EUROPEAN PATENT SPECIFICATION

<table>
<thead>
<tr>
<th>Date of publication and mention of the grant of the patent:</th>
<th>06.04.2011 Bulletin 2011/14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application number:</td>
<td>03002973.0</td>
</tr>
<tr>
<td>Date of filing:</td>
<td>11.02.2003</td>
</tr>
<tr>
<td>Packetized audio data operations in a wireless local area network device</td>
<td>Paketisierte Audiodatenoperationen in einem Gerät für ein drahtloses LAN</td>
</tr>
<tr>
<td>Traitement de données audio sous forme paquet dans un dispositif de réseau local sans fil</td>
<td></td>
</tr>
<tr>
<td>Designated Contracting States:</td>
<td>DE FR GB</td>
</tr>
<tr>
<td>Priority:</td>
<td>12.02.2002 US 356323 P</td>
</tr>
<tr>
<td></td>
<td>08.07.2002 US 394325 P</td>
</tr>
<tr>
<td></td>
<td>13.11.2002 US 293111</td>
</tr>
<tr>
<td>Date of publication of application:</td>
<td>13.08.2003 Bulletin 2003/33</td>
</tr>
<tr>
<td>Proprietor:</td>
<td>Broadcom Corporation Irvine, CA 92617 (US)</td>
</tr>
<tr>
<td>Inventors:</td>
<td>Lee, Sherman Rancho Palos Verdes, California 90275 (US)</td>
</tr>
<tr>
<td></td>
<td>Chou, Vivian Alhambra, California 91801 (US)</td>
</tr>
<tr>
<td></td>
<td>Aragones, Charles Los Angeles, California 90042 (US)</td>
</tr>
<tr>
<td></td>
<td>Lin, John Downey, California 90242 (US)</td>
</tr>
<tr>
<td>Representative:</td>
<td>Jehle, Volker Armin et al Bosch Jehle Patentanwaltschaft mbH Flüggenstrasse 13 80639 München (DE)</td>
</tr>
</tbody>
</table>

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
1. FIELD OF THE INVENTION

[0001] The present invention relates to wireless communications; and more particularly to operations by a Wireless Local Area Network device.

2. BACKGROUND OF THE INVENTION

[0002] The number and popularity of wireless communications devices in use continues to rise rapidly all over the world. Not only have cellular telephones become very popular, but Wireless Local Area Networking (WLAN) devices have also proliferated. One standard for wireless networking, which has been widely accepted, is the Specification of the Bluetooth System, v. 1.1 ("Bluetooth Specification"). The Bluetooth Specification enables the creation of small personal area networks (PAN’s), where the typical operating range of a device is 100 meters or less. In a Bluetooth system, Bluetooth devices sharing a common channel sequence form a piconet. Two or more piconets co-located in the same area, with or without inter-piconet communications, is known as a scatternet.

[0003] The Bluetooth Specification supports voice communications between Bluetooth enabled devices. When a pair of Bluetooth devices support voice communication, the voice communications must be wirelessly supported in a continuous fashion so that carried voice signals are of an acceptable quality. Unexpected gaps, e.g., dropped packets, on the wireless link between supported Bluetooth devices causes degradation in the voice communication resulting in popping, static, or other unpleasant audible event. This problem is especially troublesome with Bluetooth devices since, in some operations, the communication link will regularly drop packets that carry the voice signals.

[0004] Thus, there is a need for improved operation by WLAN devices servicing voice communications.

[0005] Lucent Technologies Inc. (EP 0 917 316) discloses a method for data transmission in a wireless communication network utilizing an on-demand multiple access method with a fair queuing service discipline for efficient utilization of the limited bandwidth available in the network by sharing bandwidth among the remote hosts.

[0006] Lucent Technologies Inc. (EP 1 119 137) discloses an interoperability device in a communication system which integrates an IEEE 802.11 transceiver and a Bluetooth transceiver.

[0007] According to the invention, there is provided a Wireless Local Area Network (WLAN) transceiving integrated circuit as defined by independent claim 1. Further advantageous features of the invention are defined by the dependent claims.

[0008] In order to overcome the above-described shortcomings of the prior devices as well as other shortcomings, a wireless local area network (WLAN) transceiving integrated circuit constructed according to the present invention services voice communications in a WLAN with at least one other WLAN device. The WLAN transceiving integrated circuit, in one embodiment, is formed as a single monolithic integrated circuit.

[0009] The WLAN transceiving integrated circuit includes a WLAN interface that wirelessly communicates with the at least one other WLAN device. Coupled to the WLAN interface is an input buffer that receives packetized audio data from the WLAN interface. The WLAN transceiving integrated circuit further includes an input buffer controller that operably couples to the input buffer. A processor, e.g., micro-sequencer, operably couples to the input buffer controller and controls the operation of the input buffer controller. The processor also couples directly to the input buffer and is able to modify the contents of the input buffer. In an alternate embodiment, the WLAN interface couples to, and modifies the contents of the input buffer via the input buffer controller.

[0010] The WLAN transceiving integrated circuit may also include an output buffer, an output buffer controller, a transcoder, and/or an audio Coder-Decoder (CODEC). The output buffer operably couples to the WLAN interface and to the transcoder. The transcoder also operably couples to the input buffer, converts packetized audio data to Pulse Code Modulated (PCM) audio format, and converts PCM audio data to packetized audio data. The input buffer and output buffer serve to buffer packetized audio data on its paths between the WLAN interface and the transcoder. The audio CODEC operably couples to the transcoder that converts PCM audio data to analog audio data and converts analog audio data to PCM audio data.

[0011] The WLAN transceiving integrated circuit is installed in a WLAN device that services voice communications. One example described herein of such a WLAN device is a wireless headset that is employed by a user to communicate with another user of the other WLAN device. The other user may also employ a WLAN device. However, the wireless headset also services communications with remote users of landline telephones, cellular telephones, etc. In such case, the wireless headset that contains the WLAN transceiving integrated circuit communicates with another WLAN device that couples to a landline or another communication path.

[0012] The WLAN device in which the WLAN transceiving integrated circuit is installed also includes a speaker and a microphone. The speaker operably couples to the CODEC and converts an analog audio data to an output audio signal. The microphone operably couples to the audio CODEC and converts an input audio signal to analog audio data. With all of these components operational, the WLAN device in which the WLAN transceiving integrated circuit is installed fully supports voice communications between the WLAN device and the another WLAN device.

[0013] In one particular embodiment of the present in-
vention, the WLAN transceiving integrated circuit supports the Bluetooth Specification. In such case, the WLAN interface supports the transfer of Synchronous Connection Oriented (SCO) data packets. Further, consistent with the Bluetooth Specification and other standards, the transcoder performs decoding operations selected from the group consisting of A-law operations, µ-law operations, and Continuous Variable Slope Delta (CVSD) operations.

In the operation of the WLAN transceiving integrated circuit of the present invention, the input buffer receives packetized audio data from the WLAN interface. When the wireless link supported by the WLAN interface fails to write packetized audio data into the input buffer at a sufficient rate to support the voice communication, the contents of the input buffer will decrease until the input buffer reaches a buffer vacancy threshold. If the input buffer were allowed to become empty, the stream of new packetized audio, data provided by the input buffer to the transcoder would cease, and subsequently the audio information sent to the audio CODEC and speaker would become discontinuous. This discontinuous operation would cause an abrupt change in the audio signal presented to the user, e.g., pop, crackle, or another unpleasant sound.

In order to overcome this discontinuous operation, in the WLAN transceiving integrated circuit of the present invention, when the input buffer satisfies a buffer vacancy threshold, the processor and the input buffer controller cooperatively operate to fill at least a portion of the input buffer with packetized audio data. Such filling is performed in a first operation and/or in a second operation. During the first operation when the input buffer satisfies the buffer vacancy threshold, the processor operates to fill at least a portion of the input buffer with packetized audio data. During the second operation, when the input buffer satisfies the buffer vacancy threshold, the input buffer controller operates to fill at least a portion of the input buffer with packetized audio data.

Generally, the first operation and the second operation occur at different times. In one embodiment, the first operation occurs when the processor is available while the second operation occurs when the processor is unavailable. In such case, during the first operation, the processor fills at least a portion of the input buffer with packetized audio data copied from the input buffer. During the second operation, the input buffer controller fills at least a portion of the input buffer with predetermined data, e.g., default data that will drive the transcoder gracefully to a quiet output, i.e., 101010101 etc.

In order to minimize any abrupt/discontinuous audio operating condition, the processor selects the packetized audio data copied from, and written to the input buffer so that an audio pattern of packetized audio data in the input buffer is maintained. Further, the processor operates to maintain this audio pattern when additional packetized audio data is received by the WLAN interface. In such case the processor writes only a portion of the additional packetized data to the input buffer so that the audio pattern of packetized audio data in the input buffer is maintained.

These same operations are supported by the present invention for the output buffer. Because data may be written to the output buffer by the transcoder at a lesser rate than it is read from the output buffer by the WLAN interface, an under run condition may occur with the output buffer meeting a vacancy threshold. When this occurs, the output buffer controller and the processor cooperatively operate to at least partially fill the output buffer.

Thus, the WLAN transceiving integrated circuit of the present invention provides significant operational improvements over prior devices in gracefully servicing voice communications. Other features and advantages of the present invention will become apparent from the following detailed description of the invention made with reference to the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a system diagram illustrating a plurality of Wireless Local Area Network (WLAN) devices, some of which have installed therein WLAN transceiving integrated circuit constructed according to the present invention;

FIG. 2A is a system diagram illustrating the interaction between a plurality of WLAN devices constructed according to the present invention and a Wireless Access Point (WAP);

FIG. 2B is a system diagram illustrating the interaction between wireless headsets, a cell phone, and a cellular base station according to the present invention;

FIG. 3A is a block diagram illustrating the electrical components of a wireless headset that includes a first embodiment of a WLAN transceiving integrated circuit constructed according to the present invention;

FIG. 3B is a block diagram illustrating the electrical components of a wireless headset that includes a second embodiment of a WLAN transceiving integrated circuit constructed according to the present invention;

FIG. 4A is a block diagram generally illustrating the components of a WLAN transceiving integrated circuit constructed according to the present invention;

FIG. 4B is a block diagram generally illustrating in more detail the components of the WLAN transceiving integrated circuit constructed according to the present invention of FIG. 4A;

FIG. 5 is a block diagram illustrating the components of a Baseband Core of the WLAN transceiving integrated circuit constructed according to the present invention of FIGs. 4A and 4B;
DETAILED DESCRIPTION

[0021] FIG. 1 is a system diagram illustrating a plurality of Wireless Local Area Network (WLAN) devices, some of which have installed therein WLAN transceiving integrated circuit constructed according to the present invention. Each of these WLAN devices supports one or more versions of the Bluetooth Specification. A Bluetooth "scatternet" is formed from multiple "piconets" with overlapping coverage. The scatternet of FIG. 1 includes four separate piconets 102, 104, 106, and 108. Piconet 102 includes master (computer) 110, slave 112 (PDA), slave 114 (printer), slave 130 (wireless headset), and slave 115 (music source). Piconet 104 includes master 120 (computer), slave 122 (PDA), slave 123 (wireless phone), slave 130 (wireless headset), and slave 134 (landline phone). Piconet 106 includes master (computer) 116, slave 118 (PDA), slave 114 (printer), slave 130 (wireless headset), and slave 132 (wireless headset). Piconet 108 includes master (computer) 124, slave 126 (PDA), slave 128 (wireless phone, e.g., WLAN phone, cell phone, etc.), slave 132 (wireless headset), and slave 130 (wireless headset). The four separate piconets 102, 104, 106, and 108 have overlapping coverage areas. In the embodiment of FIG. 1, all masters are shown to be computers because they will typically be stationary and have the processing capability to service a number of slaves. However, in other embodiments, the masters could be other devices as well. The scatternet of FIG. 1 may service a call center, customer service department, or other office environment, for example that benefits by the wireless interconnection of the illustrated devices.

[0022] A user of wireless headset 130 (or 132) may establish communications with any WLAN device in a piconet of which the wireless headset 130 (or 132) is also a member. The wireless headset 130 may have a minimal user interface, e.g., a single authenticate button that initiates joining of a piconet. However, the wireless headset 130, in its operating location, resides within the service coverage area of each of the four separate piconets 102, 104, 106, and 108 that form the scatternet. Thus, when the wireless headset 130 enters (or powers up in) an area with more than one functioning piconet, a user of the wireless headset 130 depresses an authenticate button to start the authentication process. With the authenticate button depressed, the wireless headset attempts to join one of piconets 102, 104, 106, and 108. Subsequent authentication operations are required to have the wireless headset join the selected piconet. These subsequent authentication operations may include prompting the user for selection of the piconet, requiring that entry be made on the home computer 110 to allow the wireless headset 130 to join the piconet 102, or other authentication operations. Likewise, the wireless headset 130 may perform automatic authentication operations with master (computer 116) of piconet 106.

[0023] Once a wireless headset, e.g., 130 or 132 joins a respective piconet, 102 or 106, the wireless headset establishes an audio link with one or more of the members of the piconet via respective WLAN links. In particular, when the wireless headset 130 serves within a call center of FIG. 1, for example, an attendant using the wireless headset 130 services calls of the call center. Such calls will be received and managed by the computer 110 in the example. Likewise, the user of wireless headset...
Each of the WLAN devices illustrated in FIG. 1 may include a WLAN transceiving integrated circuit constructed according to the present invention. As will be described further herein with reference to FIGs. 3A-11, the WLAN transceiving integrated circuit gracefully operates when wireless link serving the WLAN transceiving integrated circuit fails to provide packetized audio data in a manner sufficient to service a respective voice communication. In such case, the components of the WLAN transceiving integrated circuit fill a respective input buffer with packetized data that will effectively mask the lack of new input packetized audio data.

FIG. 2A is a system diagram illustrating the interaction between a plurality of WLAN devices 204, 208, and 210 constructed according to the present invention and a Wireless Access Point (WAP) 202. In the embodiment of FIG. 2A, the wireless headset 204 is Bluetooth compliant and/or IEEE 802.11 compliant, e.g., IEEE 802.11a, IEEE 802.11b, IEEE 802.11g, etc. In such case, the wireless headset 204 establishes a voice communication via the WAP 202 with another device also serviced by the WAP 202, or, more likely, with another device coupled to the WAP 202 via the Wireless Local Area Network (WLAN) backbone network 206. Further, the wireless headset 204 services voice communications with additional wireless headsets 208 and 210.

FIG. 2B is a system diagram illustrating the interaction between wireless headsets 254, 258, and 260, a cell phone 252, and a cellular base station 256. The cell phone 252 establishes a cellular telephone call via the base station 256 with another wireless device or with a wired device that couples to the base station 256 via a wired connection. The cell phone 252 operates according to a cellular operating standard, e.g., IS-95A, IS-95B, IS-136, GSM, 1xRTT, 1xEV, UMTS, etc. The cell phone 252 also supports the Bluetooth specification and communications with the wireless headset 254 via Bluetooth operations. The wireless headset 254 supports communications with wireless headsets 258 and 260 also via the Bluetooth operations. Thus, for example, the user of the wireless headset 254, while operating a vehicle may use the wireless headset 254 for audio communications serviced by the cell phone 252. However, usage of the components of FIG. 2B is not limited to a vehicular application. Further, in order to support call conferencing, the wireless headset 254 supports conferencing with wireless headsets 258 and 260.

FIG. 3A is a block diagram illustrating the electrical components of a wireless headset that includes a first embodiment of a WLAN transceiving integrated circuit constructed according to the present invention. The wireless headset includes the WLAN transceiving integrated circuit 300 and a number of supporting components. The Radio Frequency (RF) interface for the WLAN transceiving integrated circuit 300 includes a Power Amplifier (PA) 302, a Receive/Transmit switch 304, and an antenna 306. The power supply for wireless headset is a battery 334 that couples to the WLAN transceiving integrated circuit 300 and also couples to other components of the wireless headset. The WLAN transceiving integrated circuit 300 includes a plurality of interfaces that adhere to standardized interface formats. These interfaces include an I2C interface 308 that may couple the WLAN transceiving integrated circuit 300 to an EEPROM 309. A Pulse Code Modulated (PCM) connection 310 couples the WLAN transceiving integrated circuit 300 to an audio Codec-Decoder (CODEC) 314 that performs coding/decoding operations. The audio CODEC 314 couples to a microphone 316 and to a speaker 318.

FIG. 3B is a block diagram illustrating the electrical components of a wireless headset that includes a second embodiment of a WLAN transceiving integrated circuit constructed according to the present invention. The embodiment of FIG. 3B is similar to the embodiment of FIG. 3A except that the embodiment of FIG. 3B includes additional integration. With such integration, the PA 352 and audio CODEC 364 are on-chip and the remaining components of the WLAN transceiving integrated circuit are referred to as WLAN transceiving integrated circuit core components 351. In still another embodiment, the WLAN transceiving integrated circuit includes an on-chip local oscillator and does not require an external crystal to provide a reference oscillation 311.

FIG. 4A is a block diagram generally illustrating the components of a WLAN transceiving integrated circuit constructed according to the present invention. The WLAN transceiving integrated circuit 400 includes an integrated radio transceiver 402, a baseband core (BBC) 404, and a PCM interface 406. The integrated radio transceiver 402 of FIG. 4A has been optimized for use in 2.4 GHz Bluetooth wireless systems.

The integrated radio transceiver 402 implements the physical layer of the Bluetooth interface with other Bluetooth enabled WLAN devices. The BBC 404 manages physical channels and links apart from other services like error correction, data whitening, hop selection and Bluetooth security. The BBC 404 implements a Link Controller that works with the link manager for carrying out link level routines like link connection and power control. The BBC 404 also manages asynchronous and synchronous links, handles packets and does paging and inquiry to access and inquire Bluetooth devices in the area. The WLAN transceiving integrated circuit 400 applies a time-division duplex (TDD) scheme (alternate transmit and receive). Therefore apart from different hop...
ping frequency (frequency division), the time is also slot-

ded. The BBC 404 supports 13 different packet types for
the baseband layer of the Bluetooth system. All higher
layers use these packets to compose higher level PDU’s.
The packets include ID, NULL, POLL, FHS, and DM1
packets. These packets are defined for both SCO and
ACL links. DH1, AUX1, DM3, DH3, DM5, DH5 packets
are defined for ACL links only. HV1, HV2, HV3, and DV
packets are defined for SCO links only. Each Bluetooth
packet consists of 3 entities, an access code (68/72 bits),
a header (54 bits), and a payload (0-2745 bits). The Ac-
cess code is used for timing synchronization, offset com-
ensation, paging and inquiry. There are three different
types of Access codes: (1) the Channel Access Code
(CAC); (2) the Device Access Code (DAC); and (3) the
Inquiry Access Code (IAC). The channel access code
identifies a unique piconet while the DAC is used for pag-
ing and its responses. The IAC is used for inquiry pur-
pose. The header contains information for packet ac-
nowledgement, packet numbering for out-of-order packet reordering, flow control, slave address and error
check for header. Finally, the Payload contains a voice
field, a data field or both. If the payload is a data field,
the payload will also contain a payload header. In sup-
porting voice communications, packetized audio data is
supported between WLAN devices in Bluetooth Specifi-
cation Synchronous Connection Oriented (SCO) data pack-

tets.

FIG. 4B is a block diagram generally illustrating
more detail the components of the WLAN transceiving
integrated circuit 450 constructed according to the
present invention of FIG. 4A. The radio transceiver 454
has been designed to provide low-power, low-cost, ro-
bust communications for applications operating in the
globally available 2.4 GHz unlicensed ISM band. It is fully
compliant with the Bluetooth RF specification Version 1.1
and meets or exceeds the requirements to provide the
highest communication link quality service. In the receiv-
er path, the radio transceiver 454 has a high-degree of
linearity, an extended dynamic range, and high order on-
chip channel filtering to ensure reliable operation in the
noisy 2.4 GHz ISM band. The performance of the receiver
chain is reflected in the IP3, co-channel interference, and
out-of-band blocking specifications. The radio transceive-
er 402 includes a fully integrated transmitter. Baseband
data received from the baseband core 404 is GFSK mod-
ulated and up-converted to the 2.4 GHz ISM band via an
internal mixer. The radio transceiver 454 provides a nor-
mal power output of 0 dBm and has a power control signal
provided by the WLAN transceiving integrated circuit 300
that controls the PA 302 to provide 24 dBm of gain control
in 8 dBm step size.

The radio transceiver 454 interfaces with the
BBC 452 via a radio transceiver interface 456, a Local
Oscillator (LO) 458, and a Received Signal Strength In-
dicator (RSSI) 460. The LO 458 provides fast frequency
hopping (1600 hops/second) across the 79 maximum
available Bluetooth channels. The radio transceiver 454
of the WLAN transceiving integrated circuit 450 features
on-chip calibration, eliminating process variation across
components. This enables the WLAN transceiving in-
grated circuit 450 to be used in high volume applications.

The WLAN transceiving integrated circuit 450
parallel I/O interface 324 (coupled to the BBC 452 via an
I/O port 464) can be operated in either Master or Slave
mode. By default the WLAN transceiving integrated cir-
cuit 400 will power up in one of the modes depending on
the setting of MODE pins (not shown). In Master mode,
the WLAN transceiving integrated circuit 450 accesses
peripheral devices on the parallel bus 324 in (1) 8-bit
parallel I/O Normal A0 Read and Write modes; and (2)
8-bit parallel I/O Fast ALE Read and Write modes. In
Slave mode, the parallel I/O interface 464 is intended
to support a connection to a wide range of external host
processors or external host controllers. Data transfer be-
tween an external host 322 and the BBC 452 is provided
through transmitter and receiver FIFOs. The external
host 322 can program and monitor the FIFO control and
status registers. There are also additional external host
accessible registers to provide the external host with abil-
ities to dynamically configuring, controlling, and diagnos-
ting the Bluetooth device. The Slave mode interface tim-
ing of the parallel bus 324 can be in one of: (1) 8-bit
parallel I/O Normal A0 Read and Write modes; (2) 8-bit
parallel I/O Fast A0 Read and Write modes; and (3) 8-
bit parallel I/O Fast ALE Read and Write modes.

The asynchronous serial interface I/O 320 (cou-
ped to the BBC 452 via an asynchronous serial port 462)
enables an asynchronous serial data stream to commu-
nicate with the BBC 452 in a similar fashion as the slave
mode parallel I/O interface. A programmable baud rate
generator is provided to select, transmit and receive clock
rates from 9600 bps to 921.6 Kbps. The default baud rate
depend is determined by the setting of external selection pins
BAUD[3:0] (not shown).

A master mode 2-wire serial interface bus is
available on the WLAN transceiving integrated circuit 450
to allow read and write operations from/to an I2C serial
EEPROM 309 via the I2C interface 466 and the I2C con-
nection 468. The BBC 452, via software instruction at
power-on reset, sets the control of the I2C pins. At power-
on reset the boot code that resides on the BBC 452 on-
chip boot ROM monitors a controlled pin to determine
the presence or absence of the serial EEPROM 309. If
an EEPROM 309 is detected, the BBC 452 on chip boot
code performs read operations from the EEPROM 309
that contains the fully operational microcode for the BBC
452. If the EEPROM 309 is not present, the BBC 452
expects the microcode to be downloaded from the exter-
nal host. When the fully operational microcode is up and
running, the external host can access the serial EEPROM
309 through an EEPROM Status and Control register.
The BBC 452 implements all the high-level time critical
Link Management functions in dedicated hardware under
the control of the micro-sequencer. The BBC 452 hard-
ware processes Bluetooth Link Control (LC) functions and manages Bluetooth slot usage. The external host 322 can use this register to manipulate the device pins in order to read and modify the EEPROM 309 contents as desired. The WLAN transceiving integrated circuit further includes power management functions 474 and Built-In-Self Test 472 functions. The power management unit 474 provides power management features that are controlled through setting of the power management registers.

FIG. 5 is a block diagram illustrating the components of a Baseband Core (BBC) 550 of the WLAN transceiving integrated circuit constructed according to the present invention of FIGs. 4A and 4B. The BBC 550 includes a microsequencer (processor) 502, a timing control unit 506, a timer 508, a power management unit 510, and a frequency hop unit 512. In the transmit path, the BBC 408 includes an TX data path 514 that couples to the radio transceiver, a TX SCO buffer (output buffer) 516, and TX ACL FIFOs 518. In the receive path, the BBC 550 includes an RX data path 524 that couples to the radio transceiver, an RX SCO input buffer 522, and an RX ACL FIFO 520. These components service the receive path for the BBC 550. The registers/buffers 504 receive external host configuration data, external host command data, provide status to the external host, and interface with the external host via the parallel and serial buses. The registers/buffers 504 also interface with the audio CODEC 314 via a PCM interface 406.

An input buffer controller 523 operably couples to the input buffer 522 and to the processor 502. According to the present invention, the micro-sequencer (processor) 502 operably couples to the input buffer 522 either directly or indirectly via the input buffer controller 523. In the subsequent description, the radio transceiver 454 and the radio transceiver interface 456 are referred to jointly as a "WLAN interface". During some operational conditions, the WLAN interface fails to provide packetized audio data to the input buffer 522 and the input buffer 522 becomes partially vacant. When this partial vacancy is sufficient to satisfy a buffer vacancy threshold, the micro-sequence (processor) 502 and the input buffer controller 523 cooperatively operate to fill at least a portion of the input buffer 522 with packetized audio data. Such filling is performed in a first operation and/or in a second operation. During the first operation when the input buffer 522 satisfies the buffer vacancy threshold, the micro-sequence (processor) 502 operates to fill at least a portion of the input buffer 522 with packetized audio data. During the second operation, when the input buffer 522 satisfies the buffer vacancy threshold, the input buffer controller 523 operates to fill at least a portion of the input buffer with packetized audio data.

Generally, the first operation and the second operation occur at different times. In one embodiment, the first operation occurs when the micro-sequencer (processor) 502 is available while the second operation occurs when the micro-sequencer (processor) 502 is unavailable. In such case, during the first operation, the input buffer 522 with packetized audio data copied from the input buffer 522. During the second operation, the input buffer controller 523 fills at least a portion of the input buffer 522 with predetermined data, e.g., default data that will drive the transcoder gracefully to a quiet output, i.e., 101010101 etc.

In order to minimize any abrupt/discontinuous audio operating condition, the micro-sequencer (processor) 502 selects the packetized audio data copied from, and written to the input buffer 522 so that an audio pattern of packetized audio data in the input buffer 522 is maintained. Further, the micro-sequencer (processor) 502 operates to maintain this audio pattern when additional packetized audio data is received by the WLAN interface. In such case, the micro-sequencer (processor) 502 writes only a portion of the additional packetized data to the input buffer 522 so that the audio pattern of packetized audio data in the input buffer 522 is maintained.

The described operations performed for the input buffer 522 may also be performed according to the present invention for the output buffer 516. In such case, the output buffer controller 517 and the microsequencer 502 operate in cooperation to write data into the output buffer 516 when a vacancy threshold is met.

FIG. 6 is a block diagram generally illustrating the components of a Pulse Code Modulated (PCM) interface 406 of the Baseband Core 550 of FIG. 5. The PCM interface 406 includes a transcoder 602 having a decoder 608 and an encoder 610, a switch box 604 and an audio CODEC 314. Coupled to the audio CODEC 314 are a speaker 318 and a microphone 316. As shown, the audio CODEC 314 includes a Digital-to-Analog-Converter (DAC) 614 that converts PCM audio data to an analog audio signal and provides the analog audio signal to a speaker 318. Further, as is shown, the audio CODEC 314 includes an Analog-to-Digital-Converter (ADC) 614 that receives an analog audio signal from the coupled microphone 316 and converts the analog audio signal to PCM audio data.

The transcoder 602 converts packetized audio data (encoded) that is suitable for the WLAN interface to PCM audio data that is suitable for the audio CODEC 314, and vice versa. In particular, the decoder 608 converts encoded packetized audio data to PCM audio data while the encoder 610 converts PCM audio data to encoded packetized audio data. In one embodiment, the transcoder 602 supports 13-bit linear PCM CODEC devices with a 2's complement serial data format. It is capable of supporting an external audio clock or outputting an audio clock (ACLK) in multiples of 128 KHz, from 128 KHz to 4096 KHz. In an audio master mode, the PCM I/F 406 can generate PCM audio data in an 8 KHz short/long Frame Sync (ASYNC) format. In an audio slave mode, the PCM I/F 406 can receive PCM audio data in an 8 KHz short Frame Sync format.

The PCM I/F 406 supports up to three SCO
channels, and in at least one embodiment, the PCM audio data is Time Division Multiplexed (TDM) into slots within every ASYNC period. Each of the three SCO channels can be assigned to any TDM slot. The TDM slots can be programmed from one to 16 slots depending on the ACLK rate. In PCM Master mode, and for systems that don’t support TDM, the two additional SCO channels are available using GPIO6 and GPIO7 as the PCM Frame Sync signals (i.e., ASYNC3 and ASYNC2, respectively).

The transcoder 602 can process each SCO channel with A-law operations, Î”-law operations, or Continuous Variable Slope Delta (CVSD) operations. The appropriate voice-coding scheme is selected after negotiations between the Link Managers of the communicating WLAN devices. On the Bluetooth air-interface, either a 64 kbps log PCM format (A-law or Î”-law) is used, or a 64 kbps CVSD is used. The latter format applies an adaptive delta modulation algorithm with syllabic companding. The voice coding on the PCM I/F 406 should have a quality equal to or better than the quality of 64 kbps log PCM. Since the voice channels on the air-interface can support a 64 kbps information stream, a 64 kbps log PCM traffic can be used for transmission. Either A-law or Î”-law compression can be applied. In the event that the line interface uses A-law and the air interface uses Î”-law or vice versa, a conversion from A-law to Î”-law is performed. The compression method follows ITU-T recommendations G. 711.

A more robust format for voice over the air interface is a delta modulation. This modulation scheme follows the waveform where the output bits indicate whether the prediction value is smaller or larger then the input waveform. To reduce slope overload effects, syllabic companding is applied according to the average signal slope. The input to the encoder 610 (when performing CVSD operations) is 64 kilo-samples/sec linear PCM. An on-chip voice switch box 604 of the PCM I/F 406 provides features such as N-ways conference calling, call forwarding, and call waiting.

FIG. 7A is a graph illustrating the timing of receipt of packetized audio data by the WLAN interface of the WLAN transceiving integrated circuit of the present invention. Periodically, based upon the timing of the TDM connection, packetized audio data is written from the input buffer 522 to the transcoder 602. In response, the decoder 608 of the transcoder 602 converts the packetized audio data to PCM audio data and provides the PCM audio data to the DAC 612 of the audio CODEC 314. With a continuous flow of packetized audio data from the input buffer 522 to the transcoder 602, the PCM audio data provides a clean and clear audio signal to the DAC 612 of the audio CODEC 314. Responsively, the DAC 612 of the audio CODEC 314 provides a clean analog audio signal to the speaker 318, which provides a clean audio signal to a user.

FIG. 7C is a graph illustrating the timing of receipt of packetized audio data by the WLAN interface of the WLAN transceiving integrated circuit of the present invention and with some packetized audio data not received when required. As is shown, data packets 852 and 858 are received via the WLAN interface but data packets 854 and 856 are missing. Resultantly, the input buffer 522, absent the operations of the present invention, would become empty, no packetized audio data would be provided to the transcoder 602, and the transcoder 602 would produce discontinuous PCM audio data. This discontinuous PCM audio data would be provided to the DAC 612 of the audio CODEC 314 and a noisy analog audio signal would be provided to the speaker 318 and a noisy audio signal would be presented to the user.

FIG. 8 is a logic diagram illustrating operation according to the present invention in filling the input buffer 522 (or the output buffer 516) of the WLAN transceiving integrated circuit 550 when an under run condition occurs for either buffer. The operations of FIG. 8 are described primarily with reference to the input buffer 522 and secondarily with reference to the output buffer 516. Operation commences when the WLAN transceiving integrated circuit performs normal operations (step 802) during which data packets are correctly received from the WLAN interface and the input buffer is filled normally with received packetized audio data. For the output buffer 516, normal operations occur when the PCM I/F 406 provides data to the output buffer 516 substantially at the rate that data is output from the output buffer 516.

However, as is often the case in WLAN environments, some data packets will not arrive when required to fill the input buffer 522 until the vacancy threshold is met (step 804). In the case of the output buffer 516, a mismatch between master and slave clocks may be such that data will be output from the output buffer 516 at a rate that exceeds the rate at which the transcoder 602 writes data into the output buffer 516.

When the vacancy threshold is met, it is desirable for the processor to copy/fill data to the input buffer 522 (or the output buffer 516). Thus, if the processor is available, the processor copies writes data from/to the input buffer 522 (step 808). In the case of the output buffer 516, if the output buffer 516 meets the vacancy threshold,
the processor copies/writes data from/to the output buffer 516.

If the processor is busy with other operations, the input buffer controller 523 will at least partially fill the input buffer 522 with default data (step 810). In the case of the output buffer 516, the output buffer controller 517 at least partially fills the output buffer 516 when the processor is busy with other operations. From both steps 808 and step 810, operation returns to step 802. According to the present invention, in one operation, when the processor performs copying and filling operations, the processor copies and fills with audio data so that an audio pattern of packetized audio data in the input (or output) buffer is maintained.

FIG. 9A is a block diagram illustrating the input buffer 522 (or output buffer 516) of the WLAN transceiving integrated circuit of the present invention when filled with packetized audio data. While the description of FIG. 9A-9D is made with reference to the input buffer 522, the principles described therewith apply to the output buffer 516 as well. In one particular embodiment of the present invention, the input buffer 522 is 32 bytes in size. Each serviced SCO channel will have its own input buffer. In such case, three input buffers, each 32 bytes in size, will exist. FIG. 9A illustrates one of the input buffers 522 that is full of data, i.e., storing 32 bytes of packetized audio data.

FIG. 9B is a block diagram illustrating the input buffer of the WLAN transceiving integrated circuit of the present invention when partially filled such that a vacancy threshold has been satisfied. After a period of time during normal operations with the packetized audio data being written from the input buffer 522 to the transcoder 602, the input buffer contents will be reduced. If the WLAN interface does not fill the input buffer 522, the input buffer 522 will meet the buffer vacancy threshold. The buffer vacancy threshold is chosen so that it is met only when it is substantially certain that the input buffer 522 will become empty before additional packetized audio data is received.

FIG. 9C is a block diagram illustrating the input buffer of the WLAN transceiving integrated circuit of the present invention after substantial filling with copies of packetized audio data present in the input buffer. The processor of the WLAN transceiving integrated circuit has operated upon the input buffer to copy/fill two 10 byte segments of packetized audio data. Such copying/filling has been performed to preserve an audio pattern of the packetized audio data stored in the input buffer. As is known, human speech as represented by digital samples is periodic. The audio pattern of the packetized audio data is preserved during the copying/filling operations to preserve this periodicity and the phase of the speech as represented thereby. As is indicated in FIG. 9C, the audio pattern is maintained during both the first and second copying/filling operations.

FIG. 9D is a block diagram illustrating the input buffer of the WLAN transceiving integrated circuit of the present invention after partial filling with copies of packetized audio data present in the input buffer and partial filling with quiet data. After an extended period of time in which no packetized audio data has been received via the WLAN interface, copying/filling operations are no longer valid. In such case, the microsequencer (processor) 502 and the input buffer controller 523 operate in cooperation to at least partially fill the input buffer 522 with default audio data. In the operation shown, the default audio data selected is a bit pattern of 101010101 etc. This bit pattern, when received by the decoder 608 of the transcoder 602 will drive the output of the decoder 608 to a quiet output.

FIG. 10 is a logic diagram illustrating operation according to the present invention in filling the input buffer (or output buffer) of the WLAN transceiving integrated circuit with phase aligned packetized audio data received via the WLAN interface. As has been previously described herein, selective copying/filling of data from/to the input buffer is performed to maintain an audio pattern in the input buffer (step 1002). After this partial filling has been performed, additional packetized audio data is received (step 1004). However, this additional packetized audio data received via the WLAN interface, if simply appended to the packetized audio data of the input buffer 522 may disrupt the audio pattern in the input buffer 522. Thus, it is first determined whether the additional packetized audio data that is received from the WLAN interface is phase aligned with the existing contents of the input buffer 522. If so, the additional packetized audio data is simply appended to the existing packetized audio data when stored in the input buffer 522. However, if the additional packetized audio data is not phase aligned with the existing contents of the input buffer 522, the aligned packets of the additional packetized audio data are selected (step 1010) and written to the input buffer (step 1012). From both step 1008 and 1012 operation returns to step 1002.

FIG. 11 is a block diagram illustrating the input buffer 522 of the WLAN transceiving integrated circuit of the present invention after partial filling with copies of packetized audio data present in the input buffer 522 and continued filling with packetized audio data received via the WLAN interface to maintain phase in the audio data of the input buffer. As illustrated copying/filling operations have caused the input buffer 522 to be partially filled when the additional packetized audio data is received from the WLAN interface. However, the additional packetized audio data is not phase aligned with the audio pattern of the input buffer 522. In order to maintain the audio pattern of the input buffer, three bytes of the additional 12 bytes of packetized audio data are not written into the input buffer 522 while 9 bytes of the additional 12 bytes of packetized audio data are written into the input buffer 522 so that the audio pattern is maintained.

The operations of FIG. 10 and the description of FIG. 11 is also directly applicable to the filling of the output buffer when a vacancy threshold is met. Such
would be the case when the transcoder failed to write data to the output buffer at the rate that it was being written to the WLAN interface. In such case, the processor would copy/write data from/to the output buffer. Then, when data was again written from the transcoder to the output buffer, the processor would discard some of the data to maintain the audio pattern in the output buffer, if required.

The invention disclosed herein is susceptible to various modifications and alternative forms. Specific embodiments therefore have been shown by way of example in the drawings and detailed description. It should be understood, however, that the drawings and detailed description thereto are not intended to limit the invention to the particular form disclosed, but on the contrary, the invention is to cover all modifications, equivalents and alternatives falling within the scope of the present invention as defined by the claims.

Claims

1. A Wireless Local Area Network (WLAN) transceiving integrated circuit that services voice communications in a WLAN with at least one WLAN device, the WLAN transceiving integrated circuit comprising:
 - a WLAN interface (454, 456) that wirelessly communicates with the at least one WLAN device (110, 112, 114, 115, 116, 118, 120, 122, 123, 124, 128, 128, 130, 132, 134, 204, 208, 210, 254, 258, 260);
 - an input buffer (522) operably coupled to the WLAN interface that receives packetized audio data from the WLAN interface;
 - an input buffer controller (523) operably coupled to the input buffer;
 - a processor (502) operably coupled to the WLAN interface, the input buffer, and the input buffer controller; and
 - wherein when the input buffer satisfies a buffer vacancy threshold, the processor and the input buffer controller cooperatively operate to fill at least a portion of the input buffer with packetized audio data, the packetized audio data comprising one or more of data copied from the input buffer and predetermined data.

2. The WLAN transceiving integrated circuit of claim 1, FURTHER CHARACTERIZED IN THAT:
 - during a first operation when the input buffer satisfies the buffer vacancy threshold, the processor operates to fill at least a portion of the input buffer with the packetized audio data.

3. The WLAN transceiving integrated circuit of claim 2, FURTHER CHARACTERIZED IN THAT:
 - the first operation occurs when the processor is available; and
 - the second operation occurs when the processor is unavailable.

4. The WLAN transceiving integrated circuit of claim 2, FURTHER CHARACTERIZED IN THAT:
 - during a first operation, the processor fills at least a portion of the input buffer with the packetized audio data copied from the input buffer; and
 - during a second operation, the input buffer controller fills at least a portion of the input buffer with the predetermined data.

5. The WLAN transceiving integrated circuit of claim 1, FURTHER CHARACTERIZED IN THAT:
 - the processor operates to fill at least a portion of the input buffer with the packetized audio data copied from the input buffer; and
 - the processor selects the packetized audio data copied from the input buffer so that an audio pattern of packetized audio data in the input buffer is maintained.

6. The WLAN transceiving integrated circuit of claim 5, FURTHER CHARACTERIZED IN THAT:
 - additional packetized audio data is received by the WLAN interface intended for the input buffer; and
 - the processor writes only a portion of the additional packetized data to the input buffer so that the audio pattern of packetized audio data in the input buffer is maintained.

7. The WLAN transceiving integrated circuit of claim 1, FURTHER CHARACTERIZED IN THAT:
 - an output buffer (516) operably coupled to the WLAN interface that receives packetized audio data and that transmits the packetized audio data to the WLAN interface;
 - an output buffer controller (517) operably coupled to the output buffer and to the processor; and
 - wherein when the output buffer satisfies a buffer vacancy threshold, the processor and the output buffer controller cooperatively operate to fill at least a portion of the output buffer with pack-
etized audio data.

8. The WLAN transceiving integrated circuit of claim 7, FURTHER CHARACTERIZED IN THAT:

during a first operation when the output buffer satisfies the buffer vacancy threshold, the processor operates to fill at least a portion of the output buffer with packetized audio data; and
during a second operation when the output buffer satisfies the buffer vacancy threshold, the output buffer controller operates to fill at least a portion of the output buffer with packetized audio data.

9. The WLAN transceiving integrated circuit of claim 8, FURTHER CHARACTERIZED IN THAT:

the first operation occurs when the processor is available; and
the second operation occurs when the processor is unavailable.

10. The WLAN transceiving integrated circuit of claim 8, FURTHER CHARACTERIZED IN THAT:

during the first operation, the processor fills at least a portion of the output buffer with packetized audio data copied from the output buffer, and
during the second operation, the output buffer controller fills at least a portion of the output buffer with predetermined data.

11. The WLAN transceiving integrated circuit of claim 7, FURTHER CHARACTERIZED IN THAT:

the processor operates to fill at least a portion of the output buffer with packetized audio data copied from the output buffer; and
the processor selects the packetized audio data copied from the output buffer so that an audio pattern of packetized audio data in the output buffer is maintained.

12. The WLAN transceiving integrated circuit of claim 7, further CHARACTERIZED BY:

a transcoder (602) operably coupled to the input buffer and to the output buffer that converts packetized audio data to Pulse Code Modulated (PCM) audio data and that converts PCM audio data to packetized audio data; and
a Coder-Decoder (CODEC) (314) operably coupled to the transcoder that converts PCM audio data to analog audio data and that converts analog audio data to PCM audio data.

13. The WLAN transceiving integrated circuit of claim 12, wherein the transcoder further performs decoding operations selected from the group consisting of A-law operations, μ-law operations, and Continuous Variable Slope Delta (CVSD) operations.

14. The WLAN transceiving integrated circuit of claim 12, wherein the WLAN transceiving integrated circuit is contained in a wireless headset that IS FURTHER CHARACTERIZED BY:

a speaker (318) operably coupled to the audio CODEC that converts analog audio data to an output audio signal; and
a microphone (316) operably coupled to the audio CODEC that converts an input audio signal to analog audio data.

15. The WLAN transceiving integrated circuit of claim 1, FURTHER CHARACTERIZED IN THAT the WLAN interface supports the Bluetooth Specification.

Patentrechte

1. Integrierte Wireless Local Area Network (WLAN) Transceiver-Schaltung, die Sprachkommunikationen in einem WLAN mit wenigstens einer WLAN Vorrichtung bedient, wobei die integrierte WLAN Transceiver-Schaltung aufweist:

eine WLAN Schnittstelle (454, 456), die drahtlos mit der wenigstens einen WLAN Vorrichtung (110, 112, 114, 115, 116, 118, 120, 122, 123, 124, 126, 128, 130, 132, 134, 204, 208, 210, 254, 258, 260) kommuniziert;
einen Eingangspuffer (522), der betriebsbereit an die WLAN Schnittstelle gekoppelt ist, und der paketierte Audiodaten von der WLAN Schnittstelle empfängt;
einen Eingangspuffer-Controller (523), der betriebsbereit an den Eingangspuffer gekoppelt ist;
einen Prozessor (502), der betriebsbereit an die WLAN Schnittstelle, den Eingangspuffer und den Eingangspuffer-Controller gekoppelt ist; und
wobei, wenn der Eingangspuffer eine Puffervakanzschwelle erfüllt, der Prozessor und der Eingangspuffer-Controller zusammenwirken, um wenigstens einen Teil des Eingangspuffers mit paketierten Audiodaten zu füllen, wobei die paketierten Audiodaten ein oder mehrere von von dem Eingangspuffer kopierten Daten und vorgegebenen Daten enthalten.

2. Integriere WLAN Transceiver-Schaltung nach Anspruch 1, die des Weiteren dadurch gekennzeich-
Integrierte WLAN Transceiver-Schaltung nach Anspruch 1, die des Weiteren **gekennzeichnet ist durch**:

- während einer ersten Operation, wenn der Eingangspuffer die Puffervakanzschwelle erfüllt, der Prozessor so arbeitet, dass er wenigstens einen Teil des Eingangspuffers mit den paketierten Eingangsdaten füllt; und
- während einer zweiten Operation, wenn der Eingangspuffer die Puffervakanzschwelle erfüllt, der Eingangspuffer-Controller so arbeitet, dass er wenigstens einen Teil des Eingangspuffers mit den paketierten Audiodaten füllt.

Integrierte WLAN Transceiver-Schaltung nach Anspruch 2, die des Weiteren **dadurch gekennzeichnet ist**, dass:

- während einer ersten Operation, wenn der Eingangspuffer die Puffervakanzschwelle erfüllt, der Prozessor so arbeitet, dass er wenigstens einen Teil des Eingangspuffers mit den paketierten Eingangsdaten füllt; und
- während einer zweiten Operation, wenn der Eingangspuffer die Puffervakanzschwelle erfüllt, der Eingangspuffer-Controller so arbeitet, dass er wenigstens einen Teil des Eingangspuffers mit den paketierten Audiodaten füllt.

Integrierte WLAN Transceiver-Schaltung nach Anspruch 3, die des Weiteren **dadurch gekennzeichnet ist**, dass:

- die erste Operation stattfindet, wenn der Prozessor verfügbar ist; und
- die zweite Operation stattfindet, wenn der Prozessor nicht verfügbar ist.

Integrierte WLAN Transceiver-Schaltung nach Anspruch 4, die des Weiteren **dadurch gekennzeichnet ist**, dass:

- während der ersten Operation der Prozessor wenigstens einen Teil des Eingangspuffers mit den von dem Eingangspuffer kopierten paketierten Audiodaten füllt; und
- während der zweiten Operation der Eingangspuffer-Controller wenigstens einen Teil des Eingangspuffers mit den vorgegebenen Daten füllt.

Integrierte WLAN Transceiver-Schaltung nach Anspruch 5, die des Weiteren **dadurch gekennzeichnet ist**, dass:

- der Prozessor so arbeitet, dass er wenigstens einen Teil des Eingangspuffers mit den von dem Eingangspuffer kopierten paketierten Audiodaten füllt; und
- der Prozessor die von dem Eingangspuffer kopierten paketierten Audiodaten auswählt, so dass ein Audiomuster paketierte Audiodaten in dem Eingangspuffer beibehalten wird.

Integrierte WLAN Transceiver-Schaltung nach Anspruch 6, die des Weiteren **dadurch gekennzeichnet ist**, dass:

- zusätzliche paketierte Audiodaten, die für den Eingangspuffer vorgesehen sind, von der WLAN Schnittstelle empfangen werden; und
- der Prozessor nur einen Teil der zusätzlichen paketierten Daten in den Eingangspuffer schreibt, so dass das Audiomuster paketierte Audiodaten in dem Eingangspuffer beibehalten wird.

Integrierte WLAN Transceiver-Schaltung nach Anspruch 7, die des Weiteren **dadurch gekennzeichnet ist**, dass:

- der Ausgangspuffer (516), der betriebsbereit an die WLAN Schnittstelle gekoppelt ist und paketierte Audiodaten empfängt und die paketierten Audiodaten an die WLAN Schnittstelle sendet;
- der Prozessor und der Ausgangspuffer-Controller zusammenwirken, um wenigstens einen Teil des Ausgangspuffers mit paketierten Audiodaten zu füllen.

Integrierte WLAN Transceiver-Schaltung nach Anspruch 8, die des Weiteren **dadurch gekennzeichnet ist**, dass:

- während einer ersten Operation, wenn der Ausgangspuffer die Puffervakanzschwelle erfüllt, der Prozessor so arbeitet, dass er wenigstens einen Teil des Ausgangspuffers mit paketierten Audiodaten füllt; und
- während einer zweiten Operation, wenn der Ausgangspuffer die Puffervakanzschwelle erfüllt, der Ausgangspuffer-Controller so arbeitet, dass er wenigstens einen Teil des Ausgangspuffers mit paketierten Audiodaten füllt.

Integrierte WLAN Transceiver-Schaltung nach Anspruch 9, die des Weiteren **dadurch gekennzeichnet ist**, dass:

- die erste Operation stattfindet, wenn der Prozessor verfügbar ist; und
- die zweite Operation stattfindet, wenn der Prozessor nicht verfügbar ist.

Integrierte WLAN Transceiver-Schaltung nach Anspruch 10, die des Weiteren **dadurch gekennzeichnet ist**, dass:

- während der ersten Operation der Prozessor wenigstens einen Teil des Ausgangspuffers mit den von dem Ausgangspuffer kopierten paketierten Audiodaten füllt; und
- während der zweiten Operation der Ausgangspuffer-Controller wenigstens einen Teil des Ausgangspuffers mit vorgegebenen Daten füllt.

Integrierte WLAN Transceiver-Schaltung nach Anspruch 11, die des Weiteren **dadurch gekennzeichnet ist**, dass:

- zusätzliche paketierte Audiodaten, die für den Ausgangspuffer vorgesehen sind, von der WLAN Schnittstelle empfangen werden; und
- der Prozessor nur einen Teil der zusätzlichen paketierten Daten in den Eingangspuffer schreibt, so dass das Audiomuster paketierte Audiodaten in dem Eingangspuffer beibehalten wird.
12. Integrierte WLAN Transceiver-Schaltung nach Anspruch 7, die des Weiteren gekennzeichnet ist durch:

- einen Codeumsetzer (602), der betriebsbereit an den Eingangspuffer und an den Ausgangspuffer gekoppelt ist, und der paketierte Audiodaten in Pulse Code Modulated (PCM) Audiodaten umwandelt und PCM Audiodaten in paketierte Audiodaten umwandelt; und
- einen Coder-Decoder (CODEC) (314), der betriebsbereit an den Codeumsetzer gekoppelt ist, und der PCM Audiodaten in analoge Audiodaten umwandelt und analoge Audiodaten in PCM Audiodaten umwandelt.

13. Integrierte WLAN Transceiver-Schaltung nach Anspruch 12, wobei der Codeumsetzer Decodierungoperationen durchführt, die aus der Gruppe bestehend aus A-law Operationen P-law Operationen und Continuous Variable Slope Delta (CVSD) -Operationen ausgewählt werden.

14. Integrierte WLAN Transceiver-Schaltung nach Anspruch 12, wobei die integrierte WLAN Transceiver-Schaltung in einem drahtlosen Headset enthalten ist, des Weiteren gekennzeichnet durch:

- einen Lautsprecher (318), der betriebsbereit an den Audio-CODEC gekoppelt ist und analoge Audiodaten in ein Ausgangsaudiosignal umwandelt; und
- ein Mikrofon (316), das betriebsbereit an den Audio-CODEC gekoppelt ist und ein Eingangsaudiosignal in analoge Audiodaten umwandelt.

15. Integrierte WLAN Transceiver-Schaltung nach Anspruch 1, die des Weiteren dadurch gekennzeichnet ist, dass die WLAN Schnittstelle die Bluetooth Spezifikation unterstützt.

Revendications

1. Circuit intégré d’émission-réception de Réseau Local Sans Fil (WLAN) qui dessert des communications vocales dans un WLAN avec au moins un dispositif de WLAN, le circuit intégré d’émission-réception de WLAN comprenant :

- une interface de WLAN (454, 456) qui communique sans fil avec l’au moins un dispositif de WLAN (110, 112, 114, 115, 116, 118, 120, 122, 123, 124, 126, 128, 130, 132, 134, 204, 208, 210, 254, 258, 260) ;
- un tampon d’entrée (522) opérationnellement couplé à l’interface de WLAN qui reçoit des données audio en paquets de l’interface de WLAN ;
- un contrôleur de tampon d’entrée (523) opérationnellement couplé au tampon d’entrée ;
- un processeur (502) opérationnellement couplé à l’interface de WLAN, au tampon d’entrée et au contrôleur de tampon d’entrée ; et
- dans lequel lorsque le tampon d’entrée satisfait à un seuil de vacance de tampon, le processeur et le contrôleur de tampon d’entrée opèrent en coopération pour remplir au moins une partie du tampon d’entrée avec des données audio en paquets, les données audio en paquets comprenant une ou plusieurs données copiées à partir du tampon d’entrée et des données prédéterminées.

2. Circuit intégré d’émission-réception de WLAN selon la revendication 1, caractérisé en outre en ce que :

- pendant une première opération lorsque le tampon d’entrée satisfait au seuil de vacance de tampon, le processeur opère pour remplir au moins une partie du tampon d’entrée avec les données audio en paquets ; et
- pendant une deuxième opération lorsque le tampon d’entrée satisfait au seuil de vacance de tampon, le contrôleur de tampon d’entrée opère pour remplir au moins une partie du tampon d’entrée avec les données audio en paquets.

3. Circuit intégré d’émission-réception de WLAN selon la revendication 2, caractérisé en outre en ce que :

- la première opération est effectuée lorsque le processeur est disponible ; et
- la deuxième opération est effectuée lorsque le processeur est indisponible.

4. Circuit intégré d’émission-réception de WLAN selon la revendication 2, caractérisé en outre en ce que :

- pendant la première opération, le processeur remplit au moins une partie du tampon d’entrée avec les données audio en paquets copiées à partir du tampon d’entrée ; et
- pendant la deuxième opération, le contrôleur de tampon d’entrée remplit au moins une partie du
tampon d’entrée avec les données prédéterminées.

5. Circuit intégré d’émission-réception de WLAN selon la revendication 1, caractérisé en outre en ce que :

- le processeur opère pour remplir au moins une partie du tampon d’entrée avec les données audio en paquets copiées à partir du tampon d’entrée ; et
- le processeur sélectionne les données audio en paquets copiées à partir du tampon d’entrée de telle sorte qu’un schéma audio de données audio en paquets dans le tampon d’entrée est maintenu.

6. Circuit intégré d’émission-réception de WLAN selon la revendication 5, caractérisé en outre en ce que :

- des données audio en paquets additionnelles sont reçues par l’interface de WLAN destinées au tampon d’entrée ; et
- le processeur n’écrit qu’une partie des données en paquets additionnelles dans le tampon d’entrée de telle sorte que le schéma audio de données audio en paquets dans le tampon d’entrée est maintenu.

7. Circuit intégré d’émission-réception de WLAN selon la revendication 1, caractérisé en outre en ce que :

- un tampon de sortie (516) opérationnellement couplé à l’interface de WLAN qui reçoit des données audio en paquets et qui transmet les données audio en paquets à l’interface de WLAN ;
- un contrôleur de tampon de sortie (517) opérationnellement couplé au tampon de sortie et au processeur ; et
- dans lequel lorsque le tampon de sortie satisfait à un seuil de vacance de tampon, le processeur et le contrôleur de tampon de sortie opèrent en coopération pour remplir au moins une partie du tampon de sortie avec des données audio en paquets.

8. Circuit intégré d’émission-réception de WLAN selon la revendication 7, caractérisé en outre en ce que :

- pendant une première opération lorsque le tampon de sortie satisfait au seuil de vacance de tampon, le processeur opère pour remplir au moins une partie du tampon de sortie avec des données audio en paquets ; et
- pendant une deuxième opération lorsque le tampon de sortie satisfait au seuil de vacance de tampon, le contrôleur de tampon de sortie opère pour remplir au moins une partie du tampon de sortie avec des données audio en paquets.

9. Circuit intégré d’émission-réception de WLAN selon la revendication 8, caractérisé en outre en ce que :

- la première opération est effectuée lorsque le processeur est disponible ; et
- la deuxième opération est effectuée lorsque le processeur est indisponible.

10. Circuit intégré d’émission-réception de WLAN selon la revendication 8, caractérisé en outre en ce que :

- pendant la première opération, le processeur remplit au moins une partie du tampon de sortie avec des données audio en paquets copiées à partir du tampon de sortie ; et
- pendant la deuxième opération, le contrôleur de tampon de sortie remplit au moins une partie du tampon de sortie avec des données prédéterminées.

11. Circuit intégré d’émission-réception de WLAN selon la revendication 7, caractérisé en outre en ce que :

- le processeur opère pour remplir au moins une partie du tampon de sortie avec des données audio en paquets copiées à partir du tampon de sortie ; et
- le processeur sélectionne les données audio en paquets copiées à partir du tampon de sortie de telle sorte qu’un schéma audio de données audio en paquets dans le tampon de sortie est maintenu.

12. Circuit intégré d’émission-réception de WLAN selon la revendication 7, caractérisé en outre par :

- un transcodeur (602) opérationnellement couplé au tampon d’entrée et au tampon de sortie qui convertit des données audio en paquets en données audio Modulées par Impulsions et Codage (MIC) et qui convertit des données audio MIC en données audio en paquets ; et
- un Codeur-Décodeur (CODEC) (314) opérationnellement couplé au transcodeur qui convertit des données audio MIC en données audio analogiques et qui convertit des données audio analogiques en données audio MIC.

13. Circuit intégré d’émission-réception de WLAN selon la revendication 12, dans lequel le transcodeur exécute en outre des opérations de décodage choisies parmi le groupe consistant en des opérations selon la loi A, des opérations selon la loi μ et des opérations de Modulation Delta Adaptive (CVSD).

14. Circuit intégré d’émission-réception de WLAN selon
la revendication 12, dans lequel le circuit intégré d’émission-réception de WLAN est contenu dans un casque-micro sans fil qui est en outre caractérisé par :

- un haut-parleur (318) opérationnellement couplé au CODEC audio qui convertit des données audio analogiques en un signal audio de sortie ;
- un microphone (316) opérationnellement couplé au CODEC audio qui convertit un signal audio d’entrée en données audio analogiques.

15. Circuit intégré d’émission-réception de WLAN selon la revendication 1, caractérisé en outre en ce que l’interface de WLAN supporte la Spécification Bluetooth.
FIG. 8

START

NORMAL OPERATIONS (FILL BUFFER WITH DATA)

VACANCY THRESHOLD MET

PROCESSOR FILL?

BUFFER CONTROLLER WRITES DEFAULT DATA INTO BUFFER

PROCESSOR COPIES/WRITES DATA INTO BUFFER

800

802

804

806

808

810

CORRESPONDING
AUDIO SIGNAL

BUFFER FULL OF AUDIO DATA

FIG. 9A

CORRESPONDING
AUDIO SIGNAL

BUFFER PARTIALLY FULL
OF AUDIO DATA

FIG. 9B

VACANCY REACHES
BUFFER VACANCY THRESHOLD
FIG. 9C
SOFTWARE COPIED/FILLED DATA (TO MAINTAIN AUDIO PATTERN) [FIRST FILLING OPERATION]
COPY
SOFTWARE COPIED/FILLED DATA (TO MAINTAIN AUDIO PATTERN) [SECOND FILLING OPERATION]
COPY
CORRESPONDING AUDIO SIGNAL

FIG. 9D
SOFTWARE COPIED/FILLED DATA (TO MAINTAIN AUDIO PATTERN) [FIRST FILLING OPERATION]
SOFTWARE COPIED/FILLED DATA (TO MAINTAIN AUDIO PATTERN) [SECOND FILLING OPERATION]
HARDWARE FILLED DATA (10101010 BIT PATTERN - AUDIO PATTERN NOT MAINTAINED)
QUIET DATA
FIG. 11

INCOMING DATA (OUT OF PHASE WITH COPIED DATA BY THREE BYTES)

OUT OF PHASE PORTION (3 AUDIO DATA PACKETS)

COPY

CORRESPONDING AUDIO SIGNAL

SOFTWARE COPIED/FILLED DATA (TO MAINTAIN AUDIO PATTERN) [FIRST FILLING OPERATION]

SOFTWARE COPIED/FILLED DATA (TO MAINTAIN AUDIO PATTERN) [SECOND FILLING OPERATION]

IN PHASE PORTION OF INCOMING DATA WRITTEN INTO BUFFER (TO MAINTAIN AUDIO PATTERN)
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• EP 0917316 A [0005]
• EP 1119137 A [0006]