US011500847B2

a2 United States Patent

Shomo et al.

US 11,500,847 B2
Nov. 15, 2022

(10) Patent No.:
45) Date of Patent:

(54) SYSTEM AND METHOD FOR REAL-TIME (56) References Cited
FORENSIC INSTRUMENTATION
U.S. PATENT DOCUMENTS
(71) Applicant: Open Text Holdings, Inc.. San Mateo, 2011/0276770 AL* 11/2011 ZBU .oooorverrereeeee. GOGF 9/44505
CA (US) 711/160
2012/0191660 Al* 7/2012 HoOg ..c.ccovvvvenenee GO6F 21/552
707/661
(72) Inventors: Paul M. Shomo, North Bend, WA 2017/0244754 Al* 82017 Kinder HO4L 63/1466
(US); Robert Batzloff, Danville, CA 2020/0137085 Al* 4/2020 Kostyushko GOGF 21/53
(US) 2020/0327225 Al* 10/2020 Nguyen GO6F 21/554
2020/0351293 Al* 11/2020 Ponnuru HO041L 63/20
(73) Assignee: OPEN TEXT HOLDINGS, INC., San (Continued)
Mateo, CA (US)
OTHER PUBLICATIONS
(*) Notice: SUbjeCt. to any disclaimer. > the term of this Duranec et al. “Investigating file use and knowledge with Windows
patent is extended or adjusted under 35 |q artifacts”. 2019 42nd Int’l Convention on MIPRO. DOT: 10.23919/
U.S.C. 154(b) by 117 days. MIPRO.2019.8756877. Published on IEEE on Jul. 11, 2019. URL
Link: <https://ieeexplore.icee.org/document/8756877>. Accessed Jun.
(21) Appl. No.: 16/583,055 2022. (Year: 2019).*
(Continued)
(22) Filed: Sep. 25, 2019 Primary Examiner — Irene Baker
(74) Attorney, Agent, or Firm — Sprinkle IP Law Group
(65) Prior Publication Data (57) ABSTRACT
US 2021/0089510 Al Mar. 25, 2021 Real-time forensic instrumentation comprising: a monitor-
ing hook into the notification interface of an operating
system; a forensic artifact filter to evaluate events received
(51) Int. ClL via the real-time monitoring hook to determine if an event
GO6F 16/23 (2019.01) represents a change to a forensic artifact; and a forensic
GOGF 16/22 (2019.01) interpreter subsystem to: based on the forensic artifact filter
GO6F 16/2457 (2019.01) output, collect forensic metadata associated with the foren-
GO6F 16725 (2019.01) sic artifact and apply a forensic analysis to the forensic
(52) US. CL artifact to generate a result; generate a forensically inter-
CPC ... GO6F 16/2358 (2019.01); GO6F 16/2228 preted activity for the event, the forensically interpreted
(2019.01); GOG6F 16/2365 (2019.01); GO6F activity comprising the forensic metadata, the result of the
16/24575 (2019.01); GO6F 16/252 (2019.01) forensic analysis and a description of a first activity by a user
(58) Field of Classification Search with respect to the forensic artifact; and store the forensi-

None
See application file for complete search history.

cally interpreted activity in a digital forensics store.

23 Claims, 5 Drawing Sheets

CONFIGURE INSTRUMENTATION

302~ TO USE MONITORING HOOK
INTO OS TO RECEIVE EVENTS
304 PROVIDE FORENSIC ARTIFACT FILTER
COUPLED TO MONITORING HOOK
306 RECEIVE AN EVENT USING
THE MONITORING HOOK

308~

APPLY FORENSIC ARTIFACT FILTER
TO EVALUATE EVENT ACCORDING
TO FORENSIC ARTIFACT DEFINITION

FORENSIC
ARTIFACT?

DISREGARD
EVENT

310

312/|

OUTPUT EVENT INFORMATION
TO FORENSIC INTERPRETER

CONTINUE
MONITORING?

US 11,500,847 B2

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS
2021/0012000 Al* 1/2021 Halcrow GO6F 21/53
2021/0042262 Al* 2/2021 Naircccovvvvenene. GOG6F 21/602

OTHER PUBLICATIONS

Soltani et al. “A survey on digital evidence collection and analysis”.
2017 7th Int’l Conference on Computer and Knowledge Engineer-
ing (ICCKE). DOI: 10.1109/ICCKE.2017.8167885. Published on
IEEE on Dec. 7, 2017. URL Link: <https:/iecexplore.icee.org/
document/8167885>. Accessed Jun. 2022. (Year: 2017).*

* cited by examiner

US 11,500,847 B2

Sheet 1 of 5

Nov. 15, 2022

U.S. Patent

['DId
801
FOVNOLS sy3sn ¥~ @\9
\ b7 SNOILYOI1ddY
gt | ONINNNY
ALIATLOY Q3LFHAHILNI LN3AT
ATIVOISNIHOA T RENIL NOLLOVYILNI
A A
8 _‘/r
U AYYHEIT INI —— \\/
: | & =S
° €l | ley _ NETRiE SHOOH v _ﬂ_mhm%
I 211 |
L AMVNEIT LNI L] vl N/_\] < T1FHS IAILOVHALNI
% NETENENEIL) g} |~ _NOMINIAAd .a
74} C |
A NOILLYLNINNYLSNI
Och OISNTHO4 INIL-TVIY SIOVAILNI
o6l WILSAS ONILYHIHO ool
¢0}

U.S. Patent Nov. 15, 2022 Sheet 2 of 5 US 11,500,847 B2

206 206 206

U.S. Patent

Nov. 15, 2022

Sheet 3 of 5 US 11,500,847 B2

(START)

Y

302~

CONFIGURE INSTRUMENTATION
TO USE MONITORING HOOK
INTO OS TO RECEIVE EVENTS

Y

304~

PROVIDE FORENSIC ARTIFACT FILTER
COUPLED TO MONITORING HOOK

A

A

306~

RECEIVE AN EVENT USING
THE MONITORING HOOK

Y

308~

APPLY FORENSIC ARTIFACT FILTER
TO EVALUATE EVENT ACCORDING
TO FORENSIC ARTIFACT DEFINITION

FORENSIC
ARTIFACT?

Y
DISREGARD
EVENT
- LN
v 310

312

OUTPUT EVENT INFORMATION
TO FORENSIC INTERPRETER

CONTINUE
MONITORING?

FIG. 3

U.S. Patent

Nov. 15,2022 Sheet 4 of 5

(START)

A

A

402~ RECEIVE FORENSIC ARTIFACT
FILTER OUTPUT FOR AN EVENT
Y
404 ~ DETERMINE TYPE OF
FORENSIC ARTIFACT
Y
406~ EXECUTE CODE FOR
FORENSIC ARTIFACT TYPE
Y
GENERATE FORENSICALLY
408" INTERPRETED ACTIVITY
FOR THE EVENT
Y
STORE FORENSICALLY
410" INTERPRETED ACTIVITY

FOR THE EVENT

END

FIG. 4

US 11,500,847 B2

U.S. Patent Nov. 15, 2022 Sheet 5 of 5 US 11,500,847 B2

50\0'

506 510
\ /
1/0 INTERFACE

PROCESSOR
\
% T 2
MEMORY
0sS
(514
512 /
RTFI

FIG. 5

US 11,500,847 B2

1
SYSTEM AND METHOD FOR REAL-TIME
FORENSIC INSTRUMENTATION

TECHNICAL FIELD

This disclosure relates to computer investigation systems,
and more specifically to computer forensic investigations.
Even more particularly, embodiments relate to systems and
methods for real-time forensic instrumentation.

BACKGROUND

Computer investigation has become increasingly impor-
tant as the use of computers has extended to virtually all
areas of everyday life. Computer investigation includes
computer forensics, which is the collection, preservation and
analysis of computer-related evidence, typically for possible
use as evidence in a legal proceeding. The field of computer
forensics maintains established practices for the collection,
preservation, and analysis of data stored on computer sys-
tems. These practices are rooted in legal requirements and
decades of court precedence. The application of these prac-
tices when conducting an investigation on a target computer
has historically required considerable time and effort from
an experienced investigator.

Computer forensics typically involves the systematic
inspection of a computer system and the collection, preser-
vation and analysis of “forensic artifacts” found on the
computer system. Forensic artifacts include items, objects or
areas that hold information of forensic interest, particularly
information relevant to the activities performed on a com-
puter. Forensic artifacts can include evidentiary residue that
operating systems leave behind incidentally based on actions
of users and applications. Examples of forensic artifacts
include, but are not limited to: undocumented system files;
meta-storage such as a Windows® registry and MacOS®
plists (Windows is registered trademark of Microsoft Cor-
poration, MacOS is a registered trademark of Apple, Inc., all
trademarks, service marks, certification marks, or collective
marks used herein are property of their respective owners);
kernel data structures in memory; data stored in file system
metadata and headers; and log files. The computer forensics
community continually identifies, reverse-engineers and
publishes previously undocumented forensic artifacts.

As will be appreciated, there may be multiple forensic
artifacts of various types and locations in an operating
system environment. By way of example, but not limitation,
an operating system environment may include USBSTOR
registry keys related to USB activity, ShellBags that track
views, sizes and positions of a folder window, log files and
registry keys that relate to authentication activity, cache
folders for opened email attachments, .Ink files for open
files, files related to run command activities, process
memory that relates to run command activities, and other
forensic artifacts. Forensic investigators may analyze such
forensic artifacts to determine USB activity, folder browsing
activity, authentication activity, clicking on attachments
activity, clicking on files activity, website browsing activity,
run command activity and other activities that occurred on
a target computer.

Computer forensics systems focus on point-in-time batch
processing of all forensic artifacts on a target computer.
Forensically sound collection of forensic artifacts typically
involves an I/O intensive process of reading data in memory
in a large batch, without modifying the data. The collected
data is analyzed to identify forensic artifacts. Computer
forensics systems favor interpreting file system metadata,

10

15

20

25

30

35

40

45

50

55

60

65

2

rather than trusting the operating system, to locate the
artifacts. The parsing and interpretation of forensic artifacts
to determine conclusionary forensic metadata and the stor-
age of the conclusionary forensic metadata is performed at
the end of a long batch processing job, run at a specific
points-in-time.

The reliance of computer forensic systems on batch
collection and processing of forensic artifacts has limita-
tions. As one such shortcoming, batch collection suffers
from an artifact overwrite problem. A point-in-time batch
collection of artifacts collects artifacts as they are at the time
the batch is collected but may miss states of the artifacts that
have been overwritten prior to the batch being collected.
Furthermore, a number of forensic artifacts are temporal
in-memory artifacts that batch collection will fail to collect
if they are not in-memory when the batch is created. Batch
collection also results in a high 1/O load, slowing the target
computer.

SUMMARY

Attention is thus directed to the real-time forensic instru-
mentation systems and methods disclosed herein.

One embodiment includes a computer program product
comprising a non-transitory computer-readable medium
storing a set of computer-readable instructions. The com-
puter-readable instructions are executable to use a monitor-
ing hook into the notification interface of the operating
system to receive an event. The computer-readable instruc-
tions are further executable to provide a forensic artifact
filter coupled to the monitoring hook, the forensic artifact
filter comprising code executable to: for the event received
using the monitoring hook, evaluate the event according to
a forensic artifact definition to determine if the event rep-
resents a change to a forensic artifact; and based on a
determination that the event represents the change to the
forensic artifact, output a forensic artifact filter output that
includes event information for the event, the event informa-
tion including an indication of the forensic artifact. The
computer-readable instructions are further executable to:
based on the forensic artifact filter output, collect forensic
metadata associated with the forensic artifact and apply a
forensic analysis to the forensic artifact to generate a result,
the forensic metadata including a user identifier for a user of
the operating system; generate a forensically interpreted
activity for the event, the forensically interpreted activity
comprising the forensic metadata, the result of the forensic
analysis and a description of a first activity by the user with
respect to the forensic artifact; and store the forensically
interpreted activity in a digital forensics store for the com-
puter.

Another embodiment includes a method for real-time
digital forensic instrumentation, the method comprising: on
a computer comprising a processor and an operating system
with a notification interface, using a monitoring hook into
the notification interface of the operating system to receive
an event; the processor applying a forensic artifact filter to
the event; based on a forensic artifact filter output, the
processor collecting forensic metadata associated with a
forensic artifact and applying a forensic analysis to the
forensic artifact to generate a result, the forensic metadata
including a user identifier for a user of the computer; the
processor generating a forensically interpreted activity for
the event, the forensically interpreted activity comprising
the forensic metadata, the result of the forensic analysis and
a description of a first activity by the user with respect to the
forensic artifact; and the processor storing the forensically

US 11,500,847 B2

3

interpreted activity in a digital forensics store for the com-
puter. According to one embodiment, applying the forensic
artifact filter comprises: evaluating an event according to a
forensic artifact definition to determine if event represents a
change to the forensic artifact; and based on a determination
that the event represents the change to the forensic artifact,
generating the forensic artifact filter output that includes
event information for the event, the event information
including an indication of the forensic artifact.

Another embodiment includes a system comprising: a
processor and a computer-readable medium storing an oper-
ating system having a notification interface and a set of
computer-readable instructions, the set of computer-read-
able instructions executable to configure the processor with
real-time forensic instrumentation. According to one
embodiment, the real-time forensic instrumentation com-
prises: a monitoring hook into the notification interface of
the operating system to receive an event; a forensic artifact
filter coupled to the monitoring hook; and a forensic inter-
preter subsystem coupled to the forensic artifact filter.
According to one embodiment, the forensic artifact filter
comprises code executable to: for an event received using
the monitoring hook, evaluate the event according to a
forensic artifact definition to determine if the event repre-
sents a change to a forensic artifact; and based on a deter-
mination that the event represents the change to the forensic
artifact, generate a forensic artifact filter output that includes
event information for the event, the event information
including an indication of the forensic artifact. According to
one embodiment, the forensic interpreter subsystem com-
prises code executable to: based on the forensic artifact filter
output, collect forensic metadata associated with the foren-
sic artifact and apply a forensic analysis to the forensic
artifact to generate a result, the forensic metadata including
a user identifier for a user of the operating system; generate
a forensically interpreted activity for the event, the forensi-
cally interpreted activity comprising the forensic metadata,
the result of the forensic analysis and a description of a first
activity by the user with respect to the forensic artifact; and
store the forensically interpreted activity in a digital foren-
sics store.

Embodiments described herein provide advantages over
prior computer forensics systems. As one advantage,
embodiments of real-time forensic instrumentation can
record each granular artifact changes as they occur, thus
reducing or eliminating the artifact overwrite problem. Fur-
thermore, embodiments provide an advantage by providing
a mechanism that can collect temporal forensic artifacts.

As another advantage, embodiments of real-time forensic
instrumentation provide incremental forensic artifact collec-
tion that is highly scalable. Since each forensic artifact is
typically quite small, interpreting them in the volatile
memory of a target computer system as they are changed, is
faster than connecting to the target computer and batch
processing all of the artifacts together. As few resources are
needed at a given time to interpret a forensic artifact, each
target computer or other endpoint can investigate itself in
real-time.

These, and other, aspects of the disclosure will be better
appreciated and understood when considered in conjunction
with the following description and the accompanying draw-
ings. It should be understood, however, that the following
description, while indicating various embodiments of the
disclosure and numerous specific details thereof, is given by
way of illustration and not of limitation. Many substitutions,
modifications, additions, or rearrangements may be made
within the scope of the disclosure without departing from the

10

15

20

25

30

35

40

45

50

55

60

65

4

spirit thereof, and the disclosure includes all such substitu-
tions, modifications, additions, or rearrangements.

BRIEF DESCRIPTION OF THE DRAWINGS

The drawings accompanying and forming part of this
specification are included to depict certain aspects of the
disclosure. It should be noted that the features illustrated in
the drawings are not necessarily drawn to scale. A more
complete understanding of the disclosure and the advantages
thereof may be acquired by referring to the following
description, taken in conjunction with the accompanying
drawings in which like reference numbers indicate like
features and wherein:

FIG. 1 is a diagrammatic representation of one embodi-
ment of real-time forensic instrumentation on a target com-
puter;

FIG. 2 is a diagrammatic representation of one embodi-
ment of a network topology;

FIG. 3 is a flow chart of one embodiment of monitoring
atarget computer for events representing changes to forensic
artifacts;

FIG. 4 is a flow chart of one embodiment of a method for
forensic interpretation;

FIG. 5 is a diagrammatic representation of one embodi-
ment of a target computer.

DETAILED DESCRIPTION

Embodiments and the various features and advantageous
details thereof are explained more fully with reference to the
non-limiting embodiments that are illustrated in the accom-
panying drawings and detailed in the following description.
Descriptions of well-known starting materials, processing
techniques, components and equipment are omitted so as not
to unnecessarily obscure the embodiments in detail. It
should be understood, however, that the detailed description
and the specific examples are given by way of illustration
only and not by way of limitation. Various substitutions,
modifications, additions and/or rearrangements within the
spirit and/or scope of the underlying inventive concept will
become apparent to those skilled in the art from this disclo-
sure.

Embodiments described herein provide real-time forensic
instrumentation and methods for collecting and interpreting
forensic artifacts. According to one embodiment, the real-
time forensic instrumentation continually monitors a target
computer system to capture live forensic artifact changes by
operating system services. Based on detecting a change to a
forensic artifact (e.g., creation or update of a forensic
artifact), the real-time forensic instrumentation can parse
and interpret the artifact to generate a forensically inter-
preted activity, which can be represented as a small amount
of metadata. In some embodiments, artifacts may be small
enough to load into volatile memory to provide interpreta-
tion real-time.

FIG. 1 is a diagrammatic representation of one embodi-
ment of real-time forensic instrumentation 100 installed on
a target computer running an operating system 102. In the
embodiment illustrated, real-time forensic instrumentation
100 comprises monitoring hooks 112, forensic artifact filters
114 coupled to monitoring hooks 112 and a real-time foren-
sic interpreter 120 coupled to forensic artifact filters 114.

Operating system 102 provides a number of interfaces
104 through which applications 106 or users 108 may
interact. For example, operating system 102 may provide
system APIs through which applications can read/write/

US 11,500,847 B2

5

execute/delete binaries, data files, or other data, make net-
work connections or take other actions. Operating system
102 may also have an interactive shell (e.g., a graphical
shell) through which users 108 can navigate a file system,
opening folders and files. As another example, the operating
system 102 may include a command line interface (CLI)
through which a user can run commands. Operating system
102 further includes an event notification interface, such as
event notification API, that allows applications to register to
receive events. For example, operating system 102 can
include an event notification API that allows an application
to set hooks into the notification interface.

As will be appreciated, there may be multiple forensic
artifacts of various types and locations in the operating
system environment. By way of example, but not limitation,
an operating system environment may include USBSTOR
registry keys related to USB activity, ShellBags that track
views, sizes and positions of a folder window, log files and
registry keys that relate to authentication activity, cache
folders for opened email attachments, .Ink files for open
files, files related to run command activities, process
memory that relates to run command activities, and other
forensic artifacts.

Real-time forensic instrumentation 100 continually moni-
tors granular behavior of operating system 102 by register-
ing with the notification interface to receive events that may
be indicative of changes to forensic artifacts. According to
one embodiment, real-time forensic instrumentation 100
receives events using monitoring hooks 112, which may be
set by registering callbacks with operating system APIs that
provide operating system events for granular behaviors of
running processes or OS services. As there may be multiple
forensic artifacts of various types and locations in the
operating system environment, real-time forensic instru-
mentation 100 can register to receive various types of
events. Monitoring hooks 112 may thus include hooks of
various types.

As will be appreciated, real-time forensics instrumenta-
tion 100 may receive a large quantity of granular OS events
as registry key changes, file changes, or running process
changes occur. Only a small portion of these events will
relate to operating system 102 changing (e.g., creating or
updating) forensic artifacts. To this end, real-time forensic
instrumentation 100 includes forensic artifact filters 114
operatively coupled to monitoring hooks 112 to identify
events that represent changes to forensic artifacts. According
to one embodiment, forensic artifact filters 114 are imple-
mented as callback routines that are called when an event is
received using the respective monitoring hook 112. In some
embodiments, a forensic artifact filter 114 is implemented as
a filter driver (e.g., a kernel-mode driver).

Each forensic artifact filter 114 is executable to evaluate
events according to a respective forensic artifact definition
116 to determine if an event represents a change to a forensic
artifact. In general, a forensic artifact will have known
characteristics, such as registry location, registry key name,
directory location, file name, file extension, etc. As such, a
forensic artifact definition 116 can include information
usable to identify an event representing a change to a
forensic artifact. A forensic artifact filter 114 parses a
received event and evaluates the event according to the
forensic artifact definition 116 to determine if the event
represents a change to a forensic artifact.

If the received event does not represent a change to a
forensic artifact, forensic artifact filter 114 disregards the
event. For example, in a filter driver implementation, foren-
sic artifact filter 114 can allow the event to proceed through

10

15

20

25

30

35

40

45

50

55

60

65

6

the driver stack. If forensic artifact filter 114 determines that
an event represents a change to a forensic artifact, forensic
artifact filter 114 outputs a forensic artifact filter output 117
that includes event information for the event, including an
indication of the forensic artifact 118 changed by the event.
For example, forensic artifact filter 114 may hand off event
information (e.g., the type of event and the registry key
name, system file full path, or other information that iden-
tifies the forensic artifact to which the event is related) to
forensic interpreter 120. According to one embodiment,
forensic artifact filter 114 does not block the event (e.g.,
from proceeding through a driver stack), even if it deter-
mines that an event represents a change to the forensic
artifact. As such, forensic interpreter 120 may be considered
an out-of-band interpreter.

A forensic interpreter 120, which may comprise a sub-
system of code for handling real-time events, is coupled to
one or more forensic artifact filters 114. In the illustrated
embodiment, forensic interpreter 120 includes various code
libraries 122 for interpreting various types of forensic arti-
facts.

For example, forensic interpreter 120 may include a code
library to analyze USBStor registry entries to determine
USB activity, a code library to analyze ShellBags to deter-
mine a browse folder activity, a code library to analyze
registry keys or log files to determine an authenticate
activity, a code library to analyze a cache folder to determine
a click attachment activity, a code library to analyze .Ink
files to determine click file activity, a code library to analyze
a ConsoleHost_history.txt file or process memory to deter-
mine a run command activity, and/or other code libraries to
interpret other types of forensic artifacts. Various techniques
known or developed in the art for analyzing various forensic
artifacts to extract forensically interesting data may be
employed. Forensic interpreter 120 further includes code
123 executable to map the event information to a selected
code library 122.

Based on the forensic artifact filter output 117, forensic
interpreter 120 reads the forensic artifact 118 into memory,
selects the appropriate code library 122 and passes forensic
artifact 118 to the selected code library for analysis. The
selected code library 122 analyzes the forensic artifact (and
potentially additional artifacts) according to forensically
sound practices to determine an analysis result that indicates
an activity that was carried out. The selected code library can
be executable to collect additional forensic metadata, such as
forensic metadata not determined from the forensic artifact.
For example, the forensic metadata may include the user-
name associated with a current user of the target computer.

In some embodiments, a code library includes a template
activity description into which the collected forensic meta-
data and results of the forensic analysis can be inserted to
generate a forensically interpreted activity 124, which may
include a human-understandable description of a user activ-
ity on the target computer. According to one embodiment, a
forensically interpreted activity specifies an activity, an
identifier of the user who carried out the activity and the time
that the activity was carried out. Forensically interpreted
activity 124 is stored in a digital forensics data store 126,
which may be a local data store at the target computer or a
remote data store. In some embodiments, forensically inter-
preted activity 124 is stored locally to cache before sending
it to a server. In other embodiments, the forensically inter-
preted activity can be streamed to a server in real-time.

To provide an example, real-time forensic instrumentation
100 may be used to collect forensically sound data with
respect to user folder browsing activity in a Windows®

US 11,500,847 B2

7

based system that uses ShellBag registry keys at the registry
path:
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows
NT\CurrentVersion\ProfileList to store GUI folder display
information. In this example, a monitoring hook 112 can be
implemented by using CmRegisterCall() or CmRegister-
CallbackEx() to register a RegistryCallback routine. The
RegistryCallback routine can be executable to implement a
forensic artifact filter 114 that parses events for a reference
to
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows
NT\CurrentVersion\ProfileList.

Real-time forensic instrumentation 100, in this example,
will receive notifications about all the registry keys being
changed (created, deleted, or updated). The forensic artifact
filter 114 analyzes each registry change event to determine
if the modified key is a ShellBag artifact by looking for the
registry path
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows
NT\CurrentVersion\ProfileList in the event.

If forensic artifact filter 114 determines that the modified
artifact is a ShellBag artifact, forensic artifact filter 114
passes the event information to forensic interpreter 120. The
forensic interpreter 120 maps the event information to the
code library 122 for analyzing ShellBags and executes the
selected code library 122 to parse the ShellBag artifact to
determine the folder browsed, reconstruct the folder path
using forensic best practices, replacing the “%” delimiter
with a ‘\’, and parse the time stamp of the ShellBag artifact
to determine the date and time a folder browsing activity
occurred. The forensic interpreter 120. According to one
embodiment, the selected code library is further executable
to collect additional forensic metadata, such as the username
to which the registry section in which the ShellBag artifact
appears correlates. The forensic interpreter uses the results
of the forensic analysis of the forensic artifact and the
additional collected forensic metadata to generate a foren-
sically interpreted activity 124, such as: “User sally.jones
clicked and browsed the folder ¢c:\Windows on Jul. 1, 2019
10:23:03 AM.” The forensically interpreted activity 124 is
written to a digital forensics data store 126, such as a
database.

As will be appreciated, operating system 102 also pro-
vides mechanisms to allow real-time forensic instrumenta-
tion 100 to register to receive file change notifications that
can be used to monitor for changes to directories for
forensically interesting files. For example, real-time forensic
instrumentation 100 can register to receive file change
events and a forensic artifact filter 114 can be configured to
filter the file change events for file changes events involving
Unk files in a particular directory. Similarly, real-time foren-
sic instrumentation can filter for file change events for files
in directories known to contain forensically interesting arti-
facts, such as directories that hold email cache files. Real-
time forensic instrumentation can further filter for file
change events for specific files, such as ConsoleHost_his-
tory.txt. As will be appreciated, real-time forensic instru-
mentation can include filters 114 to recognize the creation,
update or deletion of .Ink files, email cache files, the
ConsoleHost_history.txt files or other forensically interest-
ing files.

According to one embodiment, real-time forensic instru-
mentation 100 includes a file system filter driver, or a file
system minifilter driver, that provides hooks into 1/O opera-
tions (e.g., [/O request packet (IRP) based operations) and
file system filter (FSFilter) callback operations. The driver is
executable to register a pre-operation callback routine, a

10

15

20

25

30

35

40

45

50

55

60

8

post-operation callback routine or both, where the callback
routine(s) implement one or more forensic artifact filters
114.

In a more particular embodiment, a minifilter driver is
provided where the minifilter driver includes a DriverEntry
routine that performs global initialization, registers the
driver (e.g., with FltRegisterFilter) and provides the OS’s
filter manager with a list of callback routines and other
information about the driver. The minifilter driver sets a
monitoring hook 112 by registering a callback routine for a
particular type of /O operation with the OS’s filter manager.
For example, the minifilter driver can register a callback
routine for a system call such as, but not limited to FltGet-
FileNamelnformation, with the filter manager. In one
embodiment, the DriverEntry routine can be configured to
register one more routines of type PFLT_PRE_OPERA-
TION_CALLBACK and/or one or more routines of type
PFLT_POST_OPERATION_CALLBACK with the filter
manager of the OS. The minifilter driver calls FltStartFil-
tering (e.g., from its DriverEntry routine) to start filtering for
the driver.

As the filter manager processes an event, the filter man-
ager calls the registered callback routines for the type of
operation. As will be appreciated, the filter manager of one
embodiment calls minifilter pre-operation callback routines
registered for the operation prior to the filter manager
passing the operation to the file system and legacy filters that
have registered completion routines for the operation and
calls minifilter post-operation routines after these comple-
tion routines have finished.

In any case, when an event (e.g., an /O operation) for
which a callback routine has been registered is processed by
the filter manager, the filter manager calls the callback
routine (either pre-operation or post-operation). Thus, con-
tinuing with the prior example, when the filter manager
processes a FltGetFileNamelnformation operation, the filter
manager calls the registered callback routine to execute a
forensic artifact filter 114 on the operation. The forensic
artifact filter 114 determines if the file being modified is an
artifact with forensic value (e.g., based on directory path or
file name) the forensic artifact filter 114 outputs a forensic
artifact filter output 117 that includes event information for
the event, including an indication of the file changed by the
event.

Based on the forensic artifact filter output 117, forensic
interpreter 120 reads the forensic artifact 118 into memory,
selects the appropriate code library 122 and passes forensic
artifact 118 to the selected code library for analysis. The
code library 122 for a particular type of file system artifact
(e.g., Ink files, PowerShell ConsoleHost_history.txt, WIN-
DOWS PreFetch files, or other file system artifact) is con-
figured to account for the unique OS /O behavior around
that type of artifact and encapsulate design considerations
accounting for the file system artifact being closed, or held
open, and whether the forensic artifact updates part of the
system file or overwrites it anew. In some cases, the code
library 122 for a type of file system artifact can be execut-
able to identify clear transaction boundaries indicating an
event corresponding to user activity has just finished, and
that metadata around this activity is now stored in the
artifact. From either having already collected the informa-
tion in transit from /O operations, or by re-reading the file
system artifact, the forensic interpreter 120 generates a
forensically interpreted activity 124.

It should be understood that the examples of setting hooks
for registry events and file events are provided by way of
example, but not limitation, and embodiments can include

US 11,500,847 B2

9

hooks for any event types that may indicate a change to a
forensic artifact. By way of example, but not limitation,
forensic instrumentation can register to receive directory
change notifications and process start/stop notifications and
apply appropriate filters to the notifications.

Real-time forensic instrumentation 100 may be imple-
mented according to a variety of architectures. FIG. 2, for
example, illustrates one embodiment of a network topology
200 comprising a server computer 202 coupled to a plurality
of target computer systems 204 via a network 205. Network
205 may represent a combination of wired and wireless
networks that a network computing environment may utilize
for various types of network communications.

Each target computer system 204 may include a locally
running forensic agent 206 to take snapshots (batch collec-
tion) of the respective target computer system and provide
the snapshots to server computer 202 for forensic analysis.
Each forensic agent 206 may further include real-time
forensic instrumentation 210 to continually monitor the
respective target computer system 204 and generate foren-
sically interpreted activities. In some embodiments, the
forensically interpreted activities are provided to server 202
as they are generated. In other embodiments, the forensically
interpreted activities are provided to server computer 202 in
batches.

FIG. 3 is a flow chart illustrating one embodiment of a
method of real-time forensic monitoring of an operating
system. At step 302, real-time forensic instrumentation (e.g.,
real-time forensic instrumentation 100) is configured to use
a monitoring hook into a notification interface of an oper-
ating system to receive events. A forensic artifact filter is
provided for the monitoring hook (step 304). In some
embodiments, a callback routine is registered for a moni-
toring hook where the callback routine includes the forensic
artifact filter.

At step 306, the real-time forensic instrumentation
receives an event using the monitoring hook. At step 308, the
real-time forensic instrumentation executes the forensic arti-
fact filter on the event to evaluate the event according to a
forensic artifact definition. The forensic artifact definition
may specify characteristics of a forensic artifact, such as
registry key name, file name, registry location, directory
location, or other information usable to identify an event as
representing a change to a forensic artifact.

If the forensic artifact filter determines that the event does
not represent the change to the forensic artifact, the forensic
artifact filter disregards the event (step 310). If the forensic
artifact filter determines that the event represents a change to
a forensic artifact, the forensic artifact filter outputs a
forensic artifact filter output that includes event information
for the event (step 312). The event information includes an
indication of the forensic artifact, such as a registry location
of the forensic artifact, directory location of the forensic
artifact, memory location of the forensic artifact, name of
the forensic artifact or other information to allow a forensic
interpreter to access the forensic artifact.

FIG. 3 is provided by way of example and not limitation.
Various steps may be repeated. For example, steps 302 and
304 may be repeated for each monitoring hook used and
306-308 may be repeated for a monitoring hook until
monitoring using that hook is terminated. Steps may be
performed in different orders, steps omitted, and additional
or alternative steps performed.

FIG. 4 is a flow chart illustrating one embodiment of a
method of real-time forensic interpretation. At step 402, a
real-time forensic interpreter (e.g., forensic interpreter 120)
receives a forensic artifact filter output. The forensic artifact

25

30

35

40

45

50

55

60

65

10

filter output may include an indication of a forensic artifact
changed by an event, such as a registry location of the
forensic artifact, directory location of the forensic artifact,
memory location of the forensic artifact, name of the foren-
sic artifact or other information to allow a forensic inter-
preter to access the forensic artifact.

Based on the forensic artifact filter output, the real-time
forensic interpreter applies a forensic analysis to the forensic
artifact to generate a result and collects additional forensic
metadata associated with the forensic artifact. According to
one embodiment, the forensic interpreter parses the forensic
artifact filter output to determine the type of forensic artifact
changed by the event (step 404) and executes a code library
for the type of forensic artifact (step 406) to analyze the
forensic artifact and collect additional forensic metadata,
such as a user identifier correlating to the change to the
forensic artifact. For example, if the forensic interpreter
determines that the forensic artifact is a ShellBag, the
forensic interpreter executes a code library for performing a
forensic analysis of ShellBags. Such code may, for example,
be executable to parse the ShellBag artifact to determine the
folder browsed, reconstruct the folder path using forensic
best practices and parse the time stamp to determine the date
and time a folder browsing activity occurred. The code may
also be executable to collect a username associated with the
registry section in which a ShellBag artifact appears.

The forensic interpreter uses the results of the forensic
analysis of the forensic artifact and the additional collected
forensic metadata to generate a forensically interpreted
activity (step 408). According to one embodiment, the
forensically interpreted activity includes a human-under-
standable description of an activity, the user who carried out
the activity and the time that the activity was carried out. The
forensically interpreted activity 124 is stored in a digital
forensics store for the target computer (step 410). In some
embodiments, the forensic artifact is also stored, for
example, in association with the forensically interpreted
activity 124 created based on the artifact.

FIG. 4 is provided by way of example and not limitation.
Various steps may be repeated. For example, steps 402-410
may be repeated for each event that is determined to
represent a change to a forensic artifact, until monitoring
ends. Steps may be performed in different orders, steps
omitted, and additional or alternative steps performed.

Embodiments of the technology may be implemented on
a computing system. Any combination of mobile desktop,
server, embedded or other types of hardware may be used.
FIG. 5 is a diagrammatic representation of one embodiment
of a target computer system 500. Target computer system
500 includes a computer processor 502 and associated
memory 504. Computer processor 502 may be an integrated
circuit for processing instructions. For example, processor
502 may comprise one or more cores or micro-cores of a
processor. Memory 504 may include volatile memory, non-
volatile memory, semi-volatile memory or a combination
thereof. Memory 504, for example, may include RAM,
ROM, flash memory, a hard disk drive, a solid-state drive, an
optical storage medium (e.g., CD-ROM), or other computer
readable memory or combination thereof. Memory 504 may
implement a storage hierarchy that includes cache memory,
primary memory or secondary memory. In some embodi-
ments, memory 504 includes storage space on a data storage
array. Target computer system 500 also includes input/
output (“I/0”) devices 506, such as a keyboard, monitor,
printer, electronic pointing device (e.g., mouse, trackball,
stylus, etc.), or the like. Target computer system 500 also

US 11,500,847 B2

11

includes a communication interface 510, such as a network
interface card, to interface with a network.

Memory 504 includes instructions executable by proces-
sor 502. For example, memory 504 may include computer-
readable instructions for an operating system 512 that pro-
vides a notification interface. Further, memory 504 can
include computer-readable instructions executable to imple-
ment real-time forensic instrumentation 514, such as real-
time forensic instrumentation 100, 210. A portion of
memory 504 may be used as a digital forensics data store.

Those skilled in the relevant art will appreciate that the
embodiments can be implemented or practiced in a variety
of computer system configurations including, without limi-
tation, multi-processor systems, network devices, mini-com-
puters, mainframe computers, data processors, and the like.
Embodiments can be employed in distributed computing
environments, where tasks or modules are performed by
remote processing devices, which are linked through a
communications network such as a LAN, WAN, and/or the
Internet. In a distributed computing environment, program
modules or subroutines may be located in both local and
remote memory storage devices. These program modules or
subroutines may, for example, be stored or distributed on
computer-readable media, stored as firmware in chips, as
well as distributed electronically over the Internet or over
other networks (including wireless networks). Example
chips may include Electrically Erasable Programmable
Read-Only Memory (EEPROM) chips.

Embodiments described herein can be implemented in the
form of control logic in software or hardware or a combi-
nation of both. The control logic may be stored in an
information storage medium, such as a computer-readable
medium, as a plurality of instructions adapted to direct an
information processing device to perform a set of steps
disclosed in the various embodiments. Based on the disclo-
sure and teachings provided herein, a person of ordinary
skill in the art will appreciate other ways and/or methods to
implement the invention. Steps, operations, methods, rou-
tines or portions thereof described herein be implemented
using a variety of hardware, such as CPUs, application
specific integrated circuits, programmable logic devices,
field programmable gate arrays, optical, chemical, biologi-
cal, quantum or nanoengineered systems, or other mecha-
nisms.

Software instructions in the form of computer-readable
program code may be stored, in whole or in part, temporarily
or permanently, on a non-transitory computer readable
medium. The computer-readable program code can be oper-
ated on by a processor to perform steps, operations, meth-
ods, routines or portions thereof described herein. A “com-
puter-readable medium” is a medium capable of storing data
in a format readable by a computer and can include any type
of data storage medium that can be read by a processor.
Examples of non-transitory computer-readable media can
include, but are not limited to, volatile and non-volatile
computer memories, such as RAM, ROM, hard drives, solid
state drives, data cartridges, magnetic tapes, floppy dis-
kettes, flash memory drives, optical data storage devices,
compact-disc read-only memories. In some embodiments,
computer-readable instructions or data may reside in a data
array, such as a direct attach array or other array. The
computer-readable instructions may be executable by a
processor to implement embodiments of the technology or
portions thereof.

A “processor” includes any hardware system, mechanism
or component that processes data, signals or other informa-
tion. A processor can include a system with a general-

10

15

20

25

30

35

40

45

50

55

60

65

12

purpose central processing unit, multiple processing units,
dedicated circuitry for achieving functionality, or other
systems. Processing need not be limited to a geographic
location, or have temporal limitations. For example, a pro-
cessor can perform functions in “real-time,” “offline,” in a
“batch mode,” etc. Portions of processing can be performed
at different times and at different locations, by different (or
the same) processing systems.

Different programming techniques can be employed such
as procedural or object oriented. Any suitable programming
language can be used to implement the routines, methods or
programs of embodiments of the invention described herein.
Communications between computers implementing
embodiments can be accomplished using any electronic,
optical, radio frequency signals, or other suitable methods
and tools of communication in compliance with known
network protocols.

Any particular routine can execute on a single computer
processing device or multiple computer processing devices,
a single computer processor or multiple computer proces-
sors. Data may be stored in a single storage medium or
distributed through multiple storage mediums. In some
embodiments, data may be stored in multiple databases,
multiple filesystems or a combination thereof.

Although the steps, operations, or computations may be
presented in a specific order, this order may be changed in
different embodiments. In some embodiments, some steps
may be omitted. Further, in some embodiments, additional
or alternative steps may be performed. In some embodi-
ments, to the extent multiple steps are shown as sequential
in this specification, some combination of such steps in
alternative embodiments may be performed at the same
time. The sequence of operations described herein can be
interrupted, suspended, or otherwise controlled by another
process, such as an operating system, kernel, etc. The
routines can operate in an operating system environment or
as stand-alone routines. Functions, routines, methods, steps
and operations described herein can be performed in hard-
ware, software, firmware or any combination thereof.

It will be appreciated that one or more of the elements
depicted in the drawings/figures can also be implemented in
a more separated or integrated manner, or even removed or
rendered as inoperable in certain cases, as is useful in
accordance with a particular application. Additionally, any
signal arrows in the drawings/figures should be considered
only as exemplary, and not limiting, unless otherwise spe-
cifically noted.

In the description herein, numerous specific details are
provided, such as examples of components and/or methods,
to provide a thorough understanding of embodiments of the
invention. One skilled in the relevant art will recognize,
however, that an embodiment may be able to be practiced
without one or more of the specific details, or with other
apparatus, systems, assemblies, methods, components,
materials, parts, and/or the like. In other instances, well-
known structures, components, systems, materials, or opera-
tions are not specifically shown or described in detail to
avoid obscuring aspects of embodiments of the invention.
While the invention may be illustrated by using a particular
embodiment, this is not and does not limit the invention to
any particular embodiment and a person of ordinary skill in
the art will recognize that additional embodiments are
readily understandable and are a part of this invention.

As used herein, the terms “comprises,” “comprising,”
“includes,” “including,” “has,” “having,” or any other varia-
tion thereof, are intended to cover a non-exclusive inclusion.
For example, a process, product, article, or apparatus that

US 11,500,847 B2

13

comprises a list of elements is not necessarily limited only
to those elements but may include other elements not
expressly listed or inherent to such process, product, article,
or apparatus.

Furthermore, the term “or” as used herein is generally
intended to mean “and/or” unless otherwise indicated. For
example, a condition A or B is satisfied by any one of the
following: A is true (or present) and B is false (or not
present), A is false (or not present) and B is true (or present),
and both A and B are true (or present). As used herein, a term
preceded by “a” or “an” (and “the” when antecedent basis is
“a” or “an”) includes both singular and plural of such term,
unless clearly indicated within the claim otherwise (i.e., that
the reference “a” or “an” clearly indicates only the singular
or only the plural). Also, as used in the description herein
and throughout the meaning of “in” includes “in” and “on”
unless the context clearly dictates otherwise.

Reference throughout this specification to “one embodi-
ment”, “an embodiment”, or “a specific embodiment” or
similar terminology means that a particular feature, struc-
ture, or characteristic described in connection with the
embodiment is included in at least one embodiment and may
not necessarily be present in all embodiments. Thus, respec-
tive appearances of the phrases “in one embodiment”, “in an
embodiment”, or “in a specific embodiment” or similar
terminology in various places throughout this specification
are not necessarily referring to the same embodiment. Fur-
thermore, the particular features, structures, or characteris-
tics of any particular embodiment may be combined in any
suitable manner with one or more other embodiments. It is
to be understood that other variations and modifications of
the embodiments described and illustrated herein are pos-
sible in light of the teachings herein and are to be considered
as part of the spirit and scope of the invention.

Additionally, any examples or illustrations given herein
are not to be regarded in any way as restrictions on, limits
to, or express definitions of, any term or terms with which
they are utilized. Instead, these examples or illustrations are
to be regarded as being described with respect to one
particular embodiment and as illustrative only. Those of
ordinary skill in the art will appreciate that any term or terms
with which these examples or illustrations are utilized will
encompass other embodiments which may or may not be
given therewith or elsewhere in the specification and all such
embodiments are intended to be included within the scope of
that term or terms. Language designating such nonlimiting
examples and illustrations includes, but is not limited to:
“for example,” “for instance,” “e.g.,” “in one embodiment.”

Thus, while the invention has been described with respect
to specific embodiments thereof, these embodiments are
merely illustrative, and not restrictive of the invention.
Rather, the description (including the Abstract and Sum-
mary) is intended to describe illustrative embodiments,
features and functions in order to provide a person of
ordinary skill in the art context to understand the invention
without limiting the invention to any particularly described
embodiment, feature or function, including any such
embodiment feature or function described. While specific
embodiments of, and examples for, the invention are
described herein for illustrative purposes only, various
equivalent modifications are possible within the spirit and
scope of the invention, as those skilled in the relevant art will
recognize and appreciate.

As indicated, these modifications may be made to the
invention in light of the foregoing description of illustrated
embodiments of the invention and are to be included within
the spirit and scope of the invention. Thus, while the

10

15

20

25

30

35

40

45

50

55

60

65

14

invention has been described herein with reference to par-
ticular embodiments thereof, a latitude of modification,
various changes and substitutions are intended in the fore-
going disclosures, and it will be appreciated that in some
instances some features of embodiments of the invention
will be employed without a corresponding use of other
features without departing from the scope and spirit of the
invention as set forth. Therefore, many modifications may
be made to adapt a particular situation or material to the
essential scope and spirit of the invention.

Benefits, other advantages, and solutions to problems
have been described above with regard to specific embodi-
ments. However, the benefits, advantages, solutions to prob-
lems, and any component(s) that may cause any benefit,
advantage, or solution to occur or become more pronounced
are not to be construed as a critical, required, or essential
feature or component.

What is claimed is:

1. A computer program product comprising a non-transi-
tory computer-readable medium storing a set of computer-
readable instructions, the set of computer-readable instruc-
tions comprising instructions executable on a computer that
has an operating system with a notification interface to:

use a monitoring hook into the notification interface of the

operating system to receive an event;

provide a forensic artifact filter coupled to the monitoring

hook, the forensic artifact filter comprising code

executable to:

for the event received using the monitoring hook,
evaluate the event according to a forensic artifact
definition to determine if the event represents a
change to a forensic artifact, wherein evaluating the
event according to the forensic artifact definition to
determine if the event represents the change to the
forensic artifact comprises determining that a regis-
try path included in the event corresponds to a
ShellBag artifact; and

based on a determination that the event represents the
change to the forensic artifact, output a forensic
artifact filter output that includes event information
for the event, the event information including an
indication of the forensic artifact;

based on the forensic artifact filter output, collect, at the

computer, forensic metadata associated with the foren-
sic artifact but not included in the forensic artifact filter
output and apply a forensic analysis to the forensic
artifact to generate a result that indicates a first activity
with respect to the forensic artifact, the forensic meta-
data including a user identifier for a user of the oper-
ating system who carried out the first activity, wherein
applying the forensic analysis to the forensic artifact
comprises parsing the ShellBag artifact to determine a
folder browsed and reconstructing a folder path for the
folder browsed,

generate in real-time, at the computer, a forensically

interpreted activity for the event, the forensically inter-
preted activity comprising a human-understandable
description of the folder path for the folder browsed,
the first activity and the user who carried out the first
activity with respect to the forensic artifact; and

store the forensically interpreted activity in a digital

forensics store for the computer.

2. The computer program product of claim 1, wherein the
set of computer-readable instructions comprises instructions
executable to implement a filter driver, the filter driver
comprising the forensic artifact filter.

US 11,500,847 B2

15

3. The computer program product of claim 1, wherein the
set of computer-readable instructions comprises:

a set of code libraries, each code library in the set of code
libraries corresponding to a different type of forensic
artifact; and

code executable to map the event information to a first
code library from the set of code libraries, the first code
library executable to perform said applying the forensic
analysis to the forensic artifact to generate the result,
said generating the forensically interpreted activity, and
said storing the forensically interpreted activity.

4. The computer program product of claim 1, wherein the
set of computer-readable instructions comprises code
executable to register a callback with the notification inter-
face of the operating system.

5. The computer program product of claim 4, wherein the
set of computer-readable instructions comprises a callback
routine for the callback, the callback routine comprising the
forensic artifact filter.

6. The computer program product of claim 1, wherein the
set of computer-readable instructions comprises instructions
executable to:

set the monitoring hook to receive registry key change
notifications, wherein the event specifies a registry key,
the registry key located at a registry path location, and
wherein evaluating the event according to the forensic
artifact definition comprises determining that the event
represents the change to the forensic artifact based on
the registry path location of the registry key.

7. The computer program product of claim 1, wherein the
set of computer-readable instructions comprises instructions
executable to:

set the monitoring hook to receive file change notifica-
tions, wherein the event specifies a file, the file located
at a file path location, wherein evaluating the event
according to the forensic artifact definition comprises
determining that the event represents the change to the
forensic artifact based on the file path location of the
file.

8. The computer program product of claim 1, wherein the
set of computer-readable instructions comprises a template
activity description and wherein said generating the foren-
sically interpreted activity for the event comprises inserting
the forensic metadata and the result into the template activity
description.

9. The computer program product of claim 1, wherein the
forensic artifact filter outputs the forensic artifact filter
output as an out-of-band output.

10. The computer program product of claim 1, wherein
the change to the forensic artifact comprises at least one of
a creation of the forensic artifact, an update to the forensic
artifact or a deletion of the forensic artifact.

11. A method for real-time digital forensic instrumenta-
tion comprising:

on a computer comprising a processor and an operating
system with a notification interface, using a monitoring
hook into the notification interface of the operating
system to receive an event;

the processor applying a forensic artifact filter to the
event, wherein applying the forensic artifact filter com-
prises:
evaluating the event according to a forensic artifact

definition to determine if the event represents a
change to a forensic artifact, including determining
that a registry path included in the event corresponds
to a ShellBag artifact; and

10

15

20

25

30

35

40

45

50

55

60

65

16

based on a determination that the event represents the
change to the forensic artifact, generating a forensic
artifact filter output that includes event information
for the event, the event information including an
indication of the forensic artifact; and

based on the forensic artifact filter output, the processor
collecting forensic metadata associated with the foren-
sic artifact but not included in the forensic artifact filter
output and applying a forensic analysis to the forensic
artifact to generate a result that indicates a first activity
with respect to the forensic artifact, the forensic meta-
data including a user identifier for a user of the com-
puter who carried out the first activity, wherein apply-
ing the forensic analysis to the forensic artifact
comprises parsing the ShellBag artifact to determine a
folder browsed and reconstructing a folder path for the
folder browsed,

the processor generating, in real-time, a forensically inter-
preted activity for the event, the forensically interpreted
activity comprising a human-understandable descrip-
tion of the folder path for the folder browsed, the first
activity, and the user who carried out the first activity;
and

the processor storing the forensically interpreted activity
in a digital forensics store for the computer.

12. The method of claim 11, wherein set of computer-
readable instructions comprises instructions executable to
implement a filter driver, the filter driver comprising the
forensic artifact filter.

13. The method of claim 11, further comprising:

providing a set of code libraries, each code library in the
set of code libraries corresponding to a different type of
forensic artifact; and

the processor mapping the event information to a first
code library from the set of code libraries and executing
the first code library to perform said applying the
forensic analysis to the forensic artifact to generate the
result, said generating the forensically interpreted
activity and storing the forensically interpreted activity.

14. The method of claim 11, comprising registering a
callback with the notification interface of the operating
system.

15. The method of claim 14, comprising providing a
callback routine for the callback, the callback routine com-
prising the forensic artifact filter.

16. The method of claim 11, wherein:

receiving the event using the monitoring hook comprises
receiving a registry key change notification for a reg-
istry key at a registry path location; and

evaluating the event according to the forensic artifact
definition comprises determining that the registry key is
the forensic artifact based on the registry path location
of the registry key.

17. The method of claim 11, wherein generating the
forensically interpreted activity for the event comprises
inserting the forensic metadata and the result into a template
activity description.

18. The method of claim 11, wherein the change to the
forensic artifact comprises at least one of a creation of the
forensic artifact, an update to the forensic artifact or a
deletion of the forensic artifact.

19. A system comprising:

a processor;

a computer-readable medium storing an operating system
having a notification interface and a set of computer-
readable instructions, the set of computer-readable
instructions executable to configure the processor with

US 11,500,847 B2

17 18
real-time forensic instrumentation, the real-time foren- path for the folder browsed, the first activity, and the
sic instrumentation comprising: user who carried out the first activity; and
a monitoring hook into the notification interface of the store the forensically interpreted activity in a digital

forensics store.

20. The method of claim 11, wherein receiving the event
using the monitoring hook comprises receiving a file change
notification, wherein the event specifies a file, and wherein
evaluating the event according to the forensic artifact defi-
nition comprises determining that the event represents the
change to the forensic artifact based on a file path location
of the file.

21. The system of claim 19, wherein the set of computer-
readable instructions comprises:

a set of code libraries, each code library in the set of code
libraries corresponding to a different type of forensic
artifact; and

code executable to map the event information to a first
code library from the set of code libraries, the first code
library executable to perform said applying the forensic
analysis to the forensic artifact to generate the result,
said generating the forensically interpreted activity, and
said storing the forensically interpreted activity.

22. The system of claim 19, wherein the set of computer-

readable instructions comprises:

a callback routine, wherein the callback routine comprises
the forensic artifact filter; and

code executable to register a callback for the callback
routine with the notification interface of the operating
system.

23. The system of claim 19, wherein the set of computer-

readable instructions comprises instructions executable to:
set the monitoring hook to receive registry key change
notifications, wherein the event specifies a registry key,
the registry key located at a registry path location, and
wherein evaluating the event according to the forensic
artifact definition comprises determining that the event
represents the change to the forensic artifact based on

the registry path location of the registry key.

operating system to receive an event;
a forensic artifact filter coupled to the monitoring hook, 3
the forensic artifact filter comprising code executable
to:
for the event received using the monitoring hook,
evaluate the event according to a forensic artifact
definition to determine if the event represents a 10
change to a forensic artifact, wherein evaluating the
event according to the forensic artifact definition to
determine if the event represents the change to the
forensic artifact comprises determining that a regis-
try path included in the event corresponds to a 15
ShellBag artifact; and

based on a determination that the event represents the
change to the forensic artifact, generate a forensic
artifact filter output that includes event information
for the event, the event information including an 20
indication of the forensic artifact; and
a forensic interpreter subsystem coupled to the forensic
artifact filter, the forensic interpreter subsystem com-
prising code executable to:
based on the forensic artifact filter output, collect 25
forensic metadata associated with the forensic arti-
fact but not included in the forensic artifact filter
output and apply a forensic analysis to the forensic
artifact to generate a result that indicates a first
activity with respect to the forensic artifact, the 30
forensic metadata including a user identifier for a
user of the operating system who carried out the first
activity, wherein applying the forensic analysis to the
forensic artifact comprises parsing the ShellBag arti-
fact to determine a folder browsed and reconstruct- 33
ing a folder path for the folder browsed;

generate a forensically interpreted activity for the
event, the forensically interpreted activity compris-
ing a human-understandable description of the folder L

