Abstract: Embodiments apply a cross-linking agent to a region of corneal tissue. The cross-linking agent improves the ability of the corneal tissue to resist undesired structural changes. For example, the cross-linking agent may be Riboflavin or Rose Bengal, and the initiating element may be photoactivating light, such as ultraviolet (UV) light. In these embodiments, the photoactivating light initiates cross-linking activity by irradiating the applied cross-linking agent to release reactive oxygen radicals in the corneal tissue. The cross-linking agent acts as a sensitizer to convert O₂ into singlet oxygen which causes cross-linking within the corneal tissue. The rate of cross-linking in the cornea is related to the concentration of O₂ present when the cross-linking agent is irradiated with photoactivating light. Accordingly, the embodiments control the concentration of O₂ during irradiation to increase or decrease the rate of cross-linking and achieve a desired amount of cross-linking.
EYE THERAPY
CROSS REFERENCE TO RELATED APPLICATION

[0001] This application claims priority to U.S. Provisional Application No. 61/253,736, filed October 21, 2009, the contents of which are incorporated entirely herein by reference.

BACKGROUND OF THE INVENTION

Field of the Invention

[0002] The invention pertains to the field of conducting eye therapy, and more particularly, to systems and methods for stabilizing changes to corneal tissue as a part of eye therapy.

Description of Related Art

[0003] A variety of eye disorders, such as myopia, keratoconus, and hyperopia, involve abnormal shaping of the cornea. Laser-assisted in-situ keratomileusis (LASIK) is one of a number of corrective procedures that reshape the cornea so that light traveling through the cornea is properly focused onto the retina located in the back of the eye. During LASIK eye surgery, an instrument called a microkeratome is used to cut a thin flap in the cornea. The corneal flap is then peeled back and the underlying corneal tissue is ablated to the desired shape with an excimer laser. After the desired reshaping of the cornea is achieved, the corneal flap is put back in place and the surgery is complete.

[0004] In another corrective procedure that reshapes the cornea, thermokeratoplasty provides a noninvasive procedure that applies electrical energy in the microwave or radio frequency (RF) band to the cornea. In particular, the electrical energy raises the corneal temperature until the collagen fibers in the cornea shrink at about 60°C. The onset of shrinkage is rapid, and stresses resulting from this shrinkage reshape the corneal surface. Thus, application of energy according to particular patterns, including, but not limited to, circular or annular patterns, causes aspects of the cornea to flatten and improves vision in the eye.
The success of procedures, such as LASIK or thermokeratoplasty, in addressing eye disorders, such as myopia, keratoconus, and hyperopia, depends on whether the desired reshaping of the cornea has been sufficiently stabilized.

SUMMARY OF THE INVENTION

Embodiments according to aspects of the present invention provide systems and methods for stabilizing corneal tissue and improving its biomechanical strength. For example, the embodiments may be employed to preserve the desired reshaping of corneal tissue produced by eye therapies, such as thermokeratoplasty or LASIK surgery.

In particular, the embodiments apply a cross-linking agent to a region of corneal tissue. The cross-linking agent improves the ability of the corneal tissue to resist undesired structural changes. For example, the cross-linking agent may be Riboflavin or Rose Bengal, and the initiating element may be photoactivating light, such as ultraviolet (UV) light. In these embodiments, the photoactivating light initiates cross-linking activity by irradiating the applied cross-linking agent to release reactive oxygen radicals in the corneal tissue. The cross-linking agent, e.g. Riboflavin or Rose Bengal, acts as a sensitizer to convert O_2 into singlet oxygen which causes cross-linking within the corneal tissue.

The rate of cross-linking in the cornea is related to the concentration of O_2 present when the cross-linking agent is irradiated with photoactivating light. Accordingly, aspects of the present invention control the concentration of O_2 during irradiation to increase or decrease the rate of cross-linking and achieve a desired amount of cross-linking.

To increase the presence of O_2 during irradiation, the cross-linking agent in some embodiments may be saturated or supersaturated with O_2 before application to the cornea.

In other embodiments, a steady state of O_2 may be maintained above the eye to expose the cornea to higher concentrations of O_2 during irradiation.

In further embodiments, a gel, such as a methylcellulose gel, may be saturated or supersaturated with O_2. The gel acts as a carrier for O_2. The gel may then be applied to the cornea after the cross-linking agent has been applied to the cornea. Alternatively, the gel may be mixed with the cross-linking agent before the cross-linking agent is applied to the cornea.

In some embodiments, the rate of cross-linking may be monitored in real time and the concentration of O_2 may be dynamically increased or decreased to achieve a desired amount of
cross-linking. Thus, embodiments include a system that provides a first amount of O_2 above the eye to introduce O_2 to the corneal tissue and expose the cornea to a first concentration of O_2 during irradiation. Based on the feedback from the real time monitoring, the system can then provide a second amount of O_2 above the eye to introduce another amount of O_2 to the corneal tissue and expose the cornea to a second concentration of O_2 during irradiation. The first amount of O_2 may be greater than the second amount of O_2, or vice versa. Changing the cornea's exposure from the first concentration to the second concentration changes the rate of cross-linking in the corneal tissue. Further changes to the concentration of O_2 during irradiation may be effected to control the rate of cross-linking. When necessary, the amount of O_2 above the eye may be substantially reduced to zero to prevent further introduction of O_2 to the corneal tissue during irradiation.

[0013] Other aspects, features, and advantages of the present invention are readily apparent from the following detailed description, by illustrating a number of exemplary embodiments and implementations, including the best mode contemplated for carrying out the present invention. The present invention is also capable of other and different embodiments, and its several details can be modified in various respects, all without departing from the spirit and scope of the present invention. Accordingly, the drawings and descriptions are to be regarded as illustrative in nature, and not as restrictive. The invention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

[0014] FIG. 1A illustrates a high resolution image of a cornea after energy has been applied.

[0015] FIG. 1B illustrates another high resolution images of the cornea of FIG. 1A.

[0016] FIG. 1C illustrates a histology image of the cornea of FIG. 1A.

[0017] FIG. 1D illustrates another histology image of the cornea of FIG. 1A.

[0018] FIG. 2A illustrates an example approach for stabilizing or strengthening corneal tissue by applying a cross-linking agent according to aspects of the present invention.

[0019] FIG. 2B illustrates an example approach for stabilizing or strengthening corneal tissue by applying Riboflavin as a cross-linking agent according to aspects of the present invention.

[0020] FIG. 3A illustrates an example device that may be employed to supersaturate a cross-linking agent with O_2 according to aspects of the present invention.
FIG. 3B illustrates an example approach for stabilizing or strengthening corneal tissue by applying supersaturated Riboflavin as a cross-linking agent according to aspects of the present invention.

FIG. 4A illustrates an example device that may be employed to supersaturate a carrier gel with O_2 according to aspects of the present invention.

FIG. 4B illustrates an example approach for stabilizing or strengthening corneal tissue by mixing Riboflavin with a gel supersaturated with O_2 according to aspects of the present invention.

FIG. 4C illustrates an example approach for stabilizing or strengthening corneal tissue by applying a gel supersaturated with O_2 according to aspects of the present invention.

FIG. 5A illustrates an example device that may be employed maintain a steady state of O_2 above the eye to expose the cornea to higher concentrations of O_2 according to aspects of the present invention.

FIG. 5B illustrates another example device that may be employed to maintain a steady state of O_2 above the eye to expose the cornea to higher concentrations of O_2 according to aspects of the present invention.

FIG. 5C illustrates an example approach for stabilizing or strengthening corneal tissue by applying a state of O_2 above the eye to expose the cornea to higher concentrations of O_2.

FIG. 6 illustrates an example approach for stabilizing or strengthening corneal tissue by monitoring cross-linking activity in real time and controlling the amount of O_2 exposure to achieve desired rates of cross-linking according to aspects of the present invention.

DETAILED DESCRIPTION

Embodiments according to aspects of the present invention provide systems and methods for stabilizing corneal tissue and improving its biomechanical strength. For example, the embodiments may be employed to preserve the desired reshaping of corneal tissue produced by eye therapies, such as thermokeratoplasty or LASIK surgery.

FIGS. 1A-D illustrate an example of the effect of applying heat to corneal tissue with thermokeratoplasty. In particular, FIGS. 1A and 1B illustrate high resolution images of cornea 2 after heat has been applied. As FIGS. 1A and 1B show, a lesion 4 extends from the corneal surface 2A to a mid-depth region 2B in the corneal stroma 2C. The lesion 4 is the result of
changes in corneal structure induced by the application of heat as described above. These changes in structure result in an overall reshaping of the cornea. It is noted that the application of heat, however, has not resulted in any heat-related damage to the corneal tissue.

[0031] As further illustrated in FIGS. 1A and IB, the changes in corneal structure are localized and limited to an area and a depth specifically determined by the controlled application of heat. FIGS. 1C and ID illustrate histology images in which the tissue shown in FIGS. 1A and IB has been stained to highlight the structural changes induced by the heat. In particular, the difference between the structure of collagen fibrils in the mid-depth region 2B where heat has penetrated and the structure of collagen fibrils outside the region 2B is clearly visible. Thus, the collagen fibrils outside the region 2B remain generally unaffected by the application of heat, while the collagen fibrils inside the region 2B have been rearranged and formed new bonds to create completely different structures. In other words, unlike processes, such as orthokeratology, which compress areas of the cornea to reshape the cornea via mechanical deformation, the collagen fibrils in the region 2B are in an entirely new state. Treatment of the cornea produces structural changes to the stroma 2C, and the optomechanical properties of the cornea change under stress. Such changes include: straightening out the waviness of the collagen fibrils; slippage and rotation of individual lamellae; and breakdown of aggregated molecular superstructures into smaller units.

[0032] Although treatments, such thermokeratoplasty, may initially achieve desired reshaping of the cornea, the desired effects of reshaping the cornea may be mitigated or reversed at least partially if the collagen fibrils continue to change after the desired reshaping has been achieved. Therefore, aspects of the present invention provide approaches for preserving the desired corneal structure and shape that result from an eye therapy, such as thermokeratoplasty. In general, embodiments provide approaches for initiating molecular cross-linking of the corneal collagen to stabilize the corneal tissue and improve its biomechanical strength.

[0033] Referring to FIG. 2A, a treatment, such as thermokeratoplasty or LASIK surgery, is applied in step 210 to generate structural changes in the cornea and produce a desired shape change. In step 220, the corneal tissue is treated with a cross-linking agent 222. The cross-linking agent may be applied directly on the treated tissue and/or in areas around the treated tissue. In some embodiments, the cross-linking agent may be an ophthalmic solution that is broadly delivered by a dropper, syringe, or the like. Alternatively, the cross-linking agent may be
selectively applied as an ophthalmic ointment with an appropriate ointment applicator. The cross-linking agent 222 is then activated in step 230 with an initiating element 232. Activation of the cross-linking agent 222, for example, may be triggered thermally by the application of microwaves or light from a corresponding energy or light source. The resulting cross-linking between collagen fibrils provides resistance to changes in corneal structure.

[0034] As described previously with reference to FIGS. 1A-D, for example, the lesion 4 extends from the corneal surface 2A to a mid-depth region 2B in the corneal stroma 2C. In such cases, the application of the cross-linking agent in step 220 introduces sufficient amounts of cross-linking agent to mid-depth regions of the corneal tissue where stronger and more stable structure is desired.

[0035] As FIG. 2B shows further, Riboflavin is applied as a cross-linking agent 222' to the corneal tissue in step 220. In addition, light from a ultraviolet (UV) light source may be applied as an initiating element 232' in step 230 to initiate cross-linking in the corneal areas treated with Riboflavin. Specifically, the UV light initiates cross-linking activity by causing the applied Riboflavin to release reactive oxygen radicals in the corneal tissue. The Riboflavin acts as a sensitizer to convert O_2 into singlet oxygen which causes cross-linking within the corneal tissue.

[0036] In human tissue, O_2 content is very low compared to the atmosphere. The rate of cross-linking in the cornea, however, is related to the concentration of O_2 when it is irradiated with photoactivating light. Therefore, it may be advantageous to increase or decrease the concentration of O_2 actively during irradiation to control the rate of cross-linking until a desired amount of cross-linking is achieved.

[0037] An approach according to aspects of the present invention involves supersaturating the Riboflavin with O_2. Thus, when the Riboflavin is applied to the eye, a higher concentration of O_2 is delivered directly into the cornea with the Riboflavin and affects the conversion of O_2 into singlet oxygen when the Riboflavin is exposed to the photoactivating light. As illustrated in FIG. 3A, the Riboflavin 222' may be stored in a closed vessel, e.g., a vial, 300 under increased O_2 pressure 305. The increased O_2 pressure 305 results in a higher equilibrium concentration of O_2 in the Riboflavin 222'. The walls 310 of the vessel 300 are preferably opaque or otherwise prevent visible, UV, or other light from entering the vessel interior 301 to minimize the degradation of the Riboflavin 222'. Accordingly, referring to FIG. 3B, the step 215
supersaturates the Riboflavin 222' with 0₂ so that a supersaturated Riboflavin 222' is applied in step 220.

[0038] According to other aspects of the present invention, rather than supersaturating the Riboflavin 222' with 0₂, another substance, such as a gel (e.g., a methylcellulose gel), may be saturated or supersaturated with 0₂. As illustrated in FIG. 4A, a gel 421 may be stored in an interior 401 of a closed vessel, e.g., a vial, 400 under increased 0₂ pressure 405. The increased 0₂ pressure 405 results in a higher equilibrium concentration of 0₂ in the gel 421. The gel can then act as a carrier for 0₂.

[0039] Referring to FIG. 4B, step 216 saturates a gel 421 with 0₂, and step 217 mixes the supersaturated gel 421 with the Riboflavin 222', so that a mixture 422 containing the Riboflavin 222' and the supersaturated gel 421 is applied in step 220. Alternatively, referring to FIG. 4C, step 216 saturates a gel 421 with 0₂, and step 225 applies the gel 421 to the cornea after the Riboflavin 222' has been applied to the cornea. In both FIGS. 4A and 4B, the gel 421 increases the presence of 0₂ when the Riboflavin 222' is activated with the UV light.

[0040] According to additional aspects of the present invention, a steady state of 0₂ may be maintained at the surface of the cornea to expose the cornea to a selected amount of 0₂ and cause 0₂ to enter the cornea. The photoactivating light can then be applied to a cornea with the desired 0₂ content.

[0041] As shown in FIG. 5A, a ring 500 is placed on the eye 1 to supply 0₂ to the cornea 2 during irradiation. The ring 500 includes one or more ports 502 that direct a steady flow of 0₂ to the cornea 2, which has been treated by Riboflavin. The flow applies 0₂ at high pressure against the cornea 2, so that more 0₂ is available during the irradiation of the Riboflavin in the corneal tissue. The ring 500 may optionally be held in place by suction.

[0042] As FIG. 5B illustrates, in another embodiment, an enclosure 510 receiving a supply of 0₂ through a port 512 is placed on the eye to establish a steady state of 0₂. The enclosure 510 may be held in place by a suction ring 512. As shown in FIG. 5B, the enclosure 510 may be a cup-like structure. The enclosure 510 maintains the 0₂ at a higher pressure, e.g., higher than ambient, against the surface of the cornea 2. The concentration of 0₂ within the enclosure 510 and above the surface of the cornea 2 can approach 100%. The 0₂ within the enclosure 510 makes more 0₂ to be available for the irradiation of the Riboflavin in the corneal tissue. At least a portion of the walls 514 of the enclosure 510 may be translucent to allow photoactivating light.
to pass through the enclosure 510 to irradiate the cornea 2 and activate the Riboflavin applied to the cornea 2. Alternatively, the light source may be disposed within the enclosure. The enclosure 510 may also include a valve that allows the gas to be released.

Accordingly, referring to FIG. 5C, step 227 establishes a steady state of O_2 above the corneal surface before the photoactivating light 232' is applied in step 230 to initiate cross-linking with the Riboflavin 222'.

Referring to FIG. 6, the rate of cross-linking may be monitored in real time and the concentration of O_2 may be dynamically increased or decreased to achieve a desired amount of cross-linking. As FIG. 6 illustrates, corneal tissue is treated with Riboflavin 222' in step 220. In step 228, a first amount of O_2 is provided above the corneal surface to introduce O_2 to the corneal tissue and establish a first concentration of O_2 in the cornea during irradiation. The devices described with reference to FIGS. 5A and 5B may be employed to change the amount of O_2 is provided above the corneal surface. The Riboflavin 222' is then activated in step 230 with UV light 232'.

In step 240, the amount of cross-linking resulting from the activation of the Riboflavin 222' is monitored. One technique for monitoring the cross-linking employs polarimetry to measure corneal birefringence and to determine the structure of the corneal tissue. In particular, the technique measures the effects of cross-linking on corneal structure by applying polarized light to the corneal tissue. The corneal stroma is anisotropic and its index of refractions depends on direction. The cornea behaves like a curved biaxial crystal with the fast axis orthogonal to the corneal surface and the slow axis (or corneal polarization axis) tangential to the corneal surface. Accordingly, a light beam emerging from the living eye after a double pass through the ocular optics contains information on the polarization properties of the ocular structures (except optically inactive humours). The technique of using birefringence to monitor the structural changes resulting from cross-linking is described further in U.S. Provisional Patent Application No. 61/388,963, filed October 1, 2010, the contents of which are entirely incorporated herein by reference. A controller, employing conventional computer hardware or similar processing hardware, can be used to monitor the amount of cross-linking. Such hardware may operate by reading and executing programmed instructions that are stored or fixed on computer-readable media, such as conventional computer disk. In addition to being coupled to
monitoring hardware, the controller may be coupled to, and automatically control, the device(s) that provide the \(O_2 \) above the corneal surface.

[0046] Based on the information from the real time monitoring in step 240, step 250 provides a second amount of \(O_2 \) above the eye to introduce another amount of \(O_2 \) to the corneal tissue and expose the cornea to a second concentration of \(O_2 \) during irradiation with UV light 232’ in step 260. Steps 240, 250, and 260 may be repeated any number of times to change the concentration of \(O_2 \) during irradiation to control the rate of cross-linking dynamically.

[0047] The first amount of \(O_2 \) in step 228 may be greater than the second amount of \(O_2 \) in step 250, or vice versa. Changing the cornea's exposure from the first concentration to the second concentration changes the rate of cross-linking in the corneal tissue as desired. If the information from step 240 indicates that the first amount of \(O_2 \) is too low, step 250 provides a second amount of \(O_2 \) that is greater than the first amount of \(O_2 \). On the other hand, if the information from step 240 indicates that the first amount of \(O_2 \) is too high, step 250 provides a second amount of \(O_2 \) that is greater than the first amount of \(O_2 \). It may be necessary to remove the first amount of \(O_2 \), e.g., from the enclosure 510, before providing the second amount of \(O_2 \) in step 250.

[0048] In some cases, it may be desired to provide substantially zero \(O_2 \) in step 250 to minimize or reduce the amount of \(O_2 \) in the corneal tissue during irradiation in step 260. Accordingly, step 250 may introduce a non-\(O_2 \) element or substance above the corneal surface. For example, nitrogen gas (\(N_2 \)) may replace the \(O_2 \) supplied by the devices 500 and 510 shown in FIGS. 5A and 5B.

[0049] Although the embodiments described above may employ Riboflavin as a cross-linking agent, it is understood that other substances may be employed as a cross-linking agent. Thus, an embodiment may employ Rose Bengal (4,5,6,7-tetrachloro-2’,4’,5’,7’-tetraiodofluorescein) as a cross-linking agent (similar to the embodiment of FIG. 3B). Rose Bengal has been approved for application to the eye as a stain to identify damage to conjunctival and corneal cells. However, Rose Bengal can also initiate cross-linking activity within corneal collagen to stabilize the corneal tissue and improve its biomechanical strength. Like Riboflavin, photoactivating light 332’ may be applied to initiate cross-linking activity by causing the Rose Bengal to convert \(O_2 \) in the corneal tissue into singlet oxygen. The photoactivating light 332’ may include, for example, UV light or green light.
Thus, with Rose Bengal, the rate of cross-linking in the cornea is related to the concentration of O₂ when it is irradiated with photoactivating light. Therefore, it may be advantageous to increase or decrease the concentration of O₂ during irradiation to control the rate of cross-linking and achieve the desired cross-linking. The concentration of O₂ may be increased or decreased according to the techniques described previously. For example, the Rose Bengal may be saturated or supersaturated with O₂ before application to the cornea. Additionally or alternatively, a steady state of O₂ may be maintained above the eye to expose the cornea to higher concentrations of O₂ and cause O₂ to enter the cornea. In general, the O₂ content in the cornea may be controlled for more effective cross-linking for any agent that operates to produce a reactive oxygen species for cross-linking.

Although aspects of the present invention have been described in connection with thermokeratoplasty or LASIK surgery, it is understood that the systems and methods described may be applied in other contexts. In other words, it may be advantageous to stabilize corneal structure with a cross-linking agent as described above as a part of any treatment.

While the invention is susceptible to various modifications and alternative forms, specific embodiments and methods thereof have been shown by way of example in the drawings and are described in detail herein. It should be understood, however, that it is not intended to limit the invention to the particular forms or methods disclosed, but, to the contrary, the intention is to cover all modifications, equivalents and alternatives falling within the spirit and scope of the invention.
WHAT IS CLAIMED IS:

1. A system for controlling cross-linking in corneal tissue, comprising:
 an applicator that applies a cross-linking agent to a cornea;
 a light source that provides photoactivating light to the cornea and activates the cross-linking agent, the cross-linking agent producing reactive singlet oxygen from \(\text{O}_2 \) content in the cornea, the singlet oxygen causing cross-linking in corneal fibrils to preserve a structure of the cornea; and
 a delivery device that provides a gas mixture at steady state at a surface of the cornea, the gas mixture determining the \(\text{O}_2 \) content for activation of the cross-linking agent in the cornea.

2. The system according to claim 1, wherein the cross-linking agent is Riboflavin.

3. The system according to claim 1, wherein the cross-linking agent is Rose Bengal.

4. The system according to claim 1, wherein the photoactivating light is ultraviolet light.

5. The system according to claim 1, wherein the delivery device includes a ring that includes one or more ports that direct the gas at the cornea at a high pressure.

6. The system according to claim 1, wherein the delivery device includes an enclosure that maintains the gas at high pressure against the surface of the cornea.

7. The system according to claim 6, wherein the delivery device includes a suction ring that is coupled to the enclosure and holds the enclosure in position at the surface of the cornea.

8. The system according to claim 1, further comprising a monitoring system that determines an amount of cross-linking in the cornea.

9. The system according to claim 8, wherein the real-time monitoring system employs polarimetry to measure corneal birefringence and to determine the amount of cross-linking in the cornea.

10. The system according to claim 8, wherein the delivery device initially a first gas mixture that determines a first \(\text{O}_2 \) content in the cornea and, in response to the amount of cross-linking
determined by the monitoring system, provides a second gas mixture that determines a second \(O_2\) content in the cornea, the first gas mixture and the second gas mixture providing different amounts of \(O_2\), the delivery device providing dynamic control of cross-linking in the cornea.

11. The system according to claim 10, wherein one of the gas mixtures substantially comprises a non-\(O_2\) gas.

12. The system according to claim 11, wherein the non-\(O_2\) gas is \(N_2\) gas.

13. The system according to claim 1, wherein the cross-linking agent is saturated or supersaturated with \(O_2\) to increase the \(O_2\) content in the cornea when the application device applies the cross-linking agent.

14. The system according to claim 8, further comprising a vessel that stores the cross-linking agent under \(O_2\) pressure and provides a higher equilibrium concentration of \(O_2\) for the cross-linking agent.

15. The system according to claim 1, wherein the cross-linking agent is mixed with another substance that is saturated or supersaturated with \(O_2\).

16. The system according to claim 15, wherein the other substance is a gel.

17. The system according to claim 1, further comprising a second applicator that applies another substance that is saturated or supersaturated with \(O_2\), the second applicator applying the other substance to the cornea separately from the cross-linking agent.

18. The system according to claim 17, wherein the other substance is a gel.

19. A system for controlling cross-linking in corneal tissue, comprising:

 a vessel that stores a cross-linking agent under \(O_2\) pressure and provides a higher equilibrium concentration of \(O_2\) for the cross-linking agent, the cross-linking agent being saturated or supersaturated with \(O_2\);

 an applicator that applies the cross-linking agent to the corneal fibrils, the saturation or supersaturation of the cross-linking agent increasing the \(O_2\) content in the cornea when the application device applies the cross-linking agent; and
a light source that provides photoactivating light to the corneal fibrils and activates the cross-linking agent, the cross-linking agent producing reactive singlet oxygen from O_2 content in the cornea, the singlet oxygen causing cross-linking in the corneal fibrils to preserve the structure of the corneal fibrils.

20. The system according to claim 15, wherein the cross-linking agent is Riboflavin.

21. The system according to claim 15, wherein the cross-linking agent is Rose Bengal.

22. The system according to claim 15, wherein the photoactivating light includes ultra-violet (UV) light.

23. A system for controlling cross-linking in corneal tissue, comprising:
 a vessel that stores a gel agent under O_2 pressure and provides a higher equilibrium concentration of O_2 for the gel, the gel being saturated or supersaturated with O_2;
 an applicator that applies a cross-linking agent to the corneal fibrils; and
 a light source that provides photoactivating light to the corneal fibrils and activates the cross-linking agent, the cross-linking agent producing reactive singlet oxygen from O_2 content in the cornea, the singlet oxygen causing cross-linking in the corneal fibrils to preserve the structure of the corneal fibrils,
 wherein the gel is applied to the cornea with the cross-linking agent, the saturation or supersaturation of the gel increasing the O_2 content in the cornea.

24. The system according to claim 23, wherein the cross-linking agent is Riboflavin.

25. The system according to claim 23, wherein the cross-linking agent is Rose Bengal.

26. The system according to claim 23, wherein the photoactivating light includes ultra-violet (UV) light.

27. The system according to claim 23, wherein the applicator applies a mixture of the cross-linking agent and the gel.

28. The system according to claim 23, further comprising a second applicator that applies the gel to the cornea separately from the cross-linking agent.
Apply energy to cornea to generate heat-induced structural changes and desired shape change.

Treat corneal tissue with cross-linking agent.

Initiate cross-linking in corneal tissue by activating cross-linking agent with an initiating element.

FIG. 2A

Apply treatment to generate structural changes and desired shape change.

Treat corneal tissue with cross-linking agent.

Initiate cross-linking in corneal tissue by activating cross-linking agent with an initiating element.

Cross-linking agent = Riboflavin

Initiating element = UV light

FIG. 2B
FIG. 3A

Apply energy to cornea to generate heat-induced structural changes and desired shape change.

Treat corneal tissue with cross-linking agent.

Initiate cross-linking in corneal tissue by activating cross-linking agent with an initiating element.

FIG. 3B

Supersaturate Riboflavin with O_2

Cross-linking agent = supersaturated Riboflavin

Initiating element = photoactivating light, e.g., UV light
FIG. 4A

High Pressure O₂

Gel

FIG. 4B

Apply energy to cornea to generate heat-induced structural changes and desired shape change.

Treat corneal tissue with cross-linking agent.

Initiate cross-linking in corneal tissue by activating cross-linking agent with an initiating element.

Supersaturate gel with O₂

Mix Riboflavin and supersaturated gel

Riboflavin + Gel

Initiating element = photoactivating light, e.g., UV light
Apply energy to cornea to generate heat-induced structural changes and desired shape change.

Treat corneal tissue with cross-linking agent.

Cross-linking agent = Riboflavin

Supersaturate gel with O₂

Supersaturated gel

Apply supersaturated gel to corneal tissue.

Initiate cross-linking in corneal tissue by activating cross-linking agent with an initiating element.

Initiating element = photoactivating light, e.g., UV light

FIG. 4C

FIG. 5A

FIG. 5B
Apply energy to cornea to generate heat-induced structural changes and desired shape change.

Treat corneal tissue with cross-linking agent.

Provide steady state \(\text{O}_2 \) at surface of cornea.

Initiate cross-linking in corneal tissue by activating cross-linking agent with an initiating element.

Cross-linking agent = Riboflavin

Initiating element = photoactivating light, e.g., UV light

FIG. 5C

Treat corneal tissue with cross-linking agent.

Provide a first amount of \(\text{O}_2 \) at surface of cornea.

Initiate initial cross-linking in corneal tissue by activating cross-linking agent with an initiating element.

Initiating element = photoactivating light, e.g., UV light

Determine the amount of cross-linking in corneal tissue.

Provide a second amount of \(\text{O}_2 \) at surface of cornea based on amount of cross-linking in corneal tissue.

Initiate further cross-linking in corneal tissue by activating cross-linking agent with an initiating element.

Initiating element = photoactivating light, e.g., UV light

FIG. 6
A. CLASSIFICATION OF SUBJECT MATTER

IPC(8) - A61F 9/013 (2010.01)

USPC - 604/294

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC(8) - A61F 9/013 (2010.01)

USPC - 604/294

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

MicroPatent

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim</th>
</tr>
</thead>
</table>

Further documents are listed in the continuation of Box C.

- Special categories of cited documents:
 - "A" document defining the general state of the art which is not considered to be of particular relevance
 - "E" earlier application or patent but published on or after the international filing date
 - "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 - "O" document referring to an oral disclosure, use, exhibition or other means
 - "P" document published prior to the international filing date but later than the priority date claimed

- Additional notes:
 - "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 - "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 - "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 - "&" document member of the same patent family

Date of the actual completion of the international search
06 December 2010

Date of mailing of the international search report
21 DEC 2010

Name and mailing address of the ISA/US
Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450
Facsimile No. 571-273-3201

Authorized officer:
Blaine R. Copenheaver
PCT Helpdesk: 571-272-4300
PCT OSP: 571-272-7774