UNITED STATES PATENT OFFICE

2.002.645

DISTILLATE PETROLEUM PRODUCT AND METHOD OF TREATING SAME

James B. Rather and Leslie C. Beard, Jr., Brooklyn, and Orland M. Reiff, Jackson Heights, N. Y., assignors to Socony-Vacuum Oil Company, Incorporated, New York, N. Y., a corporation of New York

No Drawing. Original application November 26, 1926, Serial No. 151,005. Divided and this application May 23, 1933, Serial No. 672,514

5 Claims, (Cl. 44-9)

This application is a division of our copending application Serial No. 151,005, filed November 26,

This invention relates to distillate petroleum products and to method of treating same to prevent spontaneous discoloration and formation of odor therein.

It is well recognized that the distributors and consumers of kerosene and gasoline insist that these products be clear and free from discoloration and odor as an entirely distinct and separate matter from the actual capabilities and usefulness of the products for the ordinary uses for which they are intended. It is also well recognized that kerosene and gasoline spontaneously become unclear, discolored and odorous gradually upon continued exposure to air, thus after a while becoming objectionable to the trade.

The principal object of this invention is to provide a distillate petroleum product, notably kerosense and gasoline, which will remain clear and free from discoloration and odor without impairment or lowering of its effectiveness and capabilities for use; and to provide a simple and inexpensive method of producing a distillate petroleum product having the characteristics and qualities referred to.

Other objects of this invention will be in part obvious and in part pointed out hereinafter.

In accordance with this invention, the improved product consists of a petroleum distillate, notably kerosense and gasoline, containing a negative oxidation catalyst. The catalyst may be added in the still during distillation, or placed in the con-35 denser in which the distillate is condensed, or the catalyst may be added to the distillate after removal from the condenser, it being advisable, however, to add the catalyst before any appreciable quantity of atmospheric oxygen has been tak-40 en up by the distillate, because such oxygen is apt to cause the formation in the distillate of substances which are apt to promote the addition of further oxygen and may tend to offset any advantage to be gained by the subsequent addi-45 tion of the negative oxidation catalyst. These objectionable substances, while frequently colorless and odorless, are apt to undergo change resulting in the development of objectionable color and odor. 50

The negative oxidation catalysts or catalysts should be of such nature that when added to kerosene or gasoline in sufficient quantities for the purpose they do not affect the color and odor, or materially increase the cost of production, since

such effects would raise commercial objections to the product.

If the distillate requires to be sweetened either before or after treatment with the catalyst, the catalyst should be of a nature such that it will 5 not react with sodium plumbite.

The following substances and classes of substances are mentioned as suitable for the treatment above described:

Aliphatic alcohols; for instance, a butyl alcohol. 10
Aromatic alcohols; for instance, benzyl alcohol.
Aromatic aldehydes; for instance, benzyl aldehyde.

Aromatic amines; for instance, alpha naphthylamine.

Substituted phenols and poly phenols; for instance, cresol and hydroquinone.

Ureas and urea derivatives; for instance, urea and thiourea.

Alkaloids; for instance, brucine and nicotine. For the practice of this invention we prefer to use secondary or tertiary butyl alcohol alone or in admixture with hydroquinone or brucine. In the latter case a saturated solution of hydroquinone or brucine in secondary or tertiary butyl alcohol is used, the secondary or tertiary butyl 25 alcohol serving to facilitate the solution of the hydroquinone or brucine in the oil. The amounts of secondary or tertiary butyl alcohol, or of the saturated solution of hydroquinone or brucine in secondary or tertiary butyl alcohol, may vary 30 from 1 part in 5 thousand to 1 part in 50 thousand, depending upon the amount of stabilization desired, the character of the distillate, i. e., its susceptibility to oxidation, and the storage temperature.

Any of the above mentioned substances are suitable either alone or in combination with others. It is never required to add more than 0.02% to the kerosene or gasoline, and the amount may be as small as 1 part negative catalyzer to 500 thousand parts oil.

It will be apparent from the above that this invention is directed primarily to preventing discoloration and formation of odor in the lighter petroleum distillates, notably those of A. P. I. gravity higher than 37 degrees, and particularly kerosene and gasoline. Consumers and distributors of these products require that they be clear and free from discoloration and objectionable odor without considering the question of serviceability for the use intended.

Kerosene and gasoline, however, must be maintained comparatively inexpensive in order to satisfactorily cope with commercial competition, and 55

therefore any treatment must be such that the cost of production is not increased a prohibitive amount. Applicants' method satisfactorily meets this delicate situation since the amounts 5 of negative catalyst the treatment requires are so small that increase in the cost of manufacture and price to the consumer is negligible. At the same time the treated kerosene and gasoline is capable of being stored and handled without 10 danger of its becoming discolored or odorous.

It is understood that this invention is not intended to be limited to the precise substances mentioned specifically, nor to the exact proportions stated, since applicants have described 15 merely certain possible applications of the in-

vention which are preferred at this time.

We claim:

1. The method of stabilizing the characteristics of a low boiling light colored distillate petroleum 20 product of the class of gasoline or kerosene that normally tends to develop objectionable products of oxidation during storage, which may be evidenced generally by discoloration of the product which comprises adding to the product and substantially completely dissolving therein a small quantity of urea sufficient substantially to retard the formation of said objectionable products of oxidation, but not more than 0.02%.

2. The method of stabilizing the characteris-30 tics of a low boiling light colored distillate petroleum product of the class of gasoline or kerosene that normally tends to develop ob-

jectionable products of oxidation during storage, which may be evidenced generally by discolora-35 tion of the product which comprises adding thereto a small quantity of thiourea sufficient substantially to retard the formation of said objectionable products of oxidation.

3. A low boiling light colored hydrocarbon fuel product of the class of gasoline or kerosene normally tending to develop objectionable oxidation products during storage, which may be evidenced generally by discoloration of the product having added thereto and substantially completely dissolved therein, as an addition agent incorporated into the said product which normally does not contain said agent, a small quantity of a derivative of urea sufficient in amount substantially to 10 retard the formation of said objectionable products of oxidation, but not more than 0.02%.

4. A low boiling light colored hydrocarbon fuel product of the class of gasoline or kerosene normally tending to develop objectionable oxidation 15 products during storage, which may be evidenced generally by discoloration of the product having added thereto and substantially completely dissolved therein, as an addition agent incorporated into the said product which normally does not 20 contain said agent, a small quantity of urea sufficient in amount substantially to retard the formation of said objectionable products of oxidation, but not more than 0.02%.

5. A low boiling light colored hydrocarbon fuel 25 product of the class of gasoline or kerosene normally tending to develop objectionable oxidation products during storage, which may be evidenced generally by discoloration of the product having added thereto, as an addition agent in- 30 corporated into the said product which normally does not contain said agent, a small quantity of thiourea sufficient in amount substantially to retard the formation of said objectionable products of oxidation. 35

> JAMES B. RATHER. LESLIE C. BEARD, JR. ORLAND M. REIFF.