US 20220067035A1

a2y Patent Application Publication o) Pub. No.: US 2022/0067035 A1

a9y United States

LITTLE et al. 43) Pub. Date: Mar. 3, 2022
(54) SYSTEM AND METHOD FOR PROVIDING GO6F 16/182 (2006.01)
AN INTERFACE FOR A BLOCKCHAIN GOG6F 9/50 (2006.01)
CLOUD SERVICE HO4L 9/08 (2006.01)
HO4L 12724 (2006.01)
(71) Applicant: Oracle International Corporation, HO4L 29/08 (2006.01)
Redwood Shores, CA (US) GO6F 16/27 (2006.01)
(52) US. CL
(72) Inventors: TODD LITTLE, LAFAYETTE, CO CPC ... GOGF 16/2379 (2019.01); HO4L 2209/38
(US): Pierce Shi, Beijing (CN); Jared (2013.01); GO6Q 20/065 (2013.01); GO6Q
Li, Beijng (CN); Shi Xiang Zhou, 20/3823 (2013.01); GOG6F 21/6218 (2013.01);
Beijing (CN); Weiguo Zhu, Beijing HO4L 9/3239 (2013.01); GOGF 9/547
(CN); Sheng Zhu, Beijing (CN): Shun (2013.01); GO6Q 20/06 (2013.01); HO4L
Li, Beijing (CN); Jim Jin, Beijing 9/0637 (2013.01); GO6F 16/1805 (2019.01);
(CN); Qingsheng Zhang, Beijing (CN) GO6F 16/1834 (2019.01); GOGF 9/5077
) (2013.01); GO6F 9/541 (2013.01); GO6Q
(21) Appl. No.: 17/524,234 20/382 (2013.01); HO4L 9/0861 (2013.01);
- HO4L 41/5054 (2013.01); HO4L 63/08
(22) Filed: Nov. 11, 2021 (2013.01); HO4L 67/1097 (2013.01); HO4L
c 67/2823 (2013.01); GO6F 16/27 (2019.01);
Related U.S. Application Dat
clate ppiicationt Data GO6Q 2220/00 (2013.01); HO4L 63/123
(63) Continuation of application No. 16/141,329, filed on (2013.01)
Sep. 25, 2018.
(60) Provisional application No. 62/565,999, filed on Sep. G7) ABSTRACT
29, 2017. In accordance with an embodiment, described herein is a
.. . . system and method for implementing a distributed ledger a
Publication Classification blockchain cloud service. The blockchain cloud service can
(51) Int. CL include nodes of the distributed ledger and a management
GOG6F 16/23 (2006.01) console component. The management console component
HO4L 29/06 (2006.01) can include a web application running in a script runtime
G06Q 20/06 (2006.01) environment, a plurality of backend of APIs for communi-
G06Q 20/38 (2006.01) cating with various nodes of the blockchain cloud service,
GOG6F 21/62 (2006.01) and a plurality of client APIs configured to be invoked by a
HO4L 9/32 (2006.01) client application. The plurality of client APIs uses one or
GO6F 9/54 (2006.01) more of the plurality of backend APIs in provisioning the
HO4L 9/06 (2006.01) distributed ledger as a blockchain cloud service, and in
GOG6F 16/18 (2006.01) managing the managing the blockchain cloud service.
Fabric-CA
Service 170
Certificat . .
identity 174
1
1.1
v

Fabric
SDK 162 X[\ 5

Peer Container 180

N
Y

Endorser

Smart Contract
Container 166

Client 160

Simulates Tx 182

I Smart Contact 168

Comitter
Applies Changes
184

x

~

130

Ordering Container

Orderer 192

Patent Application Publication = Mar. 3, 2022 Sheet 1 of 18 US 2022/0067035 A1

Fabric-CA
Service 170

Certificate
Authority 172

Federated
identity 174
1
1.1

/A

Fabric W

SDK 162 r 2

Validate signatures and
Authorization

g

Peer Container 180 Smart Contract
Keys 164 2.1 Container 166
‘ ™ Endorser
Client 160 Simulates Tx 182 |4-----# Smart Contact 16
3 Comitter
Applies Changes -
184
4
5 5. Ordering Container
190
Ledger WS
186 188 >
Orderer 192

FIGURE 1A

Patent Application Publication = Mar. 3, 2022 Sheet 2 of 18 US 2022/0067035 A1

Public Access 100

! | PSM Console | | BCS Console Fabric SDK BCS Rest M Fabbrich. 3
: Ut Ul Clients AP1 Clients eg;’ e'”ts P
1 102 104 106 108 e 3
| e 104 Mo |
S v BCREST | !
PS}]\I;;\P! AP
PN SRR SRS U 124 e ,
 External Compute 120 ;
LBAAS 126
: ; Container Runtime 128 i ; Builder VM 3 :
i | Chaincode
P | i | Builders ! ;
! ‘ Peers Orderers Fabric-Ca i g 140 ! ;
Lo 132 134 130 b —— 2 f
i : i BRI Docker/ ; ;
b P Weave ; ;
P ; ‘ . Lo 141 ! :
i ‘ Gateway/ BCS Chaincode : ! : ;
1| REST Proxy Management Executors | ; 3
L 138 Server 136 139 |f o
§ Event Hub goud IDCS !
| 150 i 154 |

FIGURE 1B

Patent Application Publication = Mar. 3, 2022 Sheet 3 of 18 US 2022/0067035 A1

Gateway-based applications Fabric-based applications
103 105

/

: § Container
: g Runtime
3 128
g LBaaS
: 126
P eeeeed | Console
STTIIIIIIIIIIIIIII AN 136
Cloud Gate
Gateways
IDCS 138]
Agent
Fabric-ca i, '
130 Chaincode
3 v v bsﬂders |
Cloud S Agent/Peers % (ep 1e4moera)
Stgrage b 2 > 132 < b
__________ ,,
, Chaincode
""""""""""""""""""""""""""" N 142
\ A
........................... Agent/ |
R S Orderers
Event Hub : 134

FIGURE 1C

Patent Application Publication = Mar. 3, 2022 Sheet 4 of 18 US 2022/0067035 A1

BCS Instance

100a
1:N 1:N 1:N
Orderer Fabric-CA BCS REST- BCS
101a Membership Proxy Console
102a 103a 104a
Peer
Container . -]
105a
Endorser
S N N:T
Committer \
> Storage Event Hub IDCS
106a 107a 108a

Chaincode
109a

FIGURE 1D

Patent Application Publication = Mar. 3, 2022 Sheet S of 18 US 2022/0067035 A1

Provide, at a computer comprising at least one processor, at least one
instance a container runtime service, and a distributed ledger component in
the at least one instance of the application container cloud service, wherein

the distributed ledger is provisioned as a blockchain cloud service
comprising, the blockchain cloud service comprising a peer container, a
orderer container, and a chaincode container.

'

Maintain, by the peer container, a blockchain ledger.

'

Order, by the orderer container, transactions within the blockchain ledger.
Encode, by a chaincode execution unit of the chaincode container, assets in j~’ 178
the ledger.

'

Configure the at least one instance of a container runtime service to receive [~ 179
an incoming call from a client application, the incoming call requesting an
entry into the blockchain ledger.

FIGURE 1E

US 2022/0067035 Al

Mar. 3,2022 Sheet 6 of 18

Patent Application Publication

End User

200

ko’
c
O
c O
Ot
= ©
T N
Cr
= Q
c £
DS
£ <
o
<
Al
el
S—
0.
T
T
I

App.
Adapter
202

HTTP/1.1

| .
o
® &
..mz)
eS
o N > mn
= O w OO
%) 2 m&T N
© = N
S @ EQ S 8
O N
08| = | =92
= Q
o m
T
-
I

Public Cloud 210

Fabric CA/
IDCS 228

BCS Fabric 220

FIGURE 2

Patent Application Publication

Mar. 3,2022 Sheet 7 of 18

Orderer Container 302
Persist
by REST
Ledger 312
e
Persist

Orderer Container 304 by REST

Ledger 314

Peer Container 306

Ledger 316

326 Indices/
World state

Peer Container 30

Ledger 318

328 indices/
World state

US 2022/0067035 Al

Object Storage
320

FIGURE 3

Patent Application Publication

Mar. 3,2022 Sheet 8 of 18

Ordering Service 400

/_

Orderer_Org1
401

Kafka Cluster

410

Orderer_Org2
402

Peer_Org1
Peer 421

[

US 2022/0067035 Al

-

L

Peer_0Org3 \
Peer 423

e]

Peer_Org4 /]
Peer 424 T

—

422

Peer_Org2

FIGURE 4

Patent Application Publication = Mar. 3, 2022 Sheet 9 of 18 US 2022/0067035 A1

FIGURE 5

Container Runtime Service Environment 500 3

Builder Container 550

Builder Agent 553 4.2

1. Run “go build c¢”
2. Package cc into

taz
2
: 4.1 .
Client 530 1 Peer 1 510 »| CC Container
> P 4.3 (Java)
h 520
5 5
Peer2..n 512 »| CC Container
P (Java)
h 822

lll

US 2022/0067035 Al

t
;
! b
: I
m b o P
! I £ g
; D £ %
: = P X 0 = O P
; [R = ooy o o L O N oo
" U = < P g R & 3_ 2 3_ B!
: o - @ Eo iR 5 w @ B
H T <L N o = [2 @
: 1 o1 Z O [IS
! aal T 2
H t [....ru N
. : e 0 %W
— H i m B 1¥a}
o $ H 1
1) ; bR U T A S T S tuisetieie et et
= : 2
< | 93
?
@ ‘ TS.. 17| I T T O N N U v S
= ; Wi B -
2 : o 2 b e
M |2 21l
Q ! iRy o | ¥ ©
8 : W 4e_ Qe 2l o
IS ! ! w ® o Mn: ©
e H @ H D o ° & 0
- ; 5 S < | S |lec|x b
< : 3 : Z |58 |& o
= M c “ : 2 laoll®sgl |< @
H O = 3 ! 3] K™ . = m.\v £
H O 2 R X o £ e O3 O
: H Q @ 59 X -l
: a3 : %_ a1 W ol
= ; Q ! % AR A
= : B MR et o a.v Z
=] t 1 @ @ Q@ %
= ;) DEE -
: v 9 W E
.m t T Pl 4
= i g ES
= " CEEY = X
= . ! q) CE2w)
A : Y N 'l o c Byl 2 w
5 e Cyig| <118 £ ™ @
S o ¢ = & o <
= : 2151w ' o BE = &
M N 73] [e DEE @ -
5 e 2125 |§lEe
=] oo : cEDd O Q
2 I S18] % |522 :
t 7
5 8 1O 212157 5
A b [T ET O .
t i i t - N
¢ o3 i ¢ & T B A [%3 @
~N $oaz H ¢ A § S .
= " L0 “ 4 ‘mw v R £ E R el
m [i " > “ 1]
z RS PoAM oo

FIGURE 6

US 2022/0067035 Al

Mar. 3, 2022 Sheet 11 of 18

Patent Application Publication

Public Access 100

g&.@&
%,

.

%
%
#

sV\..

llllllllllllllllllllllllllllllllll

oy
sy (o e e e e o e
oy R TTTTIUTTIIIIINIIL t
_M "" IR}
v HE %
[HE 11
o [tt
[H - T
L P o ¥
[HE [<»] 11
o ot ~ [}
] P = :
o . s H
b it] 1
P bl 9] ¢
b %
. i = §
Vo P Q h
Vo 't = Iz
P HE £ 4
HE . [11
oy ". . [N}
i 4
1 I
(! I %
[HE i
vy HE 11
[S a
[' i
v H i
Vo H !
o t 1
vy ! :
Vo ! i
23
I H i
o i 1
[| t
o ‘ ;
13

'
[))
oy 1
o " l
0 ! j
Do “ A4 “
Vo ! st i
b ! 5 ;
i ! £ :
N ' ‘
P “ o ;
i —
vy H 06 1
' ! T 7 3
_M "V nn3 i
i —> S o ||
[H 1
bt v Q0 o !
. “2 w0 H
i P Q !
oy "% m :
[1
P S ;
v
0y “N 1
b ¢ 2 :
e L i
R I <~) I :
R IR !
f oM i ‘
P e pieed i

'
== 70 I = !
._pM"u 1
1 i
.“m “R i
P Q 0 o« !
NI] R !
S . P} [l
1P @ [!
¥
R o “.mm 1
[H 1
B TEERD- |
1
oy X “C i
O 1 T U 1
ol

FIGURE 7A

US 2022/0067035 Al

Mar. 3, 2022 Sheet 12 of 18

Patent Application Publication

Public Access 100

BCS Console Ut 104

))))))))))))))))))))))))))))))

External Compute 120

:
[

[

Vo

v

P g
[(o]
b (o}
v

t o x
to [
i

[Q
Yoo
V2
[1)
[

5o zZ
o

T Q
o "
[

HE £0
[o
t o

HE i
© o

L]

v

v

L S
3

h

1

t

1

t

'

¥

'

t

t

s

¥

1

t

i

3

¥

?

1

e
i

! 3]
!

: =
|80
¥

t 3%6
B =
I QT
: 20
'

'8 o
§

i)
'

H m
t

'

¥

1

t

i

s

i

1

1

i

3

¥

?

1

i

i

s

1

1

1

$

I

1

!

t

i

)

Container Runtime Service 128

FIGURE 7B

Patent Application Publication = Mar. 3, 2022 Sheet 13 of 18 US 2022/0067035 A1l

s 781
Provide a container runtime service

783

Provide a distributed ledger and a management console component in the
container runtime service

Provide a plurality of client APIs and a plurality of backend application
programming interfaces (APls) in the management console component,
wherein the plurality of client APls are configured to be invoked by a client

application, wherein the plurality of backend APls are configured to ~ 785
communicate with a plurality of nodes of the distributed ledger, and wherein
the plurality of client APIs uses one or more of the plurality of backend APls

in provisioning the distributed ledger as a blockchain cloud service, and in
managing the managing the blockchain cloud service

FIGURE 7C

US 2022/0067035 Al

Mar. 3, 2022 Sheet 14 of 18

Patent Application Publication

))

¥ t
i]
M w i t [RER]
! ! N 1 1 1 L, 14!
! s A S
s A < o o3
1 53
D LB © ® g og i
1 M $ ~e1 w @© C L:hn.\v.-l]
| ! H 4 m_luz ol o ﬁ_uo bme v
) . v o D 0 = O = 08 O i
H i ' _,.hlu L T - - Q= HE
§ O
Co PR o = o 252}
s H } s o L Owo I
H t ! ! w Pyt
? 5 “ “F _.”
Do o
=~ ! e e e e e e s e e 2 2 o e 2 2o o 2 2o 2 2 e e 2 e 2 2 2 e 2o e 1 .
2oql | 82N |
- t
AN S5 = |
[} bt — h ee _"
&) i m.|. M.
m ” Seoe [
w I
' %%nm_) L
A m nnw P%_ L
t Ne o \nV/ X «© w"
v_e@ L= lgg® © ¥
]
LY 2 ¥
2 ; .
354 ' .
t
R e ¥)
1]
.2 S g ¥ :
r 5 N 5 |8 |z B
[e aasasee] = (€} o I
%Moo " 5 © S i
ol > = o P
o <] SIo Odll B | o
I~ m — -3 [
e b ol { (O e s
J48 g |e & S f
POIy~al 1 8 |5 4 s .
— ; mb) © o & i
0. ! & L. o I
N : -y < b
=« |o u % e L
0 N V © 0. 2 P
Q. A “m o [% ,"
8 2 ==) o [
- u .u .n E Ta w"
@ e ol [} x .m7 HE
o ! ym o4 “Rs ~ sz n"
3 i v O == v (N = 28] I
@ + i t A © ReoO [
3 P9 | 1€ z £ .
| Je—y - — H
< § Tw < e 2 3 [
0 e ISl 1Bz S .
5 18 |8 18¢2 © :
2 DR S Qe T i
H M i
llllllllllllllllll 4 g g g i g g g g WG g g i g WU g g

FIGURE 8A

US 2022/0067035 Al

Mar. 3, 2022 Sheet 15 of 18

Patent Application Publication

3

H

i

s

s

1

H

@

s

i H

= i

Q t

= ¢

s

O 3

[e 1
= @

7 i

s

0] w

e !

¢

s

H

H

@

¢

s

3

H

@

4] s

—_— s

3

3 .

i

m 1

[

O H

t

7] «

& .

s

H

[a%) !

¢

s

s

H

@

¢

s

b i H

wn < i

ul 2 ;

= 0 :

1

T oo .

) =]

CP [

'

o < ;

i

¢

s

3

H

@

¢

s

s

1

@

¢

s

s

H

@

¢

s

3

H

i

¢

s

'

1

i

¢

s

'

3

i

¢

s

'

3

i

Public Access 100

))

1
4
4 ‘)
1 i3
: ; ! ! 1 Lo
s ! te !
“ : ool b
? H T oo [
: ; ” ® 8 ol i)
vt
; ‘ 5o L < & o BE o} 11!
! i 83 D M = O = @ O HHE
M + L ho Il o 8 ™ - 1y b
; : Q. 5 @ 252}
. ; . Dse [
¢ H Wi oy
H h iy b
3 3 :"
: 5 NG e e e e e e e e e e e e e e A
: : 4 b
! ; - £
¢ w e ""
; : go .
“ ; RBRs3Q b
; 20 i
¢ 830]
H s nC [
: ; o Q P
{ : = a o C
3 Qi 3
! : P X o i
i w ,A\n:V [} ~“
s ! MRS 1
¥ t
P] |
: 4 / Y b
! : I
: ; \ ‘L
s H y b
; “ \ B
4 s H
2 s ¢ .
¢ e « s
. ; 513 ¥
b
4
; : mM_ L
H “ () o M"
: : M T% b
——]
; : = n > Dl
3 H @ uw @ I
H ¥ N Y b
$ N xw [
e ‘ @ b
HeY s jox w I
H [™ v
A 1 e 0 o) v
F ¢ E [\ [[
[== o] > W 0
[y = [© .
Y 3 @ = .
PE XX £) O
r O 5oy N © - P
O 18T e 3 L
[[N)} lm & 1
I I 'S Do
s £ 1T e D
;@ Qo I
L T B e et T ettt R e ta b 4
e e e e e e om e o e s et 2 2 1 e 1 e s = e e e et o 2 e 2t 2 o o o n 3

FIGURE 8B

Patent Application Publication = Mar. 3, 2022 Sheet 16 of 18 US 2022/0067035 A1l

. , . , . 881
Provide a container runtime service

l

Provide a distributed ledger in the container runtime service, whereinthe | _ 883
distributed ledger is provisioned as a blockchain cloud service in the
container runtime service

l

Provide a REST proxy service executing in a container of the container
runtime service, wherein the REST proxy service includes a plurality of
REST APIs, which are configured to translate REST calls from client {~ 885
applications into remote procedural calls, for use by the client
applications in communicating with the distributed ledger

FIGURE 8C

US 2022/0067035 Al

Mar. 3, 2022 Sheet 17 of 18

Patent Application Publication

V6 F4NSOI4

£

ST UDHESnagy ars, TEERGIE Hahg

et e e ?

| @i 2HB Y
M
o
i
§

§
H
H
}
$
¥
¥

IHRsERdE

RO TR

¢06 106 006

Patent Application Publication = Mar. 3, 2022 Sheet 18 of 18 US 2022/0067035 A1l

902

i S A N S S U R S O T 0 S 0 N S e

907

906

FIGURE 9B

D R KR VAR Y AP VA VR

905

904

US 2022/0067035 Al

SYSTEM AND METHOD FOR PROVIDING
AN INTERFACE FOR A BLOCKCHAIN
CLOUD SERVICE

CLAIM OF PRIORITY AND CROSS
REFERENCE TO RELATED APPLICATION

[0001] This application is a continuation of and claims the
benefit of priority to U.S. patent application titled “SYS-
TEM AND METHOD FOR PROVIDING AN INTERFACE
FOR A BLOCKCHAIN CLOUD SERVICE”, application
Ser. No. 16/141,329, filed Sep. 25, 2018, which application
claims the benefit of priority to U.S. Provisional Patent
Application titled “SYSTEM AND METHOD FOR PRO-
VIDING A BLOCKCHAIN CLOUD SERVICE”, Applica-
tion No. 62/565,999, filed Sep. 29, 2017; and is related to
U.S. patent application Ser. No. 15/485,532, entitled
“MULTI-TENANT IDENTITY AND DATA SECURITY
MANAGEMENT CLOUD SERVICE”, filed Apr. 12, 2017
which has subsequently issued on Oct. 3, 2017 as U.S. Pat.
No. 9,781,122, each of which are herein incorporated by
reference.

COPYRIGHT NOTICE

[0002] A portion of the disclosure of this patent document
contains material which is subject to copyright protection.
The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document or the patent
disclosure, as it appears in the Patent and Trademark Office
patent file or records, but otherwise reserves all copyright
rights whatsoever.

FIELD OF INVENTION

[0003] This disclosure relates generally to systems and
methods for providing distributed ledgers. More particularly
the disclosure describes system and methods for managing
a distributed ledger implemented as a blockchain cloud
service.

BACKGROUND

[0004] A distributed ledger may be broadly described as a
digital record of asset ownership. There is no central admin-
istrator of the ledger, nor is there a central data store. Instead,
the ledger is replicated across many participating nodes in a
computing environment that may be geographically spread
across multiple sites, countries, or institutions. A consensus
protocol ensures that each node’s copy of the ledger is
identical to every other node’s copy. As well, the set of
copies may be viewed as a single shared ledger. A distributed
ledger may be used by asset owners using cryptographic
signature technology, for example, to debit their account and
credit another’s account.

[0005] A blockchain is a data structure can be used to
implement tamper-resistant distributed ledgers. Multiple
nodes follow a common protocol in which transactions from
clients are packaged into blocks, and nodes use a consensus
protocol to agree on the next block. Blocks carry cumulative
cryptographic hashes making it difficult to tamper with the
ledger. Each block can have a reference (hash value) to the
previous block in time. In addition, each block can comprise
its own hash. The blockchain can be traversed backwards
(e.g., up the chain).

[0006] A blockchain can be either a permissionless block-
chain or a permissioned blockchain. Anyone can join a

Mar. 3, 2022

permissionless blockchain and have a copy of the distributed
ledger. Bitcoin and Ethereum are examples of permission-
less blockchains. Permissionless blockchains allow anony-
mous participants to maintain the ledgers, while avoiding
control by any single entity. However, identity, accountabil-
ity and auditability are difficult in light of the anonymity. In
contrast, permissioned blockchains accept members by invi-
tation, and allow for levels of trust and accountability by
allowing explicitly authorized parties to maintain the led-
gers.

[0007] The Hyperledger fabric is an example of a permis-
sioned blockchain. The Hyperledger fabric, as an enterprise-
grade, open-source distributed ledger framework and code
base, is an implementation of a distributed ledger platform
for running smart contracts. It leverages container technol-
ogy to host smart contracts called “chaincode” that comprise
the application logic of the system.

[0008] Platform as a Service (PaaS) is a number of cloud
services for application development, data management,
integration, mobile and Internet of Things (IOT). As the
demand from cloud services grows, it would be desirable to
provide a blockchain a PaaS cloud service. A blockchain
PaaS cloud service can provide a pre-assembled platform for
building and running smart contracts and maintaining a
tamper-proof distributed ledger, while reducing the need for
third-party intermediaries. A PaaS blockchain cloud service
can also enable the development of blockchain solutions that
leverage other PaaS services.

SUMMARY

[0009] In accordance with an embodiment, described
herein is a system and method for implementing a distrib-
uted ledger as a Blockchain Cloud Service (BCS). The BCS
can include a complete set of infrastructure services and
embedded resources: compute, containers, storage, identity
management, and event streaming to enable the setup and
execution of a production-ready blockchain. The BCS can
provision an underlying infrastructure with the required
blockchain network components, interface, a representa-
tional state transfer (REST) proxy service component, and a
management console component, in response to an admin-
istrator specifying one or more parameters.

[0010] In accordance with an embodiment, the distributed
ledger can be the Hyperledger fabric, an implementation of
blockchain technology that is intended as a foundation for
developing blockchain applications. The Hyperledger fabric
can provide a modular architecture, and leverages container
technology to host smart contracts called “chaincode” that
comprise the application logic of the system.

[0011] In accordance with an embodiment, the BCS can be
based on a PaaS manager (e.g., Oracle PaaS Service Man-
ager (PSM) platform), and can run in a compute space (e.g.,
external compute space) on the PaaS Manager. The system
utilizes features of the PSM platform including a container
runtime service environment (such as Docker or Oracle’s
Application Container Cloud Service) Layered using Oracle
Identity Cloud Service (IDCS), Oracle Load Balancer as a
Service (L.BaaS), Oracle Event Hub Cloud Service, and
Oracle Cloud Storage. Each customer blockchain can be
provisioned, and can be run as a tenant. The system supports
multiple blockchains, each provisioned and running as a
separate tenant in a multitenant environment.

US 2022/0067035 Al

[0012] In accordance with an embodiment, the manage-
ment console component and the REST proxy service com-
ponent can both be network nodes in a BCS.

[0013] In accordance with an embodiment, the manage-
ment console component facilitates and automates the pro-
visioning, monitoring and configuration of the BCS. The
management console component can include a web appli-
cation running in a script runtime environment, for example,
Node.js. The web application can be built on a graphical user
interface framework and a web framework; and can include
a plurality of custom functions or APIs to communicate with
various nodes or services in a BCS instance. The web
application can populate information from the various nodes
or services in the BCS instance into a view object, for
display in a console user interface. The management console
component can also provide a plurality of functions for an
administrator to start, stop and update one or more nodes in
a BCS instance. A set of management REST APIs can be
provided by the script runtime environment or can be
accessed by the script runtime environment, to support the
same functions as provided by the web application.

[0014] In accordance with an embodiment, the REST
proxy service component (i.e. REST proxy service or REST
proxy) within the BCS instance can use a service develop-
ment kit (SDK) for the distributed ledger in the BCS to
communicate with the distributed ledger, and can provide
REST APIs for use by client applications to query through
chaincodes, synchronously or asynchronously invoke trans-
actions through the chaincodes, get transaction statuses, and
get BCS proxy versions. The REST proxy service compo-
nent can authenticate REST calls, and translate the REST
calls into remote procedural calls, e.g., Google Remote
Procedure Calls (gRPC), for use in interfacing with the
distributed ledger. The REST proxy service component can
further provide REST APIs that support the same functions
which are provided by the BCS management console com-
ponent, and provide a user interface for client applications to
consume the BCS instance.

BRIEF DESCRIPTION OF THE FIGURES

[0015] FIG. 1A illustrates transaction flow in a fabric of a
Blockchain cloud service system in accordance with an
embodiment.

[0016] FIG. 1B illustrates a Blockchain cloud service
system in accordance with an embodiment.

[0017] FIG. 1C illustrates a BCS system in accordance
with an embodiment.

[0018] FIG. 1D illustrates a BCS system in accordance
with an embodiment.

[0019] FIG. 1E is a flowchart of a method for providing an
interface for a blockchain cloud service, in accordance with
an embodiment.

[0020] FIG. 2 illustrates a gateway for a Blockchain cloud
service system in accordance with an embodiment.

[0021] FIG. 3 illustrates a persistence for a Blockchain
cloud service system in accordance with an embodiment.

[0022] FIG. 4 illustrates an exemplary deployment of a
fabric on BCS.
[0023] FIG. 5 illustrates a chaincode architecture, in

accordance with an embodiment.

[0024] FIG. 6 illustrates a system for providing a man-
agement console in accordance with an embodiment.
[0025] FIG. 7A illustrates examples of user interfaces in a
BCS console Ul in accordance with an embodiment.

Mar. 3, 2022

[0026] FIG. 7B illustrates examples of user interfaces in a
BCS console Ul in accordance with an embodiment.
[0027] FIG. 7C illustrates a method for providing a man-
agement console in accordance with an embodiment.
[0028] FIG. 8A illustrates a system for providing a REST
proxy service in a BCS instance in accordance with an
embodiment.

[0029] FIG. 8B illustrates a system for providing a REST
proxy service in a BCS instance in accordance with an
embodiment.

[0030] FIG. 8C illustrates a method for providing a REST
proxy service in a BCS instance in accordance with an
embodiment.

[0031] FIG. 9A shows a typical IDCS use case for a single
sign-on, in accordance with an embodiment.

[0032] FIG. 9B shows an IDCS use case for fabric Client
Authentication, in accordance with an embodiment.

DETAILED DESCRIPTION

[0033] In accordance with an embodiment, described
herein is a system and method for implementing a distrib-
uted ledger as a cloud service. In a particular embodiment,
a permissioned blockchain ledger, e.g., the Hyperledger
fabric, can be provided as a Blockchain Cloud Service
(BCS).

[0034] In the following description, the invention will be
illustrated, by way of example and not by way of limitation,
in the figures of the accompanying drawings. References to
various embodiments in this disclosure are not necessarily to
the same embodiment, and such references mean at least
one. While specific implementations are discussed, it is
understood that this is provided for illustrative purposes
only. A person skilled in the relevant art will recognize that
other components and configurations may be used without
departing from the scope and spirit of the invention.
[0035] In accordance with an embodiment, in certain
instances, numerous specific details will be set forth to
provide a thorough description of the invention. However, it
will be apparent to those skilled in the art that the invention
may be practiced without these specific details. In other
instances, well-known features have not been described in as
much detail so as not to obscure the invention.

[0036] The present invention is described with the aid of
functional building blocks illustrating the performance of
specified functions and relationships thereof. The boundar-
ies of these functional building blocks have often been
arbitrarily defined herein for the convenience of the descrip-
tion. Thus functions shown to be performed by the same
elements may in alternative embodiments be performed by
different elements. Functions shown to be performed in
separate elements may instead be combined into one ele-
ment. Alternate boundaries can be defined so long as the
specified functions and relationships thereof are appropri-
ately performed. Any such alternate boundaries are thus
within the scope and spirit of the invention.

[0037] Common reference numerals are used to indicate
like elements throughout the drawings and detailed descrip-
tion; therefore, reference numerals used in a figure may or
may not be referenced in the detailed description specific to
such figure if the element is described elsewhere.

[0038] Blockchain technology has the potential to dra-
matically enhance enterprise business value by enabling
near real-time, distributed transactions across customers’
ecosystems and by enabling secure, tamper-proof data shar-

US 2022/0067035 Al

ing. The Hyperledger fabric blockchain incorporates modu-
lar architecture, horizontal/cross-industry technology sup-
port, and support for enterprise needs.

INTRODUCTION

[0039] In accordance with an embodiment, a Hyperledger
fabric is a platform for distributed ledger solutions under-
pinned by a modular architecture delivering high degrees of
confidentiality, resiliency, flexibility and scalability. It is
designed to support pluggable implementations of different
components and accommodate the complexity and intrica-
cies that exist across the economic ecosystem.

[0040] In accordance with an embodiment, a Hyperledger
fabric delivers an elastic and extensible architecture, distin-
guishing it from alternative blockchain solutions.

Blockchain—A Distributed Ledger

[0041] In accordance with an embodiment, a blockchain
network can comprise a distributed ledger that records all
the transactions that take place on a network.

[0042] In accordance with an embodiment, a blockchain
ledger is often described as decentralized because it is
replicated across many network participants, each of whom
collaborate in its maintenance. Decentralization and collabo-
ration are attributes that mirror the way businesses exchange
goods and services in the real world.

[0043] In addition to being decentralized and collabora-
tive, the information recorded to a blockchain is append-
only, using cryptographic techniques that guarantee that
once a transaction has been added to the ledger it cannot be
modified. This property of immutability makes it simple to
determine the provenance of information because partici-
pants can be sure information has not been changed after the
fact. In this way, blockchains can be thought of as systems
of proof.

Blockchain—Smart Contracts

[0044] In accordance with an embodiment, in order to
support the consistent update of information—and to enable
certain ledger functions (transacting, querying, etc.)—a
blockchain network uses smart contracts to provide con-
trolled access to the ledger.

[0045] Inaccordance with an embodiment, smart contracts
are not only a key mechanism for encapsulating information
and keeping it simple across the network, they can also be
written to allow participants to execute certain aspects of
transactions automatically.

[0046] In accordance with an embodiment, a smart con-
tract can, for example, be written to stipulate the cost of
shipping an item that changes depending on when it arrives.
With the terms agreed to by both parties and written to the
ledger, the appropriate funds change hands automatically
when the item is received.

Blockchain—Consensus

[0047] In accordance with an embodiment, the process of
keeping the ledger transactions synchronized across the
network—to ensure that ledgers only update when transac-
tions are approved by the appropriate participants, and that
when ledgers do update, they update with the same trans-
actions in the same order—can be referred to as consensus.
[0048] In accordance with an embodiment, a blockchain
can be thought of as a shared, replicated transaction system

Mar. 3, 2022

which is updated via smart contracts and kept consistently
synchronized through a collaborative process called consen-
sus.

Advantages of Blockchain

[0049] In accordance with an embodiment, the currently
available transactional networks are versions of networks
that have existed since business records have been kept. The
members of a business network transact with each other, but
each member maintains separate records of their transac-
tions. As well, objects of the transactions can have their
provenance established each time they are sold to ensure that
the business selling an item possesses a chain of ftitle
verifying their ownership of it.

[0050] Inaccordance with an embodiment, despite current
business networks being modernized by computing systems,
unified systems for managing the identity of network par-
ticipants do not exist, establishing provenance is laborious
as it takes days to clear securities transactions (the world
volume of which is numbered in the many trillions of
dollars), contracts must be signed and executed manually,
and every database in the system contains unique informa-
tion and therefore represents a single point of failure.
[0051] Blockchain, in accordance with an embodiment,
provides an alternative to many of the inefficiencies repre-
sented by the standard system of transactions, by providing
a standard method for establishing identity on the network,
executing transactions, and storing data.

[0052] Inaccordance with an embodiment, in a blockchain
network, each participant in it has its own replicated copy of
the ledger. In addition to ledger information being shared,
the processes which update the ledger are also shared.
Unlike other systems, where a participant’s private pro-
grams are used to update their private ledgers, a blockchain
system has shared programs to update shared ledgers.
[0053] Inaccordance with an embodiment, with the ability
to coordinate business networks through a shared ledger,
blockchain networks can reduce the time, cost, and risk
associated with private information and processing while
improving trust and visibility.

Hyperledger Fabric

[0054] In accordance with an embodiment, Hyperledger
fabric, like other blockchain technologies, has a ledger, uses
smart contracts, and is a system by which participants
manage their transactions.

[0055] In accordance with an embodiment, where
Hyperledger fabric differs from some other blockchain sys-
tems is that it is private and permissioned. Rather than the
“proof of work” some blockchain networks use to verify
identity (allowing anyone who meets those criteria to join
the network), the members of a Hyperledger fabric network
enroll through a membership services provider.

[0056] In accordance with an embodiment, Hyperledger
fabric also offers several pluggable options. Ledger data can
be stored in multiple formats, consensus mechanisms can be
switched in and out, and different MSPs (Membership
Service Providers) are supported.

[0057] In accordance with an embodiment, Hyperledger
fabric also offers the ability to create channels, allowing a
group of participants to create a separate ledger of transac-
tions. This allows for an option for networks where some
participants might be competitors and not want every trans-

US 2022/0067035 Al

action they make—a special price they are offering to some
participants and not others, for example—known to every
participant. If two participants form a channel, then those
participants—and no others—have copies of the ledger for
that channel.

Shared Ledger

[0058] In accordance with an embodiment, a Hyperledger
fabric has a ledger subsystem comprising two components:
the world state and the transaction log. Each participant has
a copy of the ledger to every Hyperledger fabric network
they belong to.

[0059] In accordance with an embodiment, the world state
component describes the state of the ledger at a given point
in time. It is the database of the ledger. The transaction log
component records all transactions which have resulted in
the current value of the world state. It is the update history
for the world state. The ledger, then, is a combination of the
world state database and the transaction log history.

[0060] In accordance with an embodiment, the shared
ledger has a replaceable data store for the world state. By
default, this is a LevelDB key-value store database. The
transaction log does not need to be pluggable. It simply
records the before and after values of the ledger database
being used by the blockchain network.

Smart Contracts

[0061] In accordance with an embodiment, Hyperledger
fabric smart contracts are written in chaincode and are
invoked by an application external to the blockchain when
that application needs to interact with the ledger. In most
cases chaincode only interacts with the database component
of the ledger, the world state (querying it, for example), and
not the transaction log.

Consensus

[0062] In accordance with an embodiment, transactions
are written to the ledger in the order in which they occur,
even though they might be between different sets of partici-
pants within the network. For this to happen, the order of
transactions is established and a method for rejecting bad
transactions that have been inserted into the ledger in error
(or maliciously) can be put into place.

[0063] In accordance with an embodiment, Hyperledger
fabric allows a network entity (e.g., a network user, peer,
starter) to select a consensus mechanism that best represents
the relationships that exist between participants. As with
privacy, there is a spectrum of needs; from networks that are
highly structured in their relationships to those that are more
peer-to-peer.

Chaincode

[0064] In accordance with an embodiment, chaincode can
comprise software defining an asset or assets, and the
transaction instructions for modifying the asset(s)—it is the
business logic. Chaincode enforces the rules for reading or
altering key value pairs or other state database information.
Chaincode functions execute against the ledger current state
database and are initiated through a transaction proposal.
Chaincode execution results in a set of key value writes
(write set) that can be submitted to the network and applied
to the ledger on all peers.

Mar. 3, 2022

Ledger Features

[0065] In accordance with an embodiment, a ledger is the
sequenced, tamper-resistant record of all state transitions in
the fabric. State transitions are a result of chaincode invo-
cations (‘transactions’) submitted by participating parties.
Each transaction results in a set of asset key-value pairs that
are committed to the ledger as creates, updates, or deletes.
[0066] In accordance with an embodiment, the ledger is
comprised of a blockchain to store the immutable,
sequenced record in blocks, as well as a state database to
maintain current fabric state. There can be one ledger per
channel, with each channel comprising a separate ledger of
transactions visible to a particular group of participants.
Each peer maintains a copy of the ledger for each channel of
which they are a member.

Privacy Through Channels

[0067] In accordance with an embodiment, Hyperledger
fabric employs an immutable ledger on a per-channel basis,
as well as chaincodes that can manipulate and modify the
current state of assets (i.e., update key value pairs). A ledger
exists in the scope of a channel—it can be shared across the
entire network (assuming every participant is operating on
one common channel)—or it can be privatized to only
include a specific set of participants.

[0068] In accordance with an embodiment, in the latter
scenario, such participants can create a separate channel and
thereby isolate/segregate their transactions and ledger. In
order to allow for scenarios that want to bridge the gap
between total transparency and privacy, chaincode can be
installed only on peers that need to access the asset states to
perform reads and writes (e.g., if a chaincode is not installed
on a peer, it will not be able to properly interface with the
ledger). To further obfuscate the data, values within chain-
code can be encrypted (in part or in total) using common
cryptographic algorithms such as AES (Advanced Encryp-
tion Standard) before appending to the ledger.

Security & Membership Services

[0069] In accordance with an embodiment, Hyperledger
fabric provides for a transactional network where all par-
ticipants have known identities. Public Key Infrastructure is
used to generate cryptographic certificates which are tied to
organizations, network components, and end users or client
applications. As a result, data access control can be manipu-
lated and governed on the broader network and on channel
levels. This “permissioned” notion of Hyperledger fabric,
coupled with the existence and capabilities of channels,
helps address scenarios where privacy and confidentiality
are paramount concerns.

Consensus

[0070] In accordance with an embodiment, in a distributed
ledger, consensus can encompass more than simply agreeing
upon the order of transactions. This differentiation is high-
lighted in Hyperledger fabric through its fundamental role in
the entire transaction flow, from proposal and endorsement,
to ordering, validation and commitment. Consensus can be
defined as the full-circle verification of the correctness of a
set of transactions comprising a block.

[0071] In accordance with an embodiment, consensus is
achieved when the order and results of a block’s transactions

US 2022/0067035 Al

have met the explicit policy criteria checks. These checks
and balances take place during the lifecycle of a transaction,
and include the usage of endorsement policies to dictate
which specific members must endorse a certain transaction
class, as well as system chaincodes to ensure that these
policies are enforced and upheld. Prior to commitment, the
peers can employ these system chaincodes to make sure that
enough endorsements are present, and that they were derived
from the appropriate entities. Moreover, a versioning check
can take place during which the current state of the ledger is
agreed or consented upon, before any blocks containing
transactions are appended to the ledger. This final check
provides protection against double spend operations and
other threats that might compromise data integrity, and
allows for functions to be executed against non-static vari-
ables.

[0072] In accordance with an embodiment, in addition to
the endorsement, validity and versioning checks that take
place, there are also ongoing identity verifications happen-
ing in the transaction flow. Access control lists are imple-
mented on hierarchal layers of the network (ordering service
down to channels), and payloads are repeatedly signed,
verified and authenticated as a transaction proposal passes
through the different architectural components. Consensus is
not limited to the agreed upon order of a batch of transac-
tions, but rather, it is a process that is achieved as a
byproduct of the ongoing verifications that take place during
a transaction’s flow from proposal to commitment.

Blockchain Cloud Service—Architecture

[0073] In accordance with an embodiment, a system, such
as a cloud system (e.g., Blockchain Cloud Service (BCS)),
can utilized the above described Hyperledger fabric as a
starting point. Such a system offers a highly advanced and
differentiated enterprise-grade distributed ledger cloud plat-
form that allows for the building of new blockchain-based
applications and/or the extension of existing SaaS, PaaS, and
TaaS and on-premises applications.

[0074] Inaccordance with an embodiment, the system can
support mission-critical enterprise needs such as scalability,
security, robustness, integration, and performance to remove
barriers to adoption and support blockchain applications in
production. The system allows for users to deploy, config-
ure, manage and monitor blockchain and reduce the cost for
deploying blockchain in enterprises by providing BCS as a
Platform as a Service (PaaS) Cloud solution. The system
also accelerates the development and integration of block-
chain applications with other platforms. The system allows
SaaS cloud customers to enable their enterprise processes
like Procurement, Payments, Trade Finance, Accounting,
HR, CX to securely share data and conduct distributed
transactions with 3rd party applications and external distrib-
uted ledger technologies using blockchain cloud platform.
[0075] Inaccordance with an embodiment, the system is a
cloud service based on a PaaS manager (e.g., Oracle PaaS
Service Manager (PSM) platform). In general, such a system
is a managed cloud service that runs in compute space (e.g.,
external compute space). In embodiments, the system uti-
lizes features of the PSM platform including a container
runtime service environment (such as Docker or an Appli-
cation Container Cloud Service) Layered using Oracle Iden-
tity Cloud Service (IDCS), Oracle Load Balancer as a
Service (LBaaS), Oracle Event Hub Cloud Service, and
Oracle Cloud Storage. Each customer blockchain can be

Mar. 3, 2022

provisioned, and can be run as a tenant. The system supports
multiple blockchains, each provisioned and running as a
separate tenant in a multitenant environment.

[0076] In accordance with an embodiment, accordingly,
the system allows for applications or customer applications
to implement a distributed ledger with smart contracts as
necessary or desirable for the applications. Clients and users
of such a system can be internal or external to cloud—
blockchain trust—some blockchain networks may comprise
components outside the cloud environment (or could be
constrained to a particular cloud).

[0077] In accordance with an embodiment, such a system
can be useful for a wide variety of application functions in
particular in multi-party transactions where trust and identity
issues must be resolved. Unlike other blockchain systems,
the provided system service is not anonymous. Indeed,
identity and auditability are fundamental and integrated
elements. Accordingly BCS finds applications in, for
example, capital markets, cross-border transactions, finan-
cial services, asset transactions, legal regulatory applica-
tions, healthcare records, publishing, logistics, traceability,
and anti-counterfeiting.

[0078] In accordance with an embodiment, as described
above, each party on a blockchain has access to the entire
database and its complete history (unless the ledger has been
provisioned/privatized to certain parties). No single party
controls the data or the information. Every party can also
verify the records of its transaction partners directly, without
an intermediary. Communication occurs directly between
peers instead of through a central node. Each node stores and
forwards information to all other nodes. Once a transaction
is entered in the database and the accounts are updated, the
records cannot be altered, because they are linked to every
transaction record that came before them (hence the term
“chain”). If a transaction is in error, a new transaction must
be used to reverse the error, and both transactions are then
visible to provisioned users. To add a new valid transaction,
participants can agree on its validity via a consensus mecha-
nism. Participants in the blockchain can certify where the
asset came from and how the ownership of the asset has
changed over time. A digital signature can be used to
authenticate document and can be placed in Access Control
[varied level of permissions] And Programmability [Execut-
able Business rules].

[0079] Inaccordance with an embodiment, in many multi-
party transactions, money is exchanged, when a party
receives the assets or services. Typically because of trans-
action time, one or other party must commits goods or
money before the other. In some environments, trust issues
are resolved by using an intermediary which holds funds in
escrow until completion of conditions in the contract. This
resolves trust issues between the original parties. However,
such a method adds another centralized party which must be
trusted, increasing complexity, and likely the cost of the
transaction. Use of smart contracts as part of the provided
system can eliminate the need for intermediary—parties can
conduct trusted transactions on the blockchain without hav-
ing an intermediary.

[0080] In accordance with an embodiment, advantages of
the provided system, such as BCS, include that the infor-
mation contained therein is distributed. Access is controlled
and some privacy can be maintained although auditability is
available. Moreover, the blockchain ledger is essentially
immutable and cannot be repudiated. The ledger comprises

US 2022/0067035 Al

of a list of blocks. Each transaction block contains: Block
1D, Previous Hash, Data Hash, Timestamp, Transaction ID
List, Actions (1 . . . n), Chaincode ID, Chaincode proposal,
Response (r/w set, events, success or failure), Endorsers. As
each block contains the previous hash and its own hash, the
blocks are inherently ordered and immutable once known/
distributed (note: the hash of a present block is a hash of the
hash of the previous block and the other data in the present
block, hence linking the blocks in a chain). A consensus can
resolve discrepancies. Compared to a centralized database or
intermediary, there is no need to give undue authority to a
centralized authority. The distributed nature of the ledger
also augments the fundamental immutability of the block-
chain recording technology in that the use of distributed
copies—and consensus make it difficult to modify (even
where algorithmically possible). Thus, given the ordering of
transactions—hacking ledger is nearly impossible if some-
body has a copy of the latest block in the chain.

[0081] In accordance with some embodiments, as
described below, the provided system can be based on the
Oracle PaaS Service Manager (PSM) platform and is aug-
mented with a management console which simplifies/facili-
tates/automates provisioning, monitoring and configuration
of fabric based blockchains. Additionally, a REST proxy
service including a unitary REST APl is provided to simplity
contact between applications and the Blockchain fabric.
Developers can build smart contracts, use the management
console to deploy the smart contracts, and then let the
applications invoke the smart contract on the blockchain
either asynchronously (which is the default) or synchronous
(if an immediate response is desired). The REST proxy
service and API provides both synchronous and asynchro-
nous capabilities depending on the needs of the platform.
[0082] In accordance with an embodiment, a fabric-CA
server can provide a membership service for a fabric. The
fabric-CA server can comprise three parts: authentication for
user, authorization for accessing a Blockchain (a group of
peers and orders) and a CA server which could deliver
certificate to application client, peer and order. fabric-CA
can utilize a certificate to implement authentication and
authorization. The certificate include two types: enroll cer-
tificate for authentication and transaction certificate for
authorization. In accordance with an embodiment, an iden-
tity service, such as IDCS, can also provide authentication
and authorization.

Hyperledger Fabric

[0083] As described above, in an embodiment, the pro-
vided system can implement a Hyperledger fabric providing
a distributed ledger platform for running smart contracts.
The fabric leverages container technology to host smart
contracts called “chaincode” that comprise the application
logic of the system. In alternative embodiments the Block
Chain Cloud Service implements alternative distributed led-
ger platforms including for example, the “Tendermint™ led-
ger system as described in U.S. patent application Ser. No.
15/169,622 (U.S. Publication No. 2017/0236120) entitled
“Accountability And Trust In Distributed Ledger Systems”,
filed May 31, 2016, which is incorporated by reference.

[0084] In accordance with an embodiment, the distributed
ledger protocol of the Hyperledger fabric is run by peers.
One disadvantage of prior blockchain technologies is that all
peers are required to record all transactions. This creates
substantial I/O and processor overhead and does not con-

Mar. 3, 2022

veniently scale to enterprise-grade systems. The
Hyperledger fabric distinguishes between two kinds of
peers: Avalidating peer is a node on the network responsible
for running consensus, validating transactions, and main-
taining the ledger. On the other hand, a non-validating peer
is a node that functions as a proxy to connect clients (issuing
transactions) to validating peers. A non-validating peer does
not execute transactions but it may verify them. The segre-
gation of peer types/function improves the scalability of the
system.

[0085] In accordance with an embodiment, a feature of the
Hyperledger is permissioned blockchain with immediate
finality which runs arbitrary smart contracts called chain-
code. The user-defined chaincode smart contracts are encap-
sulated in a container and system chaincode runs in the same
process as the peer. Chaincode execution is partitioned from
transaction ordering, limiting the required levels of trust and
verification across node types, and reducing network over-
head.

[0086] In accordance with an embodiment, channels in the
Hyperledger fabric enable multi-lateral transactions with
high degrees of privacy and confidentiality required by
competing businesses and regulated industries that exchange
assets on a common network. The immutable, shared ledger
encodes the entire transaction history for each channel, and
includes query capability for efficient auditing and dispute
resolution. A ledger is provided in the scope of a channel—it
can be shared across the entire network (assuming every
participant is operating on one common channel)—or it can
be privatized to only include a set of participants.

[0087] In accordance with an embodiment, the
Hyperledger fabric implements security through support for
certificate authorities (CAs) for TLS certificates, enrollment
certificates and transaction certificates. Public Key Infra-
structure is used to generate cryptographic certificates which
are tied to organizations, network components, and end
users or client applications. As a result, data access control
can be manipulated and governed on the broader network
and on channel levels. This “permissioned” feature of
Hyperledger fabric, coupled with the existence and capa-
bilities of channels, satisfies privacy and confidentiality
needs in multi-party enterprise systems.

[0088] In accordance with an embodiment, Hyperledger
fabric provides the ability to modify assets using chaincode
transactions. As described above, Chaincode is software
defining an asset or assets, and the transaction instructions
for modifying the asset(s).

[0089] Inaccordance with an embodiment, integrated con-
sensus mechanisms have a fundamental role in transaction
flow in the Hyperledger fabric, from proposal and endorse-
ment, to ordering, validation and commitment. Consensus
is, as described above, a verification of the validity of a set
of transactions comprising a block. Consensus is ultimately
achieved when the order and results of a block’s transactions
have met the explicit policy criteria checks.

[0090] FIG. 1A illustrates transaction flow in a fabric of a
system providing a blockchain service. More specifically,
the figure illustrates a Blockchain Cloud Service (BCS)
system in accordance with an embodiment. At 1, Client 160
uses fabric SDK 162 to access fabric certificate authority
170, 172, 174 to enroll. At 1.1 fabric-CA returns an enroll-
ment certificate to the client 160. At 2, Client 160 uses fabric
SDK 162 to access Peer container 180 requesting endorse-
ment from Endorser 182. At 2.1 Endorser 182 returns a

US 2022/0067035 Al

signed RWset (read/write set). At 3, the fabric SDK 162 at
the client 160 submits the endorsed TX (transaction) which
includes RWset and endorser signatures to the ordering
service at the ordering container 190. At 4, Orderer 192
delivers the TX batch to Committer 184 in peer container
180. The Orderers are a defined collective of nodes that
orders transactions into a block. The ordering service exists
independent of the peer processes and orders transactions on
a first-come-first-serve basis for all channel’s on the net-
work. Committer 184 applies changes to ledger 186 and
World State 188 at 5 and 5.1. The fabric certificate authority
170 can be used to validate signatures and authorization for
the peer container 180, the smart contract container 166 and
168 (smart contract), and the orderer 192. In addition, the
smart contract 168 can communicate with the endorser 182.

[0091] In an embodiment, the system can utilize a Kafka
cluster as an ordering service. Kafka is a distributed stream-
ing service that supports publish and subscribe semantics. A
Kafka cluster runs on a plurality of servers and stores
streams of records in categories called topics. Each record
comprises of a key a value and a timestamp. Kafka can thus
be used as an ordering service comprising ordering service
nodes (OSN-n), and a Kafka cluster. The ordering service
client can be connected to multiple OSNs. The OSNs do not
communicate with each other directly. These ordering ser-
vice nodes (OSNs) (1) do client authentication, (2) allow
clients to write to a chainl or read from it using a simple
interface, and (3) they also do transaction filtering and
validation for configuration transactions that either recon-
figure an existing chain or create a new one. Messages
(records) in Kafka get written to a topic partition. A Katka
cluster can have multiple topics, and each topic can have
multiple partitions. Each partition is an ordered, immutable
sequence of records that is continually appended to. Once
the OSNs have performed client authentication and trans-
action filtering, they can relay the incoming client transac-
tions belonging to a certain chain to the chain’s correspond-
ing partition. They can then consume that partition and get
back an ordered list of transactions that is common across all
ordering service nodes.

[0092] In accordance with an embodiment, each peer has
the capability to be an endorser and a committer. There is a
configuration item (e.g., CORE_PEER_ENDORSER_EN-
ABLED) which can enable a peer to be an endorser. When
a peer joins a channel, this peer becomes a committer of this
channel. When a chaincode is installed on a peer, this peer
becomes the candidate endorser for this chaincode. When a
client proposes a transaction, it is the client’s choice to select
which peers to be the endorsers (from the candidate endors-
ers).

[0093] In accordance with an embodiment, the Ordering
mechanism for Orderer delivering blocks to Peer are as
follows. First, a peer (e.g., a leader peer) delivers a request
for new blocks from Orderer by sending its version (the last
block number). Next, an Orderer checks Peer’s version: a) if
it is greater than Orderer, returns an error to Peer, it indicates
the ledger in Order are lost, and cannot be recovered from
EventHub (in this scenario, Orderer cannot continue work
properly); b) if the peer’s version is less than Orderer, then
Orderer retrieves blocks from local ledger, either in RAM or
local file, and send back to peer; or ¢) if they have the same
version, then Orderer blocks until new blocks are available.
When a new block data cut from EventHub is ready, the
Orderer will put it into local block file or RAM, then deliver

Mar. 3, 2022

thread reads this block from ledger and sends it back to peer.
The peer gets this block, and commits it to local ledger, and
can then broadcast its latest version to other peers.

BCS System Architecture

[0094] FIG. 1B illustrates transaction flow in a fabric of a
system providing a blockchain service. More specifically,
the figure illustrates a Blockchain Cloud Service (BCS)
system in accordance with an embodiment. As shown, the
Blockchain cloud service components are provisioned in
compute space 120 (e.g., external compute space), for
example on the Oracle PaaS Service Manager (PSM) plat-
form. Access to the system is mediated by the PSM API 122
and Blockchain REST API 124. External Compute 120
leverages a load balancing as a service LBaaS 126 to
distributed incoming transaction across the available appro-
priate resources.

[0095] In accordance with an embodiment, the BCS is an
application-container layered service built with PSM plat-
form on a container runtime service environment (such as
Docker or an Application Container Cloud Service) 128.
Each of the BCS entities runs on a separate container. Each
of BCS entity is one-to-one correspondence to a container
runtime service. The Blockchain Cloud Service implements
features of the Hyperledger fabric described above. Besides
the components that construct the basic fabric network,
several components are developed to leverage the
Hyperledger fabric into the Blockchain Cloud Service.
These components need separate deployment behaviors and
binaries to deploy these components. A Cloud Stack Man-
ager can be used to empower users to automate the provi-
sioning of all services defined by the blueprint as a single
unit that is called a stack.

[0096] In accordance with an embodiment, the BCS pro-
vides an implementation of the Hyperledger fabric which is
an implementation of a distributed ledger platform for
running smart contracts. The BCS leverages container tech-
nology to host smart contracts called “chaincode” that
comprise the application logic of the system.

[0097] In accordance with an embodiment, the distributed
ledger protocol of the fabric is run by peers. The fabric
distinguishes between two kinds of peers: A validating peer
is a node on the network responsible for running consensus,
validating transactions, and maintaining the ledger. On the
other hand, a non-validating peer is a node that functions as
aproxy to connect clients (issuing transactions) to validating
peers. A non-validating peer does not execute transactions
but it may verify them. Some key features of the fabric
release include permissioned blockchain with immediate
finality which runs arbitrary smart contracts called chain-
code. The user-defined chaincode smart contracts are encap-
sulated in a container and system chaincode runs in the same
process as the peer. The fabric implements a consensus
protocol and security through support for certificate authori-
ties (CAs) for TLS certificates, enrollment certificates and
transaction certificates.

[0098] In accordance with an embodiment, the BCS enti-
ties run in layered container instances with container run-
time service 128. The containers are created and/or started
by provisioning operations of the PSM. The fabric-CA
Container 130, is the container in which the BCS fabric CA
(Certificate and Authority) component is provided. The BCS
Peer (Container) 132 is the container in which the BCS peer
network entity that maintains a ledger and runs chaincode

US 2022/0067035 Al

containers in order to perform the read/write operations to
the ledger component is running. The BCS ordering Con-
tainer 134 is the container in which the BCS orderer which
provides the service to order transactions into a blockchain
for all of channels is running. The BCS Chaincode Execu-
tion Container 139 is a container created and started by the
peer entity. In the container, the chaincode execution unit
communicates with the parent peer entity and performs
encoding of assets and transaction instructions for modify-
ing the assets in the blockchain.

[0099] In accordance with an embodiment, the BCS
Chaincode Builder Container 140 is a container created and
started by the peer entity. In the container, the chaincode
build environment is installed and deployed, and the chain-
code execution unit is built in it. A client side fabric SDK
106 provides functionality for accessing the BCS. The Block
Chain Cloud Service also leverages Event Hub Cloud Ser-
vice 150, Cloud Storage Service 152, and Identity Service
154. Oracle storage cloud service is used as the storage
service for BCS.

[0100] In accordance with an embodiment, Docker/Weave
141 are container services. Containers provide a way to
package software in a format that can run isolated on a
shared operating system. Unlike VMs, containers do not
bundle a full operating system—instead using libraries and
settings required to make the software work are needed. This
makes for efficient, lightweight, self-contained systems and
guarantees that software will always run the same, regard-
less of where it’s deployed.

[0101] In accordance with an embodiment, each BCS
instance comprises of different types of nodes. There can be
few (e.g., 0 or more) to multiple peer nodes in a BCS
instance. There can be few (e.g., 0) to multiple orderer nodes
in a BCS instance. There are 1 to multiple fabric-CA nodes
in a BCS instance, one per VM. BCS Gateway: There can be
few (e.g., 0) to multiple BCS gateways in a BCS instance.
BCS console is also a component of a BCS instance. There
is only one BCS console in a BCS instance.

[0102] In accordance with an embodiment, the BCS Man-
agement Server (Console) 136 is a component of BCS,
which provides rich monitor, management, and view func-
tionalities to the BCS stack instance as described in more
detail below. BCS Gateway (REST proxy) 138 is a new
component of BCS, and provides a REST API interface to
customers/clients and is used to access the fabric to perform
transactions as described in more detail below.

[0103] In accordance with an embodiment, on the public
access client-side 100, A PSM Console UI 102 allows for
management of Platform Service Manager. A BCS Console
UT 104 allows for control of the BCS Management Server.
A variety of different client types can access the BCS service
including fabric SDK clients 106, BCS REST Clients 108,
and fabric Membership Clients 110.

[0104] In accordance with an embodiment, blueprints can
be defined for each type of container listed of above as an
individual service type. The Oracle Cloud Stack Manager
uses the blueprints to automate the provisioning of all of
individual service types into a single stack unit. The benefit
of defining a service type for each of BCS entity is ease of
upgrading and maintaining the various running entities. The
container runtime service layered service supports four types
of operations: CREATE_SERVICE, DELETE_SERVICE,
SCALE_SERVICE, and Start/Stop/Restart. These opera-
tions can be applied service by service.

Mar. 3, 2022

[0105] In accordance with an embodiment, in the
Hyperledger fabric, the ordering service component uses the
Apache Kafka to provide ordering service and support for
multiple chains in a crash fault tolerant manner. Accord-
ingly, in the BCS cloud service, the ordering service com-
ponent will uses the OEHCS (Oracle Event Hub Cloud
Service that delivers the power of Kafka as a managed
streaming data platform and can be integrated with the rest
of Oracle’s cloud.)

[0106] FIG. 1C illustrates a BCS system in accordance
with an embodiment. More specifically, the figure shows a
BCS runtime.

[0107] Inaccordance with an embodiment, clients, such as
gateway-based applications 103 and/or fabric-based appli-
cations 105 can communicate with a container runtime
service instance 128, via a network, such as the internet 107,
and via a front end, such as a load balancer L.BaaS 126,
which can comprise CloudGate (discussed below). Incom-
ing calls can comprise REST communication (shown as the
heavier dashed line in the figure), or, in certain situations,
incoming gRPC communication (shown as the lighter
dashed line in the figure). Incoming REST communication
can be directed to a gateway 138 (which can comprise a
REST API/REST Proxy), a console 136, or an Agent fabric-
CA 130 (as discussed above). The REST communication,
now transformed/translated to internal calls (gRPC), can
interface with the instance of the blockchain fabric/Hy-
perledger (including the agent/peers 132, agent/orderers
134, chaincode 142, and chaincode builders 140). Mean-
while, incoming gRPC communication can be directly trans-
mitted to, for example, the agent/peers 132, and the agent/
orderers 134, to interface with the blockchain/Hyperledger.
[0108] In accordance with an embodiment, once transac-
tions within the container runtime service instance have
occurred, the container runtime service instance can then,
for example, persist the ledger at the cloud storage via REST
communication, or can communicate with the Event Hub,
likewise via REST communication.

[0109] Inaccordance with an embodiment, while only one
container runtime service instance is shown in the figure,
one of skill in the art would readily understand that there can
exist one or multiple container runtime service instances that
the clients (such as gateway-based applications 103 and/or
fabric-based applications 105) can communicate with via the
described BCS runtime.

[0110] FIG. 1D illustrates a BCS system in accordance
with an embodiment. More particularly, the figure shows the
component cardinality within a BCS system, namely ratios
of components with respect to each BCS instance.

[0111] In accordance with an embodiment, for each BCS
instance 100q: an orderer 101a can be provided in the ratio
of 1:N; a fabric-CA membership 102a can be provided in a
ratio of 1:N; a BCS REST-Proxy 1034 can be provided in the
ratio of 1:N; a BCS console 104a can be provided in a ratio
of 1:1, and a peer container 1054 can be present in the ratio
of 1I:N.

[0112] In accordance with an embodiment, each peer
container can comprise an endorser, which can simulate a
transaction, and a committer, which can application changes
to a ledger, which is also provided at the peer container.
[0113] In accordance with an embodiment, chaincode
109a can be provided at a ratio of 1:N with respect to the
peer container. In addition, storage 106a can be provided at
a ratio of N:1 with respect to the peer container and the

US 2022/0067035 Al

orderer. As well, Event Hub 1074 can be provided at a ratio
of N:1 with respect to the peer container and the orderer.
IDCS 1084 can be provided at a ratio of N:1 with respect to
the fabric-CA membership.

[0114] FIG. 1E is a flowchart of a method for providing an
interface for a blockchain cloud service, in accordance with
an embodiment.

[0115] In accordance with an embodiment, at step 175, a
method can provide, at a computer comprising at least one
processor, at least one instance an container runtime service,
and a distributed ledger component in the at least one
instance of the container runtime service, wherein the dis-
tributed ledger is provisioned as a blockchain cloud service
comprising, the blockchain cloud service comprising a peer
container, a ordering container, and a chaincode container.

[0116] In accordance with an embodiment, at step 176, the
method can maintain, by the peer container, a blockchain
ledger.

[0117] In accordance with an embodiment, at step 177, the

method can order, by the ordering container, transactions
within the blockchain ledger.

[0118] In accordance with an embodiment, at step 178, the
method can encode, by a chaincode execution unit of the
chaincode container, assets in the ledger.

[0119] In accordance with an embodiment, at step 179, the
method can configure the at least one instance of the
container runtime service to receive an incoming call from
a client application, the incoming call requesting an entry
into the blockchain ledger.

[0120] Blockchain Cloud Service (BCS) Gateway

[0121] In accordance with an embodiment, BCS Gateway
(BCSGVV) comprises a network node using fabric SDK to
communicate with fabric network. The BCS Gateway pro-
vides a HTTPS RESTful API to customers on the client side
which allows clients/client applications to interact with
elements of the fabric of the BCS.

[0122] FIG. 2 illustrates a gateway for a Blockchain Cloud
Service system in accordance with an embodiment. As
shown in FIG. 2, End User 200 interacts with an application
adapter 202 for authentication and authorization using
HTTPS. The application adapter 202 accesses the Public
Cloud 210 using HTTPS to a L.Baa$, such as CloudGate 212
(i.e., a LBaaS). Load balancing as a service (LBaaS) is
performed for incoming transactions. CloudGate 212 passes
transactions to BCS gateway 222 using HTTPS. BCS gate-
way provides the interface to BCS fabric 220 in which
communication utilizes gRPC remote procedure call proto-
col.

[0123] Inaccordance with an embodiment, CloudGate 212
is a reverse proxy “access enforcement module” or “policy
enforcement point” that secures web browser and REST API
resources using, for example, OAuth2 and OpenID Connect
standards. IDCS uses CloudGate internally to secure its own
administration Ul and REST APIs (referred to as “IDCS
Web Tier”). For other applications, Cloud Gate: OTD is
deployed as additional instances in a semi-supported/interim
setup known as Non-IDCS or Standalone.

[0124] In accordance with an embodiment, the OAuth/
OpenlD based authentication supports user browser flow
(for UI client) which is triggered if the HTTP request
contains a “user-agent” header, which means the request is
from a Ul like browser or mobile app. CloudGate prompts
the user for credentials (username/password), verifies the
credentials, then creates and returns the OAuth session

Mar. 3, 2022

cookie which can be used by the subsequent HTTP requests
from the browser. The OAuth/OpenlD based authentication
also supports Resource Server flow (for programmatic cli-
ent). This flow is triggered if the HTTP request contains an
Authentication “Bearer” token header. CloudGate validates
the token for authentication.

[0125] In accordance with an embodiment, for HTTP
basic authentication, for every HTTP request, the credentials
(username/password) must be included in the HTTP Autho-
rization “Basic” header. Cloud Gate verifies the credentials
for every HTTP request. This method applies to both Ul
client and programmatic client.

[0126] In accordance with an embodiment, multitoken
flow is a self-adaptive method which covers certain HTTP
requests. If the HTTP request contains an Authorization
“Basic” header, CloudGate performs HTTP basic behavior.
If the HTTP request contains an Authorization “Bearer”
header, Cloud Gate behaves the same as the resource server
flow.

[0127] Inan embodiment, the BCS console browser client
utilizes the user browser flow. In embodiments, for BCS
console and gateway programmatic client, the system can
use CloudGate multitoken authentication method. Program-
matic clients can invoke BCS REST APIs via HTTP basic
authentication.

[0128] In accordance with an embodiment, BCS gateway
222 communicates with peers 224 which are network enti-
ties that maintain a ledger and run chaincode containers in
order to perform read/write operations to the ledger. Peers
are owned and maintained by members. BCS gateway 222
and peers 224 communicate with orderer(s) 226. Orderers
provide ordering services. The Orderers are a defined col-
lective of nodes that orders transactions into a block. The
ordering service exists independent of the peer processes
and orders transactions on a first-come-first-serve basis for
all channel’s on the network. Peers 224 and orderers(s) 226
communicate with the fabric certificate authority 228. BCS
gateway 222 also provides access to BCS Management
Server/Console 230.

[0129] In accordance with an embodiment, the BCS is
deployed on a cloud system, such as Oracle cloud. A
gateway can be run in a container runtime service container.
The gateway is stateless. A gateway can be updated by
killing the old gateway and starting a new gateway. BCS
gateway can allow customer queries or invoke fabric chain-
code by RESTful protocol. BCS gateway allows client to
access the fabric network in Oracle cloud by HTTPS/
RESTful service. The BCS Gateway is a network node using
fabric SDK to communicate with fabric network. Commu-
nication within the fabric uses gRPC as a communication
protocol. On the client-side, the BCS gateway provides
HTTPS/RESTful API to customer. The REST API allows
client to invoke functions within the fabric using the fabric
SDK.

[0130] In accordance with an embodiment, a gateway can
be provided in a one-to-one relationship with a fabric user.
All gateway users belong to one organization, all gateway
users map to one fabric user in one gateway. One gateway
configured only one fabric user.

[0131] In accordance with an embodiment, IDCS issues
gateway certification and gateway user (“App adapter”)
certification. These certifications are signed with organiza-

US 2022/0067035 Al

tion CA. Gateway and gateway users can deploy with
organization CA, so they could validate each other using
HTTPS.

[0132] In accordance with an embodiment, each end user
access BCSGW through “App adapter”. There are 3-tiers of
authentication. End user 200 can be authenticated by App
adapter 202. App adapter 202 can be authenticated by BCS
gateway 222 with client certificate. BCS Gateway can
authenticated by peers 224 and orderer 226 in fabric network
220.

[0133] In accordance with an embodiment, one container
runs one tomcat server, deploys one BCS Gateway, mapping
to one fabric user. Multiple App adapters could connect to
one Gateway.

[0134] In accordance with an embodiment, different gate-
ways can be associated with different fabric user. End users
of App adapters that connect to one gateway can map to one
fabric user.

[0135] In accordance with an embodiment, BCSGW run
in Oracle cloud, configuration is set by BCS console using
JSON file. Admin user could publish part of peers, channels
and chaincodes to Gateway. Admin user starts Gateway by
console. The gateway does not refresh configuration after
boot. Admin user can set endorsers for chaincodes. The
policy is opaque to end users, Gateway does not check
chaincode policy.

[0136] In accordance with an embodiment, BCSGW is
started by BCS console. BCS console creates BCSGW
configuration file and uses the BCSGW package to start a
new gateway. Upon startup, a startup script checks the
BCSGW configuration file, modifies a configuration file
(e.g., a Tomcat configuration file) for Tomecat, then starts
Tomcat. Tomcat starts a thread for BCSGW, the thread read
configuration file, for each channel, it can start a channel
object, and create connections with order, peers, eventhubs.
Different channel will have different connection to order/
peer/event hubs. The event hub here is a second port of peer.
Gateway connects to this port to get the result of transaction.
Tomcat servlet container can listen and wait for client
request. For chaincode query method, BCSGW send the
request to all peers of the channel, and only use the first
result. For chaincode invoke method, BCSGW send the
request to all endorsers of the channel, if one of them return
success, BCSGW send the transaction to all orderers of the
channel.

[0137] In accordance with an embodiment, an Asynchro-
nous API is supported. A peer can open two ports, one port
if for event exchange. The gateway can connect to the event
port of peer. Gateway only need connect to one event port
for one channel. Normal client APIs are synchronous. A
transaction may take a few seconds, client need wait for
response. Send asynchronous events to client is not in V1
plan. Besides synchronous transaction API, Gateway pro-
vide asynchronous transaction API “asyncinvoke”.

[0138] In an embodiment, the Asynchronous API can
work in this manner. After checking the parameters of client
request, Gateway will return transaction ID to client. The
client can be aware that the transaction is started but not
finished. Gateway will start a background thread to keep
processing the transaction. The client can track unfinished
transactions. The gateway can provide “transaction” API for
client to query transaction status using transaction ID.
[0139] In accordance with an embodiment, a client login
can be supported. The BCSGW can support HT'TPS proto-

Mar. 3, 2022

col, and not allow unsecure HTTP access. BCSGW uses
certificates to trust app adapter or SALT. The app adapter can
authenticate end users. Tomcat needs set to use HITTPS
client certificate authentication. The keystore file include
BCSGW cert and CA cert to validate the client is provided
by BCS console. The BCS gateway provides a BCS Rest
interface for client access.

Persistence—Storage Cloud

[0140] In accordance with an embodiment, Hyperledger
fabric has the blocks of the ledger being stored in the local
file system and other runtime data, like block index, state of
the world, history and ledger provider being stored in
LevelDB, which is also stored in the local file system. In
container runtime service, the container file system is
ephemeral, meaning when the container is stopped and a
new container is restarted on a new VM due to some
hardware failure—the file system contents may be lost.
Considering a situation where all containers are lost, then
there is no way to recover ledger. So ledger data must be
stored outside container runtime service containers. Because
of this, a persistence solution is provisioned in the form of
an object storage service for use by components of the
Hyperledger fabric described above.

[0141] In accordance with an embodiment, accordingly in
the BCS, the persistence solution utilizes a Storage Cloud
Service. E.g. Oracle Storage Cloud Service. The ledger is
backed-up to an Object Store. Ledger blocks written to
container file system, but also backup to object storage.
Index & World State are recorded using the container File
System but may be recovered from the Storage Cloud
Service if a container is restarted. Oracle Storage Cloud is an
Infrastructure as a Service (IaaS) product, which provides an
enterprise-grade, large-scale, object storage solution for files
and unstructured data.

[0142] FIG. 3 illustrates a persistence for a Blockchain
cloud service system in accordance with an embodiment. As
shown in FIG. 3, container runtime service instance 300
includes a plurality of containers. Containers include, for
example ordering containers 302, 304 having ledgers/block-
chains 312, 314. The ledgers/blockchains 312 and 314 are
backed up over a REST interface to an Object storage 320.
Object storage 320 may be, for example a cloud storage
service.

[0143] In accordance with an embodiment, the object
storage is used to persist the ledger of each orderer. The
current mechanism for Orderer delivering blocks to Peer are
as follows. First, a Peer delivers a request for new blocks
from Orderer by sending its version (the last block number).
next, an Orderer checks Peer’s version, a) If it is greater than
Orderer, returns an error to Peer, it indicates the ledger in
Order are lost, and cannot be recovered from EventHub. In
this scenario, Orderer cannot continue work properly. b) If
Peer’s version is less than Orderer, then Orderer retrieves
blocks from local ledger, either in RAM or local file, and
send back to Peer. ¢) If they have the same version, then
Orderer blocks until new blocks are available. When a new
block data cut from EventHub is ready, the Orderer will put
it into local block file or RAM, then deliver thread reads this
block from ledger and sends it back to Peer. Finally, the Peer
gets this block, and commits it to local ledger. Next, the
latest version of the ledger can be broadcast to other Peers.
[0144] In accordance with an embodiment, according to
the above process, either Orderer or EventHub can have the

US 2022/0067035 Al

whole blocks persisted. As described above, EventHub has
time limited retention. If EventHub can do it, the Orderer
can set Ledger type to RAM or file, once Orderer is restarted
and ledger is lost, it can replay the records from EventHub
and cut the batch message into block, then can re-construct
ledger. If EventHub only supports a limited retention period,
once Orderer is restarted and ledger is lost, it cannot
re-construct ledger correctly because the first record in
EventHub is not the true record in ledger. In this scenario,
Orderer cannot start the old channel because the first block
with channel information is lost, and version number (the
last block number) is not correct as well.

[0145] In accordance with an embodiment, then, each
orderer can persist each block to Oracle Storage, meanwhile
save all channel IDs to an object in Storage as well. On Peer,
only persist the genesis block because it has the channel
information. For other block data, Peer can retrieve it from
Orderer once it is lost.

[0146] In accordance with an embodiment, container run-
time service instance 300 can also comprise Peer Containers
306, 308 comprising ledgers 316, 318, and indices 326, 328.
There are five types of runtime data generated by Peer:
Transaction log (block file); Block file index (LevelDB);
Ledger provider (LevelDB); State Database (LevelDB or
couchdb); History (LevelDB). All transaction data are stored
in Transaction log as a linked block in local file, it must be
persisted to Oracle Storage Cloud service. Ledger provider
DB keeps all ledger ID and recover status in LevelDB. The
ledger ID is the unique id to identify a channel that a peer
belongs to. It must be persisted to Oracle Storage Cloud
Service. For others, Peer can recover it automatically at
runtime, so keep them in local file system.

[0147] Inaccordance with an embodiment, Oracle Storage
Cloud Service provides REST API for uploading/download-
ing file to/from an object. When a new block is generated,
first, it will be written into a local block file as before, the
difference is one block per file. Next, this block file will be
uploaded to Oracle Storage as an object. If it fails, the
changes in local file will be rollback, and an error will be
returned to caller.

[0148] In accordance with an embodiment, for block file
index, when Orderer updates a latest checkpoint, the infor-
mation can be persisted to Oracle Storage first, then update
local LevelDB. If the event that the operation fails, an error
can be returned to the caller. This information will be used
for the recovery for block file index. In Oracle Storage, each
Peer and Orderer has unique container name that’s the
combination of msp id and node id. The object name is name
of'block file prefixed by channel name. For more details, see
section Name Convention in Oracle Storage.

[0149] In accordance with an embodiment, a save Ledger
provider DB to Oracle Storage option can be provided. For
ledger provider DB, the entire LevelDB can be replicated to
Oracle Storage Cloud Service once it is updated. This file is
very small, and the update is not frequent, so the overhead
on the replication can be ignored. When container is
restarted, it can be download it from Oracle Storage Cloud
Service if exists. If Orderer is restarted from a new container,
it will download channel id from a Storage object first, then
get latest checkpoint from Storage by channel id. Next, start
recovery block index from the first block to last block.
During this period, the block file will be downloaded one by
one. After that, Orderer starts to recover State DB and
History DB. If Peer is restarted from a new container, it will

Mar. 3, 2022

download Ledger Provider DB first, then it can get all ledger
id. Next, get the related genesis block from Storage by
ledger id. Peer starts with the configuration in genesis block
and deliver a quest to Orderer to get other block data. After
Peer gets these blocks, it starts to recovery block index, state
and history DB.

[0150] In accordance with an embodiment, the local block
file acts as a read cache. The query will read data from local
first, if it doesn’t exist, then download from object storage.
Besides ledger, the source codes of chaincode need to be
persisted to Oracle Storage. In current fabric, an encoded
source code will be stored on peer after chaincode is
installed. Peer will check chaincode container for each
Invoke or Instantiate, if the container doesn’t exist, peer will
rebuild it from source code. So, it can be upload it to Oracle
Storage for each chaincode installation, and download it
when peer is restarted from disk failure.

BCS: SDK Based Configuration File Operations and
Post-Provision Deployment

[0151] In accordance with an embodiment, configuration
files and deployment functions deploy, initiate generate,
update and get configurations about the applications include
peers, orderers, CA servers and chaincode when deploy or
update the applications. These functions reside at both BCS
console (in Node.js) and fabric containers (peer/orderer/
chaincode container). The functions will get/update configu-
rations as requested from UI, and call SDK APIs to activate
the configuration changes when needed. The component as
part of BCS console backend interacts with the BCS console
Ul, IDCS backend SDK, and all the BCS applications to
provide the SDK for Ul operations get/update configurations
as requested. The component also helps to provision the
BCS applications. The BCS provision component will
deploy the BCS applications into the Docker containers of
the VMs created using PSM. This feature will implement
SDK API for BCS console Ul and BCS provision compo-
nents get or update BCS applications configurations and
deployment in post-provisioning phase. In the post-provi-
sioning phase, the provisioning system will deploy BCS
applications such as CA server, orderer, peer, under Docker/
Swarm. When the VM startup, it will call startup script to
perform post-provisioning and VM initial work.

[0152] In accordance with an embodiment, configuration
files are provided for fabric components including peers,
orderers, fabric CA and BCS Gateway. BCS applications
packages, configurations, chaincode store in Customer’s
Storage Cloud Service.

[0153] In accordance with an embodiment, the provision
system should complete all the resources allocation. The
resources include VMs, Network, and Storage.

[0154] In accordance with an embodiment, the provision
system should save all the resources allocation information
to the storage service. The information includes the VM
number and their network addresses/account credentials,
BCS application number in each VM and their type, public
and internal IP. And there should also be enough internal IP
addresses (accessible among VMs) for containers.

[0155] In accordance with an embodiment, when the BCS
provision component has done the provision work, the VM
startup script will start, then call swarm deploy the container
runtime service, and inside the container, the container
startup.sh script to perform initiation operation.

US 2022/0067035 Al

[0156] In accordance with an embodiment, the BCS con-
sole will get the configurations from storage service when it
starts, and will save the input of the user operation from Ul
back to storage service, and then send restart command to
swarm.

[0157] In accordance with an embodiment, the security
certificates needed can be saved in IDCS. Alternatively, the
security certificates can be retrieved from IDCS.

[0158] In accordance with an embodiment, a BCS console
backend can communicate with the BCS applications with
swarm.

[0159] In accordance with an embodiment, when the BCS
container runtime service starts up, the BCS application can
gather configuration details to decide its application type
(peer or chaincode container or other), and then load the
configuration needed.

[0160] In accordance with an embodiment, this compo-
nent updates the configuration and provides BCS application
startup shell code. The BCS get/update configuration file
operation can be split into several parts. First, the BCS
console will get configuration from storage when it starts,
and save configuration into storage from BCS console when
need update (shell and Node.js). When the BCS container
runtime service starts up, the startup script (in each Docker
container) will start first then get configuration for its
application type and get the app cert from IDCS (shell).
When the BCS console Ul restarts a BCS application, it
sends message to the Docker/Swarm to restart the applica-
tion in the container.

[0161] In accordance with an embodiment, the BCS con-
sole is stateless, and, when started, can gather all the BCS
instance configurations and connects to the BCS applica-
tions and monitors them. The configurations will be obtained
from a storage service via backend API. When any configu-
rations change, the BCS console will call backend API to
save the configurations back to storage service and restart
related applications. When the customer changes the con-
figuration items via BCS console UI, the UI will encode the
configurations into key/value data, the backend code will
transform it to file and save into the storage service. The
BCS console can monitor, start and stop the BCS applica-
tions. The start and stop commands use Docker/Swarm APIs
to implement this function.

Deployment of a Fabric Network

[0162] In accordance with an embodiment, a fabric net-
work comprises the following entities: peers, clients, order-
ing service, and a set of protocols to facilitate the commu-
nications among these entities. Organizations are logical
entities or corporations that constitute the stakeholders of a
fabric network. A fabric network has multiple participating
organizations. Member: A legally separate entity that owns
a unique root certificate for the network. Network compo-
nents such as peer nodes and application clients will be
linked to a member. Each organization may have one or
more members. One organization can contribute both order-
ers and peers, or orderers only, or peers only.

[0163] In accordance with an embodiment, a first step in
deploying a fabric network is defining the participants. This
step is done out-of-the-band of fabric network. All partici-
pating organizations of a fabric network negotiate and
conclude the composition of the network including, for
example, which organization(s) contribute orderer nodes,
and which organizations contribute peer nodes. Every orga-

Mar. 3, 2022

nization which contributes orderer nodes publishes the root
certificate for its orderer servers. Every organization which
contributes peer nodes publishes the root certificate for its
peer servers. Every organization which has clients publishes
the root certificate for its clients. Clients can be separated
from peers to different members in one organization.
[0164] Inaccordance with an embodiment, as an example,
four banks (bankl, bank2, bank3, and bank4) have decided
to deploy a Blockchain network using an ordering service
that would comprise orderer nodes owned by bankl and
bank2. And bankl is only to contribute orderers in this
network. Each bank is an organization of the fabric network:
bankl has 1 member: orderers(root_cert_1); bank2 has 3
members: clients(root_cert_21), peers(root_cert22), orders
(root_cert23); bank3 has 2 members: clients(root_cert31),
peers(root_cert32); bank4 has 2 members: clients(root_
cert41), peers(root_cert42).
[0165] In accordance with an embodiment, after defining
the participants, certificates are generated for orderers and
peers. Each orderer or peer needs a (private key, signing
certificate) pair to identify itself. Each member can configure
and start its own fabric CA server with its root certificate,
and use CLI or SDK to request the CA server to generate the
(private key, signing certificate) for each orderer/peer server
of this member. BCS provides a fabric CA server which can
provide certificates. However, fabric CA server is not the
only approach to generate certificates. User can use other
CA system to do the same. So fabric CA server is not a
mandatory component in a fabric network.
[0166] In accordance with an embodiment, after generat-
ing certificates for the orderers and peers, a fabric network
is bootstrapped by creating the system channel. There is
exactly one system channel for an ordering service (so for
one fabric network), and it is the first channel to be created
(or more accurately bootstrapped). The system channel
defines the composition of a fabric network:
[0167] One Ordering service
[0168] One or more Orderer organizations. Each
org’s
[0169]
[0170] Certs
[0171] Ordering service attributes (e.g. type—solo or
Kafka, orderer addresses, batch size/timeout)
[0172] Policies (who can create channels, etc.)
[0173] One or more Consortiums. Each consortium
contains
[0174] One or more peer organizations. Any peer
organization which wants to participate in this fabric
network must be defined here in one of the consor-
tiums. Each org’s

MSP ID

[0175] MSP ID
[0176] Certs
[0177] Anchor peers

[0178] In accordance with an embodiment, after a fabric
network system channel is bootstrapped a genesis block is
created for the system channel (first block in the chains). The
Orderer service administrator generates the genesis block for
the system channel. The genesis block can be generated
either by tool configtxgen (genesismethod=file), or during
orderer startup (genesismethod=provisional). When gener-
ating genesis block using the configtxgen tool, a configura-
tion file configtx.yaml can be composed as the input. This
file contains the following information: The root certificates
of all orderer organizations in the fabric network; The root

US 2022/0067035 Al

certificates of all peer organizations; Ordering service attri-
butes: orderertype, address, batchtimeout, batchsize, kafka;
Policies; Channel reader: authenticate & validate channel
delivery requests; Channel writers: authenticate & validate
channel broadcast requests; Chain creators: evaluate chain
creation requests; Admins: authenticate & validate channel
reconfiguration requests;

[0179] In accordance with an embodiment, the Orderer
service administrator starts an orderer server with configu-
ration file and the genesis block. This creates the system
channel using the genesis block. A configuration file orderer.
yaml is needed for starting an Orderer server: Listen
address/port, ledgertype, etc.; LocalMSP (private key, sign-
ing certificate). Each organization which provides ordering
service starts its orderer servers (no genesis block should be
specified).

[0180] In accordance with an embodiment, each organi-
zation which contributes peer nodes prepares a configuration
file (default location/etc/hyperledger/fabric/core.yaml) for
each peer to specify: LocalMSP (private key, signing cer-
tificate) to identify the peer; and Peer attributes: Listen
address/port, bootstrap peers, gossip attributes, etc. And then
starts the peer servers.

[0181] In accordance with an embodiment, after the order-
ers and peers are started, the channel administrator (who has
the privilege to create channel) uses fabric CLI or SDK to
request an orderer to create a channel with the following
input: One consortium (must have been defined in the
system channel); and one or more Peer orgs in the consor-
tium. Fach participating organization uses fabric CLI or
SDK to join some of its peers to the newly created channel.

Example: Deployment of a Fabric Network on BCS

[0182] FIG. 4 illustrates an exemplary deployment of a
fabric on BCS.
[0183] In accordance with an embodiment, more particu-

larly, the figure and description describe the steps to deploy
a fabric network on BCS. In this example, four entities A, B,
C, and D want to create and join a fabric network. The four
entities discuss off-line and decide responsibilities of the
various entities. Each entity creates one or more BCS
instance on OPC.

[0184] In accordance with an embodiment, Entity A pro-
vides both orderers and peers. Entity A creates two
instances: Orderer_Orgl 401 for orderers and Peer_Orgl
421 for peers. Entity A is also responsible for creating the
fabric network (note: only an orderer can create a fabric
network). The ordering service 400 comprises Orderer_
Orgl 401 and Orderer_Org2 402 as well as Kafka cluster
410.

[0185] In accordance with an embodiment, Entity B pro-
vides both orderers and peers. Entity B creates two
instances: Orderer_Org2 402 for orderers and Peer_Org2
422 for peers.

[0186] In accordance with an embodiment, Entity C pro-
vides only peers. Entity C creates instance Peer_Org3 423.
[0187] In accordance with an embodiment, Entity D pro-
vides only peers. Entity D creates instance Peer_Org4 424.
[0188] In accordance with an embodiment, the adminis-
trator of each BCS instance collects the CA certificate and
admin certificate of the current org from BCS console. The
administrator of each peer org identifies the anchor peers of

Mar. 3, 2022

the current org and collects the IP/port of the anchor peers.
The four entities exchange all the collected information with
each other off-line.

[0189] In accordance with an embodiment, from the BCS
console, the administrator of Orderer_Org]l creates the fab-
ric network by creating the system channel with the follow-
ing information collected in previous step: the CA certificate
and admin certificate of each org; and the anchor peers of
each peer org. The backend work can comprise invoking a
fabric tool to create genesis block and configuring orderer to
create the system channel using the genesis block.

[0190] In accordance with an embodiment, from the BCS
console, the administrator of each peer org joins the fabric
network by updating the configuration of all peer nodes to
add the CA/admin certificates of other orgs collected, and
restarting all the peer nodes.

[0191] In accordance with an embodiment, in a system, a
method is provided to allow a new org to join an existing
fabric network. Furthermore, a user-friendly method can be
provided to facilitate the communications among partici-
pants in order to create/join fabric network, e.g., to cover the
off-line actions in preliminary to forming the fabric.

Chaincode (Smart Contract) Container

[0192] In accordance with an embodiment, and as dis-
cussed above chaincode is software defining an asset or
assets, and the transaction instructions for modifying the
asset(s). Chaincode enforces the rules for reading or altering
key value pairs or other state database information. Chain-
code functions execute against the ledger current state
database and are initiated through a transaction proposal.
Chaincode execution results in a set of key value writes
(write set) that can be submitted to the network and applied
to the ledger on all peers.

[0193] In accordance with an embodiment, to support the
consistent update of information—and to enable a number of
ledger functions (transacting, querying, etc.}—a blockchain
network uses smart contracts to provide controlled access to
the ledger. Smart contracts can encapsulate information,
replicate it automatically across the fabric, and they can also
be written to allow participants to execute certain aspects of
transactions automatically.

[0194] In accordance with an embodiment, Hyperledger
fabric smart contracts are written in chaincode and are
invoked by an application external to the blockchain when
that application needs to interact with the ledger. In most
cases chaincode only interacts with the database component
of the ledger, the world state (querying it, for example), and
not the transaction log.

[0195] In accordance with an embodiment, Hyperledger
fabric utilizes the Docker engine to build chaincode, deploy
it and keep it running. This section describes the fabric
architecture and how it is integrated into a container runtime
service layered model for BCS.

[0196] In accordance with an embodiment, fabric deploys
and manages user chaincode as follows: First build the
chaincode in an ephemeral CC env container. Second, the
chaincode is transferred as source code into the builder
container, compiled with needed libraries statically linked
(“Java build”), then the binary is sent back to the peer. The
static link allows the actual chaincode container to be as
small as possible. Third, build a chaincode image and
container and start it. The chaincode container then remains
running until the peer is shut down or the channel termi-

US 2022/0067035 Al

nated. Should the chaincode container crash or be killed, if
the image exists it is restarted on the next invocation. The
design is to have one chaincode Docker container per peer
and channel. Chaincode is explicitly installed on peers. That
is: not all peers that join a channel necessarily have chain-
code installed.

[0197] In accordance with an embodiment, users can
deploy a fabric network in container runtime service layered
containers, which have the ability to transparently distribute
components such as peers, orderers and chaincode. Chain-
code runtime environment containers (ccenv) will be
dynamically started as ACLS containers Chaincode binary
will be saved in Cloud Storage since local block storage is
not considered a reliable way of recovering. Once built
chaincode binaries will be uploaded to Cloud Storage for
recovery purposes in case of container crash.

[0198] In accordance with an embodiment, each chain-
code interaction can correspond to various functions of
chaincode. The only restriction is that chaincode cannot be
invoked or queried until it is instantiated. Additionally, upon
any invocation the chaincode container is restarted if it
cannot be found running.

[0199] FIG. 5 illustrates a chaincode architecture, in
accordance with an embodiment. More specifically, the
figure illustrates a chaincode architecture which allows a
client 530 to install chaincode and run transactions in
container runtime service environment 500 according to an
embodiment. Step 1, Client 530 installs chaincode source
code to a Peer 1, 510. First build the chaincode in an
ephemeral CC env container. When a client 530 performs
“install”, it will: start a builder container, which will auto-
matically start a builder agent, wait for the builder container
to finish initializing, send the chaincode source code to the
builder container via peer, (step 2). The builder agent will
build chaincode (Java build). The chaincode is transferred as
source code into the builder container, compiled with needed
libraries statically linked (“Java build”), then the binary is
sent back to the peer. The static link allows the actual
chaincode container to be as small as possible. Once built,
the chaincode package (tgz file) will be uploaded to Cloud
Storage 560 (step 3). The builder agent will send the Cloud
Storage location to the peer for later reference (step 4.2).
[0200] In accordance with an embodiment, the peer 510
will then start the CC env as an ACLS (Access Control Lists)
container 520, using the PSM REST API. Build a chaincode
image and container and start it. The chaincode container
then remains running until the peer is shut down or the
channel terminated. The peer 510 will pass the chaincode
1D, self IP (for chaincode registration) and Cloud Storage
location to ACLS container start (step 4.1). The peer will
wait for chaincode to start, or time out after a set period. The
ccenv will start the chaincode. Upon startup, the chaincode
will register itself with the peer step 4.3). The chaincode will
be ready for invocation in transactions (step 5), which will
be performed using the connection established at registration
time.

[0201] In accordance with an embodiment, the builder
container 550 comprises a simple REST-type server. The
builder container 550 comprises builder agent 553. The
builder container 550 starts up and listens for a chaincode
build request. When the builder container 550 receives a
build request, e.g.: POST call with base64 encoded source
code as body it base64 decodes the source code and saves
the chaincode source code in in local filesystem. The builder

Mar. 3, 2022

agent 553 then performs “Java build” on the source code. If
“Java build” is successful, the builder agent 553 package
binaries and upload to Cloud Storage 560. The builder agent
also returns the chaincode location to the peer. If “Java
build” fails, the agent returns the error and reason to the peer.

BCS Management Console

[0202] In accordance with an embodiment, as described
above, each instance of a BCS can include a management
console, which can be used to manage and monitor the BCS
instance, including the BCS Gateway, BCS nodes, and BCS
channels.

[0203] In accordance with an embodiment, the manage-
ment console component facilitate and automate the provi-
sioning, monitoring and configuration of the BCS. The
management console component can include a web appli-
cation running in a script runtime environment, for example,
Node.js. The web application can be built on a graphical user
interface framework and a web framework; and can include
a plurality of custom functions or APIs to communicate with
various nodes or services in a BCS instance. The web
application can populate information from the various nodes
or services in the BCS instance into a view object, for
display in a console user interface. The management console
component can also provide a plurality of functions for an
administrator to start, stop and update one or more nodes in
a BCS instance. A set of management REST APIs can be
provided by the script runtime environment or can be
accessed by the script runtime environment, to support the
same functions as provided by the web application.

[0204] Inaccordance with an embodiment, the system can
facilitate the monitoring and management of the associated
BCS instance through a web interface provided by the web
application, or through a custom REST client application
written using the set of management REST APIs.

[0205] In accordance with an embodiment, the manage-
ment console can enable a BCS administrator to manage a
plurality of components of the BCS instance, including one
or more peer nodes, one or more orderer nodes, one or more
fabric-CA nodes, one or more BCS gateway nodes, chan-
nels, and one or more chaincodes.

[0206] In accordance with an embodiment, managing a
BCS component can include performing one or more of the
following operations: starting the component, stopping the
component, adding the component, removing the compo-
nent, viewing/editing attributes of the component, viewing
performance metrics of the component, and view logs of the
component.

[0207] FIG. 6 illustrates a system for providing a man-
agement console in accordance with an embodiment.
[0208] In accordance with an embodiment, as shown in
the figure, a BCS management console 136 can be provided
as a component of a BCS instance in the container runtime
service 128. The BCS management console can be a web
application running in a script runtime environment 605,
which can represent a runtime environment provided by
Node.js.

[0209] In accordance with an embodiment, the manage-
ment console can include a plurality of backend APIs 610,
for example, a fabric Node Service Development Kit (SDK)
611, a plurality of fabric custom functions/APIs 613, and a
plurality of container runtime service APIs 615. The SDK,
custom functions/APIs and container runtime service APIs
can be used to communicate with a fabric network 601,

US 2022/0067035 Al

which can comprise a distributed streaming service (e.g.,
Kafka) 603. The management console can further include a
view object 623 that can contain information that needs to be
displayed in the BCS console UI 104 or a REST-client 604,
or contain information that needs to be passed from the BCS
console UI or the REST-client to the management console.
A fabric node SDK 621 can operate to map the information
from the fabric network and the information the BCS
console Ul or the REST-client.

[0210] In accordance with an embodiment, the BCS man-
agement console can include a plurality of client APIs 622,
which can be used by the BCS console UI or the REST-client
to provision a BCS cloud service, and manage the provi-
sioned BCS cloud service. Managing the provisioned BCS
cloud service can include starting and stopping a peer node,
an orderer node, a fabric-CA node, and a BCS gateway node;
and adding and removing a peer node, an orderer node, and
a BCS gateway node.

[0211] In accordance with an embodiment, the BCS man-
agement console can further include a GUI framework (e.g.,
JET) 617 and a web framework (e.g., Express) 619. The GUI
framework can provide a variety of user interface (UI)
components and elements that can be used in the manage-
ment console web application. For example, the Ul compo-
nents and elements can be used to create forms, collect data,
and visualize data. The web framework can be written in
JavaScript and can provide a web application framework
including a robust set of features to develop web and mobile
applications.

[0212] FIGS. 7A-7B illustrate examples of user interfaces
in a BCS console Ul in accordance with an embodiment.

[0213] In accordance with an embodiment, as shown in
FIG. 7A, a BCS summary 711 can be displayed in a
dashboard. The summary can include the number of orga-
nizations, the number of peers, the number of orderers, the
number of channels and the number of chaincodes.

[0214] In accordance with an embodiment, health infor-
mation 713 of the BCS instance can be displayed. The health
information can be visually displayed and numerally dis-
played. The sample Ul can also display transaction execu-
tion 714 and ledges summary 715.

[0215] In accordance with an embodiment, FIG. 7B illus-
trates information for all the nodes in the BCS instance. For
example, the sample Ul shows a total of 5 nodes, including
2 peers, 1 order, 1 fabric-CA, and 1 REST proxy (within a
BCS gateway node). For each node, the summary Ul 717
displays the name of the node 723, the route information of
the node 725, the type of the node 729, and the status
information of the node 731. The sample Ul include a button
721 for an administrator to add nodes, and one or more
dropdown lists 719 to filter the nodes.

Node Management

[0216] In accordance with an embodiment, there can be
two entities that can manage a BCS instance using the
management console: BCS administrator and BCS user.
There is only one BCS administrator account for each BCS
instance. The BCS administrator account can be created
when the BCS instance is created. The BCS administrator
can be bundled with the fabric-CA administrator (i.e., all the
actions that the BCS administrator performs from the BCS
console or via BCS management REST APIs use the fabric-
CA administrator identity). There can be more than one BCS

Mar. 3, 2022

user account, which can be created by BCS administrator by
registering a fabric-CA identity.

[0217] In accordance with an embodiment, the nodes in a
BCS instance can be displayed in one web page. The
management console can support two modes. In the first
mode, the name, type, access URL, and status of each node
can be presented as a list. In the second mode, the channels
that each peer participates in can be presented in diagram.
[0218] Further, in accordance with an embodiment, the
management console can enable a BCS administrator to start
and stop a peer node, an orderer node, a fabric-CA node, and
a BCS gateway node; and add and remove a peer node, an
orderer node, and a BCS gateway node. A fabric CA node
cannot be added or removed.

[0219] Inaccordance with an embodiment, when adding a
node, the BCS administrator can set the attributes of the
node. The newly added node can be started automatically as
part of the add operation. When a node is removed, the node
is stopped and removed from the BCS instance.

[0220] In accordance with an embodiment, the BCS con-
sole Ul can list all the channels that an active peer node
participates in, and all the chaincodes that are installed on
the active peer node.

[0221] In accordance with an embodiment, when manag-
ing peer nodes, the BCS administrator can join an active
peer node to an existing channel, and view and edit the
attributes of an active orderer node. A BCS user can view
some of the attributes of an active peer node.

[0222] In accordance with an embodiment, further, snap-
shot performance metrics for an active peer node can be
displayed in the BCS console UI, such as: memory usage,
CPU percentage used, Network 1/0, and Disk 1/O.

[0223] In accordance with an embodiment, when manag-
ing orderer nodes, the BCS administrator can view the logs
of an active orderer node, view and edit the attributes of an
active orderer node. A BCS user can view some of the
attributes of an active peer node. Similarly to managing a
peer node, the BCS administrator can view the following
snapshot performance metrics for an active orderer node:
memory usage, CPU percentage used, Network /O, and
Disk I/O.

[0224] In accordance with an embodiment, when manag-
ing fabric CA nodes, the BCS administrator can view and
edit the attributes of an active fabric CA node, get the CA
certificate from the active fabric CA node, and view the logs
of the active fabric CA node. Further, the BCS administrator
can view the following performance metrics of the active
fabric node: memory usage, CPU percentage used, Network
I/O, and Disk I/O.

[0225] In accordance with an embodiment, as described
above, managing a BCS gateway node can include adding or
more removing a BCS gateway node. Since a maximum
number of allowed BCS Gateway nodes is designated at the
time a particular BCS instance is instantiated, the number of
BCS gateway nodes that can be added to the BCs instance
is limited by the configured maximum allowed number of
BCS Gateways.

[0226] In accordance with an embodiment, each BCS
gateway node can have a name, which is the globally unique
identity of the gateway node. The name can be referred to in
the future when the BCS gateway node is configured. The
network address can also be determined and displayed when
creating a BCS gateway node.

US 2022/0067035 Al

[0227] In accordance with an embodiment, when config-
uring a BCS gateway node, the BCS administrator can
define a BCS gateway configuration file, and bootstrap the
BCS gateway node. When a BCS instance is being provi-
sioned, there may not be any channel created or chaincode
deployed. As such, the BCS gateway node is not functional,
until one or more chaincodes are deployed, and a valid BCS
gateway configuration is defined through the management
console.

[0228] In accordance with an embodiment, for each BCS
gateway node, there can be a configuration page. Below
items, in certain embodiments, can be configured in the
configuration page:

[0229] 1). Channels: Choose which channels to expose
through the current gateway node.

[0230] 2). Chaincodes: Chose which instantiated chain-
code to expose from a list of all instantiated chaincodes
in each channel.

[0231] 3). Endorsers: For each chaincode, define the
endorsing peers.

[0232] 4). Generate the BCS gateway configuration
according to the settings described above. Once a valid
configuration file is generated for the BCS gateway, the
gateway can be started.

[0233] In accordance with an embodiment, the BCS con-
sole allows a view of BCS gateway properties using a list
view function. On the list view, below information is pro-
vided for each BCS gateway:

[0234] 1). Name: the global unique name designated
when the gateway is created.

[0235] 2). Fabric identity name: Each BCS gateway can
be associated with a fabric client identity, which is
registered and enrolled when the BCS gateway is
created. All the actions that the BCS gateway takes
(e.g., invoke, query) can be entitled as this fabric client.

[0236] 3). Network address: The accessing point with a
public internet network address.

[0237] 4). Status: Up or down.

[0238] In accordance with an embodiment, the manage-
ment console also allow the BCS administrator to view the
logs of an active BCS gateway node, and view the following
BCS gateway metrics:

[0239] 1). Connected clients: Client name, address,
logon time, etc.

[0240] 2). Current transaction information: current
transaction information can be available along with
state information, i.e., in what state this transaction is
in. The current transaction information can be useful in
debugging a hung transaction.

[0241] 3). Transaction statistics: Transaction statistics
can be available through the management console Ul.
For example, the transaction statistics can include the
number of transactions completed, the number of event
notifications received, and the number of event notifi-
cations delivered.

[0242] 4). Memory usage.
[0243] 5). CPU percentage.
[0244] 6). Network 1/O.
[0245] 7). Disk I/O.

Channel Management

[0246] Inaccordance with an embodiment, a BCS user can
list all channels that the current BCS instance participates in.
The BCS administrator can create a channel with a channel

Mar. 3, 2022

name, a consortium name, and one or more organization
names as inputs. Output can also be displayed to indicate the
success or failure of the channel creation.

[0247] Inaccordance with an embodiment, a BCS user can
view the participating nodes and organizations of a channel.
The management console can support tow view modes: list
mode and topology mode. In the list mode, the participating
local nodes and external organizations (represented by its
anchor peer) can be listed as a list. In the topology mode, the
participating local nodes and external organizations (repre-
sented by its anchor peer) can be represented in a topology
diagram.

[0248] In accordance with an embodiment, the BCS
administrator can query the ledger of a peer in a channel.
The ledger can comprise of a list of transaction blocks, each
of which blocks can contain a block ID, a previous hash, a
data hash, a timestamp, a transaction ID list, actions (1 . . .
n), a chaincode ID, a chaincode proposal, a response (r/'w
set, events, success or failure), and one or more endorsers.
The following statistics data can also be displayed: a number
of blocks, and a number of invocations.

[0249] In accordance with an embodiment, the BCS
administrator can list all the chaincodes instantiated in a
channel. The listed items can include the chaincode ID and
version. The BCS administrator can also view the following
information of an instantiated chaincode: Path, which is the
path as specified by the instantiated transaction; and instan-
tiation arguments.

[0250] In accordance with an embodiment, the BCS
administrator can upgrade an instantiated chaincode in a
channel. The upgrade operation can take the following
inputs: target endorsing peers with the new version of the
chaincode installed; one or more orderers; chaincode ver-
sion; and arguments, which optionally can be String array
arguments specific to the chaincode. The output of the
upgrade operation can be a success or a failure with error
messages.

Chaincode Management

[0251] In accordance with an embodiment, the BCS
administrator can list all the chaincodes installed on any
peers of the current BCS instance. The listed item includes
the chaincode ID and version. In addition, the BCS admin-
istrator can also view the following information of an
installed chaincode: local peer nodes with the installed
chaincode, and channels that have instantiated the chain-
code.

[0252] In accordance with an embodiment, through the
management console, the BCS administrator can install
chaincode to one or more local peer nodes. The input for the
installation operation can include: target peers; chaincode
type, for example, golang/Java; chaincode ID which can be
the name of the chaincode; chaincode version; chaincode
path which can be the location of the source code of the
chaincode; and chaincode package, which is optional. The
output of the installation operation can be a success or a
failure with an error message.

[0253] In accordance with an embodiment, the BCS
administrator can instantiate an installed chaincode to a
channel, with the following information as the inputs: chan-
nel name; target endorsing peers with the chaincode
installed thereon; orderer; arguments which can be optional
and can be String array arguments specific to the chaincode;

US 2022/0067035 Al

and endorsement policy, with a defined format or a default
format in the absence of a defined format.

Membership Management

[0254] In accordance with an embodiment, the BCS
administrator can list all the identities in the current BCS
instance, register a new user/identity for the current BCS
instance, deregister an identity, and remove the user from the
current BCS instance. Further, the BCS administrator can
view/edit the following attributes of an identity, as shown in
Table 1:

TABLE 1
Attribute Type Access Descriptions
Roles Orderer, Peer, R R

Application, User

Affiliation BCS Administrator R The application roles of
Smart-Contract Dev IDCS BCS application
Smart-Contract User which is associated with

the current user.

IsEnrolled Boolean R R

[0255] In accordance with an embodiment, the manage-

ment console enable a BCS user can enroll or reenroll itself,
which can generate a private key and certificate for the user.
The management console also enable the BCS administrator
to revoke an identity which was enrolled before, and enable
a BCS user to change its password.

[0256] In accordance with an embodiment, the BCS man-
agement console can be started or stopped along with the
start or stop of the associated BCS instance.

[0257] In accordance with an embodiment, there can be
two ways to set the log level of the BCS management
console: from the BCS management console itself, and use
the management REST APIs to change the log level at
runtime.

[0258] FIG. 7C illustrates a method for providing a man-
agement console in accordance with an embodiment.
[0259] In accordance with an embodiment, as shown in
FIG. 7C, at step 781, a container runtime service is provided.
[0260] In accordance with an embodiment, at step 783, a
distributed ledger and a management console component are
provided in the container runtime service.

[0261] In accordance with an embodiment, at step 785, a
plurality of client application programming interfaces
(APIs) and a plurality of backend APIs are provided in the
management console component, wherein the plurality of
client APIs are configured to be invoked by a client appli-
cation, wherein the plurality of backend APIs are configured
to communicate with a plurality of nodes of the distributed
ledger, and wherein the plurality of client APIs uses one or
more of the plurality of backend APIs in provisioning the
distributed ledger as a blockchain cloud service, and in
managing the blockchain cloud service.

REST Proxy Service

[0262] In accordance with an embodiment, as described
above, communication among different components within
a fabric network is based on gRPC protocol. As such, a BCS
instance based on the fabric network would require a client
application to use a fabric SDK to call a chaincode in the
BCS instance.

Mar. 3, 2022

[0263] In accordance with an embodiment, requiring a
client application to use a fabric SDK to communicate with
the blockchain cloud service can partially cancel out the
benefits of providing a distributed ledger as a cloud service.
For example, one of the benefits is that the cloud service
should be accessed from anywhere with an internet connec-
tion.

[0264] In accordance with an embodiment, the REST
proxy service component within the BCS instance can use a
service development kit (SDK) for the distributed ledger in
the BCS to communicate with the distributed ledger, and can
provide REST APIs for use by client applications to query
through chaincodes, synchronously or asynchronously
invoke transactions through the chaincodes, get transaction
statuses, and get BCS proxy versions. The REST proxy
service component can authenticate REST calls, and trans-
late the REST calls into remote procedural calls, e.g.,
Google Remote Procedure Calls (gRPC), for use in inter-
facing with the distributed ledger. The REST proxy service
component can further provide REST APIs that support the
same functions which are provided by the BCS management
console component, and provide a user interface for client
applications to consume the BCS instance.

[0265] In accordance with an embodiment, the REST
proxy service component can be a network node in a
distributed ledger that is implemented as a BCS, run in a
container runtime service container in a cloud environment
(e.g., Oracle Cloud), and can be managed by a PaaS manager
(e.g., Oracle PaaS Service Manager (PSM) platform).
[0266] Inaccordance with an embodiment, the REST APIs
provided by the REST proxy service component can include
REST APIs that enable client applications to access smart
contracts installed on the BCS, and administrative REST
APIs for the management console component.

[0267] FIG. 8A illustrates a system for providing a REST
proxy service in a BCS instance in accordance with an
embodiment.

[0268] In accordance with an embodiment, as shown in
FIG. 8, the REST proxy 138 can include a REST authenti-
cator 827 and a protocol converter 829. When the BCS
REST API client 808 sends a REST call 815 to the REST
proxy, the LBaaS 126, which is connected to the cloud gate
811, can authenticate the call to determine whether the
REST call include a valid user name and a valid password
to allow the REST to access the BCS instance.

[0269] In accordance with an embodiment, if the REST
call is authenticated by the [.LBaaS, the .BaaS can direct the
REST call to the REST proxy, which can forward the REST
call 835 to an IDCS 813 to determine whether the client
application has been granted appropriate authorization with
the BCS.

[0270] In accordance with an embodiment, if the client
application is appropriately authorized, the REST proxy can
translate/convert the REST call into a gRPC call 825, and
send the GRPC call to the fabric network 601. The REST
call, once transformed/translated to internal calls (gRPC),
can interface with the instance of the blockchain fabric/
Hyperledger.

[0271] In accordance with an embodiment, the REST call
can be translated by the protocol convertor, which can be a
Java application based on a fabric Java SDK 831 with a
GRPC library 833.

[0272] In accordance with an embodiment, as further
shown in FIG. 8, the REST proxy can communicate with the

US 2022/0067035 Al

management console as described above using REST 821, to
expose one or more functions provided by REST APIs 823
to the management console.

[0273] FIG. 8B illustrates a system for providing a REST
proxy service in a BCS instance in accordance with an
embodiment.

[0274] In accordance with an embodiment, as shown in
FIG. 8B, the REST proxy service component 841 can run in
a web server 840 (e.g., a tomcat server) in a container
runtime service container 838, and can be mapped to a single
fabric user. Further, the REST proxy service component can
be configured through user interfaces provided by the man-
agement console component using JavaScript Object Nota-
tion(JSON) files, and can be started through user interfaces
provided by the management console component. An
administration user can publish part of peers, channels and
chaincodes to the REST proxy service component. Any
update to the configuration of the REST proxy service
component can be automatically reloaded.

[0275] In accordance with an embodiment, the REST
proxy service component (node) can be started by a BCS
gateway. A startup script can check a configuration file of the
BCS gateway, can modify a configuration file of a web
server hosting the REST proxy service component, and then
start the web server. The web server can start a thread for the
BCS gateway to read a configuration file and create a
channel object for each channel. For each channel, the web
server can also create connections with orderers, peers,
event hubs. Different channels can have different connec-
tions to orderers/peers/event hubs. An event hub can be a
second port of a peer. The BCS gateway can connect to this
port to get the result of a transaction.

[0276] In accordance with an embodiment, a servlet con-
tainer in the web server can listen and wait for client
requests. For query methods of a chaincode, the BCS
gateway can send requests randomly to two endorsers of the
chaincode, and only use the first result. For invoke methods
of a chaincode, the BCS gateway can send requests to all
endorsers of a channel, and if one of them returns success,
the BCS gateway can send a transaction to all orderers of the
channel. A peer can open two ports, with one port for event
exchanges. The BCS gateway can connect to the event port
of a peer for one channel.

[0277] In an embodiment, the REST proxy service com-
ponent can support both asynchronous APIs and synchro-
nous APIs.

[0278] In accordance with an embodiment, for asynchro-
nous APIs, the REST proxy service component can check
parameters of a request from a client, and return a transac-
tion ID to the client, which can receive information indi-
cating that the transaction has started, but has not finished.
The REST proxy service component can start a background
thread to keep processing the transaction. The client can
track unfinished transactions. The REST proxy service com-
ponent provide transaction APIs for the client to query
transaction statuses using transaction 1Ds.

[0279] FIG. 8C illustrates a method for providing a REST
proxy service in a BCS instance in accordance with an
embodiment.

[0280] In accordance with an embodiment, as shown by
FIG. 8C, at step 881, a container runtime service is provided.
[0281] In accordance with an embodiment, at step 883, a
distributed ledger is provided in the container runtime

Mar. 3, 2022

service, wherein the distributed ledger is provisioned as a
blockchain cloud service in the container runtime service.

[0282] In accordance with an embodiment, at step 885, a
REST proxy service executes in a container of the container
runtime service, wherein the REST proxy service includes a
plurality of REST APIs, which are configured to translate
REST calls from client applications into remote procedural
calls, for use by the client applications in communicating
with the distributed ledger.

Example REST APIs

[0283] In accordance with an embodiment, the REST
proxy service component can provide REST APIs for inter-
actions between client applications using a BCS and smart
contracts (chaincodes) installed on the BCS. The following
REST APIs are provided as examples to illustrate the
functionality of the REST proxy service component of a
blockchain cloud service.

[0284] In accordance with an embodiment, before invok-
ing the REST APIs, the REST proxy service component
needs to be up and running. The status of the REST proxy
service component can be check through the management
console. If the REST proxy service component is not up and
running, it can be started from the management console.
[0285] Inaccordance with an embodiment, the REST APIs
can be invoked to interact with smart contracts (chaincode)
deployed on peer nodes in a BCS instance. The deployment
process can be accomplished through the chaincode page of
the management console. The deployment consists of two
steps: installation (copy to peers), and instantiation (com-
piling, binding to a channel, and initializing).

[0286] In accordance with an embodiment, the example
REST APIs provided below assume the following example
chaincodes are deployed to the BCS.

TABLE 2
Function
Name Input Parameters Function Description
funcquery Args[0]: account A This function is to query the
information for the specified
account A, and then returns
the account information.
funcinvoke Args[0]: account A This function performs a
Args[1]: account B transaction, which moves
Args[2]: amount of amount of money C from
money C account A to account B.
TABLE 3
Channel Chaincode Chaincode Version
ChannelXYZ MyChaincode 1.0
[0287] In accordance with an embodiment, as shown

above, Table 2 illustrates example functions of a chaincode,
and Table 3 illustrates an example installation of the chain-
code.

[0288] In accordance with an embodiment, the REST
proxy service component can provide REST APIs to for
querying through chaincodes, invoking transactions through
chaincodes, asynchronously invoking transactions through
chaincodes, obtaining transaction statuses, and getting ver-
sions of a BCS gateway.

US 2022/0067035 Al

[0289] In accordance with an embodiment, the API for
querying through chaincodes can invoke the chaincodes to
perform query actions, with chaincode and arguments for the
query specified through the REST API. The API for obtain-
ing transaction statuses can query a channel for transaction
statuses, with the channel and a transaction ID specified
through the REST API. The APIs for getting versions of a
BCS gateway can return the version information of the BCS
gateway. The API for invoking transactions through chain-
codes can invoke the chaincodes to perform transaction
actions, with the chaincodes and arguments for invocation
specified through the REST API. This REST API can
perform the transactions in a synchronous mode, which
means a response is sent back in any of the following three
cases: The transaction is done successfully; the transaction
fails be done; the transaction time outs.

[0290] In accordance with an embodiment, the API for
asynchronously invoking transactions through chaincodes
can invoke the chaincodes to perform transaction actions,
with the chaincodes and arguments for invocation specified
through the REST API. This REST API performs the trans-
actions in asynchronous mode, which means a response/
acknowledgement is sent back immediately after the trans-
action is submitted without waiting for the complete or
timeout of it. Results may then be provided subsequently.

[0291] In accordance with an embodiment, a set of admin-
istration REST APIs can be provided on the REST proxy
service component, for invocation by the management con-
sole to provision and/or manage the BCS.

Invoke Query

[0292] In accordance with an embodiment, a chaincode
may contain more or more functions which are used for
querying information. These functions can be invoked
through the following REST API by submitting a POST
request on the REST resource using cURL: curl -H Content-
type:application/json -X POST http://localhost:8080/becsgw/
rest/v1/transaction/query.

[0293] In accordance with an embodiment, the request
body in JSON of the invoke query can be illustrated below:

{

“channel”: “ChannelXYZ”,
“chaincode”: “MyChaincode”,
“chaincodeVer”: “1.0”,

“method”™:* funcquery”, “args™:[“a”]

}

[0294] In this example, the function named funcquery has
the input parameter Args[0]: account A. This function can
query the information for account A and return the account
information, including chaincode name, chaincode version,
method defined in the chaincode to invoke a query, and an
array containing arguments that are passed to a specified
method in the chaincode.

[0295] An example response header for the invoke query
can be illustrated below:

[0296] HTTP/1.1 200

[0297] Content-Type: application/json Content-Length:
53

[0298] Date: Mon, 10 Jul. 2017 01:26:25 GMT

Mar. 3, 2022

[0299] An example response body for the invoke query
can be illustrated below:

“returnCode”: “Success”,
“result”: “1007,
“info”: null

[0300] Inthe above example response body, “Success” for
the “returnCode” means the query completed successfully,
and a “Failure” would mean the query has failed. For
“result”, when the returnCode is “Success”, a string with the
query result can be returned. For “info”, when the return-
Code is “Failure”, a string with additional details of the
failure can be returned.

Invoke Transaction (Synchronous)

[0301] In accordance with an embodiment, a chaincode
may contain one or more functions for transactions. This
REST API is used to invoke these transactions. The response
can be sent back when any of the following conditions are
satisfied: Time out for the operation, Success of the trans-
action, and Failure of the transaction.

[0302] In accordance with an embodiment, a cURL com-
mand “curl -H Content-type:application/json —X POST-d
http://localhost:8080/besgw/rest/v1/transaction/invocation”
can be used to invoke this REST API.

[0303] An example request body in JSON can be illus-
trated below:

“channel”: “ChannelXYZ”,
“chaincode”: “MyChaincode”,
“chaincodeVer”: “1.0”,
“method”: “funcinvoke”, I
“args”™: [“a”,“b”,3”]

}

[0304] In this example, the function named funcinvoke
has the input parameters Args[0]: account A, Args[1]:
account B, and Args|[2]: amount of money C. This function
will move 3 from account a to account b.

[0305] An example response header can be illustrated
below:

[0306] HTTP/1.1 200

[0307] Content-Type: application/json Content-Length:
119

[0308] Date: Mon, 10 Jul. 2017 01:26:25 GMT

[0309] An example response body can be illustrated
below:

“returnCode”: “Success”,

“info”: null

“transactionID”:
“e82a8a0969c382921273278d5a6bfe4a257630538df2ebc28ca%b9cc1 70777

Invoke Transaction (Asynchronous)

[0310] In accordance with an embodiment, a chaincode
may contain one or more functions for transactions. This
REST API or operation can be used to invoke those func-
tions in asynchronous mode, where the transaction ID is
returned immediately even if the operation has not yet

US 2022/0067035 Al

completed, failed, or timed out. When using this operation,
the status of the operation is queried separately.

[0311] The API can be invoked using the command “curl
-H Content-type:application/json —X POST-d http://local-
host:8080/besgw/rest/v1/transaction/asynclnvocation.”
[0312] An example request body in JSON can be illus-
trated below:

Mar. 3, 2022

[0325] The following is the header of an example
response:

[0326] HTTP/1.1 200

[0327] Content-Type: application/json Content-Length:
53

[0328] Date: Mon, 10 Jul. 2017 01:26:25 GMT

[0329] The following is the body of an example response:

“channel”: “ChannelXYZ”,
“chaincode”: “MyChaincode”,
“chaincodeVer”: “1.0”,
“method”:* funcinvoke”,
“args”:[“b”,“a”, 5]

[0313] In this example, the function named funcinvoke
has the input parameters Args[0]: account A, Args[1]:
account B, and Args[2]: amount of money C. This function
will move 5 from account b to account a. This REST API
operation always returns a transaction ID immediately after
the transaction is submitted. The status for the transaction
can be queried by another REST API operation.

[0314] An example response header can be illustrated
below:

[0315] HTTP/1.1 200

[0316] Content-Type: application/json Content-Length:
119

[0317] Date: Mon, 10 Jul. 2017 01:26:25 GMT

[0318] An example response body can be illustrated
below:

“returnCode”: Success”,

“info”: null

“transactionID”:
bf8536c892e4465ac30fd64871ed76be0eIch986213cfa759e54fb2f1af”

}

[0319] In the above response body, a “Success” for the
“returnCode” means the transaction was invoked success-
fully, a “Failure” means the transaction failed to be invoked.
When the returnCode is “Failure”, the “info” can contain
additional information about the failure.

View Status of a Specified Transaction

[0320] In accordance with an embodiment, with this
REST API, a user can check a transaction’s current status by
specified channel information and a transaction ID. This
REST API can immediately return the transaction’s current
status.
[0321] The cURL command “curl -H Content-type:appli-
cation/json —X POST-d http://localhost:8080/bcsgw/rest/
vl1/transaction” can be used to invoke the API.
[0322] The following is the header of an example request
in JSON for invoking the API. In the header, “txid” is the
transaction ID.

[0323] /besgw/rest/vl/channel/

transaction?channel=ChannelXY Z&txid=42bdbc5917593d

658969
5a24f6bb786ebd3dd264a0b52a243348defa954 HTTP/
1.1

[0324] User-Agent: curl/7.29.0 Host: localhost:8080
Accept: */*

“returnCode”: “Success”,
“result”: “1007,
“info”: null

View Status for a Transaction List

[0330] In accordance with an embodiment, this REST API
can be used to check the status of a group of specified
transactions. This REST API returns when either one of the
following two conditions are true: 1). No transactions have
InProgress status. That is, all transactions listed have com-
pleted successfully or failed; 2). timeout has been reached
for this request.

[0331] The command “curl -H Content-type:application/
json -X POST-d http://localhost:8080/becsgw/rest/v1/trans-
action/waitStatus™ can be used to invoke the REST APIL
[0332] The following is an example request body in
JSON:

“timeout™: 10000,
“array”: [
{
“channel”: “ChannelXYZ”,
“txid”:
“245575b55fe15120e42e6a7a389cfe33e5ace9102dadel Scb18cc”

“channel”: “ChannelXYZ”,
“txid™:
“786255b78932a7e874232d243241223¢2e6a7a389b55fe1502dadel 5¢

[0333] The above request checks statuses of the transac-
tions specified by the listed channels and transaction 1Ds.
“timeout” specify a timeout for this operation in millisec-
onds, and “array” is used to list the transactions to be
queried. For each transaction, an element with the channel
name and transaction ID can be created.

[0334] An example response header can be illustrated
below:
[0335] HTTP/1.1 200
[0336] Content-Type: application/json Content-Length:
221
[0337] Date: Mon, 10 Jul. 2017 01:26:25 GMT
[0338] An example response body can be illustrated
RN
{
“array”: [
{

US 2022/0067035 Al

-continued

“channel”: “ChannelXYZ”,

“txid™:

“245575b55fe15120e42e6a7a389cfe33e5ace9102dadel Seb18ec™,
“returnCode”: “Success”,

“info”: null

“channel”: “ChannelXYZ”,

“txid™:
“786255b78932a7e874232d243241223¢2e6a7a389b55fe1502dadel 5¢7,
“returnCode”: “Failure”, “info”: “Invalid TransactionID”

View Version

[0339] In accordance with an embodiment, this REST API
can be used to retrieve version information of a BCS
Gateway, and can be invoked using the command “curl -H
Content-type:application/json —X POST-d http://localhost:
8080/bcsgw/rest/version”.

[0340] An example request header in JSON for invoking
the REST API can be illustrated below:

[0341] GET/besgw/version HTTP/1.1

[0342] User-Agent: curl/7.29.0

[0343] Host: 10.182.53.195:8080

[0344] Accept: */*

[0345] An header of an example response returned from

the invocation of the REST can be illustrated below:

[0346] HTTP/1.1 200

[0347] Content-Type: application/json

[0348] Content-Length: 18

[0349] Date: Mon, 10 Jul. 2017 01:26:25 GMT

[0350] A body of an example response returned from the

invocation of the REST can be illustrated below:

{

“version”: “v1.0”

}

Fabric Certificate Authority (Fabric CA) Integrated with
Identity Cloud Service (IDCS)

[0351] In accordance with an embodiment, fabric-CA
server provided the membership service for fabric. It
includes three parts: authentication for user, authorization
for accessing a Block chain (a group of peers and orders) and
CA server which could deliver certificate to application
client, peer and order. Fabric-CA use certificate to imple-
ment authentication and authorization. The certificate
include two types: enroll cert for authentication and trans-
action cert for authorization. IDCS also provide authentica-
tion and authorization. But its authorization is implemented
by OAuth. That means if the peer wants to access the order,
the peer should get the access token of user from IDCS and
use this token to access order.

[0352] Inaccordance with an embodiment, fabric CA uses
Database or LDAP to store fabric CA’s registered user’s
info, e.g., user’s name/password, user’s certification, and
user’s affiliation. The end user of the Public Cloud (OPC)
would apply one centralized IDCS instance to manage their
employees to access all of their applied Public Cloud (OPC)
instances. The Blockchain Cloud Service BCS preferably

21

Mar. 3, 2022

integrates with IDCS used for other cloud services. Thus, the
end user is enabled to apply one centralized IDCS instance
to manage their employees to access all of their applied
Public Cloud (OPC) instances, included BCS.

[0353] In an embodiment, the Blockchain Cloud Service
(BCS) uses Oracle Identify Cloud Service (IDCS) to store
user information in a centralized manner. The BCS stores
fabric CA user’s information into IDCS and thereby allows
Oracle BCS to use IDCS to manage BCS user’s info
centralized across multiple Public Cloud service instances.
Thus, in an embodiment, BCS fabric CA user’s info, cer-
tificates, are stored in Oracle IDCS. The fabric Certificate
Authorization framework is a fabric membership provider
(MSP) which includes PKI private key, signed certificates,
CA certificate chains, and it is set up by fabric CA client/
server.

[0354] Inaccordance with an embodiment, BCS leverages
the user management of OPC. Any BCS user must be an
OPC user (so an IDCS identity) first. When a BCS instance
is created, several types of applications are created: BCS
console, CA, and REST-proxy. For the console, there are
two app Roles: console admin and console user. For CA,
there are four app Roles: fabric admin, fabric client, fabric
peer, fabric orderer. For REST-proxy, there are at two app
Roles: gateway admin, and gateway user.

[0355] In accordance with an embodiment, in order to
become a BCS user, an OPC user needs to be granted with
certain BCS appRoles in OPC user management console.
[0356] In accordance with an embodiment, when creating
a BCS instance, the creator needs to provide an existing
OPC user/password, and this user will be automatically
granted with BCS console admin and fabric admin roles so
that this user becomes BCS administrator.

[0357] Authentication: for BCS console/CA/REST-proxy,
the authentication is done at Cloud Gate. For peer/orderer,
the authentication is signature based. For BCS console, after
authentication, the console gets the appRoles of the current
user (by calling IDCS). If the user is not granted with
console admin or console user role, the connection is
rejected. Otherwise, the console does the access control
based on the pre-defined rules, e.g., normal user generally
can only read info while admin can do anything.

[0358] In accordance with an embodiment, for CA, after
authentication, the CA gets the appRoles of the current user.
If the user is not granted with any fabric role, the enroll
request is rejected.

[0359] In accordance with an embodiment, for REST-
proxy, after authentication, the REST-proxy gets the appRo-
les of the current user. If the user is not granted with gateway
admin or gateway user role, the request is rejected. Other-
wise, the REST-proxy does the access control based on
pre-defined rules, e.g., normal user can invoke/query, admin
can change configuration, get metrics.

[0360] In accordance with an embodiment, fabric-CA
server provides the membership service for fabric. It
includes three parts: authentication for user, authorization
for accessing a Block chain (a group of peers and orders) and
CA server which could deliver certificate to application
client, peer and order.

[0361] In accordance with an embodiment, fabric-CA use
certificate to implement authentication and authorization.
The certificate include two types: enroll cert for authentica-
tion and transaction cert for authorization.

US 2022/0067035 Al

[0362] In accordance with an embodiment, IDCS also
provide authentication and authorization. But its authoriza-
tion is implemented by OAuth. That means if the peer wants
to access the order, the peer should get the access token of
user from IDCS and use this token to access order.

[0363] FIG. 9A shows a typical IDCS use case for a single
sign-on, in accordance with an embodiment.

[0364] In accordance with an embodiment, a web appli-
cation 901 can be added to IDCS 902 at an initial step. Then,
a client, such as a web browser 900, can request authenti-
cation (e.g., username and password) from the web appli-
cation. Because the web application has been added to the
IDCS, the web application can direct the web browser to
make the authentication request to IDCS. After receiving the
response from the web application, the web browser can
then request authentication (e.g., username and password)
from IDCS.

[0365] In accordance with an embodiment, IDCS can then
authenticate the request and, upon successful authentication,
send a token back to the web browser. The web browser,
having been authenticated and received its token, can then
make a request from the web application. The web applica-
tion can verify the token, and signal the web browser that
authentication was successful.

[0366] In the case depicted in FIG. 9A, IDCS acts as the
Identity Provider (IdP) to provide identity service for appli-
cations. All the communications among all parties are HTTP
based. This use case is configuration driven, but only applies
to HTTP based application.

[0367] FIG. 9B shows an IDCS use case for fabric Client
Authentication, in accordance with an embodiment.

[0368] In accordance with an embodiment, a fabric client
904 that is associated with a fabric user that is already
registered and enrolled (private key and certificates of this
use are already stored in state store at client side) can request
a new client() as well as getting the user context of the client
(username). The fabric SDK 905 can load a user from the
state store, and return a user object to the fabric client. The
client, upon receiving the user object, can send a transaction
proposal to the fabric SDK, which can sign the proposal
using the same private key. The signed proposal can then go
to the peer (or peers) 906, which will verity the signature at
the membership service 907. The membership service can
get the certificate for the user from the IDCS 902, and can
verify the signature of the user using the certificate from the
IDCS. The membership service can then return, to the peers,
a verification that the signature is verified.

[0369] While various embodiments of the present inven-
tion have been described above, it should be understood that
they have been presented by way of example, and not
limitation. The embodiments were chosen and described in
order to explain the features and principles of the invention
and its practical application. The embodiments illustrate
systems and methods in which the various features of the
present invention are utilized to improve the performance of
the systems and methods by providing new and/or improved
functions, and/or providing performance advantages includ-
ing, but not limited to, reduced resource utilization,
increased capacity, increased throughput, improved effi-
ciency, reduced latency, enhanced security, and/or improved
ease of use.

[0370] Some embodiments of the present invention are
described herein with reference to flowcharts and/or block
diagrams of methods, apparatus (systems), and computer

Mar. 3, 2022

program products which illustrate the architecture, function-
ality, process, and/or operation. Each block in the flowchart
or block diagram represents an element, function, process,
module, segment, or portion of instructions, which com-
prises one or more executable instructions for implementing
the specified function. In some alternative embodiments, the
functions noted in a block diagram or flowchart, occur out
of the order noted in the figures. For example, two blocks
shown in succession may be executed substantially concur-
rently, or in the reverse order, depending upon the function-
ality involved. Each block of the flowcharts and/or block
diagrams, and combinations of blocks in the flowcharts
and/or block diagrams, can be implemented by computer
program instructions, and/or by special purpose hardware,
and/or combinations of hardware and computer program
instructions, which perform the specified functions.

[0371] In some embodiments, features of the present
invention are implemented in a computer including a pro-
cessor, a computer-readable storage medium, and a network
card/interface for communicating with other computers. In
some embodiments, features of the present invention are
implemented in a network computing environment compris-
ing a computing system including various types of computer
configurations, including personal computers, hand-held
devices, multi-processor systems, microprocessor-based or
programmable consumer electronics, network PCs, mini-
computers, mainframe computers, and the like intercon-
nected by a network. The network can be a Local Area
Network (LAN), switch fabric network (e.g. InfiniBand),
Wide Area Network (WAN), and/or the Internet. The net-
work can include copper transmission cables, optical trans-
mission fibers, wireless transmission, routers, firewalls,
switches, gateway computers and/or edge servers.

[0372] In some embodiments, features of the present
invention are implemented in a computing system that
includes a back-end component (e.g., as a data server), or
that includes a middleware component (e.g., an application
server), or that includes a front-end component (e.g., a client
computer having a graphical user interface or a Web browser
through which a user can interact with an implementation of
the subject matter described herein), or any combination of
such back-end, middleware, or front-end components inter-
connected by a network. The computing system can include
clients and servers having a client-server relationship to each
other. In some embodiments, features of the invention are
implemented in a computing system comprising a distrib-
uted computing environment in which one or more clusters
of computers are connected by a network. The distributed
computing environment can have all computers at a single
location or have clusters of computers at different remote
geographic locations connected by a network.

[0373] In some embodiments, features of the present
invention are implemented in the cloud as part of, or as a
service of, a cloud computing system based on shared,
elastic resources delivered to users in a self-service, metered
manner using Web technologies. Characteristics of the cloud
may include, for example: on-demand self-service; broad
network access; resource pooling; rapid elasticity; and mea-
sured service. Cloud deployment models include: Public,
Private, and Hybrid. Cloud service models include Software
as a Service (SaaS), Platform as a Service (PaaS), Database
as a Service (DBaaS), and Infrastructure as a Service (laaS).
The cloud generally refers to the combination of hardware,
software, network, and web technologies which delivers

US 2022/0067035 Al

shared elastic resources to users. The cloud, as used herein,
may include public cloud, private cloud, and/or hybrid cloud
embodiments, and may include cloud SaaS, cloud DBaaS,
cloud PaaS, and/or cloud laaS deployment models.

[0374] In some embodiments, features of the present
invention are implemented using, or with the assistance of
hardware, software, firmware, or combinations thereof. In
some embodiments, features of the present invention are
implemented using a processor configured or programmed
to execute one or more functions of the present invention.
The processor is in some embodiments a single or multi-chip
processor, a digital signal processor (DSP), a system on a
chip (SOC), an application specific integrated circuit
(ASIC), a field programmable gate array (FPGA) or other
programmable logic device, state machine, discrete gate or
transistor logic, discrete hardware components, or any com-
bination thereof designed to perform the functions described
herein. In some implementations, features of the present
invention are implemented by circuitry that is specific to a
given function. In other implementations, features are imple-
mented in a computer, computing system, processor, and/or
network, configured to perform particular functions using
instructions stored e.g., on a computer-readable storage
media.

[0375] In some embodiments, features of the present
invention are incorporated in software and/or firmware for
controlling the hardware of a processing and/or networking
system, and for enabling a processor and/or network to
interact with other systems utilizing the features of the
present invention. Such software or firmware may include,
but is not limited to, application code, device drivers,
operating systems, virtual machines, hypervisors, applica-
tion programming interfaces, programming languages, and
execution environments/containers. Appropriate software
coding can readily be prepared by skilled programmers
based on the teachings of the present disclosure.

[0376] In some embodiments, the present invention
includes a computer program product which is a machine-
readable or computer-readable storage medium (media) hav-
ing instructions comprising software and/or firmware stored
thereon/in, which instructions can be used to program or
otherwise configure a system such as a computer to perform
any of the processes or functions of the present invention.
The storage medium or computer readable medium can
include any type of media or device suitable for storing
instructions and/or data including, but not limited to, floppy
disks, hard drives, solid state drives, optical discs, DVD,
CD-ROMs, microdrives, and magneto-optical disks, ROMs,
RAMs, EPROMs, EEPROMs, DRAMs, VRAMs, flash
memory devices, magnetic or optical cards, molecular
memories, nhanosystems, or variations and combinations
thereof. In particular embodiments, the storage medium or
computer readable medium is a non-transitory machine-
readable storage medium or non-transitory computer-read-
able storage medium.

[0377] The foregoing description is not intended to be
exhaustive or to limit the invention to the precise forms
disclosed. Additionally, where embodiments of the present
invention have been described using a particular series of
transactions and steps, it should be apparent to those skilled
in the art that, unless stated, the embodiment does not
exclude performance of additional transactions and steps.
Further, while the various embodiments describe particular
combinations of features of the invention it should be

Mar. 3, 2022

understood that different combinations of the features will
be apparent to persons skilled in the relevant art as within the
scope of the invention. In particular, a feature (device-like or
method-like) recited in a given embodiment, variant, or
shown in a drawing may be combined with or replace
another feature in another embodiment, variant or drawing,
without departing from the scope of the present invention.
Moreover, it will be apparent to persons skilled in the
relevant art that various additions, subtractions, deletions,
variations, substitutions of elements with equivalents, and
other modifications and changes in form, detail, implemen-
tation and application can be made therein without departing
from the spirit and scope of the invention. It is intended that
the broader spirit and scope of the invention be defined by
the following claims and their equivalents.
What is claimed is:
1. A system for providing an interface for a blockchain
cloud service, comprising:
a computer comprising at least one processor;
a cloud-based platform comprising a container service;
a plurality of distributed ledgers, each of the distributed
ledgers running on the cloud-based platform as a sepa-
rate tenant of a plurality of tenants of the cloud-based
platform, wherein each of the plurality of distributed
ledgers are run on a set of containers provided by the
container service;
an identity service, the identity service providing authen-
tication for each of the plurality of distributed ledgers;
wherein each of the plurality of distributed ledgers respec-
tively comprises:
a peer container,
an ordering container, and
a chaincode container.
2. The system of claim 1,
wherein each of the plurality of distributed ledgers is
respectively associated with a different blockchain led-
ger.
3. The system of claim 2,
wherein each peer container respectively maintains the
blockchain ledger associated with the distributed ledger
of the associated peer container.
4. The system of claim 3,
wherein each chaincode container respectively enables
assets to be written to the blockchain ledger associated
with the distributed ledger of the associated chaincode
container.
5. The system of claim 4,
wherein each ordering container respectively order trans-
actions on the blockchain ledger associated with the
distributed ledger of the associated ordering container.
6. The system of claim 4,
wherein each chaincode container is started by an asso-
ciated peer container.
7. The system of claim 1, further comprising:
a front end load balancer associated with each of the
plurality of distributed ledgers; and
wherein an incoming call to a distributed ledger of the
plurality of distributed ledgers is passed through the
associated front end load balancer.
8. A method for providing an interface for a blockchain
cloud service, comprising:
providing a computer comprising at least one processor;
providing, at the computer, a cloud-based platform com-
prising a container service;

US 2022/0067035 Al

running, at each of the distributed ledgers, a plurality of
distributed ledgers, wherein of the plurality of distrib-
uted ledgers runs as a separate tenant of a plurality of
tenants of the cloud-based platform, wherein each of
the plurality of distributed ledgers are run on a set of
containers provided by the container service;

providing an identity service, the identity service provid-
ing authentication for each of the plurality of distrib-
uted ledgers;

wherein each of the plurality of distributed ledgers respec-

tively comprises:

a peer container,

an ordering container, and
a chaincode container.

9. The method of claim 8, further comprising:

associating, respectively, each of the plurality of distrib-

uted ledgers with a different blockchain ledger.

10. The method of claim 9,

wherein each peer container respectively maintains the

blockchain ledger associated with the distributed ledger
of the associated peer container.

11. The method of claim 10,

wherein each chaincode container respectively enables

assets to be written to the blockchain ledger associated
with the distributed ledger of the associated chaincode
container.

12. The method of claim 11,

wherein each ordering container respectively order trans-

actions on the blockchain ledger associated with the
distributed ledger of the associated ordering container.

13. The method of claim 11,

wherein each chaincode container is started by an asso-

ciated peer container.

14. The method of claim 8, further comprising:

providing a front end load balancer associated with each

of the plurality of distributed ledgers;

wherein an incoming call to a distributed ledger of the

plurality of distributed ledgers is passed through the
associated front end load balancer.

15. A non-transitory computer readable storage medium
having instructions thereon for providing an interface for a
blockchain cloud service, which when read and executed
cause a computer to perform steps comprising:

24

Mar. 3, 2022

providing a computer comprising at least one processor;
providing, at the computer, a cloud-based platform com-
prising a container service;
running, at each of the distributed ledgers, a plurality of
distributed ledgers, wherein of the plurality of distrib-
uted ledgers runs as a separate tenant of a plurality of
tenants of the cloud-based platform, wherein each of
the plurality of distributed ledgers are run on a set of
containers provided by the container service;
providing an identity service, the identity service provid-
ing authentication for each of the plurality of distrib-
uted ledgers;
wherein each of the plurality of distributed ledgers respec-
tively comprises:
a peer container,
an ordering container, and
a chaincode container.
16. The non-transitory computer readable storage medium
of claim 15, the steps further comprising:
associating, respectively, each of the plurality of distrib-
uted ledgers with a different blockchain ledger.
17. The non-transitory computer readable storage medium
of claim 16,
wherein each peer container respectively maintains the
blockchain ledger associated with the distributed ledger
of the associated peer container.
18. The non-transitory computer readable storage medium
of claim 17,
wherein each chaincode container respectively enables
assets to be written to the blockchain ledger associated
with the distributed ledger of the associated chaincode
container.
19. The non-transitory computer readable storage medium
of claim 18,
wherein each ordering container respectively order trans-
actions on the blockchain ledger associated with the
distributed ledger of the associated ordering container.
20. The non-transitory computer readable storage medium
of claim 18,
wherein each chaincode container is started by an asso-
ciated peer container.

#* #* #* #* #*

