A 0 Y OO T S

0 03/032124 A2

=

(19) World Intellectual Property Organization

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

International Bureau

(43) International Publication Date

(10) International Publication Number

17 April 2003 (17.04.2003) PCT WO 03/032124 A2
(51) International Patent Classification’: GO6F (81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
(21) International Application Number: PCT/US02/32324 CZ, DE, DK, DM, DZ, EC, EE, ES, F1, GB, GD, GE, GH,
GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, L.C,
. . LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
(22) International Filing Date: 9 October 2002 (09.10.2002) MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,
SI, SK, SL, T], TM, TN, TR, TT, TZ, UA, UG, UZ, VN,
(25) Filing Language: English YU, ZA, ZM, ZW.
(26) Publication Language: English (84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, 7ZW),
(30) Priority Data: Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
60/328,074 9 October 2001 (09.10.2001) US European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EL,
ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK,
. TR), OAPI patent (BF, BJ, CE, CG, CI, CM, GA, GN, GQ,
(71) Applicant: COLLAXA CORPORATION [US/US];

(72)

(74

1600 Bridge Parkway, Redwood, Shores, CA 94065 (US).

Inventors: KHODABAKCHIAN, Edwin; 1600 Bridge
Parkway, Redwood Shores, CA 94065 (US). TAM, Al-
bert; 1600 Bridge Parkway, Redwood Shores, CA 94065
(US). MI, Glen, Weigun; 1600 Bridge Parkway, Redwood
Shores, CA 94065 (US). CHINNANANCHI, Muru-
ganantham; 1600 Bridge Parkway, Redwood Shores, CA
94065 (US). DOBRIK, Roman; 1600 Bridge Parkway,
Redwood Shores, CA 94065 (US).

Agent: SPONSELLER, Steven, R.; Stevens & Sponseller
LLP, P.O. Box 1667, San Jose, CA 95109 (US).

GW, ML, MR, NE, SN, TD, TG).

Published:

without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: SYSTEM AND METHOD FOR MANAGING SERVICE INTERACTIONS

(57) Abstract: A system and method managing service interactions launches a process that is defined by a programming abstraction
based on a syntax of a general purpose programming language. Interaction with a service, such as a web-based service, is initiated
and the process requests the service to perform an action. Execution of the process is suspended until a response is received from
the service. Execution of the process continues after receiving a response from the service.

10

11

12

13

14

15

16

17

19

20

21

22

23

24

25

WO 03/032124 PCT/US02/32324

System and Method for Managing Service Interactions

CROSS-REFERENCE TO RELATED APPLICATIONS
This application is related to United States Patent Application Serial No.
, filed October 9, 2002, entitled “System and Method for Managing Service
Interactions”.
This application claims the benefit of United States Provisional Application
Serial No. 60/328,074, filed October 9, 2001, the disclosure of which is incorporated

by reference herein.

TECHNICAL FIELD

The systems and methods described herein manage interactions with one or

more services, such as web-based services.

BACKGROUND

As the popularity of the Internet continues to grow, new types of Internet-based
services (or web-based services) are being developed and existing Internet-based
services are expanding. In an effort to automate certain procedures, many applications
are communicating with other applications and/or services via the Internet to
accomplish various functions. These functions may be requested, for example, by an
individual user, a business entity, an application program, or another web-based
service.

Many web-based services operate in an asynchronous manner (i.e., an
application or individual requesting an action from the web-based service may have to
wait several minutes, days, or weeks for a response). This asynchronous operation
causes problems for many typical applications. Typical applications function in a

manner that expects a response within a relatively short time period, such as a few

13

14

15

16

17

19

20

21

22

23

24

25

WO 03/032124 PCT/US02/32324

seconds. These applications generally wait for the expected response before
continuing their normal operation. If a response is not received within a particular
period of time (such as fifteen or thirty seconds), the application may “time-out” and
generate an error message or other notice indicating that the expected response was
not received in a timely manner. When attempting to use this type of application with
web-based services that operate in an asynchronous manner, the application is unlikely
to function properly.

Accordingly, there is a need for systems and methods that are capable of

handling processes that interact with one or more asynchronous services.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example and not limitation in the
figures of the accompanying drawings. The same numbers are used throughout the
figures to reference like components and/or features.

Fig. 1 illustrates an exemplary environment containing various services and
components, including a web service orchestration server.

Fig. 2 is a block diagram illustrating various components of an example web
service orchestration server.

Fig. 3 illustrates an exemplary web service orchestration server coupled to
multiple services, such as web-based services.

Fig. 4 is a flow diagram illustrating a procedure for generating and executing a
process that utilizes multiple web-based services.

Fig. 5 is a flow diagram illustrating a procedure for executing a process that

utilizes at least one web-based service.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

WO 03/032124 PCT/US02/32324

Fig. 6 is a flow diagram illustrating a procedure for executing a process that
utilizes multiple web-based services.

Fig. 7 is a flow diagram illustrating a procedure for executing a process that
requires successful completion of at least two different web-based services.

Fig. 8 illustrates various components of an exemplary computing device.

DETAILED DESCRIPTION

The systems and methods described herein manage execution of long-running
processes in a manner that permits the long-running processes to interact with one or
more asynchronous services. These systems and methods allow developers to define
the flow, interaction logic and business rules that tie a set of services into a complete
end-to-end process. Additionally, the flow, interaction logic and business rules
defined by developers are implemented in a manner that results in the successful
completion of each long-running process or collaborative process. A typical process
includes multiple interactions, such as interactions with web-based services,
interactions with users and/or interactions with other applications or processes.

Particular embodiments discussed herein manage interactions with one or more
web-based services (also referred to as web services or Internet-based services) via the
Internet. In alternate embodiments, the systems and methods described herein may be
used with any type of service, which is accessed via any type of communication
mechanism. These alternate embodiments may include, for example, network-based
services.

In a particular embodiment, a process that has been defined by a programming
abstraction based on syntax of a general purpose programming language is launched.

An interaction with a web-based service is initiated and the process requests the web-

18

19

20

21

22

23

24

25

WO 03/032124 PCT/US02/32324

based service to perform an action. Execution of the process is suspended until a
response is received from the web-based service. Execution of the process continues
after a response is received from the web-based service.

Web services are implemented by first publishing details regarding the web
service and then making the web service available (e.g., via the Internet) to other
applications and services. Web service orchestration refers to the composition of
multiple web services into a long-lived, multi-step process. In particular
embodiments, web services are published as JMS (Java Messaging Service) or XML
(Extensible Markup Language) web services.

As used herein, a synchronous service is a service that typically generates a
response to a request in a relatively short period of time, such as a few seconds. An
asynchronous service is a service that typically takes a longer period of time to
generate a response. The actual response time for synchronous services and
asynchronous services may vary from one moment to the next and may vary
depending, for example, on the type of request and the source of the request. A
particular service may change from a synchronous service to an asynchronous service
(and vice versa) at any time. The response time for determining whether a service is
synchronous or asynchronous can vary with the application and/or the environment in
which the service is utilized.

Fig. 1 illustrates an exemplary environment 100 containing various services
and components, including a web service orchestration server 102. The web service
orchestration server 102 is coupled to multiple web services 104(1), 104(2) and
104(3). Web services 104 may include, for example, loan application services, credit
reporting services, brokerage services, travel reservation services, market research

services, and the like. Web service orchestration server 102 communicates with the

16

17

18

19

20

21

22

23

24

25

WO 03/032124 PCT/US02/32324

various web services 104 via a data communication network, such as the Internet.
Alternatively, web service orchestration server 102 may communicate with one or
more web services using any type of communication link, including wireless
communication links and/or wired communication links. Although three web services
are shown in Fig. 1, a particular environment 100 may include any number of web
services.

Web service orchestration server 102 is also coupled to one or more portal
services 106 and a console 108. Portal service 106 provides a mechanism for
accessing the Internet and/or other data communication networks. Web service
orchestration server 102 is able to communicate with other web services via one or
more portal services 106. Similarly, users can invoke processes, receive notifications,
and view information via portal service 106.

Console 108 provides a user interface to the web service orchestration server
102 and allows users to control and/or monitor the activities of the web service
orchestration server 102. Additionally, console 108 allows users to generate reports,
load and implement processes, and perform other administrative tasks. Console 108
also allows a user to view an audit trail that provides the history of a particular
scenario. A user can also use console 108 to view a transaction log, which shows a list
of transactions and participants associated with each scenario and the state of the
transactions and participants.

Web service orchestration server 102 contains multiple scenarios 110(1), 110(2)
and 110(3). A scenario is a programming abstraction of a long-running process or a
collaborative process. The programming abstraction is based on a syntax of a general
purpose programming language, discussed below with reference to Fig. 4. Each

scenario 110 contains a list of rules and procedures that define a particular process.

10

11

12

13

19

20

21

22

23

24

25

WO 03/032124 PCT/US02/32324

The rules and procedures contained in a particular scenario 110 provide the logic that
ties together interactions associated with multiple web services. For example, a
particular scenario 110 may define the manner in which several different web services
are utilized to process a consumer loan application. A particular web service
orchestration server 102 may contain any number of scenarios 110.

A visual scenario design tool allows users (such as developers) to define and
document the requirements of a particular scenario. In one embodiment, built-in
wizards guide users through the process of defining different parts of a scenario. For
example, the user may define partners, containers, flows, compensation rules and
exception handlers for a specific scenario. The visual model can also be used when
the scenario is executed for audit trailing and reporting. Once the visual model is
created, the specific instructions needed to carry out the model are added to a textual
representation of the scenario. This textual representation (also referred to as a
“developer’s view””) shows the various instructions, settings, parameters, and the like
that make up the scenario.

Fig. 2 is a block diagram illustrating various components of example web
service orchestration server 102. As discussed above, web service orchestration server
102 may include any number of scenarios 110. Web service orchestration server 102
also includes an orchestration engine 200, which implements the various instructions
and commands contained in the scenarios 110. An exception handler 202 processes
exceptions that are generated by orchestration engine 200 when implementing the
instructions and commands in a scenario 110. Exceptions may include, for example, a
fault generated by a web service or a notice generated as a result of a web service

timeout.

20

21

22

23

24

25

WO 03/032124 PCT/US02/32324

Web service orchestration server 102 also includes a debugger 204, which is
capable of debugging various procedures and transactions, such as those defined in
scenarios 110. Debugger 204 is capable of handling both synchronous transactions
and asynchronous transactions. Debugger 204 associates the source code for a
scenario 110 with the current state of the transaction and illustrates the current active
branches, as well as points in the source code where execution is suspended (or
paused). Debugger 204 also allows a user to inspect variables and documents sent to
and received from one or more web services.

In a particular embodiment, debugger 204 allows a user to debug a process at
all stages, including when the process has been temporarily suspended while waiting
for a response from one or more services. Debugger 204 displays the various state or
states of the process, including the values of variables used by the process. In this
embodiment, the scenario is divided into multiple sections at logical boundaries (e.g.,
the boundary between interacting with different services), thereby allowing the
debugger to analyze each of the multiple sections separately.

Referring again to Fig. 2, flow coordination module 206 manages the execution
of a process that contains one or more interactions with services. For example, a
particular process may contain interactions with two different web-based services that
are executed in parallel with one another. Flow coordination module 206 manages the
execution of each interaction by implementing the rules and procedures of the
appropriate scenario 110 that is associated with the process initiating the interactions.
In particular, flow coordination module 206 manages static and dynamic branching as
well as join instructions.

A scenario manager 208 detects when an executing scenario is waiting for an

asynchronous response, bookmarks the state of the scenario (or the state of the

20

21

22

23

24

25

WO 03/032124 PCT/US02/32324

instruction that initiated the transaction) and maintains that state in a database. When
the asynchronous response is received, the scenario is reactivated and its execution is
resumed.

A proxy module 210 is also contained in web service orchestration server 102.
The proxy module 210 is a two-way proxy that allows web service orchestration
server 102 to communicate both synchronously and asynchronously with one or more
services. Additional details regarding proxy module 210 are discussed below.

Other components not shown in Fig. 2 may include a delivery service and a
transaction manager. The delivery service manages message exchanges between the
web service orchestration server and various web services. The delivery service also
manages the asynchronous notifications (also referred to as “callbacks™). The
transaction manager coordinates the transaction semantics of each scenario. A
scenario can be a transaction coordinator and/or a transaction participant.

Fig. 3 illustrates exemplary web service orchestration server 102 coupled to
multiple services, such as web-based services. Web service orchestration server 102
generates requests to perform an action and communicates those requests to one or
more of multiple services 300(1), 300(2) and 300(N). The multiple services 300 may
respond to requests quickly (e.g., within a few seconds) or after a period of time (e.g.,
several minutes, hours, days or weeks). Web service orchestration server 102 is able
to interact with different types of services, regardless of the speed at which the
services respond to requests to perform an action. Web service orchestration server
102 is not required to wait for a response from a particular service before initiating
another request with the same service or with a different service.

Web service orchestration server 102 includes multiple two-way proxies 306,

308 and 310. Each two-way proxy 306, 308 and 310 receives requests to perform an

10

11

12

13

14

15

20

21

22

23

24

25

WO 03/032124 PCT/US02/32324

action and forwards each request to the appropriate service 300. Additionally, each
two-way proxy 306, 308 and 310 receives responses from various services 300 and
forwards each response to the orchestration engine (shown in Fig. 2) or other
component in web service orchestration server 102. Each two-way proxy 306, 308
and 310 is capable of handling both synchronous transactions and asynchronous
transactions. Although each two-way proxy 306, 308 and 310 is shown in Fig. 3 as
being coupled to a particular service 300, in alternate embodiments, each two-way
proxy 306, 308 and 310 may be coupled to any number of different services 300.
Further, multiple two-way proxies 306, 308 and 310 may be coupled to the same
service 300.

Two-way proxy 306 1is coupled to service 300(1) via an outbound
communication link 312 and an inbound communication link 314. Requests to
perform a particular action (and other data) are communicated from proxy 306 to
service 300(1) via outbound communication link 312. Responses (and other data)
from service 300(1) are communicated to proxy 306 via inbound communication link
314. Similarly, outbound communication links 316 and 320 communicate data, such
as requests to perform a particular action, from two-way proxy 308 and 310,
respectively, to the appropriate service 300. Inbound communication links 318 and
322 communicate data, such as responses, from a particular service to two-way proxy
308 and 310, respectively. In a particular embodiment, data is communicated on
outbound and inbound links 312-322 using XML (Extensible Markup Language). In
alternate embodiments, any language and any communication protocol can be used
when communicating data across links 312-322. Outbound and inbound links 312-
322 may utilize any type of communication medium, including wireless and/or wired

communication media.

15

16

17

18

19

20

21

22

23

24

25

WO 03/032124 PCT/US02/32324

In a particular embodiment, the two-way proxy is utilized when a process
makes an asynchronous call to a routine (or asynchronously invokes an operation on
an object) such that the process interacts with a web-based service. Execution of the
process is suspended after calling the routine and the system passivates the state of the
process. Passivation includes, for example, saving data (such as state information and
variables) related to the execution of the process and releasing computing resources
associated with the process. These released computing resources are then available to
other processes, functions and the like. The process then waits for a response
associated with the web-based service. When the response associated with the web-
based service is received via the two-way proxy, the process is reactivated. Execution
of the process then continues from the point at which the process was suspended using
the saved data related to the execution of the process. In one embodiment, the two-
way proxy is generated based on a definition of the web-based service.

Fig. 3 illustrates separate outbound communication links 312, 316 and 320 and
separate inbound communication links 314, 318 and 322. However, in alternate
embodiments, a single bi-directional communication link may be used to couple one
or more proxies to one or more services. Although two-way proxies 306, 308 and 310
are illustrated in Fig. 3 as separate components, any number of two-way proxies can
be combined in a single proxy module (such as proxy module 210 shown in Fig. 2).

Fig. 4 is a flow diagram illustrating a procedure 400 for generating and
executing a process that utilizes multiple web-based services. Initially, procedure 400
identifies multiple web-based services that are available for performing various
actions (block 402). Web-based services may define their operation and service
capabilities using, for example, a WSDL (Web Services Description Language)

document. WSDL is an XML-formatted language used to describe a web service’s

10

18

19

20

21

22

23

24

25

WO 03/032124 PCT/US02/32324

capabilities as collections of communication endpoints capable of exchanging
messages. The UDDI (Universal Description, Discovery and Integration) directory is
a web-based distributed directory that enables service providers (and other businesses)
to list themselves on the Internet. In one embodiment, SOAP (Simple Object Access
Protocol) is used to transfer data between a web-based service and another device or
system. SOAP is a protocol that allows applications to communicate with each other
over the Internet independent of platform.

The procedure 400 continues by retrieving a definition of each web-based
service previously identified (block 404). The procedure 400 then creates a single
process (defined by a scenario) that utilizes one or more of the multiple web-based
services (block 406). This process is defined by a programming abstraction based on
a syntax of a general purpose programming language or other high-level language.
Example general purpose programming languages include BASIC, C, C++, C#, JAVA,
COBOL, FORTRAN, Ada and Pascal. These types of general purpose programming
languages enable a programmer or developer to write programs (or develop processes)
that are generally independent of a particular type of computer.

After creating a process in block 406, the procedure 400 awaits a request to
execute the process. When a request to execute the process is received (block 408),
the procedure retrieves (or identifies) parameters associated with the request (block
410). These parameters may indicate, for example, the types of services desired as
well as data or instructions that are to be provided to the web-based services being
utilized by the process. The procedure then launches the process using the retrieved
parameters (block 412). Details regarding the execution of the process are provided

below.

11

10

11

12

13

14

20

21

22

23

24

25

WO 03/032124 PCT/US02/32324

Fig. 5 is a flow diagram illustrating a procedure 500 for executing a process
that utilizes at least one web-based service. Initially, a process is launched that utilizes
at least one web-based service (block 502). As the process executes, an interaction
with a web-based service is initiated (block 504). As part of the interaction, the
process requests the web-based service to perform an action. Initiation of the
interaction includes sending the request via a two-way proxy to the appropriate web-
based service. The process then receives a “ticket” from the web-based service (block
506). This ticket contains an identifier assigned to the request by the web-based
service. A “ticket” may also be referred to as a “handle” or a “conversation ID”.

The procedure continues by determining whether a response has been received
from the web-based service to which the request was submitted (block 508). If a
response has been received from the web-based service, the procedure branches to
block 516, where the process handles the response. If a response has not been
received from the web-based service, the procedure continues to block 510, which
suspends execution of the process that was launched at block 502. In one
embodiment, the procedure 500 also passivates the state of the process by storing
various data associated with the process and releasing computing resources associated
with the process. Execution of the process remains suspended until a response is
received (block 512) from the web-based service. At that point, execution of the
process resumes (block 514) by reactivating the process and continuing execution of
the process from the point at which the process was suspended using the stored data
associated with the process. The response received from the web-based service is then
handled by the process (block 516).

The procedure discussed above with respect to Fig. 5 allows a web service

orchestration server (or similar system) to interact with one or more asynchronous

12

20

21

22

23

24

25

WO 03/032124 PCT/US02/32324

services by temporarily suspending execution of a process that is waiting for a
response from a web-based service. The procedure of Fig. 5 may be applied to
multiple processes and/or services simultaneously.

Fig. 6 is a flow diagram illustrating a procedure 600 for executing a process
that utilizes multiple web-based services. The example of Fig. 6 shows two different
web-based services being utilized in parallel. In alternate embodiments, a procedure
can interact with any number of different web-based services simultaneously.

Initially, the procedure launches a process utilizing multiple web-based services
(block 602). The procedure branches into two separate paths that are performed in
parallel with one another. Following the left branch, the procedure identifies a first
web-based service utilized by the process (block 604). The procedure then initiates an
interaction with the first web-based service (block 606) and awaits a response from
the first web-based service (block 608).

At the same time the procedure is following the left branch, it is also following
the right branch by identifying a second web-based service utilized by the process
(block 610). The procedure then initiates an interaction with the second web-based
service (block 612) and awaits a response from the second web-based service (block
614). The process then continues executing at block 616. After a response is received
from the first or second web-based service, the process may continue executing (block
616) at least to the extent that the process does not require a response from the other
web-based service.

Fig. 7 is a flow diagram illustrating a procedure 700 for executing a process
that requires successful completion of at least two different web-based services. The
procedure 700 is useful in situations where two or more services are related to one

another, such as travel reservations. For example, when making an airline reservation

13

10

11

12

16

17

18

19

20

21

22

23

24

25

WO 03/032124 PCT/US02/32324

and a hotel reservation for the same trip, both reservations must be completed for the
process to complete successfully. If the airline reservation is not successful (e.g.,
flights not available or not within a required price range), the procedure should not
finalize the related hotel reservation. Similarly, if the hotel reservation is not
successful (e.g., no hotel rooms available for the desired date), the procedure should
not finalize the related airline reservation.

Initially, the procedure 700 launches a process that utilizes multiple web-based
services (block 702). The procedure branches into parallel paths. The left path
initiates an interaction with a first web-based service (block 704). The procedure then
determines whether the interaction with the first web-based service completed
successfully (block 706). If so, the procedure branches to block 707 to determine if
the other branch of the procedure also completed successfully. If the interaction with
the first web-based service has not completed successfully, the left branch of the
procedure terminates the interaction with the second web-based service and cancels
any results generated by the second web-based service (block 710). The procedure
then generates a notice that the process was not successful (block 718).

The right path of the procedure branches from block 702 to block 712 to
initiate an interaction with a second web-based service. The right path of the
procedure then determines whether the second web-based service completed
successfully (block 714). If so, the procedure branches to block 707 to determine if
the left branch of the procedure also completed successfully. If both branches
completed successfully, the procedure finishes execution of the process (block 708).
Otherwise, the procedure terminates the interaction with the first web-based service
and cancels any results generated by the first web-based service (block 716). The

procedure then generates a notice that the process was not successful (block 718).

14

10

11

12

13

14

15

16

18

19

20

21

22

23

24

25

WO 03/032124 PCT/US02/32324

Thus, block 708, which allows the procedure to continue executing the process
is only reached if both the first web-based service and the second web-based service
complete successfully. If either web-based service fails to complete successfully, the
process will terminate at block 718. Although the example of Fig. 7 illustrates a
process requiring successful completion of two different web-based services, alternate
embodiments may require the successful completion of any number of different web-

based services.

Example Scenario

As discussed above, a scenario contains a list of rules and procedures that
define a particular process. The rules and procedures contained in a particular
scenario provide the logic that ties together transactions associated with multiple web
services. In a particular example, a scenario may define the manner in which several
different web services are utilized to process a consumer loan application. In this
example, a consumer loan application uses three different services: 1) a credit rating
service, 2) a loan document preparation service, and 3) a loan application review
service.

The following scenario illustrates a portion of an exemplary scenario that

defines a loan procurement process.

public class LoanProcurement extends Scenario

{

JE*

* @ws-transaction:attribute required

* @ws-conversation:mode async

*/

public IPolicy process (ILoanApplication loanApp)

15

11

12

14

15

16

17

18

19

20

21

22

23

24

25

WO 03/032124 PCT/US02/32324

loadCustomerProfile (loanApp);
assignRating (loanApp);

/** @bpel:flow */

{
/** @bpel:sequence AmericanLoan */
{
cAL = mAmericanL.initiate (loanApp);
offer [0] = mAmericanL.receiveResult (cCAL);
waitForTask (reviewTaskId);
}
/** @bpel:sequence UnitedLoan */
{
/** @bpel-notation:activity United Loan */
cUL = mUnitedL.initiate (loanApp);
}
}
/** @bpel:join selectedProvider != null */
{
return enroll (selectOffer);
}

return null;

The scenario lets developers assign transactional semantics to each operation. The
resulting business processes are coordinated and managed by the web service
orchestration server using transactional protocols, such as the ws-transaction and ws-
coordination protocols. In the illustrated scenario, the first six lines define attributes
associated with various transaction protocols.

Four different attributes can be associated with the ws-transaction protocol:

required, requires-new, mandatory, and none. The “required” attribute uses the

16

10

11

12

13

14

15

16

17

20

21

22

23

24

25

WO 03/032124 PCT/US02/32324

caller’s transaction context, if specified, or creates a new transaction context if the
caller is not part of a transaction. The “requires-new” attribute creates an independent
transaction context. The “mandatory” attribute creates an exception if the caller is not
providing a transaction context. The “none” attribute does not create a transaction
context when interacting with web services. In a particular embodiment, multiple
interactions are combined into a single transaction by annotating each of the
individual interactions. The annotation allows a procedure or process to identify
interactions that can or should be grouped together.

The “public [Policy process (ILoanApplication loanApp)” instruction creates
an instance of the loan application process named “loanApp”. The
“loadCustomerProfile (loanApp)” instruction causes the web service orchestration
server to retrieve information about the customer requesting a loan. This customer
information may be retrieved from the customer, from a database, or from another
data source. The “assignRating (loanApp)” instruction obtains a credit rating for the
customer from, for example, a credit rating service.

To coordinate the flow of the process defined in the scenario above, the
“ [** @bpel:flow */ 7 and “ /** @bpel:join */ 7 tags are used specify that the
AmericanLoan and UnitedLoan services are to be invoked in parallel. This is
advantageous because both loan processing services process loan applications
asynchronously. Invoking the services in parallel shortens the time that the customer
waits before seeing offers from both loan processing services.

The “cAL = mAmericanL.initiate (loanApp)” instruction initiates processing of
the loan application by AmericanLoan. The process invokes a two-way proxy with
AmericanLoan using the “offer[0] = mAmericanL.receiveResult (cAL)” instruction.

This instruction notifies the web service orchestration server that the process is

17

12

13

14

15

16

17

18

19

20

21

22

23

24

25

WO 03/032124 PCT/US02/32324

waiting for a response (i.e., a loan offer) from AmericanLoan. This causes the web
service orchestration server to suspend execution of that process until a response is
received from AmericanLoan. Although the response might be received within a few
minutes, it might take several days or weeks to receive a response.

The “waitForTask (reviewTask)” instruction indicates that the process is
waiting for the customer (or loan applicant) to review each loan offer. The web
service orchestration server suspends execution of the process until the task is
completed. The task can be completed, for example, when the customer accepts one
of the loan offers or rejects all of the loan offers.

Annotation comments, such as “ /** @bpel-notation . . . * 7 capture
information regarding the process. This information can be used to generate visual
representations of scenarios, audit trails and various reports. The instruction “return
enroll (selectedOffer)” enrolls the customer in the selected loan offer at the
appropriate lending institution.

When a scenario is deployed (or executed), it is published as a web service and
a corresponding WSDL file is created. A particular scenario can be used by other
scenarios, other web services or other applications. Thus, a specific scenario may
initiate processes that request multiple other scenarios to perform particular actions.

In a particular embodiment, scenarios can be initiated by a web service
orchestration server in one of four ways:

1. The business delegate interface of the scenario is used by Java components
such as JSPs (Java Server Pages) and Servlets.

2. The web service interface of the scenario us used by SOAP clients.

18

12

13

14

15

16

17

18

19

20

21

22

23

24

25

WO 03/032124 PCT/US02/32324

3. The JMS (Java Messaging Service) interface of a scenario can be used to
initiate scenario processing based on receipt of a message to a JMS queue in a manner
similar to the way Message Driven Bean work.

4. The console coupled to the web service orchestration server may be used by
developers to test and debug scenarios.

In the loan processing example discussed above, when a customer submits a
loan application through a portal service, a JSP is invoked which uses the business
delegate interface of the LoanProcurement scenario to initiate a new instance. Since
the loan procurement scenario operates asynchronously, the business delegate returns
to the calling JSP a “ticket” (also referred to as a ‘“handle”) associated with the
initiated transaction. This ticket can be used to obtain information on the transaction
in progress, such as checking on the completion status of the transaction or canceling
the transaction.

In a particular embodiment, XML documents are used to store the context of
the long-lived multi-step transactions as well as to exchange information among the
various orchestrated services. For example, in the loan processing situation, the
submitted loan application and the collected loan offers are XML documents defined
using XML Schema. Marshalling, manipulating and persisting XML documents is
handled by the web service orchestration server. In one embodiment, the orchestration
server provides a facility that wraps XML documents into business documents,
referred to as “schemac”. These business documents are Java objects whose interface
reflects the structure defined by the XML schema. The business documents may
include simple types, complex types, nested complex types, inherited types and arrays.

The use of scenarios simplifies the invocation and integration of both

synchronous and asynchronous web services. In the loan processing example, the

19

14

15

16

17

18

19

20

21

22

23

24

25

WO 03/032124 PCT/US02/32324

operations performed on the credit rating and the two loan processors are typically
asynchronous. For example, it may take several days for a loan processor to generate
and return an offer to the customer. Using the two-way proxy discussed above, the
web service orchestration server detects the existence of an asynchronous activity,
suspends execution of the process, and bookmarks the state of the process or scenario
as well as the values of variables related to the execution of the process. The web
service orchestration server maintains this information in a database until a response is
received from the appropriate service.

The two-way proxies discussed herein are created by compiling the WSDL
description of the associated web service. The resulting two-way proxy is a Java class
representation of both the service and its callback (or response) interface. The
generated proxy combines the signature for invoking the web service and receiving
callback notification from the web service. For example, the messages received
through the callback interface are accessible through the “ILoanService.receiveResult
(. . .)” call discussed above. When invoking the initiate operation, the web service
orchestration server initiates a new conversation, passes the conversation ID to the
invoked service as part of the SOAP header and returns it to the scenario. The
conversation ID (also referred to as a ticket) is used to correlate callback messages

with the appropriate request.

Exemplary Computer

Fig. 8 shows an exemplary computing device 800 that may be used to
implement, for example, a web service 104, a web service orchestration server 102, or
a portal service 106. The computer system 800 can be used to perform one or more of

the various procedures and processes discussed herein.

20

20

21

22

23

24

25

WO 03/032124 PCT/US02/32324

Computer 800 includes at least one processor 802 coupled to a bus 808. Bus
806 represents one or more of many different bus structures, such as a memory bus or
memory controller, a peripheral bus, and a processor or local bus using any of a
variety of bus architectures and protocols. Although a single bus is shown in Fig. §,
alternate embodiments may use two or more different buses for communicating data.

A Read-Only Memory (ROM) 804 and a Random Access Memory (RAM) 806
are also coupled to bus 808. A hard disk drive 810, a CD/DVD drive 820 and a
removable storage drive 822 are also coupled to bus 808. Hard disk drive 810
provides for the non-volatile storage of data. CD/DVD drive 820 accommodates
removable storage media (i.e., CD-ROMs and DVDs) that stores data, such as
application programs. Removable storage drive 822 provides an additional storage
device for various types of data. Removable storage drive 822 may be, for example, a
floppy disk drive, tape drive, or other storage drive that uses optical, magnetic or other
data storage technologies. Other types of storage devices (not shown) that could be
utilized by computer 800 include PCMCIA cards and flash memory cards.

A variety of program modules can be stored in the memory devices 804 or 806,
or in another storage device. These program modules include an operating system, a
server system, one or more application programs, and other program modules and
program data. In a networked environment, some or all of the program modules
executed by computer 800 may be retrieved from another computing device coupled
to the network.

A peripheral interface 814 is coupled to bus 808 to provide an interface for
individual peripheral devices. Exemplary peripheral devices include a keyboard 814,

a mouse 816 and a digital camera 818. Other peripheral devices (not shown) include a

21

20

21

22

23

24

25

WO 03/032124 PCT/US02/32324

keypad, a touch pad, a trackball, a microphone, a joystick, speakers, a printer, a
scanner and the like.

A video interface 824 is coupled to bus 808 and a display device 832 (e.g., a
monitor, an LCD, a TV, a video projector, etc.). A network interface 826 is coupled to
bus 808 and one or more data communication networks 828, such as the Internet.
Network interface 826 may include, for example, a network interface card (NIC), a
modem, a satellite receiver, or an RF transceiver. Data communication network 828
may be a local area network (LAN), a wide area network (WAN), or any other
network capable of communicating data between nodes.

Typically, the computer 800 is programmed using instructions stored at
different times in the various computer-readable media of the computer. Programs
and operating systems are often distributed, for example, on floppy disks or CD-
ROMs. The programs are installed from the distribution media into a storage device
within the computer 800. When a program is executed, the program is at least
partially loaded into the computer’s primary electronic memory. These and other
types of computer-readable media contain instructions or programs for implementing
various processes described herein.

Memories 804 and 806, hard disk drive 810, CD/DVD drive 820 and
removable storage drive 822 provide for the storage of data (e.g., computer-readable
instructions, data structures, program modules and other data used by computer 800).

Computer system 800 is exemplary only — additional components may be
included in system 800 and/or some components may not be included in system 800.
By way of example, system 800 may include co-processors that operate in conjunction
with processor 802. By way of another example, a wireless computing device may

include a wireless transceiver, but not include removable storage drive 822.

22

20

21

22

23

24

25

WO 03/032124 PCT/US02/32324

Conclusion

Although the description above uses language that is specific to structural
features and/or methodological acts, it is to be understood that the invention defined in
the appended claims is not limited to the specific features or acts described. Rather,
the specific features and acts are disclosed as exemplary forms of implementing the

invention.

23

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

WO 03/032124 PCT/US02/32324

CLAIMS

1. A method comprising:

launching a process defined by a programming abstraction based on a syntax of
a general purpose programming language;

initiating an interaction with a web-based service, wherein the process requests
the web-based service to perform an action;

suspending execution of the process until a response is received from the web-
based service; and

continuing execution of the process after receiving the response from the web-

based service.

2. The method of claim 1, wherein the interaction is initiated by a first

instruction and the response is identified by a second instruction.

3. The method of claim 1, wherein the process requests a web-based

service to perform an action via a two-way proxy.

4. The method of claim 1, wherein the response is received from the web-

based service via a two-way proxy.

S. The method of claim 1, wherein the process utilizes a plurality of web-

based services.

24

20

21

22

23

24

25

WO 03/032124 PCT/US02/32324

6. The method of claim 1, wherein the web-based service is an

asynchronous service.

7. The method of claim 1, further comprising receiving a ticket from the
web-based service after initiating the interaction with the web-based service, wherein
the ticket contains an identifier assigned to the request received by the web-based

service.

8. The method of claim 1, wherein suspending execution of the process

includes saving data related to execution of the process.

9. The method of claim 8, wherein continuing execution of the process

includes retrieving saved data related to execution of the process.

10. A method comprising:

calling a routine during execution of a process;

suspending execution of the process after calling the routine;

passivating a state of the process;

waiting for a response associated with the called routine;

reactivating the process; and

continuing execution of the process from a point at which the process was

suspended.

25

20

21

22

23

24

25

WO 03/032124 PCT/US02/32324

11. The method of claim 10, wherein the process is defined by a
programming abstraction based on a syntax of a general purpose programming

language.

12. The method of claim 10, wherein passivating the state of the process

includes releasing computing resources associated with the process.

13. The method of claim 10, wherein passivating the state of the process

includes saving data related to the execution of the process.

14. The method of claim 13, wherein continuing execution of the process

includes restoring the saved data related to the execution of the process.

1S. A method comprising:

invoking an operation on an object while executing a process;

suspending execution of the process after invoking the operation on the object;

passivating a state of the process when execution of the process is suspended;

waiting for a response associated with the invoked operation;

reactivating the process after receiving a response associated with the invoked
operation; and

continuing execution of the process from a point at which the process was

suspended.

26

10

11

12

20

21

22

23

24

25

WO 03/032124 PCT/US02/32324

16. The method of claim 15, wherein passivating the state of the process

includes saving state information associated with the process.

17. The method of claim 15, wherein passivating the state of the process

includes releasing computing resources associated with the process.

18. A method comprising:

launching a process defined by a programming abstraction based on a syntax of
a general purpose programming language;

initiating a first asynchronous interaction, wherein the first asynchronous
interaction requests a first service to perform an action;

initiating a second asynchronous interaction, wherein the second asynchronous
interaction requests a second service to perform an action;

suspending execution of the process until a response is received from the first
service and the second service; and

continuing execution of the process after receiving a response from the first

service and the second service.

19. The method of claim 18, further including continuing execution of the

process after receiving the response from the first service.

20. The method of claim 18, further including continuing execution of the

process after receiving the response from the second service.

27

10

11

12

13

14

15

20

21

22

23

24

25

WO 03/032124 PCT/US02/32324

21. The method of claim 18, wherein the first service and the second service

are web-based services.

22. A method comprising:

launching a process defined by a programming abstraction based on a syntax of
a general purpose programming language;

initiating a first interaction with a first web-based service;

associating the first interaction with the process;

initiating a second interaction with a second web-based service;

associating the second interaction with the process;

terminating the process if the second web-based service fails to generate a
successful response; and

terminating the process if the first web-based service fails to generate a

successful response.

23. The method of claim 22, further comprising canceling any results
generated by the first web-based service if the second web-based service fails to

generate a successful response.
24. The method of claim 22, further comprising generating a notice that the

process was unsuccessful if the first web based service fails to generate a successful

response.

28

20

21

22

23

24

25

WO 03/032124 PCT/US02/32324

25. The method of claim 22, further comprising suspending execution of the

process until a response is received from the first web-based service.

26. The method of claim 22, further comprising suspending execution of

the process until either a) a response is received from the first web-based service, or b)

an unsuccessful response is received from the second web-based service.

29

WO 03/032124

117

FIG. 1

Web Service

100
[

Orchestration Server 102

110(1

Scenario

Scenario
110(3

Scenario

110(2)

I

Portal Service
106

FIG. 2

Web Service Orchestration Server 102

PCT/US02/32324

Console
108

Scenario 1
110(1

Scenario 2
110(2

Scenario N

110(N)

Orchestration
Engine 200

Exception Handler
202

Debugger
204

Flow
Coordination
Module 206

Scenario Manager
208

Proxy Module
210

WO 03/032124

2[1

Web Service
Orchestration Server 102

R L
Proxy
Receive 306 AN
Response 1 314
o L
Proxy
Receive 4 308 U
Response 2 318
e] 0
Proxy
Receive o | 310 327

Response 3

FIG. 3

PCT/US02/32324

Service A
300(1

Service B
300(2

Service N
300(3

WO 03/032124

317

400
/_

Identify Multiple
Web-Based Services
402

v

Retrieve a Definition of
Each Web-Based Service
404

v

Create a Single Process That
Utilizes Multiple Web-Based Services
406

!

Receive a Request to
Execute the Process
408

!

Retrieve Parameters
Associated with the Request
410

!

Launch the Process
Using the Retrieved Parameters
412

FIG. 4

PCT/US02/32324

WO 03/032124

417 500
[

Launch a Process Utilizing
at Least One Web-Based Service
502

v

Initiate an Interaction with a
Web-Based Service
504

v

The Process Receives a Ticket
From the Web-Based Service
506

Response
Received?
308

Suspend Execution
of the Process
210

Response
Received?
512

Yes

Resume Execution
of the Process
514

l¢

The Process Handles
the Response
516

FIG. 5

PCT/US02/32324

WO 03/032124

PCT/US02/32324
517
Launch a Process Utilizing / 600
Multiple Web-Based Services
602
| : :

Identify a First Identify a Second
Web-Based Service Web-Based Service
Utilized by the Process Utilized by the Process
604 610
v v
Initiate an Interaction with the Initiate an Interaction with the
First Web-Based Service Second Web-Based Service
606 606

Response
From First Service?
608

Response

614

v

Continue Executing
the Process
616

FIG. 6

WO 03/032124 PCT/US02/32324

6/7
Launch a Process Utilizing a 700
Multiple Web-Based Services
102
| : |
Initiate an Initiate an
Interaction with a First Finish Execution Interaction with a Second
Web-Based Service of the Process Web-Based Service
104 108 112

First Service
Completed Successfully?
106

Successful?

Terminate Second Service Terminate First Service
and Cancel Any Results and Cancel Any Results
710 116
Y

v

Generate a Notice
That The Process
Was Not Successful
718

FIG. 7

WO 03/032124

PCT/US02/32324

111
800
Processor Network Network
802 »| Interface 828
826
ROM Video
804 » Interface
824
Removable
RAM »| Storage Drive
806 822
CD/DVD
Hard Disk L— Drive
Drive 810 ‘ 820
Peripheral
Interface
- FIG. 8

&= O [0

Keyboard
814

Mouse Digital Camera
816 818

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

