(12) STANDARD PATENT (11) Application No. AU 2008308549 B9
(19) AUSTRALIAN PATENT OFFICE

(54) Title
Solid state drive optimizer

(51) International Patent Classification(s)

GOG6F 3/06 (2006.01) GOG6F 17/30 (2006.01)
GOG6F 12/02 (2006.01) G11B 27/034 (2006.01)
(21) Application No: 2008308549 (22) Date of Filing: 2008.10.03

(87) WIPONo: WO09/046353

(30) Priority Data

(31) Number (32) Date (33) Country
60/978,086 2007.10.05 us
(43) Publication Date: 2009.04.09

(44) Accepted Journal Date: 2012.08.09
(48) Corrigenda Journal Date: 2012.10.18

(71) Applicant(s)
Condusiv Technologies Corporation

(72) Inventor(s)
Staffer, Andrew;Ramankutty, Santhosh;Jensen, Craig;Thomas, Basil

(74) Agent/ Attorney

Pizzeys, Level 2, Woden Plaza Offices Woden Town Square Woden, Canberra, ACT,
2606

(56) Related Art
EP 0 880 139 A2;
US 5,675,790 A;

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
9 April 2009 (09.04.2009)

AM‘ 0 O 00O et

(10) International Publication Number

WO 2009/046353 Al

(51) International Patent Classification:
GOGF 3/06 (2006.01) GOG6F 17/30 (2006.01)
GOG6F 12/02 (2006.01) G11B 27/034 (2006.01)

(21) International Application Number:
PCT/US2008/078823

(22) International Filing Date: 3 October 2008 (03.10.2008)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:

60/978,086 5 October 2007 (05.10.2007) US
(71) Applicant (for all designated States except US):
DISKEEPER CORPORATION [US/US]; 7590 N.

Glenoaks Blvd, Burbank, California 91504 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): THOMAS, Basil
[IN/US]; 14537 Willowgreen Lane, Sylmar, California
91342 (US). JENSEN, Craig [US/US]; 4245 Mesa Vista
Dr., La Canada, California 91011 (US). STAFFER, An-
drew [CA/US]J; 13270 Alta Vista Way, Sylmar, California
91342 (US). RAMANKUTTY, Santhosh [IN/US]; 25116
Steinbeck Ave., Stevenson Ranch, California 91381 (US).

(74) Agents: HICKMAN, Brian D. et al.; 2055 Gateway
Place, Suite 550, San Jose, California 95110 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA,
CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE,
EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID,
IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK,
LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW,
MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT,
RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TJ,
T™, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL,
NO, PL, PT, RO, SE, S, SK, TR), OAPI (BF, BJ, CF, CG,
CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— with international search report

with information concerning one or more priority claims
considered void

(54) Title: SOLID STATE DRIVE OPTIMIZER

Optimize SSD?

202 No

Yes

L4

Search SSD to identify free space
fragments as candidates for elimination
204

Yes

09/046353 A1 IR OO0 OO

Selected
Free Space Fragment
smaller than threshold
fragment size?

206

Yes

A4

Eliminate selected free space fragment

Continue
SSD Optimization?
210

End

FIG. 2

& (57) Abstract: A method for optimizing a solid state drive is described. The method involves determining whether a free space

fragment on the SSD is smaller than the threshold fragment size. If the free space fragment on the SSD is smaller than the threshold
fragment size, eliminating the free space fragment. If the free space fragment on the SSD is not smaller than the threshold fragment
size, retaining the free space fragment for storing data. Elimination of the free space fragments smaller than the threshold fragment
size results in a fewer number of free space fragments being used when writing to the SSD, allowing for improved SSD performance.

WO 2

WO 2009/046353 PCT/US2008/078823
SOLID STATE DRIVE OPTIMIZER

CLAIM OF PRIORITY

[0001] This application claims priority to the US provisional patent application serial no.
60/978,086 filed on October 5, 2007 and the US non-provisional patent application serial no.
12/244,771 filed on October 3, 2008.

INCORPORATION BY REFERENCE

[0002] This application hereby incorporates by reference, US patent application serial no.
11/546,072 filed on October 10, 2006, US patent application serial no. 11/546,514 filed on
October 10, 2006, and US patent application serial no. 11/471,466 filed on June 19, 2006.

FIELD OF THE INVENTION
[0003] The present invention relates to solid state drives in general. More specifically,

the invention relates to optimizing solid state drives.

BACKGROUND

[0004] The approaches described in this section are approaches that could be pursued, but
not necessarily approaches that have been previously conceived or pursued. Therefore,
unless otherwise indicated, it should not be assumed that any of the approaches described in
this section qualify as prior art merely by virtue of their inclusion in this section.

[0005] A solid state drive (SSD), which may also be referred to as a solid state disk, is a
storage device that stores data using volatile or non-volatile solid-state memory. Solid-state
memory is composed of electronic components that are based on semiconductors. Solid state
drives may include different types of memory elements including, but not limited to, Static
Random Access Memory (SRAM), Dynamic Random Access Memory (DRAM), Parameter
Random Access Memory (PRAM), FLASH memory (e.g., NOR FLASH memory, and
NAND FLASH memory), or Phase Change Memory (PCM).

[0006] Since SSDs do not have any moving parts, SSDs offer significantly reduced risk
of mechanical failures. Fewer mechanical failures results in improved system reliability.
Furthermore, due to the lack of moving parts, SSDs provide lower read and write seek times
as compared to standard rotating-medium hard-drives. Accordingly SSDs allow for higher

sequential and random data read and write rates.

10 May 2010

2008308549

[0007] Although there are no moving parts on an SSD, there are nonetheless performance
issues as a result of device limitations and possibly free space fragments. For example, a
performance-based limitation may be the limited number of write operations a SSD can
perform in any given time period. When a SSD is writing to a multitude of small free space
fragments, a file must be fragmented into many different pieces for storage onto the SSD. As
writing to each free space fragment may require an erase operation and requires a write
operation and the number of write operations a SSD can perform can be limited, a multitude
of small free space fragments may result in a failure to utilize the maximum sequential write
speed of the SSD due to the limited number of write operations.

[0008] In normal computer usage, modern operating systems such as Windows™
(Windows™ is a trademark of the Microsoft Corporation, Seattle, WA) create a multitude of
free space fragments. For example, browsing the Internet could potentially create lots of
unwanted free-space fragments. The web browser creates many temporary files as it is used.
Most of the temporary files are small and have a short life time and are deleted frequently,
e.g., during browser cache cleanup, etc. However, all the temporary files are not deleted at
the same time or in the order in which they were created. This phenomenon accelerates the
creation of the free-space fragments.

[0009] Furthermore, when a newly-created file is being stored to disk, file systems
generally begin writing the newly-created file into either (a) the most recently freed free-
space fragment or (b) the first-identified free-space fragment without considering the size of
the free space fragment. If the file to be written is large and the identified free-space
fragments are small, the file is split into many fragments corresponding to the identified free-
space fragments and multiple write operations are required to store the file to the disk. In
addition to the write operations required to store the actual file, multiple write operations may
also be required to update the file system structures when the file is stored in multiple

fragments.

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] The present invention is illustrated by way of example, and not by way of
limitation, in the figures of the accompanying drawings and in which like reference numerals
refer to similar elements and in which:

[0011] Figure 1 is a block diagram illustrating a solid state drive and a solid state drive

optimizer in accordance with an embodiment.

10 May 2010

2008308549

[0012] Figure 2 is a flow diagram illustrating an embodiment for optimizing a solid state
drive.
[0013] Figure 3 is a block diagram illustrating a computer system that may be used in

implementing an embodiment of the present invention.

DETAILED DESCRIPTION
[0014] In the following description, for the purposes of explanation, numerous specific
details are set forth in order to provide a thorough understanding of the present invention. It
will be apparent, however, that the present invention may be practiced without these specific
details. In other instances, well-known structures and devices are shown in block diagram
form in order to avoid unnecessarily obscuring the present invention.
[0015] Several features are described hereafter that can each be used independently of
one another or with any combination of the other features. However, any individual feature
might not address any of the problems discussed above or might only address one of the
problems discussed above. Some of the problems discussed above might not be fully
addressed by any of the features described herein. Although headings are provided,
information related to a particular heading, but not found in the section having that heading,
may also be found elsewhere in the specification. The terms "comprising", "comprises", or
"comprise" as used herein mean "include at least" or "includes at least". The terms

"comprising", "comprises", or "comprise" as used herein are not exhaustive.

OVERVIEW
[0016] A method for optimizing a solid state drive (SSD) is provided. Writingafiletoa
SSD may require multiple erase and write operations if the free space fragments being written
to are too small for the entire file. For example, if each free space fragment on the SSD that a
file is being written to is much smaller than the size of the file, then the file may be split into
a multitude of fragments and a write operation may be required for each free space fragment
until the entire file is written to the SSD. Accordingly, the present invention optimizes the
SSD by eliminating small free space fragments by filling the free space fragments with data
or by making the free space fragments bigger so that it does not affect the write performance.
This causes the operating system to write files sequentially or at least in fewer free space

fragments that gives the best write performance.

WO 2009/046353 PCT/US2008/078823
[0017] In accordance with an embodiment, a threshold fragment size is used as the basis
for determining whether to eliminate free space fragments or retain free space fragments on
the SSD for data storage. The size of the free space fragments is compared to the threshold
fragment size. If the free space fragments are smaller than the threshold fragment size, the
free space fragments are eliminated so that the SSD does not use the free space fragments to
write fragments of a file. If the free space fragments are at least as large as the threshold
fragment size, the free space fragments are retained for data storage by the SSD. Eliminating
free space fragments smaller than the threshold fragment size results in the file being written
into a larger free space fragment(s) and accordingly requires a fewer number of free space
fragments for writing a file and a fewer number of write operations. By reducing the number
of write operations per period of time to less than or equal to the number of write operations
that can actually be performed by the SSD, the performance of the SSD is improved. The
improved performance of the SSD is not limited by the number of write operations that can
be performed since the number of write operations needed for an optimized SSD are less than
the number of write operations that can be performed. In an embodiment, the threshold
fragment size is determined based at least on the sequential write speed of the SSD and the
number of input/output (I/O) operations allowed per period of time on the SSD. For
example, the threshold fragment size may be determined at least in part by dividing the
sequential write speed of the SSD by the I/O per second of the SSD.

[0018] In an embodiment, several different threshold fragment sizes may be tested when
writing files and a threshold fragment size that corresponds to the optimal performance may
be used. Optimization of the threshold fragment size may be performed periodically or based
on a predetermined condition, e.g., occurrence of a low performance level by the SSD or a
predetermined number of free space fragments.

[0019] Although specific components are recited herein as performing the method steps,
in other embodiments agents or mechanisms acting on behalf of the specified components
may perform the method steps. Further, although the invention is discussed with respect to
components on a single system, the invention may be implemented with components
distributed over multiple systems. In addition, although the invention is discussed with
respect to a solid state drive (SSD), embodiments of the invention can be applicable to any
memory drive (e.g., a rotating disk drive).

[0020] Embodiments of the invention also include any system that includes the means for

performing the method steps described herein. Embodiments of the invention also include a

WO 2009/046353 PCT/US2008/078823
computer readable medium with instructions, which when executed, cause the method steps
described herein to be performed.

FREE SPACE FRAGMENT ELIMINATION

[0021] Free space fragments referred in a file system level are blocks of memory or
storage area that are not referenced as containing data and are available for allocation. Free
space fragments may be generated when an object stored in memory is deleted by, for
example, removing the reference to the memory space. As objects may not be deleted in the
same order they are created, free space fragments corresponding to deleted objects are created
between blocks of memory where data is stored and referenced. Writing to each free space
fragment may require an erase operation and requires a write operation. Accordingly, if free
space fragments are too small to hold a file, a file has to be fragmented and written into many
different free space fragments. The smaller the free space fragments, the greater the
fragmentation required to write a file. As the number of write operations that a drive can
perform per period of time is limited, a multitude of small free space fragments may require a
high level of file fragmentation and prevent the utilization of maximum sequential write
speed of the drive. Accordingly, in an embodiment of the invention, free space fragments
that are smaller than a specified threshold fragment size are eliminated. The elimination of
these free space fragments reduces the number of free space fragments that are written to by
the file system.

[0022] Eliminating a free space fragment may involve filling the free space fragment with
at least a portion of another file. For example, files toward the end of the disk, a rarely used
file, or temporary filler files may be used to fill the free space fragment. Filling the free
space fragment by storing at least a portion of another file eliminates the free space fragments
which can potentially affect the SSD performance. Eliminating a free space fragment may
also involve merging the free space fragment with one or more adjacent free space fragments
such that the merged free space fragment is at least as large as the threshold fragment size. In
an embodiment, a free space fragment is eliminated after a resource required to eliminate the
free space fragment complies with an idleness criteria. For example, if a utilization of the
resource is below a predetermined percentage, the idleness criteria may be met. In another
example, the idleness criteria may involve a frequency of resource usage where a
predetermined low frequency of usage meets the idleness criteria. A more detailed
description of an idleness criteria and resource based scheduling is described in patent US
patent application serial no. 11/546,514 filed on October 10, 2006, which is incorporated by

reference.

WO 2009/046353 PCT/US2008/078823

SYSTEM ARCHITECTURE
[0023] Although a specific computer architecture is described herein, other embodiments
of the invention are applicable to any architecture that can be used to optimize a solid state
drive (SSD), based on a threshold fragment size.
[0024] Figure 1 shows a SSD (100) and a SSD optimizer (125) in accordance with one or
more embodiments of the invention. As shown in Figure 1, the SSD (100) includes an
interface (105), a memory controller (110), and a solid state memory (115).
THE INTERFACE
[0025] The interface (105) generally represents any connection that can be used to
exchange data (e.g., store data or retrieve data) with the SSD (100). For example, the
interface (105) may be a connection between the SSD (100) and a motherboard for data
transfer. The interface (105) may carry data words in parallel or in bit-serial form. Examples
of the interface (105) include, but not are limited to, Advanced Technology Attachment
(ATA) (e.g., Serial Advanced Technology Attachment (SATA) and Parallel Advanced
Technology Attachment (PATA)) or Intelligent Drive Electronics (IDE) or Small Computer
System Interface (SCSI). The interface (105) may allow an external component to directly
access the solid state memory (115) or indirectly access the solid state memory (115) via
commands using the memory controller (110).
THE MEMORY CONTROLLER
[0026] In one or more embodiments, the memory controller (110) generally represents a
component which includes logic to manage the flow of data going to and from the solid state
memory (115). Although the memory controller (110) is shown as residing on the SSD (110)
itself, the memory controller (110) may reside on another component in accordance with an
embodiment. The memory controller (110) may be connected to the solid state memory
(115) via a set of multiplexers and demultiplexers or a predefined protocol (ATA) in order to
reduce the number of wires and or complexity needed to connect the memory controller (110)
to the solid state memory (115).
[0027] In an embodiment, the memory controller (110) may have control of where data is
stored on the solid state memory (115). For example, the memory controller (110) may
include logic to determine which portions of the solid state memory (115) are available for
data storage, and which portions of the solid state memory (115) are not available for data
storage.
[0028] The memory controller (110) may receive commands to write, retrieve, or delete

blocks of data from one or more applications through the file system that are executing on a

WO 2009/046353 PCT/US2008/078823
device connected to the SSD. The memory controller (110) may also receive commands
from the solid state drive optimizer (125) through file system or operating system, shown as
connected to the SSD (100).

THE SOLID STATE MEMORY

[0029] In one or more embodiments, the solid state memory (115) generally represents a
data storage component that includes logic to retain digital data. The solid state memory
(115) includes semiconductor devices that include logic and hardware to retain digital data.
For example, the solid state memory (115) may store bits in phase changing RAM, single
level cells (SLC) or multi-level cells (MLC). The threshold fragment size (120), described
above, may be computed differently based on whether the bits are being stored in SLCs or
MLCs within the solid state memory (115). Furthermore, the threshold fragment size (120)
may also be computed differently based on the number of levels in multi-level cells. The
solid state memory (115) may be implemented as Static Random Access Memory (SRAM),
Dynamic Random Access Memory (DRAM), Parameter Random Access Memory (PRAM),
FLASH memory (e.g., NOR FLASH memory, and NAND FLASH memory), Phase Change
Memory (PCM) or another type of suitable memory.

THE SOLID STATE DRIVE OPTIMIZER
[0030] In one or more embodiments, the solid state drive optimizer (125) generally
represents software and/or hardware used for optimizing the SSD (100) in order to improve
SSD performance. For example, the SSD optimizer (125) may correspond to a software
application executing on a device connected to the SSD (100). In a computer system, the
solid state optimizer (125) may be an application running concurrently with other
applications that store data on the SSD (100). In another example, the SSD optimizer (125)
may correspond to a device with logic embedded to optimize the SSD (100). Although
shown as connected to the SSD (100) in FIG. 1, the SSD optimizer (125) may also
correspond to software and/or component on the SSD (100) itself, in accordance with an
embodiment of the invention.
[0031] The SSD optimizer (125) includes logic to optimize the SSD (100) by eliminating
free space fragments that are smaller than the threshold fragment size (120) thus forcing the
operating system to write data or files sequentially, as described above. The SSD optimizer
(125) may be activated by a user, may be activated periodically, or may be activated based on
a predetermined condition(s) (e.g., predetermined fragmentation level of the SSD (100), or a
low performance level of the SSD (100)). The SSD optimizer (125) may also be activated by

a low resource usage. For example, if resources (e.g., a processor) used by the SSD

WO 2009/046353 PCT/US2008/078823
optimizer (125) in optimizing the SSD (100) have a low current utilization level, the SSD
optimizer (125) may be activated. In an embodiment, multiple conditions may be required in
combination for activation of the SSD optimizer (125) (e.g., low performance level of the
SSD (100) and low current utilization level of a resource).

[0032] In an embodiment, the SSD optimizer (125) may include logic to schedule any
tasks performed as computer micro-jobs. Computer micro-jobs are described in US patent
application serial no. 11/471,466 filed on June 19, 2006 and US patent application serial no.
11/546,072 filed on October 10, 2006, which are incorporated by reference. Accordingly,
tasks performed by the SSD optimizer (125) to optimize the SSD (100) may be performed
over time as different computer micro-jobs.

THE THRESHOLD FRAGMENT SIZE
[0033] In one or more embodiments, the threshold fragment size (120), shown as stored
on the SSD optimizer (125) corresponds to a particular free space fragment size used by the
SSD optimizer (125) in performing the above-described tasks. Specifically, free space
fragments that are smaller than the threshold fragment size (120) are eliminated by the SSD
optimizer (125) and the free space fragments that are larger than or equal to the threshold
fragment size (120) are retained for data storage by the SSD optimizer (125). Use of the
threshold fragment size (120) in eliminating free space fragments smaller than the threshold
fragment size (120) may force the file system to write a file sequentially in a single free space
fragment or multiple free space fragments within the limit of memory write IO per second
(IOPS) of the SSD, which does not affect the SSD performance based on the write 10 per
second of the SSD.
[0034] Although shown as stored on the SSD optimizer (125), the threshold fragment size
(120) may be maintained by any component (e.g., the SSD optimizer (125), the SSD (100), or
another suitable device). The threshold fragment size may be maintained by a software
application (e.g., the SSD optimizer) as a variable or may be hard wired onto a device. For
example, the threshold fragment size may be hardwired onto the SSD (100), the SSD
optimizer (125) if the SSD optimizer is implemented as a device, a system executing the SSD
optimizer (125) if the SSD optimizer is implemented as a software application running on the
system, or another suitable device. The threshold fragment size (120) may also be obtained
from a configuration area which can be controlled by a user (120).
[0035] In an embodiment, the threshold fragment size (120) is computed by the SSD
optimizer (125), the memory controller (110), a user, or by another suitable entity. In an

embodiment, the threshold fragment size (120) may be computed based on the sequential

WO 2009/046353 PCT/US2008/078823

write speed or the number of write operations the SSD (100) can perform per period of time.
One of the step(s) of computing the threshold fragment size may involve dividing the
sequential write speed by the number of write operations that the SSD can perform in a given
period of time. For example, if the sequential write speed is 40MB/second and the number of
write operations that can be performed by the SSD (100) is 10/second, then the threshold
fragment size is computed by dividing 40 by 10 to equal 4MB. Accordingly, the threshold
fragment size may be set to 4MB. Furthermore, computing the threshold fragment size may
also involve additional calculations (e.g., multiplication by a constant 3 or 4 to result in
12MB or 16MB) to account for the differences between actual performance versus theoretical
performance or speed.
[0036] The threshold fragment size (120) for the SSD may be determined dynamically or
may be a static value used by the SSD optimizer (125). For example, a hardwired threshold
fragment size (120) may be used permanently for optimizing the SSD (100). Alternatively,
each time the SSD (100) is optimized or periodically, the threshold fragment size (120) may
be recomputed or obtained.
[0037] In an embodiment, different threshold fragment sizes may be used to determine an
optimal performance. For example, varying values of the threshold fragment size may be
used for optimizing the SSD (100) by eliminating free space fragments on the SSD (100).
Thereafter performance may be measured for a period of time subsequent to optimizing the
SSD (100). The threshold fragment size that results in the best performance subsequent to
optimization may be set as the threshold fragment size (120).
[0038] In one embodiment, once a threshold fragment size (120) is set, retesting of the
threshold fragments size (120) may be performed periodically. During retesting, a value
higher than and a value lower than the threshold fragment size (120) may be temporarily used
for optimization of the SSD (100). After using the higher and/or lower threshold fragment
size, the subsequent performance of the SSD (100) may be evaluated to determine if the
threshold fragment size (120) should be increased, decreased, or retained without
modification.

OPTIMIZING THE SOLID STATE DRIVE
[0039] Figure 2 shows a flowchart for optimizing a solid state drive (SSD) using a
threshold fragment size, in accordance with one or more embodiments. One or more of the
steps described below may be omitted, repeated, and/or performed in a different order.
Accordingly, the specific arrangement of steps shown in Figure 2 should not be construed as

limiting the scope of the invention.

WO 2009/046353 PCT/US2008/078823

[0040] In an embodiment, one or more of the steps described below to optimize the solid
state drive may be preceded by resource availability check. The resource availability check
may be made to ensure that the resources needed to perform the step are available to meet
idleness criteria, as described above. Furthermore, one or more of the steps described below
may be scheduled as computer micro-jobs, as described above.

[0041] Initially, a decision is made whether to optimize the SSD (Step 202). The
decision to optimize the SSD may be based on one or more conditions. For example, the
decision to optimize the SSD may be based on an occurrence of low SSD performance, an
occurrence of a predetermined level of fragmentation (e.g., a number of free space fragments,
number of free space fragments smaller than the threshold fragment size, etc.), a resource
availability, a time based scheduler (e.g., periodic optimization), file fragmentation level, or
based on any other suitable criteria. SSD Optimizer may also defragment the files if the files
get too fragmented, this makes the file access more efficient and reliable.

[0042] Next the SSD is searched to identify free space fragments as candidates for
elimination (Step 204). Searching the free space may involve searching the file system or
operating system APIs or searching for storage addresses that are not referenced by file
system or that are indexed as storage blocks locations available for allocation. The file
system may be searched in sequential order, order of storage de-allocation, or in any other
suitable order. In an embodiment, free space fragments may be identified as candidates for
elimination in order from smallest to largest so that the smallest free space fragments may be
eliminated first.

[0043] Next, a determination is made whether the free space fragment that is identified as
a candidate for deletion is smaller than the threshold fragment size (Step 206). If the
identified free space fragment is not smaller than the threshold fragment size, then the
identified free space fragment is suitable for writing a file and accordingly, the identified free
space fragment is retained for writing. However, if the free space fragment is smaller than
the threshold fragment size, then the identified free space fragment is not suitable for data
storage and accordingly, is eliminated, as described above (Step 208). The identified free
space fragment may also be eliminated by merging the free space fragment with one or more
adjacent free space fragments to create a merged free space fragment, where the merged free
space fragment is at least as large as the threshold fragment size.

[0044] Next, a determination may be made whether to continue optimization of the SSD
(Step 210). A decision may be made to continue optimization until all of the SSD has been

searched for free space fragments smaller than the threshold fragment size. In another

10

WO 2009/046353 PCT/US2008/078823
example, the SSD may be optimized as long as resources are highly available (e.g., during
off-peak hours). The SSD may also be optimized based on a timer where a block of time is
devoted to optimizing the SSD.

[0045] Although the above steps are described in sequential order for eliminating each
free space fragment smaller than the threshold fragment size, embodiments of the invention
include any suitable manner of performing the tasks described above. For example, all free
space fragments may be identified first as candidates for elimination. Thereafter, each of the
identified free space fragments may be compared to the threshold fragment size and
eliminated if smaller than the threshold fragment size.

HARDWARE OVERVIEW
[0046] Figure 3 is a block diagram that illustrates a computer system 300 upon which an
embodiment of the invention may be implemented. Computer system 300 includes a bus 302
or other communication mechanism for communicating information, and a processor 304
coupled with bus 302 for processing information. Computer system 300 also includes a main
memory 306, such as a random access memory (RAM) or other dynamic storage device,
coupled to bus 302 for storing information and instructions to be executed by processor 304.
Main memory 306 also may be used for storing temporary variables or other intermediate
information during execution of instructions to be executed by processor 304. Computer
system 300 further includes a read only memory (ROM) 308 or other static storage device
coupled to bus 302 for storing static information and instructions for processor 304. A
storage device 310, such as a magnetic disk or optical disk, is provided and coupled to bus
302 for storing information and instructions.
[0047] Computer system 300 may be coupled via bus 302 to a display 312, such as a
cathode ray tube (CRT), for displaying information to a computer user. An input device 314,
including alphanumeric and other keys, is coupled to bus 302 for communicating information
and command selections to processor 304. Another type of user input device is cursor control
316, such as a mouse, a trackball, or cursor direction keys for communicating direction
information and command selections to processor 304 and for controlling cursor movement
on display 312. This input device typically has two degrees of freedom in two axes, a first
axis (e.g., X) and a second axis (e.g., y), that allows the device to specify positions in a plane.
[0048] The invention is related to the use of computer system 300 for implementing the
techniques described herein. According to one embodiment of the invention, those
techniques are performed by computer system 300 in response to processor 304 executing

one or more sequences of one or more instructions contained in main memory 306. Such

11

WO 2009/046353 PCT/US2008/078823
instructions may be read into main memory 306 from another machine-readable medium,
such as storage device 310. Execution of the sequences of instructions contained in main
memory 306 causes processor 304 to perform the process steps described herein. In
alternative embodiments, hard-wired circuitry may be used in place of or in combination with
software instructions to implement the invention. Thus, embodiments of the invention are
not limited to any specific combination of hardware circuitry and software.

[0049] The term “machine-readable medium” as used herein refers to any medium that
participates in providing data that causes a machine to operation in a specific fashion. In an
embodiment implemented using computer system 300, various machine-readable media are
involved, for example, in providing instructions to processor 304 for execution. Such a
medium may take many forms, including but not limited to storage media and transmission
media. Storage media includes both non-volatile media and volatile media. Non-volatile
media includes, for example, optical or magnetic disks, such as storage device 310. Volatile
media includes dynamic memory, such as main memory 306. Transmission media includes
coaxial cables, copper wire and fiber optics, including the wires that comprise bus 302.
Transmission media can also take the form of acoustic or light waves, such as those generated
during radio-wave and infra-red data communications. All such media must be tangible to
enable the instructions carried by the media to be detected by a physical mechanism that
reads the instructions into a machine.

[0050] Common forms of machine-readable media include, for example, a floppy disk, a
flexible disk, hard disk, magnetic tape, or any other magnetic medium, a CD-ROM, any other
optical medium, punchcards, papertape, any other physical medium with patterns of holes, a
RAM, a PROM, and EPROM, a FLASH-EPROM, any other memory chip or cartridge, a
carrier wave as described hereinafter, or any other medium from which a computer can read.
[0051] Various forms of machine-readable media may be involved in carrying one or
more sequences of one or more instructions to processor 304 for execution. For example, the
instructions may initially be carried on a magnetic disk of a remote computer. The remote
computer can load the instructions into its dynamic memory and send the instructions over a
telephone line using a modem. A modem local to computer system 300 can receive the data
on the telephone line and use an infra-red transmitter to convert the data to an infra-red
signal. An infra-red detector can receive the data carried in the infra-red signal and
appropriate circuitry can place the data on bus 302. Bus 302 carries the data to main memory

306, from which processor 304 retrieves and executes the instructions. The instructions

12

WO 2009/046353 PCT/US2008/078823
received by main memory 306 may optionally be stored on storage device 310 either before
or after execution by processor 304.

[0052] Computer system 300 also includes a communication interface 318 coupled to bus
302. Communication interface 318 provides a two-way data communication coupling to a
network link 320 that is connected to a local network 322. For example, communication
interface 318 may be an integrated services digital network (ISDN) card or a modem to
provide a data communication connection to a corresponding type of telephone line. As
another example, communication interface 318 may be a local area network (LAN) card to
provide a data communication connection to a compatible LAN. Wireless links may also be
implemented. In any such implementation, communication interface 318 sends and receives
electrical, electromagnetic or optical signals that carry digital data streams representing
various types of information.
[0053] Network link 320 typically provides data communication through one or more
networks to other data devices. For example, network link 320 may provide a connection
through local network 322 to a host computer 324 or to data equipment operated by an
Internet Service Provider (ISP) 326. ISP 326 in turn provides data communication services
through the world wide packet data communication network now commonly referred to as
the “Internet” 328. Local network 322 and Internet 328 both use electrical, electromagnetic
or optical signals that carry digital data streams. The signals through the various networks
and the signals on network link 320 and through communication interface 318, which carry
the digital data to and from computer system 300, are exemplary forms of carrier waves
transporting the information.
[0054] Computer system 300 can send messages and receive data, including program
code, through the network(s), network link 320 and communication interface 318. In the
Internet example, a server 330 might transmit a requested code for an application program
through Internet 328, ISP 326, local network 322 and communication interface 318.
[0055] The received code may be executed by processor 304 as it is received, and/or
stored in storage device 310, or other non-volatile storage for later execution. In this manner,
computer system 300 may obtain application code in the form of a carrier wave.
EXTENSIONS AND ALTERNATIVES
[0056] In the foregoing specification, embodiments of the invention have been described
with reference to numerous specific details that may vary from implementation to
implementation. Thus, the sole and exclusive indicator of what is the invention, and is

intended by the applicants to be the invention, is the set of claims that issue from this

13

WO 2009/046353 PCT/US2008/078823
application, in the specific form in which such claims issue, including any subsequent
correction. Any definitions expressly set forth herein for terms contained in such claims shall
govern the meaning of such terms as used in the claims. Hence, no limitation, element,
property, feature, advantage or attribute that is not expressly recited in a claim should limit
the scope of such claim in any way. The specification and drawings are, accordingly, to be

regarded in an illustrative rather than a restrictive sense.

14

2008308549 24 May 2012

CLAIMS

1. A method comprising:

obtaining a threshold fragment size that is based on at least one or more of a
sequential write speed of a solid state drive (SSD) or a number of write
operations that the SSD can perform in a particular period of time;

determining whether a free space fragment on the SSD is smaller than the
threshold fragment size;

if the free space fragment on the SSD is smaller than the threshold fragment size,
eliminating the free space fragment; and

if the free space fragment on the SSD is not smaller than the threshold fragment

size, retaining the free space fragment for storing data.

2. The method of Claim 1, wherein the threshold fragment size is based on at least the

sequential write speed of the SSD.

3. The method of Claim 1 or 2, wherein obtaining the threshold fragment size comprises
dividing the sequential write speed of the SSD by the number of write operations that

the SSD can perform in the particular period of time.

4. The method of any one of Claims 1 to 3, wherein eliminating the free space fragment
comprises:
determining when utilization of one or more resources required to eliminate the
free space fragment complies with an idleness criteria; and
responsive to the utilization of the one or more resources complying with the

idleness criteria, eliminating the free space fragment.

5. The method of any one of Claims 1 to 4, wherein eliminating the free space fragment

COmprises:

filling the free space fragment with at least a portion of a file.

6. The method of Claim 5, wherein the file is:
a temporary filler file; or

ararely used file.

1<

2008308549 24 May 2012

7. The method of any one of Claims 1 to 6, wherein the threshold fragment size is based
on at least the number of write operations that the SSD can perform in a particular

period of time.

8. The method of any one of Claims 1 to 7, wherein the threshold fragment size is

obtained by:
receiving the threshold fragment size from a user;

obtaining the threshold fragment size from a hard wired element within the SSD;

or

testing various values for the threshold fragment size and selecting the threshold

fragment size resulting in optimal performance.

9. The method of any of Claims 1 to 8, wherein eliminating the free space fragment
comprises merging the free space fragment with one or more adjacent free space

fragments such that the merged free space fragment is at least as large as the threshold

fragment size.

10. The method of any of Claims 1 to 9, further comprising, retesting the threshold

fragment size by:

temporarily using a value higher than the threshold fragment size for optimization of

the SSD;

temporarily using a value lower than the threshold fragment size for optimization of

the SSD; and

selecting a new threshold fragment size, from the value higher than the threshold
fragment size and the value lower than the threshold fragment size, based on

performance of the SSD during the retesting.

11. A solid state drive (SSD) optimizer comprising means for performing a method as

recited in any one of Claims 1 to 10.

1£

-

12. A computer readable storage medium comprising one or more sequences of
instructions which, when executed by one or more processors, cause the processors to

perform the method recited in any one of Claims 1 to 10.

13. A method substantially as hereinbefore described with reference to the accompanying

drawings.

2008308549 24 May 2012

PCT/US2008/078823

WO 2009/046353

E

SIT
Kiows|y 813 pIjos

00t
9ANQ 21€lS PIoS

0t
J19jj04u0) Aloway

ol
a0elaU|

(14}
921G Juswbeiq pjoysaly

4%
Jaziundo 8AuQ Sie)S pIoS

1/3

PCT/US2008/078823

WO 2009/046353

pu3

01¢

ON ¢uoneziundo ass

¢ Ol

anunuo?

80¢
Juswbely 8oeds 8a.) payos|as sjeulwi|3

A

SaA

90¢
¢,92IS Juawbe.y
PIOYSaIY} UBY) Jj[ewS
Juswbel{ adedg aal4
Pajo9les

SaA

$0¢
uoljeulwi(e 1oy sajepipued se sjuswbely
aoeds 8. Ajnuap! 0} SS yosess

)

S9A

20¢
¢ass 8ziwndo

ON

2/3

PCT/US2008/078823

WO 2009/046353

1SOH

"
TOHLNOD

d0SdNd

|
- 00¢
, 81¢
, JOV44ILNI ¥0¢
, NOILYOINNWINOD ¥0SS3I00Yd
|
|
f
|
|
9¢¢ ,
| 20¢
| SNg
dsl ,
|
f
LINYILNI |
|
-0 80¢ 908
8ce ot ! 30IA3d AYOWIW
|
JOVH0LS
NIANIS , NOY NIVIN

v 253
30IA3d LNdNI

B L2
AY1dSId

B E

3/3

