
(12) STANDARD PATENT (11) Application No. AU 2008308549 B9
(19) AUSTRALIAN PATENT OFFICE

(54) Title
Solid state drive optimizer

(51) International Patent Classification(s)
G06F3/06 (2006.01) G06F 17/30 (2006.01)
G06F 12/02 (2006.01) G11B 27/034 (2006.01)

(21) Application No: 2008308549 (22) Date of Filing: 2008.10.03

(87) WIPO No: WO09/046353

(30) Priority Data

(31) Number (32) Date (33) Country
60/978,086 2007.10.05 US

(43) Publication Date: 2009.04.09
(44) Accepted Journal Date: 2012.08.09
(48) Corrigenda Journal Date: 2012.10.18

(71) Applicant(s)
Condusiv Technologies Corporation

(72) Inventor(s)
Staffer, Andrew;Ramankutty, Santhosh;Jensen, Craig;Thomas, Basil

(74) Agent / Attorney
Pizzeys, Level 2, Woden Plaza Offices Woden Town Square Woden, Canberra, ACT, 
2606

(56) Related Art
EPO 880 139 A2;
US 5,675,790 A;



(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date 
9 April 2009 (09.04.2009) PCT (10) International Publication Number

WO 2009/046353 Al
(51) International Patent Classification:

G06F 3/06 (2006.01) G06F17/30 (2006.01)
G06F12/02 (2006.01) GUB 27/034 (2006.01)

(2f) International Application Number:
PCT/US2008/078823

(22) International Filing Date: 3 October 2008 (03.10.2008)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/978,086 5 October 2007 (05.10.2007) US

(71) Applicant (for all designated States except US)·. 
DISKEEPER CORPORATION [US/US]; 7590 N. 
Glenoaks Blvd, Burbank, California 91504 (US).

(72) Inventors; and
(75) Inventors/Applicants (for US only)·. THOMAS, Basil 

[IN/US]; 14537 Willowgreen Lane, Sylmar, California 
91342 (US). JENSEN, Craig [US/US]; 4245 Mesa Vista 
Dr., La Canada, California 91011 (US). STAFFER, An­
drew [CA/US]; 13270 Alta Vista Way, Sylmar, California 
91342 (US). RAMANKUTTY, Santhosh [IN/US]; 25116 
Steinbeck Ave., Stevenson Ranch, California 91381 (US).

(74) Agents: HICKMAN, Brian D. et al.; 2055 Gateway 
Place, Suite 550, San Jose, California 95110 (US).

(8f) Designated States (unless otherwise indicated, for every 
kind of national protection available)·. AE, AG, AL, AM, 
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA,
CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, 
EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, 
IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, 
LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW,
MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, 
RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TJ, 
TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, 
ZW.

(84) Designated States (unless otherwise indicated, for every 
kind of regional protection available)·. ARIPO (BW, GH, 
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, 
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), 
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, 
FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL,
NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG,
CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
— with international search report
— with information concerning one or more priority claims 

considered void

(54) Title: SOLID STATE DRIVE OPTIMIZER

w
o 

20
09

/0
46

35
3 a

i llll
lll
lll
lll
lll
lll
lll
lll
lll
lll
lll
lll
lll
lll̂

FIG.2

(57) Abstract: A method for optimizing a solid state drive is described. The method involves determining whether a free space
fragment on the SSD is smaller than the threshold fragment size. If the free space fragment on the SSD is smaller than the threshold
fragment size, eliminating the free space fragment. If the free space fragment on the SSD is not smaller than the threshold fragment
size, retaining the free space fragment for storing data. Elimination of the free space fragments smaller than the threshold fragment
size results in a fewer number of free space fragments being used when writing to the SSD, allowing for improved SSD performance.



WO 2009/046353 PCT/US2008/078823

SOLID STATE DRIVE OPTIMIZER

CLAIM OF PRIORITY

[0001] This application claims priority to the US provisional patent application serial no. 

60/978,086 filed on October 5, 2007 and the US non-provisional patent application serial no. 

12/244,771 filed on October 3, 2008.

INCORPORATION BY REFERENCE
[0002] This application hereby incorporates by reference, US patent application serial no. 

11/546,072 filed on October 10, 2006, US patent application serial no. 11/546,514 filed on 

October 10, 2006, and US patent application serial no. 11/471,466 filed on June 19, 2006.

FIELD OF THE INVENTION
[0003] The present invention relates to solid state drives in general. More specifically, 

the invention relates to optimizing solid state drives.

BACKGROUND

[0004] The approaches described in this section are approaches that could be pursued, but 

not necessarily approaches that have been previously conceived or pursued. Therefore, 

unless otherwise indicated, it should not be assumed that any of the approaches described in 

this section qualify as prior art merely by virtue of their inclusion in this section.

[0005] A solid state drive (SSD), which may also be referred to as a solid state disk, is a 

storage device that stores data using volatile or non-volatile solid-state memory. Solid-state 

memory is composed of electronic components that are based on semiconductors. Solid state 

drives may include different types of memory elements including, but not limited to, Static 

Random Access Memory (SRAM), Dynamic Random Access Memory (DRAM), Parameter 

Random Access Memory (PRAM), FLASH memory (e.g., NOR FLASH memory, and 

NAND FLASH memory), or Phase Change Memory (PCM).

[0006] Since SSDs do not have any moving parts, SSDs offer significantly reduced risk 

of mechanical failures. Fewer mechanical failures results in improved system reliability. 

Furthermore, due to the lack of moving parts, SSDs provide lower read and write seek times 

as compared to standard rotating-medium hard-drives. Accordingly SSDs allow for higher 

sequential and random data read and write rates.

1



20
08

30
85

49
 

10
 M

ay
 2

01
0 [0007] Although there are no moving parts on an SSD, there are nonetheless performance

issues as a result of device limitations and possibly free space fragments. For example, a 

performance-based limitation may be the limited number of write operations a SSD can 

perform in any given time period. When a SSD is writing to a multitude of small free space 

fragments, a file must be fragmented into many different pieces for storage onto the SSD. As 

writing to each free space fragment may require an erase operation and requires a write 

operation and the number of write operations a SSD can perform can be limited, a multitude 

of small free space fragments may result in a failure to utilize the maximum sequential write 

speed of the SSD due to the limited number of write operations.

[0008] In normal computer usage, modem operating systems such as Windows™ 

(Windows™ is a trademark of the Microsoft Corporation, Seattle, WA) create a multitude of 

free space fragments. For example, browsing the Internet could potentially create lots of 

unwanted free-space fragments. The web browser creates many temporary files as it is used. 

Most of the temporary files are small and have a short life time and are deleted frequently, 

e.g., during browser cache cleanup, etc. However, all the temporary files are not deleted at 

the same time or in the order in which they were created. This phenomenon accelerates the 

creation of the free-space fragments.

[0009] Furthermore, when a newly-created file is being stored to disk, file systems 

generally begin writing the newly-created file into either (a) the most recently freed free- 

space fragment or (b) the first-identified free-space fragment without considering the size of 

the free space fragment. If the file to be written is large and the identified free-space 

fragments are small, the file is split into many fragments corresponding to the identified free- 

space fragments and multiple write operations are required to store the file to the disk. In 

addition to the write operations required to store the actual file, multiple write operations may 

also be required to update the file system structures when the file is stored in multiple 

fragments.

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] The present invention is illustrated by way of example, and not by way of

limitation, in the figures of the accompanying drawings and in which like reference numerals

refer to similar elements and in which:

[0011] Figure 1 is a block diagram illustrating a solid state drive and a solid state drive

optimizer in accordance with an embodiment.

2



20
08

30
85

49
 

10
 M

ay
 2

01
0 [0012] Figure 2 is a flow diagram illustrating an embodiment for optimizing a solid state

drive.

[0013] Figure 3 is a block diagram illustrating a computer system that may be used in 

implementing an embodiment of the present invention.

DETAIFED DESCRIPTION

[0014] In the following description, for the purposes of explanation, numerous specific 

details are set forth in order to provide a thorough understanding of the present invention. It 

will be apparent, however, that the present invention may be practiced without these specific 

details. In other instances, well-known structures and devices are shown in block diagram 

form in order to avoid unnecessarily obscuring the present invention.

[0015] Several features are described hereafter that can each be used independently of 

one another or with any combination of the other features. However, any individual feature 

might not address any of the problems discussed above or might only address one of the 

problems discussed above. Some of the problems discussed above might not be folly 

addressed by any of the features described herein. Although headings are provided, 

information related to a particular heading, but not found in the section having that heading, 

may also be found elsewhere in the specification. The terms "comprising", "comprises", or 

"comprise" as used herein mean "include at least" or "includes at least". The terms 

"comprising", "comprises", or "comprise" as used herein are not exhaustive.

OVERVIEW

[0016] A method for optimizing a solid state drive (SSD) is provided. Writing a file to a 

SSD may require multiple erase and write operations if the free space fragments being written 

to are too small for the entire file. For example, if each free space fragment on the SSD that a 

file is being written to is much smaller than the size of the file, then the file may be split into 

a multitude of fragments and a write operation may be required for each free space fragment 

until the entire file is written to the SSD. Accordingly, the present invention optimizes the 

SSD by eliminating small free space fragments by filling the free space fragments with data 

or by making the free space fragments bigger so that it does not affect the write performance. 

This causes the operating system to write files sequentially or at least in fewer free space 

fragments that gives the best write performance.

3



WO 2009/046353 PCT/US2008/078823

[0017] In accordance with an embodiment, a threshold fragment size is used as the basis 

for determining whether to eliminate free space fragments or retain free space fragments on 

the SSD for data storage. The size of the free space fragments is compared to the threshold 

fragment size. If the free space fragments are smaller than the threshold fragment size, the 

free space fragments are eliminated so that the SSD does not use the free space fragments to 

write fragments of a file. If the free space fragments are at least as large as the threshold 

fragment size, the free space fragments are retained for data storage by the SSD. Eliminating 

free space fragments smaller than the threshold fragment size results in the file being written 

into a larger free space fragment(s) and accordingly requires a fewer number of free space 

fragments for writing a file and a fewer number of write operations. By reducing the number 

of write operations per period of time to less than or equal to the number of write operations 

that can actually be performed by the SSD, the performance of the SSD is improved. The 

improved performance of the SSD is not limited by the number of write operations that can 

be performed since the number of write operations needed for an optimized SSD are less than 

the number of write operations that can be performed. In an embodiment, the threshold 

fragment size is determined based at least on the sequential write speed of the SSD and the 

number of input/output (I/O) operations allowed per period of time on the SSD. For 

example, the threshold fragment size may be determined at least in part by dividing the 

sequential write speed of the SSD by the I/O per second of the SSD.

[0018] In an embodiment, several different threshold fragment sizes may be tested when 

writing files and a threshold fragment size that corresponds to the optimal performance may 

be used. Optimization of the threshold fragment size may be performed periodically or based 

on a predetermined condition, e.g., occurrence of a low performance level by the SSD or a 

predetermined number of free space fragments.

[0019] Although specific components are recited herein as performing the method steps, 

in other embodiments agents or mechanisms acting on behalf of the specified components 

may perform the method steps. Further, although the invention is discussed with respect to 

components on a single system, the invention may be implemented with components 

distributed over multiple systems. In addition, although the invention is discussed with 

respect to a solid state drive (SSD), embodiments of the invention can be applicable to any 

memory drive (e.g., a rotating disk drive).

[0020] Embodiments of the invention also include any system that includes the means for

performing the method steps described herein. Embodiments of the invention also include a

4



WO 2009/046353 PCT/US2008/078823

computer readable medium with instructions, which when executed, cause the method steps

described herein to be performed.

FREE SPACE FRAGMENT ELIMINATION

[0021] Free space fragments referred in a file system level are blocks of memory or 

storage area that are not referenced as containing data and are available for allocation. Free 

space fragments may be generated when an object stored in memory is deleted by, for 

example, removing the reference to the memory space. As objects may not be deleted in the 

same order they are created, free space fragments corresponding to deleted objects are created 

between blocks of memory where data is stored and referenced. Writing to each free space 

fragment may require an erase operation and requires a write operation. Accordingly, if free 

space fragments are too small to hold a file, a file has to be fragmented and written into many 

different free space fragments. The smaller the free space fragments, the greater the 

fragmentation required to write a file. As the number of write operations that a drive can 

perform per period of time is limited, a multitude of small free space fragments may require a 

high level of file fragmentation and prevent the utilization of maximum sequential write 

speed of the drive. Accordingly, in an embodiment of the invention, free space fragments 

that are smaller than a specified threshold fragment size are eliminated. The elimination of 

these free space fragments reduces the number of free space fragments that are written to by 

the file system.

[0022] Eliminating a free space fragment may involve filling the free space fragment with 

at least a portion of another file. For example, files toward the end of the disk, a rarely used 

file, or temporary filler files may be used to fill the free space fragment. Filling the free 

space fragment by storing at least a portion of another file eliminates the free space fragments 

which can potentially affect the SSD performance. Eliminating a free space fragment may 

also involve merging the free space fragment with one or more adjacent free space fragments 

such that the merged free space fragment is at least as large as the threshold fragment size. In 

an embodiment, a free space fragment is eliminated after a resource required to eliminate the 

free space fragment complies with an idleness criteria. For example, if a utilization of the 

resource is below a predetermined percentage, the idleness criteria may be met. In another 

example, the idleness criteria may involve a frequency of resource usage where a 

predetermined low frequency of usage meets the idleness criteria. A more detailed 

description of an idleness criteria and resource based scheduling is described in patent US 

patent application serial no. 11/546,514 filed on October 10, 2006, which is incorporated by 

reference.

5



WO 2009/046353 PCT/US2008/078823

SYSTEM ARCHITECTURE

[0023] Although a specific computer architecture is described herein, other embodiments

of the invention are applicable to any architecture that can be used to optimize a solid state

drive (SSD), based on a threshold fragment size.

[0024] Figure 1 shows a SSD (100) and a SSD optimizer (125) in accordance with one or 

more embodiments of the invention. As shown in Figure 1, the SSD (100) includes an 

interface (105), a memory controller (110), and a solid state memory (115).

THE INTERFACE

[0025] The interface (105) generally represents any connection that can be used to 

exchange data (e.g., store data or retrieve data) with the SSD (100). For example, the 

interface (105) may be a connection between the SSD (100) and a motherboard for data 

transfer. The interface (105) may carry data words in parallel or in bit-serial form. Examples 

of the interface (105) include, but not are limited to, Advanced Technology Attachment 

(ATA) (e.g., Serial Advanced Technology Attachment (SATA) and Parallel Advanced 

Technology Attachment (PATA)) or Intelligent Drive Electronics (IDE) or Small Computer 

System Interface (SCSI). The interface (105) may allow an external component to directly 

access the solid state memory (115) or indirectly access the solid state memory (115) via 

commands using the memory controller (110).

THE MEMORY CONTROLLER

[0026] In one or more embodiments, the memory controller (110) generally represents a 

component which includes logic to manage the flow of data going to and from the solid state 

memory (115). Although the memory controller (110) is shown as residing on the SSD (110) 

itself, the memory controller (110) may reside on another component in accordance with an 

embodiment. The memory controller (110) may be connected to the solid state memory 

(115) via a set of multiplexers and demultiplexers or a predefined protocol (ATA) in order to 

reduce the number of wires and or complexity needed to connect the memory controller (110) 

to the solid state memory (115).

[0027] In an embodiment, the memory controller (110) may have control of where data is 

stored on the solid state memory (115). For example, the memory controller (110) may 

include logic to determine which portions of the solid state memory (115) are available for 

data storage, and which portions of the solid state memory (115) are not available for data 

storage.

[0028] The memory controller (110) may receive commands to write, retrieve, or delete

blocks of data from one or more applications through the file system that are executing on a

6



WO 2009/046353 PCT/US2008/078823

device connected to the SSD. The memory controller (110) may also receive commands

from the solid state drive optimizer (125) through file system or operating system, shown as

connected to the SSD (100).

THE SOLID STATE MEMORY

[0029] In one or more embodiments, the solid state memory (115) generally represents a 

data storage component that includes logic to retain digital data. The solid state memory 

(115) includes semiconductor devices that include logic and hardware to retain digital data. 

For example, the solid state memory (115) may store bits in phase changing RAM, single 

level cells (SLC) or multi-level cells (MLC). The threshold fragment size (120), described 

above, may be computed differently based on whether the bits are being stored in SLCs or 

MLCs within the solid state memory (115). Furthermore, the threshold fragment size (120) 

may also be computed differently based on the number of levels in multi-level cells. The 

solid state memory (115) may be implemented as Static Random Access Memory (SRAM), 

Dynamic Random Access Memory (DRAM), Parameter Random Access Memory (PRAM), 

FLASH memory (e.g., NOR FLASH memory, and NAND FLASH memory), Phase Change 

Memory (PCM) or another type of suitable memory.

THE SOLID STATE DRIVE OPTIMIZER

[0030] In one or more embodiments, the solid state drive optimizer (125) generally 

represents software and/or hardware used for optimizing the SSD (100) in order to improve 

SSD performance. For example, the SSD optimizer (125) may correspond to a software 

application executing on a device connected to the SSD (100). In a computer system, the 

solid state optimizer (125) may be an application running concurrently with other 

applications that store data on the SSD (100). In another example, the SSD optimizer (125) 

may correspond to a device with logic embedded to optimize the SSD (100). Although 

shown as connected to the SSD (100) in FIG. 1, the SSD optimizer (125) may also 

correspond to software and/or component on the SSD (100) itself, in accordance with an 

embodiment of the invention.

[0031] The SSD optimizer (125) includes logic to optimize the SSD (100) by eliminating 

free space fragments that are smaller than the threshold fragment size (120) thus forcing the 

operating system to write data or files sequentially, as described above. The SSD optimizer 

(125) may be activated by a user, may be activated periodically, or may be activated based on 

a predetermined condition(s) (e.g, predetermined fragmentation level of the SSD (100), or a 

low performance level of the SSD (100)). The SSD optimizer (125) may also be activated by 

a low resource usage. For example, if resources (e.g., a processor) used by the SSD

7



WO 2009/046353 PCT/US2008/078823

optimizer (125) in optimizing the SSD (100) have a low current utilization level, the SSD

optimizer (125) may be activated. In an embodiment, multiple conditions may be required in

combination for activation of the SSD optimizer (125) (e.g., low performance level of the

SSD (100) and low current utilization level of a resource).

[0032] In an embodiment, the SSD optimizer (125) may include logic to schedule any 

tasks performed as computer micro-jobs. Computer micro-jobs are described in US patent 

application serial no. 11/471,466 filed on June 19, 2006 and US patent application serial no.

11/546,072 filed on October 10, 2006, which are incorporated by reference. Accordingly, 

tasks performed by the SSD optimizer (125) to optimize the SSD (100) may be performed 

over time as different computer micro-jobs.

THE THRESHOLD FRAGMENT SIZE

[0033] In one or more embodiments, the threshold fragment size (120), shown as stored 

on the SSD optimizer (125) corresponds to a particular free space fragment size used by the 

SSD optimizer (125) in performing the above-described tasks. Specifically, free space 

fragments that are smaller than the threshold fragment size (120) are eliminated by the SSD 

optimizer (125) and the free space fragments that are larger than or equal to the threshold 

fragment size (120) are retained for data storage by the SSD optimizer (125). Use of the 

threshold fragment size (120) in eliminating free space fragments smaller than the threshold 

fragment size (120) may force the file system to write a file sequentially in a single free space 

fragment or multiple free space fragments within the limit of memory write IO per second 

(IOPS) of the SSD, which does not affect the SSD performance based on the write IO per 

second of the SSD.

[0034] Although shown as stored on the SSD optimizer (125), the threshold fragment size 

(120) may be maintained by any component (e.g, the SSD optimizer (125), the SSD (100), or 

another suitable device). The threshold fragment size may be maintained by a software 

application (e.g., the SSD optimizer) as a variable or may be hard wired onto a device. For 

example, the threshold fragment size may be hardwired onto the SSD (100), the SSD 

optimizer (125) if the SSD optimizer is implemented as a device, a system executing the SSD 

optimizer (125) if the SSD optimizer is implemented as a software application running on the 

system, or another suitable device. The threshold fragment size (120) may also be obtained 

from a configuration area which can be controlled by a user (120).

[0035] In an embodiment, the threshold fragment size (120) is computed by the SSD 

optimizer (125), the memory controller (110), a user, or by another suitable entity. In an 

embodiment, the threshold fragment size (120) may be computed based on the sequential

8



WO 2009/046353 PCT/US2008/078823

write speed or the number of write operations the SSD (100) can perform per period of time. 

One of the step(s) of computing the threshold fragment size may involve dividing the 

sequential write speed by the number of write operations that the SSD can perform in a given 

period of time. For example, if the sequential write speed is 40MB/second and the number of 

write operations that can be performed by the SSD (100) is 10/second, then the threshold 

fragment size is computed by dividing 40 by 10 to equal 4MB. Accordingly, the threshold 

fragment size may be set to 4MB. Furthermore, computing the threshold fragment size may 

also involve additional calculations (e.g., multiplication by a constant 3 or 4 to result in 

12MB or 16MB) to account for the differences between actual performance versus theoretical 

performance or speed.

[0036] The threshold fragment size (120) for the SSD may be determined dynamically or 

may be a static value used by the SSD optimizer (125). For example, a hardwired threshold 

fragment size (120) may be used permanently for optimizing the SSD (100). Alternatively, 

each time the SSD (100) is optimized or periodically, the threshold fragment size (120) may 

be recomputed or obtained.

[0037] In an embodiment, different threshold fragment sizes may be used to determine an 

optimal performance. For example, varying values of the threshold fragment size may be 

used for optimizing the SSD (100) by eliminating free space fragments on the SSD (100). 

Thereafter performance may be measured for a period of time subsequent to optimizing the 

SSD (100). The threshold fragment size that results in the best performance subsequent to 

optimization may be set as the threshold fragment size (120).

[0038] In one embodiment, once a threshold fragment size (120) is set, retesting of the 

threshold fragments size (120) may be performed periodically. During retesting, a value 

higher than and a value lower than the threshold fragment size (120) may be temporarily used 

for optimization of the SSD (100). After using the higher and/or lower threshold fragment 

size, the subsequent performance of the SSD (100) may be evaluated to determine if the 

threshold fragment size (120) should be increased, decreased, or retained without 

modification.

OPTIMIZING THE SOLID STATE DRIVE 

[0039] Figure 2 shows a flowchart for optimizing a solid state drive (SSD) using a 

threshold fragment size, in accordance with one or more embodiments. One or more of the 

steps described below may be omitted, repeated, and/or performed in a different order. 

Accordingly, the specific arrangement of steps shown in Figure 2 should not be construed as 

limiting the scope of the invention.

9



WO 2009/046353 PCT/US2008/078823

[0040] In an embodiment, one or more of the steps described below to optimize the solid

state drive may be preceded by resource availability check. The resource availability check

may be made to ensure that the resources needed to perform the step are available to meet

idleness criteria, as described above. Furthermore, one or more of the steps described below

may be scheduled as computer micro-jobs, as described above.

[0041] Initially, a decision is made whether to optimize the SSD (Step 202). The 

decision to optimize the SSD may be based on one or more conditions. For example, the 

decision to optimize the SSD may be based on an occurrence of low SSD performance, an 

occurrence of a predetermined level of fragmentation (e.g., a number of free space fragments, 

number of free space fragments smaller than the threshold fragment size, etc.), a resource 

availability, a time based scheduler (e.g., periodic optimization), file fragmentation level, or 

based on any other suitable criteria. SSD Optimizer may also defragment the files if the files 

get too fragmented, this makes the file access more efficient and reliable.

[0042] Next the SSD is searched to identify free space fragments as candidates for 

elimination (Step 204). Searching the free space may involve searching the file system or 

operating system APIs or searching for storage addresses that are not referenced by file 

system or that are indexed as storage blocks locations available for allocation. The file 

system may be searched in sequential order, order of storage de-allocation, or in any other 

suitable order. In an embodiment, free space fragments may be identified as candidates for 

elimination in order from smallest to largest so that the smallest free space fragments may be 

eliminated first.

[0043] Next, a determination is made whether the free space fragment that is identified as 

a candidate for deletion is smaller than the threshold fragment size (Step 206). If the 

identified free space fragment is not smaller than the threshold fragment size, then the 

identified free space fragment is suitable for writing a file and accordingly, the identified free 

space fragment is retained for writing. However, if the free space fragment is smaller than 

the threshold fragment size, then the identified free space fragment is not suitable for data 

storage and accordingly, is eliminated, as described above (Step 208). The identified free 

space fragment may also be eliminated by merging the free space fragment with one or more 

adjacent free space fragments to create a merged free space fragment, where the merged free 

space fragment is at least as large as the threshold fragment size.

[0044] Next, a determination may be made whether to continue optimization of the SSD

(Step 210). A decision may be made to continue optimization until all of the SSD has been

searched for free space fragments smaller than the threshold fragment size. In another

10



WO 2009/046353 PCT/US2008/078823

example, the SSD may be optimized as long as resources are highly available (e.g., during

off-peak hours). The SSD may also be optimized based on a timer where a block of time is

devoted to optimizing the SSD.

[0045] Although the above steps are described in sequential order for eliminating each 

free space fragment smaller than the threshold fragment size, embodiments of the invention 

include any suitable manner of performing the tasks described above. For example, all free 

space fragments may be identified first as candidates for elimination. Thereafter, each of the 

identified free space fragments may be compared to the threshold fragment size and 

eliminated if smaller than the threshold fragment size.

HARDWARE OVERVIEW
[0046] Figure 3 is a block diagram that illustrates a computer system 300 upon which an 

embodiment of the invention may be implemented. Computer system 300 includes a bus 302 

or other communication mechanism for communicating information, and a processor 304 

coupled with bus 302 for processing information. Computer system 300 also includes a main 

memory 306, such as a random access memory (RAM) or other dynamic storage device, 

coupled to bus 302 for storing information and instructions to be executed by processor 304. 

Main memory 306 also may be used for storing temporary variables or other intermediate 

information during execution of instructions to be executed by processor 304. Computer 

system 300 further includes a read only memory (ROM) 308 or other static storage device 

coupled to bus 302 for storing static information and instructions for processor 304. A 

storage device 310, such as a magnetic disk or optical disk, is provided and coupled to bus 

302 for storing information and instructions.

[0047] Computer system 300 may be coupled via bus 302 to a display 312, such as a 

cathode ray tube (CRT), for displaying information to a computer user. An input device 314, 

including alphanumeric and other keys, is coupled to bus 302 for communicating information 

and command selections to processor 304. Another type of user input device is cursor control 

316, such as a mouse, a trackball, or cursor direction keys for communicating direction 

information and command selections to processor 304 and for controlling cursor movement 

on display 312. This input device typically has two degrees of freedom in two axes, a first 

axis (e.g., x) and a second axis (e.g., y), that allows the device to specify positions in a plane. 

[0048] The invention is related to the use of computer system 300 for implementing the 

techniques described herein. According to one embodiment of the invention, those 

techniques are performed by computer system 300 in response to processor 304 executing 

one or more sequences of one or more instructions contained in main memory 306. Such

11



WO 2009/046353 PCT/US2008/078823

instructions may be read into main memory 306 from another machine-readable medium, 

such as storage device 310. Execution of the sequences of instructions contained in main 

memory 306 causes processor 304 to perform the process steps described herein. In 

alternative embodiments, hard-wired circuitry may be used in place of or in combination with 

software instructions to implement the invention. Thus, embodiments of the invention are 

not limited to any specific combination of hardware circuitry and software.

[0049] The term “machine-readable medium” as used herein refers to any medium that 

participates in providing data that causes a machine to operation in a specific fashion. In an 

embodiment implemented using computer system 300, various machine-readable media are 

involved, for example, in providing instructions to processor 304 for execution. Such a 

medium may take many forms, including but not limited to storage media and transmission 

media. Storage media includes both non-volatile media and volatile media. Non-volatile 

media includes, for example, optical or magnetic disks, such as storage device 310. Volatile 

media includes dynamic memory, such as main memory 306. Transmission media includes 

coaxial cables, copper wire and fiber optics, including the wires that comprise bus 302. 

Transmission media can also take the form of acoustic or light waves, such as those generated 

during radio-wave and infra-red data communications. All such media must be tangible to 

enable the instructions carried by the media to be detected by a physical mechanism that 

reads the instructions into a machine.

[0050] Common forms of machine-readable media include, for example, a floppy disk, a 

flexible disk, hard disk, magnetic tape, or any other magnetic medium, a CD-ROM, any other 

optical medium, punchcards, papertape, any other physical medium with patterns of holes, a 

RAM, a PROM, and EPROM, a FLASH-EPROM, any other memory chip or cartridge, a 

carrier wave as described hereinafter, or any other medium from which a computer can read. 

[0051] Various forms of machine-readable media may be involved in carrying one or 

more sequences of one or more instructions to processor 304 for execution. For example, the 

instructions may initially be carried on a magnetic disk of a remote computer. The remote 

computer can load the instructions into its dynamic memory and send the instructions over a 

telephone line using a modem. A modem local to computer system 300 can receive the data 

on the telephone line and use an infra-red transmitter to convert the data to an infra-red 

signal. An infra-red detector can receive the data carried in the infra-red signal and 

appropriate circuitry can place the data on bus 302. Bus 302 carries the data to main memory 

306, from which processor 304 retrieves and executes the instructions. The instructions

12



WO 2009/046353 PCT/US2008/078823

received by main memory 306 may optionally be stored on storage device 310 either before

or after execution by processor 304.

[0052] Computer system 300 also includes a communication interface 318 coupled to bus 

302. Communication interface 318 provides a two-way data communication coupling to a 

network link 320 that is connected to a local network 322. For example, communication 

interface 318 may be an integrated services digital network (ISDN) card or a modem to 

provide a data communication connection to a corresponding type of telephone line. As 

another example, communication interface 318 may be a local area network (LAN) card to 

provide a data communication connection to a compatible LAN. Wireless links may also be 

implemented. In any such implementation, communication interface 318 sends and receives 

electrical, electromagnetic or optical signals that carry digital data streams representing 

various types of information.

[0053] Network link 320 typically provides data communication through one or more 

networks to other data devices. For example, network link 320 may provide a connection 

through local network 322 to a host computer 324 or to data equipment operated by an 

Internet Service Provider (ISP) 326. ISP 326 in turn provides data communication services 

through the world wide packet data communication network now commonly referred to as 

the “Internet” 328. Local network 322 and Internet 328 both use electrical, electromagnetic 

or optical signals that carry digital data streams. The signals through the various networks 

and the signals on network link 320 and through communication interface 318, which carry 

the digital data to and from computer system 300, are exemplary forms of carrier waves 

transporting the information.

[0054] Computer system 300 can send messages and receive data, including program 

code, through the network(s), network link 320 and communication interface 318. In the 

Internet example, a server 330 might transmit a requested code for an application program 

through Internet 328, ISP 326, local network 322 and communication interface 318.

[0055] The received code may be executed by processor 304 as it is received, and/or 

stored in storage device 310, or other non-volatile storage for later execution. In this manner, 

computer system 300 may obtain application code in the form of a carrier wave.

EXTENSIONS AND ALTERNATIVES

[0056] In the foregoing specification, embodiments of the invention have been described

with reference to numerous specific details that may vary from implementation to

implementation. Thus, the sole and exclusive indicator of what is the invention, and is

intended by the applicants to be the invention, is the set of claims that issue from this

13



WO 2009/046353 PCT/US2008/078823

application, in the specific form in which such claims issue, including any subsequent 

correction. Any definitions expressly set forth herein for terms contained in such claims shall 

govern the meaning of such terms as used in the claims. Hence, no limitation, element, 

property, feature, advantage or attribute that is not expressly recited in a claim should limit 

the scope of such claim in any way. The specification and drawings are, accordingly, to be 

regarded in an illustrative rather than a restrictive sense.

14



20
08

30
85

49
 

24
 M

ay
 2

01
2 CLAIMS

1. A method comprising:

obtaining a threshold fragment size that is based on at least one or more of a

sequential write speed of a solid state drive (SSD) or a number of write 

operations that the SSD can perform in a particular period of time;

determining whether a free space fragment on the SSD is smaller than the 

threshold fragment size;

if the free space fragment on the SSD is smaller than the threshold fragment size, 

eliminating the free space fragment; and

if the free space fragment on the SSD is not smaller than the threshold fragment 

size, retaining the free space fragment for storing data.

2. The method of Claim 1, wherein the threshold fragment size is based on at least the 

sequential write speed of the SSD.

3. The method of Claim 1 or 2, wherein obtaining the threshold fragment size comprises 

dividing the sequential write speed of the SSD by the number of write operations that 

the SSD can perform in the particular period of time.

4. The method of any one of Claims 1 to 3, wherein eliminating the free space fragment 

comprises:

determining when utilization of one or more resources required to eliminate the 

free space fragment complies with an idleness criteria; and

responsive to the utilization of the one or more resources complying with the 

idleness criteria, eliminating the free space fragment.

5. The method of any one of Claims 1 to 4, wherein eliminating the free space fragment 

comprises:

filling the free space fragment with at least a portion of a file.

6. The method of Claim 5, wherein the file is:

a temporary filler file; or 

a rarely used file.

1 c



4
t

20
08

30
85

49
 

24
 M

ay
 2

01
2 7. The method of any one of Claims 1 to 6, wherein the threshold fragment size is based 

on at least the number of write operations that the SSD can perform in a particular 

period of time.

8. The method of any one of Claims 1 to 7, wherein the threshold fragment size is 

obtained by:

receiving the threshold fragment size from a user;

obtaining the threshold fragment size from a hard wired element within the SSD; 

or

testing various values for the threshold fragment size and selecting the threshold 

fragment size resulting in optimal performance.

9. The method of any of Claims 1 to 8, wherein eliminating the free space fragment 

comprises merging the free space fragment with one or more adjacent free space 

fragments such that the merged free space fragment is at least as large as the threshold 

fragment size.

10. The method of any of Claims 1 to 9, further comprising, retesting the threshold 

fragment size by:

temporarily using a value higher than the threshold fragment size for optimization of 

the SSD;

temporarily using a value lower than the threshold fragment size for optimization of 

the SSD; and

selecting a new threshold fragment size, from the value higher than the threshold

fragment size and the value lower than the threshold fragment size, based on 

performance of the SSD during the retesting.

11. A solid state drive (SSD) optimizer comprising means for performing a method as 

recited in any one of Claims 1 to 10.

1 /7



-4

i
20

08
30

85
49

 
24

 M
ay

 2
01

2 12. A computer readable storage medium comprising one or more sequences of 

instructions which, when executed by one or more processors, cause the processors to 

perform the method recited in any one of Claims 1 to 10.

13. A method substantially as hereinbefore described with reference to the accompanying 

drawings.

1 Ί



WO 2009/046353 PCT/US2008/078823

ο
φ

co

ο
CO

φΝ
Ε
Ω.
Ο

co
Τ3
ο

CO

φ

• · ·

• · ·

• · ·

FI
G

. 1

1/3



WO 2009/046353 PCT/US2008/078823

FI
G.

2

2/3



WO 2009/046353 PCT/US2008/078823

3/3


