packet processing micro routines and the packets
and intermediate storage. The instruction memory 2202 which, like all such memory in this
patent, can be RAM or other suitable storage, is initialized with the code that is executed

10

15

20

25

30

WO 03/104943 PCT/US03/18386

32

during packet processing. The packet processing code is organized as tight micro routines
that fit within the allocated memory. The instruction decoder and the sequencer, block 2204,
fetches the instrudions from instruction memory 2202, decodes them and sequences them
through the execution blocks contained within the ALU, block 2208. This machine can be a
simple pipelined engine or a more complex deep pipelined machine that may also be
designed to provide a packet oriented instruction set. The DMA engine, block 2205 and the
bus controller, block 2201, allow the packet engine to move the data packets from the
scheduler of Fig. 19 and the host interface into the data memory 2206 for operation. The
DMA engine may hold multiple memory descriptors to store/retrieve packet/data to/from host
memory/packet memory. This would enable memory accesses to happen in parallel to
packet processor engine operations. The DMA engine 2205 also may beused to move the
data packets to and from the TCP and storage engines 2210, 2211. Once the execution of
the packet is complete, the extracted data or newly generated packet is transferred to the
output interface either towards the media interface or the host interface

Fig. 23 illustrates a programmable TCP/IP packet processor engine, seen generally at 2210
of Fig. 22, in more detail. This engine is generally a programmable processor with common
RISC instructions along with various TCP/IP oriented instructions and execution engines but
could also be a micro-coded or a state machine driven processor with appropriate execution
engines described in this patent. The TCP processor includes a checksum block, 2311, for
TCP checksum verification and new checksum generation by executing these instructions on
the processor. The checksum block extracts the data packet from the packet buffer memory
(a Data RAM is one example of such memory), 2309, and performs the checksum
generation or verification. The ‘packet look-up interface block, 2310, assists the execution
engines and the instruction sequencer, 2305, providing access to various data packet fields
or the full data packet. The classification tag interpreter, 2313, is used by the instruction
decoder 2304 to direct the program flow based on the results of the classification if such an
implementation is chosen. The processor provides specific sequence and windowing
operations including segmentation, block 2315, for use in the TCP/IP data sequencing
calculations for example, to look-up the next expected sequence number and see if that
received is within the agreed upon sliding window, which sliding window is a well known part
of the TCP protocol, for the connection to which the packet belongs. This element 2315 may
also include a segmentation controller like that show at 2413 of Fig. 24. Alternatively, one of
ordinary skill in the art, with the teaching of this patent, can easily implement the

10

15

20

25

30

WO 03/104943 PCT/US03/18386

33

segmentation controllers elsewhere on the TCP/IP processor of this Fig. 23. The processor
provides a hash engine, block 2317, which is used to perform hash operations against
specific fields of the packet to perform a hash table walk that may be required to get the right
session entry for the packet. The processor also includesa register file, block 2316, which
extracts various commonly used header fields for TCP processing, along with pointer
registers for data source and destination, context register sets, and registers that hold the
TCP states along with a general purpose register file. The TCP/IP processor can have
multiple contexts for packet execution, so that when a given packet execution stalls for any
reason, for example memory access, the other context can be woken up and the processor
continue the execution of another packet stream with little efficiency loss. The TCP/IP
processor engine also maintains a local session cache, block 2320, which holds most
recently used or most frequently used entries, which can be used locally without needing to
retrieve them from the global session memory. The local session cache can be considered
an internal memory of the TCP/IP processor, which can be a packet processor. Of course,
the more entries that will be used that can be stored locally in the internal memory, without
retrieving additional ones from the session, or global, memory, the more efficient the
processing will be. The packet scheduler of Fig. 19 is informed of the connection IDs that
are cached per TCP/IP processor resource, so that it can schedule the packets that belong
to the same session to the same packet processor complex. When the packet processor
does not hold the session entry for the specific connection, then the TCP session database
lookup engine, block 2319, working with the session manager, block 2321, and the hash
engine retrieves the corresponding entry from the global session memory through the
memory controller interface, block 2323. There are means, such as logic circuitry inside the
session manager that allow access of session entries or fields of session entries, that act
with the hash engine to generate the session identifier for storing/retrieving the
corresponding session entry or its fields to the session database cache. This can be used to
update those fields or entries as a result of packet processing. When a new entry is fetched,
the entry which it is replacing is stored to the global session memory. The local session
caches may follow exclusivity caching principles, so that multiple processor complexes do
not cause any race condttions, damaging the state of the session. Other caching protocols
like MESI protocol may also be used to achieve similar results. When a session entry is
cached in a processor complex, and another processor complex needs that entry, this entry
is transferred to the new processor with exclusive access or appropriate caching state based
on the algorithm. The session entry may also get written to the global session memory in

10

15

20

25

30

WO 03/104943 PCT/US03/18386

34

certain cases. The TCP/IP processor also includes a TCP state machine, block 2322, which
is used to walk through the TCP states for the connection being operated on. This state
machine receives the state information stored in the session entry along with the appropriate
fields affecting the state from the newly received packet. This allows the state machine to
generate the next state if there is a state transition and the information is updated in the
session table entry. The TCP/IP processor also includes a frame controller/out of order
manager block, 2318, that is used to extract the frame information and perform operations
for out of order packet execution. This block could also include an RDMA mechanism such
as that shown at 2417 of Fig. 24, but used for non-storage data transfers. One of ordinary
skill in the art can also, with the teaching of this patent, implement an RDMA mechanism
elsewhere on the TCP/IP processor. This architecture creates an upper layer framing
mechanism which may use packet CRC as framing key or other keys that is used by the
programmable frame controller to extract the embedded PDUs even when the packets arrive
out of order and allow them to be directed to the end buffer destination. This unit interacts
with the session database to handle out of order arrival information which is recorded so that
once the intermediate segments arrive, the retransmissions are avoided. Once the packet
has been processed through the TCP/IP processor, it is delivered for operation to the
storage engine, if the packet belongs to a storage data transfer and the specific
implementation includes a storage engine, otherwise the packet is passed on to the host
processor interface or the storage flow/RDMA controller of block 1708 for processing and for
DMA to the end buffer destination. The packet may be transferred to the packet processor
block as well for any additional processing on the packet. This may include application and
customer specific application code that can be executed on the packet before or after the
processing by the TCP/IP processor and the storage processor. Data transfer from the host
to the output media interface would also go through the TCP/IP processor to form the
appropriate headers to be created around the data and also perform the appropriate data
segmentation, working with the frame controller and/or the storage processor as well as to
update the session state. This data may be retrieved as a result of host command or
received network packet scheduled by the scheduler to the packet processor for operation.
The intemal bus structures and functional block interconnections may be diferent than
ilustrated for performance, die cost requirements and the like. For example, Host Controller
Interface 2301, Scheduler Interface 2307 and Memory Controller Interface 2323 may be part
of a bus controller that allows transfer of data packets or state information or commands, or
a combination thereof, to or from a scheduler or storage flow/RDMA controller or host or

10

15

20

25

30

WO 03/104943

PCT/US03/18386

35

session controller or other resources such as, without limitation, security processor, or media
interface units, host interface, scheduler, classification processor, packet buffers or controller
processor, or any combination of the foregoing.

Fig. 24 illustrates the IP storage processor engine of Fig. 22 in more detail. The storage
engine is a programmable engine with an instruction set that is geared towards IP based
storage along with, usually, a normal RISC-like packet processing instruction set. The IP
storage processor engine contains block 2411, to perform CRC operations. This block
allows CRC generation and verification. The incoming packet with IP storage is transferred
from the TCP/IP engine through DMA, blocks 2402 and 2408, into the data memory (a data
RAM is an example of such memory), block 2409. When the implementation does not
include TCP/IP engine or packet processor engine or a combination thereof, the packet may
be received from the scheduler directly for example. The TCP session database information
related to the connection can be retrieved from the local session cache as needed or can
also be received with the packet from the TCP/IP engine The storage PDU is provided to
the PDU classifier engine, block 2418, which classifies the PDU into the appropriate
command, which is then used to invoke the appropriate storage command execution engine,
block 2412. The command execution can be accomplished using the RISC, or equivalent,
instruction set or using a dedicated hardware engine. The command execution engines
perform the command received in the PDU. The received PDU may contain read command
data, or R2T for a pending write command or other commands required by the IP storage
protocol. These engines retrieve the write data from the host interface or direct the read
data to the destination buffer. The storage session database entry is cached, in what can be
viewed as a local memory, block 2420, locally for the recent or frequent connections served
by the processor. The command execution engines execute the commands and make the
storage database entry updates working with the storage state machine, block 2422, and the
session manager, block 2421. The connection ID is used to identify the session, and if the
session is not present in the cache, then it is retrieved from the global session memory 1704
of Fig. 17 by the storage session look-up engine, block 2419. For data transfer from the
initiator to target, the processor uses the segmentation controller, block 2413, to segment
the data units into segments as per various network constraints like path MTU and the like.
The segmentation controller attempts to ensure that the outgoing PDUs are optimal size for
the connection. If the data transfer requested is larger than the maximum effective segment
size, then the segmentation controller packs the data into multiple packets and works with

10

15

20

25

30

WO 03/104943

PCT/US03/18386

36

the sequence manager, block 2415, to assign the sequence numbers appropriately. The
segmentation controller 2413 may also be implemented within the TCP/IP processor of

Fig. 23. That is, the segmentation controller may be part of the sequence/window operations
manager 2315 of Fig. 23 when this processoris used for TCP/IP operations and not storage
operations. One of ordinary skill in the art can easily suggest alternate embodiments for
including the segmentation controller in the TCP/IP processor using the teachings of this
patent. The storage processor of Fig. 24 (or the TCP/IP processor of Fig. 23) can also
include an RDMA engine that interprets the remote direct memory access instructions
received in the PDUs for storage or network data transfers that are implemented using this
RDMA mechanism. In Fig. 24, for example, this is RDMA engine 2417. In the TCP/IP
processor of Fig. 23 an RDMA engine could be part of the frame controller and out of order
manager 2318, or other suitable component. If both ends of the connection agree to the
RDMA mode of data transfer, then the RDMA engine is utilized to schedule the data
transfers between the target and initiator without substantial host intervention. The RDMA
transfer state is maintained in a session database entry. This block creates the RDMA
headers to be layered around the data, and is also used to extract these headers from the
received packets that are received on RDMA enabled connections. The RDMA engine
works with the storage flow/ RDMA controlier, 1 708, and the host interface controller, 1 710,
by passing the messages/instructions and performs the large block data transfers without
substantial host intervention. The RDMA engine of the storage flow/RDMA controller block,
1708, of the IP processor performs protection checks for the operations requested and also
provides conversion from the RDMA region identifiers to the physical or virtual address in the
host space. This functionality may also be provided by RDMA engine, block 2417, of the
storage engine of the SAN packet processor based on the implementation chosen. The
distribution of the RDMA capability between 2417 and 1708 and other similar engines is an
implementation choice that one with ordinary skill in the art will be able to do with the
teachings of this patent. Outgoing data is packaged into standards based PDU by the PDU
creator, block 2425. The PDU formatting may also be accomplished by using the packet
processing instructions. The storage engine of Fig. 24 works with the TCP/IP engine of
Fig. 23 and the packet processor engine of Fig. 17 to perform the IP storage operations
involving data and command transfers in both directions i.e. from the initiator to target and
the target to the host and vice versa. That is, the Host controller Interface 2401, 2407 store
and retrieve commands or data or a combination thereof to or from the host processor.
These interfaces may be directly connected to the host or may be connected through an

10

15

20

25

30

WO 03/104943 PCT/US03/18386

37

intermediate connection. Though shown as two apparatus, interfaces 2401 and 2407 could
be implemented as a single apparatus. The flow of data through these blocks would be
different based on the direction of the transfer. For instance, when command or data is
being sent from the host to the target, the storage processing engines will be invoked first to
format the PDU and then this PDU is passed on to the TCP processor to package the PDU
in a valid TCP/IP segment. However, a received packet will go through the TCP/IP engine
before being scheduled for the storage processor engine. The internal bus structures and
functional block interconnections may be different than illustrated for performance, die cost
requirements, and the like. For example, and similarly to Fig. 23, Host Controller Interface
2401, 2407 and Memory Controller Interface 2423 may be part of a bus controller that allows
transfer of data packets or state information or commands, or a combination thereof, to or
from a scheduler or host or storage flow/RDMA controller or session controller or other
resources such as, without limitation, security processor, or media interface units, host
interface, scheduler, classification processor, packet buffers or controller processor, or any
combination of the foregoing.

In applications in which storage is done on a chip not including the TCP/IP processor of

Fig. 23 by, as one example, an IP Storage processor such as an iSCS| processor of Fig. 24,
the TCP/IP Interface 2406 would function as an interface to a scheduler for scheduling IP
storage packet processing by the IP Storage processor. Similar variations are well within the
knowledge of one of ordinary skill in the art, viewing the disclosure of this patent.

Fig. 25 illustrates the output queue controller block 1712 of Fig. 17 in more detail. This block
receives the packets that need to be sent on to the network media independent interface
1601 of Fig. 16. The packets may be tagged to indicate if they need to be encrypted before
being sent out. The controller queues the packets that need to be secured to the security
engine through the queue 2511 and security engine interface 2510. The encrypted packets
are received from the security engine and are queued in block 25009, to be sent to their
destination. The output queue controller mayassign packets onto their respective quality of
service (QOS) queues, if such a mechanism is supported. The programmable packet
priority selector, block 2504, selects the next packet to be sent and schedules the packet for
the appropriate port, Port1 . . . PortN. The media controller block 1601 associated with the
port accepts the packets and sends them to their destination.

10

15

20

25

30

WO 03/104943 PCT/US03/18386

38

Fig. 26 illustrates the storage flow controller /RDMA controller block, shown generally at
1708 of Fig. 17, in more detail. The storage flow and RDMA controller block provides the
functionality necessary for the host to queue the commands (storage or RDMA or sockets
direct or a combination thereof) to this processor, which then takes these commands and
executes them, interrupting the host processor primarily on command termination. The
command queues, new and active, blocks 2611 and 2610, and completion queue, block
2612, can be partially on chip and partially in a host memory region or memory associated
with the IP processor, from which the commands are fetched or the completion status
deposited. The RDMA engine, block 2602, provides various capabilities necessary for
enabling remote direct memory access. It has tables, like RDMA look-up table 2608, that
include information like RDMA region and the access keys, and virtual address translation
functionality. The RDMA engine inside this block 2602 performs the data transfer and
interprets the received RDMA commands to perform the transaction if allowed. The storage
flow controiler also keeps track of the state of the progress of various commands that have
been scheduled as the data transfer happens between the target and the initiator. The
storage flow controller schedules the commands for execution and also provides the
command completion information to the host drivers. The storage flow controller provides
command queues where new requests from the host are deposited, as well as active
commands are held in the active commands queue. The command scheduler of block 2601,
assigns new commands, that are received which are for targets for which no connections
exist, to the scheduler for initiating a new connection. The scheduler 1702, uses the control
plane processor shown generally at 1711 of Fig. 17 to do the connection establishment at
which point the connection entry is moved to the session cache, shown generally in Fig. 15
and 1704 in Fig. 17, and the state controller in the storage flow controller block 2601 moves
the new command to active commands and associates the command to the appropriate
connection. The active commands, in block 2610, are retrieved and sent to the scheduler,
block 1702 for operation by the packet processors. The update to the command status is
provided back to the flow controller which then stores it in the command state tables, blocks
2607 and accessed through block 2603. The sequencer of 2601 applies a programmable
priority for command scheduling and thus selects the next command to be scheduled from
the active commaﬁds and new commands. The flow controller also includes a new requests
queue for incoming commands, block 2613. The new requests are transferred to the active
command queue once the appropriate processing and buffer reservations are done on the
host by the host driver. As the commands are being scheduled for execution, the state

10

15

20

25

30

WO 03/104943 PCT/US03/18386

39

controller 2601 initiates data pre-fetch by host data pre-fetch manager, block 2617, from the
host memory using the DMA engine of the host interface block 2707, hence keeping the data
ready to be provided to the packet processor complex when the command is being
executed. The output queue controller, block 2616, enables the data transfer, working with
the host controller interface, block 2614. The storage flow/RDMA controller maintains a
target-initiator table, block 2609, that associates the target/initiators that have been resolved
and connections established for fast look-ups and for associating commands to active
connections. The command sequencer may also work with the RDMA engine 2602, if the
commands being executed are RDMA commands or if the storage transfers were negotiated
to be done through the RDMA mechanism at the connection initiation. The RDMA engine
2602, as discussed above, provides functionality to accept multiple RDMA regions, access
control keys and the virtual address translation pointers. The host application (which may be
a user application or an OS kernel function, storage or non-storage such as downloading
web pages, video files, or the like) registers a memory region that it wishes to use in RDMA
transactions with the disclosed processor through the services provided by the associated
host driver. Once this is done, the host application communicates this information to its peer
on a remote end. Now, the remote machine or the host can execute RDMA commands,
which are served by the RDMA blocks on both ends without requiring substantial host
intervention. The RDMA transfers may include operations like read from a region, a certain
number of bytes with a specific offset or a write with similar attributes. The RDMA
mechanism may also include send functionality which would be useful in creating
communication pipes between two end nodes. These features are useful in clustering
applications where large amounts of data transfer is required between buffers of two
applications running on servers in a cluster, or more likely, on servers in two different
clusters of servers, or such other clustered systems. The storage data transfer may also be
accomplished using the RDMA mechanism, since it allows large blocks of data transfers
without substantial host intervention. The hosts on both ends get initially involved to agree
on doing the RDMA transfers and allocating memory regions and permissions through
access control keys that get shared. Then the data transfer between the two nodes can
continue without host processor intervention, as long as the available buffer space and
buffer transfer credits are maintained by the two end nodes. The storage data transfer
protocols would run on top of RDMA, by agreeing to use RDMA protocol and enablingit on
both ends. The storage flow controller and RDMA controller of Fig. 26 can then perform the
storage command execution and the data transfer using RDMA commands. Asthe

10

15

20

25

30

WO 03/104943 PCT/US03/18386

40

expected data transfers are completed the storage command completion status is
communicated to the host using the completion queue 2612. The incoming data packets
arriving from the network are processed by the packet processor complex of Fig. 17 and
then the PDU is extracted and presented to the flow controller OF FIG. 26 in case of
storage/RDMA data packets. These are then assigned to the incoming queue block 2604,
and transferred to the end destination buffers by looking up the memory descriptors of the
receiving buffers and then performing the DMA using the DMA engine inside the host
interface block 2707. The RDMA commands may also go through protection key look-up
and address translation as per the RDMA initialization.

The foregoing may also be considered a part of an RDMA capability or an RDMA
mechanism or an RDMA function.

Fig. 27 illustrates host interface controller 1710 of Fig. 17 in more detail. The host interface
block includes a host bus interface controller, block 2709, which provides the physical
interface to the host bus. The host interface biock may be implemented as a fabric interface
or media independert interface when embodied in a switch or a gateway or similar
configuration depending on the system architecture and may provide virtual output queuing
and/or other quality of service features. The transaction controller portion of block 2708,
executes various bus transactions and maintains their status and takes requested
transactions to completion. The host command unit, block 2710, indudes host bus
configuration registers and one or more command interpreters to execute the commands
being delivered by the host. The host driver provides these commands o this processor
over Host Output Queue Interface 2703. The commands serve various functions like setting
up configuration registers, scheduling DMA transfers, setting up DMA regions and
permissions if needed, setup session entries, retrieve session database, configure RDMA
engines and the like. The storage and other commands may also be transferred using this
interface for execution by the IP processor.

Fig. 28 illustrates the security engine 1705 of Fig. 17 in more detail. The security engine
illustrated provides authentication and encryption and decryption services like those required
by standards like IPSEC for example. The services offered by the security engine may
include multiple authentication and security algorithms. The security engine may be on-
board the processor or may be part of a separate silicon chip as indicated earlier. An
external security engine providing IP security services would be situated in a similar position

10

15

20

25

30

WO 03/104943 PCT/US03/18386

4

in the data flow, as one of the first stages of packet processing for incoming packets and as
one of the last stages for the outgoing packet. The security engine illustrated provides
advanced encryption standard (AES) based encryption and decryption services, which are
very hardware performance efficient algorithms adopted as security standards. This block
could also provide other security capabilties like DES, 3DES, as an example. The
supported algorithms and features for security and authentication are driven from the silicon
cost and development cost. The algorithms chosen would also be those required by the IP
storage standards. The authentication engine, block 2803, is illustrated to include the SHA-1
algorithm as one example of useable algorithms. This block provides message digest and
authentication capabilities as specified in the IP security sdandards. The data flows through
these blocks when security and message authentication services are required. The clear
packets on their way out to the target are encrypted and are then authenticated if required
using the appropriate engines. The secure packets received go through the same steps in
reverse order. The secure packet is authenticated and then decrypted using the engines
2803, 2804 of this block. The security engine also maintains the security associations in a
security context memory, block 2809, that are established for the connections. The security
associations (may include secure session index, security keys, algorithms used, current
state of session and the like) are used to perform the message authentication and the
encryption/decryption services. It is possible to use the message authentication service and
the encryption/decryption services independent ofeach other.

Fig. 29 illustrates the session cache and memory controller complex seen generally at 1704
of Fig. 17 in more detail. The memory complex includes a cache/memory architecture for
the TCP/IP session database called session/global session memory or session cache in this
patent, implemented as a cache ormemory or a combination thereof. The session cache
look-up engine, block 2904, provides the functionality to look-up a specific session cache
entry. This look-up block creates a hash index out of the fields provided oris able to accept
a hash key and looks-up the session cache entry. If there is no tag match in the cache array
with the hash index, the look-up block uses this key to find the session entry from the
external memory and replaces the current session cache entry with that session entry. It
provides the session entry fields to the requesting packet processor complex. The cache
entries that are present in the local processor complex cache are marked shared in the
global cache. Thus when any processor requests this cache entry, it is transferred to the
global cache and the requesting processor and marked as such in the global cache. The

10

15

20

25

30

WO 03/104943 PCT/US03/18386

42

session memory controller is also responsible to move the evicted local session cache
entries into the global cache inside this block. Thus only the latest session state is available
at any time to any requesters for the session entry. If the session cache is full, a new entry
may cause the least recently used entry to be evicted to the external memory. The session
memory may be single way or multi-way cache or a hash indexed memory or a combination
thereof, depending on the silicon real estate available in a given process technology. The
use of a cache for storing the session database entry is unique, in that in networking
applications for network switches or routers, generally there is not much locality of reference
properties available between packets, and hence use of cache may not provide much
performance improvement due to cache misses. However, the storage transactions are
longer duration transactions between the two end systems and may exchange large
amounts of data. In this scenario or cases where a large amount of data transfer occurs
between two nodes, like in clustering or media servers or the like a cache based session
memory architecture will achieve significant performance benefit from reducing the
enormous data transfers from the off chip memories. The size of the session cache is a
function of the available silicon die area and can have an impact on performance based on
the trade-off. The memory controller block also provides services to other blocks that need
to store packets, packet fragments or any other operating data in memory. The memory
interface provides single or multiple extemal memory controllers, block 2901, depending on
the expected data bandwidth that needs to be supported. This can be a double data rate
controller or controller for DRAM or SRAM or RDRAM or other dynamic or static RAM or
combination thereof. The figure illustrates multi-controllers however the number is variable
depending on the necessary bandwidth and the costs. The memory complex may also
provide timer functionality for use in retransmission time out for sessions that queue
themselves on the retransmission queues maintained by the session database memory
block.

Fig. 30 illustrates the data structures details for the classification engine. This is one way of
organizing the data structures for the classification engine. The classification database is
illustrated as a tree structure, block 3001, with nodes, block 3003, in the tree and the
actions, block 3008, associated with those nodes allow the classification engine to walk
down the tree making comparisons for the specific node values. The node values and the
fields they represent are programmable. The action field is extracted when a field matches a
specific node value. The action item defines the next step, which may include extracting and

10

15

20

25

30

WO 03/104943 PCT/US03/18386

43

comparing a new field, performing other operations like ALU operations on specific data
fields associated with this node-value pair, or may indicate a terminal node, at which point
the classification of the specific packet is complete. This data structure is used by the
classification engine to classify the packets that it receives from the packet scheduler. The
action items that are retrieved with the value matches, while iterating different fields of the
packet, are used by the results compiler to create a classification tag, which is attached to
the packet, generally before the packet headers. The classification tag is then used as a
reference by the rest of the processor to decide on the actions that need to be taken based
on the classification results. The classifier with its programmable characteristics allows the
classification tree structure to be changed in-system and allow the processor to be used in
systems that have different classification needs. The classification engine also allows
creation of storage /network policies that can be programmed as part of the classffication
tree-node-value-action structures and provide a very powerful capability in the IP based
storage systems. The policies would enhance the management of the systems that use this
processor and allow enforcement capabilities when certain policies or rules are met or
violated. The classification engine allows expansion of the classification database through
external components, when that is required by the specific system constraints. The number
of trees and nodes are decided based on the silicon area and performance tradeoffs. The
data structure elements are maintained in various blocks of the classification engine and are
used by the classification sequencer to direct the packet classffication through the structures.
The classification data structures may require more or less fields than those indicated
depending on the target solution. Thus the core functionality of classification may be
achieved with fewer components and structures without departing from the basic
architecture. The classification process walks through the trees and the nodes as
programmed. A specific node action may cause a new tree to be used for the remaining
fields for classification. Thus, the classification process starts at the tree root and progress
through the nodes until it reaches the leaf node.

Fig. 31 illustrates a read operation between an initiator and target. The initiator sends a
READ command request, block 3101, to the target to start the transaction. This is an
application layer request which is mapped to specific SCSI protocol command which is than
transported as an READ protocol data unit, block 3102, in an IP based storage network.
The target prepares the data that is requested, block 3103 and provides read response
PDUs, block 3105, segmented to meet the maximum transfer unit limits. The initiator then

10

15

20

25

30

WO 03/104943 PCT/US03/18386

44

retrieves the data, block 3016, from the IP packets and is then stored in the read buffers
allocated for this operation. Once all the data has been transferred the target responds with
command completion and sense status, block 3107. The initiator then retires the command
once the full transfer is complete, block 3109. If there were any errors at the target and the
command is being aborted for any reason, then a recovery procedure may be initiated
separately by the initiator. This transactionis a standard SCS| READ transaction with the
data transport over IP based storage protocol like iSCSI as the PDUs of that protocol.

Fig. 32 illustrates the data flow inside the IP processor of this invention for one of the
received READ PDUs of the transaction illustrated in Fig. 31. The internal data flow is
shown for the read data PDU received by the IP processor on the initiator end. This figure
illustrates various stage of operation that a pacet goes through. The stages can be
considered as pipeline stages through which the packets traverse. The number of pipe
stages traversed depends on the type of the packet received. The figure illustrates the pipe
stages for a packet received on an established connection. The packet traverses through
the following major pipe stages:

1. Receive Pipe Stage of block 3201, with major steps illustrated in block 3207:
Packet is received by the media access controller. The packet is detected, the preamble/
trailers removed and a packet extracted with the layer2 headerand the payload. This is the
stage where the Layer2 validation occurs for the intended recipient as well as any error
detection. There may be quality of service checks applied as per the policies established.
Once the packet validation is clear the packet is queued to the input queue.

2. Security Pipe Stage of block 3202, with major steps illustrated in block 3208.
The packet is moved from the input queue to the classification engine, where a quick
determination for security processing is made and if the packet needs to go through security
processing, it enters the security pipe stage. If the packet is received in clear text and does
not need authentication, then the security pipe stage is skipped. The security pipe stage
may also be omitted if the security engine is not integrated with the IP processor. The
packet goes through various stages of security engine where first the security association for
this connection is retrieved from memory, and the packet is authenticated using the
message authentication algorithm selected. The packet is then decrypted using the security
keys that have been established for the session. Once the packet is in clear text, it is
queued back to the input queue controller.

10

15

20

25

30

WO 03/104943 PCT/US03/18386

45

3. Classification Pipe Stage of block 3203, with major steps illustrated in block
3209. The scheduler retrieves the clear packet from the input queue and schedules the
packet for classification. The classification engine performs various tasks like extracting the
relevant fields from the packet for layer 3 and higher layer classification, identfies TCPIP/
storage protocols and the like and creates those classification tags and may also take
actions like rejecting the packet or tagging the packet for bypass depending on the policies
programmed in the classification engine. The classification engine may also tag the packet
with the session or the flow to which it belongs along with marking the packet header and
payload for ease of extraction. Some of the tasks listed may be or may not be performed
and other tasks may be performed depending on the programming of the classification
engine. As the classification is done, the classification tag is added to the packet and packet
is queued for the scheduler to process.

4. Schedule Pipe Stage of block 3204, with major steps illustrated in block 3210.
The classified packet is retrieved from the classffication engine queue and stored in the
scheduler for it to be processed. The scheduler performs the hash of the source and
destination fields from the packet header to identify the flow to which the packet belongs, if
not done by the classifier. Once the flow identification is done the packet is assigned to an
execution resource queue based on the flow dependency. As the resource becomes
available to accept a new packet, the next packet in the queue is assigned for execution to
that resource.

5. Execution Pipe Stage of block 3205, with major steps illustrated in block
3211. The packet enters the execution pipe stage when the resource to execute this packet
becomes available. The packet is transferred to the packet processor complex that is
supposed to execute the packet. The processor looks at the classification tag attached to
the packet to decide the processing steps required for the packet. If this is an IP based
storage packet, then the session database entry for this session is retrieved. The database
access may not be required if the local session cache already holds the session entry. If the
packet assignment was done based on the flow, then the session entry may not need to be
retrieved from the global session memory. The packet processor then starts the TCP
engine/ the storage engines to perform their operations. The TCP engine performs various
TCP checks including checksum, sequence number checks, framing checks with necessary
CRC operations, and TCP state update. Then the storage PDU is extracted and assigned to

10

15

20

25

30

WO 03/104943 PCT/US03/18386

46

the storage engine for execution. The storage engine interprets the command in the PDU
and in this particular case identifies it to be a read response for an active session. It than
verifies the payload integrity and the sequence integrity and then updates the storage flow
state in the session database entry. The memory descriptor of the destination buffer is also
retrieved from the session data base entry and the extracted PDU payload is queued fo the
storage flow/RDMA controller and the host interface block for them to DMA the data to the
final buffer destination. The data may be delivered to the flow controller with the memory
descriptor and the command/operation to perform. In this case deposit the data for this
active read command. The storage flow controller updates its active command database.
The execution engine indicates to the scheduler the packet has been retired and the packet
processor complex is ready to receive its next command.

6. DMA Pipe Stage of block 3206, with major steps illustrated in block 3212,
Once the storage flow controller makes the appropriate verification of the Memory descriptor,
the command and the flow state, it passes the data block to the host DMA engine for transfer
to the host memory. The DMA engine may perform priority based queuing, if such QOS
mechanism is programmed or implemented. The data is transferred to the host memory
location through DMA. If this is the last operation of the command, then the command
execution completion is indicated to the host driver. If this is the last operation for a
command and the command has been queued to the completion queue, the resources
allocated for the command are released to accept new command. The command statistics
may be collected and transferred with the completion status as may be required for
performance analysis, policy management or other network management or statistical
purposes.

Fig. 33 illustrates write command operation between an initiator and a target. The Initiator
sends a WRITE command, block 3301, to the target to start the fransaction. This command
is transported as a WRITE PDU, block 3302, on the IP storage network. The receiver
queues the received command in the new request queue. Once the old commands in
operation are completed, block 3304, the receiver allocates the resources to accept the
WRITE data corresponding to the command, block 3305. At this stage the receiver issues a
ready to transfer (R2T) PDU, block 33086, to the initiator, with indication of the amount of data
it is willing to receive and from which locations. The initiator interprets the fields of the R2T
requests and sends the data packets, block 3307, to the receiwer as per the received R2T.

10

15

20

25

30

WO 03/104943 PCT/US03/18386

47

This sequence of exchange between the initiator and target continues until the command is
terminated. A successful command completion or an error condition is communicated to the
initiator by the target as a response PDU, which then terminates the command. The initiator
may be required to start a recovery process in case of an error. This is not shown in the
exchange of the Fig. 33.

Fig. 34 illustrates the data flow inside the IP processor of this invention for one of the R2T
PDUSs and the following write data of the write transaction illustrated in Fig. 33. The initiator
receives the R2T packet through its network media interface. The packet passes through all
the stages, blocks 3401, 3402, 3403, and 3404 with detailed major steps in corresponding
blocks 3415, 3416, 3409 and 3410, similar to the READ PDU in Fig. 32 including Receive,
Security, Classification, Schedule, and Execution. Security processing is not illustrated in
this figure. Following these stages the R2T triggers the write data fetch using the DMA
stage shown in Fig. 34, blocks 3405 and 3411. The write data is then segmented and put in
TCPIIP packets through the execution stage, blocks 3406 and 3412. The TCP and storage
session DB entries are updated forthe WRITE command with the data transferred in
response to the R2T. The packet is then queued to the output queue controller. Depending
on the security agreement for the connection, the padcket may enter the security pipe stage,
block 3407 and 3413. Once the packet has been encrypted and message authentication
codes generated, the packet is queued to the network media interface for the transmission to
the destination. During this stage, block 3408 and 3414 the packet is encapsulated in the
Layer 2 headers, if not already done so by the packet processor and is transmitted. The
steps followed in each stage of the pipeline are similar to that of the READ PDU pipe stages
above, with additional stages for the write data packet stage, which is illustrated in this
figure. The specific operations performed in each stage depend on the type of the
command, the state of the session, the command state and various other configurations for
policies that may be setup.

Fig. 35 illustrates the READ data transfer using RDMA mechanism between and initiator and
target. The initiator and target register the RDMA buffers before initiating the RDMA data
transfer, blocks 3501, 3502, and 3503. The initiator issues a READ command, block 3510,
with the RDMA buffer as the expected recipient. This commandis transported to the target,
block 3511. The target prepares the data to be read, block 3504, and then performs the
RDMA write operations, block 3505 to directly deposit the read data into the RDMA buffers

10

15

20

25

30

WO 03/104943 PCT/US03/18386

48

at the initiator without the host intervention. The operation completion is indicated using the
command completion response.

Fig. 36 illustrates the internal architecture data flow for the RDMA Write packet implementing
the READ command flow. The RDMA write packet also follows the same pipe stages as any
other valid data packet that is received on the network interface. This packet goes through
Layer 2 processing in the receive pipe stage, blocks 3601 and 3607, from where it is queued
for scheduler to detect the need for security processing. If the packet needs to be decrypted
or authenticated, it enters the security pipe stage, blocks 3602 and 3608. The decrypted
packet is then scheduled to the classification engine for it to perform the classffication tasks
that have been programmed, blocks 3603 and 3609. Once classification is completed, the
tagged packet enters the schedule pipe stage, blocks 3604 and 3610, where the scheduler
assigns this packet to a resource specific queue dependent on flow based scheduling.

When the intended resource is ready to execute this packet, it is transferred to that packet
processor complex, blocks 3605 and 3611, where all the TCP/IP verification, checks, and
state updates are made and the PDU is extracted. Then the storage engine identifies the
PDU as belonging to a storage flow for storage PDUs implemented using RDMA and
interprets the RDMA command. In this case it is RDMA write to a specific RDMA buffer.
This data is extracted and passed on to the storage flow/RDMA controller block which
performs the RDMA region translation and protection checks and the packet is queued for
DMA through the host interface, blocks 3606 and 3612. Once the packet has completed
operation through the packet processor complex, the scheduler is informed and the packet is
retired from the states carried in the scheduler. Once in the DMA stage, the RDMA data
transfer is completed and if this is the last data transfer that completes the storage command
execution, that command is retired and assigned to the command completion queue.

Fig. 37 illustrates the storage write command execution using RDMA Read operations. The
initiator and target first register their RDMA buffers with their RDMA controllers and then also
advertise the buffers to their peer. Then the initiator issues a write command, block 3701, to
the target, where it is transported using the IP storage PDU. The recipient executes the
write command, by first allocating the RDMA buffer to receive the write and then requesting
an RDMA read to the initiator, blocks 3705, and 3706. The data to be written from the
initiator is then provided as an RDMA read response packet, blocks 3707 and 3708. The
receiver deposits the packet directly to the RDMA buffer without any host interaction. If the

10

15

20

25

WO 03/104943 PCT/US03/18386

49

read request was for data larger than the segment size, then muitiple READ response PDUs
would be sent by the initiator in response to the READ request. Once the data transfer is
complete the completion status is transported to the initiator and the command completion is
indicated to the host.

Fig. 38 illustrates the data flow of an RDMA Read request and the resulting write data
transfer for one section of the flow transaction illustrated in Fig. 37. The data flow is very
similar to the write data flow illustrated in Fig. 34. The RDMA read request packet flows
through various processing pipe stages including: receive, classify, schedule, and execution,
blocks 3801, 3802, 3803, 3804, 3815, 3816, 3809 and 3810. Once this request is executed,
it generates the RDMA read response packet. The RDMA response is generated by first
doing the DMA, blocks 3805 and 3811, of the requested data from the system memory, and
then creating segments and packets through the execution stage, blocks 3806 and 3812.
The appropriate session database entries are updated and the data packets go to the
security stage, if necessary, blocks 3807 and 3813. The secure or clear packets are then
queued to the transmit stage, block 3808 and 3814, which performs the appropriate layer 2
updates and transmits the packet to the target.

Fig. 39 illustrates an initiator command flow for the storage commands initiated from the
initiator in more details. As illustrated following are some of the major steps that a command
follows:

1. Host driver queues the command in processor command queue in the
storage flow/RDMA controller,

2. Host is informed if the command is successfully scheduled for operation and

to reserve the resources;

3. The storage flow/RDMA controller schedules the command for operation to
the packet scheduler, if the connection to the target is established. Otherwise the controller
initiates the target session initiation and once session is established the command is
scheduled to the packet scheduler;

4. The scheduler assigns the command to one of the SAN packet processors
that is ready to accept this command;

10

15

20

WO 03/104943

PCT/US03/18386
50

5. The processor complex sends a request to the session controller for the
session entry;,

6. The session entry is provided to the packet processor complex;

7. The packet processor forms a packet to carry the command as a PDU and is
scheduled to the output queue; and

8. The command PDU is given to the network media interface, which sends it to

the target.

This is the high level flow primarily followed by most commands from the initiator to the
target when the connection has been established between an initiator and a farget.

Fig. 40 illustrates read packet data flow in more detail. Here the read commandis initially
send using a flow similar to that illustrated in Fig. 39 from the initiator to the target. The
target sends the read response PDU to the initiator which follows the flow illustrated in
Fig. 40. As illustrated the read data packet passes through following major steps:

1. Input packet is received from the network media interface block;

2. Packet scheduler retrieves the packet from the input queue;

3. Packet is scheduled for classification;

4. Classified packet returns from the classifier with a classification tag;

5. Based on the classification and flow based resource allocation, the packet is

assigned to a packet processor complex which operates on the packet;

6. Packet processor complex looks-up session entry in the session cache (if not
present locally);

7. Session cache entry is returned to the packet processor complex;

8. Packet processor complex performs the TCP/IP operations / IP storage
operations and extracts the read data in the payload. The read data with appropriate

WO 03/104943 PCT/US03/18386

51

destination tags like MDL(memory descriptor list) is provided to the host interface output
controller; and

9. The host DMA engine transfers the read data to the system buffer memory.

Some of these steps are provided in more details in Fig. 32, where a secure packet flow is

5 represented, where as the Fig. 40 represents a clear text read packet flow. This flow and
other flows illustrated in this patent are applicable to storage and non-storage data transfers
by using appropriate resources of the disclosed processor, that a person with ordinary skill in
the art will be able to do with the teachings of this patent.

Fig. 41 illustrates the write data flow in more details. The write command follows the flow

10 similarto that in Fig. 39. The initiator sends the write command to the target. The target
responds to the initiator with a ready to transfer (R2T) PDU which indicates to the initiator
that the target is ready to receive the specified amount of data. The initiator then sends the
requested data to the target. Fig. 41 illustrates the R2T followed by the requested write data
packet from the initiator to the target. The major steps followed in this flow are as follows:

15 1. Input packet is received from the network media interface block;
2. Packet scheduler retrieves the packet from the input queue;
3. Packet is scheduled for classification;
4. Classified packet returns from the classifier with a classification tag;
a. Depending on the classffication and flow based resource allocation,

20 the packet is assigned to a packet processor complex which operates on the packet;

5. Packet processor complex looks-up session entry in the session cache (if not
present locally);

6. Session cache entry is returned to the packet processor complex;

7. The packet processor determines the R2T PDU and requests the write data
25 with a request to the storage flow/RDMA Controller;

10

15

20

25

WO 03/104943 PCT/US03/18386

52

8. The flow controller starts the DMA to the host interface;

9. Host interface performs the DMA and returns the data to the host input
queus;

10. The packet processor complex receives the data from the host input queue;

11. The packet processor complex forms a valid PDU and packet around the
data, updates the appropriate session entry and transfers the packet to the output queue;
and

12. The packet is transferred to the output network media interface block which
transmits the data packet to the destination.

The flow in Fig. 41 illustrates clear text data transfer. If the data transfer needs to be secure,
the flow is similar to that illustrated in Fig. 43, where the output data packet is routed through
the secure packet as illustrated by arrows labeled 11aand 11b. The input R2T packet, if
secure would also be routed through the security engine (this is not illustrated in the figure).

Fig. 42 illustrates the read packet flow when the packet is in cipher text or is secure. This
flow is illustrated in more details in Fig. 32 with its associated description earlier. The
primary difference between the secure read flow and the clear read flow is that the packet is
initially classified as secure packet by the classifier, and hence is routed to the security
engine. These steps are illustrated by arrows labeled 2a, 2b, and 2¢. The security engine
decrypts the packet and performs the message authentication, and transfers the clear
packet to the input queue for further processing as illustrated by arrow labeled 2d. The clear
packet is then retrieved by the scheduler and provided to the classification engine as
illustrated by amows labeled 2e and 3 in Fig. 42. The rest of the steps and operations are
the same as that in Fig. 40, described above.

Fig. 44 illustrates the RDMA buffer advertisement flow. This flow is illustrated to be very
similar to any other storage command flow as illustrated in the Fig. 39. The detailed actions
taken in the major steps are different depending on the command. For RDMA buffer
advertisement and registration, the RDMA region id is created and recorded along with the
address translation mechanism for this region is recorded. The RDMA registration also

10

15

20

25

WO 03/104943 PCT/US03/18386

53

includes the protection key for the access control and may include other fields necessary for
RDMA transfer. The steps to create the packet for the command are similar to those of
Fig. 39.

Fig. 45 illustrates the RDMA write flow in more details. The RDMA writes appear like normal
read PDUs to the initiator receiving the RDMA write. The RDMA write packet follows the
same major flow steps as a read PDU illustrated in Fig. 40. The RDMA transfer involves the
RDMA address translation and region access control key checks, and updating the RDMA
database entry, beside the other session entries. The major flow steps are the same as the
regular Read response PDU.

Fig. 46 illustrates the RDMA Read data flow in more details. This diagram illustrates the
RDMA read request being received by the initiator from the target and the RDMA Read data
being written out from the initiator to the target. This flow is very similar to the R2T response
followed by the storage write command. In this flow the storage write command is
accomplished using RDMA Read. The major steps that the packet follows are primarily the
same as the R2T/write data flow illustrated in Fig. 41.

Fig. 47 illustrates the major steps of session creation flow. This figure illustrates the use of
the control plane processor for this slow path operation required at the session initiation
between an initiator and a target. This functionality is possible to implement through the
packet processor complex. However, it is illustrated here as being implemented using the
control plane processor. Both approaches are acceptable. Following are the major steps

during session creation:
1. The command is scheduled by the host driver;

2. The host driver is informed that the command is scheduled and any control
information required by the host is passed;

3. The storage flow/RDMA controller detects a request to send the command to
a target for which a session is not existing, and hence it passes the request to the control
plane processor to establish the transport session;

4, Control plane processor sends a TCP SYN packet to the output queue;

WO 03/104943 PCT/US03/18386

54

5. The SYN packet is transmitted to the network media interface from which is
transmitted to the destination;

6. The destination, after receiving the SYN packet, responds with the SYN-ACK
response, which packet is queued in the input queue on receipt from the network media
5 interface;

7. The packet is retrieved by the packet scheduler;
8. The packet is passed to the classification engine;
9. The tagged classified packet is returned to the scheduler;

10. The scheduler, based on the classification, forwards this packet to control
10 plane processor;

11. The processor then responds with an ACK packet to the output queue;

12. The packet is then transmitted to the end destination thus finishing the
session establishment handshake; and

13. Once the session is established, this state is provided to the storage flow
15 controller. The session entry is thus created which is then passed to the session memory
controller (this part not illustrated in the figure).

Prior to getting the session in the established state as in step 13, the control plane processor
may be required to perform a full login phase of the storage protocol, exchanging
parameters and recording them for the specific connection if this is a storage data transfer

20 connection. Once the login is authenticated and parameter exchange complete, does the
session enter the session establishment state shown in step 13 above.

Fig. 48 illustrates major steps in the session tear down flow. The steps in this flow are very
similar to those in Fig. 47. Primary difference between the two flows is that, instead of the
SYN, SYN-ACK and ACK packets for session creation, FIN, FIN-ACK and ACK packets are
25 transferred between the initiator and the target. The major steps are otherwise very similar.
Another major difference here is that the appropriate session entry is not created but

10

15

20

WO 03/104943 PCT/US03/18386

55

removed from the session cache and the session memory. The operating statistics of the
connection are recorded and may be provided to the host driver, although this is not
illustrated in the figure.

Fig. 49 illustrates the session creation and session teardown steps from a target perspective.
Following are the steps followed for the session creation:

1. The SYN request from the initiator is received on the network media interface;
2. The scheduler retrieves the SYN packet from the input queue;

3. The scheduler sends this packet for classification to the classification engine;
4. The classification engine returns the classified packet with appropriate tags;
5. The scheduler, based on the classification as a SYN packet, transfers this

packet to the control plane processor,

6. Control plane processor responds with a SYN-ACK acknowledgement packet.
It also requests the host to allocate appropriate buffer space for unsolicited data transfers
from the initiator (this part is not illustrated);

7. The SYN-ACK packet is sent to the initiator;

8. The initiator then acknowledges the SYN-ACK packet with an ACK packet,
completing the three-way handshake. This packet is received at the network media interface
and queued fo the input queue after layer 2 processing;

9. The scheduler retrieves this packet;
10. The packet is sent to the classifier;

11. Classified packet is returned to the scheduler and is scheduled to be provided
to the control processor to complete the three way handshake;

12. The controller gets the ACK packet;

10

15

20

25

WO 03/104943 PCT/US03/18386

56

13. The control plane processor now has the connection in an established state
and it passes the to the storage flow controller which creates the entry in the session cache;
and

14. The host driver is informed of the completed session creation.

The session establishment may also involve the login phase, which is not illustrated in the
Fig. 49. However, the login phase and the parameter exchange occur before the session
enters the fully configured and established state. These data transfers and handshake may
primarily be done by the control processor. Once these steps are taken the remaining steps
in the flow above may be executed. |

Figs. 50 and 51 illustrate write data flow in a target subsystem. The Fig. 50 jllustrates an
R2T command flow, which is used by the target to inform the initiator that it is ready to
accept a data write from the initiator. The initiator then sends the write which is received at
the target and the internal data flow is illustrated in Fig. 51. The two figures together
illustrate one R2T and data write pairs. Following are the major steps that arefollowed as
illustrated in Figs. 50 and 51 together:

1. The target host system in response to receiving a write request like that
ilustrated in Fig. 33, prepares the appropriate buffers to accept the write data and informs
the storage flow controller when it is ready, to send the ready to transfer request to the
initiator;

2. The flow controller acknowledges the receipt of the request and the buifer
pointers for DMA to the host driver;

3. The flow controller then schedules the R2T command to be executed to the
scheduler;
4, The schedulerissues the command to one of the packet processor

complexes that is ready to execute thiscommand;

5. The packet processor requests the session entry from the session cache

controller;

10

15

20

25

WO 03/104943 PCT/US03/18386

57

6. The session entry is returned to the packet processor;

7. The packet processor forms a TCP packet and encapsulates the R2T
command and sends it to the output queue;

8. The packet is then sent out to network media interface which then sends the
packet to the initiator. The security engine could be inwlved, if the transfer needed to be
secure transfer;

9. Then as illustrated in Fig. 51, the initiator responds to R2T by sending the

'write data to the target. The network media interface receives the packet and queues itto

the input queue;
10. The packet scheduler retrieves the packet from the input queue;
11. The packet is scheduled to the classification engine;

12. The classification engine provides the classified packet to the scheduler with
the classification tag. The flow illustrated is for unencrypted packet and hence the security
engine is not exercised;

13. The scheduler assigns the packet based on the flow based resource
assignment queue to packet processor queue. The packet is then transferred to the packet
processor complex when the packet processor is ready to execute this packet;

14. The packet processor requests the session cache entry (if it does not already
have it in its local cache);

15. The session entry is returned to the requesting packet processor;

16. The packet processor performs all the TCP/IP functions, updates the session
entry and the storage engine extracts the PDU as the write command in response to the
previous R2T. It updates the storage session entry and routes the packet to the host output
queue for it to be transferred to the host buffer. The packet may be tagged with the memory
descriptor or the memory descriptor list that may be used to perform the DMA of this packet
into the host allocated destination buffer; and

WO 03/104943 PCT/US03/18386

58
17. The host interface block performs the DMA, to complete this segment of the

Write data command.

Fig. 52 illustrates the target read data flow. This flow is very similar to the initiator R2T and
write data flow illustrated in Fig. 41. The major steps followed in this flow are as follows:

5 1. Input packet is received from the network media interface block;
2. Packet scheduler retrieves the packet from the input queue;
3. Packet is scheduled for dassification;
4, Classified packet returns from the classifier with a classification tag;
a. Depending on the classification and flow based resource allocation,

10 the packet is assigned to a packet processor complex which operates on the packet

5. Packet processor complex looks-up session entry in the session cache (if not
present locally);

6. Session cache entry is returned to the packet processor complex;

7. The packet processor determines the Read Command PDU and requests the
15 read data with a request to the flow controller;

8. The flow controller starts the DMA to the host interface;

9. Host interface performs the DMA and returns the data to the host input
queue;

10. The packet processor complex receives the data from the host input queue;

20 11. The packet processor complex forms a valid PDU and packet around the
data, updates the appropriate session entry and transfers the packet to the output queue;
and

10

15

20

WO 03/104943 PCT/US03/18386

59

12. The packet is transferred to the output network media interface block which
transmits the data packet to the destination.

The discussion above of the flows is an illustration of some the major flows involved in high
bandwidth data transfers. There are several flows like fragmented data flow, error flows
with multiple different types of errors, name resolution service flow, address resolution flows,
login and logout flows, and the like are not illustrated, but are supported by the IP processor
of this invention.

The IP processor of this invention may be manufactured into hardware products in the
chosen embodiment of various possible embodiments using a manufacturing process,
without limitation, broadly outiined below. The processor may be designed and verified at
various levels of chip design abstractions like RTL level, circuit/schematic/gate level, layout
level etc. for functionality, timing and other design and manufacturability constraints for
specific target manufacturing process technology. The processor design at the appropriate
physicalllayout level may be used to create mask sets to be used for manufacturing the chip
in the target process technology. The mask sets are then used to build the processor chip
through the steps used for the selected process technology. The processor chip then may
go through testing/packaging process as appropriate to assure the quality of the
manufactured processor product.

While the foregoing has been with reference to particular embodiments of the invention, it
will be appreciated by those skilled in the art that changes in these embodiments may be
made without departing from the principles and spirit of the invention.

10

15

20

25

WO 03/104943 PCT/US03/18386

60

What is claimed is:

1. A hardware processor providing remote direct memory access capability on
an IP network and using a TCP, SCTP or UDP protocol, or a combination of any of the
foregoing, over IP networks.

2. A hardware processor providing remote direct memory access capability on
an Ethernet network.

3. A hardware processor providing remote direct memory access capability on
an IP network using a protocol selected from the group of protocols consisting of the group
of protocols excluding TCP, SCTP and UDP.

4. A hardware processor bypassing the TCP/IP stack of a system and providing
remote direct memory access capability.

5. The processor of claims 1 wherein said processor is programmable and
operates on data packets transmitted, encapsulated or encoded using an iSCSI, iFCP,
infiniband, SATA, SAS, IP, ICMP, IPSEC, DES, 3DES, AES, FC, SCSI, FCIP, NFS, CIFS,
DAFS, HTTP, XML, XML derivative, SGML, or HTML format ora combination of any of the
foregoing.

6. The processor of claim 5 having certain of its functions implemented in
hardware and certain of its functions implemented in software.

7. The hardware processor of claim 6, said processor included as a companion
processor on a server chipset or a core logic chipset or an I/O chipset.

8. The combination of claim 7 wherein the server is a blade server, thin server,
media server, streaming media server, appliance server, Unix server, Linux server, Windows
or Windows derivative server, AlX server, clustered server, database server, grid computing
server, VOIP server, wireless gateway server, security server, file server, network attached
storage server, or game server or a combination of any of the foregoing.

9. A hardware processor providing remote direct memory access capability for
enabling data transfer and using a TCP, SCTP or UDP protocol or a combination of any of

10

15

20

25

WO 03/104943 PCT/US03/18386

61

the foregoing, said processor enabling storage and retrieval, to and from a storage system,
of data transmitted over an IP network.

10. A hardware processor providing remote direct memory access capability for
enabling data transfer and using a protocol selected from the group of protocols consisting of
other than TCP, SCTP or UDP, said processor enabling storage and refrieval, to and from a
storage system, of data transmitted over an IP network.

11. The hardware processor of claims 9 or 10 included as a companion processor
on a server.

12. The processor of claim 11 wherein said processor is programmable and
operates on data packets transmitted, encapsulated or encoded using a iSCS!, iFCP,
infiniband, SATA, SAS, IP, ICMP, IPSEC, DES, 3DES, AES, FC, SCSI, FCIP, NFS, CIFS,
DAFS, HTTP, XML, XML derivative, SGML, or HTML format or a combination of any of the
foregoing.

13. The combination of claim 12 wherein said processor is embedded inside a
chipset on the server's motherboard.

14. The hardware processor of claim 12 further comprising the hardware
implemented function of data packet security.

15. The hardware processor of claim 12 further comprising the hardware
implemented function of data packet scheduling.

16. The hardware processor of claim 12 further comprising the hardware
implemented function of data packet classification.

17. The hardware processor of claim 12 included as a companion processor on a
storage system’s chipset. o

18. The combination of claim 17 wherein said processor provides IP network
storage capability for said storage system to operate in an IP based storage area network.

19. The combination of claim 18 further comprising a controller blade and said
chipset is in an interface between said storage system and said storage area network.

10

15

20

25

WO 03/104943 PCT/US03/18386

62

20. The combination of claim 18 further comprising at least one additional storage
system and means to access said at least one additional storage system and to control the
storage function in said at least additional one storage system.

21. A hardware processor providing remote direct memory access capability for
enabling data transfer and using a TCP or SCTP or UDP protocol or a combination of any of
the foregoing over IP networks, said processor embedded in a server's host hardware
components for providing IP networking capability.

22. A hardware processor providing remote direct memory access capability for
enabling data transfer and using a protocol selected from the group of protocols consisting of
other than TCP, SCTP or UDP over IP networks, said processor embedded in a server’s
host hardware components for providing IP networking capability.

23. The processor of claim 21 wherein said processor is programmable and
operates on data packets transmitted, encapsulated or encoded using a iSCS], iFCP,
infiniband, SATA, SAS, IP, ICMP, IPSEC, DES, 3DES, AES, FC, SCSI, FCIP, NFS, CIFS,
DAFS, HTTP, XML, XML derivative, SGML, or HTML format or a combination of any of the
foregoing.

24. The processor of claim 23 wherein a subset of said hardware components is
capable of accessing network storage to transmit or receive data to or from said storage
over the Internet.

25. The processor of claim 23 wherein at least a subset of said hardware
components is used as a blade in a blade server.

26. The processor of claim 23 wherein at least a subset of said hardware
components is used as an adapter in a server.

27. The processor of claim 23 wherein said hardware components comprise a
network connectivity for data transfer for a storage system.

28. A hardware processor providing remote direct memory access capability for
enabling data transfer using a TCP, SCTP or UDP protocol or a combination of any of the
foregoing, over IP networks, said processor included as part of a chipset of a host processor
for providing offloading capabiity for said protocol.

10

15

20

25

30

WO 03/104943 PCT/US03/18386

63

29. A hardware processor providing remote direct memory access capability for
enabling data transfer and using a protocol selected from the group of protocols consisting of
other than TCP, SCTP or UDP over IP networks, said processor included as part of a
chipset of a host processor for providing protocol offloading capability for said protocol.

30. The processor of claim 28 wherein said hardware processor is programmable
and operates on data packets transmitted, encapsulated or encoded using a iSCS|, iFCP,
infiniband, SATA, SAS, IP, ICMP, IPSEC, DES, 3DES, AES, FC, SCSI, FCIP, NFS, CIFS,
DAFS, HTTP, XML, XML derivatives, SGML, or HTML format of a combination of any of the
foregoing.

31. The combination of claim 30 wherein said host processor forms part of an

- apparatus further comprising a high end server, workstation, personal computer, hand held

device, router, switch or gateway capable of interfacing with wired or wireless networks,
blade server, thin server, media server, streaming media server, appliance server, Unix
server, Linux server, Windows or Windows derivative server, AlX server, clustered server,
database server, grid computing server, VOIP server, wireless gateway server, security
server, file server, network attached storage server, or game server or a combination of any
of the foregoing.

32. The combination of claim 31 wherein at least one of said apparati is a low
power apparatus.

33. The combination of claim 31 wherein said processor is included within a
microcontroller, a processor or a chipset of at least one of said apparati.

34. Ahardware processor providing remote direct memory access capability for
enabling data transfer using TCP over IP networks, said processor embedded in an IP
storage area network switching system line card, said processor being programmable and
operating on data packets transmitted, encapsulated or encoded using a iSCSI, iFCP,
infiniband, SATA, SAS, IP, ICMP, IPSEC, DES, 3DES, AES, FC, SCSI, FCIP, NFS, CIFS,
DAFS, HTTP, XML, XML derivative, SGML, or HTML format or a combination of any of the
foregoing.

35. A switching system having a plurality of line cards, each said line card having
identification information based therein and comprising a hardware processor providing

10

15

20

25

WO 03/104943 PCT/US03/18386

64

remote direct memory access capability for enabling data transfer using TCP over IP
networks, said processor being programmable and sending and receiving data packets also
having identification information based therein, said packets transmitted, encapsulated or
encoded using a iSCSI, iFCP, infiniband, SATA, SAS, IP, ICMP, IPSEC, DES, 3DES, AES,
FC, SCSI, FCIP, NFS, CIFS, DAFS, HTTP, XML, XML derivative, SGML, or HTML format, or
a combination of any of the foregoing.

36. The switching system of claim 35 wherein the processor on a first of said
plurality of line cards compares said destination information of said data packets with said
identification information of a plurality of said plurdity of line cards and transmits said
packets to a second plurality of line cards based on said comparison.

37. The combination of claim 36 wherein said switching system provides muiti-
protocol support.

38. The combination of claim 36 wherein said switching system interfaces with an
IP based storage area network and with a fibre channel, infiniband, serial ATA, SAS, IP
Storage, or Ethernet protocol, or a combination of any of the foregoing, using a secure or a
non-secure mode of data transfer.

39. The combination of claim 38 wherein said IP Storage protocol is iSCSI, FCIP,
iFCP, or mFCP or a combination of any of the foregoing.

40. The combination of claim 38 terminating traffic in a first of said protocols and
originating traffic in a second of said protocols.

41. A hardware processor providing remote direct memory access capability for
enabling data transfer using TCP or SCTP or UDP over IP networks, said processor
embedded in a chipset of a gateway controller of a storage area network.

42. A hardware processor providing remote direct memory access capability for
enabling data transfer and using a protocol other than a TCP or SCTP or UDP protocol over
IP networks, said processor embedded in a chipset of a gateway controller of a storage area
network.

43. The processor of claim 41 wherein said processor is programmable and
operates on data packets transmitted, encapsulated or encoded using a iSCSI, iFCP,

10

15

20

25

30

WO 03/104943 PCT/US03/18386

65

infiniband, SATA, SAS, IP, ICMP, IPSEC, DES, 3DES, AES, FC, SCSI, FCIP, NFS, CIFS,
DAFS, HTTP, XML, XML derivatives, SGML, or HTML format, or a combination of any of the
foregoing.

44. A hardware processor providing remote direct memory access capability for
enabling data transfer of data traffic using TCP over IP networks, said processor embedded
in a chipset of a storage system or a storage area network management appliance for
enabling said appliance to transport TCP/IP packets in-band to said data traffic or out of
band fo said data traffic.

45. The hardware processor of claim 44 wherein said processor operates on said
packets to apply an access control, intrusion detection, bandwidth monitoring, bandwidth
management, traffic shaping, security, virus detection, anti-spam, quality of service,
encryption, decryption, LUN masking, zoning, multi-pathing, link aggregation or virtualization
function or policy ora combination of any of the foregoing.

46. A networking appliance comprising a hardware processor providing remote
direct memory access capability for enabling data transfer from and to a data source, to and
from a data destination, of data traffic transmitted, encapsulated or encoded using TCP over
IP networks, said processor enabling said appliance to transport TCP/IP packets in-band to
said data traffic or out of band to said data traffic.

47. The appliance of claim 46 wherein said processor operates on said packets to
apply an access control, intrusion detection, bandwidth monitoring, bandwidth management,
traffic shaping, security, virus detection, anti-spam, quality of service, encryption, decryption,
LUN masking, zoning, multi-pathing, link aggregation or virtualization function or policy ora
combination of any of the foregoing.

48. The appliance of claim 46 wherein said processor is programmable and
operates on data packets transmitted, encapsulated or encoded using aniSCSI, iFCP,
infiniband, SATA, SAS, IP, ICMP, IPSEC, DES, 3DES, AES, FC, SCSI, FCIP, NFS, CIFS,
DAFS, HTTP, XML, XML derivative, SGML, or HTML format or a combination of any of the
foregoing.

49. The combination of claim 46 wherein said hardware processor itself includes
a processor for performing deep packetinspection and classification.

10

15

20

25

WO 03/104943 PCT/US03/18386

66

50. The combination of claim 49 wherein said hardware processor itself includes
a processor for performing policy management or policy enforcement on a packet-by-packet
basis.

51. The combination of claim 50 wherein said hardware processor performs a
function of virtualization, policybased management, policy enforcement, operations in-band
to said data traffic pr operations out of band to said data traffic.

52. A hardware processor providing remote direct memory access capability for
enabling data transfer using TCP, SCTP or UDP or a combination thereof over IP networks,
said processor in at least one server in a cluster of servers.

53. A hardware processor providing remote direct memory access capability for
enabling data transfer using a protocol other than TCP, SCTP and UDP over IP networks,
said processor embedded in at least one server in a cluster of servers.

54. A hardware processor providing remote direct memory access capability on
an Ethernet network, said processor embedded in at least one serverin a cluster of servers.

55. The processor of claim 52 wherein said processor is programmable and
operates on data packets transmitted, encapsulated or encoded using an iSCS!, iFCP,
infiniband, SATA, SAS, IP, ICMP, IPSEC, DES, 3DES, AES, FC, SCSI, FCIP, NFS, CIFS,
DAFS, HTTP, XML, XML derivative, SGML, or HTML format or a combination of any of the
foregoing.

56. A chip set having embedded therein a hardware processor providing remote
direct memory access capability for enabling data transfer using TCP, SCTPor UDP or a
combination of any of the foregoing over IP networks.

57. The chip set of claim 56 wherein said processor is programmable and
operates on data packets transmitted, encapsulated or encoded using an iSCSI, iFCP,
infiniband, SATA, SAS, IP, ICMP, IPSEC, DES, 3DES, AES, FC, SCSI, FCIP, NFS, CIFS,
DAFS, HTTP, XML, XML derivative, SGML, or HTML format or a combination of any of the
foregoing.

58. The combination of claim 56 wherein said processor has certain of its
functions implemented in hardware and certain o its functions implemented in software.

10

15

20

25

30

WO 03/104943 PCT/US03/18386

67

59. The combination of claim 57, said processor having a security engine or a
classification engine, or a combination of said engines, said engines being on separate chips
of said chip set.

60. A host processor having a mother board, said motherboard having thereon
one chip of a chip set, said one chip comprising a programmable hardware processor
providing remote direct memory access capability for enabling data transfer using TCP,
SCTP or UDP, or other session oriented protocol or a combination of any of the foregoing
over IP networks.

61. A host having a mother board, said motherboard having thereon one chip of a
chip set, said one chip containing a programmable hardware processor providing remote
direct memory access capability for enabling data transfer using TCP, SCTP or UDP or a
combination of any of the foregoing over IP networks, said processor having input and
output queues and a RDMA controller, said queues and controller being maintained on said
host.

62. The combination of claim 60, further comprising input and output queues and
storage flow controller, said queues and said controller being implemented on a chip in said
chipset other than a chip on a mother board of said host.

63. A multi-port hardware processor of a predetermined speed providing remote
direct memory access capability for enabling data transfer using TCP, SCTPor UDP or a
combination of any of the foregoing over IP networks, said processor coupled to multiple
input and output ports each having slower speed line rates than said predetermined speed,
the sum of said slower line speeds being less than or equal to said predetermined speed.

64. The processor of claim 63 wherein said processor is programmable and
operates on data packets transmitted, encapsulated or encoded using a iSCSI, iFCP,
infiniband, SATA, SAS, IP, ICMP, IPSEC, DES, 3DES, AES, FC, SCSI, FCIP, NFS, CIFS,
DAFS, HTTP, XML, XML derivative, SGML, or HTML protocol or a combination of any of the
foregoing.

65. A hardware processor providing remote direct memory access capability for
enabling telecommunications or networking using TCP, SCTP or UDP or a combination of
any of the foregoing over IP.

10

15

20

25

WO 03/104943 PCT/US03/18386

68

66. An integrated circuit hardware processor providing remote direct memory
access (RDMA) capability, said processor for enabling data transfer using TCP over IP or
SCTP over IP or UDP over IP or Ethernet networks, or a combination of any of the
foregoing, to a host running an application, said hardware processor comprising:

a. registration circuitry for allowing said application to register a memory
region of said host processor with said hardware processor for RDMA access;

b. communication circuitry for exporting said registered memory region to
at least one peer hardware processor having RDMA capability and for informing said peer of
said host processor’s desire to allow said peer to read data from or write data to said
registered memory region; and

c. RDMA circuitry for allowing information transfer to and/or from said
registered region of memory without substantial host processor intervention.

67. In a hardware processor providing remote direct memory access (RDMA)
capability, said hardware processor circuit chip for enabling data transfer and using a TCP
over IP or SCTP over IP or UDP over IP or Ethernet networks, or a combination of any of the
foregoing, the process of performing RDMA for an application running on a host processor,
said process comprising:

a. said application registering a region of memory of said host processor
for RDMA;

b. said host processor making said region of memory available to a peer
processor for access directly without substantial intervention by said host processor in said

data transfer;

c. said hardware processor communicating to said peer processor said
host processor’s desire to allow said peer processor to read data from or write data to said
region of memory; and

d. said hardware processor enabling information transfer from or to said

4 registered region of memory without substantial host processor intervention in said

information transfer.

WO 03/104943 PCT/US03/18386

69

68. The process of claim 67 wherein said peer processor is part of a computing
apparatus and said host processor and said computing apparatus are in a client to server,
server to client, server to server, client to clientor peer to peer session connection.

69. A hardware processor providing a transport layer remote direct memory
access (RDMA) capability, said processor for enabling data transfer over a network using
TCP over IP in one or more session connections, said processor including a TCHIP stack,
said stack including an interface to upper layer functions to transport data traffic, said stack
providing at least one of the functions of:

a. sending and receiving data, including upper layer data;

b. establishing transport sessions and session teardown functions;

c. executing error handling functions;

d. executing time-outs;

e. executing retransmissions;

f. executing segmenting and sequencing operations;

g. maintaining protocol information regarding said active transport
sessions;

h. maintaining TCP/IP state information for each of said one or more

session connections;
i. fragmenting and defragmenting data packets;
i- routing and forwarding data and control information;

k. sending to and receiving from a peer, memory regions reserved for
RDMA;

. recording said memory regions reserved for RDMA in an RDMA
database and maintaining said database;

m. executing operations provided by RDMA capability;

WO 03/104943 PCT/US03/18386

70
n. executing security management functions;
0. executing policy management and enforcement functions;
p. executing virtualization functions;
a. communicating errors;
5 r. processing Layer 2 media access functions to receive and transmit

data packets, validate the packets, handle errors, communicate errors and other Layer 2

functions;

s. processing physical layer interface functions;
t. executing TCP/IP checksum generation and verification functions;

10 u. processing Out of Order packet handling;
V. CRC calculation functions;
w. processing Direct Data Placement/Transfer;
X. Upper Layer Framing functions;
y. processing functions and interface to socket API's;

15 z forming packet headers for TCP/IP for transmitted data and extraction

of payload from received packets; and

aa. processing header formation and payload extraction for Layer 2
protocols of data to be transmitted and received data packets; respectively.

70. The hardware processor of claim 69 wherein said data transfer includes
20 storing and retrieving data.

71. The hardware processor of claims 69 or 70 having an IP layer interfacing with
a media access layer to transport said data packets onto said nefwork.

72. The hardware processor of claim 71 wherein said media access layer is wired
or wireless Ethernet, MIl, GMII, XGMII, XPF, XAUI, TBI, SONET, DSL, POS, POS-PHY, SPI

10

15

20

25

WO 03/104943 PCT/US03/18386

71

interface, SPI-4 or SPI derivative or other SPI derivative interface, Infiniband, or FC layer or
a combination of any of the foregoing.

73. A hardware processor providing TCP or SCTP or UDP, ora combination of
any of the foregoing, over IP operations including RDMA capability for data transfer over a
network from or to an initiator and to or from a target, said operations requested by a host
processor having a SCSI command layer and an iSCSI driver or an IP Storage driver, said
hardware processor comprising:

a. an RDMA mechanism;

b. a command scheduler for scheduling commands from the command
layer of said host processor for operétion in the processor;

C. first command queues for queuing commands from said host
processor for existing sessions;

d. second command queues for queuing commands from said host
processor for sessions that do not currently exist;

e. a database for recording the state of the session on which said
command is transported, said database also for recording progress of RDMA for those of
said commands that use RDMA;

f. a communication path between said processor and said SCSI layer for
communicating status of command execution to said SCSI layer for processing; and

g. at least one transmit/receive engine and at least one command engine
coupled to work together to interpret commands and perform appropriate operations for
performing RDMA for storing/retrieving data to/from or transmitting/receiving data to/from
said target or said initiator.

74. The combination of claim 73 wherein said at least one transmit/receive engine
is implemented as a separate transmit engine and a separate receive engine.

75. The combination of claim 73 wherein said at least one transmit/receive engine
and at least one command engine are implemented as at least one composite engine
providing the transmit, receive and command engine functionality.

10

15

20

25

WO 03/104943 PCT/US03/18386

72

76. The combination of claim 73 wherein said first command queues are located
partly in memory on said hardware processor and partly in memory off said hardware
processor.

77. The combination of claim 73 wherein said second command queues are
located partly in memory on said hardware processor and partly in memory off said
hardware processor.

78. The combination of claim 76 wherein said memory off said hardware
processor is memory included in a host system.

79. The combination of claim 77 wherein said memory off said hardware
processor is memory included in a host system.

80. The combination of claim 76 wherein said memory off said hardware
processor is RAM, DRAM, SDRAM, DDR SDRAM, RDRAM, FCRAM, FLASH, ROM,
EPROM, EEPROM, QDR SRAM, QDR DRAM or other derivatives of static or dynamic
random access memories or a combination of any of the foregoing.

81. The combination of claim 77 wherein said memory off said hardware
processor is RAM, DRAM, SDRAM, DDR SDRAM, RDRAM, FCRAM, FLASH, ROM,
EPROM, EEPROM, FLASH, ROM, EPROM, EEPROM, QDR SRAM, QDR DRAM or other
derivatives of static or dynamic random access memories or a combination of any of the
foregoing.

82. The combination of claim 76 wherein said memory on a chip not included in
said host processor is located on a companion chip to said hardware processor.

83. The combination of claim 77 wherein said memory on a chip not included in
said host processoris located on a companion chip to said hardware processor.

84. AniSCSI stack implemented on an integrated circuit chip providing remote
direct memory access capability for use in transporting information over IP networks by
transporting PDU’s specified by the iSCSI standard in accordance with SCSI commands,
said stack comprising hardware implementation of functions that are standard defined iSCSI
functions, session establishment and teardown functions, or remote data memory access
functions or a combination of any of the foregoing.

10

15

20

25

WO 03/104943

PCT/US03/18386

73

85. The iSCSI stack of claim 84 wherein said SCSI commands are queuedin a

command queue for execution by an IP Storage processor or an iSCSI processor.

86. An IP storage or iSCSI stack providing remote direct memory access

capability for use in transporting information in active sessions or connections over IP

networks by transporting PDU’s specified by the iSCSI standard or IP storage standard in

accordance with SCSI commands, said stack providing an interface to the upper layer

protocol functions in a host processor to transport storage data traffic, and performing at

least one of the hardware implemented functions of

a.

sessions;

i
session connections;

j-
session connections;

K.

RDMA;

sending and receiving data, including upper layer data;

sending and receiving command PDU’s;

establishing transport sessions and session teardown functions;
executing error handling functions;

executing time-outs;

executing retransmissions;

executing segmenting and sequencing operations;

maintaining protocol information regarding said active transport

maintaining TCP/IP state information for each of said one or more

maintaining IP storage state information for each of said one ormore

fragmenting and defragmenting data packets;
routing and forwarding data and control information;

sending to and receiving from a peer, memory regions reserved for

WO 03/104943

n.

PCT/US03/18386

74

recording said memory regions reserved for RDMA in an RDMA

database and maintaining said database;

O.

{.
data packets, validate
10 functions;

15 y.

aa.

bb.
SCSI command layer;

20 cc.

executing operations provided by RDMA capability;
executing security management functions;

executing policy management and enforcement functions;
executing virtualization functions;

communicating errors;

processing Layer 2 media access functions to receive and transmit
the packets, handle errors, communicate errors and other Layer 2

processing physical layer interface functions;

executing TCP/IP checksum generation and verification functions;
processing Out of Order packet handling;

CRC calculation functions;

processing Direct Data Placement;

Upper Layer Framing functions;

processing functions and interface to networking socket APl’s;

processing functions and interface to IP storage or iSCSI driver and/or

forming packet headers for TCP/IP for transmitted data and extraction

of payload from received packets;

dd.
data and extraction of

forming packet headers for IP storage or iSCSI PDUs for transmitted
PDUs from received packets; and

10

15

20

WO 03/104943 PCT/US03/18386

75

ee. processing header formation and payload extraction for Layer 2
protocols of data to be transmitted and received data packets, respectively.

87. A TCP/IP stack providing transport layer remote direct memory access
capability for use in transporting information in active sessions or connections over P
networks, said stack providing an interface to the upper layer protocol functions in a host
processor to carry data traffic, and performing at least one of the hardware implemented
functions of:

a. sending and receiving data, including upper layer data;

b. establishing transport sessions and session teardown functions;

C. executing error handling functions;

d. executing time-outs;

e. executing retransmissions;

f. executing segmenting and sequencing operations;

g. maintaining protocol information regarding said active transport
sessions;

h. maintaining TCP/IP state information for each of said one or more

session connections.
i. fragmenting and defragmenting data packets;
J- routing and forwarding data and control information;

k. sending to and receiving from a peer, memory regions reserved for
RDMA,;

l. recording said memory regions reserved for RDMA in an RDMA
database and maintaining said database;

m. executing operations provided by RDMA capability;

10

15

20

WO 03/104943 PCT/US03/18386

76
n. executing security management functions;
o. executing policy management and enforcement functions;
p. executing virtualization functions;
qg. communicating errors;
r. processing Layer 2 media access functions to receive and transmit

data packets, validate the packets, handle errors, communicate errors and other Layer 2
functions;

S. processing physical layer interface functions;
i. executing TCP/IP checksum generation and verification functions;

u. processing Out of Order packet handling;

V. CRC calculation functions;

w. processing Direct Data Placement/Transfer,

X. Upper Layer Framing functions;

y. processing functions and interface to socket API's;

z forming packet headers for TCP/IP for transmitted data and extraction

of payload from received packets; and

aa. processing header formation and payload extraction for Layer 2
protocols of data to be transmitted and received data packets; respectively.

88. The TCP/IP stack of claim 69 further comprising memory for storing a
database to maintain various information regarding said active sessions or connections and
TCP/IP state information for each of the sessions or connections.

89. The IP storage or iSCSI stack of claim 86 further comprising memory for
storing a database to maintain various information regarding said active sessions or
connections and state information for each of the sessions or connections.

10

15

20

25

WO 03/104943 PCT/US03/18386

77

90. The IP storage or iSCSI stack of claim 87 further comprising memory for
storing a database to maintain various information regarding said active sessions or
connections and TCP/IP state information for each of the sessions or connections.

91. The TCP/IP stack of claim 88 further comprising an interface that includes
circuitry for interfacing to at least one layer that is a wired or wireless Ethemet, MIl, GMII,
XGMIl, XPF, XAUI, TBI, SONET, DSL, POS, POS-PHY,SP! Interface, SPI-4 or other SPI
derivative Interface, Infiniband, or FC layer.

92. The IP storage or iSCSI stack of claim 89 further comprising an interface that
includes circuitry for interfacing to at least one layer that is a wired or wireless Ethernet, Mil,
GMII, XGMII, XPF, XAUI, TBI, SONET, DSL, POS, POS-PHY,SPI Interface, SPI-4 or other
SPI derivative Interface, Infiniband, or FC layer.

93. The TCP/IP stack of claim 90 further comprising an interface that includes
circuitry for interfacing to at least one layer that is a wired or wireless Ethernet, Mil, GMII,
XGMII, XPF, XAUI, TBI, SONET, DSL, POS, POS-PHY,SP! Interface, SPI-4 or other SPI
derivative Interface, Infiniband, or FC layer.

94. A hardware implemented iSCS! or IP storage controller providing remote
direct memory access useable in TCP or SCTP or UDP, or a combination of any of the
foregoing over IP, said controller for transporting received iSCSI commands and PDUs, said
controller having access to a data base for keeping track of data processing operations, said
database being in memory on said controller, or in memory partly on said controller and
partly in a computing apparatus other than said controller, said controller coupled to a host
having a SCSI command layer and an iSCSI or IP storage driver, said controller having a
transmit and a receive path for data flow, comprising:

a. a command scheduler for scheduling processing of commands, said
scheduler capable of being coupled to said SCSI command layer and to said iSCSI or IP
storage driver;

b. a receive path for data flow of received data and a transmit path for
data flow of transmitted data;

c. at least one transmit engine for transmitting iSCSI or IP storage PDUs;

10

15

20

25

WO 03/104943 PCT/US03/18386

78

d. at least one transmit command engine capable o interpreting said
PDUs and capable of performing operations comprising retrieving information from said host
servicing remote direct memory access or iSCSI or IP storage commands or a combination
thereof and keeping command flow information in said database updated as said refrieving

progresses;

e. at least one receive command engine for receiving said iSCSI or IP

storage commands; and

f. at least one receive command engine for interpreting said received
iSCSI or IP storage or RDMA-commands or a combination thereof and capable of
performing operations comprising storing or retrieving information to or from said host,
servicing the received command and keeping command flow information in said database

updated as storing or retrieving progresses.

95. An IP processor having RDMA capability, comprising an IP network
application processor core for enabling TCP or SCTP or UDP or a combination of any of the
foregoing over IP networks, comprising an intelligent flow controller, at least one packet
processor, a programmable classification engine, a storage policy engine or network policy
engine, a security processor, a session memory, a memory controller, a media interface and
a host interface.

96. The combination of claim 94 wherein said at least one transmit and at least
one receive engine is implemented as at least one composite engine providing transmit and

receive functionality.

97. The combination of claim 94 wherein said at least one transmit and at least
one receive engine and at least one command engine are implemented as at least one
composite engine providing the transmit, receive and command engine functionality.

98. The IP processor of claim 95 wherein said host interface is a CSIX or an XPF,
XAUI or an GMII, Mil, XGMIl, SPI, SPI-4 or other SPI derivative, 3GIO, PCI, PCI-Express,
Infiniband, Fibre channel, RapidiO or Hypertransport type or a combination of any of the
foregoing.

WO 03/104943 PCT/US03/18386

79

99. The IP processor of claim 95 further comprising a coprocessor for interfacing
with a processor external to said IP processor.

100. The IP processor of claim 95 further comprising a system controller interface
for connecting to a system controller.

5 101. The IP processor of claim 95 further comprising a control plane processor,
said control plane processor functioning as a system controller.

102. An IP processor having RDMA capability for enabling TCP or SCTP or other
session oriented protocols or UDP over IP networks, said processor comprising:

a. an RDMA mechanism for performing RDMA data transfer,

10 b. at least one packet processor for processing IP packets;
c. a session memory for storing IP session information;
d. at least one memory controller for controlling memory accesses;
e. a media interface for coupling to at lest one network; and .
f. a host interface for coupling to at least one host or a fabric interface

15 for coupling to a fabric.

103. The IP processor of claim 102 further comprising at least one of:

a. an IP Storage session memory for storing IP session information;
b. a classification processor for classifying IP packets;
c. a flow controller for controlling data flow;
20 d. a policy processor for applying policies;
e. a security processor for performing security operations;
f. a controller for control plane processing;

g. a packet scheduler;

WO 03/104943 PCT/US03/18386

80

h. a packet memory for storing packets; or
i a combination of any of the foregoing.

104. The IP processor of claim 102 wherein any combination of said recited

elements a-f or parts thereof are implemented in a single element.

5 105. The IP processor of claim 103 wherein any combination of said recited
elements a-e or parts thereof are implemented in a single element.

106. A multiprocessor system comprising at least one data processor coupledto a
plurality of IP processors for interfacing said at least one data processor to said IP
processors, each having RDMA capability for enabling TCP or SCTP or other session

10 oriented protocols or UDP over IP networks, said |P processor comprising:

a. a RDMA mechanism for performing RDMA data transfer;

b. at least one packet processor for processing IP packets;
c. a session memory for storing IP session information;
d. at least one memory controller for controlling memory accesses;
15 e. at least one media interface for coupling to at least one network; and
f. a host interface for coupling to at lest one host or fabric interface for

coupling to a fabric.

107. The multiprocessor system of claim 106, said IP network application
processor further comprising at least one of:

20 a. an IP Storage session memory for storing IP Storage session
information;
b. a classification processor for classifying IP packets;
c. a flow controller for controlling data flow;

d. a policy processor for applying policies;

10

15

20

WO 03/104943 PCT/US03/18386

81
e. a security processor for performing security operations;
f. a packet memory for storing packets;
g. a controller for control plane processing;

h. a packet scheduler,
i. a coprocessor interface for coupling to a peer processor; or
j- a combination of any of the foregoing.

108. The multiprocessor system of claim 106 wherein two or more of said plurality
of IP processors are coupled to each other.

109. The multiprocessor system of claim 107 wherein two or more of said plurality
of IP processors are coupled to each other.

110. The multiprocessor system of claim 108 wherein said two or more of said
plurality of IP processors are coupled through a co-processor interface, or a host interface,
or a bridge, or a combination of any of the foregoing.

111. The multiprocessor system of claim 109 wherein said two or more of said
plurality of IP processors are coupled through a co-processor interface, ora host interface,
or a bridge, or a combination of any of the foregoing.

112. A TCP/IP processor engine having RDMA capability, said processor for
processing Internet Protocol packets and comprising at least one of each of:
i

a. an RDMA mechanism for performing RDMA data transfer;

b. a checksum hardware for performing checksum operations;

c. a data memory for storing data used in the TCP/IP processor;

d. an instruction memory for storing instructions used in the TCP/IP

processor;

e. an instruction fetch mechanism for fetching said instructions;

10

15

20

WO 03/104943

database memory;

PCT/US03/18386

82

an instruction decoder for decoding said instructions;
an instruction sequencer for sequencing said instructions;
a session database memory for storing TCP/IP session data; or

a session database memory controller for controlling said session

or a combination of any of the foregoing items a through i; and

a host interface, or a fabric interface, or bus contoller, or memory controller or combination

of any of the foregoing for coupling to host or a fabric.

113. The TCP/IP processor engine of claim 112 further comprising at least one of:

a.

b.

C.

a hash engine for performing hash functions;
a sequencer manager for sequencing operations;

a window operations manager for performing windowing operations to

position packets within, and/or verify packets to be within, agreed windows;

d.

a classification tag interpreter for interpreting classification tags;

a frame controller for controlling data framing;

an out of order manager for handling out of order data;

a register file for storing data;

a TCP state manager for managing TCP session states;

a CRC component for performing CRC operations;

an execution resource unit or ALU for data processing;

a TCP session database lookup engine for accessing session entries;

an SNACK engine for selective negative acknowledgment;

10

15

20

WO 03/104943 PCT/US03/18386

83
m. an SACK engine for selective positive acknowledgment;
n. a segmentation controller for controlling the segmentation of data;
o. a timer for event timing;
p. a packet memory for storing packets; and
g. a combination of any of the foregoing.

114. An IP storage processor engine having RDMA capability, said processor for
processing Internet Protocol packets and comprising at least one of each of:

a. an RDMA mechanism for performing RDMA data storage;
b. CRC hardware for performing CRC functions;

C. a data memory for storing data used in the processor;

d. an instruction memory for storing instructions used in the processor;

e. an instruction fetch mechanism for fetching said instructions;

f. an instruction decoder for decoding said instructions;

g. an instruction sequencer for sequencing said instructions;

h. an IP storage session database memory for storing IP storage session

information;

i. an IP storage session database memory controller for controlling said
IP storage session database memory;

i a combination of any of the foregoing items a through j; and

k. a host interface, or a fabric interface, or bus controller, or memory
controller or combination thereof for a host or to a fabric.

115. The IP storage processor engine of claim 114 further comprising at least one
of:

WO 03/104943 PCT/US03/18386

84
a. hash engine for performing hash operations;
b. a sequencer manager for sequencing operations;
C. a window operations manager for positioning packets within, and/or

verifying received packets to be within, agreed windows;

5 d. a classification tag interpreter for interpreting classifications tags;
e. an out of order manager for handiing out of order data;
f. a register file for storing data;
g. a PDU storage classffier for classifying packets into various attributes;
h. an IP storage state manager for managing IP storage session states;
10 i. a checksum component for performing checksum operations;
j- an execution resource unit or ALU for data processing;
k. a TCP session database lookup engine for accessing session entries;

l. a SNACK engine for selective negative acknowledgment;

m. a SACK engine for selective positive acknowledgment;
15 n. a segmentation controller for controlling the segmentation of data;
o. a timer for event timing;
p. a packet memory for storing packets; and
a. a combination of any of the foregoing.

116. The combination of claim 113 wherein said register file stores packet
20 headers, pointers, contexts or session states or any combination thereof.

117. The combination of claim 115 wherein said register file stores packet
headers, pointers, contexts or session states or any combination thereof.

10

15

20

25

WO 03/104943 PCT/US03/18386

85

118. A processor for processing Internet data packets in one or more sessions and
capable of executing transport layer RDMA functions, said processor including a session
memory for storing frequently or recently used session information for a plurality of sessions.

119. A TCP/IP processor implemented in hardware and capable of implementing
transport level RDMA functions, said processor including a session memory for storing
session information for a plurality of sessions.

120. A processor for processing Internet data packets in one or more sessions,
said processor comprising an RDMA mechanism, and a session memory for storing session
information for a plurality of said sessions.

121. An IP storage processor implemented in hardware and capable of performing
RDMA functions, and including a session memory for storing session information for a
plurality of sessions.

122. A hardware implemented IP network application processor implementing
remote direct memory access (RDMA) capability for providing TCP/IP operations in sessions
on information packets from or to an initiator and providing information packets to or from a
target, comprising the combination of:

a. data processing resources comprising at least one programmable
packet processor for processing said packets;

b. an RDMA mechanism capable of providing remote direct memory
access function between said initiator and said target;

c. a TCP/IP session cache and memory controller for keeping track of
the progress of, and memory useful in, said operations on said packets;

d. a host interface controller capable of confrolling an interface to a host
computer in an initiator or target computer system or a fabric interface controller capable of
controlling an interface to a fabric; and

e. a media independert interface capable of controlling an interface to
the network media in an initiator or target.

123. The combination of claim 122 further comprising:

10

15

20

25

WO 03/104943 PCT/US03/18386

86

a. at least one data processor for providing the functions of
i. packet classification for classifying said packets; or

ii. packet scheduling for scheduling operations on said packets to
said data processing resources; or

b. at least one controller for controlling the flow of information in said IP
network application processor; or

C. a first queue capable of storing packets incoming from said initiator or
target; and a second queue capable of storing packets outgoing to said initiator or target; or

d. a host input queue and a host output queue capable of accepting data
to be sent from or providing data or packets received to the host processor or memory
associated with the host processor of the initiator or the target; or

e. a combination of any of the foregoing items a. through d.

124. The processor of claim 123 wherein said at least one data processor provides
the function of security processing for performing security processes for said packets
classified as secure by said classification engine.

125. The processors of claim 122 wherein said initiator and said target are
computing apparati capable of being in a session connection that is client to server, server to
client, server to server, client to client or peer to peer or a combination of any of the
foregoing.

126. The processors of claim 123 wherein said initiator and said target are
computing apparati capable of being in a session connection that is client to server, server to
client, server to server, client to client or peer to peer or a combination of any of the
foregoing.

127. The processors of claim 124 wherein said initiator and said target are
computing apparati capable of being in a session connection that is client to server, server to
client, server to server, client to client or peer to peer or a combination of any of the
foregoing.

10

15

20

25

WO 03/104943 PCT/US03/18386

87

128. The processor of claim 124 where said functions of packet classification,
security processing and packet scheduling are implemented in independent data processors
in said at least one data processor.

129. The processor of claim 122 wherein said at least one controllerincludes a
host interface controller capable of providing access to said host.

130. The processor of claim 123 wherein said at least one controllerincludes a
RDMA controller for controlling said operations, including the controlling of said RDMA

mechanism.

131. The processor of claim 123 wherein said at least one controllerincludes a
control plane processor.

132. The processor of claim 131 wherein said control plane processor is a system
controller.

133. The processor of claim 131 wherein said at least one controller fundions as a
session controller to create new sessions, feardown existing sessions, and create session
data base entries, and to remove, update, access or store said entries, in the session
memory and the cache.

134. The process, in a hardware implemented control plane processor or session
controller capable of executing transport level RDMA functions and coupled to a host
processor or a remote peer, of creating new sessions and their corresponding session
database entries responsive to new session connection requests received either from the
host processor or the remote peer.

135. The process, in hardware implemented control plane processor or session
controller capable of executing transport level RDMA functions and coupled to a host
processor or a remote peer and including a TCP/IP hardware processor or an IP storage
hardware packet processor, or a combination of any of the foregoing, of tearing down or
removing sessions and their corresponding session database entries responsive to session
connection closure requests received either from the host processor or the remote peer or
as a result of the operation by the said TCP/IP packet processor or IP Storage packet
processor or a combination of any of the foregoing.

10

15

20

25

WO 03/104943 PCT/US03/18386

88

136." The processor of claim 122 wherein said host interface controller interfacing
with the said host interface is CSIX, XPF, XAUI, GMII, Mll, XGMII, SPI, SPI-4 or other SP!
derivative, PCI, PCI-Express, Infiniband, Fibre channel, RapidlO or Hypertransport interface
or other bus for switching system fabric interfaces, or a combination of any of the foregoing.

137. The processor of claim 122 wherein said host interface type is a PCl, PCI-X,
3GIlO, PCI-Express, Rapid 10 or HyperTransport or other bus fora non-switching interface
type, or a combination of any of the foregoing.

138. The processor of claim 122 wherein said media independent interface type is
Ethernet, Mll, GMII, XGMII, XAUI, XPF, TBI, Ethernet MAC/PHY, SONET, DSL, POS, POS-
PHY,SPI, SPI-4 or other SPI derivative, Infiniband, or FC interface or a combination of any of
the foregoing.

139. The process in a hardware implemented processor capable of remote direct
memory access for enabling storage and refrieval of data in a host memory subsystem, in an
initiator system or in a target system, where said data is transferred using one or more data
packets over an IP network

a. from or to said target system to and from a host in said initiator
system, or

b. from or to said initiator system to and from a host in said target
system,

i. said initiator system and said target system each including at
least one hardware implemented processor capable of enabling storage and retrieval of data
packets over an IP network and said target system and said initiator system each having a
connection to said IP network,

(a) said process comprising providing a remote direct
memory access process for said storage and retrieval without said host substantially
controlling said remote direct memory access capability.

140. The process of claim 139 wherein said remote direct memory access process
includes:

10

15

20

25

WO 03/104943 PCT/US03/18386

89

a. registering a region of memory of said host of said target system for
access by said initiator system;

b. informing said initiator of the identity of said region of memory;

c. making said region of memory directly available to said initiator
system for access; and

d. using said remote direct memory access capability, transferring said
data to or from said region of memory without said host of said target system substantially
controliing said remote direct memory access capability.

141. The process of claim 140 wherein said registering includes registering the
identity of said memory regions with said initiator system.

142. The process of claim 140 wherein said memory regions comprise RDMA
buffers and said transferring includes enabling said RDMA buffers and allowing said initiator
system to write/push or read/pull data to or from said RDMA buffers.

143. The process of claim 140 further comprising (a) said initiator supplying a
request for access to said memory regions, (b) said host performing address translation of
said requested memory region and comparing it to said registered region, (c) said host
performing security key verification and, if said comparing and said verification are
successful, allowing data storage to or retrieval from said requested region without
substantial host intervention.

144. The process of claim 140 further comprising (a) said initiator supplying a
request for access to said memory region; (b) said hardware processor to said host
performing address translation of said requested memory region and comparing it to said
registered region of memory, (c) said companion processor performing security key
verification and, if said comparing and said verification are successful, allowing data storage
to or from said requested memory region.

145. The process of claim 139 wherein said remote direct memory access process
includes:

10

15

20

25

WO 03/104943 PCT/US03/18386

90
a. registering a region of memory of said host of said initiator system for
access by said target system,
b. informing said target of the identity of said memory region;
C. making said memory region directly available to said target system for
access; and
d. using said remote direct memory access capability, transferring said

data to or from said memory region without said host of said initiator system substantially
controlling said remote direct memory access capability.

146. The process of claim 145 wherein said registering includes registering the
identity of said memory regions with said target system.

147. The process of claim 145 wherein said memory regions comprise RDMA
buffers and said transferring step includes enabling said RDMA buffers and allowing said
target system to push or pull data to or from said RDMA buffers.

148. The process of claim 145 further comprising (a) said target supplying a
request for access to said memory regions, (b) said host performing address translation of
said requested memory region and comparing it to said registered region, (c) said host
performing security key verification and, if said comparing and said verification are
successful, allowing data storage to or retrieval from said requested memory region without
substantial host intervention.

149. The process of claim 145 further comprising (a) said target supplying a
request for access to said memory region, (b) said hardware processor to said host
performing address translation of said requested memory region and comparing it to said
registered region of memory, (c) said companion processor performing security key
verification and, if said comparing and said verification are successful, allowing data storage
to or from said requested memory region.

150. A peer system connected to a host system, each of said peer system and
said host system comprising at least one hardware processor capable of executing a
transport layer RDMA protocol on an IP Network.

WO 03/104943 PCT/US03/18386

91

151. The combination of claim 150 performing RDMA transfer from the peer
system to the host system.

152. The combination of claim 150 performing RDMA transfer from the host
system to the peer system.

5 153. The combination of claim 118 further comprising an interface capable of being
connected to a media access control layer of a host processor.

154. The combination of claim 120 further comprising an interface capable of being
connected to a media access control layer of a host processor.

155. The process of claim 144, said hardware implemented processor further
10 comprising an interface to a media control layer of a host processor, said process further
comprising processing incoming packets from said media access layer through full TCP/IP
termination and deep packet inspection.

156. A hardware processor providing TCP or SCTP or other session oriented
protocols, or UDP over IP or any combination of any of the foregoing, including RDMA
15 capability for data transfer over a network from or to an initiator and to or from said target,
said operations requested by a host processor, comprising:

a. an RDMA mechanism;

b. a command scheduler for scheduling commands or other operations
from the command layer or socket layer or RDMA layer, or any combination of any of the
20 foregoing, of said host processor for operation in the hardware processor;

c. first command queues for queuing commands or other operations '
from said host processor for existing sessions;

d. second command queues for queuing commands or other operations
from said host processor for sessions that do not currently exist;

25 e. a database for recording in database entries the state of the session
on which said command or other operation or its associated data is transported, said
database also for recording progress of RDMA for those of said commands or other
operations that use RDMA; and

10

15

20

25

WO 03/104943 PCT/US03/18386

92

f. at least one transmit/receive engine and at least one command engine
coupled together, said engines working together to interpret commands and perform
appropriate operations for performing RDMA for storing/retrieving data toffrom or
transmitting/receiving data to/from said target or said initiator.

157. A hardware processor for enabling data transfer over IP networks, said
processor embedded in a blade server for providing networking capability.

158. The hardware processor of claim 157 wherein said data transfer uses a TCP,
SCTP or UDP, or other session oriented protocol or a combination of any of the foregoing.

159. The hardware processor of claim 122 wherein said data transfer uses a
protocol selected from the group of protocols excluding TCP, SCTP and UDP.

160. The appliance of claim 46 wherein said processor operates on said packets to
apply one or more policies on packets and said appliance is located in-band to said traffic to
apply one or more policies on packets at substantially the full line rate.

161. The appliance of claim 46 wherein said processor operates on said packets to
apply one or more policies on packets and said appliance is located out-of-band to said
traffic.

162. The appliance of claim 160 wherein said appliance is coupled to the source
and destination of said data transfer, said appliance collecting control and management
information from said source and destination for use in controlling and managing said
packets.

163. The appliance of claim 161 wherein said appliance is coupled to the source
and destination of said data transfer, said appliance collecting control and management
information from said source and destination for use in controlling and managing said
packets.

164. The appliance of claim 160 wherein said one or more policies is access
control, intrusion detection, bandwidth monitoring, bandwidth management, traffic shaping,
security, virus detection, anti-spam, quality of service, encryption, decryption, LUN masking,
multi-pathing, link aggregation, zoning, and virtualization

10

15

20

25

WO 03/104943 PCT/US03/18386

93

165. The appliance of claim 164 wherein said one or more policies is applied using
deep packet inspection or packet header classification.

166. A cluster of servers, a plurality of said servers having a hardware processor
having RDMA capability for enabling data transfer over IP networks.

167. A cluster of servers, a plurality of said servers having a hardware processor
having RDMA capability for enabling data transfer over Ethernet.

168. A central processing unit running a plurality of applications, said central
processing unit having a separate hardware processor having RDMA capability for enabling
data transfer over IP networks, said processor for communication among said applications
running on said central processing unit.

169. The combination of claim 166 wherein said data transfer is accomplished
using a TCP, SCTP or UDP, or other session oriented protocol or a combination of any of
the foregoing.

170. The combination of claim 167 wherein said data transfer is accomplished
using a TCP, SCTP or UDP, or other session oriented protocol or a combination of any of
the foregoing.

. 171. The combination of claims 166 wherein said data transfer is accomplished
using a protocol selected from the group of protocols consisting of the group or protocols
excluding TCP, SCTP and UDP.

172. The combination of claims 167 wherein said data transfer is accomplished
using a protocol selected from the group of protocols consisting of the group or protocols
excluding TCP, SCTP and UDP.

173. The host processor of claim 60 wherein said queues and said storage
controller are maintained in software on said host processor.

174. The host processor of claim 60 including input and output queues and a
storage flow controller, maintained partly in software on said host processor and partly in
hardware on said programmable hardware processor.

10

15

20

25

WO 03/104943 PCT/US03/18386

94

175. The host processor of claim 60 including input and output queues and a
storage flow controller, maintained partly in hardware on said host processor and partly in
hardware on said programmable hardware processor.

176. The host processor of claim 60 including input and output queues and a
storage flow controller, maintained partly in hardware and partly in software in said host
processor, and partly in hardware on said programmable hardware processor.

177. The hardware implemented iSCSI controller of claim 94 wherein said receive
path for data flow of received data and said transmit path for data flow of transmitted data
comprise the same physical path used at different times.

178. A hardware processor providing transport layer RDMA capability for enabling
telecommunications or networking over an IP network.

179. The hardware processor of claim 73, said hardware processor receiving
iSCSI commands for transporting data from an initiator to a target or from a target to an
initiator in an iSCSI session and storing the state of each said session in said database as

session entries.

180. The hardware processor of claim 73 wherein said commands are both
dependent commands and unrelated commands, said dependent commands scheduled on
said queues of the same connection and unrelated commands are scheduled on queues of
different connections.

181. The hardware processor of claim 179 wherein said commands are both
dependent commands and unrelated commands, said dependent commands scheduled on
said queues of the same connection and unrelated commands are scheduled on queues of

different connections.

182. The hardware processor of claim 73 where all commands are queued to the

same session connection.

183. The hardware processor of claim 73 supporting multiple connections per

session connection.

10

15

20

25

WO 03/104943 PCT/US03/18386

95

184. The hardware processor of claim 73 wherein said database entries are
carried as separate tables or carried together as a composite table and said entries are used
to direct block data transfer over TCP/IP.

185. The hardware processor of claim 156 wherein said database entries are
stored as fields and said fields are updated as the connection progresses through multiple
states during the course of data transfer.

186. The hardware processor of claim 73 wherein said first command queues are
located partly in memory on said hardware processor and partly in memory off said
hardware processor.

187. The combination of claim 73 wherein said second command queues are
located partly in memory on said hardware processor and partly in memory off said
hardware processor.

188. For use in a hardware implemented IP network application processor having
remote direct memory access capability and including an input queue and queue controller
for accepting incoming data packets including new commands from muitiple input ports and
queuing them on an input packet queue for scheduling and further processing, the process
comprising: accepting incoming data packets from one or more input ports and queuing
them on an input packet queue; and de-queuing said packets for scheduling and further
packet processing.

189. The process of claim 188 comprising marking ones of said packets to allow
different policies to be applied to different ones of said packets, said different policies based
on characteristics selected from the group of characteristics consisting of (1) speed of the
one of said one or more ports from which a data packet is accepted, (2) network interface of
said one port, and (3) priority assigned to said one port using a fixed or programmable

priority.

190. The process of claim 188 comprising transmitting said dequeued packets to
data processing apparatus for classification by a classifier and for scheduling by a scheduler.

10

15

20

25

WO 03/104943 PCT/US03/18386

96

191. The process of claim 190 wherein said classification allows deployment of
policies enforceable per packet, or per transaction, or per flow or per command boundary or
per a command set or a combination of any of the foregoing.

192. The process of claim 190 wherein said scheduling schedules new ones of
said classified commands and data packets for operation in said hardware implemented IP

network application processor.

193. The process of claim 192 wherein said operation is performed by a packet
processing resource.

194. The process of claim 193 comprising decrypting said packets that are
classified as encrypted, and scheduling the decrypted packets for further classification and
scheduling by a scheduler.

195. The process of claim 188 comprising detecting that some of said incoming
packets are fragmented and storing fragments of said fragmented incoming packets in
memory selected from the group of memory consisting of memory on said network
application processor or memory external to said network application processor.

196. The process of claim 188 further comprising detecting that downstream
resources are backed-up and storing the incoming data packets in memory on said network
application processor or memory external to said network application processor.

197. The process of claim 195 further comprising detecting the arrival of all
fragments of a fragmented one of said incoming packets and merging said fragments to form
a complete incoming packet said stored fragments retrieved from memory on said network
application processor or memory external to said network application processor.

198. The process of claim 196 further comprising detecting that downstream
resources are able to accept packets and, responsive thereto, retrieving said stored packets
from memory on said network application processor or memory external to said network

application processor.

199. The process of claim 188 further compprising assigning a packet tag to each
said incoming data packet and using said tag to control the flow of said incoming packets
through said network application processor.

10

15

20

25

WO 03/104943 PCT/US03/18386

97

200. A packet scheduler and sequencer for scheduling to a classification engine
and to additional data processor resources in a hardware IP processor (1) data packets
incoming to said IP processor over an IP network and (2) tasks relating thereto, comprising:

a. a classification controller and scheduler for retrieving packet headers
from a queue controller and transmitting data said packets to said classification engine for
determining dassification and managing execution of said packets;

b. a queue for receiving headers of said packets for transmission to said
classification controller and scheduler;

c. an input queue for transmitting commands, including security
commands, to said data processor resources for execution for fragmented packets or secure
packets;

d. a state controller and sequencer for receiving state information of
processes active inside said hardware processor and including means for providing
instructions for the next set of processes to be active;

e. an interface to a memory controller for queuing said packets that are
fragmented packets or that are not processed due to resources being backed up;

f. a resource allocation table for assigning received packets or
commands to ones of said processor resources based on the current state of said
resources,

g. a packet memory store located within or external to the packet
scheduler and sequencer for storing packets, packet tags, or classification results;

h. a priority selector and a packet fetch and command controller,

i. said priority selector for retrieving commands and packet tags
from respective queues based on assigned priority; and

ii. said packet fetch and command controller for retrieving the
packet tags and classification results from said packet memory store and scheduling the
packet transfer to appropriate resources; and

10

15

20

25

WO 03/104943 PCT/US03/18386

98

i. storage for receiving such classification results and transmitting said
packets to said data processor resources based on the said classification results.

201. A classification resource forclassifying, and a packet scheduler and
sequencer for scheduling, to data processor resources in a hardware IP processor (1) data
packets incoming to said IP processor over an IP network and (2) tasks relating thereto,
comprising:

a. a classification controller and scheduler for retrieving packet headers
or packets and classification tags from a classified queue of the packets that are classified
by the classffication engine and scheduling for a state controller and sequencer to assign
them for execution to the said data processor resources;

b. an input queue for transmitting commands, including security
commands, to said data processor resources for execution for fragmented packets or secure
packets;

c. a state controller and sequencer for receiving state information of
processes active inside said hardware IP processor and including means for providing
instructions for the next set of processes to be active inside said hardware |IP processor;

d. an interface to a memory controller for queuing said packets that are
fragmented packets or that are not processed due to resources being backed up;

e. a resource allocation table for assigning received packets to ones of
said processor resources based on the current state of said resources;

f. a packet memory store located within or external to the packet
scheduler and sequencer for storing packets, packet tags, or classification results;

g. a priority selector and a packet fetch and command controller,

i said priority selector for retrieving commands and packet tags
from respective queues based on assigned priority;

ii. said packet fetch and command controller for retrieving the
packet tags and classification results from said packet memory store and scheduling the
packet transfer to appropriate resources; and

10

15

20

25

WO 03/104943 PCT/US03/18386

99

h. storage for receiving such classification results and transmitting said
packets to said data processor resources based on the said classification results.

202. The packet scheduler and sequencer of claim 200 further comprising a queue
for receiving and storing substantially complete packets for forwarding to said data
processing resources for deep packet inspection and processing.

203. The packet scheduler and sequencer of claim 201 further comprising a queue
for receiving and storing substantially complete packets for forwarding to said data
processing resources for deep packet inspection and processing.

204. The packet scheduler and sequencer of claim 200 wherein said classification
controller and scheduler receives fragmented packets and secure packets, forwards said
fragmented blocks to a defragmenter to assemble completed packets, and forwards said
secure packets for security schedulingto a sécurity engine.

205. The packet scheduler and sequencer of claim 201 wherein said classification
controller and scheduler receives fragmented packets and secure packets, forwards said
fragmented blocks to a defragmenter to assemble completed packets, and forwards said
secure packets for security schedulingto a security engine.

206. The packet scheduler and sequencer of claim 200 wherein said security
scheduling includes assigning at least one security algorithm to be performed on said secure
packets by a security engine.

207. The packet scheduler and sequencer of claim 201 wherein said security
scheduling includes assigning at least one security algorithm to be performed on said secure
packets by a security engine.

208. The process of scheduling and sequencing Internet Protocol packets,
including packet headers, and tasks to a classification engine and other execution resources
of a hardware processor having RDMA capability and balancing workload to said resources
comprising:

retrieving the packets and packet headers from a header queue and
transmitting said headers to said classification engine;

10

15

20

25

WO 03/104943 PCT/US03/18386

100

receiving classification results from said classification engine and storing
them to a classifier queue; and

managing the execution of said packets through said execution resources.

209. The process of scheduling and sequencing in a hardware processor
classifying Internet Protocol packets, said packets further comprising a classification tag and
packet descriptor, to and through execution resources of a hardware processor having
RDMA capability and balancing workload to said resources comprising:

retrieving the classified packets, classffication tag and results, from a
classified queue receiving these from the classification engine; and

managing the execution of said packets through the execution resources.

210. The process of claim 202 further comprising detecting that deep packet
inspection is required, and in response to said detecting, transmitting the complete packets
to said classffication for routing to said scheduler after classification.

211. The process of claim 200 further comprising detecting fragmented packets
and, in response to said detecting, defragmenting said fragmented packets.

212. The process of claim 208 further comprising detecting fragmented packets
and, in response to said detecting, defragmenting said fragmented packets.

213. The process of claim 209 further comprising detecting secure packets and
scheduling said secure packets to a security engine.

214. The process of claim 210 further comprising detecting secure packets and
scheduling said secure packets to a security engine.

215. The process of claim 209 further comprising a scheduler state controller and
sequencer receiving state information of various packet transactions and operatons active
inside said hardware processor and providing to said execution resources instructions for
subsequent packet transactions and operations.

216. The process of claim 210 further comprising @ scheduler state controller and
sequencer receiving state information of various packet transactions and operafions active

10

15

20

25

WO 03/104943 PCT/US03/18386

101

inside said hardware processor and providing to said execution resources instructions for
subsequent packet transactions and operations.

217. The process of claim 203 further comprising said scheduler retrieving said
packets from an input packet queue and scheduling these packets in a queue of a
predetermined execution resource depending on said classification results received from
said classifier.

218. The process of claim 208 wherein said managing includes directing the
packets to be stored in a packet memory store.

219. The process of claim 209 wherein said managing includes directing the
packets to be stored in a packet memory store.

220. The process of claim 214 further comprising retrieving said packets and/or
said classification tag including the packet descriptor or identifier when either is scheduled
for operation.

221. The process of claim 213 further comprising said state controller and
sequencer identifying the execution resource that should receive the packet for operation,
creating a command including a packet classification tag identifying said packet and
assigning said created command to the appropriate one of said data processing resources.

222. The process of claim 219 further comprising a priority selector refrieving said
command and packet tag from the respective queues based on the assigned priority of said
packet in a resource entry in a resource allocation table and passing said commands and
packet tags to a packet fetch and command controller.

223. The process of claim 221 further comprising retrieving the packet from the
packet memory store along with said classification results and scheduling the packet for
transfer to the appropriate resource when the said resource is ready to accept a new packet

for processing.

224. The process of claim 222 further comprising retrieving the packet
classification tag including the packet identifier or descriptor and scheduling said tag for
transfer to the appropriate data processing resource when said resource is ready to accept a

new packet for processing.

10

15

20

25

WO 03/104943 PCT/US03/18386

102

225. The process of claim 223 further comprising a bus interface of the respective
receiving data processing resource interpreting said command and accepting the packet and
classification tag for operation.

226. The process of claim 224 further comprising said data processing resource
requesting the said packet scheduler and sequencer’s packet fetch and command controller
to the retrieval of the entire packet.

227. The process of claim 225 further comprising retrieving the packet from the
packet memory store and transporting it to the data processing resource.

228. The process of claim 226 further comprising retrieving the packet from the
packet memory store and transporting it to the data processing resource.

229. The process of claim 226 further comprising a bus interface of the respective
receiving data processing resource interpreting said command and accepting the packet and
the classification tag for operation.

230. The process of claim 226 further comprising an execution engine informing
said scheduler when the packet operation is complete; and

said scheduler and a retirement engine retiring the packet from its state when
the packet is scheduled for its end destination, thereby freeing up said resource entry in said

resource allocation table.

231. The process of claim 217 further comprising an execution engine informing
said scheduler when the packet operation is complete; and

said scheduler and a retirement engine retiring the packet from its state when
the packet is scheduled for its end destination, thereby freeing up said resource entry for
said packet in said resource allocation table.

232. The process of claim 221 further comprising using the resource allocation
table to assign the received packets to specific resources, depending on the current internal
state of said resources.

233. The process of claim 230 further comprising detecting packets that belong to
the same flow or connection and/or are dependent on an ordered execution and assigning

10

15

20

25

WO 03/104943 PCT/US03/18386

103

said detected packets to the same data processing resource by using a current session
database cache state entry buffered in said same data processing resource without
retrieving new session database entries external to said data processing resource.

234. The process of claim 232 further comprising a memory controller queuing
packets that are fragmented packets for defragmenting; or queuing complete packets for the
case in which the scheduler queue is backed-up due to a packet processing bottleneck down
stream.

235. A hardware data processing classifier engine for dlassifying Internet data
packets for traverse through a utilizing system, said classifying being accomplished
according to the type of the packet, the protocol type, the port addresses of the packet, the
source of the packet or the destination of the packet or a combination of any of the
foregoing.

236. The classifier engine of claim 235 wherein said packet is in an iSCSI, iFCP,
infiniband, SATA, SAS, IP, ICMP, IPSEC, DES, 3DES, AES, FC, SCSI, FCIP, NFS, CIFS,
DAFS, HTTP, XML, XML derivative, SGML, HTML TCP, SCTP or UDP format or a
combination of any of the foregoing;

said classifier engine capable of testing a single packet field or a plurality of
packet fields; and

including at least one input queue or at least one packet interface and input
packet buffer for receiving input Internet Protocol packets for classification from a scheduler.

237. The classifier engine of claim 235 wherein said packet is in aniSCSI, iFCP,
infiniband, SATA, SAS, IP, ICMP, IPSEC, DES, 3DES, AES, FC, SCSI, FCIP, NFS, CIFS,
DAFS, HTTP, XML, XML derivative, SGML, HTML TCP, SCTP or UDP format or a
combination of any of the foregoing;

said classifier engine capable of testing a single packet field or a plurality of
fields; and

including at least one packet interface and at least one input packet buffer for
receiving input Internet protocol packets for classification from the input queue and controller

WO 03/104943 PCT/US03/18386

104

238. The classifier engine of claim 235 thatis a content addressable memory
based classifier engine or a programmable classifier engine.

239. The process of a hardware classifier engine, ina hardware IP processor
having a memory for storing a database of IP session entries and execution resources,
5 classifying Internet Protocol packets in accordance with an attribute including examining
fields of a received packet to identify the type of the packet, the protocol type, the packet’s
port addresses, the packet source and the packet destination.

240. The process of claim 239 comprising:
obtaining input packets, including packet headers, from a scheduler;
10 queuing said packets and/or packet headers for classification;

fetching the next available packet in the queue by a packet
classification sequencer and extracting the appropriate packet fields based on
predetermined global packet field descriptor sets;

passing said fields to a memory or ALU to perfom said
15 classification, matching of said fields to programmed values to identify
the next set of fields to be compared;

in response to said matching collecting action tags or event tags ina
result compiler; and

acting on said matching to update data in said memory associated
20 with a specific condition or rule match.

241. The process of claim 239 comprising:

obtaining input packets, including packet headers, from a input queue and

confroller;

queuing said packets and/or packet headers for classification in a second

25 queue;

10

15

20

25

WO 03/104943 PCT/US03/18386

105

fetching the next available packet in the second queue by a packet
classification sequencer and extracting the appropriate packet fields based on
predetermined global packet field descriptor sefts;

passing said fields to a memory or ALU to perform said classification,
and matching of said fields to programmed values to identify the next
set of fields to be compared;

in response to said matching, collecting action tags or eventtags in a
result compiler; and

acting on said matching to update data in said memory associated
with a specific condition or rule match.

242. The process of claim 240 wherein said memory is a content addressable
memory array, said content addressable memory array being programmed with said packet
fields, their expected values and the correspondingone of said database entries
programmed with the action on said matching said action tags, including the next packet
field to compare.

243, The process of claim 241 wherein said memory is a content addressable
memory array, said content addressable memory array being programmed with said packet
fields, their expected values and the correspondingone of said database entries
programmed with the action on said matching said action tags, including the next packet
field to compare.

244. The process of classifying of claim 242, further comprising programming said
content addressable memory array through initializing said database, said database
accessible for programming through a system interface.

245. The process of claim 244 further comprising providing said system interface
with a connection to a host or a control plane processor.

246. The classification process of claim 239 further comprising generating, after
completing classification, a classffication tag that identifies the path to be traversed by said
packet within said utilizing system.

10

15

20

25

WO 03/104943 PCT/US03/18386

106

247. The classification process of claim 240 further comprising generating, after
completing classification, a classification tag that identifies the path to be traversed by said
packet within said utilizing system.

248. The classification process of claim 241 further comprising generating, after
completing classification, a classffication tag that identifies the path to be traversed by said
packet within said utilizing system.

249. The classification process of claim 247, wherein said classification tag is
usable by a plurality of said execution resources to avoid performing the same classification
tasks more than once.

250. The classification process of claim 248 wherein resuiting classification tags
are usable by a plurality of said execution resources to avoid performing the same
classification tasks more than once.

251. The classification process of claim 239 further comprising providing a
classifier retirement queue for holding the packets that are classified and are waiting to be
retrieved by a scheduler.

252. The classification process of claim 246 further comprising providing a
classifier retirement queue for holding the packets that are classified and are waiting to be
retrieved by a scheduler.

253. The classification process of claim 249 further comprising providing a
classification database for storing fields, their expected values and actions on match for said
packets, said database being extendible using a database extension interface.

254. The classification process of claim 250 further comprising providing a
classification database for storing fields, their expected values and actions on match for said
packets, said database being extendible using a database extension interface.

255. The classification process of claim 251 wherein said extension interface is

implemented using pipeline control logic.

256. The classification process of claim 246 further comprising providing an action
interpreter, an ALU or execution resource and a range matching component to provide

10

15

20

25

WO 03/104943 PCT/US03/18386

107

capabilities to allow programming (a) storage policies in the form of rule action tables,
(b) network policies in the form of rule action tables, and (c) required actions if certain of said
network policies or storage policies or both are met. ‘

257. The classification process of claim 256 comprising programming and
collecting said policies or rule action tables, or a combination of any of the foregoing, through
a host interface.

258. An Internet Protocol packet processor including RDMA capability and capable
of being coupled to a scheduler, to a TCP engine or a storage engine, or a combination of
any of the foregoing, said processor comprising:

an instruction decoder and sequencer;

an instruction memory or data memory or a combination of any of the
foregoing;

an execution resource;
a bus controller or memory controller or a combination of any of the foregoing;
said Processor comprising:

fetching instructions from said instruction memory;

decoding them and sequencing them through said execution resource
by said instruction decoder and sequencer;

transmitting said packets from said scheduler to said bus controller;

using said bus controller for moving the data packets from said
scheduler to said data memory for operation and/or for moving said
data packets to and/or from said TCP engine and to and from said
storage engine for processing said packet by:

(a) extracting data;

(b) generating new packets in response to said packet
processing code; or

10

15

20

25

WO 03/104943 PCT/US03/18386

108

(c) transferring said extracted data or newly generated packets
or combination thereof to an output interface;

said extracting, generating and transferring enabing
transmission to a media interface or a host processor
interface.

259. A programmable TCP/IP processor engine, said processor having RDMA
capability and used for processing Internet Protocol packets, said TCP/IP processor engine

comprising:

a checksum component for TCP/IP checksum verification and for new
checksum generation;

a data memory for storing said packets;
an execution resource;

a packet look-up interface for assisting an execution resource and an
instruction sequencer for providing access to said data packets or
predetermined data packet fields thereof;

an instruction decoder to direct said TCP/IP processor engine operation
based on the results of a classification processor;

a sequence and window operation manager providing specific
segmenting, sequencing and windowing operations for use in TCP/IP
data sequencing calculations;

and further comprising:

a hash engine used to perform hash operations against
predetermined fields of the packet to perform a hash table walk
to determine the correct session entry for said packet;

a register file for extracting predetermined header fields from
said packets for TCP processing;

10

15

20

25

WO 03/104943 PCT/US03/18386

109

pointer registers for indicating data source and destination;

context register sets for holding multiple contexts for packet
execution;

said multiple contexts allowing, in response to a given
packet execution stalling, another context to be invoked
to enable said TCP/IP processor engine to continue the
execution of another packet stream;

said TCP/IP processor engine having a cache
for holding recently or frequently used session
entries, including conrection 1Ds, for local use;

and further having an interface for informing a
packet scheduler of the connection IDs that are
cached for each TCP/IP processor engine

resource.

260. The TCP/IP processor engine of claim 259 further comprising a session
database lookup engine and a session manager which, in response to an indication that the
packet processor does not hold the session entry for the specific connection required for
said session, work with said hash engine to retrieve said session entry from a global session
memory through a memory confroller interface and to replace said session entry in said
packet processor.

261. The combination of claim 260 wherein the session manager includes means,
operative upon fetching of a session entry or its fields corresponding to a packet being
processed by said TCP/IP packet processor, said means working with said hash engine to
generate a session identifier for retrieving the corresponding session entry or its fields from a
session database cache.

262. The combination of claim 260 wherein the session manager includes means,
operative upon storing of a session entry orits fields corresponding to the packet being
processed by said TCP/IP processor, said means acting with the said hash engine to

10

15

20

25

WO 03/104943 PCT/US03/18386

110

generate a session identfier, for storing the corresponding session entry or its fields to the
session database cache to replace a session entry as a result of packet processing.

263. The session database look-up engine of claim 260 further comprising means
operative upon the fetching of a new session entry from said global session memory, said
means storing the replaced session entry in said global session memory.

264. The TCP/IP processor engine of claim 260 wherein said session entry in said
cache is exclusively cached to one of a plurality of processors so that request for access to
said cache by more than one of said plurality does not cause any race conditions by non-
exclusive access.

265. The TCP/IP processor engine of claim 264 wherein when a session entry is
exclusively cached to one processor, and another processor requests said session entry,
said entry is transferred to the requesting processor with exclusive access to said session
entry.

266. The TCP/IP processor engine of claim 259 further comprising a TCP state
machine capable of state transitions and capable of having a current state and generating a
next state, said state machine receiving

a state information stored in the session entry; and

appropriate fields affecting said state information from a fetched or newly
received packet being processed for allowing the state machine to generate said next state if
there is a state transition, and updating information in said session entry in cache to indicate
said next state.

267. The TCP/IP processor engine of claim 260 further comprising a
programmable frame controller and out of order manager used for extracting frame
information from said packets and performing operations for execution of packets received
out of order from the expected sequence for their session or flow .

268. The TCP/IP processor engine of claim 267 operating on an upper layer and
having an upper layer framing mechanism used by said programmable frame controller and
out of order manager to extract the embedded PDUs from packets arriving out of order and
allowing said PDUs to be directed to an end buffer destination.

10

15

20

25

WO 03/104943 PCT/US03/18386

111

269. The TCP/IP processor engine of claim 268 wherein said programmable frame
controller operates on retransmitted packets.

270. The combination of claim 268 wherein the frame controller and out of order
manager includes a cyclic redundancy check generator for identifying, verifying and
delineating markers in the upper layer frames from the received network packets or
generating the upper layer frame markers using CRC codes for packets directed to the
network.

271. The TCP/IP processor engine of claim 259 including a storage engine queue
which, if a packet belongs to a storage data transfer, receives one of said packets having a
storage payload, or the storage payload of said packet, for processing by a storage engine.

272. The TCP/IP processor engine of claim 259 including a segmentation
controller for segmenting data to be sent on the IP Network to create valid packets to
transport said segmented data on the IP network.

273. The TCP/IP processor engine of claim 259 including a DMA engine for
retrieving packets or commands or combinations thereof from a scheduler or a host, and
storing said packets or commands or data to internal memory of the packet processor for
further processing by the packet processor.

274. The TCP/IP processor engine of claim 273 including a processor for
processing the said packets having packet data and extracting the packet data for transfer to
an end buffer destination in a host processor.

275. The TCP/IP processor engine of claim 273 including at least one processor
for processing the said host commands or retrieving outgoing host data or a combination of
any of the foregoing using the said DMA engine, for additional processing by the TCP/IP
processor engine to form an outgoing packet for transfer onto the IP network.

276. The TCP/IP processor engine of claim 259 further comprising means in said
packet processor engine for additional processing of said packet by execution of additional
processing application code.

10

15

20

25

WO 03/104943

PCT/US03/18386

112

277. The TCP/IP processor engine of claim 276 wherein said additional processing
application code can be executed on said packet before or after processing by the TCP/IP
processor engine or an IP Storage processor engine or a combination thereof.

278. The process, using a hardware TCP/IP processor engine capable of
executing a transport layer RDMA protocol, of transferring data from a host processor to an
output media interface of said host system using said RDMA protocol, said process including
said TCP/IP processor engine forming headers and forming segmentation for said data to be

transferred.

279. The process of c;laim 278 wherein at least one of said headers is a header
used for transporting data through a storage area network, a local area network, a metro
area network, a system area network, a wireless local area network, a personal area
network, a home network, a wide area network or a combination of any of the foregoing.

280. A packet scheduler and sequencer for scheduling to data processor
resources in a hardware IP processor (1) data or commands incoming to said IP processor
from a host processor, and (2) tasks relating thereto, comprising:

a. a host command queue for queuing incoming host commands;

b. said host command queue for transmitting commands, including
security commands, to said data processor resources for execution:;

C. a state controller and sequencer for receiving state information of
processes active inside said hardware processor and including means for providing
instructions for the next set of processes to be active;

d. a priority selector and a packet fetch and command controller,

i. said priority selector for retrieving commands and packet tags
from respective queues based on assigned priority, and

ii. said packet fetch and command controller for retrieving the
commands from the said command queue or packet tags from said packet memory store
and classification results and scheduling the packet or command transfer to appropriate

resources; and

10

15

20

25

WO 03/104943 PCT/US03/18386

113

e. a resource allocation table for assigning received packets or
commands to ones of said processor resources based on the current state of said
resources.

281. The packet scheduler and sequencer of claim 280, wherein said packet fetch
and command controller is for retrieving the packet tags, data or the entire packet from said
packet memory.

282. The TCP/IP processor engine of claim 260 wherein said session entry in
cache is cached using the Modified Exclusive Shared Invalid algorithm.

283. A programmable IP Storage processor engine said processor having RDMA
capability, and used for processing |P Storage Protocol Data Units transported over an IP
network using Internet Protocol packets having fields including PDUs with fields, said IP
Storage processor comprising:

a cyclic redundancy check component for IP Storage PDU CRC verification or
for new CRC generation or a combination of any of the foregoing;

a data memory for storing said packets and/or said protocol data units;

a packet look-up interface for providing access to said packets or PDUs or
packet fields or PDU fields or a combination of any of the foregoing;

an execution resource;

an instruction decoder and an IP Storage PDU classifier to direct IP Storage

processor engine operation;

a sequence manager providing specific sequence operations for use

in IP Storage data sequencing calculations;
and further comprising:

an |P Storage session manager including a hash engine to
perform hash operations against predetermined fields of the
packet to perform a hash table walk to determine the correct
session entry for said packet;

10

15

20

25

WO 03/104943 PCT/US03/18386

114

a register file for extracting predetermined header fields from
said packets and PDUs for IP Storage processing;

pointer registers for indicating data source and destination; and

context register sets for holding multiple contexts for packet
execution;

said multiple contexts allowing, in response to a given
packet execution stalling, another context to be invoked
to enable said IP Storage processor engine to continue
the execution of another packet stream;

said IP Storage processor engine having a
cache for holding recently or frequently used
session entries, includingconnection IDs, for
local use and further having an interface for
informing a packet scheduler of the connection
IDs that are cached for each IP Storage
processor engine resource.

284. The IP Storage processor engine of claim 283 further comprising an 1P
Storage session database lookup engine and an IP Storage session manager which, in
response to an indication that the packet processor does not hold the IP Storage session
entry for a specific connection for said session, acts with said hash engine to retrieve said IP
Storage session entry from a global session memory through a memory controller interface
and to replace an IP storage session entry in said packet processor.

285. The combination of claim 284 wherein the IP storage session manager further
comprises means operative upon fetching of a session entry or its fields corresponding to
the packet being processed by the IP Storage processor engine, said means working with
the said the hash engine to generate the session identifier, for retrieving the corresponding
session entry or its fields from said cache.

286. The combination of claim 284 wherein the session manager further comprises
means operative upon storing of a session entry or its fields corresponding to the packet

10

15

20

25

WO 03/104943 PCT/US03/18386

115

being processed by the IP Storage processor engine, said means working with the said
classifier and hash index to generate the session identifier, for storing the corresponding
session entry or its fields to the said cache to reflect updates to those fields or entries as a
result of packet processing.

287. The IP Storage session database look-up engine of claim 284 further
comprising means operative upon the fetching of a new session entry from said global
session memory, said means for storing the replaced session entry in said global session

memory.

288. The IP Storage processor engine of claim 283 wherein a session entry in said
cache is exclusively cached to one of a plurality of processors so that request for access to
said cache by more than one of said plurality does not cause any race conditions by non-
exclusive access.

289. The IP Storage processor engine of claim 288 wherein when a session entry
is exclusively cached to one processor, and another processor requests said session entry,
said entry is transferred to the requesting processor with exclusive access to said session
entry.

290. The IP Storage processor engine of claim 288 further comprising a IP Storage
state machine capable of state transitions and capable of having a current state and
generating a next state, said state machine receiving

a state information stored in the session entry; and

appropriate fields affecting said state information from the fetched or newly
received packet/PDU being processed for allowing the state machine to generate the next
state if there is a state transition, and updating the next state information in said cache.

291. The IP Storage processor engine of claim 283 further comprising a
segmentation controllerfor segmenting IP Storage data to be sent on the said IP Network to
create valid packets for the TCP/IP packets that transport the IP Storage PDUs.

292. The IP storage processor engine of claim 291 having an upper layer framing
mechanism used by a programmable frame controller/out of order manager to (a) extract the

10

15

20

25

WO 03/104943 PCT/US03/18386

116

PDUs from packets arriving out of order and allowing them to be directed to the end buffer
destination, and (b) operating on retransmitted packets.

293. The combination of claim 292 wherein the frame controller/out of order
manager further comprises a cyclic redundancy check generator for identifying, verifying and
delineating markers in the upper layer frames from the received network packets or
generating the upper layer frame markers using CRC codes for packets directed to the
network.

204. The combination of claim 283 wherein said IP Storage processor engine
comprises a TCP/IP Interface to couple to a TCP/IP engine, which interface (a) directs IP
Storage PDU’s transported using TCP/IP to the said TCP/IP engine and (b) receives IP
Storage data PDU’s extracted by the TCP/IP engine for processing by the IP Storage

processor.

205. The combination of claim 283 wherein said IP Storage processor engine
further comprises a DMA engine for retrieving packets from a scheduler or from a TCP/IP
engine or commands received from a host, and storing said packets or host commands to
internal memory of the packet processor for further processing by a packet processor.

206. The combination of claim 295 wherein said IP Storage processor engine
processes the said packets and extracts therefrom the packet/PDU data or payload and
transports it from the said packet to an end buffer destination in a host processor.

297. The combination of claim 295 wherein said [P Storage processor engine
processes the said host commands or retrieves outgoing host data or a combination thereof
using the said DMA engine for additional processing to form an outgoing packet/PDU for
eventual transfer onto the IP Network.

208. The combination of claim 293 wherein said |P Storage processor engine
further comprises processing resources in said processor engine for additional processing of
said packet by execution of additional processing application code.

299. The combination of claim 298 wherein said IP Storage processor engine
executes said additional processing application code on said packet before or after
processing by the a TCP/IP processor engine and/or an IP storage processor engine.

10

15

20

25

WO 03/104943 PCT/US03/18386

117

300. The process, using an IP Storage processor capable of executing a transport
layer RDMA protocol, of transporting data from a host processor to an output media interface
of a host system, said process including said |P Storage processorforming headers and
forming segmentation for said data to be transferred.

301. The process of claim 300 wherein at least one of said headers is a header
used for transporting data through a storage area network, a local area network, a metro
area network, a system area network, a system area network, a wireless local area network,
a personal area network, a home network or a wide area network or a combination of any of
the foregoing.

302. The combination of claim 283 wherein said IP Storage processor engine
further comprises at least one Storage command execution engine to perform the operations
for the IP Storage PDU command type decoded by the said instruction decoder and/or the
said IP Storage PDU classifier.

303. The combination of claim 293 wherein said IP Storage processor engine
further comprises an IP Storage initiator command decoder capable of interpreting
commands received from the host processor to operate on the command working with the
execution resources of the IP storage processor engine.

304. The combination of claim 283 wherein said IP Storage processor engine
further comprises a |P Storage PDU creator that creates a PDU responsive to command
decoding by the said command decoder.

305. The combination of claim 304 wherein said PDU creator creates the PDUs for
protocol translation or virtualization operation directed by the said command decoder.

306. The combination of claim 283 wherein said IP storage processor engine
further comprises means of transporting the said PDU to a TCP/IP processor engine for
creation of appropriate network headers for transporting the packet to the network interface
or the host interface as directed by the decoded command.

307. For use in a hardware implemented IP network application processor capable
of executing transport level RDMA functions and having one or more output queues for
accepting outgoing data packets, including new commands, from one or more packet

10

15

20

25

30

WO 03/104943 PCT/US03/18386

118

processor engines, TCP/IP processor engines or IP Storage processing engines, directing
said packets on to an output port interface for sending them out to a network interface, said
interface sending said packets on to the network, through one or more output packets, said
process including: accepting incoming data packets from one or more packet processing
engines and queuing them on said output packet queue; and de-queuing said packets for
delivery to said output port based on the destination port information in said paclet.

308. The process of claim 307 further comprising decoding the packet tag of said
packets to allow different policies to be applied to different ones of said packets, said
different policies based on (1) speed of the one of said one or more ports to which a data
packet is scheduled, (2) network interface of said one port, and (3) priority assigned to said
one port using a fixed or programmable priority.

309. The process of claim 307 further comprising decoding the packet tag of said
paclfets to determine the need for application of security policy and directing the said
packets needing the said security policy applicafon to the clear packet port of a security
engine and later accepting the outgoing packets from the security engine with security policy
applied.

310. The process of claim 307 comprising applying different policies to different
ones of said packets, said different policies based on (1) need for encryption of the outgoing
packet as directed by a packet tag or a packet handling command, (2) type of encryption
algorithm to be applied, (3) message authentication code or header creation, (4) type of
authentication algorithm to be used or (5) a combination of one or more of the foregoing.

311. A storage flow and RDMA controller for controliing the flow of storage or non-
storage data or commands, or a combination thereof, which may or may not require RDMA,
for scheduling said commands and data to a scheduler or host processor or control plane
processor or additional data processor resources including one or more packet processors,
in a hardware IP processor, wherein (1) data or commands are incoming to said IP
processor over an |P network, or (2) data or commands are incoming from the host interface
from the host processor, said storage flow and RDMA controller comprising at least one of:

a. a command scheduler, state controller and sequencer for retrieving
commands from a one or more command queues and sending the said command to the

10

15

20

25

WO 03/104943 PCT/US03/18386

119

control plane processor or the scheduler or one or more of said packet processors for further
processing, and managing execution of the said commands by these resources,

b. a new commands input queue for receiving new commands from a
host processor;

c. an active command queue for holding commands that are being
processed, including newly scheduled commands processed from the said new commands
queus;

d. an output completion queue for transmitting the status and the
completed commands or their ID to the host processor for the host to take necessary
actions, including updating statistics related to the command and/or the connection, any
error handling, releasing o any data buffers based on the command under execution;

e. an output new requests queue for transmitting to the host processor
and the drivers running on the host, incoming commands from the packets received by the
said IP packet processor for the host to take appropriate actions which may include
allocating appropriate buffers for receiving incoming data on the connection, or acting on
RDMA commands, or error handling commands or any other incoming commands;

f. a command look-up engine to look-up the state of the commands
being executed including lookup of associated memory descriptors or memory descriptor
lists, protection look-up to enable the state update of the commands and enabling the flow of
the data associated with the commands to or from the host processor through the host
interface;

g. command look-up tables to store the state of active commands as
directed by the said command look-up engine or retrieve the stored state as directed by the
said command look-up engine;

h. said host interface enabling the transfer of data and/or commands to
or from the host processor;

i a host data pre-fetch manager that directs the pre-fetch of the data
anticipated to be required based on the commands active inside the said IP processor, to

10

15

20

25

WO 03/104943 PCT/US03/18386

120

accelerate the data transfer to the appropriate packet processors when required for
processing;

j- an output data queue for transporting the retrieved data and/or
commands form the host processor to the said scheduler or the said control plane processor
or the said packet processors for further processing by those resources;

k. output buffers to hold the data received from the host using the host
interface for sending them to the appropriate IP processor resources, including the scheduler
or the packet processors or the control plane processor or the session cache and memory
controller;

l. an output queue controller that controls the flow of the received host
data to the said output buffers and the said output queues working with the host data
prefetch manager and/or the command scheduler, state controller and sequencer;

m. an input data queue for receiving incoming data extracted by the said
packet processor or the control plane processor to be directed to the host processor;

n. an RDMA engine to perform the RDMA tasks required by those
incoming or outgoing RDMA commands or RDMA data, comprising means for recording,
retrieving and comparing the region ID, protection keys, performing address translation, and
retrieving or depositing data from or to the data buffers in the host memory and further
comprising means for providing instructions for the next set of actions or processes to be
active for the RDMA commands;

o. an RDMA look-up table that holds RDMA information, including state
per connection or command, used by said RDMA engine to process RDMA commands;

p. a Target/Initiator Table which is used to record target/initiator
information for said data or commands, including IP address, the port to use to reach said IP
address and connection or connections to the target/initiator used by the said command
scheduler, state controlier and sequencer; or

q. a combination of any of the foregoing.

10

15

20

25

WO 03/104943 PCT/US03/18386

121

312. The process of scheduling and sequencing commands and tasks to a
scheduler, control plane processor, session cache and memory controller, packet
processors and other execution resources of an |P hardware processor comprising:

retrieving the commands from a command queue and interpreting the
command; and

retrieving the command state by retrieving the command state of execution
from a command look-up engine; or storing the command initial state to the command look-
up engine and command look-up tables for new command; or storing the command state to.
the command look-up engine and command look-up table for an active command; and

transmitting said commands to said scheduler, or control plane processor or
session cache and memory controller, or packet processors and managing the execution of
said commands through their states until command execution is completed;

313. The process of claim 312 of scheduling and sequencing commands and fasks

to a host processor, comprising:

receiving the commands from a payload extracted from an incoming IP
network packet from one of the said execution resources of the said hardware IP processor
and interpreting the command; and

retrieving the command state by retrieving the command state of execution
from a command look-up engine; or storing the command initial state to the command look-
up engine and command look-up tables fora new command; or storing the command state
to the command look-up engine and command look-up table for an active command; and

scheduling the received command to a new requests queue ora completion
queue to be sent to the host processor by the host interface process.

314. The process of claim 312 where in the said command queue is a new
command queue that receives new commands from the host processor to be processed by
the said IP processor;

315. The process of claim 312 where in the said command queue is an active
commands queue that holds the commands that are being executed during their using the

10

15

20

25

30

WO 03/104943 PCT/US03/18386

122

resources of the said packet processor, including issuing communications over the 1P
network with the peer and processing received responses from the IP network.

316. The process of claim 312 further comprising interpreting the said command
and identifying the command to be an RDMA command and managing the command
through the execution process by a RDMA engine which performs the process of RDMA
actions;

317. An RDMA process comprising: identifying the RDMA command and the
connection that it is associated with; retrieving the state of the RDMA command; selecting
the next step for handling the RDMA command based on the curent RDMA state and
retrieving associated data from a host data buffer or queuing said associated data for
depositing to the RDMA buffer of a host processor identified by the said RDMA command;
and updating the state of the RDMA process in an RDMA look-up table for use in handling
the next command associated' with this connection for storage or non-storage data transfer.

318. The process of claim 316 further comprising an RDMA engine requesting the
command scheduler process of delivering the received RDMA command to the host through
new commands for establishing a new RDMA connection with a peer.

319. The process of claim 316 further comprising an RDMA engine requesting the
command scheduler process to retrieve data from a host RDMA buffer associated with the
RDMA command or depositing the data associated with the RDMA command to the host
RDMA buffer associated with the RDMA command.

320. The process of claim 317 further comprising retrieving the region ID, access
or protection keys associated with the connection that the RDMA command belongs to and
performing the access or protection key verification with that received with the said RDMA
command and if the access control is valid, performing the address translation from the
region ID to the virtual or physical address of the host RDMA buffer to be used in the data
transfer.

321. The process of claim 320 further comprising retrieving the data associated
with said RDMA command having valid access control from the said host RDMA buffer for
sending the data to the resources of the said IP processor for transporting them to their
destination over the IP network.

10

15

20

25

WO 03/104943 PCT/US03/18386

123

322. The process of claim 320 further comprising receiving the data associated
with the RDMA command having valid access control from the various resources of the IP
packet processor extracted from the received IP packet and sending the data to the host
RDMA buffers after performing address translation to point to the RDMA buffer;

323. The process of claim 312 further comprising a host data pre-fetch manager
retrieving the data associated with an outgoing command that is to be fetched when
requested by the said resources of the IP processor, or therebefore, from the host buffers
using the host controller interface.

324. The process of claim 323 further comprising the said host data pre-fetch
manager working with an output queue controller o direct the data received from the host
buffers to the output data queue.

325. The process of claim 312 further comprising retrieving or storing the target or
the initiator information from or to the target/initiator table to identify the associated media
interface output port and the IP address and media interface port for the target/initiator
involved in this command.

326. The process of claim 313 further comprising retrieving or storing the target or
the initiator information from or to the target/initiator table to identify the associated media
interface output port and the IP address and media interface port for the target/initiator

involved in this command.

327. The process of claim 312 further comprising receiving the data associated
with the command from the various resources of the said IP packet processor where data is
extracted from the received IP packet and sending the data to the host buffers.

328. The process of claim 313 further comprising receiving the data associated
with the command from the various resources of the said IP packet processor where data is
extracted from the received IP packet and sending the data to the host buffers.

329. For use in a hardware implemented IP network application processor,
including execution resources, a host interface controller comprising a host bus interface
controller to control the physical protocol for transporting data to and from a host bus; a host
transaction controller and interrupt controller for controlling and directing transactions on a

10

15

20

25

30

WO 03/104943 PCT/US03/18386

124

host bus used to perform data transfers over the host bus; a DMA engine used to perform
direct memory access of the data involved in the transfers directly to or from a host memory
without substantial host processor intervention; a host command unit used to decode the
command received from the drivers or applications on a host processor involved in the data
transfer over an IP network including commands to setup or retrieve various configuration,
control or data register resources of the said IP network application processor, and a host
input queue interface providing the data received from the host to be provided to the
resources of the said IP network application processor; a host output queue interface
providing the data received from the resources of the processor for depositing them into the
host memory; and a host command queue interface to provide the commands to the
resources of the IP network application processor.

330. The combination of claim 329 where the host bus is a PCl, PCI-X, 3GlO, PCI-
Express, AMBA Bus, Rapid 10 or HyperTransport, or a combination of any of the foregoing.

331. The combination of claim 329 where the host bus is a host bus for switching
system fabric interfaces comprising CSIX bus, XPF, XAU! interface, GMII, Mil, XGMII
interface, SPI interface, SPI-4 or other SPI derivative interface, PCI, PCI-Express, Infiniband,
Fibre channel, RapidlO or Hypertransport or other proprietary, standard or non-standard
buses.

332. For use in a hardware implemented IP network application processor, a
security engine, comprising: at least one of an authentication engine for providing message
digest and message authentication capabilities; an encryption/decryption engine that
provides various encryption/decryption algorithm implementations to encrypt outgoing data
or decrypt incoming data with the appropriate algorithm; a sequencer that sequences
incoming packets through at least one of authentication and encryption/decryption engines
and is used to fetch the appropriate security context for the packet being processed; a
security context memory used to hold a security association database for various
connections that require security operations; a coprocessor interface and queue manager
used to interface a security engine and said security context with an offchip security
processor and/or security context memory; one or more clear packet input queues to receive
packets that need encryption and/or message authentication; a secure packet output queue
used to transfer the packets that have gone through security processing by the security
engine on their way out to the IP network from the said IP network application processor; a

10

15

20

25

30

WO 03/104943 PCT/US03/18386

125

secure packet input queue which receives the incoming IP network packets that are
classified as secure packets and need security processing before further processing inside
the IP network application processor; or a clear packet output queue used to transfer the
incoming IP network packets that have been processed by the security engine, ora
combination of any of the foregoing.

333. The combination of claim 332 wherein said incoming packets further
comprises a tag prepended to the packet indicating the type of operation or service required
by the packet as identified by the classifier or the execution resources of the said IP network
application processor.

334. The combination of claim 332 wherein said authentication engine further
comprises one or more capabilities to perform message authentication or message digest
algorithms as security service requested by the tag attached to the packet.

335. The combination of claim 334 wherein the message authentication algorithms
are secure hash algorithms and the message digest algorithms are MD4, MD5 or follow-ons
thereof.

336. The combination of claim 332 wherein said encryption/decryption engine
further comprises one or more capabilities to perform message encryption or decryption
using one or more encryption decryption algorithms as security service requested by the
said tag attached to the packet.

337. The combination of claim 332 wherein the encryption algorithms are DES,
3DES, or AES, or follow-ons thereof.

338. For use in a hardware implemented IP network application processor
comprising one or more packet processor engines, a session controler or connection
manager comprising a global session cache and memory complex for caching, storing and
retrieving session database entries for the connections being processed by the said IP
network application processor; a confrol plane processor to create and teardown session
entries to be held in the session cache and memory; a local session database cache to hold
the active session information inside the packet processor engines of the said IP network
application processor; a session database lookup engine inside one or more of the packet
processor engines to retrieve session database entries from the global session cache and

10

15

20

25

30

WO 03/104943 PCT/US03/18386

126

memory; a session manager that is local to a packet processor used to retrieve session
entries from local session cache; and a global session data base look-up engine inside the
session cache and memory complex to store, search and retrieve specific session entries to
serve the specific sessions from a session memory.

339. The combination of claim 338 wherein the at least one packet processor
engine comprises a RISC-style processor or a RISC processor with network oriented
instruction set enhancement or a TCP/IP processor engine or an IP Storage processor
engine or a general purpose processor or a combination of any of these processors.

340. The combination of claim 338 wherein the control plane processor comprises
a RISC-style processor, a system controller, a micro-controller or a state machine
implemented processor or a general purpose processor or a combination o any of these

processors.

341. The combination of claim 340 wherein the state machine implemented
processor includes the ability to perform functions that are full session initiation, session
entry creation, session teardown, session entry removal, error handling, session relocation
or session entry search and retrieval from the session memory, or a combination of any of
the foregoing.

342. The combination of claim 338 wherein the session database cache includes
the session information and fields from TCP/IP sessions, IP Storage sessions, RDMA
sessions or other network oriented connections between the network source and destination
systems.

343. The combination of claim 338 wherein the session cache and memory
complex includes a cache array to hold session entries and pointers to session fields held
off-chip, comprising a tag array includes tag address fields used to match a hash index or a
session entry look-up index address to find an associated cache entry from a memory array;
tag match logic to compare the index address matching with the ‘tag address fields; memory
banks to hold the session entry fields including pointers to fields held in off-chip memory;
memory row and column decoders to decode the address of the session entry to be
retrieved or stored; data input/output ports and buffers to hold session entry data to be
written or read from the session memory arrays; a session look-up engine to search session
entries based on a session index to read or write said entries and/or their specific fields; and

10

15

20

25

WO 03/104943 PCT/US03/18386

127

an external memory controller to store and retrieve session entries and/or other IP packet
processor data to/from off chip memories.

344. The session index of claim 343 comprising an index derived using a hashing
or an algebraic or geometric hash or binary search algorithm.

345. The combination of claim 343 wherein said memory on a chip not included in
said IP network application processoris RAM, DRAM, SDRAM, DDR SDRAM, RDRAM,
FCRAM, FLASH, ROM, EPROM, EEPROM, QDR SRAM QDR DRAM or other derivatives of
static or dynamic random access, or a combination of any of the foregoing.

346. The session cache and memory complex of claim 343 further comprising a
debug and self test component to debug the cache tag arrays and memory arrays during
silicon testing or at reset or power-up; and a direct access test structure used to test the
integrity of the cache array during manufacturing or at reset or power-up or other system

validation environments.

347. A switching system comprising a plurality of line cards coupled to a switching
fabric, said line cards including a processor capable of execution transport layer RDMA
functions for processing Internet data packets in one or more sessions, said processor
including a session memory for storing frequently or recently used session information for a
plurality of sessions.

348. The switching system of claim 347 wherein said processor on at least one line
card includes a host interface functioning as a fabric interface and said switching fabric is
coupled to said fabric interface through a fabric controller.

349. The switching system of claim 347 wherein said fabric controller functions as
an interface to said switching fabric, as a traffic manager as a traffic shaper or a
combination of any of the foregoing.

350. An IP processor having transport layer RDMA capability and comprising an IP
network application processor core or an IP Storage network application processor core for
enabling TCP over IP networks, said processor core comprising:

a. an RDMA mechanism for performing RDMA data transfer

10

15

20

WO 03/104943

e.

f.

PCT/US03/18386

128

at least one packet processor for processing packets;

a session memory for storing session information;

at least one memory controller for controlling memory accesses;
a media interface for coupling to at least one network; and

a host interface for coupling to at least one host or a fabric interface

for coupling to a fabric.

351. The IP processor of claim 350 further comprising at least one of:

a.

information;

g.

h.

an |P Storage session memory for storing IP Storage session

a classification processor for classifying IP packets;

a flow controller for controlling data flow;

a policy processor for applying policies;

a security processor for performing security operations;
at least one packet memory for storing packets

a controller for control plane processing; and

~a combination of any of the foregoing.

352. The IP processor of claim 350 wherein any combination of said recited

elements a through f or parts thereof are implemented in a single element.

353. The IP processor of claim 351 wherein any combination of said recited

elements a through h or parts thereof are implementedin a single element.

354. The processor of claim 2 wherein said processor is programmable and

operates on data packets transmitted, encapsulated or encoded using an iSCSl, iFCP,
infiniband, SATA, SAS, IP, ICMP, IPSEC, DES, 3DES, AES, FC, SCSI, FCIP, NFS, CIFS,

10

15

20

25

WO 03/104943 PCT/US03/18386

129

DAFS, HTTP, XML, XML derivative, SGML, or HTML format or a combination of any of the
foregoing.

355. The processor of claim 3 wherein said processor is programmable and
operates on data packets transmitted, encapsulated or encoded using an iSCSI, iFCP,
infiniband, SATA, SAS, IP, ICMP, IPSEC, DES, 3DES, AES, FC, SCSI, FCIP, NFS, CIFS,
DAFS, HTTP, XML, XML derivative, SGML, or HTML format or a combination of any of the
foregoing.

356. The processor of claim 4 wherein said processor is programmable and
operates on data packets transmitted, encapsulated or encoded using an iSCSI, iFCP,
infiniband, SATA, SAS, IP, ICMP, IPSEC, DES, 3DES, AES, FC, SCSI, FCIP, NFS, CIFS,
DAFS, HTTP, XML, XML derivative, SGML, or HTML format ora combination of any of the
foregoing.

357. The processor of claim 22 wherein said processor is programmable and
operates on data packets transmitted, encapsulated or encoded using a iSCSI, iFCP,
infiniband, SATA, SAS, IP, ICMP, IPSEC, DES, 3DES, AES, FC, SCSI, FCIP, NFS, CIFS,
DAFS, HTTP, XML, XML derivative, SGML, or HTML format or a combination of any of the
foregoing.

358. The processor of claim 29 wherein said hardware processor is programmable
and operates on data packets transmitted, encapsulated or encoded using a iSCSI, iFCP,
infiniband, SATA, SAS, IP, ICMP, IPSEC, DES, 3DES, AES, FC, SCSI, FCIP, NFS, CIFS,
DAFS, HTTP, XML, XML derivatives, SGML, or HTML format, or a combination of any of the
foregoing.

359. The combination of claim 32 wherein said processor is included within a
microcontroller, a processor or a chipset of at least one of said apparati.

360. The processor of claim 42 wherein said processor is programmable and
operates on data packets transmitted, encapsulated or encoded using a iSCSI, iFCP,
infiniband, SATA, SAS, IP, ICMP, IPSEC, DES, 3DES, AES, FC, SCSI, FCIP, NFS, CIFS,
DAFS, HTTP, XML, XML derivatives, SGML, or HTML format, or a combination of any of the
foregoing.

10

15

20

25

WO 03/104943 PCT/US03/18386

130

361. The combination of claim 47 wherein said processor itself includes a
processor for performing deep packet inspection and classification.

362. The combination of claim 48 wherein said processor itseff includes a
processor for performing deep packet inspection and classification.

363. The processor of claim 53 wherein said processor is programmable and
operates on data packets transmitted, encapsulated or encoded using an iSCSI, iFCP,
infiniband, SATA, SAS, IP, ICMP, IPSEC, DES, 3DES, AES, FC, SCSI, FCIP, NFS, CIFS,
DAFS, HTTP, XML, XML derivative, SGML, or HTML format or a combination of any of the
foregoing.

364. The processor of claim 54 wherein said processor is programmable and
operates on data packets transmitted, encapsulated or encoded using an iSCSI, iFCP,
infiniband, SATA, SAS, IP, ICMP, IPSEC, DES, 3DES, AES, FC, SCSI, FCIP, NFS, CIFS,
DAFS, HTTP, XML, XML derivative, SGML, or HTML format or a combination of any of the
foregoing.

365. The combination of claim 58, said processor having a security engine or a
classification engine, or a combination of said engines, said engines being on separate chips
of said chip set.

366. The combination of claim 61, said queues and said controller being
implemented on a chip in said chipset otherthan a chipon a mother board of said host.

367. A hardware processor capable of executing a transport layer RODMA protocol
on an IP Network.

368. The manufacturing process of creating a hardware processor capable of
executing a transport layer RDMA protocol on an IP Network.

369. The manufacturing process of creating on a hardware processor an RDMA
mechanism capable of performing a transport layer RDMA protocol on an IP Network.

370. The combination of a peer system connected to a host system, each of said
peer system and said host system including at least one hardware processor capable of
executing a transport layer RDMA protocol on an IP Network, said combination capable of

10

15

20

25

WO 03/104943 PCT/US03/18386

131

performing (a) RDMA transfer from the peer system to the host system, (b) RDMA transfer
from the host system to the peer system, and (c) RDMA transfer from the peer system to the
host system and from the host system to the peer system concurrently.

371. A hardware processor capable of executing a transport layer ROMA protocol
on an IP Network for Internet Protocol data transfers, and including &t least one packet
processor having an internal memory containing as database entries, frequently or recently
used IP session information for processing said data transfers.

372. The combination of claim 371 further comprising a global memory located on
or off said hardware processor and accessible by saidat least one packet processor, said
global memory containing as database entries, IP session information for processing said
data transfers, said IP session information contained in said global memory being less
frequently or less recently used than the IP session information contained in said internal
memory.

373. The combination of claim 372 further comprising an external memory located
on or off said hardware processor and coupled to said global memory, said external memory
containing as database entries, IP session information for processing said data transfers,
said IP session information contained in said external memory being less frequently or less
recently used than the IP session information contained in said global memory.

374. A hardware processor having at least one packet processor engine and
capable of executing a transport layer RDMA protocol over an IP Network for Internet
Protocol data transfers, and including:

a. a first memory internal to said at least one packet processor and
containing as database entries frequently or recently used IP session information for
processing said data transfers;

b. a global memory located on or off said hardware processor, said
global memory accessible by said at least one packet processor and containing as database
entries, IP session information for processing said data transfers, said IP session information
contained in said global memory being less frequently or less recently used than the IP
session information contained in said first memory; and

10

15

20

25

30

WO 03/104943 PCT/US03/18386

132

o a third memory located on or off the hardware processor, said third
memory coupled to said global memory and containing as database entries, IP session
information for processing said data transfers, said IP session information contained in said
third memory being less frequently or less recently used than the IP session information
contained in said global memory.

375. A hardware processor capable of executing a transport layer RDMA protocol
on an 1P Network for Internet data transfer, and including at least one packet processor
engine for processing said data transfers.

376. The combination of claim 375 further comprising a global memory located on
or off said hardware processor, said global memory coupled to said at least one packet
processor for use as a memory by said packet processor engine, said global memory
containing as database entries IP session information for processing said data transfers,
said IP session information in said global memory being frequently or recently used IP
session information for said data transfer.

377. The combination of claim 376 further comprising an additional memory
located on or off said hardware processor and coupled to said global memory, said
additional memory containing as database entries, IP session information, said IP session
information contained in said addifonal memory being less frequently or less recently used
than the IP session information contained in said global memory.

378. A hardware processor having at least one packet processor engine and
capable of executing a transport layer RDMA protocol over an IP Network for Internet
Protocol data transfers, and including:

a. a global memory located on or off said hardware processor, said
global memory coupled to said at least one packet processor engine for use as a memory of
said at least one packet processor, said giobal memory containing as database entries, IP
session information for processing said data transfers, said IP session information contained
in said global memory being frequently or recently used IP session information for said data

transfers; and

b. an additional memory located on or off the hardware processor and
coupled to said global memory, said additional memory containing as database entries, IP

10

15

20

25

WO 03/104943 PCT/US03/18386

133

session information being less frequently or less recently used than the IP session
information contained in said gobal memory.

379. A data processing apparatus capable of executing a transport layer RDMA
protocol over IP networks for Internet Protocol data transfers duiing Internet sessions,
including:

a. at least one memory in said data processing apparatus for containing
as database entries frequently or recently used IP session information for processing said
Internet Protocol data transfers;

b. a global memory located on or off said data processing apparatus,
said global memory coupled to said at least one internal memory and containing as
database entries, IP session information for processing said Internet Protocol data transfers,
said IP session information contained in said global memory being less frequently or less
recently used than the IP session information contained in said at least one internal memory.

380. The data processing apparatus of claim 379 coupled to an additional memory
located on or off said data processing apparatus, said additional memory containing as
database entries, IP session information for processing said data transfers, said IP session
information contained in said addifonal memory being less frequently or less recently used
than the IP session information contained in said global memory.

381. A data processing apparatus for processing Internet Protocol data transfers
during Internet sessions, including:

a. at least one internal memory on said data processing apparatus
containing as database entries, frequently or recently used IP session information for
processing said data transfers;

b. a global memory on said data processing apparatus or off said data
processing apparatus, said global memory coupled to said at least one internal memory and
containing as database entries, IP session information for processing said data transfers,
said IP session information contained in said global memory being less frequently used or
less recently used than the IP session information contained in said at least one internal
memory; and

10

15

20

25

WO 03/104943 PCT/US03/18386

134

c. an additional memory located on or off said data processing
apparatus, said additional memory containing as database entries, IP session information for
processing said data transfers said IP session information contained said additional memory
being less frequently or less recently used than the IP session information contained in said
global memory.

382. For use in a processor capable of executing a transport layer RDMA protocol
on an IP Network for internet Protocol data transfers in IP sessions, a session memory
containing as database entries, frequently or recently used IP session information for
processing said data transfers.

383. The session memory of claim 382 further comprising a global memory
accessible by said session memory, said global memory containing as database entries, IP
session information for processing said data transfers, said IP session information contained
in said global memory being less frequently or less recently used than the IP session
information contained in said session memory.

384. The combination of claim 383 further comprising a third memory accessible
by said global memory, said third memory containing as database entries, IP session
information for processing said data transfers, said IP session information contained in said
third memory being less frequently or less recently used than the IP session information
contained in said global memory.

385. For use in a processor capable of executing a transport layer RDMA protocol
over an IP Network for Internet Protocol data transfers in IP sessions a memory system
comprising:

a. a session memory containing as database entries frequently or
recently used IP session information for processing said data transfers;

b. a global memory accessible by said session memory and containing
as database entries, IP session information for processing said data transfers, said IP
session information contained in said global memory being less frequently or less recently
used than the IP session information contained in said session memory; and

10

15

20

25

30

WO 03/104943 PCT/US03/18386

135

C. a third memory accessible by global memory and containing as
database entries, IP session information for processing said data transfers, said IP session
information contained in said third memory being less frequently or less recently used than
the IP session information contained in said global memory.

386. A serverthatis a blade server, thin server, appliance server, unix server, linux
server, Windows or Windows derivative server, clustered server, database server, grid
computing server, VOIP server, wireless gateway server, security server, file server, network
attached server, media server, streaming media server or game server, or a combination of
any of the foregoing, said server including a chipset containing a hardware processor
providing a transport layer remote direct memory access capability over TCP, SCTP, UDC or
other session oriented protocol on a network.

387. A serverthatis a blade server, thin server, appliance server, unix server, linux
server, Windows or Windows derivative server, clustered server, database server, grid
computing server, VOIP server, wireless gateway server, security server, file server, network
attached server, media server, streaming media server or game server, or a combination of
any of the foregoing, said server including a chipset containing a hardware processor
providing remote direct memory access capability over a protocol other than TCP, SCTP or
UDP.

388. The server of claim 386 wherein said processor is programmable and
operates on data packets transmitted, encapsulated or encoded using an iSCSI, iFCP,
infiniband, SATA, SAS, IP, ICMP, IPSEC, DES, 3DES, AES, FC, SCSI, FCIP, NFS, CIFS,
DAFS, HTTP, XML, XML derivative, SGML, or HTML format or a combination of any of the
foregoing.

389. The server of claim 387 wherein said processor is programmable and
operates on data packets transmitted, encapsulated or encoded using an iSCSI, iFCP,
infiniband, SATA, SAS, IP, ICMP, IPSEC, DES, 3DES, AES, FC, SCSI, FCIP, NFS, CIFS,
DAFS, HTTP, XML, XML derivative, SGML, or HTML format or a combination of any of the
foregoing.

390. The server of claim 388 wherein said processor has certain of its functions
implemented in hardware and certain of its functions implemented in software.

10

15

20

25

WO 03/104943 PCT/US03/18386

136

391. The server of claim 389 wherein said processor has certain of its functions
implemented in hardware and certain of its functions implemented in software.

392. The server of claim 390, said processor included as a companion processor
on said server chipset.

393. The server of claim 391, said processor included as a companion processor
on said server chipset.

304. A storage controller for controlling storage and retrieval to and from a storage
area network, of data transmitted over IP networks, said storage controller including a
hardware processor providing a transport layer remote direct memory access capability for
enabling storage using TCP, SCTP or UDP over IP.

305. The storage controller of claim 394 wherein said hardware processor is
included as a companion processor on a chipset of said storage controller.

396. The storage controller of claim 394 wherein said processor is programmable
and operates on data packets transmitted, encapsulated or encoded using an iSCSI, iFCP,
infiniband, SATA, SAS, IP, ICMP, IPSEC, DES, 3DES, AES, FC, SCSI, FCIP, NFS, CIFS,
DAFS, HTTP, XML, XML derivative, SGML, or HTML format or a combination of any of the
foregoing.

397. The storage controller of claim 395 wherein said processor is programmable
and operates on data packets transmitted, encapsulated or encoded using an iSCSI, iFCP,
infiniband, SATA, SAS, IP, ICMP, IPSEC, DES, 3DES, AES, FC, SCSI, FCIP, NFS, CIFS,
DAFS, HTTP, XML, XML derivative, SGML, or HTML format or a combination of any of the
foregoing.

308. The combination of claim 394 wherein said processor (1) is embedded on a
chipset on the storage controller's motherboard, or (2) includes the function of data packet
security, or (3) includes the function of data packet scheduling, or (3) includes the function of
data packet classification.

390. The combination of claim 395 wherein said processor (1) is embedded on a
chipset on the storage controller's motherboard, or (2) includes the function of data packet

10

15

20

25

WO 03/104943 PCT/US03/18386

137

security, or (3) includes the function of data packet scheduling, or (3) includes the function of
data packet classification.

400. The combination of claim 394 wherein said processor provides IP network
storage capability for said storage controller to operate in an IP based storage area network.

401. The combination of claim 395 wherein said processor provides IP network
storage capability for said storage controller to operate in an IP based storage area network.

402. The combination of claim 394 wherein said storage controller includes a blade
controller having an interface to said storage area network.

403. The combination of claim 397 wherein said storage controller includes a blade
controller having an interface to said storage area network and said chipset is in said
interface.

404. The combination of claim 394 further comprising at least one storage array,
said storage controller providing access said at least one storage array and controlling the
storage function in said & least one storage array. '

405. The combination of claim 395 further comprising at least one storage array,
said storage controller providing access said at least one storage array and controlling the
storage function in said & least one storage array.

406. The combination of claim 386 wherein said server includes a host adapter
card and said processor is embedded in said host adapter card for providing high-speed
TCP/IP networking capability.

407. The combination of claim 387 wherein said server includes a host adapter
card and said processor is embedded in said host adapter card for providing high-speed
networking capability.

408. The combination of claim 406 wherein said host adapter card is capable of
accessing network storage to transmit data to said storage over the Internet.

409. The combination of claim 407 wherein said host adapter card is capable of
accessing network storage to transmit data to said storage over the Internet.

10

15

20

25

WO 03/104943 PCT/US03/18386

138

410. The combination of claim 406 wherein said adapter card is used as a blade in
a scalable blade server.

411. The combination of claim 407 wherein said host adapter card is used as a
blade in a scalable blade server.

412. The combination of claim 406 wherein said host adapter card is in the front
end of a storage array front end.

413. The combination of claim 407 wherein said host adapter card is in the front
end of a storage array front end.

414. A host processor for processing data packets received over the Internet, said
host processor including a hardware processor providing a transport layer remote direct
memory access capability for enabling storage using TCP, SCTP or UDP or other session
oriented protocol, over IP networks, said hardware processor providing offloading capability.

415. The combination of claim 414 wherein said hardware processor is
programmable and operates on data packets transmitted, encapsulated or encoded using an
iSCSI, iFCP, infiniband, SATA, SAS, IP, ICMP, IPSEC, DES, 3DES, AES, FC, SCSI, FCIP,
NFS, CIFS, DAFS, HTTP, XML, XML derivative, SGML, or HTML format or a combination of
any of the foregoing.

416. The combination of claim 414 wherein said host processor is a high end
server, workstation, personal computers capable of interfacing with high speed networks,
wireless LAN, hand held wireless telecommunication device, router, switch, gateway, blade
server, thin server, media server, streaming media server, appliance server, Unix server,
Linux server, Windows or Windows derivative server, AlX server, clustered server, database
server, grid computing server, VOIP server, wireless gateway server, security server, file
server, network attached storage server, game server or a combination of any of the
foregoing.

417. The combination of claim 415 wherein said host processor is a high end
server, workstation, personal computers capable of intetfacing with high speed networks,
wireless LAN, hand held wireless telecommunication device, router, switch and gateway,

blade server, thin server, media server, streaming media server, appliance server, Unix

10

15

20

25

WO 03/104943 PCT/US03/18386

139

server, Linux server, Windows or Windows derivative server, AlX server, clustered server,
database server, grid computing server, VOIP server, wireless gateway server, security
server, file server, network attached storage server, game server or a combination of any of
the foregoing.

418. The combination of claim 416 wherein at least one member of said group of
recited apparati is a low power apparatus.

419. The combination of claim 417 wherein at least one member of said group of
recited apparati is a low power apparatus.

420. An IP storage area network switching system line card having embedded
therein a hardware processor providing remote direct memory access capability for enabling
high-speed storage using TCP, SCTP or UDP over IP networks, said processor being
programmable and operating on data packets transmitted, encapsulated or encoded using
an iSCSI, iFCP, infiniband, SATA, SAS, IP, ICMP, IPSEC, DES, 3DES, AES, FC, SCSl,
FCIP, NFS, CIFS, DAFS, HTTP, XML, XML derivative, SGML, or HTML format or a
combination of any of the foregoing.

421. A gateway contréller of a storage area network, said gateway controller
including a chipset having embedded therein a hardware processor providing a transport
layer remote direct memory access capability for enabling high-speed storage using TCP,
SCTP or UDP over IP networks.

422. The combination of claim 421 wherein said hardware processor is
programmable and operates on data packets transmitted, encapsulated or encoded using an
iSCSI, iFCP, infiniband, SATA, SAS, IP, ICMP, IPSEC, DES, 3DES, AES, FC, SCSI, FCIP,
NFS, CIFS, DAFS, HTTP, XML, XML derivatives, SGML, or HTML format or a combination
of any of the foregoing.

423. A storage area network management appliance including a chipset having
embedded therein a hardware processor providing a transport layer remote direct memory
access capability for enabling storage of traffic using TCP, SCTP or UDP over IP networks,
said hardware processor enabling said appliance to transport TCP/IP packets in-band to
said traffic or out of band to said traffic.

10

15

20

25

WO 03/104943 PCT/US03/18386

140

424. A cluster of servers, each server including at least one chipset, at least one of
said chipsets in said cluster having embedded therein a hardware processor providing
remote direct memory access capability for enabling high-speed storage using TCP, SCTP
or UDP over IP networks.

425. The combination of claim 424 wherein said hardware processor is
programmable and operates on data packets transmitted, encapsulated or encoded using an
iSCSI, iFCP, infiniband, SATA, SAS, IP, ICMP, IPSEC, DES, 3DES, AES, FC, SCSI, FCIP,
NFS, CIFS, DAFS, HTTP, XML, XML derivatives, SGML, or HTML format or a combination
of any of the foregoing.

426. A chip set having embedded therein a hardware processor providing transport
layer remote direct memory access capability for enabling high-speed storage using TCP,
SCTP or UDP over IP networks.

427. The chip set of claim 426 wherein said hardware processor is programmable
and operates on data packets transmitted, encapsulated or encoded using an iSCSI, iFCP,
infiniband, SATA, SAS, IP, ICMP, IPSEC, DES, 3DES, AES, FC, SCSI, FCIP, NFS, CIFS,
DAFS, HTTP, XML, XML derivatives, SGML, or HTML format or a combination of any of the
foregoing.

428. The combination of claim 426 wherein said hardware processor has certain of
its functions implemented in hardware and certain of its functions implemented in software.

429. The combination of claim 426, said hardware processor having a security

engine or a classification engine or a combination of either.

430. A host processor running an application, said host processor including a
hardware processor providing transport layer remote direct memory access (RDMA)
capability, said hardware processor implemented for enabling high-speed storage using
TCP, SCTP or UDP over IP networks, said hardware processor including:

a. registration circuitry for allowing said application to register a memory
region of said host processor with said hardware processor for RDMA access;

b. communication circuitry for allowing the exporting of said registered
memory region to at least one peer hardware processor having RDMA capability and for

10

15

20

25

WO 03/104943 PCT/US03/18386

141

allowing the informing of said peer of said host processor’s desire to allow said peer to read
data from or write data to said registered memory region; and

c. RDMA circuitry for allowing information transfer to and from said
registered region of memory without substantial host processor intervention.

431. A host processor running an application, said host processor includinga
hardware processor providing transport layer remote direct memory access (RDMA)
capability, said hardware processor implemented on an integrated circuit chip for enabling
high-speed storage using TCP, SCTP or UDP over IP networks, the process of performing
RDMA for said application including the steps of:

a. said application registering a region of memory of said host processor
for RDMA;

b. said hardware processor making said region of memory available to a
peer processor having remote data transfer access capability without substantial intervention
by said host processor in said data transfer;

c. said hardware processor communicating to said peer processor said
host processor’s desire to allow said peer processor to read data from or write data to said
region of memory; and

d. said hardware processor enabling information transfer from or to said
registered region of memory without said host processor's substantial intervention in said
information transfer.

432. A host processor having a SCS| command larger and an iSCSI driver, said
host processor including a hardware processor including a transport layer RDMA capability
for providing TCP/IP operations over a network for data packets from or to an initiator and
providing said packets to or from said target, said operations requested by a host processor,
said hardware processor comprising:

a. an RDMA mechanism;

b. a command scheduler for scheduling commands from the command
layer of said host processor for operdtion in said hardware processor,

10

15

20

25

WO 03/104943 PCT/US03/18386

142
C. first command queues for queuing commands from said host
processor for existing sessions;
d. second command queues for queuing commands from said host

processor for sessions that do not currently exist;

e. a database for recording the state of the session on which said
command is transported, said database also for recording progress of RDMA for those of
said commands that use RDMA,;

f. a communication path between said hardware processor and said
SCS| layer of said host processor for communicating status of command execution to said
SCSI layer for processing; and

g. at least one transmit/receive engine and at least one command engine
coupled together, said engines working together to interpret commands and perform
appropriate operations for performing RDMA for retrieving data from or transmitting data to
said host processor and for updating said state of said session.

433. The combination of claim 432 wherein said at least one transmit/receive

engine is implemented as a separate transmit engine and a separate receive engine.

434. The combination of claim 432 wherein said first command queues are located
partly in memory on said hardware processor and partly in memory off said hardware
processor.

435. The combination of claim 432 wherein said second command queues are
located partly in memory on said hardware processor and partly in memory off said
hardware processor.

436. The combination of claim 434 wherein said memory off said hardware
processor is memory in said host processor and memory on a chip not included in said host

processor.

437. The combination of claim 435 wherein said memory off said hardware
processor is memory in said host processor and memory on a chip not included in said host
processor.

10

15

20

25

WO 03/104943 PCT/US03/18386

143

438. The combination of claim 436 wherein said memory on a chip not included n
said host processor is RAM, DRAM, SDRAM, DDR SDRAM, RDRAM, FCRAM, FLASH,
ROM, EPROM, EEPROM, QDR SRAM QDR DRAM and other derivatives of static or
dynamic random access memory, or a combination of any of the foregoing.

439. The combination of claim 436 wherein said memory on a chip not included n
said host processor is located on a companion chip to said hardware processor.

440. The combination of claim 437 wherein said memory on a chip not included in
said host processor is RAM, DRAM, SDRAM, DDR SDRAM, RDRAM, FCRAM, FLASH,
ROM, EPROM, EEPROM, QDR SRAM QDR DRAM and other derivatives of static or
dynamic random access memory, or a combination of any of the foregoing.

441. The combination of claim 437 wherein said memory on a chip not included n
said host processor is located on a companion chip to said hardware processor.

442. A host processor having a SCSI command layer and an iSCSI driver, said
host processor capable of being coupled to a hardware implemented iSCSI controller
useable in high speed storage over IP, said controller for transporting received iSCSI
commands and PDUSs, said controller having access to a data base for keeping track of data
processing operations, said database being in memory on said controller, or in memory
partly on said controller and partly in a computing apparatus other than said controller, said
controller having a transmit and a receive path for data flow, said controller comprising:

a. a command scheduler for scheduling processing of commands, said
scheduler coupled to said SCSI command layer and to said iSCSI driver,

b. a receive path for data flow of received data and a transmit path for
data flow of transmitted data;

c. at least one transmit engine for transmitting iSCSI PDUs;

d. at least one transmit command engine for interpreting said PDUs and
performing operations including retrieving information from said host processor using remote
direct memory access and keeping command flow information in said database updated as
said retrieving progresses;

10

15

20

25

WO 03/104943 PCT/US03/18386

144
e. at least one receive command engine; and
f. at least one receive engine for interpreting received commands into

requests for at least one of said at least one receive command engine.

443. A storage array controller having a chipset for controliing a storage array, said
controller including a hardware processor capable of providing remote direct memory access
capability for enabling storage using TCP, SCTP or UDP over IP networks, said processor
controlling storage and retrieval, to and from said storage array, of data transmitted over |P
networks, said processor included as a companion processor on said chipset

444. The combination of claim 443 wherein said processor provides IP network
storage capability for said storage array controller to operate in an IP based storage area
network.

445. In a hardware processor capable of executing a transport layer RDMA
protocol for transporting data packets in TCP/IP or other session oriented protocol sessions
or flows over an IP network, a scheduler for scheduling said packets to execution resources
of the hardware processor, said scheduler comprising:

a. a resource allocation table for storing
i. the identification of at least some of said execution resources,

il. the identification of the session which at least one of said
resources is executing, and

iii. the processing state of said resources, and

b. a state controller and sequencer coupled to said resource allocation
table and to said execution resources, said state controller and sequencer scheduling
packets to be processed on a specific session to the execution resource executing said
specific session, said scheduling based on at least the execution state of said execution

resource.

446. The scheduler of claim 445 wherein said resource allocation table also stores
the TCP/IP session on which at least some of said packets are to be processed.

10

15

20 .

25

WO 03/104943 PCT/US03/18386

145

447. The scheduler of claim 445 including a packet memory for storing a plurality
of packets, said packet memory coupled to said state controller and sequencer.

448. In adata processing apparatus capable of executing a transport layer RDMA
protocol for transporting data packets in TCP/IP or other session oriented protocol sessions
or flows over an IP network, a scheduler for scheduling said packets to execution resources
of the hardware processor, said scheduler comprising:

a. a resource allocation table for storing
i. the identification of at least some of said execution resources,

ii.. the identification of the TCP/IP session which at least one of
said resources is executing,

iii. the processing state of said resources, and

b. a state controller and sequencer coupled to said resource allocation
table, and to said execution resources, said state controller and sequencer scheduling
packets to be processed on a specific session to the execution resource executing said
specific session, said scheduling based on at least the execution state of said execution

resource.

449. The scheduler of claim 449 wherein said resource allocation table also stores
the session on which at least some of said packets are to be processed.

450. The scheduler of claim 448 further comprising a packet memory for storing a
plurality of packets, said packet memory coupled to said state controller and sequencer.

451. A switching system comprising a plurality of line cards coupledto a switching
fabric, said line cards including a processor for processing Internet data packets in one or
more sessions, said processor including a session memory for storing frequently or recently
used session information for a plurality of sessions.

452. The switching system of claim 451 wherein said processor on at least one line
card includes a host interface functioning as a fabric interface and said switching fabric is
coupled to said fabric interface through a fabric controller.

10

15

20

WO 03/104943 PCT/US03/18386

146

453. The switching system of claim 452 wherein said fabric controlier functions as
an interface to said switching fabric, as a traffic manager as a traffic shaper or a
combination of any of the foregoing.

454. An IP processor for enabling TCP or SCTP, or UDP, or other session oriented
protocols over IP networks, said IP processor comprising:

a. at least one packet processor for processing IP packets;

b. a session memory for storing IP session information;

C. at least one memory controller for controlling memory accesses;

d. at least one media interface for coupling to at least one network; and
e. a host interface for coupling to at least one host or a fabric interface

for coupling to a fabric.

455, The IP processor of claim 454 further comprising at least one of:

a. an IP Storage session memory for storing IP Storage session
information;

b. a classification processor for classifying IP packets;

c. a flow controller for controlling data flow;

d. a policy processor for applying policies;

e. a security processor for performing security operations;

f. a packet memory for storing packets

g. a controller for control plane processing;

h. a packet scheduler,

i. a connection manager or session controller for managing sessions; or

j- a combination of any of the foregoing.

10

15

20

25

WO 03/104943 PCT/US03/18386

147

456. A hardware processor for Internet Protocol data transfers, said processor
including at least one packet processor having an internal memory containing as database
entries, frequently or recently used IP session information for processing said data transfers.

457. The combination of claim 456 further comprising a global memory located on
or off said hardware processor and accessible by saidat least one packet processor, said
global memory containing as database entries, session information for processing said data
transfers, said session information contained in said global memory being less frequently or
less recenfcly used than the session information contained in said internal memory.

458. The combination of claim 457 further comprising an external memory located
on or off said hardware processor and coupled to said global memory, said external memory
containing as database entries, session information for processing said data transfers, said
session information contained in said external memory being less frequently or less recently
used than the IP session information contained in said global memory.

459. A hardware processor having at least one packet processor engine for
Internet Protocol data transfers over an IP Network, said hardware processor including:

a. a first memory internal to said at least one packet processor engine
and containing as database entries frequently or recently used IP session information for
processing said data transfers;

b. a global memory located on or off said hardware processor, said
global memory accessible by said at least one packet processor engine and containing as
database entries, IP session information for processing said data transferé, said IP session
information contained in said gobal memory being less frequently or less recently used than
the IP session information contained in said first memory; and

c. a third memory located on or off the hardware processor, said third
memory coupled to said global memory and containing as database entries, IP session
information for processing said data transfers, said IP session information contained in said
third memory being less frequently or less recently used than the IP session information
contained in said global memory.

10

15

20

25

WO 03/104943 PCT/US03/18386

148

460. A hardware processor for Internet data transfer on an |P Network, and
including at least one packet processor engine for processing said data transfers and further
comprising a global memory located on or off said hardware processor, said global memory
coupled to said at least one packet processor engine for use as a memory by said packet
processor, said global memory containing as database entries IP session information for
processing said data transfers, said IP session information in said global memory being
frequently or recently used IP session information for said data transfer.

461. The combination of claim 460 further comprising an additional memory
located on or off said hardware processor engine and coupled to said global memory, said
additional memory containing as database entries, IP session information, said IP session
information contained in said addifonal memory being less frequently or less recently used
than the IP session information contained in said global memory.

462. A hardware processor having at least one packet processor engine for
Internet Protocol data transfers over an IP Network, and including:

a. a global memory located on or off said hardware processor, said
global memory coupled to said at least one packet processor engine for use as a memory of
said at least one packet processor engine, said global memory containing as database
entries, IP session information for processing said data transfers, said IP session information
contained in said global memory being frequently or recently used IP session information for
said data transfers; and

b. an additional memory located on or off the hardware processor and
coupled to said global memory, said additional memory containing as database entries, 1P
session information being less frequently or less recently used than the IP session
information contained in said gobal memory.

463. A data processing apparatus for Internet Protocol data transfers over IP
networks during Internet sessions, including:

a. at least one memory in said data processing apparatus for containing
as database entries frequently or recently used IP session information for processing said
Internet Protocol data transfers;

10

15

20

25

WO 03/104943 PCT/US03/18386

149

b. a global memory located on or off said data processing apparatus,
said global memory coupled to said at least one internal memory and containing as
database entries, IP session information for processing said Internet Protocol data transfers,
said IP session information contained in said global memory being less frequently or less
recently used than the IP session information contained in said at least one internal memory.

464. The data processing apparatus of claim 463 coupled to an additional memory
located on or off said data processing apparatus, said additional memory containing as
database entries, IP session information for processing said data transfers, said IP session
information contained in said addiional memory being less frequently or less recently used
than the IP session information contained in said global memory.

465. A data processing apparatus capable of processing Internet Protocol data
transfers during Internet sessions, including:

a. at least one internal memory on said data processing apparatus
containing as database entries, frequently or recently used IP session information for
processing said data transfers;

b. a global memory on said data processing apparatus or off said data
processing apparatus, said global memory coupled to said at least one internal memory and
containing as database entries, IP session information for processing said data transfers,
said IP session information contained in said global memory being less frequently used or
less recently used than the IP session information contained in said at least one internal
memory; and

c. an additional memory located on or off said data processing
apparatus, said additional memory containing as database entries, IP session information for
processing said data transfers said IP session information contained said additional memory
being less frequently or less recently used than the IP session information contained in said
global memory.

466. For use in a processor for Internet Protocol data transfers on an IP Network in
IP sessions, a session memory containing as database entries, frequently or recently used
IP session information for processing said data transfers.

10

15

20

25

30

WO 03/104943 PCT/US03/18386

150

467. The session memory of claim 466 further comprising a global memory
accessible by said session memory, said global memory containing as database entries, IP
session information for processing said data transfers, said IP session information contained
in said global memory being less frequently or less recently used than the IP session

information contained in said session memory.

468. The combination of claim 467 further comprising an third memory accessible
by said global memory, said third memory containing as database entries, |IP session
information for processing said data transfers, said IP session information contained in said
third memory being less frequently or less recently used than the IP session information
contained in said global memory.

489. For use in a processor for Internet Protocol data transfers over an IP Network
in IP sessions, a memory system comprising:

a. a session memory containing as database entries frequently or

recently used IP session information for processing said data transfers;

b. a global memory accessible by said session memory and containing
as database entries, IP session information for processing said data transfers, said IP
session information contained in said global memory being less frequently or less recently
used than the IP session information contained in said session memory; and

c. a third memory accessible by global memory and containing as
database entries, IP session information for processing said data transfers, said IP session
information contained in said third memory being less frequently or less recently used than
the IP session information contained in said global memory.

470. A host processor having a SCSI command layer and an iSCSI or IP Storage
driver, said host processor capable of being coupled to a hardware implemented iSCSI or IP
Storage confroller useable in high speed storage over IP, said controller for transporting
received iSCSI or IP Storage commands and PDUs, said controlier having access to a data
base for keeping track of data processing operations, said database being in memory on
said controller, or in memory partly on said controller and partly in a computing apparatus
other than said controller, said controller having a transmit and a receive path for data flow,
said controller comprising:

10

15

20

25

WO 03/104943 PCT/US03/18386

151

- |
a. a command scheduler for scheduling processing of commands, said

scheduler coupled to said SCSI command layer and to said iSCSI or IP Storage driver;

b. a receive path for data flow of received data and a transmit path for
data flow of transmitted data;

c. at least one transmit engine for transmitting iSCSI or IP Storage
PDUs;

d. at least one transmit command engine for interpreting said PDUs and
performing operations including retrieving information from said host processor using remote
direct memory access and keeping command flow information in said database updated as
said retrieving progresses;

e. at least one receive command engine; and

f. at least one receive engine for interpreting received commands into
requests for at least one of said at least one receive command engine.

471. In a hardware processor for transporting data packets in TCP/IP or other
session oriented IP Protocol sessions or flows over an IP network, a scheduler for
scheduling said packets to execution resources of the hardware processor, said scheduler

comprising:
a. a resource allocation table for storing
i. the identification of at least some of said execution resources,

ii. the identification of the session which at least one of said

resources is executing, and
iii. the processing state of said resources, and

b. a state controller and sequencer coupled to said resource allocation
table and to said execution resources, said state controlier and sequencer scheduling
packets to be processed on a specific session to the execution resource executing said
specific session, said scheduling based on at least the execution state of said execution

resource.

10

15

20

25

WO 03/104943 PCT/US03/18386

152

472. The scheduler of claim 471 wherein said resource allocation table also stores
the session on which at least some of said packets are to be processed.

473. The scheduler of claim 471 including a packet memory for storing a plurality
of packets, said packet memory coupled to said state controller and sequencer.

474. In a data processing apparatus for transporting data packets in TCP/IP or
other session oriented IP Protocol sessions or flows over an IP network, a scheduler for
scheduling said packets to execution resources of the data processing apparatus, said
scheduler comprising:

a. a resource allocation table for storing
i. the identification of at least some of said execution resources,

i the identification of the session which at least one of said
resources is executing, and

iii. the processing state of said resources; and

b. a state controller and sequencer coupled to said resource allocation
table, and to said execution resources, said state controller and sequencer scheduling
packets to be processed on a specific session to the execution resource executing said
specific session, said scheduling based on at least the execution state of said execution
resource.

475. The scheduler of claim 474 wherein said resource allocation table also stores
the session on which at least some of said packets are to be processed.

476. The scheduler of claim 474 further comprising a packet memory for storing a
plurality of packets, said packet memory coupled to said state controller and sequencer.

477. A processor for processing Internet data packets in one or more sessions,
said processor including a session memory for storing frequently or recently used session
information for a plurality of sessions.

478. A TCP/IP processor implemented in hardware, said processor including a
session memory for storing session information for a plurality of sessions.

10

15

20

25

30

WO 03/104943 PCT/US03/18386

153

479. A processor for processing Internet data packets in one or more sessions,
and a session memory for storing session information for a plurality of said sessions.

480. An IP storage processor implemented in hardware, said processor including a
session memory for storing session information for a plurality of sessions.

481. The process, in a hardware implemented control plane processor or session
controller coupled to a host processor or a remote peer, of creating new sessions and their
corresponding session database entries responsive to new session connection requests
received eitherfrom the host processor or the remote peer.

482. The process, in a hardware implemented control plane processor or session
controller coupled to a host processor or a remote peer and including a TCP/IP hardware
processor engine or an IP storage processor engine, or a combination of any of the
foregoing, of tearing down or removing sessions and their corresponding session database
entries responsive to session connection closure requests received either from the host
processor or the remote peer or as a result of the operation by the said TCP/IP processor
engine or IP Storage processor engine or a combination of any of the foregoing.

483. For use in a hardware implemented IP network application processor
including an input queue and queue controller for accepting incoming data packets including
new commands from multiple input ports and queuing them on an input packet queue for
scheduling and further processing, the process comprising: accepting incoming data
packets from one or more input ports and queuing them on an input packet queus; and de-
queuing said packets for scheduling and further packet processing.

484. For use in a hardware implemented IP network application processor having
one or more output queues for accepting outgoing data packets, including new commands,
from one or more packet processor engines, TCP/IP processor engines or IP Storage
processing engines, directing said packets on to an output port interface for sending them
out to a network interface, said interface sending said packets on to the network, through
one or more output packets, said process including: accepting incoming data packets from
one or more packet processing engines and queuing them on said output packet queue; and
de-queuing said packets for delivery to said output port based on the destination port
information in said packet.

WO 03/104943 PCT/US03/18386

154

485. A TCP/IP processor engine for processing Internet Protocol packets and
comprising at least one of each of:

a. a checksum hardware for performing checksum operations;
b. a data memory for storing data used in the TCP/IP processor engine;
5 C. an instruction memory for storing instructions used in the TCP/IP

processor engine;

d. an instruction fetch mechanism for fetching said instructions;
e. an instruction decoder for decoding said instructions;
f. an instruction sequencer for sequencing said instructions;
10 g. a session database memory for storing TCP/IP session data; or
h. a session database memory controller for controlling said session

database memory;
or a combination of any of the foregoing items a through i; and

a host interface, or a fabric interface, or bus contioller, or memory controller or combination
15 of any of the foregoing for coupling to host or a fabric.

486. The TCP/IP processor engine of claim 485 further comprising at least one of:

a. a hash engine for performing hash functions;
b. a sequencer manager for sequencing operations;
c. a window operations manager for performing windowing operations to

20 position packets within, and/or verify packets to be within, agreed windows;
d. a classification tag interpreter for interpreting classification tags;
e. a frame controller for controlling data framing;

f. an out of order manager for handling out of order data;

10

15

20

WO 03/104943

487.

p.

q.

PCT/US03/18386

155

a register file for storing data;

a TCP state manager for managing TCP session states;

a CRC component for performing CRC operations;

an execution resource unit or ALU for data processing;

a TCP session database lookup engine for accessing session entries;
an SNACK engine for selective negative acknowledgment;

an SACK engine for selective positive acknowledgment;

a segmentation controller for controlling the segmentation of data;

a timer for event timing;

a packet memory for storing packets; and

a combination of any of the foregoing.

An IP storage processor engine for processing Internet Protocol packets and

comprising at least one of each of:

engine;

information;

a.

b.

CRC hardware for performing CRC functions;
a data memory for storing data used in the processor engine;

an instruction memory for storing instructions used in the processor

an instruction fetch mechanism for fetching said instructions;
an instruction decoder for decoding said instructions;
an instruction sequencer for sequencing said instructions;

an IP storage session database memory for storing IP storage session

10

15

20

WO 03/104943 PCT/US03/18386

156

h. an IP storage session database memory controller for controliing said
IP storage session database memory;

i a combination of any of the foregoing items a through j; and

je a host interface, or a fabric interface, or bus controller, or memory
controller or combination thereof for a host or to a fabric.

488. The IP storage processor engine of claim 487 further comprising at least one

of:
a. hash engine for performing hash operations;
b. a sequencer manager for sequencing operations;
C. a window operations manager for positioning packets within, and/or

verifying received packets to be within, agreed windows;

d. a classification tag interpreter for interpreting classifications tags;

e. an out of order manager for handling out of order data;

f. a register file for storing data;

g. a PDU storage classifier for classifying packets into various attributes;
h. an IP storage state manager for managing IP storage session states;

i a checksum component for performing checksum operations;
J- an execution resource unit or ALU for data processing;

k. an IP storage session database lookup engine for accessing session
entries;

L a SNACK engine for selective negative acknowledgment;
m. a SACK engine for selective positive acknowledgment;

n. a segmentation controller for controlling the segmentation of data;

10

15

20

25

WO 03/104943 PCT/US03/18386

157
0. a timer for event timing;
p. a packet memory for storing packets; and
q. a combination of any of the foregoing.

489. A hardware implemented IP network application processor for providing
TCP/IP operations in sessions on information packets from or to an initiator and providing
information packets to or from a target, comprising the combination of:

a. data processing resources including at least one programmable
packet processor for processing said packets;

b. a TCP/IP session cache and memory controller for keeping track of
the progress of, and memory useful in, said operations on said packets;

c. a host interface controller capable of confrolling an interface to a host
computer in an initiator or target computer system or a fabric interface controller capable of
controlling an interface to a fabric; and

d. a media independert interface capable of controlling an interface to
the network media in an initiator or target.

490. The packet processor of claim 102 further comprising (1) a packet processor
engine, or (2) a TCP/IP processor engine, or (3) an IP Storage processor engine, ora
combination of any of the foregoing.

491. The packet processor of claim 106 further comprising (1) a packet processor
engine, or (2) a TCP/IP processor engine, or (3) an IP Storage processor engine, ora
combination of any of the foregoing.

492. A hardware processorfor enabling Internet Protocol packets or their payloads
to stream from a network interface through said hardware processor to a host interface or a
fabric interface during packet processing, said hardware processor comprising:

a. at least one packet processor for processing said packets;

b. a packet memory;

10

15

20

25

WO 03/104943 PCT/US03/18386

158

c. a scheduler coupled to said at least one packet processor and to said
packet memory for scheduling said packets to said at least one packet processor;

d. a session memory for storing session information for those packets
transmitted, encapsulated orencoded using a session oriented protocol; and

e. a session manager coupled to the foregoing elements for managing
session states for those packets transmitted, encapsulated or encoded using a session

oriented protocol.

493. The hardware processor of claim 492 further includinga TCP processor
engine for transporting the data in said packets or an IP Storage processor engine for storing
the data in said packets.

494. The hardware processor of claim 492 wherein any of said elements a through
e, or any parts thereof, are implemented in a single apparatus.

495. The hardware processor of claim 493 wherein any of said elements a through
e or any of said processor engine, or parts thereof, are implemented in a single apparatus.

496. The hardware processor of claim 492 further includinga processor for
classifying said packets, a processor for applying a policy to said packets and a security
processor for performing security functions for said packets.

497. The hardware processor of claim 496 wherein any of said processors for
classifying, applying a policy or performing security functions, or parts thereof, are
implemented in a single apparatus.

498. The hardware processor of claim 492 wherein said packet processor is a
TCP/IP processor engine, or an IP Storage processor engine, or a packet processor engine
with a packet oriented instruction set, or a packet processor engine with a RISC instruction
set, or a combination of any of the foregoing.

499. A TCP/ IP processor having transport level RDMA capability for enabling TCP
or other session oriented protocols, over IP networks, said processor comprising:

a. an RDMA mechanism for performing RDMA data transfer

10

15

20

WO 03/104943

f.

PCT/US03/18386

159

at least one TCP/IP processor engine for processing IP packets;

a session memory for storing session information;

at least one memory controller for controlling memory accesses;

at least one media interface for coupling to at least one network; and

a host interface for coupling to at least one host or a fabric interface

for coupling to a fabric.

500. The TCP/IP processor of claim 499 further comprising at least one of:

L

j-

a packet processor engine for processing packets;

a classification processor for classifying IP packets;

a flow controller for controlling data flow;

a policy processor for applying policies;

a security processor for performing security operations;

a controller for control plane processing;

a packet scheduler;

a packet memory for storing packets;

a connection manager or session controller for managing sessions; or

a combination of any of the foregoing.

501. A TCP/ IP processor for enabling TCP, SCTP, or UDP or other session
oriented protocols, over IP networks, said processor comprising:

a.

b.

C.

at least one TCP/IP processor engine for processing IP packets;
a session memory for storing session information;

at least one memory controller for controlling memory accesses;

10

15

20

WO 03/104943

d.

e.

PCT/US03/18386

160

at least one media interface for coupling to at least one network; and

a host interface for coupling to at least one host or a fabric interface

for coupling to a fabric.

502.

503.

The TCP/IP processor of claim 501 further comprising at least one of:

a.

j-

a packet processor engine for processing packets;

a classification processor for classifying IP packets;

a flow controller for controlling data flow;

a policy processor for applying policies;

a security processor for performing security operations;

a controllerfor control plane processing;

a packet scheduler;

a packet memory for storing packets;

a connection manager or session controller for managing sessions; or

a combination of any of the foregoing.

An IP Storage processor having RDMA capability for enabling IP Storage

protocols over IP networks, said processor comprising:

packets;

a.

an RDMA mechanism for performing RDMA data transfer;

at least one IP Storage processor engine for processing IP storage

an IP Storage session memory for storing session information;
at least one memory controller for controlling memory accesses;

at least one media interface for coupling to at least one network; and

WO 03/104943 PCT/US03/18386

161

f. a host interface for coupling to at least one host or at least one fabric
interface for coupling to a fabric.

504. The IP Storage processor of claim 503 further comprising at least one of:

a. a packet processor engine for processing packets;
S b. a classification processor for classifying IP packets;

c. a flow controller for controlling data flow;
d. a policy processor for applying policies;
e. a security processor for performing security operations;
f. a controller for control plane processing;

10 g. a packet scheduler,
h. a packet memory for storing packets; or

i. a combination of any of the foregoing.

505. An IP Storage processor for enabling IP Storage protocols over IP networks,
said processor comprising:

15 a. at least one IP Storage processor engine for processing IP storage
packets;
b. an IP Storage session memory for storing session information;
C. at least one memory controller for controlling memory accesses;
d. atleast one medié interface for coupling to at least one network; and
20 e. a host interface for coupling to at least one host or a fabric interface

for coupling to a fabric.

506. The IP Storage processor of claim 505 further comprising at least one of:

WO 03/104943

PCT/US03/18386

162
a. a packet processor engine for processing packets;
b. a classification processor for classifying IP packets;
C. a flow controller for controlling data flow;
d. a policy processor for applying policies;
5 e a security processor for performing security operations;
f. a controllerfor control plane processing;
g. a packet scheduler;
h. a packet memory for storing packets; or
i. a combination of any of the foregoing.
10 507. A multiprocessor system comprising at least one data processor coupledto a

plurality of IP processors for interfacing said at least one data processor to said IP

processors, for enabling TCP, STCP, UDP or other session oriented protocols over [P

networks, said IP processor comprising:

15 b.

e.
coupling to a fabric.

at least one packet processor for processing IP packets;

a session memory for storing IP session information;

at least one memory controller for controlling memory accesses;

at least one media interface for coupling to at least one network; and

a host interface for coupling to at least one host or fabric interface for

20 508. The multiprocessor system of claim 507, said IP network application

processor further comprising at least one of:

a.

information;

an |P Storage session memory for storing IP Storage session

10

15

20

25

WO 03/104943 PCT/US03/18386

163 .
b. a classification processor for classifying IP packets;
c. a flow controller for controlling data flow;
d. a policy processor for applying policies;
e. a security processor for performing security operations;
f. a packet memory for storing packets;
g. a controller for control plane processing;

h. a packet scheduler,
i. a connection manager or session controller for managing sessions’ or
j- a combination of any of the foregoing.

509. The multiprocessor system of claim 507 wherein two or more of said plurality
of IP processors are coupled to each other.

510. The multiprocessor system of claim 508 wherein two or more of said plurality
of IP processors are coupled fo each other.

511. The multiprocessor system of claim 509 wherein said two or more of said
plurality of IP processors are coupled through a co-processor interface, ora host interface,
or a bridge, or a combination of any of the foregoing.

512. The multiprocessor system of claim 510 wherein said two or more of said
plurality of IP processors are coupled through a co-processor interface, or a host interface,
or a bridge, or a combination of any of the foregoing.

513. The hardware processor of claim 65 wherein said processor includes at least
one engine that is a firewall engine, a router or a telecommunication network acceleration
engine.

514. A processor implemented in hardware and capable of performing transport
layer RDMA functions, and including a session memory for storing session information fora
plurality of sessions.

10

15

20

25

WO 03/104943 PCT/US03/18386

164

515. The process, using a TCP/IP processor capable of executing a transport layer
RDMA protocol, of transferring data from a host processor to an output media interface of a
host system, said process including said TCP/IP processor forming headers and forming
segmentation for said data to be transferred.

516. The process of claim 522 wherein at least one of said headers is a header
used for transporting data through a storage area network, a local area network, a metro
area network, a system area network, a system area network, a wireless local area network,
a personal area network, a home network or a wide area network or a combination of any of
the foregoing.

517. A hardware processor having transport layer RDMA capability for enabling
Internet Protocol packets or their payloads to stream from a network interface through said
hardware processor to a host interface or a fabric interface during packet processing, said
hardware processor comprising:

a. an RDMA mechanism for performing RDMA data transfer;,

b. at least one packet processor for processing said packets;

c. a packet memory;

d. a scheduler coupled to said at least one packet processor and to said

packet memory for scheduling said packets to said at least one packet processor;

e. a session memory for storing session information for those packets
transmitted, encapsulated or encoded using a session oriented protocol; and

f. a session manager coupled to the foregoing elements for managing
session states for those packets transmitted, encapsulated or encoded using a session
oriented protocol.

518. The hardware processor of claim 517 further includinga TCP processor
engine for transporting the data in said packets or an IP Storage processor engine for storing

the data in said packets.

519. The hardware processor of claim 517 wherein any of said elements a through
e, or any parts thereof, are implemented in a single apparatus.

10

15

20

25

WO 03/104943 PCT/US03/18386

165

520. The hardware processor of claim 518 wherein any of said elements a through
e or any of said processors, or parts thereof, are implemented in a single apparatus.

521. The hardware processor of claim 517 further including a processor for
classifying said packets, a processor for applying a policy to said packets and a security
processor for performing security functions for said packets.

522. The hardware processor of claim 521 wherein any of said processors for
classifying, applying a policy or performing security functions, or parts thereof, are
implemented in a single apparatus.

523. The hardware processor of claim 517 wherein said packet processor is a
TCP/IP processor engine, or an IP Storage processor engine, or a packet processor engine
with a packet oriented instruction set, or a packet processor engine with a RISC instruction
set, or a combination of any of the foregoing.

524. An IP processor having RDMA capability for enabling TCP or other session
oriented protocols over IP networks, said processor comprising:

a. an RDMA mechanism for performing RDMA data transfer

b. at least one packet processor for processing IP packets;

C. a session memory for storing IP session information;

d. at least one memory controller for controlling memory accesses;

e. at least one media interface for coupling to at least one network; and
f. a host interface for coupling to at least one host or a fabric interface

for coupling to a fabric;

i. wherein said processor operates in multiple stages, including
one or more of the stages of (1) receiving incoming IP packets; (2) providing security for said
incoming IP packets if needed:; (3) classifying said incoming IP packets; (4) scheduling IP
packets for processing; (5) executing data processing operations on IP Packets;

(6) providing direct memory access for transferring data/packets to or from the memory of a
system external to said processor; (7) executing protocol processing operations on data or

WO 03/104943 PCT/US03/18386

166

commands forming IP packets; and (8) providing processing security for outgoing IP packets
if needed, or (9) transmitting IP packets onto a network; or any combination of any of the
foregoing; and

(a) each of said stages is capable of operating on different
5 IP packets concurrently.

525. The IP processor of claim 524 wherein each stage of said IP processor may
take a different length of time to perform its function than one or more of the other stages of
said |IP processor.

526. An IP processor for enabling TCP or other session oriented protocols over IP
10 networks, said processor comprising:

a. at least one packet processor for processing IP packets;

b. a session memory for storing IP session information;

C. at least one memory controller for controlling memory accesses;

d. at least one media interface for coupling to at least one network; and
15 e. a host interface for coupling to at least one host or a fabric interface

for coupling to a fabric;

i wherein said processor operates in multiple stages, including
one or more of the stages of (1) receiving incoming IP packets; (2) providing security for said
incoming IP packets if needed; (3) classifying said incoming IP packets; (4) scheduling IP

20 packets for processing; (5) executing data processing operations on IP Packets;
(6) providing direct memory access for transferring data/packets to or from the memory of a
system external to said processor; (7) executing protocol processing operations on data or
commands forming IP packets; and (8) providing processing security for outgoing IP packets
if needed, or (9) transmitting IP packets onto a network; or any combination of any of the

25 foregoing;

ii. each of said stages is capable of operating on different IP

packets concurrently.

WO 03/104943 PCT/US03/18386

167

527. The IP processor of claim 526 wherein each stage of said IP processor may
take a different length of time to perform its function than one or more of the other stages of
said IP processor.

528. The combination of claim 168 wherein said data transfer is accomplished
5 using a TCP, SCTP or UDP or other session oriented protocol, or a combination of any of
the foregoing.

520. The combination of claim 168 wherein said data transfer is accomplished
using a protocol selected from the group of protocols other than TCP, SCTP or UDP.

530. The IP Storage or iSCSI stack of claim 86 further comprising memory for
10 storing a database to maintain various information regarding said active sessions or
connections and IP Storage or iSCSI state information for each of the sessions or

connections.

531. The IP Storage or iSCSI stack of claim 86 further comprising an interface that
includes circuitry for interfacing to at least one layer that is a wired or wireless Ethernet, Mil,
15 GMIl, XGMII, XPF, XAUI, TBI, SONET, DSL, POS, POS-PHY,SPI Interface, SPI-4 or other
SPI derivative Interface, Infiniband, or FC layer.

532. An IP Storage processor having remote direct memory access capability for
enabling IP Storage protocols over IP networks, said processor including an IP Storage
stack providing IP Storage protocol termination and origination, transporting information in

20 active sessions over IP networks by transporting PDU'’s specified by the IP storage standard

said processor comprising:

a. An RDMA mechanism for performing RDMA data transfer,

b. At least one IP Storage processor engine for processing IP Storage
packets;
25 c. An [P Storage session memory for storing session information;
d. At least one memory controller for controlling memory accesses;

e. At least one media interface for coupling to at least one network; and

10

15

20

WO 03/104943

f.

coupling to a fabric.

PCT/US03/18386

168

A host interface for coupling to at least one host or fabric interface for

533. The IP Storage processor of claim 533 further comprising at least one of:

A packet processor engine for processing packets;

A classification processor for classifying IP packets;

A flow controller for controlling data flow;

A policy processor for applying policies;

A security processor for performing security operations;
A controller for control plane processing;

A packet scheduler for scheduling packets;

A packet memory for storing packets; or

A combination of any of the foregoing;

534. The IP Storage processor of claim 532 wherein said processor operates in

multiple stages, including one or more stages of

a.

needed;

packets;

f.

Receiving incoming IP Storage packets;

Providing security processing for said incoming IP Storage packets if

Classifying said incoming IP Storage packets;
Scheduling IP Storage packets for processing;

Executing data and/or protocol processing operations on IP Storage

Providing direct memory access for transferring data/packets to or

from the memory of a system external to said processor;

WO 03/104943 PCT/US03/18386

169
g. Executing protocol processing operations on data or commands
forming IP Storage packets;
h. Providing security processing for outgoing IP Storage packets if
needed;
5 i Transmitting outgoing IP Storage packets onto a network; or
j- A combination of any of the foregoing; and

Each of said stages is capable of operating on different IP Storage packets concumrently.
535. A TCP/IP processor having transport level RDMA capability for enabling TCP
over IP networks, said processor including a TCP/IP stack providing TCP/IP protocol
10 termination and origination, said processor comprising:

a. An RDMA mechanism for performing RDMA data transfer;

b. At least one TCP/IP processor engine for processing IP packets;
c. A session memory for storing session information;
d. At least one memory controller for controlling memory accesses;
15 e. At least one media interface for coupling to at least one network; and
f. A host interface for coupling to at least one host or fabric interface for

coupling to a fabric.

536. The TCP/IP processor of claim 535 further comprising at least one of:

a. A packet processor engine for processing packets;
20 b. A classification processor for classifying IP packets;

c. A flow controller for controlling data flow;

d. A policy processor for applying policies;

e. A security processor for performing security operations;

10

15

20

WO 03/104943

sessions; or.

537.

j-

PCT/US03/18386

170

A controller for control plane processing;
A packet scheduler for scheduling packets;
A packet memory for storing packets;

A connection manager or session controller for managing TCP/IP

A combination of any of the foregoing;

A TCP/IP processor having transport level RDMA capability for enabling TCP

over IP networks, said processor including a TCP/IP stack providing TCP/IP protocol

termination and origination, said stack providing an interface to sockets layer functions in a

host processor to transport data traffic, said processor comprising:

coupling to a fabric.

538.

a.

e.

f.

An RDMA mechanism for performing RDMA data transfer;

At least one TCP/IP processor engine for processing IP packets;

A session memory for storing session information;

At least one memory controller for controlling memory accesses;

At least one media interface for coupling to at least one network; and

A host interface for coupling to at least one host or fabric interface for

The TCP/IP processor of claim 537 further comprising at least one of:

a.

A packet processor engine for processing packets;
A classification processor for dassifying IP packets;
A flow controller for controlling data flow;

A policy processor for applying policies;

A security processor for performing security operations;

WO 03/104943 PCT/US03/18386

171
f. A controller for control plane processing;
g. A packet scheduler for scheduling packets;
h. A packet memory for storing packets;

i. A connection manager or session controller for managing TCP/IP
5 sessions; or

i A combination of any of the foregoing;

539. The TCP/IP processor of claim 537 wherein said processor operates in
multiple stages, including one or more stages of

a. Receiving incoming IP packets;
10 b. Providing security processing for said incoming IP packets if
necessary,;
c. Classifying said incoming IP packets;
d. Scheduling IP packets for processing;
e. Executing data and/or protocol processing operations on IP packets;
15 f. Providing direct memory access for transferring data/packets to or

from the memory of a system external to said processor;

g. Executing protocol processing operations on data or commands
forming IP packets;

h. Providing security processing for outgoing IP packets if necessary;
20 i. Transmitting outgoing IP packets onto a network; or
j A combination of any of the foregoing; and

i. Each of said stages is capable of operating on different IP
packets concurrently.

WO 03/104943 PCT/US03/18386

172

540. The TCP/IP processor of claim 535 wherein said processor operates in
multiple stages, including one or more stages of

a. Receiving incoming IP packets;
b. Providing security processing for said incoming 1P packets if
5 necessary;
c. Classifying said incoming IP packets;
d. Scheduling IP packets for processing;
e. Executing data and/or protocol processing operations on IP packets;
f. Providing direct memory access for transferring data/packets to or

10 from the memory of a system external to said processor;

g. Executing protocol processing operations on data or commands
forming IP packets;

h. Providing security processing for outgoing IP packets if necessary;
i. Transmitting outgoing IP packets onto a network; or
15 j- A combination of any of the foregoing; and

i Each of said stages is capable of operating on different IP

packets concurrently.

541. The switching system of claim 35 wherein said processor operates on said
packets to apply an access control, intrusion detection, bandwidth monitoring, bandwidth
20 management, traffic shaping, security, virus detection, anti-spam, quality of service,
encryption, decryption, LUN masking, zoning, multi-pathing, link aggregation or virtualization
function or policy ora combination of any of the foregoing.

542. A network comprising one or more system, wherein said one or more system
is a server, a host bus adapter, a switch, a switch line card, a gateway, a line card of a
25 gateway, a storage area network appliance, a line card of an appliance , a storage system or
a line card of a storage system or a combination of any of the foregoing, said one or more

10

15

20

25

WO 03/104943 PCT/US03/18386

173

system comprising a hardware processor having transport layer RDMA capability for
enabling data transfer using TCP or other session oriented protocols over IP networks, said
processor being programmable and comprising a deep packet classification and/or policy
processing engine, used by the said system to enable end to end network management for
storage and/or non-storage data networks, said processor applying policies on a per packet,
per flow, per command basis, or a combination of per packet, or per flow, or per command
basis.

543. An IP processor, capable of transport level RDMA, for enabling TCP or other
session oriented protocols over IP networks, said processor comprising:

a. at least one packet processor for processing IP packets;

b. a session memory for storing IP session information;

C. at least one memory controller for controlling memory accesses;

d. at least one media interface for coupling to at least one network; and
e. a host interface for coupling to at least one host or a fabric interface

for coupling to a fabric;

i. wherein said processor operates in multiple stages, including
one or more of the stages of (1) receiving incoming IP packets; (2) providing security for
processing said incoming IP packets if needed; (3) dassifying said incoming IP packets;

(4) scheduling IP packets for processing; (5) executing data and/or processing operations on
IP Packets; (6) providing direct memory access for transferring data/packets to or from the
memory of a system external to said processor; (7) executing protocol processing
operations on data or commands forming IP packets; (8) providing processing security for
outgoing IP packets, if needed; or (9) transmitting IP packets onto a network; or any
combination of the foregoing; and

ii. each of said stages is capable of operating on different IP
packets concurrently.

WO 03/104943 PCT/US03/18386

174

544. The IP processor of claim 543 wherein each stage of said IP processor may
take a different length of time to perform its function than one or more of the other stages of
said IP processor.

545. A TCP/IP processor for enabling TCP over IP networks, said processor
5 includinga TCP/IP stack providing TCP/IP protocol termination and origination, said
processor comprising:

a. At least one TCP/IP processor engine for processing IP packets;
b. A session memory for storing session information;
c. At least one memory controller for controlling memory accesses;
10 d. At least one media interface for coupling to at least one network; and
e. A host interface for coupling to at least one host or fabric interface for

coupling to a fabric.

546. The TCP/IP processor of claim 545 further comprising at least one of:

a. A packet processor engine for processing packets;
15 b. A classification processor for classifying |P packets;
C. A flow controller for controlling data flow;
d. A policy processor for applying policies;
e. A security processor for performing security operations;
f. A controller for control plane processing;
20 g.' A packet scheduler for scheduling packets;
h. A packet memory for storing packets;

i A connection manager or session controller for managing TCP/IP
sessions; or

WO 03/104943 PCT/US03/18386

175

j- A combination of any of the foregoing.

547. A TCP/IP processor for enabling TCP over IP networks, said processor
including a TCP/IP stack providing TCP/IP protocol termination and origination, said stack
providing an interface to sockets layer functions in a host processor to transport data traffic,

5 said processor comprising:

a. At least one TCP/IP processor engine for processing IP packets;

b. A session memory for storing session information;

c. At least one memory controller for controlling memory accesses;

d. At least one media interface for coupling to at least one network; and
10 e. A host interface for coupling to at least one host or fabric interface for

coupling to a fabric.

548. The TCP/IP processor of claim 547 further comprising at least one of:

a. A packet processor engine for processing packets;
b. A classification processor for classifying 1P packets;
15 c. A flow controller for controlling data flow;,
d. A policy processor for applying policies;
e. A security processor for performing security operations;
f. A controller for control plane processing;
g. A packet scheduler for scheduling packets;
20 h. A packet memory for storing packets;

i. A connection manager or session controller for managing TCP/IP

sessions; or

j- A combination of any of the foregoing.

10

15

20

WO 03/104943 PCT/US03/18386

176

549. An IP Storage processor for enabling IP Storage protocols over IP networks,
said processor including an IP Storage stack providing IP Storage protocol termination and
origination, transporting information in active sessions over IP networks by transporting
PDU'’s specified by the IP storage standard said processor comprising:

a. At least one IP Storage processor engine for processing IP Storage
packets;

b. An IP Storage session memory for storing session information;

C. At least one memory controller for controlling memory accesses;

d. At least one media interface for coupling to at least one network; and

e. A host interface for coupling to at least one host or fabric interface for

coupling to a fabric.

550. The IP Storage processor of claim 549 further comprising at least one of:

a. A packet processor engine for processing packets;

b. A classification processor for classifying IP packets;

c. A flow controller for controlling data flow;

d. A policy processor for applying policies;

e. A security processor for performing security operations;
f. A controller for control plane processing;

g. A packet scheduler for scheduling packets;

h. A packet memory for storing packets; or.

i A combination of any of the foregoing.

551. The TCP/IP processor of claim 544 wherein said processor operates in

multiple stages, including one or more stages of

WO 03/104943 PCT/US03/18386

177
a. Receiving incoming IP packets;
b. Providing security processing for said incoming IP packets if
necessary;
C. Classifying said incoming IP packets;
5 d. Scheduling IP packets for processing;
e. Executing data and/or protocol processing operations on IP packets;
f. Providing direct memory access for transferring data/packets to or

from the memory of a system external to said processor;

g. Executing protocol processing operations on data or commands
10 forming IP packets;

h. Providing security processing for outgoing IP packets if necessary;
i. Transmitting outgoing IP packets onto a network; or
j- A combination of any of the foregoing; and

i Each of said stages is capable of operating on different |P
15 packets concurrently.

552. The TCP/IP processor of claim 547 wherein said processor operates in
multiple stages, including one or more stages of

a. Receiving incoming IP pabkets;

b. Providing security processing for said incoming IP packets if
20 necessary,

c. Classifying said incoming IP packets;

d. Scheduling IP packets for processing;

e. Executing data and/or protocol processing operations on IP packets;

WO 03/104943 PCT/US03/18386

178

f. Providing direct memory access for transferring data/packets to or
from the memory of a system external to said processor;

g. Executing protocol processing operations on data or commands
forming IP packets;

5 h. Providing security processing for outgoing IP packets if necessary;
i Transmitting outgoing IP packets onto a network; or
J- A combination of any of the foregoing; and

i Each of said stages is capable of operating on different IP

packets concurrently.

10 553. The IP Storage processor of claim 549 wherein said processor operates in
multiple stages, inclhding one or more stages of

a. Receiving incoming IP Storage packets;

b. Providing security processing for said incoming IP Storage packets if
necessary,

15 c. Classifying said incoming IP Storage packets;

d. Scheduling IP packets for processing;

e. Executing data and/or protocol processing operations on IP Storage
packets;

f. Providing direct memory access for transferring data/packets to or

20 from the memory of a system external to said processor;

g. Executing protocol processing operations on data or commands

forming IP packets;

h. Providing security processing for outgoing IP Storage packets if

necessary,

10

15

WO 03/104943 PCT/US03/18386

179

i Transmitting outgoing IP packets onto a network; or
j A combination of any of the foregoing; and

i. Each of said stages is capable of operating on different IP
Storage packets concurrently.

554. A network comprising one or more system, wherein said one or more system
is a server, a host bus adapter, a swiitch, a switch line card, a gateway, a line card of a
gateway, a storage area network appliance, a line card of an appliance, a storage system or
a line card of a storage system or a combination of any of the foregoing, said one or more
system comprising a hardware processor for enabling data transfer using TCP or other
session oriented protocols over IP networks, said processor being programmable and
comprising a deep packet classification and/or policy processing engine, used by the said
system to enable end to end network management for storage and/or non-storage data
networks, said processor applying policies on a per packet, per flow, per command basis, or
a combination of per packet, or per flow, or per command basis.

PCT/US03/18386

WO 03/104943

1/52

mo_>mn_ _mow .

- eo1meqlsos:

1ISOS

=

soepop]] -
0903014 <

JosuuoaIdu] jeoishyd

1090j0.d ISOS

Jobeuepy yse

| JaAIog 991ASQ

jun jeoibo]

uoneoljddy |g0S

h Eﬁm\nmnsw O/l 30bue]

(1910 :
onieg)

‘.Il...lIIIIIIII.I.I-IIIII.IIIIII.I-I..I.

jo20j0.14 uopesyddy |SOS

—¢O0l

. E&ﬁﬂ:w Oll 1o3en _

TSR
j020}01d
L1808

L p

Jusllo
uopes]jddy

:o_umo__aad. _mow

GolL

J9/he jesisAyd

volL

(odsuey) |50S)
19he"] |090304d

€01

(piepuejg puewwog 3
I9POIN Y24y ISDS)

5 1oAe] uonesiddy

- Gueno) /

—— 101

sJoke aina)ydly [SOS | m_.._

PCT/US03/18386

WO 03/104943

2/52

m , _, .,H «

4

. -eomeqisos

- eo1A0Q 1SS -

t&:_ hmbw._
mu.wEm :

di/dd1L

SO2IAIOS
[02030.1d |SOS!

<

J1oBeuey ysel

199G 921N

yun JeaiboT]

uoneonddy 150

" (4on10G) -

Josuuoaidju| jesisAyd

_ooouo._n_ n:EO._.

g momtou:_ .

R Rl

JodSUeIL [SOG!

]090}0.1d |SOS!

9JeLIdju]

- i 1

9DIAIDG [0D20]0.1d

.‘llIIIIllllllllllllllllllllllllllllllllll

|02030.4 uopesyddy |SOS

>

. E&m\nma:m ol wm?.m/._.{\wom

90¢

J19he jeoisAyd

di/dJ.L

SO2INIDS
jodojold ISOS!

| 02
(Isos)
J19Ae j020301d

jualid
uopesyddy

uoneslddy |S0S

(3ua1D)

€0¢
(piepuels puewiwion g
[SPOW Y21y |SOS)

~uake uonesijddy

Esﬁmnzm Of1103en1u| ™ voe

ISOS! Uo siaAe] ainjosjyoly _mow AR

PCT/US03/18386

WO 03/104943

3/52

T ommpEH

oIBM1JOS vog

[Gumeesis) 00

[esisAyd

~———"60¢

mﬁoow\uvoquuv M-U m

‘, 9885 va@\ N-Um

3ur ejeq

[10mu00 5

P E RVIT T

[105800 3ur1 |

(So0TAISY ToWwo))) |-

~———80¢

€08 —1

dI

(s901A9g 110dsuei])

dDL || 4dN}

YIoMIaN

~—4120¢

=04

Jodsuel]

~S——-90¢

UOISSOS

suonjeorddy

ISOS “dI ‘TA

uoissog

uoljejussaid

uonesijddy

~S—————60¢

¢0€ —

di/dOlL

[ouuey) aiqiy

— L0S

}oels |SO ¢ b1

PCT/US03/18386

WO 03/104943

oV —— d1/dDL/ISDOS!

[ouueys aiqid

(dl/dDL MH

 oIempIef OIBM]JOS SJ
EE [Gupaais) o ol teashud |~ gop
o<2 ,_s%\%oo@ ﬁ om
| EbﬁoU Ug Il) N Um 1 sur ered |~ sop
: il rvoom\r_uv ECEECL \
| séso %5 ||l eod
[n.m T (sao1A0g podsuery) | HOMIBN | ~— L0V
cor | {|_dOL/ISOS! ol podsueis || gy
soamom , uoisseg
Qm — uonrjuasald TS0
suonedIjaady ISOS dI 'IA uoneonddy
— LoV

/M) 30BeIS SO 1 b

PCT/US03/18386

WO 03/104943

5/52

£0G 206 | 10S |

OINVEH —] -
vie— — ISOS | Ddf | ISOS! oweyy ~—1—olg
90§ —tJoanq uog ._o>:n Moy | 40AlQ Hod ,h :

606 — |- Jahe pI ISD

AL NV 608

v0s — |~ J9Ae] puewwo) |SOS

e T wesfsom | 0
s | suonedrddy ~ - Il§
198

(1ISOS!) oe)ls a1emyog 1so

G B4

PCT/US03/18386

WO 03/104943

6/52

609 /

1
f | J9jsuen ejeq
DIN/VIH
809 —|
slayng O_Zr_.: jouiayly
‘< <
=l _JE
D PUIY
N NV
o
=0 = TR OT
909 ll,\w..mt:,m t v_owvwﬁ;Z :
® SO
©[= ° Seoepau) sjoroos
09 |
] — slayng t WCO_H.NO__QQ<
I8

FEYNEYS

09

—/
_\V DIN/VEH
L
sioyng JIN jouiayly 719
INE
= [a) BRI AE) |
: JOALIQ ~| leg
NV
2e1S MN
3oels MN ~ 1 Lz9
: ® SO
Ry w.
3 < © -ooepayu| $3934208 ~_| | 19
109 — 1~ sioyng |: suopeolddy ~—1 o019
J9S)

juald

lajsuel] ejeq Joels 401 M/S 9 Bi-

PCT/US03/18386

WO 03/104943

7/52

371
)

[T~
| (eyap/peoy) Joysuen; eyeq
= ~J DIN/VEH = DIN/VEH
s1oyng 9IN % peo0 coy | STOHNEOIN ||| pEOO
0L —_~ difdol —] di/dol ST Lk
oy = LI oL Joulaylg
80— d/ VING ejoway £0L — VING Sjowey
© \ / P
2 \ [PuIy[N\ |4 PuIY[
B n P
= 10ALIQ Hod JaALQ e0L ——41 .2 3| € [enuq pod J9ALIQ
] S~
$ NV 2 |8 NV b
o ——— = e (a] c
o T zuL L2l +8 .
b oa.11q Moe}S MN - | 3 £ | 9910 3oe1S MN
g s|yoos | @ SO _ |l O Lsowpos | ggo— T
0L |+ 8 N .
@ 60. A7) ya ,
] » 18 /
O | | 9oeLId)u| S}9)20S N4 e 90BLIBJ| S}O00S ~_| | 4}y
. B E
904—| —— <~ ssolppy uoiboy wapy Jodx:
Sieyng _ suonesjddy ™~ —— FEs_,t 3 siopng ﬁ suoneoddy ~—1| | €12
. —_—
_ IS} IS}

SS900Yy Alowsy 10a11q s)oway ; "Bi

PCT/US03/18386

WO 03/104943

8/52

A AV U VLl Ja

118\ 018
DINVEH |
] / pwewg 4 Leog
dl ~——}808
ISOS od doL 1 l,og
VINGY/ISOSI—— 4g
19ALId Hod | JoAnQ Hod | JoALQ Mod 508
JakeT pIN 1SOS T~—_1-08
JoAe] puewwo) |SOS ~+—_l¢€o8
. wosAg oy
[ouIoy PR T
suoneorddy "
198

(1ISDS) oeIS 81eMyOS 1SOH g “Big

PCT/US03/18386

WO 03/104943

9/52

~-——806
Joke di 19ke d
~—106
10fe 4oL Joke 4oL
816\
suonoung yosieoag suopoung / .
£ie 818 L jusey-unpusen VING¥/LaQ SIIPUEHIOLI — ™——906
. 1afe7 |sOs!
VU (~ opipypeon) “IM/PY “OSIP ‘nojuibo])|(** XL ‘xy ‘sses ‘pw)) (- Aonysa uoissag ‘Jiuj uoissog)
puBWIWO) anany suondun4 |SOS! Jwbp enonpd suoosuN4 UoKIvUUOD
AN \ ~N———506
216 .V_‘mv w—.m\ M_‘mv Gle~ A v
" IS0y ‘snq ‘@o1neq ‘Uoqy /
A umopinus Hui SI9jpueH J01ig /I\M v06
JoAe JoALl
\ (- s3umypeoy) ! Hd
U:NEEOO onenp cmmm_o/v._ uooumm_ whmuoEmA.wn_ suondQ €06
1167 016~ 606~
~ ¢06
Jake pIN ISOS Johe pin
~ L06
lofe seddn 1808 J9fe Jaddn

MoeIS |SOS! 6 O

PCT/US03/18386

WO 03/104943

10/52

o || oo P
£C0 J rAN1} /)..)...!..S. Th h@>ﬂl— n__
4 U:Cm*ﬂh:-h—. H_\—
by eananp (A3119n/0)001D) ~- 8001
9AI009Y R puss dan/dol suondQ 12998
\ \PABIBUAISUELL |1 meldnol | WNSHO/UD N
.mc‘p 0c0L 6201 8201 1201
suoioun4g yoiesg suolounyg suojound ~—_£001
Seu-un/yseH q uonosULon uoljosuuon Atepuodsasg
9201 J M - i el v Jssasoud pjiyo
. ; (joeuld ‘ui4 ~__ 900l
n4 mopul
suopoung MOPUIAA|| (~ OLY 1Sy A2Y/pUS) i SjoBUAS ‘UAS AN/PUS) 10Re 4oL
J R @ouanbog v._m_v:w_._ loug v SUONROUN] UOROBULOD
€201 fgai) LZ0
Jm:o_uocsu_ Jowi] ¢>m.__“w_\k_ MHMN.WO ¢m:_:ows_ o)e)g 9AI999Y \v:om/lu\\mcov
020l 5 6l gL 0oL
jwbpy enanp 2so|9/u suondQ 199398
9AI909Y R pussg \| | eneo SupIwIsueI N Hooccoobnmo/od‘ _O\N. | 4O 3199A8S
7101 910b 101”7 vioL”
suopdo Jeopeg 00t
J19Ae 19)008
9AI929Y § pussg umopinys/jualsi || Josuuonpdasoy || ases|oy/pulg || Aosysagjerest)
\ . \ \ \ ~—_ 2001
1oL’ ZLoL” oL’ 0L0L”
ZCO_HNU.—.—QQ< I EERERR R RS RRERRERERSREDRERENNRRNRERRSRRNNEHNHDR] F:O_HNU_—QQ< //I\Foov

Moels di/dd1 0l b

PCT/US03/18386

WO 03/104943

11/52

chll—

LLl

Jouloylg ~1 5oLt
di/dOL __$0LL
_,— |l { : I . - {
saujbug puewiwon x| pesiyj xy
siopng x| TF ddd : 20k} | sieyng xy
! I -
_€0L1
— saulbug puewiwion xy .
| i
= 901
ﬁ\gcm ananp puewwon Jonpaiog N _u:mu.:EOO
| m uo|Ssag puewiwo)n m ~_[20L}
- , | puewiwo)
Anjug ananp puew ~———
ﬁ 3z op woH _ & o ananp puewiwo) paubisseun
T m a2
I m Lam
£ n
o
O
J9ALIQ ISOS! @ J9he] puewwo) |SOS ~__1 1011

MOl e1eq |SOSI L L Bi4

PCT/US03/18386

WO 03/104943

12/52

Lage 14 Ul D4

N puewwo) |

Al UoljodUUOY) *

m ‘0- oooooooa m 4..0-0

.............. +++Z UOIOBUUOD

— I puewwo) \

€och

spuewwo? [SHSI SUOIJ02UUO0D dIL

ETY R Z bUBLLWIO) - J uoilssasg ~_1[1021
<~
L uondBUU0)

(Air44

"JUOISS3S ..

Z UOISSOS |

——

J9jul04 Jake _w.oM

suolssag |SOS!

salnjoniis ejeq |SOS! Z1L "B

PCT/US03/18386

WO 03/104943

13/52

et - i N

PlEAU/PIEA

dld Udsei H LXN

Koy yseH

splold swely Joyio

dld 19plo jo 1o

Aoy swely

spield 19U30

SSIN 19A1900Y

ysaylss

MOPUIAA uolysabuony

junon sjoyoed

(- pwsuenal eys mojs)
siejoweled doal

oWl " 1)d Ise

awi] Je}S JoNoed

@m_::mhm a3Aq)
dld puss jayoed

Uld juswbel

#O3S ADY dOL

#NOV doL

#03S dOL

#O3S ANS dolL

9818 dolL

NOS pojoadxg

NLN/SSIN 1opusg

921G MOpPUIM

¥ld MOpuIp dol

dl uopoauuon

Jo20}0.d

Hod uopeunsaq

Jod 921nog

dl uoneunseq

dl @24nog

Alu3 gq uoisses di/do1 1 *Bi-

PCT/US03/18386

WO 03/104943

14/52

rage 14 o1 04

pleAuplleA [MLd Yo¥elW H IXN Aoyl yseH
— (pa,nad 10 pajiwix) — —
siajuiod 41N $)00jg JO "ON 2zis)oo|g 10)duosag wapy | J93ulod ISIT 1A
wered YNQY 19Y0| shay VIAQY pajgeus YINQY dl puewwo) di_ uoposuuo)
spjey 1ey30 uonoallq Jejsuel] | Be) dnoig eyod aisi aisi

" N1ad Xew 3sIng 3sijj
siojoweled jabie]

(30U 10 paJIdIOS)
JAOW 139dV1L

#03S AND dX3

#03S snjels dx3

#0O3S snmjels

#03S 129

Oyl ysel

#03S puewwo)

#O3S ejeq

ajels |SOs!

Anu3 gQ uoissasg |SOS! 171 bid

PCT/US03/18386

WO 03/104943

15/52

rage 15 o1 52

Z Anu3 gaa

X Anuz ga

[B R R 3

ZfAnu3a ga *

)

L Aiu3 ga 7

9051

aqg uolsseg|SOSs!

v N uoibey T
g o[qe [Uossas

Tid 9|02 UoIssas .
- g uoifey ~———¥05L ~,
T S[qe L UoSS9S vesase®

-} uotboy

— T S[0e] UoISsaS -
P)
€06l

slojulod 9|qe] uolssasg

A1jug uoissag | bel
. Ajug uoisseg | Be)
AN

J
¢0st

ayoen UoISSag

L0S1

Alows|\ uoissas [SOS! G b

PCT/US03/18386

WO 03/104943

16/52

mowv/

vomr/

J

ooeLI9)U] JI0Ssse201d0)

J
aoeLI8ju] J9]|013U0D WeIsAg

9091

€001

1091

NN g

aoejlolu|
oLge]
NSOoH
poaadg
ybIH

{1/

2109 10SS3201d uonesijddy
}IO0MISN dl

c09lL

\L-

aoeLI9)u] J9]j03u0) AloWD N

(NVM ‘NVIN ‘NV1 ‘NVS)
sooeoU| Juapuadapu| elpaiN

10SS990.1d uonesiddy jyiomiaN di 91 "B

PCT/US03/18386

WO 03/104943

17/52

10ssa20.1d uonesyddy ,,,,

1T

yiomieN di 2} Bi4 >
10Ssa30.d aue|d |oljuo) [AFA" \
0LLL 60.LL ‘
D)
1S —
801 M,H
: S
) f <
aJjoqyuoqy Y 19jjonuon K==
momtmy:_|_\ VINGY | 10Ssao0ld [l0oss92014 lossao0.d [10SS9904g 5
ouqed || /mold N | | ||1949Bd | | 39¥j0ed |.L.l.| JOHOR | | JoNORd >o=_ ug
PO \—| ebeioyg L~ ten b NVS L} NVS NVS NVS Jnasg
ZOLL I
) G ff I i S .
anenp 11 U_R,j 19 i
|\ ISOH = = .
YOLL < St/
J
Jajjouon A
I yowum Jowsy N\ suibug Jonpoyos onond
| uopeoysseln 19308 AH nduy AU

ayoey uolssog abeloig/di

1

g

i

LN
v

PCT/US03/18386

WO 03/104943

18/52

W AU UL Ji

0. ‘@uibug Aunoag o}

m::/ i

G0.l ‘ouibug Ajlnseg woiy

[l

L8l

aoeLIgjU| JoMoRd JB9|) |

N~

Lo8lL

EEBR w\{'
VPN 5
Nuod| 3
c
[
1 o
I o
-
I -
=
(]
- A_,H D.Mr
LHod| 8

N 3 |
> 2oeLI9)U] }9)okd 9IND8g
g
<> =8 < \ﬂ Z181
puewwos c)
nexoed o Jsjjonuo) ananb-aq joxoey
6081 ﬂ o018l v08L (u)zogs
) Nl S
(" yod ‘ainoas *jle} ‘peay)
Jabeuey anquy mu U
28
= X
808) 22
Fv ﬁ @ ananp } d ind g m
9yoed jndu -
Aeny Be] g : g (tzosL
SeINqLINY }oyoed pw. o
o C
A ®
®
2081 | ﬂ 908 5081
DA \
(2] 7 ;
= 19jjo1uo) R 21038 N
= 0 S
S| FE [sovoeu poouben [| |
paoRd 2

19]joJ3u0) g ananp jnduj gL "Bi4

PCT/US03/18386

WO 03/104943

19/52

(442

\

n

4
J8]jo4juo) puewwo) @ dn-)}007 9jelg B Ysjo Joxoed f

Hwﬂuwmv

—

D

INO Joyisse|o

ananp pausse|d

_ _ — 18jjou09 i
L3} . 4
s:xmw] maw< Emaao«.tsm e 10300508 ALIoLg shg puewwon
GZ61 iqel dn-joo1 jexoed - v v
I — A ﬂ 1261 T— qﬂ - - 4 G061
o XGRUI PHEA | - wurT]| ber [B —— B : : P mennees — "(,. . ."
vzelL) anenp ajnpaysg j9)ord [amoT mﬂ _ls_o_ mwﬁ 1) QWD [PEL v [GWO] PeL QWO [PeL v
0%61 @ 6161 @ 8161 @ n@ 1161
WD ISOH__ ssedAg N dd 9l6L, 34 euedionuop
— — Y]
"aruoigsss [BeLxeN [ai awpjBell eEs [aisey v L \v auoqg Ao o6
MNm_‘b 9]qel UoIjBd0})y 291n0Say Joouanbaeg <~/ \
< _F v |o1juo) aje}g Isjnpayog 3
€16l . [AN : auibug
) J dep 144:1° Q [mrmww I 1T juswoInsy
(spd 961e7 N) Agejreay) - —— JojjoJ3uon ‘
EOEQE O — m m joyoed I9jjon3uo0n €061
jo¥oed sjqel S V vm«:mEmw._..._ Klowapy
uopeoyisse|) Simsed | [BeL y e (———
1onoed 82 .
0L61 __‘mk_\ wom_‘Vi umc.wwm_oi HH o6l | €06} \ onanp jexoed
7 -
uj JaIsse|) 6061 1a[npayag /I9jj013uon
uonesyisse]n

19ouanbag 9 Jo|npaysg ...mv_wmn_ 61 B4

PCT/US03/18386

WO 03/104943

20/52

Loe |

(3nQO) @oepIBYU] J0¥ O

ooz 1]

) eoeoju] |01JU0D }SOH

juswebeuepy
juonezijentul ga

0102 |

ananp

(sisjuiod jsii 0011 ‘s}s1 apoN)

(ND
9JeLIajU] }Jo)okd

)

1l 5002

(sweanys-N)

\ JuowaIneY Joyisse|) uonduosaq ga A ,,,,,, dajing
8102 2 TF == T 19)jord Induj
) sHe == 52 11 1T vooz
J9pdwion jnsay pa—
Aeary oanjep pojordisyuy uonoy N (WvD Areuwsa)) S
ploysaiyl)) HAEN (23] 1)
Jiowi] 147174 Aﬂ 6002 (e1gejieae) AH__ I_\ Joouanbag
— soLjug g9q ALl |||__ uoneousse|)
Pw Aﬁ (Anu3z gq tod (uonesul Anue auijui) : v
(uopoesu) || BIP PejeIoossE) ped yojelog | Il 1T eooz
(eyep Aquo) || Aeuv Aowan a 19009
nv] | Howoenxa pioid il >omgmwwmo
Y etz || 1T 8002 Aem Aerry)
102 6 5 (N) 328 10yduosaqg = 5602
Lozt uiyojep abuey oomlv pIal4 [eqo|D e N JoBeuEny
-1 jood Anug
[osyuo) sutadid)| '8 OPON oaiy
Q 9oBLIB)U| Bseqeieq [euIa)Xy) %ow

900¢

aulbu3 Adljod/uoneosyisse|) }axoed 0z b4

PCT/US03/18386

WO 03/104943

21/52

€ole

\~

aulbug
obel0)s di

aulbug
dOl

)

cole

aulbug
jo)oed

1012

ommmo.ogn 199ed NVS L2 b4

PCT/US03/18386

WO 03/104943

22/52

ol14 1918169y
Y Jaosuanboag
602z | '@ 9p029dQ
suibuz uonoNAsu|
abe.to)s di nIv
)
80¢¢ ,VONN
\ d/1 AMowapy | | 4/] Arowa
Leze 202z €02z
NYY ejed NVY isu]
auibug \
dOl mmNN coze
VYINd josju0) sng
))
P
oizz 502z £

l

10SS920.d 190ed NVYS ZZ b4

0¢¢c

PCT/US03/18386

WO 03/104943

23/52

Hupn JowiL 2oepIRYU| ISOS!
\ AN P
———] Aﬂ AWNva i i [odez
— I i 1 ,
ﬁ T R R I O N L D N O e oL H] R
-t L
auyoey AH HV aBw aepio Jo N0 KNI Hv wnsyo8y9 AH J90ousnbag
aJe)s dol / — Hv J8jjonuon awely V= V : uononnsu
JT 1T zzez | |84e2/ , I Il e {7 I scoee
J1oBeuepy = ouibug ysey (~ 30a1% ‘dod "ysnd) [apo2aq 3
UolIssag do.L u — H..v ,) dn-)007 Joy0ed \ yo3ja4 uoljonasu| v
LIeZ M i ;
HH @ bege (" xa3u09 ‘sivjulod ” HH b olee A/ﬁ b roee
['SO¥EIS NGH ‘4do)
o|1] Jaysibay
/
oudey 9lec” (stoyng jo31084)
€q uolsseg sdo mopuim WV ejeq Wy Hehanasl
di/dO1 Hv Joouanbag
/
¢ |gLe
IT dTozee | = g 1L 1T seoez JT 7T =oge
au1buz dnjoo- / suibu < L]
aa uojssos n_oh/ yLe 1buzg vyina - ! suibuz vING
1 Jo3aadasu) Be)
MH @ 61€¢ LE) uonesyisseln @ @ 80¢¢ @ @ A1} 44
ELLETRES] 54 aoelI9)U| aoe,
¢ o3|
19]jouoy fiowajy AM Ja|npayog 082 J19]]0J3U0Y) JSOH

P
geee

10Ss8201d dI/dD1 £¢ ‘b1

Y
Loge

—>

PCT/US03/18386

geve \ veve \

24/52

WO 03/104943

1038849 lepodagpuewwo)| [ssuibug uonnoexy
nad 1sos! Jdojeniuj j[SOS! puewiwo |SOSs! oMU dI/dOL
/ = - 2 AN d 4
= et 1T freive 1T 11 1] eove
- : - : — i — ‘ .
t T T e e 7 E Ve, o v e TS T -
aulyoepy AH Hv JolIsse|n 549 AU 1asuanbag
8)e)8 ISOS! S Hv Ndd 1SOst R uononisuy
| : 2 c
leﬂlVN#N 8lve/ 1T 10 ive 1T I1 sore
1oBeuepy AHIHV w:_mcm,<s_am_ (30e43%0 ‘dod ‘ysnd) Al'. epodag
Uolssag -wow_v _H “v , : A e ‘“m Q::&OOJ }o)oed yaje4 uononysuyj
VAL 74 1 -
HH b beve (- 1x03u09 “sseulod AH HH F 0l¥e \._Iﬁ b vove
Hv ‘S9)eIS “YaH “¥dD)
a1 J93s1b6ay A 1.
/
80 uotesss oW (sioking json) Wy uogonssul
ISOS!H \[C—)j19Beuely sousnbag 1 Wvd E3ea
\| | et L T b
JT_JToeve | = A 1l 1L 1T QQMN! 1T T ebre
auibug dnyoo / i ‘M W
gQ uoissag _wowf 1447 HV suibuz yinag pAr [“ M awmbug yina
Jsjjonuon USRI W R
@ @ 62 L= uoneuowibes N HH @ 80ve @ @ 2ove
aoeIBjU] - Mn.vN SR ooeLIo)U] [oepI9jU|
hm__o.;:ooéo_:ms_ A e i J.V Jajjosuon uwo_.:flno.vw J9]jo13u0n) 1SoH
MNvN Love

(Josse001d |SOSI) duibug ebelo)s d| #Z "bi-

WO 03/104943

Security Engine Interface

WCIear Port

Q2510

Fig. 25 Output Queue

Secure PortlL

PCT/US03/18386
25/52
i 8 agc hdad JL b
N~
soepIoU| 2
sng joxoed _/N
R ﬂ
. P ©
: (* funosg ‘sov) | B
| <7:(dnyoo- Bey N
i =]
] PEERR L] : 0
h N
[=2]
B u u
Jojosjas Ajuond N
— JodoRd ~
i .
[=}
10
(3]
Xnwoeqg Hod L
Q
J T
. . (=
L] = m
‘ : <
N7
- -4
tﬂ :
o o
o o

aoeLIau] Mod Indino

\2501

PCT/US03/18386

26/52

WO 03/104943

G09¢
_va8~v w 092
4 n-}}007 uonRov}0ld -
auibu o — c A_”v S A__||Iu
1bug YINQ 3sOH NH M3D 3SOH N 14N puewwo) : ananp ejeq jnduj
AN
2092 €092, ﬁ 2092+ 809
J 7
auibug (** uuog ‘20ssY pwH
, dnjoo 014 * V
14 toissag| puewwon || gl awo || 9¥IS _Q__—EOAHV U:NHEMO m.ﬂ.m %Mmhn_._’__wm_mwv_, AHV ..opg . fpuewiwog |l - Aoy - | Q-
so|qel dn-3007 ajlIM B peay) 6092 9|qe dn-)oo7 YIWa
0192, >
x 1092
I v N/
N yod . juonosuuodf . di ai

Joouanbog g
J9jjoJ3uo) 9je)S

spuellWo) aAldY

9|qet lojentujpobie],

ho alE ‘1I9Npoyo2g pueULLIO,) u] puBLIWOYD
SpUBWIWIOD MON T 1] 2192 \ Mw INO pPUBWIWOY
219z _
e [| | K—= 1B\ yojep-aid
snenp uons[duwion ejeq 3SoH
€197 _ . 99z, 1]
< ||| | < 4ajj01u09
sysonbay MmoN ananp inding
—> d/l s1ouna mndin \ snenp eyeq Indino
suwbug YINQ }SOH OL 1439 JSOH HV yng jnding Hﬂ S HV

J9]j013u0D VINGY 8 Mol4 abe.lo)s 9z "B

WO 03/104943 PCT/US03/18386
27/52

Page 27 of 52

2709

[I .

19]|03U0) 9oeLISIU| SN }SOH

-
)
]
[
-
o
C N T i S
™ <:> Jajjonuo ydnuisjuy 8
Q) =] Jajjoluon uondesuel] }soH
55 ["
% -t 5-, o
'-t £ & ﬂ ﬁ rR
Ex |
V] [4)
Q 33 =
- = =)
= 0
I o <
] ~ <::[=
- o
7)) u 3 u 3 ﬁ S
O A (R SRR
I~ M~ o]
- ;l [N o Tr S
m 4/} @nanpd ' 4/l enenp ' d/1 enanp >
i.: puBWIWOY }SOH nduj ysoH dinQo 3soH

PCT/US03/18386

WO 03/104943

28/52

Page 28 of 52

G08¢
(-

L 7T

JoBeuep snanp/ooealuj Jossasoldon

908¢
(.

s,onanp ndul
}oyoed Je9|D

08¢
=

10

1] 082 _ 1L 17T

1082
i

s,ananp jhdino

1o)ord JB3]D

il

L08¢
.

—

(sav)
uondAioaqg ouibug
\Comuneocm uoneosnusayIny

(—

1T

s, anonP Indinp
19)oed 9ino%ag

;

1T 1L 77

08¢

608¢
f-—

808¢
L.

Joouanbeg

1L JL

Alowspy 1x8juo09 AJLnoseg

auibug Ayunos9ag gz b4

s,ananp ndu|
}9)oed 2IN09g

PCT/US03/18386

WO 03/104943

29/52

£162 1162 2062
(i = “F G06¢C
1S9l JI9S slojng @ syod ung Bej | | sieynq g spod |

/bngaq ndinQanduj ejeqg ssalppy| | Indu] ssalppy
906¢
41374 o_‘mm . Y062
T e ¢ , suibug sewi) g |
0)0 ‘siayng 9JLIA/PRY ‘|013u0D Yueg dn-00" UOIESES
o y
5 - 6062 | - S @
14 S 5 B S 8 S 5 > onpaysg €062
> o = S S 82 o uonoesuesy T
a 2G| —===120 2 O 2 O < : 1
Q ° o o o o o o o go KAows |y
o =c =2c =c =c — Jeuta)xg
e W 3 o3 ® 3 w3 o
ﬂ Z> w3 NS N @
- Dwu ¢06¢
@ 806Z_ = siayng ejeq I~
g > > > > > Wel Jeutexg
2 3 3 3 3 o
g = EAREERREE Q,
i 25| TTT T eS| (eg | |2 || | [UeuURuDBIMAY] boe
9. o D) Jajjoqyuon

xa|dwio9 Jdjjos3u0) AIOWBN
Q 9yoen uolissag abeuols d| 62z b4

PCT/US03/18386

WO 03/104943

30/52

oLoc \

{ §00¢ \ s10)duosap pjey [eqolo -
Pijea 100¢ i aseq ozIs Anug . pa)eus)eou0o
‘apou”je9| \ Aevnre " ndT)si o001) - oq ueod spjal} NVYD -
‘idejep ~ { oju] jeqojs Ajuo ynejop ale
isuononusuj 10 Joyoed jo MBS WO TJasyo UMOUS senjeA ss1y/sspou
/pue apou_jxau :("010 s}q ‘sa)Aq Jo #) ozispjoly v00¢, pue spou/seiusy .
‘(uspisa1 Wy o) onfep ‘al’ s aweupjay \ pIlEA {
} } e
- - -diyoyoydiyouo SHG- = PIoId WYD Ul
Anu3z gg Anuz ioyduoseqg pleld ‘Soe 10 ON : 14 WYO A
L tnd~Anuegq pue solue 1 = 9zis gq
o | ey —r—— \Ls_ Anuo ggueys
_PiTEled || uondy || spouTixeN- = opoujualed Z = opou Jad saru3
N P o — _ (K = 931} Jad sopopN
SRR ¥ R I | T azis Anue X = S99} JO JoquInN
T f onorsmareas | Commmmss g B e ‘Josyo pioy
| PuTereq || uonoy |[epoupxen ||| 1 Tenrep ¥ oI
e [e R | SLASEEE ST o) MR £ P! pPIsy siojoweled
— ,) - ,) pleld y auibug uoneoyIsse|)
|spUTezeq | hsuuonoy || 3siTopoN || ..w,mwoz_m?r, 2InJonJ)s apoN \-
R S | u~opoN]
spi_ejeq | 18I uopoy || 3sITOpON - Jos anjep \ N“nd7een | o
- — : - —— - __/ ¢ 9PON \ iz nd een
[SPUTEIRA | isiTuonoy || 3siepoN | |jesTenieA [} N L 7opoN vadeen
— — — Aelrre apo)s1] 9al
Aelle hﬁcsoo Eo_“_od.\w_oozv?_oEoE/ Kewve pvH o008 _u N 1 1
5006 800¢ -eo0e

2Jnjonis eyeq auibug uoneouisse|) g "Bi-

PCT/US03/18386

WO 03/104943

31/52

L0L€

801L¢

asuodsay |SOS

A\

=
\% 9j9|jdwo) puewiwio)
\L ejeq oAl999Y

601€

9Suag R snjejg pusg NI ejeqQ iSOS \v ejeq aA1999Yy
puss \L NI ejed ISOS \v ejR(Q 9A1999Y 1.\8 Ve
pusg Nieleaigos 7 S0M¢
s S
ejeq asedald 1\.8 1e Zove
/ (avay) =+
puewwiod [|SOS 4/ — k_‘o e

uopetadQ Jobie]

adAl nad

}senbay puewiwio) |

uoneladQ 103eniu]

uonesadQ peay L¢ ‘b

PCT/US03/18386

WO 03/104943

32/52

FA N4 Liee 01cc 60¢t 802¢ PAITA
jJoxoRd 2119y
nad ananp
AW 1enxy peojked Bey
uoljesyuapj
uonessdo 1S0S! 1opeoH bel
oyepdn Bunjiep moj4
leubig =S ISOS! (-o10 ssedAg
o M,M“_o_n_—:oo oyepdn ananp 100la4) uonoy m:osd
HEIeF01S98 9338 dOlL uones0|y ISOS! HEN enano
KLowapy LINSY95US 921n0Ssoy uondAioeQ
woyshs o] A9 dOL peseq mojd dOL Men UoHEPIEA 21
BleQ ojsuell | o suen Ayug fouopuadag spleid i1 SIBOBUSIINY | 1 oyoed 30enXT
ananp 80 dOL/1SJs! uoIBINOSSY 195390
peseq fjlioud IojsuEI} 1939y yseH spieid €1 Ajunoeg
.viya , :m_ﬂso,,, xa | mu_.%mﬁww - Azo_ﬁo_xwwm_u‘ e arsu,\m. S o>_8,om_ :
-g0ze “-goze - poze - coze “zoze - 10ze

MO|] 1930ed eleq peay ¢ b

PCT/US03/18386

WO 03/104943

33/52

uonesadp jobie]

oLes _LIEE __ylajodwiog puewwog| Zhee
g asuodsay |SDS
asuag g snje}g puas \“
ejeQ aA1920Yy /
1NO ejeq |SOS
ejeQg puas
12d
B)E(OA1990Y 0} Apeay \
60¢¢
el oA1999Y 20cs
1noeeaisos -+
&omm
a0¢e —
G0€e 1> ejeq puas
1/ 12d
AND FLIYM 10} Apeay
SpuewWWos pjo sw_:_n_.kvcmm
€0ee

anonp QWD oA1999Y +— Zoce

/ (@Lrim mg

puewwo)j |SOS 10SS
/ (ETTTY) 3

3senbay puewwo)

adA] nad uoneiadQ 103eniu]

uonelsadQ 8lIAN €€ b1

PCT/US03/18386

WO 03/104943

34/52

Jajsues) eyec 9L

asuodsoy pesay 124

vive eive cive bive oLve 60v¢ 9Lye SLye
3oNoRd 2130y
YING 3JUM MBS
Nnad enenp .
19)9ed °9nanpP
: 1A JoenXg
Jajsuel) jo)oed ' peojfed be)
uofednuspj :
ajepdn uonesadQ 1SOS! Jopeay be}
93e)s 1SOS!
i ajepdn Buprepy mo|d
ajepdn : 9je)s [SOS!
ael1s dol ananp ("030 ssedAg
ayepdn ‘yoslal) uonoy
snonp | Jeysuesy Anug a1e)s doL uoneso|yY
jlwisuel} 9d dJ.1/1SOS! i 92In0S3Yy ISOS! e ananp
1seb1q abessapy ﬁ wnsyaayod 4o.L paseq mold
ananp joxoed auedaid o Kowapy dOL1 e uonepljeA g1
uondAioug wo)sAs wou} Jajsueny Anuzg Kouapuadag
siopesH 1 wns)d9yo ejeq Jajsuel) ga do1/1S2S! SpIeld ¥71 || 39Mded Joenx3
uogeIo0SSY : dmjoon
a|quessy funoeg Bl19pesH aledald || enond Aoy | | Jeysueny jeyoed Koy yseH spield €1 199318d
:z,.mcﬂ 1 Aunoes: :ou:omxm L B ,<_>_.0 uonnoaxy. : w.:uu:uw . :o_umo_m_m.wm.o /w>_ooom
B \ R A : 1 . ~ \ . R - \ N - - -
-goye - zove - 90ve “-gove “vove - gove “zove “love

MO|4 }8)0Ed ejed Sl 7€ bl

i

PCT/US03/18386

35/52

WO 03/104943

\momm
a)ojdwo) puewWWwo)
205¢
||\\ C&ww:mk_.._. ejed uum‘__ﬁ_v
205¢€ osuodsay 1808 OJUM VINOY ONe09Y
(1ejsuel] eyeq 30811Q)
8suSg @ snjels pusg - OM VYINGY SIUAM VINOY o108y
\ (le)sue1)_ereq 1020Q) 906¢
Nad SHM VINGH \L\ oM YINGY \L SIIM YINGY eneoey
NAdd SIM YINAY S VINOH \\mcmm
NAd MM YINQY \ |
oMM VINGH Sveniu | Y0se
g eleqaledeld 7 1158
X3)uo) / (a1 eyng vwas ‘avay) |+
puewiwo) |SOS
,YNGY 1935t by / USWISSILSA / (Jeyng YNQY Yim avay _mogl\o lae
€05¢ wm. " IHOAPY 1sonbay] puellwo)
zoge —L—HNEVNAY IS sTepng 10sg
VINGY so3siBay |
uonesadQ jobie] odAl nad uoneladQ Jojeniuj

Sl VINQY Buisn peay |SDOS! G¢ b

PCT/US03/18386

WO 03/104943

36/52

Z19¢ 119¢ 019¢ 609¢ 809¢ 109¢
}jo)oed a.i}oYy
nad 05@30
1IN 10eX3 peojheq Bel
uonESRIUSP
Aénmw_aww_uw iogesedo VINGY 19pEoH Del
uonesado 189S! oyepdn a1e)s Bupjiey mojd
euprg | YWQRISOS! (010 ssedAg
:o_uw“”__”wﬂ_w_cmm WNS399Y9 dol oneno osle) wotov ananp
. oyepdn uogesolly ISOS! HEN eneno
Kowapy 92In0saYy uondAioag e
woyshs o] ESdOL | paseq moly dOL el HOREPIIEA 21
Bleq 9jsuell | 51 suen Ajug fouepuedeq spiatd 1 SJeIBUSINY || 1oy0ey JoRaIXT
ononp | €0 dOLISOS! UOREIN0SSY 100100
paseq AjLiold IosURl} 19%ORd yseH spjeld €1 Kunosg
VNG uopnooxg - .,,u_%ma_umﬁ .:o_,\&u_,mww.o Ryunoos o>._oowm
’ e r- : . = : E “: N DR :
N
-909¢ -goog “-y09¢ \-goog Z09¢ - 100¢

(VINQY) Mol 18¥0ed Eleq peaY 9¢ Di-

PCT/US03/18386

37/52

bLLE 819|dWwon puBWWIOY |\N_Lm

oLle —
n.\\% asuodsay |1SOS
osuUag ¥ snie}g pusg

(1ajsurl] RIR(102.1Q)
ele(aAeoay

asuodsay peay VINGY

\ /

eleq peay
Jsenbay peay YINAYH
eje(o209y 0} Apeay
60.¢
(1eysuel) BJRQ J0°41Q)
ejeq oneoey 80.¢
osuodsay pesy VNG
&o\.n
90.¢ ejeq peey |
|§ Jsenbay pesay YINQY] —
AND FLIYM 1o} Apeay
spuewwo) pjo ysiuld | u\vonm

€0.¢
anenp gD eAeey +—

| zoLs
/ (APY Jayng YINGY Unm m:,_w_>>v|K
puewwo) |SNDS 10.¢€
.4/ [ETTRTY) +

1senbey puewwon

uonesadQ jobie| adA] nad uoneladQ Jojeniuj

WO 03/104943

pesy VINQY Buisn ajupn |SOS! L€ Bi

PCT/US03/18386

WO 03/104943

38/52

(e314M) 39%0Rd 2suodsey pesy VINAY

ysenbay pesy YINGY

18¢ €18¢ A4 %:13 . bige 01L8¢€ 608¢€ 918¢ Gl8e
1oy oRd 3}y
VYINad
9JUM HelS
jooRd 9nend)20y SS929Y
any enxy
Aed B
Jojsuel} 19)o8d peojied bel
uogeayuAp| 5
ajepdn ojelg do vnad JopesH bel
VINGY/1SOS! ajepdn o183 Bunle MO|d
1
QNNNMM” VNGRSO ananp (-39 ssedAg
syepdn ‘o9fal) uonoy
uonesojy
aje
— T | dounson WISEOL L comosey | isosiMEm onong
. ysebiqg abessoly wns39849 dol posEamels ddl1dein uoljepljeA g1
ananp 19)ord asedald Kiows |y p g nep!
uondAioug wayshs wouy soysues Ajug oueptaded splol oyord Jorl)X
siopesH 271 . wnsyoayy | eyegJeysuel) | 80 dOLISOS! dnyoo PIRId ¥ | 19%0Bd JORNXT
UoIIBIDOSSY
a|quiassy funoeg [siopesH atedarqg | °@nenp Ajuoud | J9JSuel} 3d3oed Koy yseH spiald €1 10932d
/ /“__szﬁl_.) fynoss . | | ﬂ uoRnex3 , © VA ‘uopnodexa- | sinpayos B :o_.umu_tmmm_o. /azmwuwm,,
= = -
-g08¢g - J08¢ -g908¢ 508¢ \“yose “cose z08¢g L08g

(VINGY) Mol 1930ed

eyeq S}IM 8€ O

PCT/US03/18386

WO 03/104943

39/52

Il

(1971 O /NI /PBOY) MO[]

7

puewIo)) J0Jeu] € 31

10SS920.d aue|d |[0.U0)

1T

i)

JLIE

_ | enand
I ananpd T = Dy ndino
indino \
IsoH i x >
— Y Jajjonuo)
w:o._..w:oo : <Enm i losses0ld lossosoud HOSS©00Il4 H{0SS920.1d 0:-@:
aoeLo)U| MOLY | B || o084 | | 303004 19)0ed | | 19)0ed i om.m_m
JSOH abeio)g -1 NVS [NVS NVS NVS :
’ 2
—— i
—N jnduy |- R-—L
—| 1soH |\ B EE :
Lm__ob:on,vm Aowopy ﬁ aulbug la|npayss A_H ananpP AU
. d
ayoen uoissag abelog/dl UOREOBISSEID “ 194o8d naul

PCT/US03/18386

WO 03/104943

40/52

MOTH

)

11

ele(] PeOY OF 81

JO0SS920.1d due|d |0JU0)

ol ONOND | S
== 1ndinQ _L
}JSOH

Jojjo3uo) V g
VINGH g
/moid
abreuao)g

~| hossao0id

19398d
NVS

H0SS900.1d
joMoRd
NVS

H0SS$920.1d
19%oRd
NVS

hossoooid
=oed
NVS

ananp

3 IndinQ

auibug
Aunooeg

enanp

induy

}SOH

et

Jajjonuon Alows |y

k]
ayoe) UoIsSSOg abe.103s/d|

i

aulbug

uonedsisse|d

5|
Js|npayog
19308d

ananp |/
induj A,U

hCEEIRCH

-

)

T 0H

PCT/US03/18386

WO 03/104943

41/52

MOJH ele AN

1l

1I

% 124 1y 31

J0SS920.1d auejd [jo1ju0)

ananp
indinQ
}JSOH

(L)-§
19]|OJJUCTTER
VINQY
/mold
abeuiolg

0ss920.1d

joxoed

1o)9ed
NVS

HOSS©20.1d

HO0SS900.1gd l0SS920.1d
1o)oed | | 19%9Rd
NVS

auibug
Ainoag

Jajjonuon Alowap
k']

ayoen uoissog abeiolg/dl

1

auibug

uonesisse|d

&

J9|npayods
1939ed

ananp
induj Awuu

©

=1

iUt

(21n09S) MO[MH i

eje(q peay ¢ "S1d

J0SS920.1d 92ue|d |0JJUo0)

PCT/US03/18386

42/52

WO 03/104943

| ©N9ND E
l 1ndyno
}SOH | - .
J9Jjouon
vINGN I0SS9901d §0SS920.1d J0SS9201d [108S920.1d suilbu
/MOj4 jo)oed oed joyoed | | 19)oed fns mm_
obelo)g NvS [£| Nvs NVS NV'S IN09s
ananp Aﬂ 1T Aﬂ
—N 3nduj e (S —
-/ 1son n _ (@

<{um—
Jajnpayos W ananp
19)o8d induj AU

18jj013u0) Alows

?
ayoen uojssag abeioig/di

= &)

auibug
uoneolIsse|d

11

PCT/US03/18386

WO 03/104943

43/52

(21n09S) MO BIR(] AITIM

1l

7

2% 129 €7 31

10SS920.1d auejd jo1uo)

.| @nenp
ananp _ 7 : = INdINO ¥
f IndinQ 3
JSOH : . = v 2
: WW w«ﬁ H "
L
woq Jajjoau
] VINGY : 0ss9%01d4 ll0Ss990i1d H0SS9D20.1d [10§S9201d
=z ERY /Mo|4 jodord | | 19)oed 1o%0ed | | 39)08d >m“ﬂm%w
(| ebeiois NVS || NvVS NVS NVS HIN99S
v
ananp
nduj V
6) 3¥SOH
G
E:o.;:oWboEws_ /AN auibuzg Ja|npayssg AH ananpd AU
NV — d
ayoes uoissag abeioig/di UOREIBISSEID “ Jox0Ed indu
© oL

17

I

PCT/US03/18386

WO 03/104943

44/52

APV Iogng ﬁ

11

VINAA ¥+ "31

10SS920.1d aue|d |0J3uo)

J9]]0J3U09

__/I9]jo43uo

VYINGY
SRR /MOj 4
1SOH abe.olg

Il

iossoo0ld [losseooid

jo¥oRd | | 19)08d

NVS [NVS

lossoo0ld llossaosold
}o¥oed 1oyoed
NVS

NVS

aulbug
Ajunoag

J9jjo3uo) Atowsp

?
ayoeH uoisseg obe1031g/dl

/N auibug
'N—| uoneosse|n

J9[npayog
19¥oed

ananp
nduyj

-

T OE

17

PCT/US03/18386

WO 03/104943

45/52

MOTH 21N

11

7

VINAY S¥ "S1d

10SS990.1d aue|d |o13uon

deees| ONOND
e INd1nQ
JSOH <

J9]joJ3uo)
VINQH

/mold
abeiols

ananpd

hmvwwwOOL&
19)98d
' NVS

10SS930.1d
19)2ed
NVS

: ananpd
e indino
10ss9901d [l0SS920id 5
joxoed | | jodoRd >m=_ -
NVS NVS HINo9S

nduj

}SOH

J9]jo3u0n Aloway

ks
ayoe uolssag abeioig/d|

auibug

uoneoljisse|d

9|npayds
1908 d

ananpd
induj AH_

L

—
O R—

11

PCT/US03/18386
46/52

WO 03/104943

Boﬁ peod @ | i

VINAY 9% "S1d ﬁ
10SS9201d due|d |onuon

5

ananp

f oNdNY | & mmmmns ——— e S ndino
indino | 4 || |] 4 O [»)

ISOH L' P " b

-\ J9jjonu E .
o VNG || | [ghosseo0id possaesoid

”
10SS9301d [0SS9201d

joyoed | | j1oMoed auibug

DJEROlU) , :
/Mol | [¥ed | | 19%oed |-
(-] obeioyg M 'NVS [E| NvS NVS NVS Ajunoag

1%
ananp
nduj
6) 3ISCOH :

@)

J9]jonuo) Atowsy . ouiBug JoInpoLoS onond

3 N uopeo] S
ayoe) uoissag abei0)g/d| : uonesyIsse|d }9)oed nduj
@E? o

PCT/US03/18386
47/52

WO 03/104943

Mmofjuonedr) j
uorssog L S

10SS290.14 aue|d |0Jjuo9

ananp |4 (S)W-M0L e = W s T ..-:&:0 9
f dino | 7 TH @ RBe - _ = G

Rk gl

}JSOH L——.

<

-y Jojjonuon |
19]]0.13UO——/ vINGY 0ss9001d |10SSa901d I0SS9201ld [10SS9901d
=R AN T oulbug
419) __ll /MO]4 108ed | | 19M98d .| }9)Oed | |}o)oed fINos
10H {1 opeioie NvS [E Nvs NVS | | NvS Winoos

ananp
—N nduj
—V| 31soH

1

114

T

J9jjo13uo0n Alowd

k4
ayoen uoissag abeioig/dl

SN

11

aulbug lo|npayosg A1 @nenp A”_
uopesyisse}n Joxord A_H induj ,

PCT/US03/18386

WO 03/104943

48/52

UoIssoS 84 31

UMOp B9],

7

10SS9201d duejd |oJ3uon

gl

ananp
ananp 01 7 ; =Sl)
indino B
ISOH “ —1 8 B—8 ———— 1)
Jojjonuon R
19]jo3uo 0sso201d [10SS9901d HOSSDJ01ld HN0SS920.d
VINGY auibug
9JelIvju] /MOl 1)oed j9)oed jojoed | | 19)oed funoeg
JSOH obeio)g [NVS [Nvs NVS NVS .
ananpd “ 1 Aﬂ
—N nduy A ki R
—/ }SOH g B &
\VA
Jejjonuo) Aowspy /—N aulbug Jo|npaysg — @nanp A..H_ A
K \N—/] Y A_IIH nduj \—
ayoen uoissag abeloyg/dl UOREISSEID 4oed el

®

T

1I

JT 1E

PCT/US03/18386

WO 03/104943

49/52

MO]J UMOP JBa],

/uoneaIn
uo1SSag 10318], 6 S

ananp
indino

JSOH &=

o

10S$920.d aue|d |01Ju0)

_Hv.w:ob:ooi

aorLIdU|
JSoH

Jajjojuod

VINQH
/mold
obelolg

ananpd
nduj

JSOH

HOSS920.1d
jo3joRd

3

HOSS©20.1d
19Moed
NVS

10SS930.1d
1o)oed
NVS

auibug
Anoag

?

J9]jo13uo0n Atowdy

ayoe) uoissog abe.oig/d|

N—/

I

It

auibug
uonesuisse]n

JonNpayos
jo%oRd

PCT/US03/18386

WO 03/104943

50/52

(129 puesS) Mo

17

SNIM 1981e], 05 S1

JO0SS990.1d aue]d |oJjuo)

w:o:d
indino
JSOH

J9]joJuoyH

/i9jjo3uon-

aoeLIa)U| ,W>_“,,_on__um__
3SOH abelo)g

J9]j043u09) Alowd|\

k;
ayoed Uuoissog ¢mﬁh0“__m\n=

{NVS

10559901
}o)oed

lossa201d
joxoed
NVS [

10SS920.1d
joyoRd
NVS

HO0SS9D0.1d
1o)oRd
NV'S

ananp

n Q”—.S (o) ?.rvxi

8

auibuz

Aunoeg

]

11

auibug
uoljesisse|d

Ja|npayoss
1o¥oed

ananp
nduyj

AH_

1E

1T

PCT/US03/18386

WO 03/104943

51/52

(SIIA 9A100Y) MO[

@ m

0

SNIM 1031e], 16 "SI

10S8S920.1d auejd |ojuo)

foee ONOND R
e 11dINO
JSOH &

Jojjonuon
VINGA

/Mol
obeliolg

ananp

10SS990id
yoxoed
NVS [H

10SS920.1d
joxoRd
NVS |

HOSS9I0.1d
1o¥oRd
NVS

ananp
ndino
HO0SSD20.1d m
13084 >m=_ ugj
NVS JLIN02Q

nduj

}SOH

JajjoJjuon Alowd

k'S
ayoe uoissog abelolg/dl

aulbug
uojjeayisse|d

_Isnpayos
19)0Rd

Iy

1=

PCT/US03/18386
52/52

WO 03/104943

MO pead
H—owﬁw,ﬁ ¢S wﬂm 10ss9%01d auejd [osuo0D

RS

\ Jojjonucyen

<s_ﬁ_.ﬂ_ . 0SS920ld [10SS920.1d 10SS920.1d [10SS900.1dg m
/Mol m ™ded | | 19)oed 1o)oed | | 19)oed >o“w_%%
obeio)g | NVS [E Nvs NVS NVS TR

. ‘,W,h_.v_;@.

J9jjouon Alowsy

?
oyoed uolissag OON..O”—W\&_

T 0T

i

aulbug J9|npayog
uoneslyIsse|) joyoed

]

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

