0 01/16732 A1l

=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
8 March 2001 (08.03.2001)

T 0000

(10) International Publication Number

WO 01/16732 Al

(51) International Patent Classification’: GO6F 9/45

(21) International Application Number: PCT/US00/23694

(22) International Filing Date: 29 August 2000 (29.08.2000)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

09/385,903 30 August 1999 (30.08.1999) US

(71) Applicants and

(72) Inventors: VERMEIRE, Dean, R. [US/US]; 7807
Mullen Rd., Lenexa, KS 66216 (US). MURPHY, Gary,
L. [US/US]; 13632 S. Sycamore Drive, Lenexa, KS 66216
(US).

(74) Agent: STITT, Richard, P.; 1000 Walnut St., Ste 1400,
Kansas City, MO 64106 (US).

(81) Designated States (national): AU, CA, JP, MX.

(84) Designated States (regional): European patent (AT, BE,
CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC,
NL, PT, SE).

Published:

With international search report.

Before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments.

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: METHOD OF MARKUP LANGUAGE ACCESSING OF HOST SYSTEMS AND DATA USING A CONSTRUCTED

Intermediary

/]0)12

U
O
S

Y

moarcOzZ>

-

INTERMEDIARY
14
]
User
14
)
IS M
User (2
K
u
P
1
User :
Id G
u
14 A
_¢
E
Y
User)
. 18
14

(57) Abstract: A method of operating and communicating with a host system (12) is provided using mark-up language (18) inputs
and outputs directed by an intermediary (10) which has been previously constructed by formulation of the host data and program
structures and host machine characteristics into a system of metadata which allows the reconstruction of requests and results into

and out of mark-up languages binary data streams.

10

15

20

25

30

35

WO 01/16732 PCT/US00/23694
Method of Markup Language Accessing of Host Systems

and Data Using A Constructed Intermediary

Background of the Invention

Legacy system computer applications that have been executing on mainframe
computers, in some cases, for decades, continue to play a vital role in American
commerce, education, and industry. Such software, in fact, has vastly outlived the time
period during which its creators believed it would be useful. Doubts about the truth of the
foregoing proposition vanish in the face of the billions of dollars that have been (or will be)
spent by U.S. companies and the United States government in correcting computer code
that is not Year 2000 compliant. The vast bulk of this code is substantially more than five
years old.

Added to this vast mass of legacy systems are modern systems executing in
modern environments, such as the client/server environment. These systems, like the
legacy systems, suffer from the same basic limitation--the business logic and associated
data are locked up in architecture-specific systems. Those using different operating
systems running on computers powered by entirely different central processing units
cannot effectively access the data and business logic residing on these conventional
systems.

These conventional systems (both the legacy systems and the more modern
systems) are not only important, they also represent substantial investments by
companies. They are the product of billions of dollars of programmer compensation and
untold millions of hours of business planning, strategic design, and work flow description.
In many respects, the code embodied in these conventional systems describes the
operations of everyday commerce in this country.

Today's technology culture differs widely from the environment that existed when
most of these conventional systems were created. Access to computers is no longer
limited to an elite handful of technicians with dedicated terminals hooked to gargantuan
boxes located in specially cooled rooms. Today, virtually every worker has a personal
computer sitting on his/her desk. Others, on the go, carry their computers in brief cases
that connect to the home office via telephone lines. Consumers, from their dens and living
rooms, are buying and selling stocks, checking their bank accounts, and (in some cases)
telecommuting. The need to get the data and business logic out of the hands of the

specially trained technicians and into the hands of every day people is great. The demand

10

15

20

25

30

35

WO 01/16732 PCT/US00/23694
is the same, and the problem is the same, whether the important data and business logic
resides on a legacy system or on a modern client/server system. Accessing and
interacting with it from the outside, an external system, is a huge chore.

The demand is great, but, even more importantly, it is growing exponentially--with
the explosion in popularity of the Internet and, especially, the World Wide Web. The
number of trademark applications alone with terms like “e-biz,” “e-business,”
“a-commerce,” and the like is staggering. Clearly, commerce has moved to the net.
Virtually no television advertisement and certainly no television news program fails to
include a reference to its Internet or World Wide Web address.

Coupled with the popularity of the Internet has been another trend that has silently
but markedly transformed the landscape of commerce and, indeed, everyday life in the
United States. This is the trend toward self-service. Full service filling stations, for
example, have almost been relegated to a dim memory. ATM machines have replaced
tellers, and even some banks charge an extra transaction fee for using a human teller, as
opposed to an ATM machine. The Internet itself is the ultimate expression of the trend
toward self-service. Banking, book buying, car and home shopping, teaching, and even
church services are available when the cyber-consumer wants it and without the presence
of any human tellers, brokers, clerks, teachers, professors, registrars, or ministers.

Regardless of the computer system on which the application is running, the same
basic disability exists. The data and business logic are locked up in an
architecture-specific format. Almost universally, raw data is stored in a format shaped
primarily by storage constraints, e.g., in relational database tables, and by retrieval
considerations, e.g., indexes. This data is presented in business-useful human-friendly
form only when acted upon by the architecture-specific computer application that carry out
instructions based on business logic. In other words, the data resides in one generally
useless format and is put in useful form only when acted upon by a separate computer
application, which application is typically architecture-specific in terms of its functionality.
Thus, whether the information and business logic are locked up inside a venerable legacy
system or are stored in client/server systems in database tables, systems on the outside
have difficulty in reaching into these conventional systems for not just the raw data, but the
data in a form and format that has been filtered, selected, organized, and processed by
intelligence that embodies an organization's business logic.

The problem, as noted above, is not just converting the data from one system to
another. Difficult as that problem is, converting the raw data from a format on one

2

10

15

20

25

30

35

WO 01/16732 PCT/US00/23694
magnetic medium to a different format on another medium has been done before. As
noted above, however, conversion of the data does not solve the problem. The business
logic that sorts, parses, selects, combines, performs operations upon, and presents this
data in useful form is left behind. The raw data, even if converted, is just sitting there. It
is no longer part of the system. It is just plain data.

In order to make this data, even after it is converted into a form that can be
processed by an external system, of any use, it has to be combined with the business
logic, e.g., combined with computer code that sorts, parses, selects, combines, presents,
and otherwise operates on the data in ways that are meaningful to the business or
institution that owns the data. That business logic already exists in the executable code
still residing on the conventional system. The business logic needs to be duplicated or
replicated in a form that the external system can use.

The process of reinventing the business logic is inefficient, time-consuming, and (in
many cases) ineffective. It is inherently inefficient to operate two parallel systems--the
conventional system and the external system. The conventional system represents a
huge investment of time and money--an investment likely to have painfully escalated with
the cost of making these conventional systems Year 2000 compliant. Reinventing these
programs in another environment--the environment of the external system--hardly makes
sense now. Moreover, the programmers who best know the organization’s business logic,
as it is embodied in the programs executing on the conventional system, are probably not
the people who are best equipped to recreate the business logic in the new (external)
environment. Almost by definition, they are trained on and have developed expertise in
the environment of the conventional system, not the external system. Thus, if the
business logic is to be recreated on the external system, those with the best knowledge
of the business logic will need to be retrained in the language of the external system or,
in the alternative, the job of recreating the business logic in the external system will be
handled by those with no experience in the organization's business logic. Both
approaches fall far short of the ideal.

An alternative to the solution described above--translation of the data and
recreation of the business logic--would be to graft external system awareness into the
conventional system. This approach is best illustrated by the efforts of some to transplant
HTML-aware routines, libraries, and tools into legacy systems. Modern flavors of RPG,
COBOL, Fortran, and others sport new web awareness tools and extensions. This

approach has both advantages and disadvantages.

3

10

15

20

25

30

35

WO 01/16732 PCT/US00/23694

The main advantage of this approach is that it allows the legacy system
programmer to continue to function in the environment in which he/she feels comfortable.
These legacy system programmers do not have to become web gurus or become
proficient in Java, HTML, and other web-based or web-aware languages.

The disadvantage involves the same problem of duplication mentioned above. The
legacy system programmers who have just spent the last two or three years plowing
through lines of codes that haven'’t seen daylight in decades to fix the Y2K problem now
have to go through all those lines of code all over again, rewriting them to become not Y2K
compliant, but web compliant. In other words, the systems will all have to be modified
and/or rewritten using these new web-aware tools.

The applicant’s invention permits organizations, companies, and institutions with
legacy and other conventional systems to make not only their raw data but their business
logic available to external systems without having to create a duplicate systemin a parallel
external universe and without requiring major code revisions in the conventional systems
themselves. The applicant’s novel approach takes the data after business logic has been
applied within a running program and channels it into the external system environment
intact, where the intact data is reconfigured into data that is understandable by the external
system.

Moreover, this packaging and processing of intelligent data (data acted upon by the
conventional system's business logic) takes place at the “code level.” To understand what
is meant by the phrase “code level,” it is important to understand the preexisting
“translation” technology. Because of the inherent differences between legacy system data
formatting and language conventions and those popularized by the PC revolution, the
most popular translation form is commonly referred to as “screen scraping.” This moniker
is actually very descriptive of the process that is in fact used. The data and business logic
inherent in a legacy system are presented in meaningful, humanly comprehensible form
when it is printed on the computer screen. It does not really matter whether the computer
screen is hooked to a mainframe computer or a PC connected to the World Wide Web.
What meets the human eye is equally comprehensible. The screen scraping technique,
therefore, basically uses a series of algorithms to read and/or intercept the display
function, scraping, as it were, that human-readable information and piping the result into
an image projected on the screen of an external system.

The screen scraping technique has numerous problems. First, it is very computer
intensive and very, very slow. Second, it is, of necessity, screen dependent. Screen

4

10

15

20

25

30

35

WO 01/16732 PCT/US00/23694
scraping requires one to model the fiow of a particular application. Modeling program flow
entails a huge number of complexities, particularly where user input is involved or error
recovery is required. When one is literally scraping the screen, it is necessary to anticipate
which screen is coming next in program flow. Third, with screen scraping, it is assumed
that the screens will be static. If, however, circumstances require modifications to any of
the screens, regardless of the reason, further modification to the screen scraping system
will be required to avoid errors. Fourth, screen scraping is extremely difficult when the
business logic requires one to gather pieces of data from different screens and assemble
all those bits and pieces of information together. Fifth, screen scraping is not scalable at
all. ltis inflexibly dictated by the architecture of the conventional system and the external
system. Sixth, the result of screen scraping in the web environment is not particularly
desirable. Without substantial further processing, its presentation is less than fully
satisfying to the Web-experienced user. Indeed, without additional processing, it may be
incapable of interacting with the user. Although, for discussion purposes, the foregoing
has focused upon screen-scraping of legacy systems to make them Web-aware, the same
issues exist regardiess of the types of conventional systems and external systems
involved.

Rather than scrape the screen, Applicant's invention involves taking a snapshot of
the in-memory data, as it is being processed by the software applications residing on the
conventional system. By taking a snapshot, not of the screen, but of the in-memory, real
time image of the data, Applicant's invention operates at the code level and, hence, is
highly efficient. It is also highly scalable. To interact with the business logic and data
residing on the conventional system, conventional system programmers can continue to
call upon their conventional system tools and expertise.

The Applicant’s invention has none of the limitations that have plagued the prior art
solutions. Indeed the disadvantages of the prior art offerings are matched item-by-item
by strengths of the applicant's invention. Some of the advantages of the Applicant's
invention are that it allows proven functionality to continue, using mature code that has
been thoroughly debugged and is reliable. New applications do not have to be written in
order to make the business logic and precious data available for interaction by persons
operating systems different from the conventional systems. The Applicant's invention is
not screen-dependant. Rather, the execution-time in-memory representation of the data,
as acted upon by the business logic, is translated and made available to the external
systems. At the same time, information from an external system, may be fed into and

5

10

15

20

25

30

WO 01/16732 PCT/US00/23694
processed by the conventional system by means of Applicant's invention. In addition,
Applicant's invention is scalable to an almost uniimited degree in that, by making the data
and business logic available in any external system, including markup language systems,
such data and business logic may be accessed and used on any platform. The data and
business logic become wholly and completely platform independent. Another benefit is
in the nature of human cost. To satisfy the demand for external system access to
conventional system data and business logic, including markup language versions of the
data and business logic now trapped inside conventional systems, it would be necessary
to rewrite the application, with the attendant human costs in terms of both programming
and training or retraining. The Applicant's invention also has the advantage of making
conventional system data and business logic available to external systems without making

huge demands on processor and computing resources.

Summary of the Invention

The present invention blends information about host computer software application
structures, called metadata, with either the XML representation or the binary data values
to generate binary data for use with a host system or an XML representation for use in
mark-up language applications. The invention utilizes a constructed intermediary which
is user defined based upon the application language utilized by the host computer. The
intermediary is further constructed to encompass the machine architecture and data
structures involved in the host machine and application programs. This then allows the
intermediary to function to restructure in-memory binary data streams received from the
host into XML documents and to restructure XML documents into binary data streams
capable of acting with the host machine and its program applications.

The foregoing and other objects are not intended in a limiting sense, and will be
readily evident upon a study of the following specification and accompanying drawings
comprising a part thereof. Other objects and advantages of this invention will become
apparent from the following description taken in connection with the accompanying
drawings, wherein is set forth by way of illustration and example, an embodiment of this

invention.

Description of the Drawings

10

15

20

25

30

35

WO 01/16732 PCT/US00/23694
Preferred embodiments of the invention, illustrative of the best modes in which the
applicant has contemplated applying the principles, are set forth in the following
description and are shown in the drawings and are particularly and distinctly pointed out

and set forth in the appended claims.

Fig. 1 shows the relationship between the XML users and the intermediary and the

host system; and
Fig. 2 shows the interelationship between the fields and the visitor class.

Description of the Preferred Embodiment

Referring now to Fig. 1, the present invention is comprised, generally, of an
intermediary 10 which is interposed between users 14 and host system 12. The
intermediary functions to send and receive content in a mark-up language such as
Hypertext Mark-up Language (HTML) or any other developed mark-up language (XML)
between intermediary 10 and users 14. The connection between intermediary 10 and
users 14 can be any type of commonly employed connection ranging from an Internet
connection or a direct or hardwire connection of an intranet which employs a mark-up
language. The intermediary further functions to send and receive content in a host 12
format such as binary code between intermediary 10 and host 12.

Intermediary 10 is comprised of two principal components. The first of these is the
determined host Machine and Programming Architecture and Host Data Structure
(MPADS) component and the second is the Intermediary Runtime Engine (IRE) which
applies the MPADS to the content that is sent or received between host 12 and
intermediary 10 or between intermediary 10 and user 14 to permit the mark-up language
interaction of the host 12 programming and data structure.

In general the MPADS component of intermediary 10 involves several functions.
One is the insertion of additional read/write codes into host 12 program applications to call
and/or direct input/output to or from host 12 and host 12 program applications. This
insertion of additional read/write codes is based upon the information determined about
the machine and programming architecture and the data structure of host 12. The
MPADS also is used to direct the iterative steps employed by the IRE of intermediary 10
to restructure the content of both XML communications and host 12 communications to

permit mark-up language interaction with host 12.

7

10

15

20

25

30

35

WO 01/16732 PCT/US00/23694
Intermediary Runtime Engine (IRE)

The intermediary comprises a set of object classes that collectively enable the
processing of in-memory binary data from a host 12 into a user 14 XML application and
vice versa. A scheme that applies the intermediary appears, generally, of the form shown
in Fig. 1. In Fig. 1 the user 14 applications read and write XML documents while at the
opposite side of intermediary 10 the host 12 application read and write binary records.
From a high level view, neither of the two applications need be aware of the restructurings
that are taking place.

The intermediary is flexible enough to be used in a variety of application systems
where there is a need to present architecture-specific information in an architecture-neutral
manner. The intermediary does not impose any limitations on the context in which it is
used, rather the intermediary is partially formulated in relation to the context in which it is
to be used through modification of the intermediary based on the host MPADS. One
example of the use of the intermediary is with a batch program that will read a file of
fixed-format records and apply the intermediary to generate an XML file for export to an
XML based application. Another use of intermediary 10, which is more particularly
described hereinafter, is to leverage conventional host 12 applications logic and data

structures involving complex architectures for dynamic, interactive e-business applications.

Logic and Flow of the Intermediary Runtime Engine

The intermediary runtime engine merges a binary stream of data with information
about the data. The information about the data has been previous determined as part of
structuring the intermediary and is the host machine and programming architecture and
host data structure or MPADS component of the intermediary. The merger of the binary
stream of data with the MPADS information results in formation of an XML document.
Similarly, the intermediary can read an XML documents and the associated information
about the XML document to create a binary representation of the XML communication to
create a binary representation of the information suitable for direct use by the application
running on host 12.

The implementation of the intermediary to function on both binary to XML and XML
to binary communications is complex as the intermediary must take into consideration the
architectural considerations of all supported computer systems, the differences in
character encodings, such as ASCIl and EBCDIC as well as the differences in the byte
ordering of integer numbers -- known as “endian-ness.” Nearly all machine architectures

8

10

15

20

25

30

WO 01/16732 PCT/US00/23694
implement big-endian integer. This means that the most significant byte is first (as is the
case with number read by humans). A few machine architectures, such as the Intel x86
microprocessors, represent integers with the least significant byte first, this is known as
“ittle-endian” architecture. Other machine architectures implement data types that are not
available on other platforms. The IBM S/390 architecture machines, for example,
implement binary coded decimal (BCD) numbers and have machine instructions to
manipulate directly those numbers. BCD numbers are not available on Intel or most RISC
processors.

The second form of complexity comes from the way in which compilers create
internal data structures. Most computer central processing units (CPUs) can perform
arithmetic operations faster if the numbers on which they are operating are aligned on an
even machine work boundary (usually an even multiple of two or four bytes). Compiler
programmers know this and some languages will align the data types on even boundaries
by inserting “filler” bytes in the data structure. For C programmers, the #pragma pack
compiler directive affects this alignment. For COBOL programmers, the SYNCHRONIZED
keyword is used. Table 1 illustrates the different binary layouts of no alignment versus
four-byte alignment. The source data is a character string “VALUE” followed by a 16-bit

number “1” and a 32-bit number “2.”

VA L ‘U 'E 00 01 00

00 | 00 02

Table 1. Bytes assuming no alignment

00 | Ot

Table 2. Bytes assuming four-byte alignment

In Table 2, the shaded bytes represent unused bytes with undefined values. In both
cases, the data types would look the same and the source language definition in some
languages such as C would look identical in both cases. However, the intermediary

must be able to differentiate between these alignments as the in-memory binary

10

15

20

25

30

35

WO 01/16732 PCT/US00/23694
streams being processed are clearly different. It is all of these architectural and data
structure issues which are described in the MPADS component of the intermediary and
which therefore describe the structure of the data record and the machine architecture
to which the data record relates. For convenient reference, these data which describe
the structure of the data record and the associated machine architecture are referred to
as MPADS metadata.

MPADS COMPONENTS
MPADS Metadata of Machine Architecture

The metadata of MPADS specific to the machine architecture is a hand-coded
constant table of data that maps the name of a data type to a rendering instruction.
The rendering instruction is used by a component of the Intermediary Runtime Engine
(the Binary Rendering Engine object) to convert the bytes appropriately. For example,
the metadata about the record may identify a field as a “uint” which generically means
a 32-bit unsigned integer. There is no indication, however, as to whether this is a
big-endian or little-endian integer. The architecture metadata would map this to a
rendering instruction of “LittleEndian32Bit” for Intel architecture machines and to
“BigEndian32Bit” for IBM S/390 mainframe systems. The architecture metadata also
identifies the number of bytes that are used to contain the underlying data and the
preferred alignment for that data type.

The MPADS metadata about the architectural characteristics of a datatype are
stored in an XML document. Table 3 shows a subset of the architecture metadata for

Intel architecture:

<?xml version="1.0"7>

<IDOCTYPE typedef SYSTEM “/XML/Typedef/typedef.dtd">

<typedef>

<type name="int" size="4" align="4" render="LittleEndian32Bit" />
<type name="string" size="-1" align="1" render="AsciiString" />
<type name="char" size="1" align="1" render="AsciiString" />
<type name="binary" size="-1" align="1" render="Binary" />
<type name="byte" size="1" align="1" render="Byte" />
<type name="short" size="2" align="2" render="LittleEndian16Bit" />
</typedef>

Table 3

10

10

15

20

25

30

WO 01/16732 PCT/US00/23694
This is a straight-forward lookup table. There is no hierarchical relationship in the XML

document.

MPADS Metadata for the Record

The MPADS metadata used to describe the record layout is more complex than
the lookup table used for the architectural metadata. It has to model the structure
found in modern programming languages. The metadata for the record is stored as a
single XML document per record.

There are three ways in which data is organized in the data definition of a record
in most computer programming languages. There are simple data types, such as
integers or strings of characters. This information about a simple data type is
described within the <field> tag in the XML document. The second way to organize
data within a record is a collection of related simple fields that may be of different
simple data types. The information about this heterogeneous collection is described
with the <struct> tag in the XML document. The third way to organize data is a
collection of the same data type. The information about this homogeneous coliection is
described in the <array> tag in the XML document. It is also important to note that the
structure is more complex in that structs and arrays are not limited to fields. There can
be arrays of structs and arrays of arrays as well as structs that contain arrays, fields
and other nested structs. The result of this modeling is a recursive definition of
arbitrarily complex data structures.

in spite of the modeling complexity, the Intermediary Runtime Engine (IRE) is
ultimately concerned about a sequence of fields that need to be acted on or
restructured to and from their binary representations into and from an element in an
XML document. The present invention performs this restructuring to convert, in real
time, the binary stream representing the data and business logic of a particular
application or collection of applications. This restructuring is accomplished by the
application by the IRE of certain MPADS metadata, or ground rules, definitions, and

descriptions, which are developed in off-line mode.

11

WO 01/16732 PCT/US00/23694

Sample Conversion
A sample of how the data is rendered or restructured will serve to explain the
inventive process in detail. Table 4 is a subset of the §/390 architectural metadata

document that is used in this example.

<?xml version="1.0"?>

<IDOCTYPE typedef SYSTEM "/XML/Typedef/typedef.dtd”">

<typedef>

<type name="int" size="4" align="4" render="BigEndian32Bit" />
<type name="string" size="-1" align="1" render="EbcdicZString" />
<type name="char” size="1" align="1" render="EbcdicString” />
<type name="byte” size="1" align="1" render="Byte” />
<type name="short” size="2" align="2" render="BigEndian16Bit” >
</typedef>

Table 4

The following record metadata, Table 5, describes some summary information about a

student in higher education.

<?xml version="1.0?>
<IDOCTYPE record SYSTEM "/XML/Meta/tmeta.dtd">
<record name="gradesresponse” architecture="s390"
align="1">
<field type="string" size="8">
<name>studentid</name>
</field>
<field type="int">
<name>pin</name>
</field>
<field type="byte">
<name>years</name>
</ffield>
<field type="short">
<namexclasses</name>
<ffield>
<array size="2">
<name>transcript</name>
<struct>
<name>GRADE-INFO</name>
<association>coursedata</association>
<field type="string" size="16">
<name>course</name>
</field>
<field type="char">
<name>grade</name>
</field>
</struct>
</array>
</record>

Table 5

The first two lines of the Table 5 XML document are required by the XML specification
and are specified in the standards documents appropriate to the XML being utilized. It
can be seen in the <record name> tag in the third line that the name of the record is

12

10

15

20

25

30

35

WO 01/16732 PCT/US00/23694
“gradesresponse” and that the record came from an IBM S/390 mainframe architecture
machine. It also can be determined from the “align” attribute that the record is
unaligned (i.e. aligned on one-byte boundaries). The data that will be interpreted by

this XML document for this example is shown in Table 6.

Cc7 D3 | D4 | F9 F8 F7 00 00

00 00 07 A8 03 00 02 C9

95 A3 99 40 A3 96 40 C3

96 94 97 40 E2 83 00 C1

C8 96 94 85 40 [C5 | 83 96

95 96 94 40 F1 FO F1 00

C4

Table 6

Given the XML metadata, of Table 5, and the binary stream of Table 6, the IRE
would begin at the top of the XML document and start consuming the number of bytes
from the host data stream, Table 6, that are required for each field. In the first case,
we have a string that takes 8 bytes. A “string” data type is defined as a sequence of
characters up to a certain length that ends when the first zero byte is encountered. In
this case, the first 8 bytes of Table 5, which represents a binary data stream, are read,
giving us “c7d3d4f9f8f70000.” The IRE looks up the rendering instruction in the
architecture metadata document, Table 4, for strings and determines the rendering
instruction to be “EbcdiZString” which indicates an EBCDIC to ASCII translation until
the first zero byte is encountered. This renders the string “GLM987” as the student ID.
Note that the metadata reserved the full 8 bytes for the datatype, although only the first
six are significant since the rule for a string indicates that the data after the first zero
byte is ignored. The IRE also renders the name of the field as the tag in the XML
document. This results in the XML document portion shown in Table 7.

<studentid>
GLM987
</studentid>

Table 7

13

10

15

20

25

30

WO 01/16732 PCT/US00/23694
The next field of Table 5 is an “int” which indicates a 32-bit signed integer.

Again, the IRE looks up “int” types in the architecture metadata of Table 4 and
determines that they are 4 bytes long and for S/390s are “big-endian.” This results in a
rendering instruction of “BigEndian32Bit.” The next four bytes in the stream
“000007A8” are rendered as the decimal number “1960.” Again, the name of the field
is rendered by the IRE as the XML output tag and the XML document portion shown in

Table 8 is produced:

<pin>
1960
</pin>

Table 8

The next field of Table 5 indicates a one-byte value. The next byte (“03”) is
removed from the stream, a rendering instruction is obtained from the architecture
metadata and the “03” byte is rendered into the value of “3.” This XML portion is

shown in Table 9.

<years>
3
</years>

Table 9

Next in Table 5 is the field “short.” Again, the realtime framework looks in the
architecture metadata of Table 4 and discovers that a short is two bytes long and for
S/390 architecture gives a “BigEndian16Bit” rendering instruction. The next two bytes
(“0002”) are consumed from the binary data stream and are converted into the string
“2.” Again, the name is used as the XML tag to generate the document portion shown

in Table 10.

14

10

15

20

25

30

WO 01/16732 PCT/US00/23694

<classes>
2
</classes>

Table 10

The next metadata of Table 5 is an <array> tag. This doesn’t consume any
binary information, but the attribute of the array tag indicates that this array contains
two of whatever is contained within its tags. Again the name of the array is used as the
XML tag by the IRE. At this point in the field-by-field rendering process, the IRE
recognizes that there are starting and ending array tags, but the IRE cannot determine

the contents of the array, so this document portion is represented by Table 11.

<transcript>
content not known
</transcript>

Table 11

Next in Table 5 is the metadata tag <struct>. This also indicates a collection of
information between tags, but the type of information does not have to be of the same
data type as an array requires. Again, at this stage in the process, the IRE does not
know what the content between the <struct> tags will be, but it recognizes that there
will be a collection of data types within it. Also is present in Table 5 an <association>
tag. This indicates that the associated name should be used instead of the name for
the tag. The name will be generated from the variable name used in the source
language (copy book or header files, depending upon the appiication language)
supplied when the metadata is constructed. There may be cases, where another name
is more descriptive than a variable name, or there may be a desire to change from all
upper case (as is the case with most COBOL programs) to a mixed case tag names for
better readability. For this reason, the tools which assist in the construction of the

15

WO 01/16732 PCT/US00/23694

5 metadata permits name and similar editing. Thus, for the subject structure the

following XML portion of Table 12 results.

<coursedata>
content not known
</coursedata>

10 Table 12

The next two fields contained within the structure tag of Table 5 define the next
two data elements. Since the process for rendering a field should be clear by now, it is
sufficient simply to state that the next 16 bytes for the course and the subsequent byte
for the grade are read and converted from EBCDIC to ASCII because of the rendering

15 instructions for each of those two fields. From this process the document portion

shown in Table 13 results.

16

10

15

20

25

30

WO 01/16732 PCT/US00/23694

<course>
Intro to Comp Sc
</course>
<grade>

A

</grade>

Table 13

As the two fields of Table 13 are contained in the metadata shown in Table 5 as part
of structure, the IRE can now determine that the above data belongs between the
<coursedata> start and end tags.

At this point, structurally, the IRE has progressed to the end of the metadata
XML document of Table 5 as only the matching end tags for the fields, structs and
arrays remain. The translation process, however, is still not complete. As shown in
Table 5, only one of the elements in the array -- the course data structure — has been
processed. The array tag stated that there were two elements in the array. Therefore,
it is indicated to the IRE to “loop back” to the start of the array and process the
contents that make up an element of the array. This presents a second course of two
course data structures. lllustrating the complexity of the process, yet another structure
of course data which in turn contains two fields. Those two fields are a 16 byte course

name and a one byte grade. When rendered as above, the XML document portion of

Table 14 is provided.

<course>
Home Econom 101
</course>

<grade>

D

</grade>

Table 14

17

10

15

20

25

30

35

40

45

WO 01/16732 PCT/US00/23694

This completes the second course data structure, which also is the last element of the
array, therefore, the IRE now recognizes what information goes inside the array’s
<transcript> begin and end tags. The only remaining issue to the assemblage of all the
portions into a complete XML document. The initial record Tag of Table 5 indicated a
name of “gradesresponse” therefore this becomes the tag for this collection of

information. Table 15 shows the XML representation that results from the foregoing

process.

<gradesresponse>
<studentid>
GLM987
</studentid>
<pin>
1960
</pin>
<years>
3
</years>
<classes>
2
</classes>
<transcript>
<coursedata>
<course>
Intro to Comp Sc
</course>
<grade>
A
</grade>
</coursedata>
</coursedata>
<course>
Home Econom 101
</course>
<grade>
D
</grade>
</coursedata>
</transcript>
</graderesponse>

Table 15

There are significant advantages in manipulating the above XML document
instead of the original binary data stream Table 6. First, third-party software tools are

available to manipulate XML documents such as the one of Table 15. These tools

18

10

15

20

25

30

WO 01/16732 PCT/US00/23694
enable distribution of the XML content to an e-Commerce or business environment

much quicker. The second advantage is that all the architectural complexity of
rendering binary data is removed from the applications programmer. While the
document of Table 15 may appear cryptic to those unfamiliar with tagged data, it is
much more easily manipulated than the stream of binary data of Table 6 with which we
started. Moreover, the XML document is platform independent. All of the complexity of
rendering data in an architecture-specific manner has been eliminated as well as the

field alignment issues that were not illustrated by this example.

Programming to the Intermediary Runtime Engine

It is desirable that the IRE be easy to program for most applications. However,
if there is a need for more specialized work, the top layer of the intermediary can be
peeled back and the programmer can override specific methods of the classes inside
the intermediary. In doing so, the programmer is exposed to some additional

complexity. In a simple case, the pseudo code appears as shown in Table 16.

in = new InputRecordProcessor();
out = new OutputRecordProcessor();
in.setinput(<input stream>);
in.setWriter(<XML destination);
out.setOutput(<output stream>);
out.setReader(<XML source>);

while(!done)

in.readRecord(“name”);
out.writeRecord(“‘name”);

}

// Close all of the streams

Table 16

The input and output streams are binary, architecture specific records and the

Reader and Writer are text XML documents.

19

10

15

20

25

WO 01/16732 PCT/US00/23694
Obviously some preparation work has to be done for the intermediary to know

how to process the information. Clearly, the Intermediary must know the format of the
binary data. Specifically, it must know where the field boundaries are within the record
and the data types of the fields. This data about the data is called “metadata” and is
kept external to the program, so no programming changes are required to process
different record layouts. The metadata also is kept in an XML document as well.

The architecture of the system sending and receiving the binary data changes
how the data are interpreted. Architecture information includes things such as the
character set in use such as ASCIl or EBCDIC and the byte-ordering of the integer
data types. This byte ordering is referred to as "endian"-ness. Intel is little-endian.
Most other architectures are big-endian. A 32-bit integer from a S/390 mainframe is
different than a 32-bit integer on an Intel machine. Therefore, it is necessary to have
metadata about the metadata. This, too is kept separate from the application program,
so no programming changes are needed in the application if it is moved from a S/390

mainframe to a Unix system and recompiled into an equivalent application on a

different architecture.

InputProcessors and OutputProcessors

Referring to the pseudo code in Table 16 above, it appears that the
InputProcessor and OutputProcessor classes are doing all of real work. However,
these processors simply couple the collection of “visitor” classes to the IRE. They just
pass the work to the next lower layer down - visitors and metadata runtime. To
understand this layer, it is important to understand the structure of XML and how they

are parsed into Document Object Model (DOM) documents.

20

10

15

20

WO 01/16732 PCT/US00/23694

XML documents are self-describing arbitrarily complex collections of
hierarchical data. That is, every document is a tree of nodes and each node is a
collection of zero or more child nodes. In taking a look at complex data structures in
modern programming languages (and COBOL too), one can see that they too are
arbitrarily complex collections of hierarchical data. Language structures can be
constructed in three ways. They can be fields of simple data types such as integers,
strings or characters. They can be collections of homogeneous data structures or
fields (aka an “array”) or they can be collections of heterogeneous information (for
example a “struct” in C or a level of a record in COBOL). Of course, each of these
collections can be collections of complex data structures as well. Arrays of structs or
structs that contains arrays in addition to fields are well known in the art. Therefore,
just like XML, data structures are recursively defined and can be represented by a tree
structure.

The metadata DTD states that a record has a name, an architecture and a
record alignment It also states that a record contains one or more structs, arrays, or
fields. A structs and arrays contain one or more arrays, structs or fields. Fields are
the atomic data types that have a type name, an optional size, etc as well as some

information on how to format the data. An example of a metadata XML document is

shown in Table 17.

21

10

15

20

25

30

35

40

WO 01/16732

PCT/US00/23694

<?xmi version="1.0"7>
<IDOCTYPE record SYSTEM "/XMU/Meta/tmeta.dtd">
<record name="gradesresponse" architecture="intel" align="4">
<field type="string" size="6">
<name>studentid</name>
</field>
<field type="int">
<name>pin</name>
</field>
<field type="byte">
<name>years</name>
</field>
<field type="short">
<name>classes</name>
<ffield>
<array size="3">
<namestranscript</name>
<struct>
<name>GRADE-INFO</name>
<association>coursegrade</association>
<field type="string" size="16">

The metadata runtime object parses the metadata XML that matches the name

used.

<name>course</name>

</field>

<field type="char">
<name>grade</name>

</field>

</struct>
</array>
</record>
Table 17

Metadata Runtime and its Visitors

22

of the record that it is expecting to see on the binary input data stream. The parser
creates a tree that is a DOM document. The metadata runtime simply traverses this
tree. The traversal of the metadata tree is the same for input records and output
records. The processing of the data at each node is significantly different for input
(binary to XML) than it is for output (XML to binary). Since it was desired to reuse the

tree traversal with different processing at each node, the Visitor design pattern was

10

15

20

25

WO 01/16732 PCT/US00/23694

The object model defines the MetadataRuntime class and the following
hierarchy of visitors:

RecordVisitor (interface)
DefaultinputRecordVisitor (class)
DefaultOutputRecordVisitor (class)

Struct Visitor (interface)
DefaultinputStructVisitor (class)
DefaultOutputStructVisitor (class)

Array Visitor (interface)

DefaultinputArrayVisitor (class)
DefaultOutputArrayVisitor (class)

Field Visitor (interface)

DefaultinputFieldVisitor (class)

DefaultOutputFieldVisitor (class)

Some behaviors are the same for all input visitors and some behaviors are the
same for all output visitors. Common behavior was placed into two abstract classes
appropriately named BaselnputVisitor and BaseOutputVisitor. All of the default visitor
classes implement the appropriate interface and extend (subclass) one of the two base
visitor classes.

Each visitor has a method called when the node is first visited and when the

node is exited. The basic form of the method is shown in Table 18.

process TypeDescriptor(TypeDescriptor descriptor);
and
process TypeDescriptorEnd(TypeDescriptor descriptor);

Table 18

23

10

15

20

25

WO 01/16732 PCT/US00/23694
In Table 18 “type”is the type of node being visited; namely Record, Struct, Array or

Field.

The descriptor object that is passed to the visitor contains information about the
data type represented by the node. It is a object form of the XML data for that node
type. The descriptor obviously contains the datatype as well as size information,
formatting information, etc. The common attributes were placed into an abstract class
BaseDescriptor. The StructDescriptor, ArrayDescriptor, RecordDescriptor, and
FieldDescriptors all inherit from that base descriptor class.

In traversing the metadata Document Object Model (DOM) document and either
rendering binary data (input) or XML data (output), there is a need to keep track of
information that is global to the record being processed. This “state” information
includes such things as the offset into the record, alignment requirements for the
record, etc. The behaviors common to input and output record states were placed in
the abstract class BaseRecordState. The inputRecordState and OutputRecordState
extend this base class for behaviors that are specific for their /0 requirements.

Fig. 2 shows a record that is being visited by the object appropriate for its
structural type (i.e. field, struct, array or record). Each visitation will result in the
record state information being updated and possibly data, XML or binary, being emitted
to the stream to which it is assigned.

Next, the transformation of architecture specific information to and from strings
that live in XML documents will be discussed. That is the lowest level of the object
model. The only time a programmer will have to be concerned with these lowest level

details is when a new data type is being added to the framework.

24

10

15

20

WO 01/16732 PCT/US00/23694

Rendering Fields. The Bits and Bytes

A principle object of the intermediary is to transform binary data to and from
character data that is part of an XML document. The field visitor will handle the
transformations during the processFieldDescriptor method. Instead of coding the
handler for each data type in a switch statement, it is desirable to abstract those
behaviors out as well. Since each architecture potentially renders each data type
differently, a field visitor is required for Intel architecture and another field visitor is
required for S/390 architecture and yet another for RISC architectures.

The Command design pattern was chosen to implement the rendering
mechanism. First, all of the possible rendering commands were abstracted out and
placed in the BinaryRenderingEngine class. This class is a collection of static methods
that convert strings to byte arrays and byte arrays to strings. The type descriptor for
each field contains a rendering instruction that is specific to its type and its architecture.
These typedescriptor-to- rendering-instructions are kept external to the application
code. That is the metadata about the metadata that was discussed in the introductory
paragraphs on programming the framework. Each machine architecture has its own
type-to-rendering instruction table. We know the architecture of the record because
that is one of the attributes of the record. These tables of metadata about the
metadata are kept in another set of XML documents. Such an XML document for the

meta-metadata for Intel architectures appears in Table 19.

25

10

15

20

25

30

35

WO 01/16732 PCT/US00/23694

<?xml version="1.0"7>
<IDOCTYPE typedef SYSTEM "/XML/Typedef/typedef.dtd">
<typedef>
<type name="int" size="4" align="4"
render="LittleEndian32Bit" />
<type name="string" size="-1" align="1"
render="AsciiString" />
<type name="char" size="1" align="1"
render="AsciiString" />
<type name="binary" size="-1" align="1"
render="AsciiString" />
<type name="byte" size="1" align="1"
render="Byte" />
<type name="short" size="2" align="2"
render="LittleEndian16Bit" />
</typedef>
Table 19

To add another data type, the programmer adds the rendering instruction to the
XML documents for the architectures on which that data type can exist. If there is a
rendering method in the BinaryRenderingEngine, the work is done. In most cases,
there will have to be additional methods to handle the data type. These are added to

the engine with the matching rendering instruction.

Logic and Flow of the MPADS Component

The MPADS component of present invention is used during design of the
Intermediate 10 (Fig. 1) to generate the metadata for a specific data record layout in
an application residing on host 12. The MPADS component is not used during the
flow of binary data streams to and from the Intermediary during operation of the IRE.
The inventive method relies upon determination of the record layout which defines the
fields, structures and arrays of the source code of the application program residing on
host 12. This determination is followed by generation of the record metadata

information. This avoids the inevitable mistakes that would result if the metadata were

generated manually.

26

10

15

20

WO 01/16732 PCT/US00/23694

It is to be appreciated that the IRE best functions with metadata that is language
independent. Each language has its own syntax and semantics for describing data
layouts. The MPADS is responsible for parsing the source code and generating the
metadata in such a way that the IRE does not need to be concerned with language
dependencies.

The language used in the applications program resident on host 12 is identified
for MPADS. MPADS then loads the language-specific parser for the identified
language. The operator of the MPADS component of the Intermediary then selects the
file containing the source language data (i.e. the “copybook in COBOL or the “header
file” in C or C++). The parser then generates a language independent representation
of the structure and datatypes found in the source code. The operator of the MPADS
component is given the opportunity to make edits to the definitions, however, such
changes would not be expected to change dramatically the datatypes that were
discovered by the parser. When edits are complete, the MPADS metadata for the XML
being used is then available for the IRE to generate restructured communications

between XML and host 12 machines.

27

10

15

20

25

30

35

40

45

50

WO 01/16732

in an additional example, the XML document of Table 20.

PCT/US00/23694

<?xml version="1.0"?>
<IDOCTYPE record SYSTEM "/XMU/Meta/tmeta.dtd">
<record name="gradesresponse" architecture="intel" align="4">
<field type="string" size="6">
<name>studentid</name>
</field>
<field type="int">
<name>pin</name>
</field>
<field type="byte">
<name>years</name>
</field>
<field type="short">
<namex>classes</name>
</field>
<array size="3">
<name>transcript</name>
<struct>
<name>GRADE-INFO</name>
<association>coursegrade</association>
<field type="string" size="16">

<name>course</name>
</field>
<field type="char’>
<name>grade</name>
</field>
</struct>
</array>
</record>
Table 20

could have been generated from the C or C++ structure definition shown in Table 21.

struct

{

char studentid[6];
int pin;

char years;
short classes;
struct

char course[16};
char grade;
} transcript[2];

Table 21

It should be appreciated that C does not have a native “byte” data type.

Therefore, it would be necessary to instruct the MPADS component that the “char” data

28

10

15

20

25

30

WO 01/16732 PCT/US00/23694

should be used as a numeric byte. It should also be noted that the structs do not have
names that can be picked up from the source code, so the workbench user would have
to name the structured data.

Alternatively, the XML document of Table 20 could have been generated from

COBOL source code which would have appeared as in Table 22.

01 gradesresponse
05 studentid PIC X(6).

05 pin PIC S9(6) COMP.
05 years PIC X.
05 classes PIC S89(2) COMP.

05 GRADE-INFO OCCURS 2 TIMES.
10 course PIC A(16).
10 grade PICA.

Table 22

COBOL does not inherently use zero-byte terminated character data as strings.
Therefore, the MPADS operator would have to change the data type if the host code
was padding unused characters with zero-bytes instead of the blank padding that
would be typical of a COBOL program. In both cases, the MPADS component does
the “pbusy work” of parsing and mapping each data element to the XML metadata
format. The MPADS operator simply makes minimal edits before the metadata is

generated.

MPADS Component of the intermediary

The MPADS component is used during the design of the Intermediary for each
host program application for which construction of a metadata XML document is
needed to be later used by the IRE described above. The bulk of the work is handled
for the MPADS operator through the MPADS component reading the host application
source code (for example, COBOL copybooks or header files for other languages) and

building a tree representation of that information in the mapping table or, by way of

29

10

15

20

25

30

WO 01/16732 PCT/US00/23694
illustration, in the copybook. This then can be edited by the operator to make minor

modifications to the information and save the metadata in a location that is accessible
by the IRE. Thus, the MPADS component of the Intermediary is comprised of two
major components — the operator interface and the application model which allows for
actual processing of the particular language source code, for example, the COBOL

copybook, for building a the tree representation of that information.

Source Code Parser
The parser is responsible for reading the source language header files (for
example, in COBOL, the copybook) and creating a language-independent rendition, in
a tree, of the data type information found in the source file or files. The parser
incorporated in the preferred embodiment of the present invention is an LALR(1) (look-
ahead one token, left-to-right parsing) context-free grammar. The parser-generator
creates the following classes:
CopyBookLexClass
CopyBookYaccClass
CopybookLexTable
CopyBookYaccTable
The CobolYaccClass overrides the CopyBookYaccClass so that the code could be
regenerated without losing modification made to the generated code. The primary
method is reduce. That is called whenever a parsing rule is invoked. That enables this
code to retrieve information off the parse stack and collect it for further processing.
The full behavior of LALR(1) parsing is beyond the scope of this document, but is well
documented and known to those skilled in the art. The goal of the parsing process
becomes more tangible when looking at how it interacts with the rest of the objects in

this sub-framework. The goal of the parsing process is to create a ParserCommand.

A ParserCommand contains all of the information about a source code element (e.g.,

30

10

15

WO 01/16732 PCT/US00/23694

an array, structure or field) that is required to construct a node in the tree. A
ParserCommand is emitted for each field, structure, and array when parsing is
complete as well as some intermediate commands that may be required for processing
of semantic information. There is likely to be a language-specific subclass of
ParserCommand and a language-specific implementation of a
ParserCommandHandler for each language. In the example of COBOL parsing, the
resultant CobolCommand object will contains all of the relevant information that is
determined by the parser during COBOL parsing.

The lexing, parsing and command generation are coupled with the command
handling in the CobolParser object. That is, the CobolParser object implements the
ParserCommandHandler so all of that command generation and processing are hidden
inside the CobolParser object. The CobolParser actually is a subclass of the abstract
SourceParser class so different languages can be implemented without changing any
of the rest of the object mode. The SourceParser class contains the constructed

language-independent tree of information from the parsing process.

31

10

15

20

25

WO 01/16732 PCT/US00/23694

Source Code Tree

The source code tree is implemented in the class RecordTree. It extends the
Java Swing class of MutableTreeModel so that it can be easily manipulated via An
operator interface. This is a language-independent rendering of the information in the
source code, so all user-interface interaction with this tree is reusable when other
languages are supported.

The tree is a collection of BaseTreeNode objects. The BaseTreeNode is an
abstract class that contains all of the information common to the specific node types.
Each concrete implementation of the BaseTreeNode is one of the following:

RecordTreeNode
StructTreeNode
ArrayTreeNode
FieldTreeNode

As the name implies, they represent either elementary data types (i.e. the
FieldTreeNode) or a collection of multiple fields in arrays or heterogeneous structures —
arrays or structs. There is one RecordTreeNode per record and is essentially the same
as a struct, but contains a little additional information about the record as a whole.

Once this tree is modified by the operator interface in the MPADS component, the
metadata XML can be generated from the contents of the Swing tree. The visitor
design pattern is once again used to separate the tree traversal with the per-node
processing. The visitor interface is defined in TreeVisitor and is implemented in the
XMLWriter class. The traverse() method of the RecordTree class will provide the
iteration through the tree. The only other class, with few exceptions, is the

TreeSearcher class. It also implements the TreeVisitor class and is used to search for

a node with a particular name.

32

10

15

20

25

WO 01/16732 PCT/US00/23694

MPADS Component Operator Interface

The operator interface for the MPADS component accomplishes three tasks. It
invokes the parser to convert the source code into a tree form, provide editing for the
tree and generating the metadata XML using the XML Writer class. Implementing the
second of these tasks is a considerable amount of work, but conceptually the goal is
straightforward.

The editing portion of the MPADS component should allow the operator to be able
to change data types, (although this.will be done rarely) and it will have to be able to
resolve memory overlays within the structure so that the IRE can know which
representation of memory to use. Memory overlays occur when language semantics
allow a section of memory to be mapped in more than one way. In C and C++ the
union keyword is used to overlay memory. In COBOL the REDEFINES clause will map
the same memory range in multiple ways. The getOverlays() method will return the
name of the node over which this node is remapped if there is an overlay. The
operator interface will have to traverse the tree matching names and asking the
MPADS component operator which set(s) of metadata should be generated with the
different memory mappings.

In the foregoing description, certain terms have been used for brevity, clearness
and understanding; but no unnecessary limitations are to be implied therefrom beyond
the requirements of the prior art, because such terms are used for descriptive purposes
and are intended to be broadly construed. Moreover, the description and illustration of
the inventions is by way of example, and the scope of the inventions is not limited to
the exact details shown or described.

Certain changes may be made in embodying the above invention, and in the

construction thereof, without departing from the spirit and scope of the invention. It is

33

10

15

WO 01/16732 PCT/US00/236%94

intended that all matter contained in the above description and shown in the
accompanying drawings shall be interpreted as illustrative and not meant in a limiting
sense.

Having now described the features, discoveries and principles of the invention, the
manner in which the inventive MPADS component and intermediary runtime engine are
constructed and used, the characteristics of the construction, and advantageous, new
and useful results obtained; the new and useful structures, devices, elements,
arrangements, parts and combinations, are set forth in the appended claims.

It is also to be understood that the following claims are intended to cover all of the
generic and specific features of the invention herein described, and all statements of

the scope of the invention which, as a matter of language, might be said to fall

therebetween.

34

10

15

20

25

WO 01/16732 PCT/US00/23694
CLAIMS

Having thus described the invention what is claimed as new and desired to be

secured by Letters Patent is as follows:

1. A method of providing mark-up language interaction with a host computer system
having a host computer system architecture and a software application executing thereon
the software application utilizing host computer system data records and host computer
system information processing commands and the mark-up language operating in its native
format the method comprising the steps of:
a) inserting information transfer codes into the host system software
application to direct information transfers between the host
and an intermediary,
b) generating metadata for use by said intermediary, said metadata
containing an information set of the host computer system
architecture and an information set associating the host
binary data stream with the mark-up language format to
allow said intermediary to select a portion of a mark-up
language request and allocate said portion to form a binary
data result compatible with said host computer system, and
c) operating said intermediary on a mark-up language request to
generate a result for use by the host system, said result
communicating information contained in said mark-up

language request.

2. The method as claimed in Claim 1 where in said step of generating metadata

comprises the step of identifying data elements contained in the host software application.

35

10

15

20

25

WO 01/16732 PCT/US00/23694

3. The method as claimed in Claim 2 further comprising the step of plotting the location
of said identified data elements within a data input format of the host software application to

form a data elements input location plot.

4. The method as claimed in Claim 3 further comprising the step of associating said data

elements input location plot with the mark-up language format.

5. The method as claimed in Claim 1 where in said step of operating said intermediary
comprises the steps of:
a) presenting, to said intermediary, a mark-up language request for a result,
b) restructuring said mark-up language request with said
intermediary by applying said metadata to said request to
provide an inquiry processable by the host software
application,
¢) sending said inquiry from said intermediary to the host system,
d) receiving said inquiry by the host system as directed by said
transfer codes, and
e) conducting operations of the host software application in
response to said inquiry to generate a result by the host

system responsive to said request.

6. The method as claimed in Claim 5 where in said step of restructuring said mark-up
language request with said intermediary comprises applying a data elements input location
plot and associating said data elements input location plot with the mark-up language

format of said request to provide an inquiry processable by the host system application.

36

WO 01/16732 PCT/US00/23694

7 A method of providing mark-up language interaction with a host computer system
having a host computer system architecture and a software application executing thereon
the software application utilizing host computer system data records and host computer

system information processing commands and the mark-up language operating in its native

10

15

20

25

format the method comprising the steps of:

a)

inserting information transfer codes into the host system software
application to direct information transfers between the host
and an intermediary,
generating metadata for use by said intermediary, said metadata
coding comprising:
i) identifying data elements contained in the host software application,
i) plotting the location of said identified data elements
within a data input format of the host software
application to form a data elements input location
plot, and
iii) associating said data elements input location plot with
the mark-up language format, and
operating said intermediary on a mark-up language request to
generate a result for use by host system, said result
communicating information contained in said mark-up

language request.

37

10

15

20

25

WO 01/16732 PCT/US00/23694
8. A method of providing mark-up language interaction with a host computer system

having a host computer system architecture and a software application executing thereon
the software application utilizing host computer system data records and host computer
system information processing commands and the mark-up language operating in its native
format the method comprising the steps of:
a) inserting information transfer codes into the host system software
application to direct information transfers between the host
and an intermediary,
b) generating metadata for use by an intermediary, said metadata
containing an information set of the host computer system
architecture and an information set associating the host
binary data stream to a mark-up language format to allow
intermediary to select a portion of the host binary data
stream and allocate said portion to form a mark-up
language result,
c) operating said intermediary on a mark-up language request comprising the steps
of:
i) presenting, to said intermediary, a mark-up language request for a result,
ii) restructuring said mark-up language request with said
intermediary by applying said metadata to said
request to provide an inquiry processable by the
host system application,
iii) sending said inquiry from said intermediary to the host
system,

(Claim 8, continued)

38

WO 01/16732 PCT/US00/23694
iv) receiving said inquiry by the host system as directed

by said transfer codes, and
v) conducting operations of the host software application
in response to said inquiry to generate a result by

the host system responsive to said request.

39

10

15

20

25

WO 01/16732 PCT/US00/23694
9. A method of providing mark-up language interaction with a host computer system

having a host computer system architecture and a software application executing thereon
the software application utilizing host computer system data records and host computer
system information processing commands and the mark-up language operating in its native
format the method comprising the steps of:
a) inserting information transfer codes into the host system software
application to direct information transfers between the host
and an intermediary,
b) generating metadata for use by said intermediary, said metadata
coding comprising:
i) identifying data elements contained in the host software application,
iy plotting the location of said identified data elements
within a data input format of the host software
application to form a data elements input location
plot, and
iii) associating said data elements input location plot with
the mark-up language format,
c) operating said intermediary on a mark-up language request comprising the steps
of:
i) presenting, to said intermediary, a mark-up language request for a result,
ii) restructuring, by said intermediary, said mark-up
language request by applying said data elements
association and said data elements input location

plot to said request to provide an inquiry processable by the host system application,

(Claim 9, continued)

40

10

WO 01/16732

ii)

iv)

sending said inquiry from said intermediary to the host
system,

receiving said inquiry by the host system as directed
by said transfer codes, and

conducting operations of the host system application in
response to said inquiry to generate a result by

the host system responsive to said request.

41

PCT/US00/23694

10

15

20

25

WO 01/16732

PCT/US00/23694

10. A method of providing mark-up language interaction with a host computer system

having a host computer system architecture and a software application executing thereon

the software application utilizing host computer system data records and host computer

system information processing commands and the mark-up language operating in its native

format the method comprising the steps of:

a)

b)

c)

of:

inserting information transfer codes into the host system software

application to direct information transfers between the host

and an intermediary,

generating metadata for use by said intermediary, said metadata

ii)

coding comprising:
identifying data elements contained in the host software application,
plotting the location of said identified data elements
within a data input format and within a data
output format of the host software application to
form a data elements input location plot and a
data elements output location plot,
associating said data elements input location plot with
the mark-up language format and associating
said data elements output iocation plot with the

mark-up language format,

operating said intermediary on a mark-up language request comprising the steps

i)

presenting, to said intermediary, a mark-up language request for a resuilt,

42

WO 01/16732 PCT/US00/23694

5 (Claim 10, continued)

ii) restructuring, by said intermediary, said mark-up
language request by applying said data elements
input association and said data elements input
location plot to said request to provide an inquiry

10 processable by the host system application,

i) sending said inquiry from said intermediary to the host
system,

iv) receiving said inquiry by the host system as directed
by said transfer codes,

15 v) conducting operations of the host system application in
response to said inquiry to generate a result by
the host system responsive to said request.

vi) transferring said result from the host system to said
intermediary system as directed by said transfer

20 codes,

vii) processing said result by said intermediary by applying
said data elements output association and said
data elements output location plot to said result
to extract user request-responsive data elements

25 from said result and to form a mark-up language
format result from said user request-responsive

data elements,

(Claim 10, continued)

43

10

15

20

25

WO 01/16732 PCT/US00/23694

viii) sending said mark-up language format result to the
user, and

ix) repeating steps i through viii as needed to obtain information.

11. A method of providing mark-up language interaction with a host computer system
having a host computer system architecture and a software application executing thereon
the software application utilizing host computer system data records and host computer
system information processing commands and the mark-up language operating in its native
format the method comprising the steps of:
a) inserting information transfer codes into the host system software
application to direct information transfers between the host
and an intermediary,
b) generating metadata for use by said intermediary, said metadata
containing an information set of the host computer system
architecture and an information set associating the host
binary data stream with the mark-up language format to
allow said intermediary to select a portion of the host binary
data stream and allocate said portion to form a mark-up
language result compatible with the mark-up language
format, and
c) operating said intermediary on a host system software application
request to generate a result for restructuring by said

intermediary into the mark-up language format.

12. The method as claimed in Claim 11 where in said step of generating metadata

comprises the step of identifying data elements contained in the host software application.

WO 01/16732 PCT/US00/23694

13. The method as claimed in Claim 12 further comprising the step of plotting the location
of said identified data elements within a data output format of the host software application

to form a data elements output location plot.

14. The method as claimed in Claim 13 further comprising the step of associating said

data elements output location plot with the mark-up language format.

45

WO 01/16732 PCT/US00/23694

I1g. 1
OO

=2 i
No)
N
o o
- s
ae]
P
-
=
=
v
=
=
—
S<xxDa <zcD<owd N\
\ / :
S by} o o
) - - -
v —
- T~ _(V fm <
1/2

SUBSTITUTE SHEET (RULE 26)

WO 01/16732 PCT/US00/23694

Fig. 2

Graderesponse

Studentid

pin
Record
Visitor

Field
Visitor

years «<g—

classes

Array > transcript
Visitor L
courseinfo

course

Record State
Grade

2/2

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT Intemanonal apphication No
PCTUS00:23694

Al CLASSIFICATION OF SUBJECT MATTER
1PC(T) [PC (7) : GO6F 945

USCL 717 1:707 3513
According to Intemational Patent Classitication (IPC) or 1o both nauonal classiticanon and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classitication svstem followed by classificanon symbols)

US. . 717:1.2: 707 513.523

Documentation searched other than minimum documentation to the extent that such documents are included 1n the fickis searched

Electronic data base consuited during the intemational search (name of data basc and. where practicable. search terms used)

EAST. STN. ACM DIGITAL LIBRARY. PROQUEST. IEEE ELECTRONIC LIBRARY

C. DOCUMENTS CONSIDERED TO BE RELEVANT

N

Categorv* Citation of document. "vith ‘1dication. where appropnate. ot the relevent passages Relevant to claim Mo

AP US 6,026.409 A (BLUMENTHAL) 15 February 2000. see whole | 1-14
document.

AP US 6,094,684 A (PALLMANN) 25 July 2000. see whole document| 1-14

AP US 6,023.684 A (PEARSON) 08 February 2000, see whole| 1-14
document.

A US 5,878,419 A (CARTER) 02 March 1999, the whole document | 1-14

A US 5,905.248 A (RUSSELL et al.) 18 May 1999. the whole| 1-14
document.

A US 5,940.075 A(MUTSCHLER Il et al.) 17 August 1999, see| 1-14
whole document.

Further documents are listed in the continuation of Box C. D See patent tamily annex.

. Special categones of cited documents T iater document puolished after the international Liing gate or priority
) i . . . date and not in contlict with the application bul ¢iea 1o undersiand
A document defiming the general state of the art which 1s not considered the principle or theory underiving the mnventon
1o be oi parucular reievance
. R . - "XT document of parucular reievance. the ciammed mventon cannor be
"E* earher document pubisiied on or after the mternational filing date et s ention cannor b
i considered nove: of cannot be considered 10 1 v ¢ v enin e step
"L document which may tirow doubts on prioriy ciawnesy or which s when the document s taken alone
cited to estabhish the supiication date ol another citation or othe: . .
special reason 1as specified Y avcument ol pariicuiar reievance. the clamed arennon cannut be
: considered 10 involve an mvenuve step when e document s

A document referring to an oral disclosure. use. exhibiton or other comomed with one or more other such documents. sucii combination
means pemng obvious 1o 4 person skilled in the arnt
P document pubiished prior to the imternauonal filing date but fater than » ¢~ document memoer of the same patent family
the prionty date claimed
Date of the actual compleuon of the intematonal search Date of mailing of the intemnational search report
20 NOVEMBER 2000 0 QJAN w01
Name and mathing address ot the ISA US Authorized otticer)
Commuissioner of Patents and Trademarks ~
T
Box PCT kakaticiak TS Aot
Washington. D.C. 20231
Facsimile No (703) 303-3230 Telephone No (703) 305-9600

Form PCT ISA-210 (second sheet) (Julv 1998)x

INTERNATIONAL SEARCH REPORT Intemational application No
PCTUS00:23694

C (Continuauon). DOCUMENTS CONSIDERED TO BE RELEVANT

Citanon of document. with indication. where appropnate. of the relevant passages

Relevant to claim No.

Volume XVIII Number 6, June 1998, the whole document.

Category®

A US 5943424 A (BERGER et al.) 24 August 1999, see whole 1-14
document.

A KARPINSKI, R. Server addresses data exchange, Internetweek, 1-14
March 30, 1998, the whole document.

A SENNA,J. XML bridges the gap, INFOWORLD, June 01, 1998, 1-14
the whole document.

A PIVEN, J. XML Stakes Out Web Future, Computer Technology, 1-14

Form PCTISA 210 (contnuation of second sheet) (Julv 1998)=

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

