(21) 申请号 201710654366.4
(22) 申请日 2017.08.03
(71) 申请人 钟山县良丰生态农业有限公司
 地址 542600 广西壮族自治区贺州市钟山
 县公安新马安村
(72) 发明人 梁荣峰
(74) 专利代理机构 广州市越秀区海心联合专利
 代理事务所（普通合伙）
 44295
(51) Int.Cl.
 C05G 3/00(2006.01)
 C05G 3/02(2006.01)
 C05G 3/04(2006.01)
 C05F 17/00(2006.01)
(54) 发明名称
 一种高效鸡粪有机肥及其制备方法
(57) 摘要
 本发明公开了一种高效鸡粪有机肥及其制备方法，属于生物有机肥技术领域。旨在提供一种
 以鸡粪和木薯糖渣为主要原料，通过添加复合微生物菌剂，功能菌种快速发酵成高质量的有
 机肥及其制备方法。本发明提供的技术方案是这样的：一种高效鸡粪有机肥，包括以下重量
 份组成：木薯糖渣80-100份，鸡粪50-100份，糖厂废泥100-150份，荔枝核20-40份，动物尸体
 20-40份，废菌棒50-100份，米糠30-50份，腐植酸10-15
 份，酵母10-20份，菌剂2-4份。本发明可应用于农业生产。
权利要求书

1. 一种高效鸡粪有机肥，其特征在于，所述的有机肥包括下列重量份数：木薯酒糟渣80-100份，鸡粪50-100份，糖厂滤泥100-150份，荔枝核20-40份，动物尸体20-40份，废菌棒50-100份，米糠30-50份，腐植酸10-15份，烟沫10-20份，菌剂2-4份。

2. 根据权利要求1所述的一种高效鸡粪有机肥，其特征在于，所述的菌剂为酵母菌、地衣芽孢菌、枯草芽孢杆菌、细黄链霉菌、固氮菌和磷细菌中的一种或几种。

3. 一种如权利要求1所述的高效鸡粪有机肥的制备方法，其特征在于，包括下述步骤：
 步骤1：将木薯酒糟渣、鸡粪、糖厂滤泥、荔枝核、动物尸体、废菌棒、米糠、腐植酸、烟沫按重量份混合，发酵；
 步骤2：当鸡粪有机肥含有益菌达到0.2亿/g后，降温至22-28℃，取出；
 步骤3：粉碎至60-80目，经检验合格后装袋，即可。

4. 根据权利要求3所述的一种高效鸡粪有机肥的制备方法，其特征在于，步骤1所述的发酵分为两个阶段；
 其中，第一阶段的发酵温度为78-80℃，发酵时间为5-7天；第二阶段的发酵温度为50-55℃，发酵时间为7-10天。

5. 根据权利要求4所述的一种高效鸡粪有机肥的制备方法，其特征在于，步骤1所述的发酵步骤具体为：当温度到达78-80℃后，保持5-7天，翻堆，同时拌入菌剂，搅拌均匀；利用管道送氧，将温度控制在50-55℃，保持7-10天。
说明书

一种高效鸡粪有机肥及其制备方法

技术领域

[0001] 本发明属于生物有机肥技术领域，尤其是一种高效鸡粪有机肥及其制备方法。

背景技术

[0002] 目前，全球正面临着人口增多和环境恶化的严峻问题，农业生产中有机肥料的大量使用也会使得环境恶化更加严重。这种有机肥料的不足之处主要有：破坏土壤，导致土壤有机质含量下降，各类养分比例失调，土壤开始酸化、板结，土壤的理化性状及土壤微生物系受到严重破坏，导致其保水、保肥、透水性差，难以满足农作物的实际生长需要；农作物对化肥农药的依赖性较强，必须逐年增加施用量，否则农作物生长缓慢，病虫害严重，造成减产；农业生态环境恶化，化肥施入农田后，实际利用率平均只有30%，大部分随农田排水流入江河湖泊或残留于土壤和植株及农作物体内，不仅带来环境污染而且危及人类和生命的安全和健康，这些都成为农业可持续性发展的一道障碍；以上这些情况可以通过施用有机肥料进行改善，但是国内许多品种的有机肥料良莠不齐。

[0003] 而有机肥却能改良土壤，培肥地力，有机肥施入土壤后能有效地改善土壤的理化状况和生物特性，使化土壤，改善土壤的理化状况和生物特征，使化土壤，增强土壤的保水、保肥、供肥能力和缓冲能力。另一方面，有机肥可以提高作物产量，提高作物品质，有机肥含有丰富的有机质和全面的营养元素，为农作物提供绿色、环保的养份。现有技术中有一些有机肥的制备方法，如公开号为CN103145463A的“畜禽粪有机肥及其制备方法”，其原料组份复杂，进行二次好氧发酵，工艺复杂，需要频繁使用翻抛机、装载车等设备，成本高。

[0004] 现在所用的有机肥均没有含动物尸体成分的，这样的有机肥所含的氮、磷、钾成分很少或基本没有，根本达不到作物生长的要求。

发明内容

[0005] 针对上述不足，本发明旨在提供一种以鸡粪和木薯酒精渣为主要原料，通过添加复合微生物菌剂、功能菌种快速发酵成高质量的有机肥及其制备方法，该有机肥具有无污染、速效、长效等功效。

[0006] 为了实现上述技术效果，本发明提供的技术方案是这样的：一种高效鸡粪有机肥，所述的有机肥包括下述重量份数组成：木薯酒精渣80-100份，鸡粪50-100份，糖厂滤泥100-150份，荔枝核20-40份，动物尸体20-40份，废菌棒50-100份，米糠30-50份，腐植酸10-15份，烟灰10-20份，菌剂2-4份。

[0007] 其中，所述的菌剂为酵母菌、地衣芽孢菌、枯草芽孢杆菌、细黄链霉菌、固氮菌和磷细菌中的一种或几种。

[0008] 一种如上所述的高效鸡粪有机肥的制备方法，包括下述步骤：

[0009] 步骤1：将木薯酒精渣、鸡粪、糖厂滤泥、荔枝核、动物尸体、废菌棒、米糠、腐植酸、

烟灰按重量份混合，发酵；

[0010] 步骤2：当鸡粪有机肥含有益菌达到0.2亿/g后，降温至22-28℃，取出；
步骤3：粉碎至60~80目，经检验合格后装袋，即可。
其中，步骤1所述的发酵分为两个阶段；
其中，第一阶段的发酵温度为78~80℃，发酵时间为5~7天；第二阶段的发酵温度为50~55℃，发酵时间为7~10天。
其中，步骤1所述的发酵步骤具体为：当温度达到78~80℃后，保持5~7天，翻堆，同时拌入菌剂，搅拌均匀；利用管道送氧，将温度控制在50~55℃，保持7~10天。
其中，所述的动物尸体在使用前需将其经高温高压消毒杀菌，然后经绞肉机绞碎至肉酱状，再经烘干机烘干后放入冷库备用。
其中，所述的木薯酒精渣中含有粗蛋白、粗纤维、粗脂肪、无粗浸物、氨基酸、乳酸；所述的烟液中所含有的烟碱；所述的鸡粪中所含有氮、磷、钾、粗蛋白、脂肪；所述的糖厂滤泥中含有粗蛋白、粗纤维、粗脂肪、粗灰分、无粗浸物、氮、磷、钾、磷酸钙、果胶质、有机质、有机酸；所述的动物尸体中所含有蛋白质、氨基酸、脂肪酸、维生素等。
本发明与传统方法相比，具有以下优点：
本发明所运用的原料均为绿色无污染材料，而废物再利用技术，以达到健康绿色环保无污染的目的：使用木薯酒精渣、糖厂滤泥、鸡粪、荔枝核、瓜果渣、米糠、动物尸体、腐植酸、烟液、菌剂为原料可使有机肥效更佳，效果更为持久；使用烟液为原料对于植物的抗病性、抵抗虫害能力更强，对于地下线虫更有效的杀死；使用动物尸体为原料可使有机肥的肥效更高，营养价值更高；有效的改善土壤、无害化处理病理动物尸体，变废为宝，减少病死动物尸体对环境污染的污染。
本发明技术方案中使用发酵堆代替秸秆后能够1)改良板结的土壤，提供作物生长的肥料；2) 菌糖含有大量的菌体蛋白，以及菌丝生长过程中，未完全利用的有机质及残留的菌丝体仍含有大量的碳、氮等植物生长必须元素。
本发明所运用加工工艺相对传统工艺有以下优势：有效的缩短发酵时间，更有效的提升发酵效果，更迅速的达到发酵目的；更节约人力及生产设备的投入；更有效的降低生产成本。

具体实施方式
下面结合具体实施方式，对本发明的权利要求做进一步的详细说明，但不构成对本发明的任何限制，任何在本发明的权利要求保护范围内所做的有限次修改，仍在本发明的权利要求保护范围内。

实施例1
步骤1：将木薯酒精渣80份，鸡粪100份，糖厂滤泥100份，荔枝核30份，动物尸体30份，瓜果渣50份，米糠40份，腐植酸15份，烟液10份混合，当温度达到80℃后，保持5天，翻堆，同时拌入菌剂4份，搅拌均匀；利用管道送氧，将温度控制在55℃，保持7天；
步骤2：当鸡粪有机肥有益菌达到0.2亿/g后，降温至28℃，取出；
步骤3：粉碎至60目，经检验合格后装袋，即可。
其中，步骤1所述的菌剂为酵母菌，地衣芽孢菌，枯草芽孢杆菌，细黄链霉菌，固氮菌，磷细菌。
分别使用该有机肥料，市售复合有机肥料，尿素，进行玉米种植实验，施肥量相同，
其他种植条件相同，实验证明，使用本发明的有机肥料比市售复合有机肥料增产10％，比使用尿素增产43.1％。

【0029】实施例2

【0030】步骤1：将木薯酒精渣100份，鸡粪50份，糖厂滤泥50份，荔枝核20份，动物尸体40份，青菌种50份，米糠30份，腐植酸10份，烟沫20份混合，当温度达到78℃后，保持7天，翻堆，同时拌入菌剂2份，搅拌均匀；利用管道送氧，将温度控制在55℃，保持7天；

【0031】步骤2：当鸡粪有机肥含有益菌达到0.2亿/g后，降温至28℃，取出；

【0032】其中，步骤1所述的菌剂为酵母菌、地衣芽孢杆菌、枯草芽孢杆菌、细黄链霉菌、固氮菌、磷细菌。

【0033】分别使用该有机肥料、市售无机复合肥料、尿素，进行大豆种植实验，施肥量相同，其他种植条件相同，实验证明，使用本发明的有机肥料比市售无机复合肥料增产22.8％，比使用尿素增产41％。

【0034】实施例3

【0035】步骤1：将木薯酒精渣90份，鸡粪70份，糖厂滤泥125份，荔枝核40份，动物尸体20份，青菌种100份，米糠50份，腐植酸13份，烟沫15份混合，当温度达到79℃后，保持6天，翻堆，同时拌入菌剂3份，搅拌均匀；利用管道送氧，将温度控制在53℃，保持8天；

【0036】步骤2：当鸡粪有机肥含有益菌达到0.2亿/g后，降温至25℃，取出；

【0037】步骤3：粉碎至70目，经检验合格后装袋，即可。

【0038】其中，步骤1所述的菌剂为酵母菌、地衣芽孢杆菌、枯草芽孢杆菌、细黄链霉菌、固氮菌、磷细菌。

【0039】分别使用该有机肥料、市售复合有机肥料、市售无机复合肥料、尿素，进行大旗番茄种植实验，施肥量相同，其他种植条件相同，实验证明，使用本发明的有机肥料比市售复合有机肥料增产18.1％，比市售无机复合肥料增产23％，比使用尿素增产39％。

【0040】实施例1-3所述的有机肥能促进作物营养的平衡吸收、提高作物产量、改善农产品品质，同时还能补充土壤养分、减少资源浪费、提高肥料利用率、减少环境污染、保护生态环境。

【0041】以上所述的仅为本发明的较佳实施例，凡在本发明的精神和原则范围内所做的任何修改、等同替换和改进等，均应包含在本发明的保护范围内。