

(12) PATENT ABRIDGMENT (11) Document No. AU-B-36299/93

(19) AUSTRALIAN PATENT OFFICE

(10) Acceptance No. 665623

(54)Title **POLYMERIZATION PROCESS**

International Patent Classification(s)

 $(51)^5$ C08F 004/76 C08F 002/00

C08F 002/06

C08F 010/02

(21)Application No.: 36299/93

C08F 004/643

(22) Application Date: 26.02.93

PCT Publication Number: W093/18071 (87)

Priority Data (30)

Number (31)92200605

(32)Date 02.03.92 (33)Country

EP EUROPEAN PATENT OFFICE (EPO)

(43) Publication Date: 05.10.93

(44) Publication Date of Accepted Application: 11.01.96

(71) Applicant(s) SHELL INTERNATIONALE RESEARCH MAATSCHAPPIJ B.V.

MICHAEL JOHN DOYLE; WILLEM TERLOUW

(74)Attorney or Agent SPRUSÓN & FÉRGUSON, GPO Box 3898, SYDNEY NSW 2001

Prior Art Documents AU 643255 71811/81 C08F 7/46 4/643 2/06 EP 443686 EP 427696

(57) Claim

1. A process for the polymerization or co-polymerization of ethylene and/or one or more alpha-olefins comprising contacting the alpha-olefin(s) with a catalyst comprising a first component which is a bis(cyclopentadienyl) Group IVA metal compound containing a substituent capable of reacting with a cation, and a second component which is a compound having a bulky anion containing one or more boron atoms and which is substantially non-coordinating under the reaction conditions and a cation, during which process further first component is added, wherein the cation of the first component is capable of reacting with the cation of the second component.

INTERNATIONAL APPLICATION PUBLISHED UNDER T

(51) International Patent Classification 5:

(11) International Publication Number:

WO 93/18071

C08F 10/02, 4/643

A1

(43) International Publication Date:

16 September 1993 (16.09.93)

(21) International Application Number:

PCT/EP93/00469

(22) International Filing Date:

26 February 1993 (26.02.93)

(30) Priority data:

92200605.1 2 March 1992 (02.03.92)

(34) Countries for which the regional or international application was filed:

AT et al.

ΕP

(71) Applicant (for CA only): SHELL CANADA LIMITED CA/CA]; 400 - 4th Avenue S.W., Calgary, Alberta T2P 2H5 (CA).

(71) Applicant (for all designated States except CA): SHELL INTERNATIONALE RESEARCH MAATSCHAPPIJ B.V. [NL/NL]; Carel van Bylandtlaan 30, NL-2596 HR The Hague (NL).

(72) Inventors: DOYLE, Michael, John; TERLOUW, Willem; Badhuisweg 3, NL-1031 CM Amsterdam (NL).

(81) Designated States: AU, BB, BG, BR, CA, CZ, FI, HU, JP, KP, KR, LK, MG, MN, MW, NO, NZ, PL, RO, RU, SD, SK, UA, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, SN, TD, TG).

Published

With international search report.

665623

(54) Title: POLYMERIZATION PROCESS

(57) Abstract

A process for the polymerization of ethylene and/or one or more alpha-olefins comprising contacting ethylene, and/or the alpha-olefin(s) with a catalyst comprising a first component which is a bis(cyclopentadienyl) Group IVA metal compound containing a substituent capable of reacting with a cation, and a second component which is a compound having a bulky anion containing one or more boron atoms and which is substantially non-coordinating under the reaction conditions and a cation, in which process further first component is added.

- 1 -

POLYMERIZATION PROCESS

The present invention relates to a process for the polymerization of olefins using a catalyst comprising a bis(cyclopentadienyl) Group IVA metal compound and a compound having a bulky anion containing one or more boron atoms and a cation.

5

10

15

20

25

30

Processes for the polymerization or co-polymerization of ethylene and/or one or more alpha-olefins comprising contacting the olefin(s) with a catalyst comprising a first component which is a bis(cyclopentadienyl) Group IVA metal compound containing a substituent capable of reacting with a cation, and a second component which is a compound having a bulky anion containing one or more boron atoms and which is substantially non-coordinating under the reaction conditions and a cation, are well known in the art. Such processes are the subjects of EP-A-277003, EP-A-277004, EP-A-427696 and EP-A-443686. These processes are suitable for preparing polymers having a high molecular weight, as well as for preparing oligomers, which are products with a relatively low molecular weight, for example dimers, trimers and tetramers. In the context of this patent application the term "polymer" is therefore to be understood as to include oligomers as well.

Although the catalysts used in these processes are very efficient polymerization catalysts, they possess a disadvantage in that in the course of the polymerization process the catalytic activity may decline to an unacceptably low level, so that the polymerization reaction times or run times are short, for example, up to only a few hours. Thus, the catalysts have a limited life-time and need to be discarded after having been used, because regeneration processes for the catalysts are not available. The disposal of used catalyst may contribute to environmental problems associated with the polymerization process. In addition, the

15

20

25

30

35

catalysts comprise complex, high-value chemicals so that the catalyst costs may contribute considerably to the total costs of the polymerization process. It is therefore an object of the present invention to provide a process in which a more economic use of at least one of the catalyst components can be made.

It has now been found that when in a polymerization reaction mixture the activity of the catalyst has declined to a low level the activity can substantially be restored by adding a further quantity of the first catalyst component. By this finding it is possible to make a more efficient use of the second catalyst component, because, for example, remnants thereof can be (re-)used by adding thereto first catalyst component. Thus, the overall supply of the second catalyst component relative to the quantity of polymer to be produced can be reduced to a very low level. It is a further merit of the present finding that the reaction time or run time of the polymerization process can be increased considerably, for example, to 400 hours and beyond.

When the polymerization reaction, and in particular the oligomerization of lower olefins to higher linear alpha-olefins, is performed in a continuous mode, the presence of active catalyst in the product leaving the reactor is detrimental to the product quality since it can further catalyse the isomerization of alpha-olefins to beta-olefins. Therefore, in a continuous-mode polymerization reaction according to the present invention it is recommended to deactivate the catalyst in the product stream leaving the reactor as a first step of product work-up. Such deactivation may be performed by adding water or a lower alcohol such as methanol, in an amount at least equimolar to that of the active catalyst. Subsequent to product work-up, the remaining solid residue can be recirculated to the reactor, together with an additional amount of the first catalyst component, which according to the present invention restores the activity of the catalyst.

Accordingly, the invention provides a process for the polymerization or co-polymerization of ethylene and/or one or more alpha-olefins comprising contacting the olefins(s) with a catalyst

comprising a first component which is a bis(cyclopentadienyl) Group IVA metal compound containing a substituent capable of reacting with a cation, and a second component which is a compound having a bulky anion containing one or more boron atoms and which is substantially non-coordinating under the reaction conditions and a cation, during which process further first component is added, wherein the cation of the first component is capable of reacting with the cation of the second component.

The invention further provides a process as defined hereinabove, characterized in that it is a continuous-mode process, whereby the catalyst present in the product stream leaving the reactor used is deactivated before work-up of the product, and the solid residue remaining after work-up of the product is recirculated to the reactor.

It is known that in isolation both catalyst components possess virtually no polymerization activity and that polymerization activity can be achieved by combining the catalyst components which combining leads to an irreversible formation of the active catalyst species. Furthermore, the components can be combined in substantially equimolar quantities, in which case they are (almost) completely consumed as a result of the formation of the catalyst. It is therefore surprising that the catalyst activity can practically be restored by the addition of a fresh portion of only one of the catalyst components, *viz*. the metal containing first component. It is also surprising that it is not necessary to remove constituents of the used catalyst or to remove a catalyst poison from the polymerization mixture prior to addition of the catalyst component. It is also not necessary to add the second component of the catalyst in order to restore the catalyst activity.

In the process of the invention the starting monomers may comprise normally gaseous olefins, such as ethene. These may be supplied in the form of a gas, optionally together with an inert diluent such as nitrogen or helium. The alpha-olefins are suitably alpha-olefins comprising up to 10 carbon atoms, such as 1-butene, 4-methyl-1-pentene, 5,5-dimethyl-1-hexene, styrene or allylbenzene,

- 4 -

dependent on the desired polymerization product. Particularly suitable alpha-olefins comprise up to 6 carbon atoms.

5

10

15

20

25

30

When a mixture of olefins is used in the polymerization, the relative proportions of the olefins present in the reaction mixture may vary between wide limits. Ethene and/or the further olefin(s) may be supplied at the initial stage of the polymerization. They may also be supplied over a period of time, for example at such a rate that consumed olefins are replenished. In the case that oligomeric alpha-olefins are intended to be prepared by copolymerization of ethene and one or more alpha-olefins using the process of the invention, it is preferred that the starting alpha-olefin(s) is/are present in a quantity of at least 1 mole per mole of ethene, more preferably in a quantity of from 20 to 1000 moles per mole of ethene, in particular from 50 to 500 moles per mole of ethene.

To effect polymerization, the reaction is suitably carried out at elevated temperatures, preferably in the range of from 20 to 175 °C, more preferably from 50 to 150 °C. The reaction is suitably carried out under conditions of moderate elevated pressure, preferably in the range of from 1 to 100 bar, more preferably from 5 to 60 bar. The optimum conditions of temperature and pressure used for a particular catalyst to maximize the yield of the desired polymer can readily be established by those skilled in the art.

The catalyst may comprise a first component which is a bis(cyclopentadienyl) Group IVA metal compound containing a substituent capable of reacting with a cation, and a second component which is an ionic combination of a bulky anion containing a plurality of boron atoms and a proton-donating cation, the anion being such that it is substantially non-coordinating under the reaction conditions employed. Thus, it is intended that the anion should not coordinate, or at least coordinate only weakly, to the bis(cyclopentadienyl) metal entity which is formed by reaction of the donated proton and the acceptor group of the first compound. Metals of Group IVA are as defined in the Periodic Table of the

10

15

20

25

30

35

Elements published in Kirk-Othmer, Encyclopaedia of Chemical, Technology, 2nd edition, Vol. 8, p. 94.

First components are typically compounds of zirconium or hafnium. The compounds preferably have the formula $(Cp)_2MR_1R_2$ wherein each group Cp, which may be the same or different, represents a cyclopentadienyl group which may or may not be substituted with hydrocarbyl groups, M represents the Group IVA metal atom, typically zirconium or hafnium, and R_1 and R_2 , which may be the same or different, each represent a hydrogen atom or a substituted or unsubstituted hydrocarbyl group.

Preferably the groups Cp are the same. The groups Cp may or may not be connected to each other by a bridging group. The optional hydrocarbyl substituent(s) of the cyclopentadienyl group are typically (cyclo)alkyl and/or arylalkyl groups, preferably alkyl groups, in particular alkyl groups having up to 5 carbon atoms, more in particular they are methyl groups. Eligible cyclopentadienyl groups are penta-substituted, such as in pentaalkylcyclopentadienyl. Very good results can be achieved when both cyclopentadienyl groups are pentamethylcyclopentadienyl groups. R₁ and R₂ are preferably alkyl groups, typically containing up to 5 carbon atoms, such as methyl.

The second component preferably contains, as the boron containing substantially non-coordinating anion, a carborane anion, suitably a carborane anion of formula B₁₁CH₁₂, while the cation is preferably a proton donating cation, more preferably a quaternary ammonium cation such as a trialkylammonium cation, for example tri-n-butylammonium cation. Alternatively the cation may be a metal cation, such as a silver ion or a triphenylcarbenium ion. Other bulky boron containing anions may be used such as a tetra-(perfluorophenyl)boron anion.

The catalyst may be formed in situ or may be formed initially prior to introduction to a polymerization vessel by mixing together the two components, preferably in solution in a solvent such as toluene to form a liquid catalyst system. The two compounds are most preferably employed in substantially equimolar quantities. The

- 6 -

first component and the second component are typically employed in a molar ratio within the range of from 0.01 to 500, more typically from 0.1 to 20. Ratios outside the latter range are possible as well. The quantity of catalyst preferably employed in the reaction mixture is within the range of from 10^{-1} to 10^{-7} gram mole, in particular 10^{-3} to 10^{-5} gram mole, of the second component per mole of ethylene and/or alpha-olefin.

5

10

15

20

25

30

35

The polymerization is generally, although not necessarily, carried out in an inert liquid solvent which is suitably also the solvent for the catalyst components. The reaction can be carried out in batch or continuous operation. Reaction times or run times of more than 1 minute, for example exceeding 5 hours up to 400 hours and more, have been found to be suitable. The reaction is preferably carried out in the absence of oxygen and moisture.

During the process of the invention loss of catalyst activity in neutralized by adding further first component. Various known methods can be used to monitor the catalyst activity during the polymerization. Given, for example, the applied polymerization conditions and the olefins being polymerized, a skilled person will be able to select a suitable method for monitoring the catalyst activity. The addition of further first component can be carried out after complete loss or after partial loss of the catalyst activity. One may choose to add further first component gradually over a certain period of time thus keeping the catalyst activity at a more or less constant level. It is also possible to remove polymer product from the polymerization mixture before adding further f = component.

The first component added may be different from the first component upon which the catalyst is based. When a different first component is selected the catalyst activity can be restored at a level which is different from the level in the initial stages of the polymerization process. It may be advantageous to apply a different first component when it is envisaged to produce after restoring the catalyst activity a polymer which is different from the polymer which is produced prior to restoring the catalyst

10

35

activity. However, in most instances it is preferred that the further first component is the same as the first component upon which the catalyst is based.

The quantity of further first component added to neutralize loss of catalyst activity may depend on the level of catalyst activity one may want to establish. Typically further first component can be added until a molar ratio of further first component to the second component of up to 10^6 :1 has been effected in the reaction mixture, more typically until the molar ratio of the further first component to the second component is up to 10^4 :1. An eligible minimum quantity of further first component may be 0.01 mole per mole of the second component, suitably 0.1 mole per mole of the second component.

Further first component can be supplied directly into the 15 polymerization reaction mixture, in particular when the polymerization process is a batch process. In particular in continuous polymerization processes it may be advantageous to add further first component to boron containing catalyst remnants which are obtained from the polymerization mixture, and which are 20 recycled to said polymerization mixture. These boron containing remnants may be obtained by removal of polymer product from the reaction mixture, for example by filtration when the polymer has a high molecular weight or by evaporation when the polymer has a low molecular weight. In order to avoid the build-up of catalytically 25 inactive products which originate in the further first component it may be advantageous to apply a bleed stream containing such inactive products and, when desired, to add further second component in such a quantity as to contain substantially the same quantity of boron as removed via said bleed stream. In particular 30 in continuous polymerization processes the bleed and the addition of further second component are preferably applied substantially simultaneously and in a continuous way.

The polymerization products, for example high molecular weight polymers or mixed alpha-olefins having a chain length of from 5 to 24 carbon atoms, are suitably recovered by conventional methods. A

20

25

35

skilled person will be able to select the techniques which are eligible for the recovery of the particular type of polymer. If desired, unconverted starting material and product having a molecular weight which is lower than the desired molecular weight may be recovered and recycled to be used as starting material in a subsequent polymerization reaction.

The invention will now be further described with reference to the following examples.

The examples were carried out with substantial exclusion of
air and moisture. The quantity of polymer formed was determined by
filtering a sample of the reaction mixture, weighing the solid
material obtained (from which the yield of insoluble polymer could
be calculated) and subjecting the filtrate obtained to gas
chromatographic analysis (from which the yield of soluble polymer
could be calculated). In each of the Examples (except for
Example 5) the sum of the yields of insoluble and soluble polymers
has been given.

EXAMPLE 1 (for comparison)

A solution of 0.001 mole of bis(pentamethylcyclopentadienyl)-zirconium dimethyl in 300 ml toluene was stirred at 90 °C in an autoclave. The autoclave was pressurized with ethene to 10 bar which pressure was maintained by supplying ethene, so that ethene consumed in the reaction could be replenished. After 30 minutes 0.04 g polymer was formed.

At that point in time 0.00001 mole of tri-n-butylammonium 1-carbadodecaborate, dissolved in a small volume of toluene, was added to the reaction mixture. After stirring under ethene pressure for an additional period of 30 minutes 10 g of polymer product was formed.

30 EXAMPLE 2 (for comparison)

A solution of 0.0005 mole of tri-n-butylammonium 1-carbadodecaborate in 100 ml toluene containing 34 g of propene was stirred at 120 °C in an autoclave. The autoclave was pressurised with 10 g of ethene to obtain a total pressure of 30 bar which pressure was maintained by supplying additional

20

25

30

ethene, so that ethene consumed in the reaction could be replenished. After 30 minutes substantially no polymer was formed.

At that point in time 0.0003 mole of bis(pentamethylcyclopentadienyl)zirconium dimethyl, dissolved in a small volume of toluene, was added to the reaction mixture. After stirring under ethene pressure for an additional period of 20 minutes 58 g of polymer product was formed.

EXAMPLE 3

10 1-carbadodecaborate in 50 ml toluene containing 82 g of propene and 0.1 g of ethene was stirred at 100 °C in an autoclave while the resulting total pressure of 31 bar was maintained by supplying additional ethene, so that ethene consumed in the reaction could be replenished. A solution of 0.0002 mole of bis(pentamethyl-cyclopentadienyl)zirconium dimethyl in a small volume of toluene was added. After 90 minutes 2 g of polymer product was formed. No additional polymer was formed during the subsequent period of 2 hours, indicating that the catalyst had become inactive.

After having left the mixture overnight, stirring under ethene pressure was resumed and 0.0001 mole of bis(pentamethylcyclopentadienyl)zirconium dimethyl in a small volume of toluene was added. After stirring for an additional 3 hours an additional quantity of 2.4 g polymer was formed.

EXAMPLE 4

A solution of 0.00015 mole of tri-n-butylammonium 1-carbadodecaborate in 100 ml toluene containing 200 ml of 1-pentene and 1 g of ethene was stirred at 150 °C in an autoclave while the resulting total pressure of 11 bar was maintained by supplying additional ethene, so that ethene consumed in the reaction could be replenished. A solution of 0.0004 mole of bis(pentamethylcyclopentadienyl)hafnium dimethyl in a small volume of toluene was added. During the subsequent 2.5 hours 20 g ethene was supplied and 51.4 g of polymer product was formed. During this period of time it was seen that the rate of ethene supply slowly

- 10 -

decreased to a level of practically zero, indicating that the catalyst became inactive.

A solution of 0.0003 mole of bis(pentamethylcyclopentadienyl)-hafnium dimethyl in a small volume of toluene was subsequently added after which it was seen that the ethene consumption resumed. During the subsequent period of 2 hours 16 g of ethene was supplied and 27.2 g of polymer was formed additionally. Again it was seen that during this period of time the rate of ethene consumption slowly decreased to a level of practically zero, indicating that the catalyst became inactive again.

An additional quantity of 0.0003 mole of bis(pentamethyl-cyclopentadienyl)hafnium dimethyl dissolved in a small volume of toluene was subsequently added after which it was seen that the ethene consumption resumed. During the subsequent period of 1 hour 3 g of ethene was supplied and 8.8 g of polymer was additionally formed.

EXAMPLE 5 (for comparison)

5

10

15

20

25

30

A solution of 0.00005 mole of tri-n-butylammonium 1-carbadodecaborate in 100 ml toluene containing 5.2 g of ethene was stirred at 125 °C in an autoclave while the resulting total pressure of 10 bar was maintained by supplying additional ethene, so that ethene consumed in the reaction could be replenished. A solution of 0.0002 mole of bis(pentamethylcyclopentadienyl)-zirconium dimethyl in a small volume of toluene was added. During the subsequent period of 3 hours 32.8 g of ethene was supplied and 20.5 g of soluble polymer product and some insoluble polymer were formed. During this period of time it was seen that the rate of ethene supply slowly decreased to a level of practically zero, indicating that the catalyst became inactive.

A solution of 0.0002 mole of tri-n-butylammonium 1-carbadodecaborate in a small volume of toluene was subsequently added after which it was seen that the ethene consumption did not resume within an additional period of three hours and that, accordingly, no additional polymer was formed.

15

20

30

35

EXAMPLE 6

Step 1: A solution of 0.0005 mole of tri-n-butylammonium 1-carbadodecaborate in 70 ml toluene was stirred in an autoclave at 40 °C. Ethene was supplied with a total pressure of 40 bar in such a way that ethene consumed in the reaction could be replenished. Then, a solution of 30 ml toluene containing 0.0025 mole of bis(tert-butylcyclopentadienyl)dimethyl hafnium was injected into the reactor. After 25 minutes 20 g of ethene was converted to polymer.

Step 2: 0.005 mole of water was added to stop the reaction whereafter no further reaction was observed over a period of 16 hours.

Step 3: The autoclave effluent, containing toluene, water, deactivated catalyst and polymer, was then transferred to a round bottom flask and purged with nitrogen until a small amount of solid residue remained.

Step 4: This residue was dissolved in 70 ml of toluene and transferred into the autoclave. The temperature was set at 40 °C and the autoclave pressurized with ethene to 40 bar. Then, 30 ml toluene containing 0.0025 mole bis(tert-butylcyclopentadienyl)-dimethyl hafnium was injected into the autoclave. After 25 minutes, 21 g ethene was converted to polymer.

Step 2, 3 and 4 were repeated in the same way and this time 17 g of ethene were converted to polymer in 25 minutes.

25 EXAMPLE 7

A solution of 0.0005 mole tri-n-butylammonium 1 carbadodecaborate in 70 ml toluene was stirred in an autoclave at 40 °C. The autoclave was pressurized with ethene to 40 bar. The pressure was kept constant by replenishing consumed ethene. A solution of 30 ml of toluene containing 0.0005 mole bis(tert-butylcyclopentadienyl)-dimethyl hafnium was then injected into the autoclave. After 25 minutes, 7 g ethene was converted to polymer. An amount of 0.002 mole methanol was added to the reaction mixture whereupon the reaction stopped. In the following sixteen hours there was no observable reaction. The autoclave effluent, containing toluene,

methanol, deactivated catalyst and polymer was then transferred to a round bottom flask. Low boiling components where then evaporated using a nitrogen purge to leave a residue. To this residue 10 ml dry and oxygen free methanol was added and this mixture was agitated at 80 °C for 5 minutes. The mixture was then cooled to room temperature whereupon two phases were formed. The methanol phase was separated and transferred to a second flask. This methanol extraction procedure was repeated three times and the collected methanol fractions were distilled under high vacuum. The 10 residue was dissolved in 70 ml of toluene and transferred to the autoclave. The autoclave was heated to 40 °C and pressurized with ethene to 40 bar. An amount of 0.0005 mole bis(tert-butylcyclopentadienyl)dimethylhafm: n was dissolved in 30 ml of toluene and injected into the autocla e. After a period of 27 minutes, 7 g of 15 ethene was converted into polymer.

The claims defining the invention are as follows:

- 1. A process for the polymerization or co-polymerization of ethylene and/or one or more alpha-olefins comprising contacting the alpha-olefin(s) with a catalyst comprising a first component which is a bis(cyclopentadienyl) Group IVA metal compound containing a substituent capable of reacting with a cation, and a second component which is a compound having a bulky anion containing one or more boron atoms and which is substantially non-coordinating under the reaction conditions and a cation, during which process further first component is added, wherein the cation of the first component is capable of reacting with the cation of the second component.
- 2. A process according to claim 1, characterized in that it is a continuous-mode process, whereby the catalyst present in the product stream leaving the reactor used is deactivated before work-up of the product, and the solid residue remaining after work-up of the product is recirculated to the reactor, as a source of second catalyst component, completed by the addition of fresh first catalyst component.
- 3. A process according to claim 2, characterized in that the deactivation is performed by adding to the product stream water in an amount which is at least equimolar to the amount of active catalyst present.
- 4. A process according to claim 2, characterized in that the deactivation is performed by adding to the product stream a lower alcohol in an amount which is at least 20 equimolar to the amount of active catalyst present.
- 5. A process according to any one of claims 1 to 4, characterized in that the first component is a compound of the formula (Cp)₂MR₁R₂ wherein each group Cp, which may be the same or different, represents a cyclopentadienyl group which may or may not be substituted with hydrocarbyl groups, M represents the Group IVA metal atom, and R₁ and R₂, which may be the same or different, each represent a hydrogen atom or a substituted or unsubstituted hydrocarbyl group.

- 6. A process according to any one of claims 1 to 5, characterised in that the Group IVA metal is zirconium or hafnium.
- 7. A process according to claim 2 or 3, characterised in that each group Cp represents a pentaalkylcyclopentadienyl group and R_1 and R_2 are each alkyl groups.
- 8. A process according to any one of claims 1 to 7, characterised in that the second component comprises a carborane anion as the substantially non-coordinating anion.
- 9. A process according to any one of claims 1 to 8, characterised in that the second component comprises a proton-donating cation.
- 10. A process according to claim 9, characterised in that the second component is a trialkylammonium carborane, the carborane anion being represented by the formula $B_{11}CH_{12}$.
- 11. A process according to any one of claims 1 to 10, characterised in that the catalyst comprises the first component and the second component in a molar ratio within 15 the range of from 0.1 to 20.
- 12. A process according to any one of claims 1 to 11, characterised in that ethene is copolymerised with one or more α-olefins, the ratio of the α-olefin(s) to ethene is within the range of from 50 to 500 moles per mole ethene, the polymerisation is carried out at a temperature within the range of from 50 to 150°C, and at a pressure within the 20 range of from 5 to 60 bar.
 - 13. A process for the polymerisation or co-polymerisation of ethylene and/or one or more α -olefin(s) substantially as hereinbefore described with reference to any one of the Examples but excluding the comparative examples.
- 14. A polymer of ethylene and/or one or more α -olefins produced by the process of any one of claims 1 to 13.

Dated 26 September, 1994
Shell Internationale Research Maatschappij B.V.
Patent Attorneys for the Applicant/Nominated Person
SPRUSON & FERGUSON

INTERNATIONAL SEARCH REPORT

International Application No

PCT/EP 93/00469

I. CLASSIFI	CATION OF SUBJE	CT MATTER (if several classification	on symbols apply, indicate all) ⁶	
According to	o International Patent	Classification (IPC) or to both Nations	ai Classification and IPC	
<pre>Int.Cl.</pre>	5 CO8F10/0	2; C08F4/643		•
U. FIELDS	SEARCHED			
		Minimum Doc	umentation Searched?	
Classification	on System		Classification Symbols	,
	2	<u> </u>		
Int.C1.	5	CO8F ; C07C		
			ther than Minimum Documentation nts are Included in the Fields Searched ⁸	
<u> </u>		D TO BE RELEVANT 9		
Category °	Citation of D	ocument, 11 with indication, where appr	opriate, of the relevant passages 12	Relevant to Claim No.13
A	EP,A,0 /	443 686 (SHELL)		1
	cited i	n the application whole document		•
A .	15 May			1
		n the application whole document		
		 -		
,				
"A" doc	I categories of cited do sument defining the ge asidered to be of partic	neral state of the art which is not	"T" later document published after the intern or priority date and not in conflict with t cited to understand the principle or theo invention	he application but
filiu "L" doc	ng date: :ument which may thro	lished on or after the international we doubts on priority claim(s) or the publication date of another	"X" document of particular relevance; the cla cannot be considered novel or cannot be involve an inventive step	considered to
cita "O" doc otb	ition or other special r cument referring to an er means	esson (as specified) oral disclosure, use, exhibition or	"Y" document of particular relevance; the cla cannot be considered to involve an inven document is combined with one or more ments, such combination being obvious t in the art.	tive step when the other such docu-
	current published prior or than the priority da	to the international filing date but te claimed	"A" document member of the same patent fa	mily
IV. CERTI	FICATION			
Date of the	Actual Completion of	the International Search	Date of Mailing of this International Sea	rch Report
_		MAY 1993	1 4. 06. 93	
Internationa	d Searching Authority		Signature of Authorized Officer	
Ī	EUROPE	AN PATENT OFFICE	DE ROECK R.G.	

Perm PCT/ISA/210 (second sheet) (Jamesey 1985)

ANNEX TO THE INTERNATIONAL SEARCH REPORT ON INTERNATIONAL PATENT APPLICATION NO.

EP 9300469 SA . 70949

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report.

The members are as contained in the European Patent Office EDP file on

The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

28/05/93

Publication date			Publication date
28-08-91	CN-A-	1054987	02-10-91
	JP-A-	4211616	03-08-92
15-05-91	US-A-	5155080	13-10-92
	CA-A-	2027144	11-04-91
	CN-A-	1053797	14-08-91
	JP-A-	3179006	05-08-91
	28-08-91	28-08-91 CN-A- JP-A- 15-05-91 US-A- CA-A- CN-A-	28-08-91 CN-A- 1054987 JP-A- 4211616 15-05-91 US-A- 5155080 CA-A- 2027144 CN-A- 1053797