Title: PORTABLE ELECTRONIC DEVICES INCLUDING MULTI-MODE MATCHING CIRCUITS AND METHODS OF OPERATING THE SAME

Abstract: Portable electronic devices are provided including a housing, an antenna associated with the housing and a multi-mode matching circuit operatively associated with the antenna. The multi-mode matching circuit is configured to operate in a first mode when the housing of the portable electronic device is in a first configuration and in a second mode when the housing of the portable electronic device is in a second configuration. Related methods of operating portable electronic devices including multi-mode matching circuits are also discussed.
PORTABLE ELECTRONIC DEVICES INCLUDING MULTI-MODE MATCHING CIRCUITS AND METHODS OF OPERATING THE SAME

FIELD OF THE INVENTION

The present invention relates to portable electronic devices and, more particularly, to adaptive antennas of portable electronic devices and methods of operating the same.

BACKGROUND OF THE INVENTION

Recently, there has been a proliferation in the field of wireless communications. Devices such as cordless and cellular telephones, pagers, wireless modems, wireless email devices, personal digital assistants (PDAs) with communication functions, and other portable electronic devices are becoming commonplace. To preserve the integrity of transmission to and from such devices, it is important to maintain a clear, strong radio signal.

A gain of an antenna of a portable electronic device, such as a pager or a cellular telephone be may be lowered by the presence of certain objects such as metallic objects and/or by ground plane conditions, i.e. the antenna may be detuned. When the antenna is detuned, the portable electronic device may have a shorter operating radius and may experience poor in-building performance or fringe performance, i.e. performance at the edge of a cell.

Embedded antennas are common in conventional portable electronic devices.

A signal transmitted from or received by an antenna which is integrated into a portable electronic device may encounter several boundaries, including for example a printed circuit board, a battery, a display screen, a device housing, a device carrying case and any of a multitude of other elements or components associated with the device, in addition to a user's body. All such boundaries may influence the propagation of the signal and the surrounding impedance seen by the antenna.

Furthermore, when a portable electronic device is in operation, it may be turned in different directions and may not be optimally aligned to receive and/or transmit signals. At least a portion of signal power losses associated with antennas in portable electronic devices is due to signal reflection. Ideally, all of the signal power
of a signal input to an antenna would be converted into an electromagnetic signal and radiated. Likewise, ideally all electromagnetic energy received at the antenna would be converted into an electrical signal and provided to receive electronics. However, in reality the characteristic impedance of the portable electronic device interacts with the characteristic impedance of the antenna and unless these impedances are equal, some signal reflection will likely occur.

Accordingly, some conventional portable electronic devices may include an impedance matching circuit between communication circuitry of the portable electronic device and an antenna. Impedance matching circuits typically include an LC circuit with inductance and capacitance elements connected in any one of a number of standard matching circuit topologies. However, some conventional impedance matching circuits may be configured during manufacture of the portable electronic device and may not provide for adjustments in the field. Thus, the matching circuit may not adapt to environmental conditions that may influence the impedance affecting the antenna. For example, over the air signals transmitted and received by an antenna of a portable electronic device may encounter such dielectric boundaries as the housing of device, printed circuit boards, electronic components in the housing, batteries for powering the device, display, input device and the body of a device user, all of which may influence the impedance seen by the antenna. Such impedances can be estimated, but are dependent upon the orientation of the device with respect to its surroundings. Thus, even the best estimates of impedance matching requirements may not remain accurate for all device operating conditions.

To address possible problems with matching circuits discussed above, adaptive antenna assemblies have been provided in some conventional portable electronic devices such that the antenna may adapt to environmental conditions. For example, adaptive antennas are discussed in United States Patent Nos. 6,570,462 to Edmonson et al., 5,778,308 to Sroka et al. and 5,564,086 to Cygan et al. However, improved antenna matching circuits may be desirable.

SUMMARY OF THE INVENTION

Embodiments of the present invention provide portable electronic devices including a housing and an antenna associated with the housing. The portable electronic device also includes a multi-mode matching circuit operatively associated with the antenna. The multi-mode matching circuit is configured to operate in a first
mode when the housing of the portable electronic device is in a first configuration and in a second mode when the housing of the portable electronic device is in a second configuration.

In some embodiments of the present invention, the portable electronic device may further include a sensor operatively associated with the multi-mode matching circuit. The sensor may be configured to detect the first configuration of the housing of the portable electronic device and/or the second configuration of the housing of the portable electronic device. The multi-mode matching circuit may be configured to adjust at least one parameter of the multi-mode matching circuit responsive to the first and/or second detected configurations of the housing of the portable electronic device.

In further embodiments of the present invention, the multi-mode matching circuit may include an impedance matching circuit. The at least one parameter of the multi-mode matching circuit may include a resistance, a capacitance and/or an inductance and may be stored in a lookup table.

In still further embodiments of the present invention, the portable electronic device may further include a processor operatively associated with the sensor. The processor may be configured to locate the at least one parameter in the lookup table using the first and/or second detected configuration of the housing of the portable electronic device as a pointer for an entry in the lookup table.

In some embodiments of the present invention, the portable electronic device may further include a timer circuit operatively associated with the sensor. The sensor may be further configured to detect the first and/or second configuration of the housing of the portable electronic device responsive to expiration of the timer circuit. The timer, for example, may be configured to trigger periodic detection of the housing configuration.

In further embodiments of the present invention, the portable electronic device may be a portable electronic device having a flip configuration. The portable electronic device may be in the first configuration when the portable electronic device is open and the portable electronic device may be in the second configuration when the portable electronic device is closed.

While the present invention is described above primarily with reference to portable electronic devices, methods of operating portable electronic devices are also provided.
BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a schematic diagram of mobile terminals according to some embodiments of the present invention and an exemplary base station transceiver.

Figures 2A and 2B are diagrams illustrating configurations of portable electronic devices according to some embodiments of the present invention.

Figure 3A and 3B are diagrams illustrating configurations of portable electronic devices according to further embodiments of the present invention.

Figure 4 is an exemplary lookup table according to some embodiments of the present invention.

Figure 5 is a flowchart illustrating operations of portable electronic devices according to some embodiments of the present invention.

Figure 6 is a flowchart illustrating operations of portable electronic devices according to further embodiments of the present invention.

DETAILED DESCRIPTION

The present invention now will be described more fully hereinafter with reference to the accompanying drawings, in which illustrative embodiments of the invention are shown. In the drawings, the relative sizes of regions or features may be exaggerated for clarity. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. It will be understood that when an element is referred to as being "coupled" or "connected" to another element, it can be directly coupled or connected to the other element or intervening elements may also be present. In contrast, when an element is referred to as being "directly coupled" or "directly connected" to another element, there are no intervening elements present. Like numbers refer to like elements throughout. As used herein the term "and/or" includes any and all combinations of one or more of the associated listed items.

Embodiments of the present invention will now be described below with respect to Figures 1 through 6. Embodiments of the present invention provide portable electronic devices including multi-mode matching circuits. The multi-mode matching circuit may operate in a first mode when the housing of the portable electronic device and/or the antenna is in a first configuration and a second mode
when the housing of the portable electronic device and/or the antenna is in a second configuration. In particular, a sensor may be provided that is configured to detect the configuration of the housing of the portable electronic device and/or the antenna and adjust the mode of the multi-mode matching circuit responsive to the detected configuration of the housing of the portable electronic device and/or the antenna. Accordingly, an impedance of multi-mode matching circuits according to embodiments of the present invention may be adjusted based on the configuration of the housing of the portable electronic device and/or the antenna and, therefore, portable electronic devices may be provided having improved transmission characteristics, *i.e.*, more radiation and less reflection of the signal. Receive characteristics of the portable electronic device may also be improved.

The present invention is described below with reference to schematic and block diagrams of mobile terminals including multi-mode matching circuits according to some embodiments of the present invention. Although multi-mode matching circuits are discussed herein as being included as part of a mobile terminal, for example, mobile terminal 22 of Figure 1, embodiments of the present invention are not limited to this configuration. Multi-mode matching circuits according to embodiments of the present invention may be included in any portable electronic device that utilizes an antenna suitable for operation with one or more matching circuits without departing from the scope of the present invention.

Figure 1 illustrates an exemplary radiotelephone communication system, in accordance with embodiments of the present invention, which includes the mobile terminal 22 and a base station transceiver 24 of a wireless communications network. The mobile terminal 22 includes a portable housing 23 and may include a man machine interface 26, a display 28, a timer circuit 30, a speaker 32, a microphone 34, a transceiver 36, and a memory 38, any of which may communicate with a processor 42. Furthermore, mobile terminals 22 according to embodiments of the present invention may further include a multi-mode matching circuit 27 according to embodiments of the present invention and a sensor 29 operatively associated with the multi-mode matching circuit 27, which also communicate with a controller/processor 42. The processor 42 can be any commercially available or custom microprocessor.

The transceiver 36 typically includes a transmitter circuit 44 and a receiver circuit 46, which respectively transmit outgoing radio frequency signals to the base station transceiver 24 and receive incoming radio frequency signals, such as voice
signals, from the base station transceiver 24 via an antenna 48. The antenna 48 may be an embedded antenna, a retractable antenna or any antenna known to those having skill in the art without departing from the scope of the present invention. The radio frequency signals transmitted between the mobile terminal 22 and the base station transceiver 24 may comprise both traffic and control signals (e.g., paging signals/messages for incoming calls), which are used to establish and maintain communication with another party or destination. The processor 42 may support various functions of the mobile terminal 22, including processing detected configurations of the housing of the mobile terminal 22 and/or the antenna 48.

As used herein, the term "portable electronic device" or "mobile terminal" may include: a cellular radiotelephone with or without a multi-line display; a Personal Communications System (PCS) terminal that may combine a cellular radiotelephone with data processing, facsimile and data communications capabilities; a Personal Data Assistant (PDA) that can include a radiotelephone, pager, Internet/intranet access, Web browser, organizer, calendar and/or a global positioning system (GPS) receiver; a gaming device, an audio video player, and a conventional laptop and/or palmtop portable computer that may include a radiotelephone transceiver.

In some embodiments of the present invention, the base station transceiver 24 comprises the radio transceiver(s) that defines an individual cell in a cellular network and communicates with the mobile terminal 22 and other mobile terminals in the cell using a radio-link protocol. Although only a single base station transceiver 24 is shown, it will be understood that many base station transceivers may be connected through, for example, a mobile switching center and other devices to define a wireless communications network.

Although the present invention may be embodied in communication devices or systems, such as the mobile terminal 22, the present invention is not limited to such devices and/or systems. Instead, the present invention may be embodied in any apparatus that may utilize a multi-mode matching circuit according to embodiments of the present invention.

In some embodiments of the present invention, the multi-mode matching circuit 27 is operatively associated with the antenna 48. The multi-mode matching circuit 27 may be configured to operate in a first mode when the housing of the portable electronic device is in a first configuration and in a second mode when the housing of the portable electronic device is in a second configuration.
embodiments of the present invention, the portable electronic device may be a mobile terminal having a flip configuration as illustrated in Figures 2A and 2B. The housing of mobile terminal may be in the first configuration 200 may be when the mobile terminal is open as illustrated in Figure 2A. Similarly, the housing of the mobile terminal may be in the second configuration 205 when the mobile terminal is closed as illustrated in Figure 2B.

As discussed above, a sensor 29 may be operatively associated with the multi-mode matching circuit. The sensor 29 may be configured to detect the configuration of the housing of the portable electronic device. The multi-mode matching circuit 27 may be, for example, an impedance matching circuit and may be configured to adjust one or more parameters or tuning coefficients, for example, a resistance, capacitance and/or an inductance, of the multi-mode matching circuit responsive to the detected configuration of the housing of the mobile terminal 22. The sensor 29 may be a mechanical sensor, an electrical sensor, an acoustic sensor or a combination of any of these without departing from the scope of the present invention. Operations of sensors are known to those having skill in the art and will not be discussed further herein.

It will be understood that although multi-mode matching circuits according to embodiments of the present invention are discussed herein as having first and second modes of operation, multi-mode matching circuits according to embodiments of the present invention are not limited to this configuration. Multi-mode matching circuits according to embodiments of the present invention may have three or more modes without departing from the scope of the present invention. For example, in embodiments of the present invention wherein the mobile terminal has a flip configuration, the mobile terminal may not just be open 200 or closed 205 (Figures 2A and 2B), the mobile terminal may be a quarter open, half open, three quarters open and the like. Thus, each of the configurations of the mobile terminal may have a corresponding mode of the multi-mode matching circuit 27.

In some embodiments of the present invention, the parameters of the multi-mode matching circuit may be stored in a lookup table, for example, the lookup table 400 illustrated in Figure 4. The lookup table may be created during calibration of the mobile terminal during manufacturing. The calibration process may be performed on each mobile terminal individually or may be performed on two or more mobile terminals simultaneously without departing from the scope of the present invention.
The processor 42, operatively associated with the sensor 29, may be configured to locate the parameters of the multi-mode matching circuit 27 in the lookup table 400 using, for example, the detected configuration of the housing of the mobile terminal as a pointer for an entry in the lookup table.

It will be understood that the lookup table may be predefined and loaded onto a mobile terminal or a plurality of mobile terminals without departing from the scope of the present invention. In other words, the lookup table may not be created during calibration of the mobile terminal during manufacturing, it may be preexisting and simply loaded onto the mobile terminal during manufacturing.

For example, if the mobile terminal is closed, i.e., the angle 210 between a first portion 220 of the mobile terminal and a second portion 225 of the mobile terminal is 0 degrees, the parameters for the matching circuit 27 may be R1, C1 and/or L1. Similarly, if the angle 210 between a first portion 220 of the mobile terminal and a second portion 225 of the mobile terminal is 45 degrees, the parameters for the multi-mode matching circuit 27 may be R2, C2 and/or L2. The parameters for multi-mode matching circuit when the angle 210 is 90, 135 and 180 degrees are set out in the lookup table 400 of Figure 4.

It will be understood that the angles provided in the lookup table 400 are provided for exemplary purposes only and embodiments of the present invention should not be limited to these angles. It will be further understood that the angles that change are not limited to the angles provided in, for example, Figure 2A, any possible angle change between first and second portions of the mobile terminal may be used without departing from the scope of the present invention. Furthermore, details with respect to the parameters (tuning coefficients) of the multi-mode matching circuit 27 and operations thereof are known to those having skill in the art and will not be discussed further herein.

In some embodiments of the present invention, a timer circuit 30 may be operatively associated with the sensor 29. The sensor 29 may be further configured to repeatedly detect the configuration of the mobile terminal responsive to expiration of the timer circuit 30. It will be understood that although embodiments of the present invention may be discussed herein with respect to mobile terminals having a flip configuration and/or retractable antennas, embodiments of the present invention are not limited to these configurations. Multi-mode matching circuits according to embodiments of the present invention may be used in any portable electronic device
having multiple configurations. For example, mobile terminals having a jack-knife configuration or a camera configured to protrude from the mobile terminal during camera functionality and to retract when not in use are within the scope of the present invention.

It will be further understood that although embodiments of the present invention are discussed herein with respect to configurations of the housing of the portable electronic device, embodiments of the present invention are not limited to this configuration. For example, in some embodiments of the present invention the multi-mode matching circuit 27 may switch between first and second modes responsive to a position of the antenna relative to the housing of the mobile terminal. For example, the multi-mode matching circuit 27 may operate in a first mode when a retractable antenna is in a first retracted position 300 relative to the housing of the mobile terminal as illustrated in Figure 3A. Similarly, the multi-mode matching circuit may operate in a second mode when the retractable antenna is in a second extended position 305 relative to the housing of the mobile terminal as illustrated in Figure 3B.

Over the air signals transmitted and received by an antenna 48 of a portable electronic device may encounter such electromagnetic boundaries as the housing of device, printed circuit boards, electronic components in the housing, batteries for powering the device, display, input device and the body of a device user, all of which may influence the impedance seen by the antenna. Portable electronic devices including multi-mode matching circuits 27 according to embodiments of the present invention may provide the ability to change the impedance of the multi-mode matching circuit based on the configuration of the housing and/or the antenna so that a strong signal may be transmitted and/or received regardless of the orientation of the portable electronic device with respect to its surroundings. Accordingly, portable electronic devices including multi-mode matching circuits according to embodiments of the present invention may have relatively higher gains and higher proportions of signal radiation. Thus, embodiments of the present invention may provide portable electronic devices having improved radio performance characteristics.

Referring now to Figure 5, operations of portable electronic devices including multi-mode matching circuits according to some embodiments of the present invention will be discussed. Operations begin at block 500 by detecting a configuration of a housing of the portable electronic device. Detection of the
configuration may be performed when the portable electronic device is powered on and may be periodically detected when a change of configuration is detected or a timer circuit expires. In embodiments of the present invention where the housing of the portable electronic device includes a mobile terminal having a flip configuration, the configuration of the mobile terminal may be open, closed and/or partially open/closed. The configuration of the housing of the portable electronic device may be detected by a sensor operatively associated with a multi-mode matching circuit. One or more parameters of the multi-mode matching circuit may be adjusted based on the detected configuration of the housing of the portable electronic device (block 510).

Referring now to the flowchart of Figure 6, operations of portable electronic devices including multi-mode matching circuits according to further embodiments of the present invention will be discussed. Operations begin at block 600 by detecting a configuration of a housing of the portable electronic device. The configuration of the mobile terminal may be detected by a sensor operatively associated with a multi-mode matching circuit of the portable electronic device. One or more parameters of the multi-mode matching circuit may be located in a lookup table (block 610). The lookup table may be created during calibration of the portable electronic device during manufacturing. The calibration process may be performed on each portable electronic device individually or may be performed on two or more portable electronic devices simultaneously without departing from the scope of the present invention. The detected configuration of the housing of the portable electronic device may be used as a pointer for an entry in the lookup table. In some embodiments of the present invention, the sensor may be operatively associated with a processor, which may be configured to locate the one or more parameters in the lookup table.

The one or more parameters located in the lookup table may be used to adjust the multi-mode matching circuit to adapt the impedance of the antenna to environmental conditions (block 620). It is determined if the configuration of the phone has changed or a timer has expired (block 630). If it is determined that the configuration has changed and/or a timer has expired (block 630), operations return to block 600 and repeat. If it is determined that the configuration has not changed and/or the timer has not expired (block 630), operations remain at block 630 until the configuration of the mobile terminal changes and/or the timer expires.
It will be understood that although the methods discussed with respect to the flowcharts of Figures 5 and 6 are discussed with respect to detection of a configuration of the housing of a portable electronic device at block 500 and 600, respectively, embodiments of the present invention are not limited to this configuration. In some embodiments of the present invention operations of block 500 and/or 600 may include detecting a position of an antenna relative to the housing of the portable electronic device as discussed above without departing from the scope of the present invention.

As briefly discussed above with respect to Figures 1 through 6, embodiments of the present invention provide portable electronic devices having multi-mode matching circuits. One or more parameters of the multi-mode matching circuit may be adjusted based on a detected configuration of the housing of the portable electronic device and/or position of the antenna relative to the housing of the portable electronic device. Adjusting the parameters of the matching circuit may provide the ability to change the impedance of the multi-mode matching circuit based on the configuration of the housing and/or the antenna so that a strong signal may be transmitted and/or received regardless of the orientation or configuration of the portable electronic device with respect to its surroundings. Accordingly, portable electronic devices including multi-mode matching circuits according to embodiments of the present invention may experience higher gains and/or less reflection due to the adaptability of the antenna.

In the drawings and specification, there have been disclosed typical illustrative embodiments of the invention and, although specific terms are employed, they are used in a generic and descriptive sense only and not for purposes of limitation, the scope of the invention being set forth in the following claims.
THAT WHICH IS CLAIMED IS:

1. A portable electronic device, comprising:
 a housing;
 an antenna associated with the housing; and
 a multi-mode matching circuit operatively associated with the antenna, the
 multi-mode matching circuit being configured to operate in a first mode when the
 housing of the portable electronic device is in a first configuration and in a second
 mode when the housing of the portable electronic device is in a second configuration.

2. The portable electronic device of Claim 1, further comprising a sensor
 operatively associated with the multi-mode matching circuit, wherein the sensor is
 configured to detect the first configuration of the housing of the portable electronic
 device and/or the second configuration of the housing of the portable electronic
 device and wherein the multi-mode matching circuit is configured to adjust at least
 one parameter of the multi-mode matching circuit responsive to the first and/or
 second detected configurations of the housing of the portable electronic device.

3. The portable electronic device of Claim 2 wherein the multi-mode
 matching circuit comprises an impedance matching circuit and wherein the at least
 one parameter of the multi-mode matching circuit comprises a resistance, a
 capacitance and/or an inductance.

4. The portable electronic device of Claim 2 wherein the at least one
 parameter is stored in a lookup table, the portable electronic device further comprising
 a processor operatively associated with the sensor, the processor being configured to
 locate the at least one parameter in the lookup table using the first and/or second
 detected configuration of the housing of the portable electronic device as a pointer for
 an entry in the lookup table.

5. The portable electronic device of Claim 2, further comprising a timer
 circuit operatively associated with the sensor, wherein the sensor is further configured
 to detect the first and/or second configuration of the housing of the portable electronic
 device responsive to expiration of the timer circuit.
6. The portable electronic device of Claim 1 wherein the portable electronic device comprises a portable electronic device having a flip configuration, wherein the housing of the portable electronic device is in the first configuration when the portable electronic device is open and wherein the housing of the portable electronic device is in the second configuration when the portable electronic device is closed.

7. A mobile terminal, comprising:
 a housing;
 an antenna associated with the housing;
 a multi-mode matching circuit operatively associated with the antenna; and
 a sensor operatively associated with the multi-mode matching circuit and configured to detect a position of the antenna relative to the housing and/or a configuration of the housing of the mobile terminal, wherein the multi-mode matching circuit is configured responsive to the detected position of the antenna and/or the configuration of the housing of the mobile terminal.

8. The mobile terminal of Claim 7, wherein the multi-mode matching circuit is further configured to operate in a first mode when the detected position is a first detected position relative to the housing and/or the housing of the mobile terminal is in a first configuration and in a second mode when the detected position is a second detected position relative to the housing and/or the housing of the mobile terminal is in a second configuration and wherein the multi-mode matching circuit is configured by adjusting at least one parameter of the multi-mode matching circuit responsive to the first and/or second detected position of the antenna and/or the first and/or second configuration of the housing of the mobile terminal.

9. The mobile terminal of Claim 8, wherein the multi-mode matching circuit comprises an impedance matching circuit and wherein at least one of the parameter of the multi-mode matching circuit comprises a resistance, a capacitance and/or an inductance.

10. The mobile terminal of Claim 8 wherein the at least one parameter is stored in a lookup table, the mobile terminal further comprising a processor
operatively associated with the sensor, the processor being configured to locate the at
least one parameter in the lookup table using the first and/or second detected position
and/or the first and/or second configuration as a pointer for an entry in the lookup
table.

11. The mobile terminal of Claim 8 further comprising a timer circuit
operatively associated with the sensor, wherein in the sensor is further configured to
detect the position of the antenna relative to the housing and/or the configuration of
the housing of the mobile terminal responsive to expiration of the timer circuit.

12. The mobile terminal of Claim 8 wherein the mobile terminal comprises
a mobile terminal having a flip configuration, wherein the housing of the mobile
terminal is in the first configuration when the mobile terminal is open and wherein the
housing of the mobile terminal is in the second configuration when the mobile
terminal is closed.

13. The mobile terminal of Claim 8 wherein the antenna comprises a
retractable antenna, wherein the antenna is in the first position when the retractable
antenna is retracted and wherein the antenna is in the second position when the
retractable antenna is extended.

14. A method of operating a portable electronic device, comprising:
detecting a configuration of a housing of the portable electronic device; and
adjusting a multi-mode matching circuit based on the detected configuration of
the housing of the portable electronic device.

15. The method of Claim 14 wherein the multi-mode matching circuit is
operatively associated with an antenna of the portable electronic device and wherein
adjusting the multi-mode matching circuit comprises adjusting at least one parameter
of the multi-mode matching circuit responsive to the detected configuration of the
housing of the portable electronic device.
16. The method of Claim 15 wherein adjusting at least one parameter of the multi-mode matching circuit comprises adjusting a resistance, a capacitance and/or an inductance of the multi-mode matching circuit.

17. The method of Claim 16 wherein the at least one parameter is stored in a lookup table, the method further comprising locating the at least one parameter in the lookup table using the detected configuration as a pointer for an entry in the lookup table.

18. The method of Claim 14 wherein detecting a configuration of the housing of the portable electronic device further comprises repeatedly detecting the configuration of the housing of the portable electronic device responsive to a detected change in position of the housing.

19. The method of Claim 14 wherein detecting a configuration of the housing of the portable electronic device further comprises periodically detecting the configuration of the housing of the portable electronic device responsive to expiration of a timer circuit.

20. The method of Claim 14, further comprising:
operating the multi-mode matching circuit in a first mode when the detected configuration is a first detected configuration; and
operating the multi-mode matching circuit in a second mode when the detected configuration is a second detected configuration.

21. The method of Claim 20 wherein the portable electronic device comprises a portable electronic device having a flip configuration, wherein the housing of the portable electronic device is in the first configuration when the portable electronic device is open and wherein the housing of the portable electronic device is in the second configuration when the portable electronic device is closed.
22. A method of operating a mobile terminal, comprising:
detecting a position of an antenna relative to a housing of the mobile terminal
and/or a configuration of the housing of the mobile terminal; and
configuring a multi-mode matching circuit responsive to the detected position
of the antenna and/or the configuration of the housing of the mobile terminal.

23. The method of Claim 22 wherein the multi-mode matching circuit is
operatively associated with the antenna of the mobile terminal and wherein
configuring the multimode matching circuit comprises adjusting at least one
parameter of the multi-mode matching circuit responsive the detected position of the
antenna and/or the configuration of the housing of the mobile terminal.

24. The method of Claim 23 wherein adjusting at least one parameter of
the multi-mode matching circuit comprises adjusting a resistance, a capacitance
and/or an inductance of the multi-mode matching circuit.

25. The method of Claim 23 wherein the at least one parameter is stored in
a lookup table, the method further comprising locating the at least one parameter in
the lookup table using the detected position and/or configuration as a pointer for an
entry in the lookup table.

26. The method of Claim 22 wherein detecting a position of an antenna
relative to a housing of the mobile terminal and/or a configuration of the housing
further comprises repeatedly detecting the position and/or configuration responsive to
a detected change in position of the antenna relative to the housing and/or a
configuration of the housing.

27. The method of Claim 22 wherein detecting a position of an antenna
relative to a housing of the mobile terminal and/or a configuration of the housing
further comprises periodically detecting the position and/or the configuration
responsive to expiration of a timer circuit.
28. The method of Claim 22, further comprising:
operating the multi-mode matching circuit in a first mode when the detected
position and/or detected configuration is a first detected position and/or detected
configuration; and

operating the multi-mode matching circuit in a second mode when the
detected position and/or the detected configuration is a second detected position
and/or detected configuration.

29. The method of Claim 28 wherein the mobile terminal comprises a
mobile terminal having a flip configuration, wherein the housing of the portable
electronic device is in the first detected configuration when the mobile terminal is
open and wherein the housing of the mobile terminal is in the second detected
configuration when the mobile terminal is closed.

30. The method of Claim 28 wherein the antenna comprises a retractable
antenna, wherein the antenna is in the first detected position when the retractable
antenna is retracted and wherein the antenna is in the second detected position when
the retractable antenna is extended.
<table>
<thead>
<tr>
<th>ANGLE</th>
<th>RESISTANCE</th>
<th>CAPACITANCE</th>
<th>INDUCTANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (CLOSED)</td>
<td>V1</td>
<td>C1</td>
<td>L1</td>
</tr>
<tr>
<td>45</td>
<td>V2</td>
<td>C2</td>
<td>L2</td>
</tr>
<tr>
<td>90</td>
<td>V3</td>
<td>C3</td>
<td>L3</td>
</tr>
<tr>
<td>135</td>
<td>V4</td>
<td>C4</td>
<td>L4</td>
</tr>
<tr>
<td>180 (OPEN)</td>
<td>V5</td>
<td>C5</td>
<td>L5</td>
</tr>
</tbody>
</table>

FIG. 4

FIG. 5
BEGIN

DETECT CONFIGURATION OF THE PORTABLE ELECTRONIC DEVICE

USE DETECTED CONFIGURATION TO LOCATE PARAMETERS IN A LOOK-UP TABLE

ADJUST AT LEAST ONE PARAMETER OF MULTI-MODE MATCHING CIRCUIT

HAS CONFIGURATION CHANGED AND/OR TIMER EXPIRED?

FIG. 6
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

| IPC | H04B1/18 | H04M1/02 |

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

| IPC | H04B | H04M | H04Q |

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic database consulted during the international search (name of database and, where practical, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>column 1, line 3 - line 5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>column 2, line 2 - line 48</td>
<td></td>
</tr>
<tr>
<td></td>
<td>column 3, line 50 - line 52</td>
<td></td>
</tr>
<tr>
<td></td>
<td>column 4, line 18 - line 46</td>
<td></td>
</tr>
<tr>
<td></td>
<td>figures 1-8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>claims 1,2</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>WO 03/103157 A (MOTOROLA INC) 11 December 2003 (2003-12-11)</td>
<td>1,4,7, 10,14, 17,22,25</td>
</tr>
<tr>
<td></td>
<td>claims 19,29</td>
<td></td>
</tr>
<tr>
<td></td>
<td>figures 1-3</td>
<td></td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of box C.

X Patent family members are listed in annex.

* Special categories of cited documents:
 A document defining the general state of the art which is not considered to be of particular relevance
 E earlier document but published on or after the international filing date
 L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 O document referring to an oral disclosure, use, exhibition or other means
 P document published prior to the international filing date but later than the priority date claimed

*"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

*"S" document member of the same application

Date of the actual completion of the international search

10 February 2005

Date of mailing of the international search report

23/02/2005

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2 NL-2280 HV Rijswijk, Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016

Authorized officer

Avilés Martinez, L

Form PCT/ISA/2/10 (second sheet) (January 2004)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>EP 1 258 943 A (MITSUBISHI DENKI KABUSHIKI KAISHA) 20 November 2002 (2002-11-20)</td>
<td>1,2,7,8, 14,15, 20-22</td>
</tr>
<tr>
<td></td>
<td>paragraphs ‘0031!' – ‘0035!' claims 1,2,6 figures 10-12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>paragraphs ‘0017!', ‘0018!', ‘0020!', ‘0025!' figures 1-6 claims 1,2,5,6</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>WO 96/37967 A (MOTOROLA INC) 28 November 1996 (1996-11-28)</td>
<td>1-4, 6-10, 14-17, 20,21</td>
</tr>
<tr>
<td></td>
<td>page 9, line 31 – page 10, line 8 claims 1-3,6 figures 1-4</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>US 5 867 127 A (BLACK ET AL) 2 February 1999 (1999-02-02)</td>
<td>22-24, 28-30</td>
</tr>
<tr>
<td></td>
<td>column 3, line 23 – line 55 claims 1-3 figures 2,3,10,11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>column 1, line 53 – column 2, line 12 figures 2A,2B,3A,3B</td>
<td></td>
</tr>
<tr>
<td></td>
<td>paragraph ‘0001!' paragraphs ‘0006!', ‘0009!' paragraphs ‘0017!', ‘0018!' claims 1,3,4 figures 2,3A,3B,3C,4 figures 5A,5B,6A,6B</td>
<td></td>
</tr>
<tr>
<td></td>
<td>paragraph ‘0094!' figure 3</td>
<td></td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 4354425 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69204219 D1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69204219 T2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0518526 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5335368 A</td>
</tr>
<tr>
<td>WO 03103157</td>
<td>11-12-2003</td>
<td>US 2004204000 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 03103157 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1384611 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2002169010 A1</td>
</tr>
<tr>
<td>US 2001046880</td>
<td>29-11-2001</td>
<td>JP 2001339474 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1327351 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 2366956 A ,B</td>
</tr>
<tr>
<td>US 5867127</td>
<td>02-02-1999</td>
<td>AU 714193 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 1493997 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 9700385 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2199456 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1167415 A ,C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 19710226 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 2746245 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 2311415 A ,B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 3347967 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 9270839 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 236436 B1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RU 2145752 C1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SG 65642 A1</td>
</tr>
<tr>
<td>US 5923297</td>
<td>13-07-1999</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1471333 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 2389463 A</td>
</tr>
<tr>
<td>US 2003144031</td>
<td>31-07-2003</td>
<td>CN 1460206 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 02069122 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 531980 B</td>
</tr>
</tbody>
</table>