A sheet of paper product having two or more complementary function components. One of the complementary function components is a pocket.
Fig. 1
ABSORBENT PAPER PRODUCT HAVING COMPLEMENTARY USE COMPONENTS

FIELD OF THE INVENTION

This invention pertains to an absorbent paper product having a complementary use component.

BACKGROUND OF THE INVENTION

Absorbent paper products are a staple of everyday life. Absorbent paper products may be consumer products for paper towels, toilet tissue, facial tissue, napkins, and the like. The large demand for such paper products has created a demand for improved functionality beyond conventional uses.

Some consumers prefer cellulosic fibrous structures that can be easily used on multiple surfaces, or which can perform multiple tasks. It is known to provide a product that has different surface on either side (i.e., an abrasive face and a soft face); however, not all consumers prefer a product wherein the different functionalities occupy equal areas of the product.

For example, a consumer may prefer to have a small area on the surface of the product, such as a small abrasive zone, where the consumer may concentrate a great deal of force to the area to aggressively abrade an area, but then have the remainder of the product to be smooth so that a post-abrading wipe may be easily performed without the consumer having to reverse the product. While it may be possible to keep multiple products that perform different functions (i.e., one product that performs a wiping task and another product that performs an abrading task), consumers often prefer to minimize the number of products that they must purchase and use.

Thus, there is the need for a paper towel product comprising one or more zones of complementary functionality to the body of the paper towel product. Accordingly, the present invention addresses the above considerations by providing a paper towel product with one or more zones of complementary functionality to the body of the paper towel product.

BRIEF DESCRIPTION OF THE DRAWINGS

While the specification concludes with claims that particularly point out and distinctly claim the present invention, it is believed that the present invention will be understood better from the following description of embodiments, taken in conjunction with the accompanying drawings, in which like reference numerals identify identical elements.

FIG. 1 shows a schematic view of a representative apparatus that can incorporate the present invention;

FIG. 2A shows a perspective view of an exemplary component that can be incorporated into the present invention;

FIG. 2B shows a perspective view of an exemplary component that can be incorporated into the present invention;

FIG. 3 shows a perspective view of an exemplary product according to the present invention;

FIG. 4A shows a perspective view of an exemplary product according to the present invention;

FIG. 4B shows a cross-sectional view of the exemplary product of FIG. 4A taken along the line 4B-4B;

FIG. 5 shows a perspective view of an exemplary product according to the present invention in roll form.

FIG. 6 shows a perspective view of an exemplary product according to the present invention.

FIG. 7 shows a perspective view of an exemplary product according to the present invention in roll form.

SUMMARY OF THE INVENTION

In one embodiment, the present invention is directed to a sheet of paper product comprising two or more complementary function components, wherein one of the one or more complementary function components is a pocket.

In another embodiment, the present invention is directed to a continuous web of paper product comprising a plurality of sheets, wherein each sheet comprises two or more complementary function components, wherein one of the one or more complementary function components is a pocket.

In yet another embodiment, the present invention is directed to a sheet of paper product comprising one or more complementary function components, wherein one of the one or more complementary function components is a non-standard material.

In still another embodiment, the present invention is directed to a roll paper product comprising a plurality of sheets, wherein each sheet is separated by a line of perforations; wherein each sheet comprises one or more complementary function components; wherein one of the one or more complementary function components is a non-standard material; and wherein at least one of the one or more complementary function components are registered to about the same position on each sheet.

DETAILED DESCRIPTION OF THE INVENTION

“Paper product”, as used herein, refers to any formed, fibrous structure products, traditionally, but not necessarily, comprising cellulose fibers. A paper product may be described in terms of a continuous web, or in terms of individual sheets. In one embodiment, the paper products of the present invention include paper towel products.

“Cellulosic fibrous structure product”, as used herein, refers to products comprising paper tissue or paper toweling technology in general, including, but not limited to, conventional felt-pressed or conventional wet-pressed fibrous structure product, pattern densified fibrous structure product, starch substrates, and high bulk, uncompacted fibrous structure product. Non-limiting examples of tissue-towel paper products include disposable or reusable, toweling, facial tissue, bath tissue, table napkins, placemats, wipes, and the like.

“Ply” or “Plies”, as used herein, means an individual fibrous structure or sheet of fibrous structure, optionally to be disposed in a substantially contiguous, face-to-face relationship with other plies, forming a multi-ply fibrous structure. It is also contemplated that a single fibrous structure can effectively form two “plies” or multiple “plies”, for example, by being folded on itself. In one embodiment, the ply has an end use as a tissue-towel paper product. A ply may comprise one or more wet-laid layers, air-laid layers, and/or combinations thereof. If more than one layer is used, it is not necessary for each layer to be made from the same fibrous structure. Fur-
ther, the layers may or may not be homogenous within a layer. The actual makeup of a fibrous structure product ply is generally determined by the desired benefits of the final tissue-towel paper product, as would be known to one of skill in the art. The fibrous structure may comprise one or more plies of non-woven materials in addition to the wet-laid and/or air-laid plies.

0024 “Fibrous structure”, as used herein, means an arrangement of fibers produced in any papermaking machine known in the art to create a ply of paper. “Fiber” means an elongate particulate having an apparent length greatly exceeding its apparent width. More specifically, and as used herein, fiber refers to such fibers suitable for a papermaking process. The present invention contemplates the use of a variety of paper making fibers, such as, natural fibers, synthetic fibers, as well as any other suitable fibers, starches, and combinations thereof. Paper making fibers useful in the present invention include cellulosic fibers commonly known as wood pulp fibers. Applicable wood pulps include chemical pulps, such as Kraft, sulfite and sulfate pulps; mechanical pulps including groundwood, thermodemechanical pulp; chemithermodemechanical pulp; chemically modified pulps, and the like. Chemical pulps, however, may be preferred in tissue towel embodiments since they are known to those of skill in the art to impart a superior tactile sense of softness to tissue sheets made therefrom. Pulps derived from deciduous trees (hardwood) and/or coniferous trees (softwood) can be utilized herein. Such hardwood and softwood fibers can be blended or deposited in layers to provide a stratified web. Exemplary layering embodiments and processes of layering are disclosed in U.S. Pat. Nos. 3,994,771 and 4,300,981. Additionally, fibers derived from non-wood pulp such as cotton linters, bagasse, and the like, can be used. Additionally, fibers derived from recycled paper, which may contain any or all of the pulp categories listed above, as well as other non-fibrous materials such as fillers and adhesives used to manufacture the original paper product may be used in the present invention. In addition, fibers and/or filaments made from polymers, specifically hydroxyl polymers, may be used in the present invention. Non-limiting examples of suitable hydroxyl polymers include polyvinyl alcohol, starch, starch derivatives, chitosan, chitosan derivatives, cellulose derivatives, gums, arabinans, galactans, and combinations thereof. Additionally, other synthetic fibers such as rayon, lycocel, polyester, polyethylene, and polypropylene fibers can be used within the scope of the present invention. Further, such fibers may be latex bonded. Other materials are also intended to be within the scope of the present invention as long as they do not interfere or counteract any advantage presented by the instant invention.

0025 “Complementary function” or “complementary functionality”, as used herein, means a function, utility or purpose that is different, but which may accompany or supplement a different function. Some exemplary, non-limiting examples of pairs of complementary functions include: scrubbing and wiping, abrading and polishing, and polishing wiping. Those of skill in the art will appreciate that there may be more than one function that complements (i.e., complementary function) for a particular function.

0026 “Non-standard material”, as used herein, means a material that is not a fibrous structure product or paper web. Nonlimiting examples of non-standard materials include the group consisting of: cloth, sponge, fabric, polymer, and combinations thereof.

0027 “Basis Weight”, as used herein, is the weight per unit area of a sample reported in lbs/3000 ft² or g/m².

0028 “Machine Direction” or “MD”, as used herein, means the direction parallel to the flow of the fibrous structure through the papermaking machine and/or product manufacturing equipment.

0029 “Cross Machine Direction” or “CD”, as used herein, means the direction perpendicular to the machine direction in the same plane of the fibrous structure and/or fibrous structure product comprising the fibrous structure.

Base Structure

0030 The present invention is equally applicable to all types of consumer paper products such as paper towels, toilet tissue, facial tissue, napkins, and the like. In one embodiment, the present invention product may be made using a papermaking machine, such as one exemplified in U.S. Pat. Nos. 4,528,239 or 7,229,528.

0031 The present invention contemplates the use of a variety of paper making fibers, such as, natural fibers, synthetic fibers, as well as any other suitable fibers, starches, and combinations thereof. Paper making fibers useful in the present invention include cellulosic fibers commonly known as wood pulp fibers. Applicable wood pulps include chemical pulps, such as Kraft, sulfite and sulfate pulps, as well as mechanical pulps including, groundwood, thermomechanical pulp, chemically modified, and the like. Chemical pulps may be used in tissue towel embodiments since they are known to those of skill in the art to impart a superior tactile sense of softness to tissue sheets made therefrom. Pulps derived from deciduous trees (hardwood) and/or coniferous trees (softwood) can be utilized herein. Such hardwood and softwood fibers can be blended or deposited in layers to provide a stratified web. Exemplary layering embodiments and processes of layering are disclosed in U.S. Pat. Nos. 3,994,771 and 4,300,981. Additionally, fibers derived from wood pulp such as cotton linters, bagasse, and the like, can be used. Additionally, fibers derived from recycled paper, which may contain any of all of the categories as well as other non-fibrous materials such as fillers and adhesives used to manufacture the original fibrous structure product may be used in the present invention. Non-limiting examples of suitable hydroxyl polymers include polyvinyl alcohol, starch, starch derivatives, chitosan, chitosan derivatives, cellulose derivatives, gums, arabinans, galactans, and combinations thereof. Additionally, other synthetic fibers such as rayon, lycocel, polyester, polyethylene, and polypropylene fibers can be used within the scope of the present invention. Further, such fibers may be latex bonded. Other materials are also intended to be within the scope of the present invention as long as they do not interfere or counteract any advantage presented by the instant invention.

0032 In one embodiment the present invention may comprise a co-formed fibrous structure. A co-formed fibrous structure comprises a mixture of at least two different materials wherein at least one of the materials comprises a non-naturally occurring fiber, such as a polypropylene fiber, and at least one other material, different from the first material, comprises a solid additive, such as another fiber and/or a particulate. In one example, a co-formed fibrous structure comprises solid additives, such as natturally occurring fibers, such as wood pulp fibers, and non-naturally occurring fibers, such as polypropylene fibers.

0033 Synthetic fibers useful herein include any material, such as, but not limited to, those selected from the group consisting of: polyesters, polypropylene, polyethylene, polyethylene, polyethylene, polyethylene, polyamides, polyhydroxyalkanoates, polysac-
charides, and combinations thereof. The synthetic fiber may comprise a polymer. The polymer may be any material, such as, but not limited to, those materials selected from the group consisting of polysteresters, polynamides, polyhydronyl-
kanolates, polyaccharides and combinations thereof. More specifically, the material of the polymer segment may be selected from the group consisting of poly(ethylene tereph-
thlate), poly(butylene terephthalate), poly(1,4-cyclohex-
ylenedimethylene terephthalate), isophthalic acid copolymers (e.g., terephthalate cyclohexylene-dimethylene isophthalate copolymer), ethylene glycol copolymers (e.g., ethylene terephthalate cyclohexylene-dimethylene copolymer), poly-
caprolactone, poly(hydroxyl ether ester), poly(hydroxyl ether amide), polystyrene, polylactic acid, poly-
hydroxybutyrate, and combinations thereof.

[0034] Further, the synthetic fibers can be a single compo-
nent (i.e., single synthetic material or mixture makes up entire fiber), bi-component (i.e., the fiber is divided into regions, the regions including two or more different synthetic materials or mixtures thereof and may include co-extruded fibers) and combinations thereof. It is also possible to use bicomponent fibers, or simply bicomponent or sheath polymers. Nonlim-
iting examples suitable bicomponent fibers are fibers made of copolymers of polyester (polyethylene terephthalate)/polyester (polyethylene terephthalate) (otherwise known as “CoPET/PEt” fibers), which are commercially available from Fiber Innovation Technology, Inc., Johnson City, Tenn.

[0035] These bicomponent fibers can be used as a compo-
nent fiber of the structure, and/or they may be present to act as a binder for the other fibers present. Any or all of the synthetic fibers may be treated before, during, or after the process of the present invention to change any desired properties of the fibers. For example, in certain embodiments, it may be desirable to treat the synthetic fibers before or during the paper-
making process to make them more hydrophilic, more wet-
table, etc.

[0036] These multicomponent and/or synthetic fibers are further described in U.S. Pat. Nos. 6,746,766, 6,946,506, and 6,890,872; U.S. Publication Nos. 2003/0077444A1, 2003/

[0038] The fibrous structure substrates may be manufact-
ured via a wet-laid making process where the resulting web may be comprised of fibrous structure selected from the group consisting of: through-air-dried fibrous structure plies, differential density fibrous structure plies, wet laid fibrous structure plies, air laid fibrous structure plies, conventional fibrous structure plies, and combinations thereof.

[0039] Optionally, the fibrous structure substrate may be foreshortened by creping or by wet microcontraction. Cre-
ping and/or wet microcontraction are disclosed in U.S. Pat. Nos. 6,048,938, 5,942,085, 5,865,950, 4,440,597, 4,191,756, and 6,187,138.

[0040] Conventionally pressed tissue paper and methods for making such paper are known in the art. For example, U.S. Pat. No. 6,547,928. One suitable tissue paper is pattern den-
sified tissue paper which is characterized by having a rela-
tively high-bulk field of relatively low fiber density and an array of densified zones of relatively high fiber density. The high-bulk field is alternatively characterized as a field of pillow regions. The densified zones are alternatively referred to as “knock-out” regions. The densified zones may be discretely spaced within the high-bulk field or may be interconnected, either fully or partially, within the high-bulk field. Processes for making pattern densified tissue webs are disclosed in U.S. Pat. Nos. 3,301,746, 3,974,025, 4,191,609, 4,637,859, 3,301, 746, 3,821,068, 3,974,025, 3,573,164, 3,473,576, 4,239,065, and 4,528,239.

[0041] Uncompacted, non-pattern-densified fibrous struc-
tures are also contemplated within the scope of the present invention and are described in U.S. Pat. Nos. 3,812,000 and 4,208,459. Uncreped tissue paper as defined in the art is also contemplated. The techniques to produce uncreped tissue in this manner are taught in the prior art. For example, European Pat. App. Nos. 0677 612A2, 0617 164 A1, and 5,656,132.

[0042] The substrate which comprises the fibrous structure of the present invention may be cellulose, non-cellulosic, or a combination of both. The substrate may be conventionally dried using one or more press felts or through-air dried. If the substrate which comprises the paper according to the present invention is conventionally dried, it may be conventionally dried using a felt which applies a pattern to the paper as taught by commonly assigned U.S. Pat. No. 5,556,509 and PCT Application WO 96/00812. The substrate which comprises the paper according to the present invention may also be through air dried. A suitable through-air dried substrate may be made according to commonly assigned U.S. Pat. No. 4,191,609.

Making Products With One or More Zones of Complementary Function/Components

[0043] The present invention comprises one or more zones of complementary functionality. In one embodiment, one or more separate components may be adhesively attached to a portion of the surface of an absorbent paper product to pro-
vide the present invention product. Exemplary methods and apparatus for attaching individual components to a moving web are described in U.S. Pat. Nos. 6,589,149, 6,074,333 and 6,527,902, and U.S. Pat. Pub. No. 2003/0079330.

[0044] FIG. I shows an exemplary apparatus 10 that may be used to attach individual components 20 to a continuous moving web 24. In the exemplary embodiment, two or more transfer arms 42 rotate around an axis A that is parallel with the CD direction. The transfer arms receive individual components 20 from a suitable web supply 90. In one embodiment, adhesive may be applied to the individual components 20 from an adhesive application roll 50 and the transfer arms 42 may deposit the component 20 onto the moving web 24 where the component 20 may be married to the moving web 24 by a component marrying roll 30 to provide the web 24 with discrete, individual components. In one embodiment, the transfer arms 42 may use a vacuum to stabilize the component 20 as the component 20 is moved from the web supply 90 to the moving web 24.

[0045] In one embodiment, an individual component occupies from about 2% to about 30% of the surface area of one side of the web 24 (or individual sheet of product, if the product has been separated into individual sheets). In another embodiment, an individual component occupies from about 3% to about 10% of the surface area of one side of the web or sheet. One of skill in the art may appreciate that it may be possible to provide a plurality of perforations along the surface of the continuous web 24 so that a consumer may separate the web 24 into individual sheets.
In one embodiment, the web 24 is provided in roll form. In another embodiment, the web 24 is provided in roll form about a core.

Components: Pocket

One of skill in the art will appreciate that any individual component can be used to perform a complementary function with the base web structure. In one embodiment, the individual component is a pocket or slot. The pocket or slot may be any shape that is suitable for the intended purpose. In one embodiment, the shape of the pocket or slot may be selected from the group consisting of: triangle, square, round, oval, rectangular, quadrilateral, parallelogram, and combinations thereof.

An exemplary embodiment of a pocket 20a according to the present invention is shown in FIG. 2A. In one embodiment, the pocket 20a comprises a top side 202 and a bottom side 204 and has a width W of from about 1" to about 4". In one embodiment, the pocket 20a has a length L of from about 1" to about 4". An alternative exemplary embodiment of a pocket 20a is shown in FIG. 2B. In the exemplary embodiment of FIG. 2B, the pocket 20a is triangular and has a width W of from about 1" to about 4" and a height H of from about 1" to about 3". Those of skill in the art may appreciate that a pocket may or may not have a first side 202 and a second side 204. In one embodiment, a pocket comprises only a first side 202 and the edges 202a around the perimeter of the pocket may be adhesively attached to the web 24.

An exemplary embodiment of a web 24 comprising a plurality of components 20, such as pockets 20a is shown in FIG. 3. In the exemplary embodiment, the web 24 further comprises perforations 57 so that the web 24 may be separated into individual sheets 59.

Without wishing to be limited by theory, it is thought that a pocket or slot may facilitate the use of the present invention paper product by providing consumers with a means for securing one or more consumer’s fingers in the product during use.

Components: Abrasive Zone

In one embodiment, the complementary function may be abrasiveness/abrating. Abrasive surfaces for use with a paper towel or scrub-pad-type products are described in U.S. Pat. Nos. 6,993,805 and Canadian Pat. No CA 2129244. Abrasive zones may be applied to the surface of the web as described supra or using any means known in the art. Registration of Multiple Component Zones or Component with Perforations In some embodiments, a first component zone may be registered with a second component zone (i.e., a pocket may be registered with an abrasive zone) wherein the first component zone occupies a particular MD and CD position on the web (or on an individual sheet) and wherein the second component zone occupies the same MD and CD position on the web, but on the reverse side. Similarly, it may be necessary to register the one or more components with other features, such as perforations, for the product to be salable to consumers. Registration of multiple components or zones is well known in the art. Exemplary methods and apparatus for registering two or more features on a rolled product are described in U.S. Pat. Nos. 7,089,854, 6,929,838, and 6,928,929. The components may be the same or different sizes.

Exemplary Resultant Paper Product

The web 24 described in FIG. 1 may be perforated or separated by any means known in the art. An exemplary embodiment is shown in FIG. 3. In some embodiments, the sheets have approximately the same dimensions in the MD and CD. In the exemplary embodiment of FIG. 3, the web 24 comprises perforations 57 that are a perforation distance D_{perf} of from about 1/4" to about 1/4" in the machine direction from the individual components 20. Without wishing to be limited by theory, it is thought that by providing a space between the individual components (as in the example of FIG. 3, pockets 20a) and the perforations 57, when a consumer separates one sheet 59 from another, the individual pockets 20a will not interfere/be affected by the separation.

FIG. 4A shows an alternative embodiment of a sheet 59 of an absorbent paper product having a first complementary use component 20aa and a second complementary use component 20bb (FIG. 4B). In the embodiment shown, the first complementary use component 20aa and second complementary use component 20bb are on opposite faces, but in the same position (in terms of machine direction/cross machine direction positioning). In one embodiment, the first complementary use component 20a is a pocket and the second complementary use component 20b is an abrasive zone. FIG. 4b shows a cross-sectional view of the sheet 59 of FIG. 4A taken along the line 413-413.

Without wishing to be limited by theory, it is thought that the embodiment described in FIGS. 4A-43 provides consumers with the unexpected advantage of providing a normal use paper towel or absorbent paper product with a means for securing one or more of the consumer’s fingers and an abrasive zone juxtaposed on the opposite face of the pocket wherein the consumer may then focus more strength to the ablative zone to aggressively remove unwanted material or debris from a surface, but while being able to use the remaining portions of the paper towel product as she normally would, without having to use multiple products or reverse the paper towel as she would have to do with many of the prior art two-sided products.

FIG. 5 shows an exemplary embodiment of the present invention web 24 comprising a plurality of perforations 57 and components 20 wherein the web 24 is rolled about a core 240.

FIG. 6 shows an exemplary embodiment of the present invention web 24 comprising a component 20 wherein the component is a non-standard material. The non-standard material may be affixed to any portion of the web 24 that is suitable for its intended use. In one embodiment, the component 20 made from non-standard material may be affixed to the approximately the same area of each sheet 59 in the web 24—in other words, the non-standard material may be registered to the same part of each sheet 59. In a roll product, this means that the non-standard material may be the same relative distances away from the MD edges and/or the perforations (CD) in the product. In the exemplary embodiment shown in FIG. 6, the non-standard material is centered in the sheet. Thus, for a roll product, the non-standard material is centered in each sheet relative to the MD edges and the perforations 57 (shown in FIG. 7).

Foldability

In some embodiments, the sheet of paper product may be folded for packaging, consumer presentation, and the like. An exemplary method of making a folded fibrous structure can be achieved by the following. A supply roll of fibrous material is unwound by driving the circumferential surface, end face surfaces, core, or any combination thereof. The unwinding speed is controlled to achieve a target web speed, relative speed to downtime operations, or web tension. The web is then converted or otherwise provided with a complementary function zone as described above. The web is then
separated into at least two longitudinal web strips by linear or non-linear shear slitting, linear or non-linear score slitting, linear or non-linear die cutting, linear or non-linear water jet cutting, linear or non-linear laser cutting, or any other suitable means known in the art. The web strips are then folded using folding boards, turn bars, or any other devices known in the art, to create a "C" or "Z" fold configuration in which at least one portion of at least one web strip is deformed in the transverse direction to produce at least one flap which overlies the remaining portion of the web strip. Flaps which include non-linear edges may be oriented such that they form a complementary pattern once the edges are positioned in a proximate configuration. The folded web strips are then passed over a turn bar known to one of skill in the art and redirected to flow in a direction generally perpendicular to the original direction of web travel. Turn bars for each web strip may be positioned in different machine direction locations to reorient the web strips such that, after being redirected, they may be juxtaposed to one another for more efficient winding. Transverse zones of weakness may then be imparted to the folded web strips to enable easier dispensing by the user. Said embossing, indicia addition, slitting, folding, and imparting of transverse zones of weakness transformations may be phased to one another in the machine direction or the cross machine direction or both. The web strips are then rewound into a rolled product, either on a core or in a coreless configuration. The winding operation may control the rotational velocity of the core, the surface speed of the winding product's circumferential surface, or a combination thereof. The wound rolls are then transferred to other operations for wrapping, packing, and the like. Alternative transformation sequences and/or manufacturing methods known to one skilled in the art may also be used.

All documents cited in the Detailed Description of the Invention are, in relevant part, incorporated herein by reference; the citation of any document is not to be construed as an admission that it is prior art with respect to the present invention. Terms or phrases defined herein are controlling even if such terms or phrases are defined differently in the incorporated herein by reference documents.

While particular embodiments of the present invention have been illustrated and described, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the invention. It is intended to cover in the appended claims all such changes and modifications that are within the scope of this invention.

The dimensions and values disclosed herein are not to be understood as being strictly limited to the exact numerical values recited. Instead, unless otherwise specified, each such dimension is intended to mean both the recited value and a functionally equivalent range surrounding that value. For example, a dimension disclosed as "40 mm" is intended to mean "about 40 mm".

What is claimed is:
1. A sheet of paper product comprising two or more complementary function components, wherein one of the one or more complementary function components is a pocket.
2. A sheet of paper product according to claim 1 wherein the one of the one or more complementary function components occupies from about 2% to about 30% of the surface area of one side of the web.
3. A sheet of paper product according to claim 2 wherein the one of the one or more complementary function components occupies from about 3% to about 10% of the surface area of one side of the web.
4. A sheet of paper product according to claim 1 wherein the pocket is a triangle.
5. A sheet of paper product according to claim 4 wherein the pocket has a width of from about 1" to about 4".
6. A sheet of paper product according to claim 4 wherein the pocket has a height of from about 1" to about 3".
7. A sheet of paper product according to claim 1 wherein the pocket comprises a first side.
8. A sheet of paper product according to claim 7 wherein the pocket further comprises a second side.
9. A sheet of paper product according to claim 1 wherein the web further comprises a second complementary function component wherein the second complementary function component is an abrasive zone.
10. A sheet of paper product according to claim 9 wherein the abrasive zone is juxtaposed on the opposite face, but in the same MD and CD location as the pocket.
11. A continuous web of paper product comprising a plurality of perforations; wherein the perforations provide a plurality of sheets, each sheet comprising two or more complementary function components; wherein one of the one or more complementary function components is a pocket; and wherein the plurality of sheets may be separated at the perforations.
12. The web of paper product according to claim 11 wherein the sheets have approximately the same dimensions.
13. A web of paper product according to claim 12 wherein the perforations are from about $\frac{1}{6}$" to about $\frac{1}{4}$" from the pocket.
14. A sheet of paper product according to claim 11 wherein the web is wound about a core.
15. A sheet of paper product comprising one or more complementary function components, wherein one of the one or more complementary function components is a non-standard material.
16. The sheet of paper product according claim 15 wherein the non-standard material may be selected from the group consisting of: cloth, sponge, fabric, polymer, and combinations thereof.
17. A roll paper product comprising a plurality of sheets, wherein each sheet is separated by a line of perforations; wherein each sheet comprises one or more complementary function components; wherein one of the one or more complementary function components is a non-standard material; and wherein at least one of the one or more complementary function components are registered to about the same position on each sheet.

* * * * *