发明名称
一种对 WIFI 热点标定位置的方法及系统

摘要
本发明公开的对 WIFI 热点标定位置的方法及系统，所述方法包括：获取一 GPS 定位位置，获得周围的 WIFI 列表；以所述 GPS 定位位置为参考点，根据信号强度列表中各 WIFI 热点进行位置标定；获取另一 GPS 定位位置，获得周围 WIFI 列表；读取该列表中已标定位置的 WIFI 热点；已标定位置的 WIFI 热点，所述另一 GPS 定位位置为参考点，根据信号强度对所述列表中未标定位置的 WIFI 热点进行位置标定。通过本发明方案对 WIFI 热点进行位置标定和更新，覆盖高，更新及时，解决了云端服务器中 WIFI 标定库更新不及时问题。
1. 一种对 WIFI 热点标定位的方法，其特征在于，包括：
 获取一 GPS 定位位置，获得所述 GPS 定位位置周围的 WIFI 列表；
 以所述 GPS 定位位置为参考点，根据信号强度对所述 WIFI 列表中各 WIFI 热点进行位置标定；
 获取另一 GPS 定位位置，获得所述另一 GPS 定位位置周围的 WIFI 列表；
 找出所述另一 GPS 定位位置周围的 WIFI 列表中未标定位置的 WIFI 热点，所述另一 GPS 定位位置为参考点，根据信号强度对所述另一 GPS 定位位置周围的 WIFI 列表中未标定位置的 WIFI 热点进行位置标定。

2. 如权利要求 1 所述对 WIFI 热点标定位的方法，其特征在于，所述以所述 GPS 定位位置为参考点，根据信号强度对所述 WIFI 列表中各 WIFI 热点进行位置标定，包括：
 根据信号强度得出所述 WIFI 列表中各 WIFI 热点与所述参考点的距离；
 以所述 GPS 定位位置为参考点，根据该参考点和所述距离对所述各 WIFI 热点进行位置标定。

3. 如权利要求 1 所述对 WIFI 热点标定位的方法，其特征在于，所述以所述 GPS 定位位置的 WIFI 热点，所述另一 GPS 定位位置为参考点，根据信号强度对所述另一 GPS 定位位置的 WIFI 列表中未标定位置的 WIFI 热点进行位置标定，包括：
 根据信号强度分别得出所述另一 GPS 定位位置周围的 WIFI 列表中未标定位置的 WIFI 热点与所述已标定位置的 WIFI 热点的第一距离，与所述另一 GPS 定位位置的第二距离；
 以所述已标定位置的 WIFI 热点为第一参考点，以所述另一 GPS 定位位置为第二参考点，根据第一参考点，第一距离、第二参考点、第二距离对所述各 WIFI 热点进行位置标定。

4. 如权利要求 1 所述对 WIFI 热点标定位的方法，其特征在于，所述以所述 GPS 定位位置为参考点，根据信号强度对所述 WIFI 列表中各 WIFI 热点进行位置标定，之后还包括：
 找出存在于两个以上不同 GPS 定位位置周围的 WIFI 列表中的共有 WIFI 热点，以所述两个以上不同 GPS 定位位置为参考点，根据所述共有 WIFI 热点在各 GPS 定位位置的 WIFI 列表中的信号强度，对所述共有 WIFI 热点的位置标定进行修正。

5. 如权利要求 4 所述对 WIFI 热点标定位的方法，其特征在于，所述根据所述共有 WIFI 热点在各 GPS 定位位置的 WIFI 列表中的信号强度，对所述共有 WIFI 热点的位置标定进行修正，之后还包括：
 找到与所述共有 WIFI 热点存在关联的 WIFI 热点；
 根据所述共有 WIFI 热点修正后的位置标定，对与所述共有 WIFI 热点存在关联的 WIFI 热点的位置标定进行修正；
 所述关联包括：以所述共有 WIFI 热点为位置标定的参考点，或者被作为所述共有 WIFI 热点标定位置的参考点。

6. 如权利要求 1 所述对 WIFI 热点标定位的方法，其特征在于，所述以所述已标定位置的 WIFI 热点，所述另一 GPS 定位位置为参考点，根据信号强度对所述另一 GPS 定位位置的 WIFI 列表中未标定位置的 WIFI 热点进行位置标定，之后还包括：
 确定所述已标定位置的 WIFI 热点自身的标定方法以其他 WIFI 热点为参考点。

7. 如权利要求 1 所述对 WIFI 热点标定位的方法，其特征在于，所述根据信号强度对所述 WIFI 列表中各 WIFI 热点进行位置标定，之后还包括：
建立GPS定位位置与所述GPS定位位置周围已标定位置的WIFI热点的映射关系，存储所述映射关系到云端服务器。

8. 一种对WIFI热点标定位置的系统，其特征在于，包括移动终端、与移动终端网络通信的云端服务器，所述移动终端包括WIFI获取单元，所述云端服务器包括WIFI标定单元，

所述WIFI获取单元，用于获取一GPS定位位置，获得所述GPS定位位置周围的WIFI列表；

所述WIFI标定单元，用于以所述GPS定位位置为参考点，根据信号强弱对所述WIFI列表中各WIFI热点进行位置标定；

所述WIFI获取单元，还用于获取另一GPS定位位置，获得所述另一GPS定位位置周围的WIFI列表；

所述WIFI标定单元，还用于找出所述另一GPS定位位置周围的WIFI列表中已标定位置的WIFI热点；以所述已标定位置的WIFI热点，所述另一GPS定位位置为参考点，根据信号强弱对所述另一GPS定位位置周围的WIFI列表中未标定位置的WIFI热点进行位置标定。

9. 如权利要求8所述对WIFI热点标定位置的系统，其特征在于，所述以所述GPS定位位置为参考点，根据信号强弱对所述WIFI列表中各WIFI热点进行位置标定，包括：

根据信号强弱得出所述WIFI列表中各WIFI热点与所述参考点的距离；

以所述GPS定位位置为参考点，根据该参考点和所述距离对所述各WIFI热点进行位置标定。

10. 如权利要求8所述对WIFI热点标定位置的系统，其特征在于，所述以所述已标定位置的WIFI热点，所述另一GPS定位位置为参考点，根据信号强弱对所述另一GPS定位位置周围的WIFI列表中未标定位置的WIFI热点进行位置标定，包括：

根据信号强弱分别得出所述另一GPS定位位置周围的WIFI列表中未标定位置的WIFI热点与所述已标定位置的WIFI热点的第一距离，与所述另一GPS定位位置的第二距离；

以所述已标定位置的WIFI热点为第一参考点，以所述另一GPS定位位置为第二参考点，根据第一参考点、第一距离、第二参考点、第二距离对所述WIFI热点进行位置标定。

11. 如权利要求8所述对WIFI热点标定位置的系统，其特征在于，所述云端服务器还包括修正单元。

所述修正单元，用于找出存在于两个以上不同GPS定位位置周围的WIFI列表中的共WIFI热点，以所述两个以上不同GPS定位位置为参考点，根据所述共有WIFI热点在各GPS定位位置的WIFI列表中的信号强弱，对所述共有WIFI热点的位置标定进行修正。

12. 如权利要求11所述对WIFI热点标定位置的系统，其特征在于，所述修正单元，还用于找到与所述共有WIFI热点存在关联的WIFI热点；根据所述共有WIFI热点修正后的位置标定，对与所述共有WIFI热点存在关联的WIFI热点的位置标定进行对应修正。

其中，所述关联包括：以所述共有WIFI热点为位置标定的参考点，或者被作为所述共有WIFI热点标定位置的参考点。

13. 如权利要求8所述对WIFI热点标定位置的系统，其特征在于，所述云端服务器还包括判断单元。

所述判断单元，用于确定所述已标定位置的WIFI热点自身的标定位置标定不是以其他
WIFI 热点为参考点。

14. 如权利要求8所述对WIFI热点标定位置的系统, 其特征在于, 所述云端服务器还包括存储单元，

所述存储单元, 用于建立 GPS 定位位置与所述 GPS 定位位置周围已标定位置的 WIFI 热点的映射关系, 存储所述映射关系。
一种对 WIFI 热点标定位置的方法及系统

技术领域
[0001] 本发明涉及移动终端的定位技术领域，尤其涉及一种对 WIFI 热点标定位置的方法及系统。

背景技术
[0002] 当前市场存在很多诸如穿戴设备的移动终端，具有定位、通信等功能，定位又是其中的重要功能。这类设备在室外环境下大多采用 GPS 方式定位，然而在如办公大楼等高层建筑的室内环境下 GPS 定位方式则会失效。因此，用户通过移动终端进行 GPS 定位时，由于经常遇到室内/室外环境的切换，导致 GPS 定位失败，此时需用户手动切换到其他定位方式；此外，现有的移动终端采用 GPS 定位时，还有功耗较高、定位时间慢等问题。
[0003] 为弥补室内环境下 GPS 定位失效的缺陷，提出了采用基站或者 WIFI 方式进行定位。然而现有技术中，基站定位通常存在较大的位置误差，而 WIFI 定位的实现和定位精度取决于搜索到的 WIFI 热点，以及搜索到的 WIFI 热点是否在云端服务器有预先标定位置，因此现有技术中 WIFI 定位仅限于一些大型商场或繁华区域有效，而在偏僻的没有标定的地区 WIFI 定位则无法实现。另一方面，由于 WIFI 热点经常发生变化，若服务器端的 WIFI 标定库未及时得到更新，则会导致定位误差较大或者无法进行定位。

发明内容
[0004] 本发明的目的在于提出一种对 WIFI 热点标定位置的方法及系统，逐级渐进的对 WIFI 热点进行位置标定和更新，提高云端服务器中 WIFI 标定库的覆盖率，解决了 WIFI 标定库更新不及时的问题，以保证 WIFI 定位的实现和定位准确度。
[0005] 为达此目的，本发明采用以下技术方案：
[0006] 本发明一方面提供一种对 WIFI 热点标定位置的方法，包括：
[0007] 获取一 GPS 定位位置，获得所述 GPS 定位位置周围的 WIFI 列表；
[0008] 以所述 GPS 定位位置为参考点，根据信号强弱对所述 WIFI 列表中各 WIFI 热点进行位置标定；
[0009] 获取另一 GPS 定位位置，获得所述另一 GPS 定位位置周围的 WIFI 列表；
[0010] 找出所述另一 GPS 定位位置周围的 WIFI 列表中已标定位置的 WIFI 热点，以所述已标定位置的 WIFI 热点，所述另一 GPS 定位位置为参考点，根据信号强弱对所述另一 GPS 定位位置周围的 WIFI 列表中未标定位置的 WIFI 热点进行位置标定。
[0011] 其中，所述以所述 GPS 定位位置为参考点，根据信号强弱对所述 WIFI 列表中各 WIFI 热点进行位置标定，包括：
[0012] 根据信号强弱得出所述 WIFI 列表中各 WIFI 热点与所述参考点的距离；
[0013] 以所述 GPS 定位位置为参考点，根据该参考点和所述距离对所述各 WIFI 热点进行位置标定。
[0014] 其中，所述以所述已标定位置的 WIFI 热点、所述另一 GPS 定位位置为参考点，根据
信号强弱对所述另一 GPS 定位位置周围的 WIFI 列表中未标定位置的 WIFI 热点进行位置标定，包括：
[0015] 根据信号强弱分别得出所述另一 GPS 定位位置周围的 WIFI 列表中未标定位置的 WIFI 热点与所述已标定位置的 WIFI 热点的第一距离，与所述另一 GPS 定位位置的第二距离；
[0016] 以所述已标定位置的 WIFI 热点为第一参考点，以所述另一 GPS 定位位置为第二参考点，根据第一参考点，第一距离，第二参考点，第二距离对所述各 WIFI 热点进行位置标定。
[0017] 其中，所述以所述 GPS 定位位置为参考点，根据信号强弱对所述 WIFI 列表中各 WIFI 热点进行位置标定，之后还包括：
[0018] 找出存在于两个以上不同 GPS 定位位置周围的 WIFI 列表中的共有 WIFI 热点，以所述两个以上不同 GPS 定位位置为参考点，根据所述共有 WIFI 热点在各 GPS 定位位置的 WIFI 列表中的信号强弱，对所述共有 WIFI 热点的位置标定进行修正。
[0019] 其中，所述根据所述共有 WIFI 热点在各 GPS 定位位置的 WIFI 列表中的信号强弱，对所述共有 WIFI 热点的位置标定进行修正，之后还包括：
[0020] 找到与所述共有 WIFI 热点存在关联的 WIFI 热点；
[0021] 根据所述共有 WIFI 热点修正后的位置标定，对与所述共有 WIFI 热点存在关联的 WIFI 热点的位置标定进行对应修正；
[0022] 所述关联包括：以所述共有 WIFI 热点为位置标定的参考点，或者被作为所述共有 WIFI 热点标定位置的参考点。
[0023] 其中，所述以所述已标定位置的 WIFI 热点，所述另一 GPS 定位位置为参考点，根据信号强弱对所述另一 GPS 定位位置周围的 WIFI 列表中未标定位置的 WIFI 热点进行位置标定，之前还包括：
[0024] 确定所述已标定位置的 WIFI 热点自身的位置标定不是以其他 WIFI 热点为参考点。
[0025] 其中，所述根据信号强弱对所述 WIFI 列表中各 WIFI 热点进行位置标定，之后还包括：
[0026] 建立 GPS 定位位置与所述 GPS 定位位置周围已标定位置的 WIFI 热点的映射关系，存储所述映射关系到云端服务器。
[0027] 本发明另一方面提供一种对 WIFI 热点标定位置的系统，包括移动终端，与移动终端网络通信的云端服务器，所述移动终端包括 WIFI 获取单元，所述云端服务器包括 WIFI 标定单元，
[0028] 所述 WIFI 获取单元，用于获取一 GPS 定位位置，获得所述 GPS 定位位置周围的 WIFI 列表；
[0029] 所述 WIFI 标定单元，用于以所述 GPS 定位位置为参考点，根据信号强弱对所述 WIFI 列表中各 WIFI 热点进行位置标定；
[0030] 所述 WIFI 获取单元，还用于获取另一 GPS 定位位置，获得所述另一 GPS 定位位置周围的 WIFI 列表；
[0031] 所述 WIFI 标定单元，还用于找出所述另一 GPS 定位位置周围的 WIFI 列表中已标
定位置的 WIFI 热点；以所述已标定位置的 WIFI 热点，所述另一 GPS 定位位置为参考点，根
据信号强度对所述另一 GPS 定位位置的 WIFI 列表中未标定位置的 WIFI 热点进行位置标
定。

【0032】其中，所述以所述 GPS 定位位置为参考点，根据信号强度对所述 WIFI 列表中各
WIFI 热点进行位置标定，包括：
【0033】根据信号强度得出所述 WIFI 列表中各 WIFI 热点与所述参考点的距离；
【0034】以所述 GPS 定位位置为参考点，根据该参考点和所述距离对所述各 WIFI 热点进行
位置标定。
【0035】其中，所述以所述已标定位置的 WIFI 热点，所述另一 GPS 定位位置为参考点，根据
信号强度对所述另一 GPS 定位位置的 WIFI 列表中未标定位置的 WIFI 热点进行位置标
定，包括：
【0036】根据信号强度分别得出所述另一 GPS 定位位置的 WIFI 列表中未标定位置的
WIFI 热点与所述已标定位置的 WIFI 热点的第一距离，与所述另一 GPS 定位位置的第二距
离；
【0037】以所述已标定位置的 WIFI 热点为第一参考点，以所述另一 GPS 定位位置为第二
参考点，根据第一参考点，第一距离、第二参考点，第二距离对所述各 WIFI 热点进行位置标
定。
【0038】其中，所述云端服务器还包括修正单元，
【0039】所述修正单元，用于找出存在于两个以上不同 GPS 定位位置的 WIFI 列表中的
共有 WIFI 热点，以所述两个以上不同 GPS 定位位置为参考点，根据所述共有 WIFI 热点在各
GPS 定位位置的 WIFI 列表中的信号强度，对所述共有 WIFI 热点的位置标定进行修正。
【0040】其中，所述修正单元，还用于找到与所述共有 WIFI 热点存在关联的 WIFI 热点；根
据所述共有 WIFI 热点修正后的位置标定，对与所述共有 WIFI 热点存在关联的 WIFI 热点的
位置标定进行对应修正；
【0041】其中，所述关联包括：以所述共有 WIFI 热点为位置标定的参考点，或者被作为所
述共有 WIFI 热点标定位置的参考点。
【0042】其中，所述云端服务器还包括判断单元，
【0043】所述判断单元，用于确定所述已标定位置的 WIFI 热点自身的标定是以外
他 WIFI 热点为参考点。
【0044】其中，所述云端服务器还包括存储单元，
【0045】所述存储单元，用于建立 GPS 定位位置与所述 GPS 定位位置周围已标定位置的
WIFI 热点的映射关系，存储所述映射关系。
【0046】实施本发明实施例，具有如下有益效果：
【0047】本发明实施例通过获取一 GPS 定位位置，获得所述 GPS 定位位置周围的 WIFI 列
表，以所述 GPS 定位位置为参考点，根据信号强度对所述 WIFI 列表中各 WIFI 热点进行位置标
定；获取另一 GPS 定位位置，获得所述另一 GPS 定位位置周围的 WIFI 列表；找出所述另一
GPS 定位位置的 WIFI 列表中已标定位置的 WIFI 热点；以所述已标定位置的 WIFI 热点，
所述另一 GPS 定位位置为参考点，根据信号强度对所述另一 GPS 定位位置的 WIFI 列表
中未标定位置的 WIFI 热点进行位置标定。本发明的方案在获得 GPS 定位的位置信息情况
下，获取周边 WIFI 热点，并逐级渐进的对各 WIFI 热点进行位置标定和标定更新，提高了云端服务
器中 WIFI 标定库的覆盖率，解决了 WIFI 标定库更新不及时问题，有利于在云端服务
器组建一个实时更新的 WIFI 标定库，当云端服务器的 WIFI 标定库达到一定的规模，则可实
现在已标定位置的 WIFI 热点的覆盖区域内，各种移动终端不再依赖 GPS 定位，而通过 WIFI
定位实现高精度的定位，同时也有利于节省移动终端的功耗和减少定位所需的时间。

附图说明
[0048] 为了更清楚地说明本发明实施例或现有技术中的技术方案，下面将对实施例或现
有技术描述中所需要使用的附图作简单地介绍，显而易见地，下面描述的附图仅仅是本发
明的一些实施例，对于本领域普通技术人员来讲，在不付出创造性劳动的前提下，还可以根
据这些附图获得其他的附图。
[0049] 图 1 是本发明第一实施例的对 WIFI 热点标定位置的方法的流程示意图。
[0050] 图 2 是本发明第二实施例的对 WIFI 热点标定位置的方法流程示意图。
[0051] 图 3 是本发明第三实施例的对 WIFI 热点标定位置的系统的结构示意图。
[0052] 图 4 是本发明第四实施例的对 WIFI 热点标定位置的系统的结构示意图。

具体实施方式
[0053] 下面结合本发明的附图对本发明实施例中的技术方案进行清楚，完整的描述，显
然，所描述的实施例仅仅是本发明的一部分实施例，而不是全部的实施例。基于本发明中的
实施例，本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例，
都属于本发明保护的范围。
[0054] 第一实施例
[0055] 第一实施例的实现可基于若干用户持有的移动终端（如手机、pad、智能穿戴设
备）以及与这些移动终端对应的云端服务器，其中用户持有的移动终端具有 GPS 定位功能
和 WIFI 连接功能，并可通过无线或有线方式与云端服务器进行通信，即云端服务器、用
户持有的移动终端均设置有网络连接模块和信息收发模块。图 1 是本发明第一实施例的对
WIFI 热点标定位置的方法流程图，下面结合图 1 对本发明第一实施例进行说明，包括如下
步骤 S101-S104。
[0056] 步骤 S101，获取一 GPS 定位位置，获得所述 GPS 定位位置周围的 WIFI 列表。
[0057] 在第一实施例中，当用户持有的移动终端可获取到 GPS 定位位置的情况下，所述
移动终端扫描获取到当前位置周围的 WIFI 列表，通常移动终端可扫描获得 100 米范围内的
WIFI 热点，由于各 WIFI 热点距离所述移动终端的距离远近可能不同，因此扫描得到的 WIFI
列表中各 WIFI 热点的信号强弱可能不同，有的 WIFI 热点的信号较强，有的 WIFI 热点的信
号较弱，移动终端可通过网络将获取到 GPS 定位位置以及周围的 WIFI 热点发送给云端服务
器。
[0058] 步骤 S102，以所述 GPS 定位位置为参考点，根据信号强弱对所述 WIFI 列表中各
WIFI 热点进行位置标定。
[0059] 在第一实施例中，由于信号较强的 WIFI 热点离 GPS 定位位置通常较近，信号较弱
的 WIFI 热点离 GPS 定位位置通常较远，因此可将所述 GPS 定位位置作为一参考点，根据信
号强弱计算出 WIFI 列表中各 WIFI 热点与所述参考点的距离，由此实现对各 WIFI 热点的位置标定。

[0060] 本实施例中，以所述 GPS 定位位置为参考点，通常 WIFI 热点越强得到的位置标定的误差越小，WIFI 热点越弱得到的定位标定的误差越大，作为一优选实施方式，可在对各 WIFI 热点进行位置标定时，记录本次位置标定的误差情况，便于移动终端通过该 WIFI 热点定位时提供一定精度供用户参考。

[0061] 在第一实施例中，不同用户移动终端各自获取其所在位置的 GPS 定位位置，同时各自扫描所在位置周围的 WIFI 列表并进行列表中 WIFI 热点的位置标定。由于移动终端的普及率非常高，用户分布在城市的各个地方，因此可实现 WIFI 热点的全面标定，保证已经标定位置的 WIFI 热点的覆盖率。

[0062] 步骤 S103，获取另一 GPS 定位位置，获得所述另一 GPS 定位位置周围的 WIFI 列表。

[0063] 在第一实施例中，用户携带移动终端在不同地点可得到不同的 GPS 定位位置，扫描获得在不同位置的 WIFI 列表。若当前获得的 GPS 定位位置与历史获得的某 GPS 定位位置距离较远（小于 200 米），则当前 GPS 定位位置周围的 WIFI 列表与历史获得的某 GPS 定位位置的 WIFI 列表中可能包含有相同的 WIFI 热点，可称作共有 WIFI 热点。另外，即使前后在同一位置获得相同的 GPS 定位位置，由于周围 WIFI 热点可能已经发生了更新，则相同的 GPS 定位位置前后两次得到的 WIFI 列表中可能存在不同的 WIFI 热点，正因为此，需要对已云端 WIFI 标定库进行实时更新。

[0064] 步骤 S104，找出所述另一 GPS 定位位置附近的 WIFI 列表中已标定位置的 WIFI 热点，以便已标定位置的 WIFI 热点、所述另外 GPS 定位位置为参考点，根据信号强弱对所述另一 GPS 定位位置附近的 WIFI 列表中未标定位置的 WIFI 热点进行位置标定。

[0065] 在第一实施例中，若新获取的 WIFI 列表中存在有已标定位置的 WIFI 热点，则该类 WIFI 热点的位置也可作为参考点，结合本实施例的 GPS 定位位置，继续对周围未标定的 WIFI 热点进行位置标定。具体实施方式可为：根据信号强弱分别找出所述另一 GPS 定位位置位置的 WIFI 列表中未标定位置的 WIFI 热点与已标定位置的 WIFI 热点的距离，与所述另一 GPS 定位位置的距离，以所述已标定位置的 WIFI 热点为参考点，以所述另一 GPS 定位位置为第二参考点，进而可根据第一参考点、第一距离、第二参考点、第二距离对所述 WIFI 热点进行位置标定。

[0066] 需要说明的是，由于对 WIFI 热点的位置标定本身可能存在一定误差，若本身是以其他 WIFI 热点为参考点得到位置标定的，其再作为参考点对其他 WIFI 热点进行位置标定时，会出现误差的递进变大。为防止这种误差逐级增大，将已标定位置的 WIFI 热点作为参考点对其他 WIFI 热点进行位置标定的关联层级深度需加以限定。优选的，可限定关联层级深度为一至二级，即只有已标定位置的 WIFI 热点本身不是以其他 WIFI 热点为参考点进行位置标定的，其才能作为其他未标定 WIFI 热点的位置标定的参考点，以保证位置标定的准确性。

[0067] 通过本发明第一实施例，通过逐级渐进的方式对 WIFI 热点进行位置标定，有利于实现对 WIFI 热点标定位置的全面覆盖，保证云端服务器中已标定位置的 WIFI 热点的覆盖率。当云端服务器中已标定位置的 WIFI 热点达到一定规模，这些 WIFI 热点的覆盖区域内，移动终端可不再依赖 GPS 实现定位，采用 WIFI 定位方式实现高精度的定位，缩短定位
所需的时间，有利于节省移动终端的功耗。

[0068] 第二实施例

[0069] 与第一实施例的主要区别在于，第二实施例中，若两次及以上 GPS 定位的位置相隔较近，扫描到的 WIFI 列表中则会存在共有 WIFI 热点。第二实施例中，可根据多个 GPS 定位位置，以及每个 GPS 定位位置获得的共有 WIFI 热点的位置标定进行验证和修正，提高这些共有 WIFI 热点标定位置的准确性。图 2 为第二实施例的流程图，下面结合图 2 对第二实施例进行说明。

[0070] 步骤 S201，获取一 GPS 定位位置，获得所述 GPS 定位位置周围的 WIFI 列表。

[0071] 步骤 S202，以所述 GPS 定位位置为参考点，根据信号强弱对所述 WIFI 列表中各自 WIFI 热点进行位置标定。

[0072] 步骤 S203，获取另一 GPS 定位位置，获得所述另一 GPS 定位位置周围的 WIFI 列表。

[0073] 步骤 S204，找出所述另一 GPS 定位位置周围的 WIFI 列表中已标定位置的 WIFI 热点，以所述已标定位置的 WIFI 热点，所述另一 GPS 定位位置为参考点，根据信号强弱对所述另一 GPS 定位位置周围的 WIFI 列表中未标定位置的 WIFI 热点进行位置标定。

[0074] 在本发明实施例中，由于不同用户的移动终端均可获取其所在位置的 GPS 定位位置，同时各自扫描得到所在位置周围的 WIFI 列表。因为在某一区域可能存在若干用户，通过若干用户各自获取的 GPS 定位位置和 WIFI 列表，对涉及的 WIFI 热点的位置标定可相互验证和修正，因此得到的对 WIFI 热点标定位置的准确性很高。

[0075] 第二实施例中，步骤 S201-204 的具体实施方式可参考第一实施例。

[0076] 步骤 S205，找出存在于两个以上不同 GPS 定位位置周围的 WIFI 列表中的共有 WIFI 热点。

[0077] 第二实施例中，需在云端服务器建立 GPS 定位位置与所述 GPS 定位位置周围已标定位置的 WIFI 热点的映射关系，存储所述映射关系，以便于查询。

[0078] 步骤 S206，以所述两个以上不同 GPS 定位位置为参考点，根据所述共有 WIFI 热点在各 GPS 定位位置的 WIFI 列表中的信号强弱，对所述共有 WIFI 热点的位置标定进行修正。

[0079] 在第二实施例中，对共有 WIFI 热点的位置标定的准确度与所参考的 GPS 定位位置的数量和相对位置有关。比如在一条线上的 3 个 GPS 定位位置，3 各位置的 WIFI 列表中存在一个共有 WIFI 热点，可通过这 3 个 GPS 定位位置对该共有热点进行位置标定，如果 3 各位置的 WIFI 列表中存在一个共有 WIFI 热点，且这 3 个 GPS 定位位置围绕该共有 WIFI 热点呈三角型的位置关系，通过这 3 个 GPS 定位位置对其共有 WIFI 热点的位置定位，通常前者的位置标定误差大于后者的定位标定误差。

[0080] 需要说明的是，上述步骤 S205-206 与步骤 S203-204 的执行可为同步执行，或者先后进行，本发明对此不作限定。

[0081] 进一步的，当某一 WIFI 热点的位置标定进行修正后，可适应性的修正与其关联的其他 WIFI 热点的位置标定，以提高云端服务器的 WIFI 标定库的整体准确度。即在某一 WIFI 热点的位置标定进行修正后，需找到与该 WIFI 热点存在关联的其他 WIFI 热点，根据该 WIFI 热点修正后的位置标定，对与其关联的 WIFI 热点的位置标定进行对应修正。这里的关联包括：以该 WIFI 热点为位置标定的参考点，或者被作为该对 WIFI 热点标定位置的参考点。
通过上述第二实施例，以两个以上不同GPS定位位置为参考点对同一个WIFI热点的位置标定进行验证和修正，提高了WIFI热点的位置标定的准确度。

以下为本发明实施例提供的对WIFI热点标定位置的系统的实施例。所述系统的实施例与上述的方法实施例属于同一构思，系统的实施例中未详尽描述的细节内容，可以参考上述方法实施例。

第三实施例

图3示出了本发明第三实施例的对WIFI热点标定位置的系统的结构示意图，第三实施例的一种对WIFI热点标定位置的系统，与上述第一实施例属于同一构思。下面结合图3对第三实施例进行详细说明。

如图3，第三实施例的对WIFI热点标定位置的系统包括移动终端10，与移动终端10网络通信的云端服务器20，所述移动终端10包括WIFI获取单元101，所述云端服务器20包括WIFI标定单元201。其中，所述WIFI获取单元101，用于获取一GPS定位位置，获得所述GPS定位位置周围的WIFI列表。因此，本实施例中所述移动终端10还包括GPS功能模块和WIFI模块。

所述WIFI标定单元201，用于以所述GPS定位位置为参考点，根据信号强度对所述WIFI列表中各WIFI热点进行位置标定。第三实施例中，具体为根据信号强度得出所述WIFI列表中各WIFI热点与所述参考点的距离，以所述GPS定位位置为参考点，根据该参考点和所述距离对所述各WIFI热点进行位置标定。

所述WIFI获取单元101，还用于获取另一GPS定位位置，获得所述另一GPS定位位置周围的WIFI列表。

所述WIFI标定单元201，还用于找出所述另一GPS定位位置周围的WIFI列表中未标定位置的WIFI热点；以所述已标定位置的WIFI热点，所述另一GPS定位位置为参考点，根据信号强度对所述另一GPS定位位置周围的WIFI列表中未标定位置的WIFI热点进行位置标定。在第三实施例中，具体可为根据信号强度分别得出所述另一GPS定位位置周围的WIFI列表中未标定位置的WIFI热点与所述已标定位置的WIFI热点的第一距离，与所述另一GPS定位位置的第二距离，以所述已标定位置的WIFI热点为第一参考点，以所述另一GPS定位位置为第二参考点，根据第一参考点、第一距离、第二参考点、第二距离对所述各WIFI热点进行位置标定。

由于对WIFI热点的位置标定本身可能存在一定误差，若本身是以其他WIFI热点为参考点得到位置标定的，其再作为参考点对其他WIFI热点进行位置标定时，会发现误差的逐级变大。为防止这种误差逐级增大，将已标定位置的WIFI热点作为参考点对其他WIFI热点进行位置标定的关联层级深度需加以限定。优选的，可限定关联层级深度为一级关联，即只有已标定位置的WIFI热点本身不是以其他WIFI热点为参考点进行位置标定的，其才能作为其他未标定WIFI热点的位置标定的参考点，以保证位置标定的准确度。

因此，优选的，第三实施例中，云端服务器20还包括判断单元202，用于确定所述已标定位置的WIFI热点自身的标定位置不是以其他WIFI热点为参考点。

通过本发明第三实施例，以逐级递进的方式对WIFI热点进行位置标定，有利于实现对WIFI热点标定位置的全面覆盖，保证云端服务器中已标定位置的WIFI热点的覆盖率。当云端服务器中已标定位置的WIFI热点达到一定规模，则在这些WIFI热点的覆盖区域内，
移动终端可不再依赖 GPS 实现定位，采用 WIFI 定位方式实现高精度的定位，缩短定位所需的时间，有利于节省移动终端的功耗。

[0095] 第四实施例

第四实施例的对 WIFI 热点标定位置的系统与上述第二实施例属于同一构思。如图 4，第四实施例的对 WIFI 热点标定位置的系统包括移动终端 10，与移动终端 10 网络通信的云端服务器 20。所述移动终端 10 包括 WIFI 获取单元 101，所述云端服务器 20 包括 WIFI 标定单元 201 和判断单元 202。具体可参考上述第三实施例所述。此外，所述云端服务器还包括修正单元 203，用于做出存在于两个以上不同 GPS 定位位置周围的 WIFI 列表中的共有 WIFI 热点，以所述两个以上不同 GPS 定位位置为参考点，根据所述共有 WIFI 热点在各 GPS 定位位置的 WIFI 列表中的信号强弱，对所述共有 WIFI 热点的位置标定进行修正。

[0096] 本实施例中，对共有 WIFI 热点的位置标定的准确度与所参考的 GPS 定位位置的数量和相对位置有关。比如在一条线上的 3 个 GPS 定位位置，3 各位置的 WIFI 列表中存在一个共有 WIFI 热点，可通过这 3 个 GPS 定位位置对该共有热点进行位置标定，如果 3 各位置的 WIFI 列表中存在一个共有 WIFI 热点，且这 3 个 GPS 定位位置围绕着该共有 WIFI 热点呈三角型的位置关系，通过这 3 个 GPS 定位位置对其共有 WIFI 热点的位置标定。通常前者的标定误差大于后者的标定误差。

[0097] 进一步的，第四实施例中所述修正单元 203，还用于找到与所述共有 WIFI 热点存在关联的 WIFI 热点；根据所述共有 WIFI 热点修正后的位置标定，对与所述共有 WIFI 热点存在关联的 WIFI 热点的位置标定进行对应修正。本实施例中的包括；以所述共有 WIFI 热点为位置标定的参考点，或者被作为所述共有对 WIFI 热点标定位置的参考点。本实施例中，优选的，所述云端服务器 20 还包括存储单元，用于建立 GPS 定位位置与所述 GPS 定位位置周围已标定位置的 WIFI 热点的映射关系，存储所述映射关系，以便于查询。

[0098] 通过第四实施例的系统，不同用户的移动终端获取其所在位置的 GPS 定位位置，同时各自扫描得到所在位置周围的 WIFI 列表。因为某一区域可能存在若干用户，通过若干用户各自获取的 GPS 定位位置和 WIFI 列表，对涉及的 WIFI 热点的位置标定可相互验证和修正，因此得到的对 WIFI 热点标定位置的准确度很高，同时，当某一 WIFI 热点的位置标定进行修正后，可适应性的修正与其关联的其他 WIFI 热点的位置标定，以提高云端服务器的 WIFI 标定库的整体准确度。

[0099] 以上所揭露的仅为本发明较佳实施例而已，当然不能以此来限定本发明之权利要求范围，因此，凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等，仍属本发明所涵盖的范围。
S101
获取一GPS定位位置，获得所述GPS定位位置周围的WIFI列表

S102
以所述GPS定位位置为参考点，根据信号强弱对列表中各WIFI热点进行位置标定

S103
获取另一GPS定位位置，获得所述另一GPS定位位置周围的WIFI列表

S104
找出列表中已标定位置的WIFI热点，以已标定位置的WIFI热点、所述另一GPS定位位置为参考点，对列表中未标定位置的WIFI热点进行位置标定

图1
获取一GPS定位位置，获得周围的WIFI列表

以所述GPS定位位置为参考点，根据信号强弱对列表中各WIFI热点进行位置标定

获取另一GPS定位位置，获得周围的WIFI列表

找出该列表中已标定位置的WIFI热点；以已标定位置的WIFI热点、所述另一GPS定位位置为参考点，对列表中未标定位置的WIFI热点进行位置标定

找出存在于两个以上不同GPS定位位置周边的WIFI列表中的共有WIFI热点

以所述两个以上不同GPS定位位置为参考点，根据共有WIFI热点在各GPS定位位置的信号强弱，对共有WIFI热点的位置标定进行修正

图2

移动终端

WIFI获取单元

10

101

云端服务器

WIFI标定单元

判断单元

20

201

202

图3
图 4