(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2014/113288 A1l

(51

eay)

(22)

(25)
(26)
(30)

1

(72

74

31

24 July 2014 (24.07.2014) WIPOIPCT
International Patent Classification:
GO6F 9/38 (2006.01)
International Application Number:
PCT/US2014/011051

International Filing Date:
10 January 2014 (10.01.2014)

Filing Language: English
Publication Language: English
Priority Data:

13/741,917 15 January 2013 (15.01.2013) US

Applicant: QUALCOMM INCORPORATED [US/US];
ATTN: International IP Administration, 5775 Morehouse
Drive, San Diego, California 92121-1714 (US).

Inventors: SASSONE, Peter G.; 5775 Morehouse Drive,
San Diego, California 92121-1714 (US). VENKUMA-
HANTI, Suresh K.; 5775 Morehouse Drive, San Diego,
California 92121-1714 (US). CODRESCU, Lucian; 5775
Morehouse Drive, San Diego, California 92121-1714 (US).

Agent: TOLER, JEFFREY G.; 8500 Bluffstone Cove,
Suite A201, Austin, Texas 78759 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,

(84)

DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant'’s entitlement to apply for and be granted a
patent (Rule 4.17(i1))

as to the applicant's entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

Published:

with international search report (Art. 21(3))

(34

20147113288 A1 I 0000 10 100 0 O 00

Title: DATA CACHE WAY PREDICTION

100

170 7
Program Counter
102
' 172 174
DATA CAGHE 10 INDEX TAG
DATA ARRAY — 190 Decoded
FIRST , SEGOND , THIRD , FOURTH Decoce Logic ericton
WAY WAY WAY WAY
f-1 20a r120b f1 20c f120d Instruction Data (e.g., Way
CACHE CACHE CACHE CACHE Prediction Characteristic(s),
LINE A LINE B LINEC LINE D Increment Value, AdFiress Value,
P Register, Loop Identifier, etc.)
1302 | 130b £ 130¢ 130d 150
B S QA 1l R DY S| CONTROL LOGIC 152 |
1908 I A _: WAY PREDICTION TABLE
|| [P REG TwWAY T vn
40b : ; ; ;
1306 l : : : : 153
—+——r——n | |[PC1REG TWAY | VA
140c | _: 156 154~ | 178
130a 130¢ TAG
r 1400020 [|[LH DRVER I || armav [F———— —»])(
ENABLE ENABLE
180
MUX P WAY TAG ARRAY
@\ SELECT G
|
OUTPUT FIG. 1

(57) Abstract: In a particular embodiment, a method includes identifying one or more way prediction characteristics of an instruc -
tion. The method also includes selectively reading, based on identification of the one or more way prediction characteristics, a table
to identify an entry of the table associated with the instruction that identifies a way of a data cache. The method further includes

o making a prediction whether a next access of the data cache based on the instruction will access the way.

WO 2014/113288 PCT/US2014/011051

DATA CACHE WAY PREDICTION

CLAIM OF PRIORITY

[0001] This application claims priority from U.S. Non-Provisional Patent Application
No. 13/741,917, filed January 15, 2013, entitled “DATA CACHE WAY
PREDICTION,” the contents of which are incorporated by reference in its entirety.

FIELD OF THE DISCLOSURE

[0002] The present disclosure is generally directed to a data cache memory system.

BACKGROUND

[0003] Advances in technology have resulted in smaller and more powerful computing
devices. For example, there currently exist a variety of portable personal computing
devices, including wireless computing devices, such as portable wireless telephones,
personal digital assistants (PDAs), and paging devices that are small, lightweight, and
casily carried by users. More specifically, portable wireless telephones, such as cellular
telephones and Internet Protocol (IP) telephones, can communicate voice and data
packets over wireless networks. Further, many such wireless telephones include other
types of devices that are incorporated therein. For example, wircless telephones can
also include a digital still camera, a digital video camera, a digital recorder, and an
audio file player. Also, such wireless telephones include a processor that can process
executable instructions, including software applications, such as a web browser
application, that can be used to access the Internet. As such, these wireless telephones

can include significant computing capabilities.

[0004] Accessing a data cache of a processor consumes a significant amount power.
The data cache conventionally includes a data array having multiple sets that each
include a plurality of cache lines (e.g., storage locations). The data cache
conventionally also includes a plurality of ways that each include a driver corresponding
to at least one cache line (e.g., a cache block) of the data cache. In response to an
instruction to access data stored in the data cache, all of the drivers are enabled (e.g.,
activated) to drive (via a plurality of data lines) the ways of a particular set of the data

array to a multiplexer.

WO 2014/113288 PCT/US2014/011051

R

[0005] In parallel (e.g., concurrently) with all of the drivers being enabled, a tag lookup
operation is performed to identify a particular cache line within the data array. Based
on a result of the tag lookup operation, data provided via a single driver (corresponding
to a single cache line) is selected as an output. Driving all of the ways for a set and
performing the tag lookup operation cause power to be expended and result in a power
inefficiency considering that data from only a single cache line is output based on the

instruction.

[0006] Similar power consumption issues exist with respect to accessing an instruction
cache of the processor. Accesses to the instruction cache are frequently predictable and
prediction methods utilizing predictable sequences of instructions may be used to
identify a particular way of the instruction cache to be driven. However, accessing the
data cache is more complex and less predictable than accessing the instruction cache.
Accordingly, prediction techniques used for instruction cache accesses may not be
applicable for predicting data cache accesses. Additionally, if a prediction technique
were applied to a data cache, a performance penalty (e.g., a delay in processing) and an
energy penalty would result from each misprediction (e.g., making an incorrect

prediction) of a way to be accessed.

SUMMARY

[0007] A way prediction technique for a data cache of a processor utilizes a prediction
table (e.g., a way prediction table) to track (e.g., monitor) and predict a way (e.g., a way
associated with one or more cache lines) of the data cache to be driven for an
instruction. In a particular embodiment, the predicted way is based on a prior execution
of the instruction (e.g., the same way driven as the prior execution of the instruction).
For each instruction executed by the processor, control logic may monitor and track
execution of each instruction to populate, maintain, and/or utilize the prediction table to
identify the predicted way. For example, the control logic of the data cache may track,
using the prediction table, execution of one or more instructions based on a program
counter (PC) identifier that indicates (e.g., identifies) a particular instruction, a way that
is accessed for the particular instruction, and a base register location of a register file

modified by the particular instruction.

WO 2014/113288 PCT/US2014/011051

3

[0008] When an instruction that has one or more way predication characteristics (e.g.,
an addressing mode of the instruction, an instruction type of the instruction, an
indication that the instruction is included in a loop, etc.) is executed, the control logic
may read the prediction table to determine whether a predicted way may be identified.
For example, a way prediction characteristic may be a characteristic (e.g., a mode, an
instruction type, a position within a loop, etc.) or component (e.g., an op-code, an
operand, a bit value, etc.) of the instruction that indicates that the instruction may have a
predictable next address (e.g., a predictable access pattern that indicates that an effective
address retrieved based on the next execution of the instruction will be available from a
same cache line (e.g., via a same way)). The control logic may determine whether an
entry exists in the prediction table that corresponds to the instruction. In a particular
embodiment, the one or more way prediction characteristics may comprise a mode (e.g.,
an addressing mode), such as an auto-increment addressing mode or a base plus offset
addressing mode. The predicted way may be the way previously accessed during a prior
execution of the instruction, such as a prior execution of the instruction during a prior

iteration of a loop.

[0009] When the prediction table indicates a predicted way for an instruction, the
control logic may selectively enable (e.g., turn on) a driver corresponding to the
predicted way and may selectively disable (e.g., turn off) one or more other drivers
corresponding to ways other than the predicted way. The control logic may also
selectively disable (e.g., using a switch) a tag lookup operation of a tag array when the
prediction table indicates the predicted way for the instruction. By selectively disabling
one or more drivers and/or selectively disabling the tag lookup operation, power savings

are realized by the processor.

[0010] In a particular embodiment, a method includes identifying one or more way
prediction characteristics of an instruction. The method also includes selectively
reading, based on identification of the one or more way prediction characteristics, a
table to identify an entry of the table associated with the instruction that identifies a way
of'a data cache. The method further includes making a prediction whether a next access

of the data cache based on the instruction will access the way.

[0011] In another particular embodiment, a processor includes decode logic configured

to identify one or more way prediction characteristics of an instruction. The processor

WO 2014/113288 PCT/US2014/011051

4-

also includes control logic coupled to the decode logic. The control logic is configured
to selectively read, based on the one or more way prediction characteristics, a table to
identify an entry of the table associated with the instruction that identifies a way of a
data cache. The control logic is further configured to make a prediction whether a next

access of the data cache based on the instruction will access the way.

[0012] In a further particular embodiment, an apparatus includes means for identifying
one or more way prediction characteristics of an instruction. The apparatus also
includes means for selectively reading, based on identification of the one or more way
prediction characteristics, a table to identify an entry of the table associated with the
instruction that identifies a way of a data cache. The apparatus further includes means
for making a prediction whether a next access of the data cache based on the instruction

will access the way.

[0013] In another particular embodiment, a non-transitory computer readable medium
includes instructions that, when executed by a processor, cause the processor to identify
one or more way prediction characteristics of an instruction. The non-transitory
computer readable medium further includes instructions that cause the processor to
selectively read, based on identification of the one or more way prediction
characteristics, a table to identify an entry of the table associated with the instruction
that identifies a way of a data cache. The non-transitory computer readable medium
further includes instructions that cause the processor to make a prediction whether a

next access of the data cache based on the instruction will access the way.

[0014] In another particular embodiment, a method includes identifying an increment
value during a first execution of an instruction and identifying a way of a data cache
accessed during the first execution based on the instruction. The method further
includes adding the increment value to an address value associated with the instruction
to determine a first incremented address value. The method also includes determining
whether the first incremented address value is located in the way of the data cache. The
method further includes populating an entry corresponding to the instruction in a table
in response to determining that the first incremented address is located in the way of the

data cache.

WO 2014/113288 PCT/US2014/011051

-5-

[0015] One particular advantage provided by disclosed embodiments is a way
prediction technique that maintains a prediction table for one or more instructions (e.g.,
based on an instruction type, an instruction addressing mode, identification of an
instruction being in a loop, or a combination thereof). The way prediction table may be
utilized to selectively enable and/or disable one or more drivers based on a way
prediction. By selectively enabling and/or disabling one or more drivers, power savings
may be realized during a data access of the data cache. Additionally, by monitoring,
tracking, and storing a register location associated with each entry in the way prediction
table, potential mispredictions may be avoided that would result when an instruction,
other than the instruction that corresponds to the entry, modifies data (e.g., contents) at
the register location. Additional power benefits may be realized by selectively disabling
the tag lookup operation after the entry (e.g., the way prediction) has been verified as

valid.

[0016] Other aspects, advantages, and features of the present disclosure will become
apparent after review of the application, including the following sections: Brief

Description of the Drawings, Detailed Description, and the Claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0017] FIG. 1 is a diagram of a first illustrative embodiment of elements of a processor

system that utilizes way prediction for a data cache;

[0018] FIG. 2 is a flow diagram of a first illustrative embodiment of a method to

perform way prediction for a data cache;

[0019] FIG. 3 is a flow diagram of a second illustrative embodiment of a method to

perform way prediction for a data cache;

[0020] FIG. 4 is a block diagram of a data array of a data cache used for way
predictions and an illustrative embodiment of program code including instructions in a

loop;

[0021] FIG. 5 is a flow diagram of a third illustrative embodiment of a method to

perform way prediction for a data cache; and

WO 2014/113288 PCT/US2014/011051

-6-

[0022] FIG. 6 is a block diagram of a particular embodiment of a wireless

communication device including a data cache and logic to perform way prediction.

DETAILED DESCRIPTION

[0023] FIG. 1 illustrates a first particular embodiment of elements of a processor system
100 that utilizes a way prediction table 152. The processor system 100 includes a data
cache 102, control logic 150, a program counter 170, a tag array 180, and decode logic
190. The data cache 102 includes a data array 110 that includes a plurality of cache
lines 120a-d. In a particular embodiment, the data cache 102 comprises a set-

associative data cache.

[0024] The processor system 100 is configured to execute (e.g., process) instructions
(e.g., a series of instruction) included in a program. The program may include a loop, or
multiple loops, in which a series of instructions are executed one or more times. The
program may include one or more instructions, such as instructions having one or more
way predication characteristics (e.g., an addressing mode of the instruction, an
instruction type of the instruction, an indication that the instruction is included in a loop,
etc.) that is an indication that the instruction may have a predictable next address (e.g., a
predictable access pattern that indicates that an effective address for the next instruction
to be executed will be available from a same cache line (e.g., via a same way)). For
example, the addressing mode of the instruction may include an auto increment
addressing mode and/or a base plus offset addressing mode, which cause an operation of
a cache line of a data array of a data cache (e.g., the data cache 102). An instruction
using the auto increment addressing mode (e.g., an auto increment instruction) may
identify a register location (e.g., a base register) of a register file (not shown) and may
modify (e.g., increment) the contents (e.g., address data) stored at the register location
by an increment amount (e.g., an integer value, such as 1 or 2). An instruction using the
base plus offset addressing mode (e.g., a base plus offset instruction) may access a
register location (e.g., a base register location) during each execution of the instruction
and may add an offset to the data at the base register location with each successive

execution of the instruction.

[0025] When the instructions using the auto increment addressing mode and/or the base

plus offset addressing mode are executed as part of a loop (e.g., executed several times),

WO 2014/113288 PCT/US2014/011051

7-

the instructions may each include a predictable access pattern that indicates that an
effective address retrieved based on the next execution of the instruction will be
available from a same cache line 120a-d (e.g., a same way) of the data array 110.
Accordingly, during execution of the instructions (e.g., during one or more iterations of
the loop), a particular way of the data cache 102 that is accessed for an instruction that
uses the auto increment addressing mode or the base plus offset addressing mode may
be identified. Because an instruction using the auto increment addressing mode or the
base plus offset addressing mode operates on a same register, it may be possible to
determine (e.g., verify) that a post-incremented or offset address may access a same
cache line (e.g., a same way) of the data cache 102 as a previous execution of the
instruction. Accordingly, the processor system 100 may generate, maintain, and use a
prediction table 152, as described below, to predict way accesses for one or more

instructions.

[0026] The data cache 102 may include the data array 110 and a multiplexer 160. The
data cache 102 may be configured to store (in a cache line) recently or frequently used
data. Data stored in the data cache 102 may be accessed more quickly than data
accessed from another location, such as a main memory (not shown). In a particular
embodiment, the data cache 102 is a set-associative cache, such as a four-way set-
associative cache. Additionally or alternatively, the data cache 102 may include the
control logic 150, the program counter 170, the tag array 180, the decode logic 190, or a

combination thereof.

[0027] The data array 110 may be accessed during execution of an instruction (executed
by the processor system 100). The instruction may be included in a program (e.g., a
series of instructions) and may or may not be included in a loop (e.g., a software loop)
of the program. The data array 110 includes a plurality of sets (e.g., rows) that each
include a plurality of ways (e.g., columns), such as a first way, a second way, a third
way, and a fourth way as depicted in FIG. 1. Each of the ways may be associated with
multiple cache lines within a column of the data cache 102 and associated with a
corresponding cache line 120a-d (e.g., a single cache line) of each set of the data cache
102. The plurality of ways may be accessed during execution of the program. Each
way of the plurality of ways may include a driver 140a-d (e.g., a line driver) and a data

line 130a-d that corresponds to multiple cache lines (e.g., storage locations) within a

WO 2014/113288 PCT/US2014/011051

-8-

column of the data array 110. For example, the first way may be associated with a
cache line A 120a and includes a first driver 140a and a first data line 130a, the second
way may be associated with a cache line B 120b and includes a second driver 140b and
a second data line 130b, the third way may be associated with a cache line C 120c and
includes a third driver 140c and a third data line 130c, and the fourth way may be
associated with a cache line D 120d and includes a fourth driver 140d and a fourth data
line 130d.

[0028] Each driver 140a-d may enable data stored in a corresponding cache line 120a-d
(e.g., a corresponding cache block) to be read (e.g., driven) from the data array 110 via a
corresponding data line 130a-d and provided to the multiplexer 160. The content stored
in a particular cache line of the cache lines 120a-d may include multiple bytes (e.g.,
thirty-two (32) bytes or sixty-four (64) bytes). In a particular embodiment, the
particular cache line may correspond to a block of sequentially addressed memory
locations. For example, the particular cache line may correspond to a block of eight

sequentially addressed memory locations (e.g., eight 4-byte segments).

[0029] The decode logic 190 may receive one or more instructions (e.g., a series of
instruction) to be executed by the processor system 100. The decode logic 190 may
include a decoder configured to decode a particular instruction of the one or more
instructions and to provide the decoded instruction (including an index portion 172, a
tag portion 174, or a combination thereof) to the program counter 170. The decode
logic 190 may also be configured to provide instruction data associated with the
particular instruction to the control logic 150, such as by sending data or modifying one
or more control registers. For example, the instruction data may include the decoded
instruction (e.g., the index portion 172 and/or the tag portion 174), one or more way
prediction characteristics, an instruction type of the particular instruction (e.g., a load
type, a store type, etc.), a mode (e.g., an addressing mode) of the particular instruction,
one or more register locations of a register file (not shown) associated with the
particular instruction, an increment value (and/or an offset value) associated with the
particular instruction, an address value associated with the particular instruction,
whether the particular instruction initiates a loop (e.g., a software loop), ends the loop,
or is included in the loop, or a combination thereof. The one or more way predication

characteristics may indicate that the particular instruction has a predictable next address

WO 2014/113288 PCT/US2014/011051

9.

(e.g., a predictable access pattern that indicates that an effective address for the next
instruction to be executed will be available from a same cache line (e.g., via a same
way)). For example, the one or more way predication characteristics may comprise a
characteristic (e.g., an addressing mode, an instruction type, a position within a loop,
etc.) of the particular instruction, a component (e.g., an op-code, an operand, a bit value,
an increment value, a register value, etc.) of the particular instruction, or a combination
thereof. The addressing mode of the particular instruction may include an auto
increment addressing mode or a base plus offset addressing mode. The instruction type

of the particular instruction may include a load type or a store type.

[0030] The program counter 170 may identify an instruction to be executed based on
the decoded instruction received from the decode logic 190. The program counter 170
may include the index portion 172 (e.g., a set index portion) and the tag portion 174 that
may be used to access the data cache 102 during an execution of the instruction. Each
time an instruction is executed, the program counter 170 may be adjusted (e.g.,

incremented) to identify a next instruction to be executed.

[0031] The control logic 150 may include the way prediction table 152, a tag array
enable 154, and a driver enable 156. The control logic 150 may be configured to
receive the instruction data from the decode logic 190 and access the way prediction
table 152 based on at least a portion of the instruction data, as described further below.
For example, the control logic 150 may selectively access the way prediction table 152
based on the one or more way prediction characteristics received from the decode logic
190.

[0032] The way prediction table 152 may include one or more entries 153 that each
includes one or more fields. Each entry 153 may correspond to a different instruction
and include a program counter (PC) field, a predicted way (WAY) field, a register
location identifier (REG) field, a valid/invalid field (V/I), or a combination thereof. For
a particular entry, the PC field may identify a corresponding instruction executed by the
processor system 100. The WAY field (e.g., a predicted way field) may include a value
(e.g., a way field identifier) that identifies a way (of the data array 110) that was
previously accessed (e.g., a “last way” accessed) the last time the corresponding
instruction was executed. The REG field may identify a register location of a register

file (not shown) that was modified the last time the corresponding instruction was

WO 2014/113288 PCT/US2014/011051

-10-

executed. For example, the register location may be a base register location of the
instruction that was modified based on an execution of the instruction as part of a post-
increment operation. The V/I field may identify whether a value of the WAY field is
valid or invalid. For example, the V/I field may indicate whether the value of the WAY
field may be used as a predicted way. Alternatively and/or additionally, the V/I field
may indicate whether an entry is valid or invalid. The way prediction table 152 may be
maintained (e.g., stored) at a processor core of the processor system 100 and/or may be
included in or associated with a prefetch table of the data cache 102. In a particular
embodiment, each entry in the way prediction table 152 includes a program counter
identifier (e.g., the PC field), a particular register location identifier (e.g., the REG
field), and a particular predicted way identifier (e.g., the WAY field).

[0033] The control logic 150 may be configured to access the instruction data (e.g.,
instruction data that corresponds to an instruction to be executed) provided by the
decode logic 190. Based on at least a portion of the instruction data, such as the one or
more way prediction characteristics, the control logic 150 may determine whether the
way prediction table 152 includes an entry that corresponds to the instruction. For
example, the control logic 150 may selectively read the way prediction table 152 in
response to receiving an indication that an instruction type of the instruction is a load
type or a store type. In a particular embodiment, the control logic 150 does not read the
way prediction table unless the instruction type is the load type or the store type. The
control logic 150 may determine whether the way prediction table 152 includes an entry
153 that corresponds to the instruction based on the PC fields of the way prediction
table 152. In another particular embodiment, the control logic 150 selectively reads the
way prediction table 152 in response to receiving an indication that an addressing mode
of the instruction is an auto increment addressing mode or a base plus offset addressing
mode. In another particular embodiment, the control logic 150 selectively reads the way
prediction table 152 in response to receiving an indication that the instruction is

included in a loop.

[0034] Based on a determination that the way prediction table 152 does not include an
entry 153 that corresponds to the instruction, and based on a determination that the
instruction is associated with one or more way prediction characteristics for which way

prediction is useful (e.g., has an auto increment address mode) the control logic 150

WO 2014/113288 PCT/US2014/011051

-11-

may generate (e.g., populate) a new entry 153 associated with the instruction in the way
prediction table 152. The control logic 150 may identify a register location included in
(e.g., identified by) the instruction and a way of the data array 110 that is accessed based
on the instruction. The control logic 150 may populate the WAY field and the REG
field of the new entry 153 based on the identified register location and the identified
way, respectively. Accordingly, a next time the instruction is to be executed (e.g.,
during a next iteration of the loop), the control logic 150 may identify the way accessed
during the previous execution of the instruction based on the WAY field. In particular,
when the entry is generated, the value of the WAY field may be set to indicate a way
accessed based on an execution of the instruction that caused the entry to be generated.
The REG field may be used by the control logic 150 to maintain the way prediction
table 152 as described further herein.

[0035] The control logic 150 may also predict whether a subsequent (e.g., a next)
execution of the instruction will access a same way as the execution of the instruction
that caused the entry to be generated. For example, as described in further detail with
respect to FIG. 1, the control logic 150 may perform an arithmetic operation to predict
(e.g., verify) whether a next execution of the instruction will access a same cache line as
the execution, such as according to an auto-increment addressing mode instruction or a
base plus offset addressing mode instruction, and thus the same way. When a
determination (e.g., a prediction) is made that the incremented address would not be in
the same cache line accessed during the execution of the instruction, the control logic
150 may set the V/I field (e.g., a validity bit) of the new entry as invalid to indicate that
the value of the WAY field may not be relied on to indicate a predicted way to be used
during the subsequent execution of the instruction. When a determination (e.g., a
prediction) is made that the incremented address would be in the same cache line
accessed during the execution of the instruction (e.g., the execution of the instruction
accessed the cache line A 120a and a value associated with the incremented address is
located in the cache line A 120a), the control logic 150 may set the V/I field (e.g., a
validity bit) of the new entry to valid to indicate that the value of the WAY field

indicates a predicted way to be used during the subsequent execution of the instruction.

[0036] The control logic 150 may use the way prediction table 152 to predict a way for

an instruction to be executed. The control logic 150 may selectively read the way

WO 2014/113288 PCT/US2014/011051

-12-

prediction table 152 to identify the entry 153 of the way prediction table 152 that
corresponds to the instruction based on the PC field of each entry 153. When the
control logic 150 identifies the corresponding entry 153 and if the entry 153 is indicated
as valid, the control logic 150 may use the value of the WAY ficld for the entry 153 as
the way prediction by providing (or making available) the value of the WAY field to the
driver enable 156 and may provide (or make available) the value of the V/I field to the
tag array enable 154.

[0037] The driver enable 156 may be configured to selectively activate (e.g., turn on)
or deactivate (e.g., turn off) one or more of the drivers 140a-d based on a predicted way
identified in the way prediction table 152. In a particular embodiment, when the value
of the WAY field provided to the driver enable 156 is a null value (e.g., a zero value),
the driver enable 156 enables all of the drivers 140a-d. In another particular
embodiment, the driver enable 156 may use the predicted way from the identified (e.g.,
corresponding) entry 153 when a value of the V/I field of the entry 153 indicates that a
value of the WAY field of the entry 153 may be used as the way prediction.
Additionally, the driver enable 156 may selectively disable at least one driver 140a-d of
one or more ways that are not the predicted way indicated by the WAY field. Ina
particular embodiment, the WAY field may include one or more bits (¢.g., a bitmask)
that indicate the predicted way, and the driver enable 156 may apply the bitmask to the
plurality of drivers 140a-d to selectively enable or disable each driver of the plurality of

drivers 140a-d.

[0038] The tag array enable 154 may be configured to selectively activate (e.g., enable)
or deactivate (e.g., disable), via a switch 176 (or other mechanism), a tag lookup
operation at the tag array 180 to identify a way (e.g., a cache line 120a-d) to be selected
based on the instruction. When the tag enable portion 154 determines that the value of
the V/I field indicates that the value of the WAY field may be used as a way prediction,
the tag enable portion 154 may selectively disable the tag lookup operation via
operation of the switch 176. When the value of the V/I field indicates that the value of
the WAY field may not be used as the way prediction, the tag array enable 154 may
selectively enable the switch 176 so that a tag lookup operation is performed in parallel

(e.g., concurrently) with the drivers 140a-d being enabled.

WO 2014/113288 PCT/US2014/011051

13-

[0039] Multiple combinations of a value of the WAY field provided to the driver enable
156 and a value of the V/I field provided to the tag array enable 154 may be provided to
direct operation of the driver enable 156 and/or the tag array enable 154. For example,
the value of the WAY field may be a null value (e.g., a zero value) that causes the driver
enable 156 to activate (e.g., turn on) all of the drivers 140a-d regardless of a value of the
WAY field, and in this case the tag array enable 154 may selectively enable or
selectively disable the switch 176. As another example, when the value of the V/I field
indicates that the value of the WAY field may not be relied upon as the way prediction,
the driver enable 156 may turn on all of the drivers 140a-d, and the tag array enable 154
may selectively enable the switch 176. As a further example, when the value of the V/I
field indicates that the value of the WAY field may be relied upon (e.g., used) as the
way prediction, the driver enable 156 may activate (e.g., turn on) a single line driver of
the plurality of drivers 140a-d and the tag array enable 154 may selectively enable or
selectively disable the switch 176. Alternatively or additionally, the tag array enable
154 may selectively enable or disable the switch 176 based on whether the register file
is being tracked (e.g., monitored), whether an instruction corresponding to the entry
providing the value of the WAY field and the value of the V/I field is identified as being
included in a loop (e.g., based on the instruction data received at the control logic 150),

or a combination thereof.

[0040] The control logic 150, or other logic coupled to the control logic 150, may
include tracking logic that tracks (e.g., monitors) whether any instruction modifies (e.g.,
changes) data at a register location identified in the way prediction table 152. The
tracking logic may identify a value of the register location that was modified and
provide an identification of the register location to the control logic 150. The control
logic 150 may read the way prediction table 152 to determine whether a particular entry
153 includes a REG field having a value that corresponds to the register location. Based
on a determination that the particular entry 153 includes such a REG field, the control
logic 150 may determine whether the PC field of the particular entry 153 corresponds to
the particular instruction that modified the register location and, when the particular
entry 153 does not correspond to the particular instruction, the control logic 150 may set
a value of the V/I field (e.g., invalid) of the particular entry 153 to indicate that the
value of the WAY field of the particular entry may not be relied upon (e.g., the used) as

a way prediction or may remove (e.g., delete) the particular entry 153.

WO 2014/113288 PCT/US2014/011051

-14-

[0041] During operation of the processor system 100, the decode logic 190 and/or the
control logic 150 may determine whether the way prediction table 152 includes an entry
that corresponds to an instruction to be executed. When the way prediction table 152
does not include the entry, the control logic 150 may generate a new entry in the way
prediction table 152. When the way prediction table 152 includes the entry, the control
logic 150 may identify one or more values of one or more fields of the entry. When the
one or more ficlds indicate that the entry is not valid (e.g., the entry may not be used for
way prediction), the control logic 150 may enable all of the plurality of drivers 140a-d
of the data array 110 and enable a way select signal to be provided to the multiplexer
160 based an output of the tag array 180. When the one or more fields indicate that the
entry is valid, the control logic 150 may use a value of a WAY field of the entry to
selectively enable and/or disable one or more of the plurality of drivers 140a-d and to
control a selection by the multiplexer 160. The control logic 150 may update one or
more entries of the way prediction table 152 based on a prediction that an incremented
address would access a cache line corresponding to a way that is different than a way
indicated by a WAY field or based on identifying a modification to a register location
identified in the way prediction table 152. An example of operation of the processor

system 100 is described below with reference to FIG. 4.

[0042] By maintaining the way prediction table 152 for instructions executed by the
processor system 100, one or more drivers 140a-d of the data array 110 of the data
cache 102 may be selectively disabled based on a way prediction and a power benefit
may be realized during a data access of the data cache 102. Additionally, by tracking
and storing a register location (e.g., the REG field) associated with each entry 153, the
control logic 150 may avoid potential mispredictions when an instruction other than the
instruction corresponding to the entry modifies data at a particular register location
identified by a REG field of any entry in the way prediction table 152. Additional

power benefits may be realized by selectively disabling the tag lookup operation.

[0043] Referring to FIG. 2, a flow diagram of a first illustrative embodiment of a
method 200 to perform way prediction associated with a data cache is illustrated. For
example, the data cache may include the data cache 102 of FIG. 1. In a particular
embodiment, the method 200 may be performed by the control logic 150 of FIG. 1.

WO 2014/113288 PCT/US2014/011051

-15-

[0044] An increment value is identified during a first execution of an instruction, at
202. The increment value may be associated with the instruction using an auto
increment addressing mode. The increment value may be determined (e.g., identified)
by decode logic, such as the decode logic 190 of FIG. 1. The increment value may be
included in instruction data that is provided from the decode logic to control logic, such
as the control logic 150 of FIG. 1. The control logic may receive the instruction data
and identify the increment value. The control logic may also determine whether the
instruction is associated with one or more way prediction characteristics that indicate
the instruction may have a predictable access pattern. In a particular embodiment, the
control logic identifies the increment value of the instruction after making a
determination that the instruction is associated with the one or more way prediction

characteristics.

[0045] A way of the data cache accessed based on the instruction during a first
execution of the instruction is identified, at 204. For example, the data cache may be
the data cache 102 of FIG. 1. The control logic may identify the way accessed during

the first execution of the instruction.

[0046] The increment value is added to an address value associated with the instruction
to determine an incremented address value, at 206. The control logic may add the
increment value to the address value associated with the instruction to determine the
incremented address. In a particular embodiment, the address value may be an address
value stored at a register location identified by the instruction. The register location
may be identified by the control logic based on the instruction data provided by the

decode logic.

[0047] A determination is made whether the incremented address value is located in the
way of the data cache, at 208. The control logic may determine whether a subsequent
(e.g., a next) execution of the instruction is predicted to access a same way as an

execution (i.e., the first execution) of the instruction.

[0048] An entry corresponding to the instruction is populated in the table, at 210. The
entry may be populated in the table in response to determining that the incremented
address is located in the way of the data cache. The control logic may populate (e.g.,

generate) the entry corresponding to the instruction in a way prediction table, such as

WO 2014/113288 PCT/US2014/011051

-16-

the way prediction table 152 of FIG. 1. In a particular embodiment, generation (e.g.,
population) of the entry in the table is conditioned on one or more conditions (e.g., an
auto increment addressing mode, a type of the instruction, the instruction being in a
loop) associated with the instruction being satisfied prior to the entry being generated
(e.g., populated). The control logic may populate one or more fields of the entry such
that the entry identifies the instruction (e.g., a PC field value), the way of the data cache
accessed during the first execution of the instruction (e.g., a WAY field value), the
register location (e.g., a REG field value), whether the subsequent (e.g., the next)
execution of the instruction is predicted to access the same cache line (e.g., a V/I field

value), or a combination thereof.

[0049] By generating (e.g., populating) the entry for the instruction in the way
prediction table, a way accessed based on the instruction may be recorded and tracked.
The recorded way may be used as a way prediction by the control logic during one or
more subsequent executions of the instruction to selectively enable and/or disable one or
more drivers of the data cache (e.g., less than all of the drivers are turned on) to realize a

power benefit during a data access of the data cache.

[0050] Referring to FI1G. 3, a flow diagram of a second illustrative embodiment of a
method 300 to perform way prediction associated with a data cache is illustrated. For
example, the data cache may include the data cache 102 of FIG. 1. In a particular
embodiment, the method 300 may be performed by the control logic 150 of FIG. 1.

[0051] An addressing mode of an instruction is identified, at 302. In a particular
embodiment, the addressing mode of the instruction is identified as an auto increment
addressing mode. The instruction having the auto increment addressing mode may
identify an increment value and a register location that stores an address associated with
the instruction. The addressing mode may be determined (e.g., identified) by control
logic, such as the control logic 150 of FIG. 1, based on instruction data received from
decode logic, such as the decode logic 190. Additionally, a type (e.g., an instruction
type) associated with the instruction may be determined. For example, the type may be
determined to be a load type or a store type. The type may be determined (e.g.,
identified) by the control logic.

WO 2014/113288 PCT/US2014/011051

-17-

[0052] A table is read, based on the identification of the instruction, to identify an entry
of the table associated with the instruction that identifics a way of a data cache, at 304.
The control logic may determine whether the table includes the entry associated with the
instruction that identifies a way of a data cache. For example, the control logic may
access the table and read the entry from the table based on the instruction. The table
may include the way prediction table 152 of FIG. 1. When a determination is made that
the table includes the entry, the control logic may determine whether the entry is
identified as valid or invalid based on a value of a validity bit included in a V/I field
associated with the entry. The V/I field may be included in the entry or stored at a
register location or a buffer that is distinct from the table. The value of the validity bit
may enable the control logic to determine whether the entry or a portion (e.g., at least
one field) of the entry is valid to provide a way prediction for the instruction. Based on
the entry, the control logic may use a way prediction included in the entry to selectively
enable and/or disable one or more drivers of the data cache (e.g., less than all of the
drivers are turned on). By selectively disabling one or more drivers of the data cache, a

power benefit is realized during a data access of the data cache.

[0053] A prediction whether a next access of the data cache based on the instruction
will access the same way is made, at 306. For example, the control logic may predict
whether the next access of the data cache based on the instruction will access the way
identified by the entry. The control logic may make the predication by adding an
increment value associated with the instruction to an address of (e.g., stored at) a
register location associated with the instruction to determine an incremented address and
by determining whether the incremented address is located in a same cache line of the

data array as the address.

[0054] When the predication is made that the next access of the data cache will not
access the way, processing advances to 308, where the entry in the table is invalidated
or deleted (e.g., removed). For example, the control logic may remove the entry or
indicate that the entry of the table is invalid based on a determination that the
incremented address will be in a different cache line of the data cache than a cache line
that includes the address (e.g., the address incremented to generate the incremented
address). Alternatively, when the predication is made that the next access of the data

cache will access the way, processing advances to 310, where the entry in the table is

WO 2014/113288 PCT/US2014/011051

-18-

maintained. For example, the control logic may maintain the entry of the table as valid
to provide a way prediction based on a determination (e.g., a prediction) that the
incremented address is in the same cache line of the data array as the address. The
control logic, or logic other than the control logic, may monitor (e.g., track) the register
file including the register location. As a result of monitoring (e.g., tracking) the register
file, the control logic may invalidate or delete the entry in response to contents of the
register location being changed. The contents of the register location may be changed

by another instruction.

[0055] By accessing the table, a previous way of the data cache accessed based on the
instruction may be used as a way prediction for an execution of the instruction.
Additionally, the control logic may determine (e.g., predict) whether a subsequent (e.g.,
a next) execution of the instruction will access a same cache line as the execution of the
instruction. Based on the determination of whether or not the subsequent execution will
access the same cache line, the control logic may remove the entry, update one or more
fields of the entry, and/or maintain one or more fields of the entry. By updating and
maintaining the entries of the table, the table may be used and relied upon to make one

or more way predictions and to avoid mispredictions.

[0056] Referring to FIG. 4, a particular illustrative embodiment of a row 400 of a data
cache is shown. For example, the data cache may include the data cache 102 of FIG. 1.
The row 400 may include a first cache line A 402, a second cache line B 404, a third
cache line C 406, and a fourth cache line D 408, each separated by cache line
boundaries 410-414. For example, the four cache lines 402-408 may correspond to the
cache lines 120a-d of FIG. 1. Although four representative cache lines A-D are shown,
it should be understood that the row 400 may include more than four cache lines or less
than four cache lines. Each of the cache lines 402-408 may include a plurality of
segments. For example, the first cache line A 402 includes a first segment 402a, a
second segment 402b, a third segment 402c, and a fourth segment 402d. In a particular
embodiment, each cache line 402-408 includes a same number of segments. Each of the

cache lines 402-408 may be associated with a corresponding way.

[0057] To illustrate operation and usage of the row 400, an illustrative embodiment of
representative computer instructions including a representative program loop (e.g., loop

code 430) are shown in FIG. 4. The instructions include loop code 430 that starts with a

WO 2014/113288 PCT/US2014/011051

-19-

loop top identifier 440. The loop includes three instructions 442, 444, and 446. The
loop ends with an end loop designator 448. Not all aspects of the program loop are
shown for purposes of providing a simplified example. For example, the number of

loop iterations and a loop end condition has been omitted for brevity purposes.

[0058] A first instruction 442 is an illustrative load type instruction including an auto
increment addressing mode (e.g., a post-increment load). In a particular embodiment,
the first instruction 442 is a memory write instruction that accesses a register location
R9 that stores a memory address and uses the memory address in register location R9 to
load contents (e.g., data) corresponding to the memory address from the data cache into
a register location R1. The register file (not shown) may include a plurality of register
locations. After the contents identified by the register location R9 are loaded into the
register location R1, a value of the memory address of the register location R9 is auto
incremented by two (e.g., a post-increment of two). Accordingly, the first instruction
442 may be regarded as having an increment value of two and operating on a base
register R9. To load the contents of the register location R9 into the register location
R1, a particular cache line of the data cache may be accessed. The particular cache line

is associated with a particular way and a particular driver of the data array.

[0059] The second instruction 444 is a representative arithmetic instruction. In a
particular embodiment, the second instruction 444 is an addition instruction that
identifies a register location R4 that stores a first memory address (having
corresponding first contents (e.g., data)) and a register location RS that stores a second
memory address (having corresponding second contents). The first contents
corresponding to the first memory address of the register location R4 and the second
contents corresponding to the second memory address of the register location RS may
be added together and the sum may be stored as contents (e.g., data) corresponding to a
third memory address that is stored in the register location R9 based on the second

instruction 444.

[0060] The third instruction 446 may include another load type instruction including the
auto increment addressing mode. For example, execution of the third instruction 446
may access a register location R10 (e.g., a base register of the third instruction 446) that
stores a memory address and uses the memory address in the register location R10 to

load contents (e.g., data) corresponding to the memory address from the data cache into

WO 2014/113288 PCT/US2014/011051

20-

a register location R2. After the contents are loaded into the register location R2, a
value of the memory address of the register location R10 may be incremented by one

(e.g., a post increment of one).

[0061] Executing the loop code 430 includes executing the instructions 442, 444, and
446 one or more times (e.g., one or more iterations). During the first iteration of the
loop code 430, the first instruction 442 is executed. Since the first instruction 442
includes one or more way prediction characteristics, such as an auto increment
addressing mode, control logic (not shown) may generate an entry that corresponds to
the first instruction 442 in a way prediction table. For example, the control logic 150 of
FIG. 1, or other control logic not illustrated, may generate an entry in the way prediction
table 152. In a particular embodiment, the control logic may generate the entry in the
way prediction table after determining that the way prediction does not include an entry

corresponding to the first instruction 442,

[0062] Since the first instruction 442 includes the auto increment addressing mode, the
control logic may identify the increment value of two. Since the increment value of two
is less than a size of cache lines 402-408 (e.g., a size of four), the control logic may
predict that the next way accessed would correspond to (e.g., stay within) the same
cache line. Based on a prediction that the same way will be accessed during a next
iteration (e.g., a next execution of the first instruction 442), the way may be identified as

a way prediction for a next execution of the first instruction 442.

[0063] To illustrate, during the first iteration of the loop code 430, the contents of the
register location R9 may point to a first (sequential) segment 406a of the third cache line
C 406, at 450. For example, the third cache line C 406 may comprise four segments,
such as the first segment 406a, a second segment 406b, a third segment 406¢, and a
fourth segment 406d. Accordingly, incrementing the contents of the register location
R9 by the increment value of two would result in the contents of the register location R9
pointing to the third (sequential) segment 406¢ of the third cache line C 406, at 452.
Thus, the way prediction for the first instruction 442 would identify the way
(corresponding to the third cache line C 406) used during execution of the first
instruction 442 during the first iteration of the loop code 430. Thus, as described with
respect to FIG.1, a new entry for the first instruction 442 is added to the way prediction
table 152 by the control logic 150. For example, a particular entry may be generated to

WO 2014/113288 PCT/US2014/011051

21-

include one or more of the following fields: PC = 0x10148 (e.g., corresponding to the
first instruction 442); WAY = 3; REG =R9; and V/I = valid (e.g., a data value of “1”).

[0064] The control logic may set a validity bit (e.g., to indicate valid) of the V/I field of
the entry based on the determination that the subsequent execution of the instruction
will access the same cache line. In another embodiment, the WAY field of the new
entry may only be populated to identify the way accessed when the determination (e.g.,
the prediction) is made that the subsequent execution will access the same cache line.
When a prediction is made that the subsequent execution will not access the same cache
line, the control logic may set the WAY field of the new entry to a null value (e.g., a
zero value). In another particular embodiment, the entry is only generated in the way
prediction table when the prediction is made that the subsequent execution will access

the same cache line.

[0065] Generation of a new entry based on the instruction may further be conditioned
on (e.g., based on) one or more additional way prediction characteristics being identified
(e.g., one or more additional determinations being made by the control logic 150 of FIG.
1 based on the instruction data). For example, the new entry may only be generated
(e.g., populated) when the instruction is associated with an auto increment addressing
mode and/or a base plus offset addressing mode. As another example, the new entry
may only be generated (e.g., populated) when the instruction is included in a loop. In
particular, the new entry may be generated when the instruction is a first instance of the
instruction in the loop. In a particular embodiment, no entry is generated when the

instruction is not included in a loop.

[0066] When an instruction uses the base plus offset addressing mode, the control logic
150 may not be operable to make a prediction of whether the subsequent execution of
the instruction will access the same cache line based on a first execution of the
instruction. For example, unlike the auto increment addressing mode, executing the
base plus offset addressing mode may not increment an address location by a
predetermined value (e.g., a constant) during each successive execution of the
instruction (e.g., each successive iteration of the loop). At least two executions of the
instruction may be needed to determine a stride (e.g., an offset) of an instruction using
the base plus offset addressing mode. Accordingly, when the instruction uses the base

plus offset addressing mode a new entry may be generated during a first execution of

WO 2014/113288 PCT/US2014/011051

22

the instruction, but a value of the V/I field of the new entry may not be able to be set to
indicate the value of the WAY field may be used as the predicted way until a second
execution (e.g., a next execution after the initial execution) of the instruction. In an
alternative embodiment, the entry may not be generated in the way prediction table 152
based on a first execution of the instruction when the instruction uses the base plus
offset addressing mode. Rather, based on the first execution of the instruction, a value
associated with a PC field and a value associated with a WAY field may be identified
for a potential new entry associated with the instruction and the value associated with
the PC field and the value associated with the WAY field may be maintained in a
location (and/or structure) that is different than the way prediction table 152. For
example, the location may include a buffer or a register associated with control logic,
such as the control logic 150. The entry associated with the instruction using the base
plus offset addressing mode may be generated based on an execution of the instruction

that is subsequent to the first execution.

[0067] In a particular embodiment, the control logic 150, or other control logic, may
include tracking logic that tracks each register location of the register file (not shown)
that is identified as a register (e.g., identified in a REG field) within the way prediction
table, such as the way prediction table 152. In a particular embodiment, the control
logic 150, or other control logic, only tracks register locations of the register file that are
identified in a corresponding REG field of a valid entry. For example, since the register
location R9 was used by the first instruction 442 and since the register location R9 was
associated with an entry added to the way prediction table 152, the tracking logic would
monitor any instructions that modify the value of the register location R9. Ina
particular illustrative example, the second instruction 444 changes (e.g., modifies) the
value of the register location R9. Thus, the tracking logic may monitor one or more
instructions, such as the second instruction 444, and invalidate (e.g., set a V/I field to
invalid) or delete (e.g., remove) the entry in the way prediction table 152 corresponding
to the first instruction 442 in response to detecting that the value of the register location
R9 has been changed by the second instruction 444. Thus, upon a subsequent execution
(e.g., a next execution) of the first instruction 442, the way prediction table 152 would
not include a valid entry (or any entry) associated with the first instruction 442 by which

a way prediction may be made.

WO 2014/113288 PCT/US2014/011051

03

[0068] Proceeding with the loop code 430, the third instruction 446 may include the
auto increment addressing mode. The control logic may identify the increment value of
one and a register location R10 (e.g., a base register) of the third instruction 446.
During the first iteration of the loop code 430, the contents of the register location R10
may point to a first (sequential) segment 402a of the first cache line A 402, at 420.
Since the increment value of one is less than a size of the first cache line A 402 (e.g., the
first cache line A 402 includes a size of four), the control logic may predict that the next
way would stay within the same cache line 402 at a second (sequential) segment 402b,
at 422. Based on a prediction that the same way will be accessed, the way may be
identified as a way prediction for a next execution of the third instruction 446. Thus, as
described with respect to FIG.1, a new entry for the third instruction 446 is added to the
way prediction table 152 by the control logic 150. The first iteration of the loop ends at
the end loop designator 448.

[0069] During a second iteration of the loop code 430, the first instruction 442 is
executed a second time. The control logic 150 may search the way prediction table 152
for a valid entry that corresponds to the first instruction 442. Since an entry was
generated and stored within the way prediction table 152 during the first iteration of the
loop code 430, the way prediction table 152 has an entry that includes a PC ficld value
associated with the program counter value corresponding to the first instruction 442.
However, since the tracking logic invalidated the entry, the result of the look up (e.g.,
reading the entry of) the way prediction table 152 based on the first instruction 442
would be an indication of an invalid entry. The invalid entry would indicate that the
control logic 150 cannot solely rely upon the value of the WAY field (e.g., a way
prediction) indicated by the entry in the way prediction table 152. Thus, the control
logic 150 would selectively activate (e.g., enable) a search (e.g., a tag lookup operation)

of the tag array 180 based on the memory address stored in the register location R9.

[0070] In a particular embodiment, the control logic uses the value of the WAY field
indicated by the entry in the way prediction table 152 while concurrently (e.g., in
parallel) enabling the tag lookup operation. Concurrently enabling the tag lookup
operation enables the control logic to determine whether a misprediction (e.g.,
predicting an incorrect way) occurs based on the value of the WAY field. In another

embodiment, the control logic enables drivers of all the ways concurrently (e.g., in

WO 2014/113288 PCT/US2014/011051

24

parallel) thus enabling the tag lookup operation to ensure that no performance penalty
from a misprediction occurs as a result of relying on the value of the WAY field for the

invalid entry.

[0071] Continuing with execution through the loop code 430, the addition operation
corresponding to the second instruction 444 is executed again and then processing
proceeds to execute the third instruction 446. Since the third instruction 446 includes
the auto increment addressing mode, the control logic 150 accesses (e.g., reads) the way
prediction table 152 and identifies the previously stored entry associated with the third
instruction 446 (corresponding to the register location R10). In this case, the entry
associated with the third instruction 446 is valid and the control logic 150 may generate
a way select signal and generate a signal from the driver enable 156 to activate the
selected (e.g., predicted) way (without activating any of the other ways). In this
manner, the second iteration of the loop code 430, which involves a second execution of
the third instruction 446, beneficially selects the previously stored way (corresponding
to the previously accessed first cache line A 402) used during the first execution of third
instruction 446 in the loop code 430. Accordingly, the previously stored way may be
used as a way prediction and the control logic 150 may enable (e.g., selectively enable)
a single driver of a plurality of drivers, such as the plurality of drivers 140a-d of FIG. 1,
based on the way prediction. By selectively enabling the single driver (e.g., less than all
of the plurality of drivers 140a-d), a power benefit may be realized during a data access

of a data cache, such as the data cache 102 of FIG. 1.

[0072] During the second iteration of the loop code 430, the contents of the register
location R10 may point to a second (sequential) segment 402b of the first cache line A
402, at 422. The control logic may predict that the next way associated with the third
instruction 446 would stay within the same cache line 402 by calculating that the
contents of the register location R10, when incremented by the increment value of one,
would result in the contents of the register location R 10 pointing to a third (sequential)
segment 402c of the first cache line A 402, at 424, during a third iteration of the loop
code 430. Since the predicted way of the third instruction 446 during the third iteration
of the loop code 430 remains within the first cache line A 402, the value of the WAY
field of the entry associated with the third instruction 446 may remain the same (e.g.,

the way corresponding to the first cache line A 402) and the entry associated with the

WO 2014/113288 PCT/US2014/011051

25

third instruction 446 remains valid. Processing (e.g., execution) of the end loop

designator 448 ends the second iteration of the loop code 430.

[0073] The loop code 430 may continue to be processed through additional iterations as
described above. For example the loop code 430 may go through a third iteration and a
fourth iteration. During execution of the third instruction 446 in the third iteration of
the loop code 430, the register location R10 may point to the third (sequential) segment
402c of the first cache line A 402, at 424. During execution of the third instruction 446
in the fourth iteration of the loop code 430, the register location R10 may point to a
fourth (sequential) segment 402d of the first cache line A 402, at 426. During execution
of the third instruction 446 in the fourth iteration of the loop code 430, the control logic
may predict that the next way associated with the third instruction 446 (e.g., during a
fifth iteration of the loop code 430) would not stay within the same cache line A 402
(e.g., cross beyond the boundary 410) by calculating that the contents of the register
location R10, when incremented by the increment value of one, would result in the
contents of the register location R10 pointing to the second cache line B 404, at 428.
Since the predicted address of the third instruction 446 (associated with a next execution
of the third instruction 446) is outside the first cache line A 402, the control logic may
invalidate the way prediction of the entry or delete the entry associated with the third
instruction 446 from the way prediction table. When the control logic invalidates the
entry, the entry may be updated with a new (valid) way prediction during a fifth
iteration of the loop code 430. Alternatively, when the control logic deletes the entry, a

new entry may be generated during the fifth iteration.

[0074] By generating (e.g., populating) and maintaining entries for one or more
instructions in the way prediction table, a processor system may be enabled to
implement (e.g., perform) way predictions (e.g., a way prediction technique) on a data
cache. Performing way prediction on the data cache enables the processor system to
realize a power benefit during certain data accesses of the data cache. For example, the
way prediction technique may be utilized when one or more instructions have a
predictable access pattern executed as part of a loop (e.g., executed several times). Such
instructions may include instructions using an auto increment addressing mode or a base

plus offset addressing mode.

WO 2014/113288 PCT/US2014/011051

06-

[0075] Referring to FIG. 5, a flow diagram of a third illustrative embodiment of a
method 500 to perform way prediction associated with a data cache is illustrated. For
example, the data cache may include the data cache 102 of FIG. 1. In a particular
embodiment, the method 500 may be performed by the control logic 150 of FIG. 1.

[0076] One or more way prediction characteristics of an instruction are identified, at
502. The one or more way prediction characteristics may include an addressing mode
of the instruction, an instruction type of the instruction, indication whether the
instruction is included in a loop, or a combination thereof. For example, the one or
more way prediction characteristics may be identified by control logic, such as the
control logic 150 of FIG. 1, or by decode logic, such as the decode logic 190 of FIG. 1.
In a particular embodiment, a determination is made whether the addressing mode of the
instruction is an auto increment addressing mode or a base plus offset addressing mode.
In another particular embodiment, a determination is made whether the instruction type
of the instruction is a load type or a store type. In another particular embodiment, a
determination is made whether the instruction is included in a loop of one or more
instructions. The decode logic may provide an indication of the instruction type, the

addressing mode, or whether the instruction is included in the loop to control logic.

[0077] A table is selectively read, based on identification of the one or more way
prediction characteristics, to identify an entry of the table associated with the instruction
that identifies a way of a data cache, at 504. Control logic may read a table to determine
whether the table includes the entry corresponding to the instruction. For example, the
control logic 150 of FIG. 1 may selectively read the way prediction table 152. The
corresponding entry in the table may indicate the way (e.g., a predicted way) based on a
value of one or more bits included in the entry (e.g., a value of a WAY field of the
entry). The one or more bits may be applied as a mask to a plurality of drivers to
selectively enable or disable each driver of the plurality of drivers. The control logic
may also determine whether or not the entry is valid. In a particular embodiment, the
predicted way is a same way as a previously accessed way based on a prior execution of
the instruction. For example, the control logic may identify and retrieve the predicted
way from the table and selectively enable and/or disable one or more drivers when the
entry is valid. The one or more drivers, such as the drivers 140a-d, may be included in a

data cache, such as the data cache 102 of FIG. 1.

WO 2014/113288 PCT/US2014/011051

27

[0078] A prediction whether a next access of the data cache based on the instruction
will access the way is made, at 506. For example, the control logic may perform an
arithmetic operation to predict (e.g., verify) whether a next execution of the instruction
will access a same cache line as the execution and thus the same way. When a
determination (e.g., a prediction) is made that the incremented address would not be in
the same cache line accessed during the execution of the instruction, a V/I field (e.g., a
validity bit) of the entry may be set to indicate that the value of a WAY field is invalid
and may not be relied on to indicate a predicted way to be used during the subsequent
execution of the instruction. When a determination is made that the incremented
address would be in the same cache line, the V/I field of the entry may be set to indicate

that the value of the WAY field is valid and may be relied on.

[0079] By accessing the table, a previous way of the data cache accessed based on the
instruction may be used as a way prediction for an execution of the instruction. The
previously stored way may be used as the way prediction and one or more drivers may
be selectively disabled (e.g., turned off) based on the way prediction. By selectively
disabling one or more drivers, less than all of the drivers are activated (e.g., turned on)

and a power benefit may be realized during a data access of a data cache.

[0080] The method 200 of FIG. 2, the method 300 of FIG. 3, the method 500 of FIG. 5,
or any combination thereof, may be implemented or otherwise performed by a field-
programmable gate array (FPGA) device, an application-specific integrated circuit
(ASIC), a processing unit such as a central processing unit (CPU), a digital signal
processor (DSP), a controller, another hardware device, a firmware device, or any
combination thereof. As an example, at least a portion of any of the method 200 of FIG.
2, the method 300 of FIG. 3, the method 500 of FIG. 5, or any combination thereof, may
be implemented by a processor 610 that executes instructions stored in a memory 632,

as described with respect to FIG. 6.

[0081] FIG. 6 is a block diagram of a particular embodiment of a device 600 (e.g., a
communication device) including a cache memory system that utilizes a multi-bit way
prediction mask. The device 600 may be a wireless electronic device and may include a

processor 610, such as a digital signal processor (DSP), coupled to a memory 632.

WO 2014/113288 PCT/US2014/011051

8-

[0082] The processor 610 may be configured to execute software 660 (e.g., a program
of one or more instructions) stored in the memory 632. The processor 610 may include
a data cache 680 and control logic 686. For example, the data cache 680 may include or
correspond to the data cache 102 of FIG. 1, and the control logic 686 may include or
correspond to the control logic 150 of FIG. 1. The data cache 680 may include a data
array 682 and a tag array 684. The data array 682 and the tag array 684 may correspond
to the data array 110 and the tag array 180 of FIG. 1, respectively. The data array 682
may include a plurality of line drivers, such as the line drivers 140a-d of FIG. 1. The
control logic 686 may include a way prediction table 688. The way prediction table 688
may include or correspond to the way prediction table 152 of FIG. 1. In an illustrative
example, the processor 610 includes or corresponds to the processor system 100 of FIG.
1, or components thereof, and operates in accordance with any of the embodiments of

FIGS. 1-5, or any combination thereof.

[0083] In a particular embodiment, the processor 610 may be configured to execute
computer executable instructions 660 stored at a non-transitory computer-readable
medium, such as the memory 632, that are executable to cause a computer, such as the
processor 610, to perform at least a portion of any of the method 200 of FIG. 2, the
method 300 of FIG. 3, the method 500 of FIG. 5, or any combination thereof. For
example, the computer executable instructions 660 may be executable to cause the
processor 610 to identify one or more way prediction characteristics of an instruction.
The computer executable instructions 660 are further executable to cause the processor
610 to selectively read, based on identification of the one or more way prediction
characteristics, a table to identify an entry of the table associated with the instruction
that identifies a way of a data cache. The computer executable instructions 660 are
further executable to cause the processor 610 to make a prediction whether a next access

of the data cache based on the instruction will access the way.

[0084] A camera interface 668 is coupled to the processor 610 and is also coupled to a
camera, such as a video camera 670. A display controller 626 is coupled to the
processor 610 and to a display device 628. A coder/decoder (CODEC) 634 can also be
coupled to the processor 610. A speaker 636 and a microphone 638 can be coupled to
the CODEC 634. A wireless interface 640 can be coupled to the processor 610 and to

an antenna 642 such that wireless data received via the antenna 642 and the wireless

WO 2014/113288 PCT/US2014/011051

29

interface 640 can be provided to the processor 610.In a particular embodiment, the
processor 610, the display controller 626, the memory 632, the CODEC 634, the
wireless interface 640, and the camera interface 668 are included in a system-in-package
or system-on-chip device 622. In a particular embodiment, an input device 630 and a
power supply 644 are coupled to the system-on-chip device 622. Moreover, in a
particular embodiment, as illustrated in FIG. 6, the display device 628, the input device
630, the speaker 636, the microphone 638, the wireless antenna 642, the video camera
670, and the power supply 644 are external to the system-on-chip device 622. However,
cach of the display device 628, the input device 630, the speaker 636, the microphone
638, the wireless antenna 642, the video camera 670, and the power supply 644 can be
coupled to a component of the system-on-chip device 622, such as an interface or a

controller.

[0085] In conjunction with one or more of the described embodiments, an apparatus is
disclosed that includes means for identifying one or more way prediction characteristics
of an instruction. The means for identifying may include the control logic 150, the
decode logic 190 of FIG. 1, the processor 610, the control logic 686 of FIG. 6, one or
more other devices or circuits configured to identify one or more way prediction

characteristics, or any combination thereof.

[0086] The apparatus may also include means for selectively reading, based on
identification of the one or more way prediction characteristics, a table to identify an
entry of the table associated with the instruction that identifies a way of a data cache.
The means for selectively reading a table may include the control logic 150 of FIG. 1,
the control logic 686 of FIG. 6, one or more other devices or circuits configured to

selectively read the table, or any combination thereof.

[0087] The apparatus may also include means for making a prediction whether a next
access of the data cache based on the instruction will access the way. The means for
making the prediction may include the control logic 150 of FIG. 1, the control logic 686
of FIG. 6, one or more other devices or circuits configured to make the prediction, or

any combination thereof.

[0088] The apparatus may also include means for decoding the instruction, where the

instruction includes a register identifier and has a predictable next address. The means

WO 2014/113288 PCT/US2014/011051

-30-

for decoding may include the decode logic 190 of FIG. 1, the processor 610 of FIG. 6,
one or more other devices or circuits configured to decode the instruction to be

executed, or any combination thereof.

[0089] The apparatus may also include means for selectively driving a data cache line
based on the way. The means for selectively driving a data cache line may include the
line drivers 140a-c of FIG. 1, the data array 682 of FIG. 6, one or more other devices or

circuits configured to selectively drive the data cache line, or any combination thercof.

[0090] One or more of the disclosed embodiments may be implemented in a system or
an apparatus, such as the device 600, that may include a mobile phone, a cellular phone,
a satellite phone, a computer, a set top box, an entertainment unit, a navigation device, a
communications device, a personal digital assistant (PDA), a fixed location data unit, a
mobile location data unit, a tablet, a portable computer, a desktop computer, a monitor,
a computer monitor, a television, a tuner, a radio, a satellite radio, a music player, a
digital music player, a portable music player, a video player, a digital video player, a
digital video disc (DVD) player, a portable digital video player, or a combination
thereof. As another illustrative, non-limiting example, the system or the apparatus may
include remote units, such as mobile phones, hand-held personal communication
systems (PCS) units, portable data units such as personal data assistants, global
positioning system (GPS) enabled devices, navigation devices, fixed location data units
such as meter reading equipment, or any other device that stores or retrieves data or

computer instructions, or any combination thereof.

[0091] Although one or more of FIGS. 1-6 may illustrate systems, apparatuses, and/or
methods according to the teachings of the disclosure, the disclosure is not limited to
these illustrated systems, apparatuses, and/or methods. Embodiments of the disclosure
may be suitably employed in any device that includes integrated circuitry including a

processor and a memory.

[0092] Those of skill would further appreciate that the various illustrative logical
blocks, configurations, modules, circuits, and algorithm steps described in connection
with the embodiments disclosed herein may be implemented as electronic hardware,
computer software executed by a processor, or a combination thereof. Various

illustrative components, blocks, configurations, modules, circuits, and steps have been

WO 2014/113288 PCT/US2014/011051

31-

described above generally in terms of their functionality. Whether such functionality is
implemented as hardware or processor executable instructions depends upon the
particular application and design constraints imposed on the overall system. Skilled
artisans may implement the described functionality in varying ways for each particular
application, but such implementation decisions should not be interpreted as causing a

departure from the scope of the present disclosure.

[0093] The steps of a method or algorithm described in connection with the
embodiments disclosed herein may be embodied directly in hardware, in a software
module executed by a processor, or in a combination of the two. A software module
may reside in random access memory (RAM), flash memory, read-only memory
(ROM), programmable read-only memory (PROM), erasable programmable read-only
memory (EPROM), electrically erasable programmable read-only memory (EEPROM),
registers, hard disk, a removable disk, a compact disc read-only memory (CD-ROM), or
any other form of non-transient storage medium known in the art. An illustrative
storage medium is coupled to the processor such that the processor can read information
from, and write information to, the storage medium. In the alternative, the storage
medium may be integral to the processor. The processor and the storage medium may
reside in an application-specific integrated circuit (ASIC). The ASIC may reside in a
computing device or a user terminal. In the alternative, the processor and the storage

medium may reside as discrete components in a computing device or user terminal.

[0094] The previous description of the disclosed embodiments is provided to enable a
person skilled in the art to make or use the disclosed embodiments. Various
modifications to these embodiments will be readily apparent to those skilled in the art,
and the principles defined herein may be applied to other embodiments without
departing from the scope of the disclosure. Thus, the present disclosure is not intended
to be limited to the embodiments shown herein but is to be accorded the widest scope
possible consistent with the principles and novel features as defined by the following

claims.

WO 2014/113288 PCT/US2014/011051

230

CLAIMS

1. A method comprising:

identifying one or more way prediction characteristics of an instruction;

selectively reading, based on identification of the one or more way prediction
characteristics, a table to identify an entry of the table associated with the
instruction that identifies a way of a data cache; and

making a prediction whether a next access of the data cache based on the

instruction will access the way.

2. The method of claim 1, wherein the one or more way prediction
characteristics comprise an addressing mode of the instruction, an instruction type of the
instruction, an indication whether the instruction is included in a loop, or a combination

thereof.

3. The method of claim 2, further comprising, determining whether the
addressing mode of the instruction is an auto increment addressing mode or a base plus

offset addressing mode.

4. The method of claim 3, further comprising setting a predicted way field of the
entry to identify a particular way of the data cache in response to a determination that
the addressing mode of the instruction comprises the auto increment addressing mode,

wherein the predicted way field is set upon generation of the entry.

5. The method of claim 3, further comprising setting a predicted way field of the
entry to identify a particular way of the data cache in response to a determination that
the addressing mode of the instruction comprises the base plus offset addressing mode,
wherein the entry is generated in connection with a first execution of the instruction, and
wherein the predicted way ficld is set based on a second execution of the instruction that

is subsequent to the first execution.

6. The method of claim 2, further comprising determining whether the

instruction type of the instruction is a load type or a store type.

WO 2014/113288 PCT/US2014/011051

233

7. The method of claim 2, wherein the table is selectively read in response to the

indication that the instruction is included in a particular loop.

8. The method of claim 1, further comprising:

determining whether the table includes the entry;

determining whether the entry is valid to provide a way prediction; and

in response to determining that the entry indicates a valid predicted way,
retrieving the predicted way from the entry and selectively driving the

predicted way of the data cache.

9. The method of claim 1, further comprising:

identifying a particular instruction that modified data of a register location;

determining whether a particular entry in the table includes a register identifier
corresponding to the register location;

determining whether the particular entry corresponds to the particular
instruction; and

removing or invalidating the particular entry when the particular entry does not

correspond to the particular instruction.

10. A processor comprising:
decode logic configured to identify one or more way prediction characteristics of
an instruction; and
control logic coupled to the decode logic, the control logic configured to:
selectively read, based on the one or more way prediction characteristics,
a table to identify an entry of the table associated with the
instruction that identifies a way of a data cache; and
make a prediction whether a next access of the data cache based on the

instruction will access the way.

WO 2014/113288 PCT/US2014/011051

-34-

11. The processor of claim 10, further comprising:

a plurality of line drivers, wherein at least one line driver of the plurality of line
drivers is selectively enabled or disabled based on the prediction;

a tag array configured to perform a tag lookup operation based on the
instruction;

a multiplexer responsive to the plurality of line drivers and responsive to a way
select signal received from the tag array or the control logic; and

a switch configured to selectively enable or disable the tag lookup operation.

12. The processor of claim 11, wherein the instruction is associated with an

increment value and an address, and wherein the control logic is further configured to:

to:

determine an incremented address of the instruction by adding the increment
value to the address; and

determine whether the incremented address is located in a same cache line of the

data cache as the address.

13. The processor of claim 11, wherein the control logic is further configured

selectively disable the tag lookup operation based on a determination that the
incremented address is located in the same cache line; and
provide a way select signal to the multiplexer when the tag lookup operation is

disabled.

14. The processor of claim 12, wherein the control logic is further configured to

remove the entry or indicate that the entry of the table is invalid based on a

determination that the incremented address is associated with a different cache line than

a cache line associated with the address.

WO 2014/113288 PCT/US2014/011051

-35-

15. An apparatus comprising:

means for identifying one or more way prediction characteristics of an
instruction;

means for selectively reading, based on identification of the one or more way
prediction characteristics, a table to identify an entry of the table
associated with the instruction that identifies a way of a data cache; and

means for making a prediction whether a next access of the data cache based on

the instruction will access the way.

16. The apparatus of claim 15, further comprising:
means for decoding the instruction, wherein the instruction includes a register
identifier and has a predictable next address; and

means for selectively driving a data cache line based on the way.

17. The apparatus of claim 15, wherein a particular entry in the table indicates a
predicted way based on a value of one or more bits, and wherein the one or more bits
are applied as a mask to a plurality of drivers to selectively enable or disable each driver

of the plurality of drivers.

18. A non-transitory computer readable medium comprising instructions that,
when executed by a processor, cause the processor to:
identify one or more way prediction characteristics of an instruction;
selectively read, based on identification of the one or more way prediction
characteristics, a table to identify an entry of the table associated with the
instruction that identifies a way of a data cache; and
make a prediction whether a next access of the data cache based on the

instruction will access the way.

WO 2014/113288 PCT/US2014/011051

-36-

19. The non-transitory computer readable medium of claim 18, further
comprising instructions that, when executed by the processor, cause the processor to:

identify an increment value associated with the instruction;

identify a particular way of the data cache accessed during execution of the
instruction;

add the increment value to an address value associated with the instruction to
determine an incremented address value; and

determine whether the incremented address value is associated with the

particular way.

20. The non-transitory computer readable medium of claim 18, further
comprising instructions that, when executed by the processor, cause the processor to
populate the entry in the table, wherein each entry in the table includes a program

counter identifier, a register identifier, and a predicted way identifier.

21. The non-transitory computer readable medium of claim 18, wherein the
entry is generated after a determination is made that the instruction is included in a loop

of one or more instructions.

22. The non-transitory computer readable medium of claim 18, further
comprising instructions that, when executed by the processor, cause the processor to:
monitor a plurality of register locations;
determine whether data at a particular register location of the plurality of register
locations is modified; and
read the table to determine whether a particular entry includes a register

identifier corresponding to the particular register location.

WO 2014/113288 PCT/US2014/011051

-37-

23. A method comprising:

identifying an increment value during a first execution of an instruction;

identifying a way of a data cache accessed during the first execution based on
the instruction;

adding the increment value to an address value associated with the instruction to
determine a first incremented address value;

determining whether the first incremented address value is located in the way of
the data cache; and

populating an entry corresponding to the instruction in a table in response to
determining that the first incremented address is located in the way of the

data cache.

24. The method of claim 23, wherein each entry in the table includes a program
counter identifier, a register identifier, a predicted way identifier, a validity bit, or a

combination thereof.

25. The method of claim 23, further comprising determining whether the

instruction comprises an auto increment instruction or a base plus offset instruction.

26. The method of claim 23, wherein the entry identifies the way of the data
cache accessed, wherein the entry is populated in connection with the first execution of
the instruction, and further comprising, during a second execution of the instruction,
performing:

reading the entry from the table;

calculating a second incremented address value; and

applying the way as a way prediction during the second execution.

27. The method of claim 26, wherein applying the way comprises:
retrieving the way from a way field of the entry; and
selectively enabling a driver of the data cache corresponding to the retrieved

way.

WO 2014/113288 PCT/US2014/011051

-38-

28. The method of claim 23, further comprising updating the table in response
to determining that an incremented address value of a subsequent execution of the
instruction is located in a different way than the way, wherein the subsequent execution

of the instruction is after the first execution.

29. The method of claim 23, further comprising removing the entry or
indicating that the entry of the table is invalid based on a determination that the
incremented address is associated with a different cache line than a cache line associated

with the address.

30. The method of claim 23, further comprising:

identifying a particular instruction that modified data of a register location;
reading the table to determine whether a particular entry includes a
register identifier corresponding to the register location;

determining whether the particular entry corresponds to the particular
instruction; and

removing or invalidating the particular entry when the particular entry does not

correspond to the particular instruction.

PCT/US2014/011051

WO 2014/113288

1/6

(0/0]%

9s1”

Y

AVHYY OVL

10313S
: AVM

E

ogL -

J19VN3
AVHdY
oVl

319VN3
d3AId

Y

9g1”
SED

\yG1

I/A AVM od

€al

/A AVM | ©3d | Od

379VL NOILOIA3dd AVM

051~

z61” 21907 TOYLNOD

(‘o

19 ‘Janusp| dooT ‘Jeisibay

‘anje/ ssalppy ‘OnjeA juswaudu]

uononJisu|

(s)onsueioeiey) uonoipald
Aepp “6°8) ejeqg uononiisul

A

papoosQg

oVl

X3ANI

21607 9po2aQ

061~

v. _\\

¢l r\
Jayunon weuboud

A o’

1NdLNO
A
091
— XN ///mr//
A A A A
~ POVl N
vmm&rw 20€ L mom\m\
B 0¥ 1
A
||||| ,l.ummm% ao<t]
A aor L
||||| F B elyl
-POEL \\oomF qogl BOS |
a anm RENE g IN v aNI
IHOVD JHOVD JHOVD JHOVD
oz~ 2021~ g0z}~ ezl
AVM AVM AVM AVM
HLYNOA QYIHL ' AaNOD3S 15414
AVHYEY VIV
% JHOVD V1va
201’

WO 2014/113288 PCT/US2014/011051

2/6

200

\\

/202

Identify an increment value during a first execution of an instruction

Y /204

Identify a way of a data cache accessed during the first
execution based on the instruction

f206

Add the increment value to an address value associated with
the instruction to determine an incremented address value

/208

Determine whether the incremented address
value is located in the way of the data cache

/210

Populate an entry corresponding to the instruction in a table

FIG. 2

WO 2014/113288 PCT/US2014/011051

3/6

300

/302

Identify an addressing mode of an instruction

[304

Read a table based on the identification of the instruction to identify
an entry of the table associated with the instruction that identifies a
way of a data cache

Make a
prediction whether a next access
of the data cache based on the
instruction will access
the way

Y /308 L/ /310
Invalidate or delete Maintain the entry
the entry in the table in the table

FIG. 3

PCT/US2014/011051

WO 2014/113288

4/6

¥ "Old

doojpus : -8V
(L# ++ 014) MWBW = g1 9P
(G4 1) ppe = g4 =1V
(z# ++ 64) MWBW = |4 ~~CVP
:doydoo] —=0v¥
N 3000 dOO1
(01597
417 oSt 8¢ty bz
Hohe.sy] uoljelay uohelsy uonelsa) uonesa)|
puodsg 18414 k= pJIY | puo2ag
pajosfoid I~ pajosfoid e
6d 0Ly
| \ \/ \/
a 3aNI1 S e d 3aNIT — —
5 e o) 2
JHOVD 90t a90t 90t JHOYD [r40}%)7 qcov 17
/ J J _
801 N 148)7% N
Pl S0 2= 0Ly~ 207
oov\ O ANIT 3IHOVO V 3dNIT dHOVO

WO 2014/113288 PCT/US2014/011051

5/6

500

f502

Identify one or more way prediction characteristics of an instruction

504

Selectively read, based on identification of the one or more way
prediction characteristics, a table to identify an entry of the table
associated with the instruction that identifies a way of a data cache

f506

Make a prediction whether a next access of the data cache based on
the instruction will access the way

FIG. 5

PCT/US2014/011051

WO 2014/113288

6/6

9 'Old

vam

ANOHJOHOIN

g8e9

dIMVIAS

9c9-’

Vd3AvO O3dIA

A1ddNS ¥3IMOd
——
JOV4YILNI I7gv.L NOILOIATYd
SSTTIHUIM
J 989~ 23000
0v9 21907 T0HLNOD
989~
AVHHY OVL 4
099~ -
89 JOVIYALNI
VHIANYD
(SNOILONHLSNI “6°9) AVHHY V1VA —
JYVMLIOS ——
JHOVO vivd YITIONINOD
AHOWAN owm\ AV1dSId
— . HOSSID0Nd 529
019
229’
3DIA3A 1NN AV1dSId
0c9~”’ 829~

029”7

009

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2014/011051

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F9/38
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

3 March 2005 (2005-03-03)

A paragraph [0030]
paragraph [0031]
paragraph [0035]
paragraph [0037]
paragraph [0057]
paragraph [0089]
paragraph [0093]
paragraph [0103]

paragraph [0006]
paragraph [0050]

X US 2005/050277 Al (SHEN GENE W [US] ET AL)

- paragraph [0038]
- paragraph [0090]

A US 2008/046653 Al (KNOTH MATTHIAS [US] ET
AL) 21 February 2008 (2008-02-21) 18

1-3,6-8,
10,11,
15,17,
18,21
9,12-14,
16,19,
20,22-30

1,10,15,

_/__

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

30 April 2014

Date of mailing of the international search report

08/05/2014

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Klocke, Lynn

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2014/011051

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

A US 2010/049953 Al (MYLAVARAPU AJIT KARTHIK 1,10,15,
[US] ET AL) 25 February 2010 (2010-02-25) 18
paragraph [0024]
paragraph [0047]
paragraph [0051]
paragraph [0054]
paragraph [0055]

A US 2005/050278 Al (MEIER STEPHAN G [US] ET 1,10,15,
AL) 3 March 2005 (2005-03-03) 18
paragraph [0034]
paragraph [0036]
paragraph [0102]
paragraph [0029]

A WO 02/073415 A2 (KONINKL PHILIPS 1,10,15,
ELECTRONICS NV [NL]) 18
19 September 2002 (2002-09-19)
the whole document

A US 5 752 069 A (ROBERTS JAMES S [US] ET 1,10,15,
AL) 12 May 1998 (1998-05-12) 18

the whole document

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2014/011051
Patent document Publication Patent family Publication

cited in search report date member(s) date

US 2005050277 Al 03-03-2005 CN 1846200 A 11-10-2006
DE 112004001608 T5 10-08-2006
GB 2421826 A 05-07-2006
JP 2007504552 A 01-03-2007
KR 20060067964 A 20-06-2006
US 2005050277 Al 03-03-2005
WO 2005024635 A2 17-03-2005

US 2008046653 Al 21-02-2008 CN 101523359 A 02-09-2009
US 2008046653 Al 21-02-2008

US 2010049953 Al 25-02-2010 NONE

US 2005050278 Al 03-03-2005 NONE

WO 02073415 A2 19-09-2002 CN 1459058 A 26-11-2003
EP 1370946 A2 17-12-2003
JP 4137641 B2 20-08-2008
JP 2004519776 A 02-07-2004
W 554267 B 21-09-2003
US 2002133672 Al 19-09-2002
WO 02073415 A2 19-09-2002

US 5752069 A 12-05-1998 NONE

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - claims
	Page 34 - claims
	Page 35 - claims
	Page 36 - claims
	Page 37 - claims
	Page 38 - claims
	Page 39 - claims
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - wo-search-report
	Page 47 - wo-search-report
	Page 48 - wo-search-report

