
(19) United States
US 20120079486A1

(12) Patent Application Publication (10) Pub. No.: US 2012/0079486A1
Brandt et al. (43) Pub. Date: Mar. 29, 2012

(54) INTEGRATION OF DISSIMILARJOBTYPES
INTO AN EARLIEST DEADLINE FIRST (EDF)
SCHEDULE

Scott A. Brandt, San Jose, CA
(US); Richard A. Golding, San
Francisco, CA (US); Theodore M.
Wong, Mountain View, CA (US)

(75) Inventors:

INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

(73) Assignee:

(21) Appl. No.: 12/889,263

(22) Filed: Sep. 23, 2010

EDF Schedule

Rate Deadline
R D 1
R D 2
R D 3

Publication Classification

(51) Int. Cl.
G06F 9/46 (2006.01)

(52) U.S. Cl. .. 71.8/102
(57) ABSTRACT

A system for inserting jobs into a scheduler of a processor
includes the processor and the scheduler. The processor
executes instructions related to a plurality of jobs. The sched
uler implements an earliest deadline first (EDF) scheduling
model. The scheduler also receives a plurality of jobs from an
EDF schedule. The scheduler also receives a separate job
from a source other than the EDF schedule. The separate job
has a fixed scheduling requirement. The separate job also may
be a short duration sporadic job. The scheduler also inserts the
separate job into an execution plan of the processor in
response to a determination that an available utilization
capacity of the processor is sufficient to execute the separate
job according to the fixed scheduling requirement associated
with the separate job.

112

Static Schedule

Integrated Schedule

o
1
1
2
2
3

Rate Deadline

Patent Application Publication Mar. 29, 2012 Sheet 1 of 5 US 2012/007948.6 A1

1OO N
102

PrOCeSSOr

ExeCution Plan

EDF SCheduler

EDF Static/Sporadic
Processes Processes

Application Application
Static

Schedule

FIG. 1

Patent Application Publication Mar. 29, 2012 Sheet 2 of 5 US 2012/007948.6 A1

108 112

EDF SChedule Static Schedule

Rate Deadline Job Instant
R 1 D 1 1
R 2 D 2
R 3 D 3

Integrated Schedule

Job Rate Deadline
1 D 1
1
2

J
|-
|
J
J

i 1
i 2

2 D 2
3 D 3

Patent Application Publication Mar. 29, 2012 Sheet 3 of 5 US 2012/007948.6 A1

140 N

142

Utilization Static 132 Integration Engine Engine

Integrated Schedule

114

Rate Deadline
R 1

R
R

FG. 3

Patent Application Publication Mar. 29, 2012 Sheet 4 of 5 US 2012/007948.6 A1

Sporadic
Job

154

D 1
D 2
d S
D 3

Patent Application Publication Mar. 29, 2012 Sheet 5 of 5 US 2012/007948.6 A1

2OO N

Receive a plurality of jobs
for an EDF Schedule

Receive a separate job with
a fixed scheduling requirement

Determine an amount Of available
utilization capacity of the processor

Sufficient utilization
capacity?

YES

Insert the separate job into an
execution plan of the processor

FIG. 5

204

21 O

Generate a notification Of
insufficient utilization capacity

212

US 2012/007948.6 A1

INTEGRATION OF DISSMLARUOB TYPES
INTO AN EARLIEST DEADLINE FIRST (EDF)

SCHEDULE

STATEMENT OF FEDERALLY SPONSORED
RESEARCH

0001. This invention was made with Government support
under Contract No. HR0011-08-C-0031 awarded by Defense
Advanced Research Projects Agency (DARPA). The Govern
ment has certain rights in the invention.

BACKGROUND

0002 Many systems, including embedded systems, have
real-time timeliness constraints on their processing. Such
systems often interact with the real world and/or users and
have specific constraints on when they must respond to
events, produce results, etc. Some examples of such systems
include Safety-critical systems such as anti-lock brakes, con
trol systems such as flight control systems, multimedia sys
tems such as video or audio players, and so forth. Systems
intended to address such real-time situations must be care
fully designed to ensure the timing requirements of the appli
cations they are built to execute.
0003. The CPU scheduler is a core operating system com
ponent responsible for managing the execution scheduling of
different programs. The CPU scheduler is responsible for
determining which program to run at any given time. Where
programs have implicit or explicit timeliness constraints or
deadlines, the CPU scheduler is primarily responsible for
ensuring that the applications execute in time to satisfy the
timeliness constraints or deadlines. Many different operating
systems and CPU schedulers have been developed to address
various sorts of timing requirements.
0004 One type of scheduler that is frequently used in
legacy systems (e.g., military and aerospace systems) is based
on static schedules. Static schedules are very basic table
driven schedules that include an ordered list of tasks along
with a set of times at which those tasks should occur. Upon
completion of all of the tasks in the list, the list typically
repeats with a fixed frequency, or period. Static schedules are
common in legacy systems due in part to their extreme sim
plicity. However, static schedules are limited in their use
because each static schedule is essentially hand-designed to
ensure that all work can be completed in the time available.
This is feasible only for small task sets.
0005. In contrast to static schedules, other schedulers use
dynamic schedules. One type of dynamic schedule is a
dynamic priority-based schedule. Priority scheduling (e.g.,
rate monotonic (RM)) assigns a static priority to each con
currently executing task. Tasks are executed according to
their priority, with the highest priority task that is currently
executable always selected for execution. A limitation of
static priority-based schedules is that in general only a rela
tively low fraction of the CPU utilization may be guaranteed.
Another type of dynamic schedule is a dynamic deadline
based schedule. Deadline scheduling assigns a set of dead
lines to each task. In one deadline-based scheduling algo
rithm known as earliest deadline first (EDF), the system
always runs the task with the earliest deadline. An advantage
of EDF is that 100% of the CPU utilization may be guaran
teed. However, EDF is less frequently used due to concerns
about its overhead. Recent research indicates that deadline

Mar. 29, 2012

based schemes are effective in Supporting a broad range of
types of processes ranging from best-effort to hard real-time.
0006 An advantage of RM and EDF dynamic scheduling
schemes is that they allow the concurrent execution of differ
ent applications with different timeliness requirements with
less hand-integration than a static schedule. In this way, each
application can be admitted to the system based on knowl
edge of the resource availability, without detailed knowledge
of the other applications. A potential disadvantage of RM and
EDF dynamic scheduling is that they are incapable of Sup
porting legacy processes designed to operate in isolation with
static schedulers. This prevents the migration of legacy appli
cations and systems to modern multi-programmed process
ing platforms. Since legacy applications that use static sched
uling are common in aerospace, automotive, and other
industries, there are many legacy applications that currently
cannot be integrated into modern multi-programmed process
ing platforms that use dynamic scheduling.

SUMMARY

0007 Embodiments of a computer program product are
described. The computer program product includes a com
puter readable storage medium to store a computer readable
program that, when executed on a computer, causes the com
puter to perform operations for scheduling jobs on a proces
sor. The scheduler implements an EDF scheduling model. In
one embodiment, the operations include receiving a plurality
of jobs for an earliest deadline first (EDF) schedule. The
operations also include receiving one or more separate jobs
with a fixed scheduling requirement. In some embodiments,
the separate job additionally or alternatively may be a short
duration sporadic job. The operations also include determin
ing an amount of available utilization capacity of the proces
sor. The operations also include inserting the separate job into
an execution plan of the processor in response to a determi
nation that the available utilization capacity of the processor
is Sufficient to execute the separate job according to the fixed
scheduling requirement associated with the separate job.
Other embodiments of the computer program product and
corresponding operations are also described.
0008 Embodiments of a system are also described. In one
embodiment, the system includes a processor and a scheduler.
The processor executes instructions related to a plurality of
jobs. The scheduler implements an earliest deadline first
(EDF) scheduling model. The scheduler also receives a plu
rality of jobs for an EDF schedule. The scheduler also
receives a separate job with a fixed scheduling requirement.
The scheduler also inserts the separate job into an execution
plan of the processor in response to a determination that an
available utilization capacity of the processor is sufficient to
execute the separate job according to the fixed scheduling
requirement associated with the separate job. Other embodi
ments of the system are also described.
0009 Embodiments of a method are also described. In one
embodiment, the method is implemented within a scheduler
for a processor. The scheduler implements an earliest dead
line first (EDF) scheduling model. An embodiment of the
method includes receiving a plurality of jobs for an EDF
schedule. The method also includes receiving a separate job
with a fixed scheduling requirement with a specific execution
time. The method also includes determining an amount of
available utilization capacity of the processor. The method
also includes inserting the separate job into an execution plan
of the processor with the plurality of jobs from the EDF

US 2012/007948.6 A1

schedule in response to a determination that the available
utilization capacity of the processoris Sufficient to execute the
separate job according to the fixed scheduling requirement
associated with the separate job. Other embodiments of the
method are also described.
0010. Other aspects and advantages of embodiments of
the present invention will become apparent from the follow
ing detailed description, taken in conjunction with the accom
panying drawings, illustrated by way of example of the prin
ciples of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

0011 FIG. 1 depicts a schematic block diagram of one
embodiment of a computer system for integrating dissimilar
job types into an integrated Schedule for dynamic scheduling.
0012 FIG. 2 depicts a schematic diagram of one embodi
ment of a process for integrating static jobs into an EDF
schedule.
0013 FIG.3 depicts a schematic diagram of one embodi
ment of a process for inserting idle jobs into the integrated
Schedule of FIG. 2.
0014 FIG. 4 depicts a schematic diagram of one embodi
ment of a process for integrating a sporadic job into an EDF
schedule.
0015 FIG.5 depicts a flow chart diagram of one embodi
ment of a method for operating the EDF scheduler for the
processor within the computer system of FIG. 1.
0016. Throughout the description, similar reference num
bers may be used to identify similar elements.

DETAILED DESCRIPTION

0017. In the following description, specific details of vari
ous embodiments are provided. However, some embodiments
may be practiced with less than all of these specific details. In
other instances, certain methods, procedures, components,
structures, and/or functions are described in no more detail
than to enable the various embodiments of the invention, for
the sake of brevity and clarity.
0018. It will be readily understood that the components of
the embodiments as generally described herein and illustrated
in the appended figures could be arranged and designed in a
wide variety of different configurations. Thus, the following
more detailed description of various embodiments, as repre
sented in the figures, is not intended to limit the scope of the
present disclosure, but is merely representative of various
embodiments. While the various aspects of the embodiments
are presented in drawings, the drawings are not necessarily
drawn to Scale unless specifically indicated.
0019. The present invention may be embodied in other
specific forms without departing from its spirit or essential
characteristics. The described embodiments are to be consid
ered in all respects only as illustrative and not restrictive. The
scope of the invention is, therefore, indicated by the appended
claims rather than by this detailed description. All changes
which come within the meaning and range of equivalency of
the claims are to be embraced within their scope.
0020 Reference throughout this specification to features,
advantages, or similar language does not imply that all of the
features and advantages that may be realized with the present
invention should be or are in any single embodiment of the
invention. Rather, language referring to the features and
advantages is understood to mean that a specific feature,
advantage, or characteristic described in connection with an

Mar. 29, 2012

embodiment is included in at least one embodiment of the
present invention. Thus, discussions of the features and
advantages, and similar language, throughout this specifica
tion may, but do not necessarily, refer to the same embodi
ment.

0021. Furthermore, the described features, advantages,
and characteristics of the invention may be combined in any
suitable manner in one or more embodiments. One skilled in
the relevant art will recognize, in light of the description
herein, that the invention can be practiced without one or
more of the specific features or advantages of a particular
embodiment. In other instances, additional features and
advantages may be recognized in certain embodiments that
may not be present in all embodiments of the invention.
0022 Reference throughout this specification to “one
embodiment,” “an embodiment, or similar language means
that a particular feature, structure, or characteristic described
in connection with the indicated embodiment is included in at
least one embodiment of the present invention. Thus, the
phrases “in one embodiment,” “in an embodiment and simi
lar language throughout this specification may, but do not
necessarily, all refer to the same embodiment.
0023. While many embodiments are described herein, at
least some of the described embodiments facilitate integrat
ing non-EDF jobs with EDF jobs within an EDF scheduling
model. In some embodiments, statically scheduled tasks are
executed concurrently with other tasks in a multiprogrammed
real-time environment. In other embodiments, short-duration
sporadic jobs (which may or may not be part of a static job
schedule) are safely executed in a multiprogrammed real
time environment. More specifically, short-duration periodic
or aperiodic pieces of code may be executed in a system
Scheduled with EDF.

0024. As a result of the embodiments described herein,
multiprogrammed real-time systems may safely execute
legacy code, or other high-priority code Such as interrupt
service routines, which are designed to execute at specific
times. Additionally, the execution of Such legacy code can be
implemented without causing other real-time and non-real
time processes to violate their timing requirements. This
includes jobs implemented via legacy code designed for
execution on isolated processors via static schedules. This
enables legacy code to execute in modern real-time environ
ments and facilitate graceful transitions from legacy code to
modern real-time code designed for multiprogrammed envi
ronments. In other embodiments, the executed code is not
necessarily legacy code.
0025. As a matter of convenience, the terms “task” and
job' are used interchangeably within this description. These

terms are not intended to have specific meanings herein, other
than to reference a general amount of executable instructions
or code. There is not necessarily any correlation between a
task or job and a specific amount of code or typical types of
scheduled units such as processes or threads (although some
examples may use implementations with processes and/or
threads). Additionally, there is no restriction on the type of
multiprogramming environment in which tasks or jobs may
be executed.
0026 FIG. 1 depicts a schematic block diagram of one
embodiment of a computer system 100 for integrating dis
similar job types into an integrated Schedule for dynamic
scheduling. Although the computer system 100 is illustrated
with specific component parts which are described with cer
tain functionality, other embodiments of the computer system

US 2012/007948.6 A1

100 may include fewer or more component parts capable of
implementing more or less functionality.
0027. In the illustrated embodiment, the computer system
100 includes a processor 102 and a memory 104. The proces
sor 102 is representative of any type of processor which
executes instructions or program code. Some examples of
Such processors include, but are not limited to, a central
processing unit (CPU), a graphics processing unit (GPU), a
microprocessor, a coprocessor, or another similar type of
processor. In some embodiments, the illustrated processor
102 is representative of a multi-processor environment in
which multiple processors cooperatively execute tasks or jobs
in a multi-threaded or other parallel processing approach.
0028. The memory 104 is representative of any type of
memory that can store instructions or program code for
execution by the processor 102. In some embodiments, the
memory 104 is separate from the processor 102, as in the case
of main memory or lower levels of cache. In other embodi
ments, the memory 104 is integrated with the processor 102.
as in the case of higher levels of cache that are implemented
on the same die as the processor 102.
0029. The depicted memory 104 stores a program appli
cation 106 that is designed for execution on the processor 102.
The application 106 may be designed to be implemented
according to an EDF schedule 108. In this way, the applica
tion 106 is designed for implementation so that the task with
the earliest deadline is implemented first, at any given time
during the execution of the application 106.
0030 The memory 104 also stores another program appli
cation 110 that is not natively designed for execution accord
ing to an EDF schedule. Rather, this application 110 is
designed for execution according to a static schedule 112. In
Some embodiments, this type of situation occurs when a
legacy application 110 from a legacy system (not shown) is
loaded into the memory 104 of the computer system 100. The
legacy system may have been specially designed to imple
ment the static schedule 112 of the legacy application 110
and, thus, is not inherently compatible with the computer
system 100 onto which it is loaded.
0031. The processor 102 includes an EDF scheduler 114
that schedules tasks for processing by the processor 102.
Specifically, the EDF scheduler 114 schedules the tasks
according to an EDF scheduling model. In a specific embodi
ment, the EDF scheduler 114 implements a rate-based earliest
deadline (RBED) scheduling model. For implementation of
the EDF scheduling model, each task has an associated dead
line, and the scheduler 114 schedules the tasks so that the
tasks with the earliest deadlines are processed before the tasks
with later deadlines. Assuming the processor 102 has suffi
cient resources, the scheduler 114 can satisfy all of the asso
ciated deadlines by allocating processor time for execution of
specific tasks prior to their corresponding deadlines.
0032. In the illustrated embodiment, the EDF scheduler
114 schedules tasks for both of the applications 106, 110
stored in the memory. Hence, the scheduler 114 schedules
EDF processes 116 for the application 106 designed for
implementation with the EDF schedule 108. Also, the sched
uler 114 schedules static/sporadic processes 118 for the appli
cation 110 designed for implementation with the static sched
ule 112.

0033. In one embodiment, the scheduler 114 takes the
tasks (e.g., processes 116, 118) for the applications 106, 108
and creates an execution plan 120 for use by the processor
102. In one embodiment, the scheduler 114 may create and

Mar. 29, 2012

store an actual execution plan 120 prior to execution of the
tasks by the processor 102. If the execution plan 120 is stored
for later execution, the execution plan 120 may be stored in
the memory 104 or on another memory device (e.g., on-board
cache) coupled to the scheduler 114. In another embodiment,
the scheduler 114 dynamically creates the execution plan 120
so that the execution plan is created by the scheduler 114 at
approximately the same time that the tasks are executed by
the processor 102.
0034 FIG. 2 depicts a schematic diagram of one embodi
ment of a process 130 for integrating static jobs into an EDF
schedule. For reference, certain component parts of the com
puter system 100 are shown in FIG. 2. However, the flow of
data and processing operations depicted in FIG. 2 are not
necessarily indicative of a specific physical layout or data
coupling of Such component parts within the computer sys
tem 100.

0035. A periodic real-time task commonly includes a unit
of work called a job that is repeatedly executed with a fre
quency equal to 1/p, where p is the period of the task. Thus, a
task with a period of/10 of a second would execute the job as
many as ten times per second. Jobs become ready to run at
their release time and must complete by their deadline. A
common practice is to make the deadline of the previous job
the release time of the next job, and to set the deadline of each
job equal to the period of the task. In that scenario, the execu
tion of the task includes a sequence of jobs—one job per
period, and each job is ready to run as soon as the previous
job's deadline has been reached. Other embodiments may be
implemented with other possible configurations that use dif
ferent release times and/or deadlines.

0036. In the illustrated embodiment, the scheduler 114
includes a static integration engine 132 which uses the EDF
schedule 108 and the static schedule 112 to generate an inte
grated schedule 134. An example of the EDF schedule 108 is
shown in table format, including a list of jobs (designated as
J 1 through J. N) with associated deadlines (D 1-D N).
The deadline indicates the time at which the job must be
completed.
0037. In one embodiment, tasks also may have associated
rates (R 1-R N) that indicate the fraction of the total pro
cessor time they will receive between each of their deadlines.
To enforce these rates, a timer may be set to interrupt the
processing of any job to prevent it from using more than its
assigned rate by its assigned deadline. Each task initially has
a budget. In one embodiment, the budget is calculated as
B i=RiP i, where R i is the task's rate, and P i is the time
between consecutive deadlines of the same task. Other
embodiments may use other mathematical operations or algo
rithms to calculate the budget for a specific task. For example,
in some embodiments, that budget may be calculated accord
ing to B i=R i? P. i. Each time a task executes, B i is reduced
by the amount of time the task executed. When the task is
executed, the timer is set to go off B i time units in the future.
Upon receipt of Such an interrupt, the scheduler may set the
corresponding task to a state that is not currently executable
and proceed to execute the executable task with the highest
priority (earliest deadline). If the task will execute again with
a new deadline, B i may be replenished (e.g., again set to
R iP i) when the previous deadline has been reached.
0038 An example of the static schedule 112 is also shown.
The depicted static schedule 112 includes a list of jobs (des
ignated as 1 through n) and corresponding instants (i 1
i n), which are also referred to as critical instants. In a legacy

US 2012/007948.6 A1

system, the static schedule 112 would be executed on a dedi
cated processor that is not running any other jobs or tasks. The
critical instants indicate the times by which the corresponding
jobs must be completed and, in some embodiments, at which
the next job must be started.
0039 Typically, this type of static schedule would be
designed for a specific processing environment to ensure that
the tasks are executed exactly as indicated in the schedule to
satisfy the critical instants. However, in embodiments
described herein, the EDF scheduler 114 is capable of inte
grating the static jobs into a dynamic schedule for implemen
tation on a processor other than the specific processor for
which the static schedule was designed.
0040. One example of an integrated schedule 134 is shown
in FIG. 2. The integrated schedule 134 includes the jobs from
both the EDF schedule 108 and the static schedule 112. In one
embodiment, the entire static schedule 112 is treated as a
non-periodic real-time task, and the critical instants of the
static jobs are used as the deadlines of the jobs in the task in
the integrated schedule 134. When all of the jobs in the static
schedule 112 have completed, the entire set of jobs may be
repeated, similar to the way that individual jobs in a periodic
task are repeated.
0041. In one embodiment, the scheduler 114 also gener
ates a new rate (designated as r S) corresponding to the task
containing the static jobs. In one embodiment, some or all of
the static jobs are combined into a single task with a rater S
that is a Summation of individual rates (r. 1 through r n) that
would otherwise be associated with the individual static jobs.
An example of how to generate this rate is described in more
detail below. However, embodiments of the scheduler 114
may use various methods for generating and assigning rates to
the static jobs within the integrated schedule 134.
0042. In one embodiment, the scheduler 114 is an RBED
integrated real-time scheduler which supports a variety of
different types of processes. The scheduler 114 supports dif
ferent processes by reserving a rate for each task. The rate
may be expressed as any type of resource allocation for the
processor 102. In one embodiment, the rate is expressed as a
percentage of CPU processing cycles. In some embodiments,
the deadlines, or times at which the indicated resource allo
cation is expected to equal the corresponding reservation, are
also represented. By implementing the scheduler 114 in this
manner, all tasks and jobs, including static tasks and jobs, are
scheduled according to EDF, or more specifically according
to RBED

0043. In one embodiment, the scheduler 114 implements
RBED to support statically scheduled tasks in the following
manner. In this example, a static schedule (S) is designed to
operate on a CPU (C 1) with a known frequency (F 1). The
scheduler (S) schedules a set of jobs (J-j 1,j 2, ... j_n})
that have critical instants (I-i 2, i 3. . . . , i_n}) corre
sponding to the start times and finish times of the tasks in the
static schedule. In other words, job j 1 must finish before
time i 1, and jobj 2 must start at time i 1 and finish before
time i 2.
0044. In order to run the jobs (J) that are originally in the
static schedule (S) on a second CPU (C 2) with a frequency
(F 2: where F 2 is greater than F 1) that also may be
running other tasks Scheduled with EDF, having assigned
rates and deadlines, additional parameters are generated for
the jobs (J). In particular, the jobs (J) can run on the second
CPU (C 2) concurrently with other tasks by assigning the
task containing jobs (J) the following processing parameters:

Mar. 29, 2012

Rate = F 2: and Deadlines = {i_1, i_2, ... , i n}.

0045. In one embodiment, the RBED implementation
ensures that each task starts and finishes at the appropriate
times. This is accomplished by ensuring that the expected
resources, exactly equivalent to the resources that would be
provided by the first CPU (C 1), are available between any
two critical instants La and i b. In other words, the scheduler
114 makes Sure that the same or similar processing resources
are available for the static jobs as the processing resources
that would be available on another processor for which the
static schedule is designed.
0046. It should also be noted that although embodiments
are described herein with specific reference to RBED, other
embodiments may be implemented with another scheduling
model based upon EDF, for example cluster based scheduling
(CBS) or variable rate execution (VRE).
0047 FIG.3 depicts a schematic diagram of one embodi
ment of a process 140 for inserting idle jobs into the inte
grated schedule of FIG. 2. In some embodiments, it may be
useful to obscure the actual execution times of the jobs (J)
from the static schedule (S) within the integrated schedule
134. For example, there may be security reasons to prevent or
impair detection of the execution times via covert channels
based on CPU usage. In one embodiment, idle times within
the static schedule (S) can be allocated to idle tasks that
consume any unused CPU time.
0048. In the illustrated embodiment, the scheduler 114
includes a utilization engine 142 to identify idle times within
the static schedule (S) and to generate idle jobs (designated as
j iAA and iB) that consume some or all of the unused CPU
time. Corresponding deadlines (i iA and i iB) (and option
ally rates (r iA and r iB)) are also generated. Alternatively,
some or all of the idle time may be available for allocation to
other processes.
0049 FIG. 4 depicts a schematic diagram of one embodi
ment of a process 150 for integrating a sporadic job 152 into
an EDF schedule. For reference, certain component parts of
the computer system 100 are shown in FIG. 4. However, the
flow of data and processing operations depicted in FIG. 4 are
not necessarily indicative of a specific physical layout or data
coupling of Such component parts within the computer sys
tem 100.

0050. In some embodiments the sporadic jobs include
interrupt service routines or jobs related to other externally
generated events.
0051. In the illustrated embodiment, the scheduler 114
includes a sporadic integration engine 154 which integrates
the sporadic job 152 with the EDF schedule 108 to generate
the integrated schedule 134.
0052. In an embodiment using the RBED scheduler, spo
radic jobs may be handled by assigning to the job (designated
S 1) a corresponding rate (r. 1) and deadline (d 1). The job
then may be scheduled along with all other jobs handled by
the RBED scheduler.
0053. In the illustrated example of the integrated schedule
134, the sporadic job (designated as j S) is scheduled
between dynamic jobs J. 2 and J 3. Also, the scheduler 114
generates a corresponding rate (r. S) and deadline (d S) for
the sporadic job (S).

US 2012/007948.6 A1

0054. In an RBED embodiment, the rate assigned to a
sporadic job must be chosen so that the Sum of the assigned
rates is less than or equal to 100% of the CPU. In particular,
if R is the sum of all of the assigned rates in the system prior
to the arrival of the sporadic job, then the sporadic job may be
assigned any rate r S up to r=100%-R. If the sporadic job
should complete as quickly as possible, then it should be
assigned the rater Sr.
0055. If a sporadic job has a worst case execution time
e S, then its deadlined S may be set to its arrival time+e
S*r S. The rater S is considered to be allocated and unavail
able until either the deadline or until the arrival time e' Sir S,
whichever is later, where e' S is the actual execution time of
the job.
0056. If the resulting deadline of the sporadic job is the
earliest deadline in the system, the job may begin execution
immediately and, as long as no other job enters the system
with an earlier deadline, it may safely execute to completion
without interfering with the processing of any other job or
task. This is useful in the case of interrupt service routines and
other urgent but not necessarily compute-intensive sporadic
processing.
0057 This functionality can be used in at least two ways.
First this type of functionality can be used for determining the
feasibility of specific jobs or tasks with fixed scheduling
requirements in a system of tasks scheduled with EDF. Sec
ond, this type of functionality can be used for determining at
run-time when it is safe to allow interrupt service routines (or
other asynchronous events) to be executed. As described
above, the scheduler 114 may implement RBED or another
type of EDF scheduling model.
0058 FIG.5 depicts a flow chart diagram of one embodi
ment of a method for operating the EDF scheduler 114 for the
processor 102 within the computer system 100 of FIG. 1.
Although the method 200 for determining integration param
eters is described in conjunction with the computer system
100 of FIG. 1, other embodiments of the method 200 may be
implemented with other types of computer systems.
0059. In the illustrated embodiment, the depicted method
200 includes receiving 202 a plurality of jobs for an earliest
deadline first (EDF) schedule. In one embodiment, the EDF
scheduler 114 implements an EDF scheduling model using
the jobs. The EDF scheduler 114 also receives 204 a separate
job that is, in Some embodiments, from a source other than the
EDF schedule. The separate job has a fixed scheduling
requirement with a specific execution time. In some embodi
ments, the separate job is a short duration sporadic job, and
the fixed scheduling requirement is associated with the spo
radic job. The EDF scheduler 114 then determines 206 an
amount of available utilization capacity of the processor 102.
If the EDF Scheduler 114 determines 208 that there is insuf
ficient utilization capacity, then the EDF scheduler 114 may
generate 210 a notification of the insufficient utilization
capacity. Alternatively, the EDF scheduler inserts 212 the
separate job into an execution plan of the processor 102 with
the plurality of jobs from the EDF schedule 108 in response to
a determination 208 that the available utilization capacity of
the processor 102 is sufficient to execute the separate job
according to the fixed scheduling requirement associated
with the separate job. The depicted method 200 then ends.
0060. It should also be noted that at least some of the
operations for the methods may be implemented using soft
ware instructions stored on a computer useable storage
medium for execution by a computer. As an example, an

Mar. 29, 2012

embodiment of a computer program product for inserting
jobs into a scheduler, which implements an EDF scheduling
protocol, of a processor includes a computer useable storage
medium to store a computer readable program that, when
executed on a computer, causes the computer to perform
operations. In one embodiment, the operations include
receiving a plurality of jobs from an earliest deadline first
(EDF) schedule. The operations also include receiving a
separate job from a source other than the EDF schedule. The
separate job has a fixed scheduling requirement. The opera
tions also include determining an amount of available utili
Zation capacity of the processor. The operations also include
inserting the separate job into an execution plan of the pro
cessor in response to a determination that the available utili
Zation capacity of the processor is sufficient to execute the
separate job according to the fixed scheduling requirement
associated with the separate job.
0061 Embodiments of the invention can take the form of
an entirely hardware embodiment, an entirely software
embodiment, or an embodiment containing both hardware
and Software elements. In one embodiment, the invention is
implemented in software, which includes but is not limited to
firmware, resident Software, microcode, etc.
0062. Furthermore, embodiments of the invention can
take the form of a computer program product accessible from
a computer-usable or computer-readable storage medium
providing program code for use by or in connection with a
computer or any instruction execution system. For the pur
poses of this description, a computer-usable or computer
readable storage medium can be any apparatus that can store
the program for use by or in connection with the instruction
execution system, apparatus, or device.
0063. The computer-useable or computer-readable stor
age medium can be an electronic, magnetic, optical, electro
magnetic, infrared, or semiconductor system (or apparatus or
device), or a propagation medium. Examples of a computer
readable storage medium include a semiconductor or Solid
state memory, magnetic tape, a removable computer diskette,
a random access memory (RAM), a read-only memory
(ROM), a rigid magnetic disk, and an optical disk. Current
examples of optical disks include a compact disk with read
only memory (CD-ROM), a compact disk with read/write
(CD-R/W), and a digital video disk (DVD).
0064. An embodiment of a data processing system suit
able for storing and/or executing program code includes at
least one processor coupled directly or indirectly to memory
elements through a system bus such as a data, address, and/or
control bus. The memory elements can include local memory
employed during actual execution of the program code, bulk
storage, and cache memories which provide temporary stor
age of at least some program code in order to reduce the
number of times code must be retrieved from bulk storage
during execution.
0065. Input/output (I/O) devices (including but not limited
to keyboards, displays, pointing devices, etc.) can be coupled
to the system either directly or through intervening I/O con
trollers. Additionally, network adapters also may be coupled
to the system to enable the data processing system to become
coupled to other data processing systems or remote printers or
storage devices through intervening private or public net
works. Modems, cable modems, and Ethernet cards are just a
few of the currently available types of network adapters.
0.066 Although the operations of the method(s) herein are
shown and described in a particular order, the order of the

US 2012/007948.6 A1

operations of each method may be altered so that certain
operations may be performed in an inverse order or so that
certain operations may be performed, at least in part, concur
rently with other operations. In another embodiment, instruc
tions or Sub-operations of distinct operations may be imple
mented in an intermittent and/or alternating manner.
0067. Although specific embodiments of the invention
have been described and illustrated, the invention is not to be
limited to the specific forms or arrangements of parts so
described and illustrated. The scope of the invention is to be
defined by the claims appended hereto and their equivalents.
What is claimed is:
1. A computer program product comprising:
a computer readable storage medium to store a computer

readable program, wherein the computer readable pro
gram, when executed on a computer, causes the com
puter to perform operations for inserting jobs into a
Scheduler of a processor, the operations comprising:
receiving a plurality of jobs from an earliest deadline

first (EDF) schedule, wherein the scheduler imple
ments an EDF scheduling model;

receiving a separate job from a source other than the
EDF schedule, wherein the separate job has a fixed
scheduling requirement;

determining an amount of available utilization capacity
of the processor, and

inserting the separate job into an execution plan of the
processor in response to a determination that the
available utilization capacity of the processor is Suf
ficient to execute the separate job according to the
fixed scheduling requirement associated with the
separate job.

2. The computer program product of claim 1, wherein the
fixed scheduling requirement comprises a specific execution
time for the separate job.

3. The computer program product of claim 1, wherein the
separate job comprises a static job from a static schedule,
wherein the static job is natively scheduled for implementa
tion according to a static scheduling model.

4. The computer program product of claim 3, wherein the
operations further comprise:

obtaining a critical instant for the static job from the static
Schedule, wherein the critical instant indicates a specific
execution time requirement of the static job; and

assigning a deadline to the static job within the execution
plan, wherein the deadline is based on the critical instant
of the static job.

5. The computer program product of claim 4, wherein the
operations further comprise reserving a rate for the static job,
wherein the rate comprises a utilization factorindicative of an
amount of the utilization capacity of the processor that is
allocated to the static job.

6. The computer program product of claim 5, wherein the
operations further comprise calculating the rate for the static
job according to the following ratio:

1
Rate = - 3t F 2

in which F 2 represents an operating frequency of the
processor on which the static job executes, and F 1
represents an operating frequency of another processor
on which the static job is designed to execute.

Mar. 29, 2012

7. The computer program product of claim 6, wherein the
operations further comprise reserving resources on the pro
cessor that are substantially equivalent to resources designed
to be available for execution of the static job on the other
processor.

8. The computer program product of claim 5, wherein the
operations further comprise scheduling the static job for
execution on the processor concurrently with other jobs from
the EDF schedule.

9. The computer program product of claim 3, wherein the
operations further comprise scheduling an idle task at a time
corresponding to an unscheduled time within the static sched
ule, wherein the idle task is configured to consume an unused
processor resource.

10. The computer program product of claim 1, wherein the
separate job comprises a short duration sporadic job, wherein
the sporadic job is assigned an earliest deadline, is allowed to
execute to completion, and affects the EDF schedule.

11. The computer program product of claim 1, wherein the
sporadic job comprises an interrupt service routine.

12. The computer program product of claim 1, wherein the
sporadic job comprises a specific execution time requirement.

13. A system comprising:
a processor configured to execute instructions related to a

plurality of jobs; and
a scheduler coupled to the processor, wherein the scheduler

is configured to implement an earliest deadline first
(EDF) scheduling model, and the scheduler is further
configured to:
receive a plurality of jobs from an EDF schedule:
receive a separate job from a source other than the EDF

schedule, wherein the separate job has a fixed sched
uling requirement; and

insert the separate job into an execution plan of the
processor in response to a determination that an avail
able utilization capacity of the processor is sufficient
to execute the separate job according to the fixed
scheduling requirement associated with the separate
job.

14. The system of claim 13, wherein the separate job com
prises a static job from a static schedule, wherein the static job
is natively scheduled for implementation at a specific execu
tion time according to a static scheduling model, and the
scheduler further comprises a static integration engine to
integrate the static job into the execution plan with the plu
rality of jobs from the EDF schedule.

15. The system of claim 14, wherein the scheduler is fur
ther configured to:

obtain a critical instant for the static job from the static
Schedule, wherein the critical instant indicates the spe
cific execution time requirement of the static job;

assign a deadline to the static job within the execution plan,
wherein the deadline is based on the critical instant of the
static job; and

reserve a rate for the static job, wherein the rate comprises
a utilization factor indicative of an amount of the utili
Zation capacity of the processor that is allocated to the
static job.

16. The system of claim 14, wherein the scheduler further
comprises a utilization engine to schedule an idle task at a
time corresponding to an unscheduled time within the static
schedule, wherein the idle task is configured to consume an
unused processor resource.

US 2012/007948.6 A1

17. The system of claim 13, wherein the separate job com
prises a short duration sporadic job, wherein the sporadic job
is assigned an earliest deadline, is allowed to execute to
completion, and affects the EDF schedule, and the scheduler
further comprises a sporadic integration engine to integrate
the sporadic job into the execution plan with the plurality of
jobs from the EDF schedule.

18. A method for implementation within a scheduler for a
processor, the method comprising:

receiving a plurality of jobs from an earliest deadline first
(EDF) schedule, wherein the scheduler implements an
EDF scheduling model;

receiving a separate job from a source other than the EDF
schedule, wherein the separate job has a fixed schedul
ing requirement with a specific execution time;

determining an amount of available utilization capacity of
the processor, and

inserting the separate job into an execution plan of the
processor with the plurality of jobs from the EDF sched
ule in response to a determination that the available
utilization capacity of the processor is Sufficient to
execute the separate job according to the fixed schedul
ing requirement associated with the separate job.

19. The method of claim 18, wherein the separate job
comprises a static job from a static schedule, and the static job
is natively scheduled for implementation according to a static
scheduling model, and the method further comprises:

Mar. 29, 2012

obtaining a critical instant for the static job from the static
Schedule, wherein the critical instant indicates the spe
cific execution time requirement of the static job;

assigning a deadline to the static job within the execution
plan, wherein the deadline is based on the critical instant
of the static job; and

reserving a rate for the static job, wherein the rate com
prises a utilization factor indicative of an amount of the
utilization capacity of the processor that is allocated to
the static job, and the rate is calculated according to the
following ratio:

1
Rate = F 2

in which F 2 represents an operating frequency of the pro
cessor on which the static job executes, and F 1 represents an
operating frequency of another processor on which the static
job is designed to execute.

20. The method of claim 18, wherein the separate job
comprises a short duration sporadic job, wherein the sporadic
job is assigned an earliest deadline, is allowed to execute to
completion, and affects the EDF schedule, and the method
further comprises integrating the sporadic job into the execu
tion plan with the plurality of jobs from the EDF schedule.

c c c c c

