
(12) United States Patent
Gandra et al.

USOO944.8663B2

US 9,448,663 B2
Sep. 20, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

(*)

(21)
(22)
(86)

(87)

(65)

(51)

(52)

(58)

PARALLEL TOUCH POINT DETECTION
USING PROCESSOR GRAPHICS

Applicant: Intel Corporation, Santa Clara, CA
(US)

Inventors: Chaitanya R. Gandra, El Dorado
Hills, CA (US); Balaji Vembu, Folsom,
CA (US); Arvind A. Kumar, Palo Alto,
CA (US); Nilesh V. Shah, Folsom, CA
(US)

Assignee: Intel Corporation, Santa Clara, CA
(US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

Appl. No.: 14/129,427
PCT Fed: Jun. 28, 2013
PCT No.: PCT/US2O13/048435

S 371 (c)(1),
(2) Date: Dec. 26, 2013

PCT Pub. No.: WO2O14/209335

PCT Pub. Date: Dec. 31, 2014

Prior Publication Data

US 2016/0098148 A1 Apr. 7, 2016

Int. C.
G06F 3/04 (2006.01)
G06F 3/0488 (2013.01)
G06T L/20 (2006.01)
U.S. C.
CPC G06F 3/0418 (2013.01); G06F 3/04 16

(2013.01); G06F 3/0488 (2013.01); G06T 1/20
(2013.01); G06F 2203/04 104 (2013.01)

Field of Classification Search
CPC G06F 3/0416: G06F 3/0417: G06F

2203/04108; G06F 3/0421; G06F 3/0428;
G06T 1/20: G06T 15/10; G06T 17/20;

G06T 7/004: G06T 7/20: G06T 2207/30241:

G06T 7/2053; G06T 2207/10016; H04N
197139

See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS

8,482.536 B1* 7/2013 Young G06F 3/044
178/18.03

8,674,962 B2 3/2014 Chiang et al.
(Continued)

FOREIGN PATENT DOCUMENTS

CN 103135832 A 6, 2013
KR 102012O094929. A 8, 2012

OTHER PUBLICATIONS

International Search Report and Written Opinion received for
International Application No. PCT/US2013/048435, mailed Mar.
31, 2014, 10 pages.

(Continued)

Primary Examiner — Sanjiv D Patel
(74) Attorney, Agent, or Firm — Barnes & Thornburg LLP
(57) ABSTRACT
Technologies for touch point detection include a computing
device configured to receive input frames from a touch
screen, identify touch point centroids and cluster boundaries,
and track touch points. The computing device may group
cells of the input frame into blocks. Using a processor
graphics, the computing device may dispatch one thread per
block to identify local maxima of the input frame and merge
centroids within a touch distance threshold. The computing
device may dispatch one thread per centroid to detect cluster
boundaries. The computing device may dispatch one thread
per previously identified touch point to assign an identifier
of a previously tracked touch point to a touch point within
a tracking distance threshold, remove duplicate identifiers,
and assign unassigned identifiers to closest touch points. The
computing device may dispatch one thread per block to
assign unique identifiers to each unassigned touch point.
Other embodiments are described and claimed.

21 Claims, 7 Drawing Sheets

50

502 / GROUPNPUT FRAME CELS INTO BLOCKS

DETECTLOCALMAXIMAOFEACBLOCKABOVE 504
SIGNAL THRESHOLD AND MARKASCENTROID

MERGE CENTROSACROSSMEGHBORING
BLOCKS

506

trawers LOCKSWERTICALLY

TRAVERSE BLOCKSAGONALLY

DETECT CLUSTER BOUNARY AROUND 514
EACH CENTRI

US 9,448,663 B2
Page 2

(56)

8,913,018

9,213,052
2008/03096.29

2010/0315372

2012/O113017

2012/O1200.06
2012/0206380

2012fO218215
2013,0021272

References Cited

U.S. PATENT DOCUMENTS

12, 2014

12, 2015
12, 2008

12, 2010

5, 2012

5, 2012
8, 2012

8, 2012
1, 2013

Ben-Shalom G06F 3,0418
178/1801

Wilson GO1R 27/26
Westerman G06F 3/038

345,173
Ng GO6F 3,045

345,174
Benko G06F 3,0416

345,173
Liu
Zhao G06F 3/04883

345,173
Kleinert et al.
Wang G06F 3,0416

345,173

2013,0257781 A1 10, 2013 Phulwani et al.
2013/0321303 A1* 12/2013 Madanmohan G06F 3/0416

345,173

OTHER PUBLICATIONS

“Touchscreen.” Wikipedia, The Free Encyclopedia, retrieved from:
<http://en.wikipedia.org/w/index.php?title=Touchscreen
&oldid=534323877>, edited Jan. 22, 2013, 10 pages.
“Graphics processing unit.” Wikipedia, The Free Encyclopedia,
retrieved from: <http://en.wikipedia.org/w/index.
php?title=Graphics processing unit&oldid=534240 100>, edited
Jan. 21, 2013, 8 pages.
U.S. Appl. No. 13/724.291, filed Dec. 21, 2012, 29 pages.

* cited by examiner

U.S. Patent Sep. 20, 2016 Sheet 1 of 7 US 9,448,663 B2

COMPUTING DEVICE
120

PROCESSOR

122 PROCESSOR PROCESSOR 124
CORE GRAPHICS

126

128
d

122 PROCESSOR SCOREBOARD
CORE

IO 132
SUBSYSTEM MEMORY

DATA 134
STORAGE

136
DISPLAY

138 TOUCH
SCREEN

FIG. 1
100

2OO

COMPUTING DEVICE

2O2

CENTROID DETECTION MODULE

CENTROD SEARCH 204 TOUCH POINT TRACKING MODULE

CENTROD MERGE 206 MODULE

8 ASSIGNMENT MODULE CLUSTER DENTIFICATION 29
MODULE

210 218

INPUT FRAMEMODULE PARALLEL DISPATCH MODULE

TOUCH PROCESSOR
SCREEN GRAPHICS

FIG 2

US 9,448,663 B2

300

Sheet 2 of 7 Sep. 20, 2016 U.S. Patent

302
READ TOUCH SCREEN INPUT FRAME

3O4

306

IDENTIFY TOUCH POINT CENTROIDS
AND CLUSTER BOUNDARES

ASSIGNPERSISTENT DENTIFIERS TO DENTIFIED
TOUCH POINTS

400 FIG. 3

416 A 14 412 410

- - - - - - - - - - - -

- -------------------------- -------

- -------

-

A04

-

FIG. 4

-

U.S. Patent Sep. 20, 2016 Sheet 3 of 7 US 9,448,663 B2

500

5O2 / GROUP INPUT FRAME CELLS INTO BLOCKS

DETECT LOCAL MAXIMA OF EACH BLOCKABOVE 594
SIGNAL THRESHOLD AND MARKAS CENTROD

506 MERGE CENTROIDS ACROSS NEIGHBORING
BLOCKS

TRAVERSE BLOCKS VERTICALLY
508

TRAVERSE BLOCKS HORIZONTALLY

TRAVERSE BLOCKSDAGONALLY

DETECT CLUSTER BOUNDARY AROUND 514
EACH CENTROD

FIG. 5

600

FOREACH BLOCK, DISPATCH TASK IN PARALLEL 6O2 M

DETERMINE LOCATION OF CENTROID(S) IN
CURRENT BLOCKAND NEXT BLOCK

DETERMINE DISTANCE BETWEEN CENTROID(S)
IN TRAVERSAL DIRECTION

DISTANCE <
THRESHOLD?

YES

MERGE CENTROIDS INTO CELL WITH
LARGEST VALUE

FIG. 6

U.S. Patent Sep. 20, 2016 Sheet 4 of 7 US 9,448,663 B2

700
702

FOREACH IDENTIFIED CENTROID, DISPATCHTASK /
INPARALLEL

LOAD INPUT FRAME DATA FORCELLS 704
SURROUNDING CENTROD

ZERO INPUT FRAME DATA BELOW 7O6
SIGNAL THRESHOLD

REPLICATEEDGE CELLS OF CLUSTERTO 708
BUILD COMPARISON WINDOW

SUBTRACT INPUT WINDOWEDGE CELLS 710
FROM COMPARISON WINDOWEDGE CELLS

712

MAX 2- .
NO

716
INCREASE COMPARISONWINDOWSIZE

COUNT NUMBER OF VALID CELLS IN 718
COMPARISON WINDOW

FIG. 7

814 816

810 818

812 82O

U.S. Patent Sep. 20, 2016 Sheet S of 7 US 9,448,663 B2

900

902 M
FOREACHIDENTIFIED CENTROID, DISPATCH TASK

IN PARALLEL

LOAD INPUT FRAME DATA FORCELLS 904
SURROUNDING CENTROD

ZERO INPUT FRAME DATA BELOW 906
SIGNAL THRESHOLD

CALCULATE SUM OF EDGE CELLS AND 908
MAXIMUM OF EDGE CELLS IN WINDOW

CALCULATE NUMBER OF EDGE CELLS TIMES 910
SIGNAL THRESHOLD

SUM < CELLS X
THREHSOLD2

MAX 3 MAX OF
PREVIOUS WINDOW2

INCREASE WINDOWSIZE

918

MAX WINDOWSIZET

COUNT NUMBER OF VALID CELLS IN 92O
PREVIOUS WINDOW

FIG. 9

U.S. Patent Sep. 20, 2016 Sheet 6 of 7 US 9,448,663 B2

1OOO

PREDCT LOCATION OF ALL PREVIOUSLY TRACKED /
TOUCH POINTS

FOREACHPREDICTED TOUCH POINT, ASSIGNALABEL
OF APREDICTED TOUCH POINT TO A CURRENT TOUCH

POINT WITHIN THRESHOLD DISTANCE

FOREACHPREDICTED TOUCH POINT, REMOVE
DUPLICATE LABELS ASSIGNED TO CURRENT TOUCH

POINTS

FOREACHPREDICTED TOUCH POINT, ASSIGN UNUSED
PREDICTED TOUCH POINT LABEL TO CLOSEST
UNASSIGNED CURRENT TOUCH POINT WITHIN

THRESHOLD DISTANCE

FOREACH BLOCK OF INPUT FRAME, ASSIGNA UNIQUE
LABEL TO EACH UNASSIGNED CURRENT TOUCH POINT

1012
SET DATA DEPENDENCES BETWEEN BLOCKS

FIG 10

For EACHPREDicTED TouchPoinT, DisPATch Task 102
IN PARALLEL

RETRIEVE ALL CURRENT TOUCH POINTS WITHIN
WINDOWAROUND PREDICTED TOUCH POINT

FIND CLOSEST CURRENT TOUCH POINT TO
PREDICTED TOUCH POINT WITHIN WINDOW,
STORE AS BEST-MATCHED TOUCH POINT

FIND ALL PREDICTED TOUCH POINTS WITHIN
WINDOW AROUND BEST-MATCHED TOUCH POINT

ASSIGN LABEL OF CLOSEST PREDICTED TOUCH
POINT TO BEST-MATCHED TOUCH POINT

FIG. 11

U.S. Patent Sep. 20, 2016 Sheet 7 Of 7 US 9,448,663 B2

1200

M
For each PREDicTED TouchPoinT, DisPATch Task 202

IN PARALLEL

RETRIEVE ALL CURRENT TOUCH POINTS WITHIN
WINDOW AROUND PREDICTED TOUCH POINT

FIND ALL CURRENT TOUCH POINTS WITH LABEL
MATCHING PREDICTED TOUCH POINT

WITH SAME LABEL2

KEEP LABEL FOR CLOSEST CURRENT TOUCH
POINT AND REMOVE REST

FIG. 12
1300

FoREACHPREDicTED TouchPoinT. DisPATch Task 302 /
IN PARALLEL

1304

UNUSED PREDICTED
TOUCH POINTP

RETRIEVE ALL CURRENT TOUCH POINTS
WITHIN WINDOWAROUND PREDICTED

TOUCH POINT

ASSIGN PREDICTED TOUCH POINT LABEL
TO CLOSEST UNASSIGNED CURRENT

TOUCH POINT

FIG. 13

US 9,448,663 B2
1.

PARALLEL TOUCH POINT DETECTION
USING PROCESSOR GRAPHICS

CROSS REFERENCE TO RELATED
APPLICATIONS 5

This application is a national stage entry under 35 USC
S371 (b) of International Application No. PCT/US2013/
048435, which was filed Jun. 28, 2013.

10

BACKGROUND

Many current computing devices use a touch screen as the
primary mode of input from the user. Touch computing has
the capability to provide intuitive and efficient user interac- 15
tion. Computing devices employing touch interfaces typi
cally detect and interpret multiple simultaneous touch points
on the touch screen to recognize touch input gestures and to
reject spurious contacts such as the user's palm resting on
the screen. Touch tracking and gesture interaction should be 20
fast and fluid, to permit natural human interaction.

Typical algorithms for touch point identification and
tracking are highly sequential, iterative, and/or recursive in
nature. Computing devices may identify touch points by
identifying locations of peak touch intensity, called cen- 25
troids, and by identifying the extents of the touch point,
called cluster boundaries. Computing devices may also track
the motion of touch points over time to allow for gesture
recognition. For example, a typical algorithm for touch point
centroid boundary detection may involve recursive traversal 30
of adjoining cells in an input frame, and may be iterated
sequentially for each potential touch point. Also, a typical
algorithm for touch point tracking may iterate through all
known combinations of predicted touch point locations and
detected current touch point locations. Those typical algo- 35
rithms may not scale well or otherwise respond well to
parallel execution.

BRIEF DESCRIPTION OF THE DRAWINGS
40

The concepts described herein are illustrated by way of
example and not by way of limitation in the accompanying
figures. For simplicity and clarity of illustration, elements
illustrated in the figures are not necessarily drawn to scale.
Where considered appropriate, reference labels have been 45
repeated among the figures to indicate corresponding or
analogous elements.

FIG. 1 is a simplified block diagram of at least one
embodiment of a computing device for detecting touch
points in parallel using processor graphics; 50

FIG. 2 is a simplified block diagram of at least one
embodiment of an environment of the computing device of
FIG. 1;

FIG. 3 is a simplified flow diagram of at least one
embodiment of a method for detecting touch points, which 55
may be executed by the computing device of FIGS. 1 and 2:

FIG. 4 is a schematic diagram of an input data frame that
may be produced by a touch screen of the computing device
of FIGS. 1 and 2:

FIG. 5 is a simplified flow diagram of at least one 60
embodiment of a method for detecting touch point centroids
and clusters, which may be executed by the computing
device of FIGS. 1 and 2:

FIG. 6 is a simplified flow diagram of at least one
embodiment of a method for traversing input frames in 65
parallel using processor graphics, which may be executed by
the computing device of FIGS. 1 and 2:

2
FIG. 7 is a simplified flow diagram of at least one

embodiment of a method for identifying touch point cluster
boundaries in parallel using processor graphics, which may
be executed by the computing device of FIGS. 1 and 2:

FIG. 8 is a schematic diagram of an input window and a
comparison window that may be used during execution of
the method of FIG. 7:

FIG. 9 is a simplified flow diagram of at least one
embodiment of another method for identifying touch point
cluster boundaries in parallel using processor graphics,
which may be executed by the computing device of FIGS.
1 and 2:

FIG. 10 is a simplified flow diagram of at least one
embodiment of a method for tracking touch point positions,
which may be executed by the computing device of FIGS.
1 and 2:

FIG. 11 is a simplified flow diagram of at least one
embodiment of a Sub-method for assigning touch point
identifiers to touch point data in parallel using processor
graphics, which may be executed as part of the method of
FIG. 10;

FIG. 12 is a simplified flow diagram of at least one
embodiment of a sub-method for removing duplicate touch
point identifiers in parallel using processor graphics, which
may be executed as part of the method of FIG. 10; and

FIG. 13 is a simplified flow diagram of at least one
embodiment of a Sub-method for assigning unused predicted
touch point identifiers in parallel using processor graphics,
which may be executed as part of the method of FIG. 10.

DETAILED DESCRIPTION OF THE DRAWINGS

While the concepts of the present disclosure are suscep
tible to various modifications and alternative forms, specific
embodiments thereof have been shown by way of example
in the drawings and will be described herein in detail. It
should be understood, however, that there is no intent to
limit the concepts of the present disclosure to the particular
forms disclosed, but on the contrary, the intention is to cover
all modifications, equivalents, and alternatives consistent
with the present disclosure and the appended claims.

References in the specification to “one embodiment,” “an
embodiment,” “an illustrative embodiment,' etc., indicate
that the embodiment described may include a particular
feature, structure, or characteristic, but every embodiment
may or may not necessarily include that particular feature,
structure, or characteristic. Moreover, such phrases are not
necessarily referring to the same embodiment. Further, when
a particular feature, structure, or characteristic is described
in connection with an embodiment, it is submitted that it is
within the knowledge of one skilled in the art to effect such
feature, structure, or characteristic in connection with other
embodiments whether or not explicitly described.
The disclosed embodiments may be implemented, in

Some cases, in hardware, firmware, Software, or any com
bination thereof. The disclosed embodiments may also be
implemented as instructions carried by or stored on a
transitory or non-transitory machine-readable (e.g., com
puter-readable) storage medium, which may be read and
executed by one or more processors. A machine-readable
storage medium may be embodied as any storage device,
mechanism, or other physical structure for storing or trans
mitting information in a form readable by a machine (e.g.,
a volatile or non-volatile memory, a media disc, or other
media device).

In the drawings, some structural or method features may
be shown in specific arrangements and/or orderings. How

US 9,448,663 B2
3

ever, it should be appreciated that such specific arrange
ments and/or orderings may not be required. Rather, in some
embodiments, such features may be arranged in a different
manner and/or order than shown in the illustrative figures.
Additionally, the inclusion of a structural or method feature
in a particular figure is not meant to imply that Such feature
is required in all embodiments and, in some embodiments,
may not be included or may be combined with other
features.

Referring now to FIG. 1, a computing device 100 pro
cesses touch input frame data received from a touch screen
in parallel using processor graphics. Processing the input
frame data may include identifying touch point centroids
and cluster boundaries, as well as tracking the motion of
touch points across input frames. Processing input frame
data in parallel on the processor graphics may improve
performance, reduce power consumption, or any combina
tion thereof. Additionally, the processing algorithms dis
closed herein may have more stable execution times for
differing numbers of touch inputs and therefore may
improve touch screen responsiveness and predictability.
The computing device 100 may be embodied as any type

of computing device capable of processing touch input
frames and otherwise performing the functions described
herein. For example, the computing device 100 may be
embodied as, without limitation, a computer, a Smartphone,
a tablet computer, a laptop computer, a notebook computer,
a mobile computing device, a desktop computer, a work
station, a cellular telephone, a handset, a messaging device,
a vehicle telematics device, a network appliance, a web
appliance, a distributed computing system, a multiprocessor
system, a processor-based system, a consumer electronic
device, a digital television device, and/or any other com
puting device configured to process touch point data in
parallel. As shown in FIG. 1, the computing device 100
includes a processor 120, an I/O subsystem 130, a memory
132, a data storage 134, a display 136, and a touch screen
138. Of course, the computing device 100 may include other
or additional components, such as those commonly found in
a tablet computer (e.g., various input/output devices), in
other embodiments. Additionally, in Some embodiments,
one or more of the illustrative components may be incor
porated in, or otherwise form a portion of another compo
nent. For example, the memory 132, or portions thereof,
may be incorporated in the processor 120 in some embodi
mentS.

The processor 120 may be embodied as any type of
processor capable of performing the functions described
herein. The processor 120 is illustratively embodied as a
multi-core processor having a plurality of processor cores
122. However, the processor 120 may be embodied as a
single or multi-core processor(s), digital signal processor,
microcontroller, or other processor or processing/controlling
circuit. Similarly, the memory 132 may be embodied as any
type of Volatile or non-volatile memory or data storage
capable of performing the functions described herein. In
operation, the memory 132 may store various data and
software used during operation of the computing device 100
Such as operating systems, applications, programs, libraries,
and drivers. The memory 132 is communicatively coupled to
the processor 120 via the I/O subsystem 130, which may be
embodied as circuitry and/or components to facilitate input/
output operations with the processor 120, the memory 132,
and other components of the computing device 100. For
example, the I/O subsystem 130 may be embodied as, or
otherwise include, memory controller hubs, input/output
control hubs, firmware devices, communication links (i.e.,

10

15

25

30

35

40

45

50

55

60

65

4
point-to-point links, bus links, wires, cables, light guides,
printed circuit board traces, etc.) and/or other components
and Subsystems to facilitate the input/output operations. In
some embodiments, the I/O subsystem 130 may form a
portion of a system-on-a-chip (SoC) and be incorporated,
along with the processor 120, the memory 132, and other
components of the computing device 100, on a single
integrated circuit chip.
The processor 120 includes a processor graphics 124. The

processor graphics 124 includes graphics and media pro
cessing circuitry that may provide accelerated processing
and rendering of three-dimensional graphics, two-dimen
sional graphics, and various video formats. The processor
graphics 124 is generally characterized by heavily parallel
computing resources and may be embodied as a plurality of
execution units 126. In some embodiments, the execution
units 126 may include fully programmable execution units
or any combination of fixed-function execution units for
geometry processing, transform and lighting, rasterization,
media decoding, media encoding, and the like.
The processor graphics 124 may be used, along with the

processor core(s) 122, to perform general-purpose comput
ing tasks. The computing tasks may be embodied as threads,
kernels, or other executable code dispatched by one or more
of the processor cores 122 for execution by the processor
graphics 124. The tasks are executed, in parallel, by the
programmable execution units 126 and/or the fixed-function
execution units 126 of the processor graphics 124. The
execution units 126 may provide a number of single-instruc
tion-multiple-data (SIMD) instructions, such as SIMD sub
tract and SIMD add instructions. In some embodiments, the
processor graphics 124 may include an instruction scheduler
Such as a scoreboard 128 that dispatches tasks for execution.
In those embodiments, the processor core(s) 122 log data
dependencies between the tasks to the scoreboard 128, and
the processor graphics 124 uses the scoreboard 128 to
dispatch tasks according to the logged data dependencies
and available execution resources. General-purpose comput
ing using the processor graphics 124 may be exposed to the
user by a parallel programming interface such as compute
shaders, DirectCompute, OpenCLTM, CUDATM (also known
as Compute Unified Device Architecture), or the like.

In some embodiments, the processor graphics 124 may be
included on the same integrated circuit chip as the processor
core(s) 122 or as a separate integrated circuit chip included
in the same physical package as the processor core(s) 122.
In other embodiments, the processor graphics 124 may be
included in the I/O subsystem 130, discussed in more detail
below. In still other embodiments, the processor graphics
124 may be included on a separate expansion board com
municatively coupled to a motherboard of the computing
device 100.
The data storage 134 may be embodied as any type of

device or devices configured for the short-term or long-term
storage of data. For example, the data storage 134 may
include any one or more memory devices and circuits,
memory cards, hard disk drives, Solid-state drives, or other
data storage devices. In some embodiments, the data storage
134 may store input frame data or touch point tracking data,
as described further below.
The display 136 of the computing device 100 may be

embodied as any type of display capable of displaying
digital information Such as a liquid crystal display (LCD), a
light emitting diode (LED), a plasma display, a cathode ray
tube (CRT), or other type of display device. The touch
screen 138 may be embodied as any type of touch screen
capable of generating input data in response to being

US 9,448,663 B2
5

touched by the user of the computing device 100. The touch
screen 138 may be embodied as a resistive touch screen, a
capacitive touch screen, or a camera-based touch screen.
The touch screen 138 is responsive to multiple simultaneous
touch points.

Referring now to FIG. 2, in an embodiment, the comput
ing device 100 establishes an environment 200 during
operation. The illustrative environment 200 includes a cen
troid detection module 202, an input frame module 210, a
touch point tracking module 212, and a parallel dispatch
module 218. The various modules and sub-environments of
the environment 200 may be embodied as hardware, firm
ware, Software, or a combination thereof.

The input frame module 210 is configured to receive data
from the touch screen 138 and format the input data as a
series of input frames. Each input frame may be embodied
as an array of input cells, each containing a touch data value
representing the touch value sensed at a particular position
on the touch screen 138. The input frame module 210
continually produces updated input frames, to enable high
resolution touch tracking.
The centroid detection module 202 is configured to search

input frames received from the input frame module 210 for
centroids; that is, points on the touch screen 138 roughly
corresponding to the center of each touch point. The centroid
detection module 202 is further configured to merge neigh
boring centroids into a single centroid, and to detect the
boundaries of clusters of input cells Surrounding each cen
troid. The cluster boundary represents the extent of each
touch point. In some embodiments, those functions may be
performed by sub-modules, for example by a centroid search
module 204, a centroid merge module 206, or a cluster
identification module 208.
The touch point tracking module 212 is configured to

identify and track particular touch points across input frames
over time. In particular, the touch point tracking module 212
is configured to predict locations of previously-tracked
touch points, and then assign identifiers from the previously
tracked touch points to touch points detected in the current
input frame by the centroid detection module 202. The touch
point tracking module 212 may also assign unique identifiers
to touch points in the current input frame not previously
tracked. In some embodiments, the touch point tracking
module 212 may process raw input frame data from the input
frame module 210. In some embodiments, those functions
may be performed by sub-modules, for example by a touch
point prediction module 214 or a touch point assignment
module 216.
The parallel dispatch module 218 is configured to sched

ule and execute computing tasks in parallel using the pro
cessor graphics 124. That is, the parallel dispatch module
218 dispatches tasks to be executed contemporaneously
using multiple execution units 126 of the processor graphics
124. The parallel dispatch module 218 may log data depen
dencies with the scoreboard 128 of the processor graphics
124 to control the order of execution of the tasks. Both the
centroid detection module 202 and the touch point tracking
module 212 may use the parallel dispatch module 218 to
execute portions of their respective algorithms in parallel.
Additionally, both the centroid detection module 202 and the
touch point tracking module 212 may execute portions of
their respective algorithms using SIMD instructions of the
processor graphics 124. For example, the centroid detection
module 202 may search for centroids, merge centroids, and
identify clusters in parallel using the processor graphics 124.
Similarly, the touch point tracking module 212 may assign

10

15

25

30

35

40

45

50

55

60

65

6
identifiers from predicted touch points and may generate
new unique touch points in parallel using the processor
graphics 124.

Referring now to FIG.3, in use, the computing device 100
may execute a method 300 for touch point processing. The
method 300 begins with block 302, in which the computing
device 100 receives an input frame from the touch screen
138. As described above, the input frame includes an array
of values representing touch point intensities sensed by the
touch screen 138 during a short sample period. For example,
an illustrative input frame 402 is shown in FIG. 4. The input
frame 402 is illustrated as a square array of cells 404. Each
of the cells 404 includes a touch data value sensed on a
region of the touch screen 138. Each touch data value
corresponds to the touch intensity sensed by the touch screen
138 on that region, for example, the capacitance of the user's
finger against the touch screen 138. The touch data values
may be embodied as sixteen-bit integer values, or any digital
value wide enough to contain the range of intensity values
sensed by the touch screen 138.

Referring back to FIG. 3, after receiving the input frame,
in block 304 the computing device 100 processes the input
frame to identify touch point centroids and cluster bound
aries. Clusters may be embodied as groups of contiguous
cells of the input frame associated with a single touch point.
Centroids may be embodied as cells of the input frame
containing the peak of touch intensity for a cluster. Each
cluster and associated centroid represents a potential touch
point on the touch screen 138. The computing device 100
may analyze the centroid and cluster data to accept or reject
potential touch points; for example, the computing device
100 may distinguish fingertip and palm touches based on the
size and/or shape of the cluster boundary, accept centroids
corresponding to fingertip touches, and reject centroids
corresponding to palm touches. The functionality of block
304 is further described below in connection with FIGS. 5-7.

In block 306, after identifying touch points from the raw
input frame, the computing device 100 assigns persistent
identifiers to each identified touch point. The persistent
identifiers track the movement of touch points from frame to
frame. These persistent identifiers may be used by the
computing device 100 to assist in processing gestural inter
actions or for other user interactions. The functionality of
block 306 is further described below in connection with
FIGS. 8-11. After assigning persistent identifiers, the method
300 loops back to block 302 to receive another input frame.

Referring now to FIG. 5, in use, the computing device 100
may execute the method 500 for identification of touch point
centroids and cluster boundaries. The method 500 begins
with block 502, in which the computing device 100 groups
the cells of the input frame into a number of square blocks.
For example, referring to FIG. 4, the input frame 402
includes 256 input cells 404 arranged in a square array. The
input cells 404 are grouped into sixteen four-by-four cell
blocks 406. In other embodiments not illustrated, the input
cells 404 may be grouped into three-by-three cell blocks.
And, of course, the input frame 402 may include any number
of input cells 404.

Referring back to FIG. 5, in block 504, the computing
device 100 detects, for each of the blocks 406, those cells
including a local maxima above a signal threshold. In other
words, for each of the blocks 406, the computing device 100
searches for the cell within the block having the largest
touch data value that is also above the signal threshold.
Touch data values below the signal threshold represent noise
or other spurious signals detected by the touch screen 138
and are rejected. Each of the identified local maxima is

US 9,448,663 B2
7

provisionally marked as a centroid. For example, as illus
trated in FIG. 4, the shaded cells 450 through 472 represent
local maxima detected in each block. For example, block
410 includes a local maxima at cell 450. Each block may
have at most one local maximum, and some blocks, for 5
example blocks 422, 428, 434, 440, may not include any
identified local maximum. In some embodiments, the com
puting device 100 may search each of the blocks 406 in a
separate search task, and each of these tasks may be dis
patched to the processor graphics 124 for execution in 10
parallel.

After identifying centroids, in block 506, the computing
device 100 merges centroids across neighboring blocks.
Each of the centroids is identified in block 504 using data
from a single block 406; however, centroids identified on 15
either side of a block boundary may be part of the same
touch point. To eliminate Such erroneous centroids, the
computing device 100 traverses the blocks 406 to find touch
points within a touch distance threshold from each other.
The touch distance threshold represents the minimum num- 20
ber of input frame cells between unique touch points, which
may be device or implementation dependent. In some
embodiments the touch distance threshold may be config
ured to approximate the size of a human finger. For example,
given a fifteen-inch touch screen 138 using a 64 by 32 cell 25
input frame, the touch distance threshold may be two cells.
Centroids within the touch distance threshold are merged by
marking only the cell with the larger touch data value as the
centroid. In block 508, the computing device 100 traverses
the blocks 406 vertically; in block 510, the computing 30
device 100 traverses the blocks 406 horizontally; and in
block 512 the computing device 100 traverses the blocks
406 diagonally. In some embodiments, the computing device
100 may traverse each of the blocks 406 in a separate merge
task, and each of these tasks may be dispatched to the 35
processor graphics 124 for execution in parallel. One
method for merging centroids is described further in con
nection with FIG. 6, below.

After merging the centroids, in block 514 the computing
device 100 detects the cluster boundary around each cen- 40
troid. The detected cluster boundary represents the extent of
the detected touch point. For example, referring to FIG. 4,
the solid boundaries 480 through 492 represent cluster
boundaries, and the shaded cells within the cluster boundary
are included in the cluster. Each cluster may include a single 45
cell, for example clusters 480, 486, 488, 492, 494, or may
include multiple cells, for example clusters 482, 484,490. In
some embodiments, the computing device 100 may detect
cluster boundaries around each centroid in a separate detec
tion task, and each of these tasks may be dispatched to the 50
processor graphics 124 for execution in parallel. One
method for detecting cluster boundaries is described further
in connection with FIG. 7, below. After detecting cluster
boundaries, the method 500 returns, allowing the computing
device 100 to continue processing the detected touch points. 55

Referring now to FIG. 6, in use, the computing device 100
may execute a method 600 for merging centroids across
neighboring blocks. The method 600 begins with block 602,
in which the computing device 100 dispatches a task for
each of the blocks 406 in parallel on the processor graphics 60
124. To control the order of traversal, the computing device
100 may set data dependencies among the tasks using the
scoreboard 128 of the processor graphics 124. For example,
referring to FIG. 4, for a vertical traversal, the computing
device 100 may set block 418 to depend on block 410, block 65
420 to depend on block 412, and so on such that the tasks
will execute in vertical stripes across the input frame 402.

8
Similarly, for a horizontal traversal, the computing device
100 may set block 412 to depend on block 410, block 420
to depend on block 418, and so on such that the tasks will
execute in horizontal stripes across the input frame 402. For
a diagonal traversal, instead of dispatching a single task per
block 406, the computing device may dispatch one task per
group of four blocks, the tasks collectively covering the
input frame 402. For example, the first task may include
blocks 410, 412, 418, 420, and the second task may include
blocks 412, 414, 420, 422. The computing device 100 may
set dependencies between those tasks to process left-to
right, top-to-bottom, or any consistent order.

For each of the tasks dispatched in block 602, in block 604
the computing device 100 determines the location of any
centroids in the current block and in the next block in
traversal order. For example, referring to FIG. 4, when
traversing vertically for block 410, the computing device
100 may determine the location of centroid 450 in block 410
and the location of centroid 458 in block 418, the next block
in traversal order. As another example, when traversing
horizontally for block 410, the computing device 100 may
determine the location of centroid 450 and centroid 452 of
block 412. As a third example, when traversing diagonally,
the computing device 100 may determine the location of
centroid 450 of block 410 and centroid 460 of block 420.
The location of each centroid may be determined as a pair
of coordinates corresponding to the input cell 404 containing
the centroid. Of course, Some blocks may not include any
identified centroids, for example, blocks 422, 428, 434, 440.

In block 606, the computing device 100 determines the
distance between the centroids identified in block 604 in the
traversal direction. The distance between centroids may be
measured in terms of input cells 404 separating the cen
troids. The distance may be measured only for centroids that
are aligned in the traversal direction (e.g., vertically, hori
Zontally, or diagonally). For example, referring to FIG. 4.
when traversing vertically in block 412, cells 452, 460 have
a distance of two input cells between them in the vertical
direction, whereas in block 418 cells 458, 464 have a
distance of four input cells between them. When traversing
horizontally in block 418, cells 458, 460 have a distance of
two input cells between them, whereas in block 430 cells
466, 468 have a distance of three input cells between them.
When traversing diagonally, in block 414, cells 454, 462
have a distance of two input cells between them, whereas in
block 420 cells 460, 466 have a distance of five input cells
between them.

Referring back to FIG. 6, in block 608, the computing
device 100 determines whether the distance in the traversal
direction between the centroids is less than or equal to the
touch threshold distance. As described above, the distance
threshold represents the minimum number of input frame
cells between unique touch points. In some embodiments,
the touch distance threshold may be two input cells. If the
distance is greater than the threshold, the method 600 returns
without merging any centroid and is completed for the
current block. Additionally, where less than two centroids
exist in the current block and the next block, the method 600
returns and is completed for the current block. Further,
where centroids of the current block and the next block are
not aligned in the traversal direction, the method 600 returns
and is completed for the current block. If the distance is less
than or equal to the touch distance threshold, the method 600
advances to block 610.

In block 610, the computing device 100 merges the two
centroids into the input cell 404 having the larger touch data
value. After merging, the input frame cell containing the

US 9,448,663 B2
9

larger touch data value remains marked as a centroid, and the
other input frame cell is no longer marked as a centroid. For
example, when traversing vertically in block 412, the touch
data values of cells 452, 460 are compared, and the centroid
may be merged into cell 460, assuming that cell 460 has the
larger touch data value. Centroids may be merged repeatedly
in Successive traversal directions. For example, when tra
versing horizontally in block 418, cells 458, 460 may be
merged into cell 460, assuming that cell 460 again has the
larger touch data. As another example, when traversing
diagonally in block 414, cells 454, 462 may be merged. After
merging the centroids, the method 600 returns, and is
completed for the current block. Thus, after merging in all
traversal directions, any cluster Straddling block boundaries
includes a single marked centroid. For example, after merg
ing in all traversal directions, the input cell 460 may be the
only marked centroid within the cluster boundary 482.

Referring now to FIG. 7, in use, the computing device 100
may execute a method 700 for identifying cluster boundaries
after centroids have been marked and merged. The method
700 begins with block 702, in which the computing device
100 dispatches a task for each of the marked centroids in
parallel on the processor graphics 124. For each of the tasks
dispatched in block 702, in block 704, the computing device
100 loads input frame data for cells surrounding the cen
troid. The number of cells loaded depends on allowed finger
or palm sizes. In some embodiments, the computing device
100 may load a sixteen-by-sixteen square block of cells
roughly centered on the centroid.

In block 706, the computing device 100 zeros input cells
having a touch data value below the signal threshold. That
is, the computing device 100 sets the value of such cells to
Zero. Zeroing input cells below the input threshold may
improve detection performance.

In block 708, the computing device 100 replicates edge
cells of the cluster to build a comparison window. In the first
iteration, the cluster includes only the cell previously
marked as a centroid. The computing device 100 defines an
input window Surrounding the cluster. For example, in the
first iteration, the input window may be embodied as a
three-by-three cell Square window Surrounding the centroid.
In a later iteration, the input window may be embodied as a
five-by-five cell square window Surrounding the cluster.
Although the illustrative embodiment uses square windows,
other embodiments may use variable sized windows such as
a three-by-five window, a five-by-three window, or the like.
Next, the computing device 100 creates a comparison win
dow of the same size as the input window. Each of the edge
cells of the cluster is copied into a neighboring edge cell of
the comparison window in a direction away from the cen
troid. Thus, corner cells of the input window are extended in
three directions: diagonally, horizontally, and vertically. As
described above, in the first iteration, the centroid value is
extended to the edges of the comparison window.

Referring now to FIG. 8, diagram 800 illustrates one
embodiment of an input window and a comparison window.
Array 802 illustrates the input window. Cell C includes an
identified centroid. Cluster boundary 804 is a three-by-three
cell square including cells C through Cs that have been
previously identified as members of the cluster. Input win
dow 802 includes sixteen edge cells P. Array 806 illustrates
the comparison window. Comparison window 806 may be
embodied as a separate array stored in memory. Cluster
boundary 808 corresponds to the cluster boundary 804 and
includes copies of cells C through Cs. The edge cells of
comparison window 806 include values copied from within
the cluster boundary 808. As shown, the value of cell C is

5

10

15

25

30

35

40

45

50

55

60

65

10
copied into three corner cells, the value of cell C is copied
into a single edge cell, the value of cell C is copied into
three corner cells, and so on.

Referring back to FIG. 7, in block 710, the computing
device 100 subtracts the value of input frame edge cells from
corresponding comparison window edge cells. In some
embodiments, the computing device 100 may perform that
Subtraction on all four edges of the windows using single
instruction-multiple-data (SIMD) instructions of the com
puting device 100. For example, the values of each edge may
be packed into a vector, and the computing device 100 may
perform the Subtraction of each edge using a single packed
vector subtraction instruction. Of course, in other embodi
ments, the computing device 100 may perform a discrete
subtraction for each cell. For example, referring to FIG. 8,
the input window 802 includes top edge 810, bottom edge
812, left edge 814, and right edge 816. The comparison
window 806 includes top edge 818, bottom edge 820, left
edge 822, and right edge 824. To calculate the differences for
the top edge, the computing device 100 may pack the values
of the top edge 810 and the top edge 818 into vectors, and
subtract the vector for the top edge 810 from the vector for
the top edge 818. The computing device 100 may perform a
similar calculation for other edges.

Referring back to FIG. 7, in block 712, the computing
device 100 determines whether any of the differences result
ing from the subtractions calculated in block 710 are less
than Zero. If so, that means that for at least one of the edge
cells, the input frame value is greater than the value of a
neighboring cell within the cluster. For the first iteration, that
means that one of the cells Surrounding the centroid is
greater than the centroid. In that situation, the slope of the
touch data values is non-negative—that is, the touch value
data has started to increase. Thus, in that situation, the
centroid boundary has been found. If any of the differences
is less than Zero, the method 700 branches to block 718,
described below. If none of the differences is less than Zero,
the method 700 advances to block 714.

In block 714, the computing device 100 determines
whether the comparison window size has reached a maxi
mum window size. The maximum window size may be
defined based on, for example, the size of the input frame
data block loaded in block 704. For example, the maximum
window size may be fifteen cells by fifteen cells, the largest
window size possible within a sixteen-cell square block of
input frame data. If the maximum window size has been
reached, the method 700 branches to block 718, described
below. If the maximum window size has not been reached,
the method 700 advances to block 716.

In block 716, the computing device 100 increases the
comparison window size. Because none of the differences
calculated in block 710 were below zero, every cell of the
current comparison window is included within the centroid
boundary. Therefore, the comparison window size and the
related input window size may be increased to continue
searching for the boundary. After increasing the comparison
window size, the method 700 loops back to block 708 to
build another comparison window.

Referring back to block 712, if any difference is less than
Zero, the method 700 branches to block 718. Additionally,
referring back to block 714, if the maximum window size
has been reached, the method 700 branches to block 718. In
block 718, the computing device 100 counts the number of
valid cells in the comparison window. Valid cells are those
for which the difference calculated in block 710 is not less
than Zero. In some embodiments, the computing device 100
may identify all non-zero cells within the input window as

US 9,448,663 B2
11

valid cells, because cells below the signal threshold were
Zeroed in block 706. The computing device 100 may count
the number of valid cells using a SIMD sum instruction. The
number of valid cells may be used by the computing device
100 to determine the cluster boundary; that is, the size of the
touch point Surrounding the centroid.

Referring now to FIG.9, in use, the computing device 100
may execute a method 900 for identifying cluster boundaries
after centroids have been marked and merged. The method
900 may be appropriate for use with a touch screen 138 that
tends to produce noisy input frames. The method 900 begins
with block 902, in which the computing device 100 dis
patches a task for each of the marked centroids in parallel on
the processor graphics 124. For each of the tasks dispatched
in block 902, in block 904, the computing device 100 loads
input frame data for cells surrounding the centroid. The
number of cells loaded depends on allowed finger or palm
sizes. In some embodiments, the computing device 100 may
load a sixteen-by-sixteen square block of cells roughly
centered on the centroid.

In block 906, the computing device 100 zeros input cells
having a touch data value below the signal threshold. That
is, the computing device 100 sets the value of such cells to
Zero. Zeroing input cells below the input threshold may
improve detection performance.

In block 908, the computing device 100 calculates the
Sum of all edge cells within a window and the maximum
value of all edge cells within the window. The computing
device 100 may store the sum and the maximum in an array
for later retrieval. The initial window may be a three-by
three square window surrounding the centroid. For example,
referring to FIG. 8, the initial window may be illustrated by
window 804. The sum of the edge cells would thus be the
sum of cells C through Cs. The maximum would be the
largest value of cells C through Cs.

Referring back to FIG. 9, in block 910 the computing
device 100 calculates the product of the number of edge cells
within the current window and the signal threshold. For
example, a three-by-three window includes eight edge cells,
a five-by-five window includes sixteen edge cells, and so on.
In block 912, the computing device 100 determines whether
the sum of the edge cells for the current window is less than
the product of the edge cells times the signal threshold. If so,
the average value of the edge cells is less than the signal
threshold, meaning the cluster boundary has been found. If
the sum is less than the number of cells times the signal
threshold, the method 900 branches to block 920, described
below. If the sum is not less than the number of cells times
the signal threshold, the method 900 advances to block 914.

In block 914, the computing device 100 determines
whether the maximum value of the current window is less
than or equal to the maximum value of the previous window.
For the initial window, the computing device 100 determines
whether the maximum value of the current window is less
than or equal to the value of the centroid. For example, the
computing device 100 may determine whether the maximum
value of a five-by-five window (the current window) is less
than or equal to the maximum value of a three-by-three
window (the previous window). If the maximum value of the
current window is not less than or equal to the maximum
value of the previous window, that is, if the maximum value
of the current window is greater than the maximum value of
the previous window, then the method 900 branches to block
920, described below. If the maximum value of the current
window is less than or equal to the maximum value of the
previous window, the method 900 advances to block 916.

10

15

25

30

35

40

45

50

55

60

65

12
In block 916, the computing device 100 increases the

window size. Because the maximum of the current window
is less than or equal to the maximum of the previous
window, every cell of the current window may be included
within the centroid boundary. Therefore, the window size
may be increased to continue searching for the boundary. In
block 918, the computing device 100 determines whether
the maximum window size has been exceeded. The maxi
mum window size may be defined based on, for example, the
size of the input frame data block loaded in block 904. For
example, the maximum window size may be fifteen cells by
fifteen cells, the largest window size possible within a
sixteen-cell Square block of input frame data. If the maxi
mum window size has not been exceeded, the method 900
loops back to block 908 to continue searching for the cluster
boundary. If the maximum window size has been exceeded,
the method 900 advances to block 920.

In block 920, the computing device 100 counts the
number of valid cells in the previous window. At this point,
the computing device may have determined that the average
value of the edge cells of the current window does not
exceed the signal threshold in block 912, that the maximum
of the current window exceeds the maximum of the previous
window in block 914, or that the maximum window size has
been exceeded in block 918. In all of those situations, the
previous, Smaller window may be used as the cluster bound
ary. For the initial window, the centroid may be used as the
previous window, leading to a single-cell cluster. The com
puting device 100 may identify all non-zero cells within the
selected window as valid cells, because cells below the
signal threshold were Zeroed in block 906. The computing
device 100 may count the edge cells using a SIMD instruc
tion, for example, a SIMD sum instruction.

Referring now to FIG. 10, in use, the computing device
100 may execute a method 1000 for assigning persistent
identifiers to touch points. As described above in connection
with block 306 of FIG. 3, upon execution of the method
1000, the computing device 100 may already have received
an input frame from the touch screen and performed centroid
and cluster boundary detection to identify current touch
points in the input frame. The method 1000 begins in block
1002, in which the computing device 100 predicts a location
in the current input frame for all previously tracked touch
points. Of course, for the first invocation of method 1000,
there will be no previously tracked touch points. In some
embodiments, the computing device 100 may extrapolate
the predicted locations from previous locations, for example
by determining a speed of each touch point and predicting a
location as a function of the speed. However, in some
embodiments, the computing device 100 may simply predict
the location of each previously tracked touch point as being
the same as in the previous input frame. This simplified
approach may be appropriate where touch points are likely
to be relatively slow-moving.

In block 1004, for each of the predicted touch points, the
computing device 100 assigns an identifier of a predicted
touch point to a current touch point located within a tracking
distance threshold of the predicted touch point. Each pre
dicted touch point is associated with a unique identifier that
may be used to track the location of the touch point between
frames. The tracking distance threshold represents the maxi
mum distance on the touch screen 138 that a touch point may
move between input frames and be considered the same
touch point. The tracking distance threshold may be mea
Sured in terms of input frame cells. For example, in some
embodiments, the threshold may be seven cells. In some
embodiments, the computing device 100 may assign an

US 9,448,663 B2
13

identifier for each of the predicted touch points in a separate
assignment task, and each of these tasks may be dispatched
to the processor graphics 124 for execution in parallel. The
method for assigning identifiers is described further with
respect to FIG. 11, below.

In block 1006, for each of the predicted touch points, the
computing device 100 removes any duplicate identifiers
assigned to current touch points. Because the method of
block 1004 is executed independently for each predicted
touch point, the same identifier may be assigned to multiple
current touch points. To correct this issue, the computing
device 100 removes duplicated identifiers, retaining the
identifier on the current touch point closest to the predicted
touch point. In some embodiments, the computing device
100 remove duplicate identifiers for each predicted touch
point in a separate removal task, and each of these tasks may
be dispatched to the processor graphics 124 for execution in
parallel. The method for removing duplicate identifiers is
described further with respect to FIG. 12, below.

In block 1008, for each predicted touch point, the com
puting device 100 assigns any unused predicted touch point
identifier to the closest unassigned current touch point
within the threshold distance. In some embodiments, the
computing device 100 may assign unused predicted touch
point identifiers for each predicted touch point in a separate
assignment task, and each of these tasks may be dispatched
to the processor graphics 124 for execution in parallel. The
method for assigning unused predicted touch point identi
fiers is described further with respect to FIG. 13, below.

In block 1010, for each block of the input frame, the
computing device 100 assigns a new unique identifier to
each unassigned current touch point. As described above, the
input frame may be grouped into square blocks of cells. In
some embodiments, the blocks may be four-by-four cell
squares, and in other embodiments, the blocks may be
three-by-three cell squares. In some embodiments, the com
puting device 100 may dispatch an assignment task for each
block on the processor graphics 124 to find and assign an
identifier to each unassigned current touch point within the
block. For example, the computing device 100 may maintain
a global counter and assign increasing integer values as
identifiers. The counter may be sufficiently large to allow for
a typical number of unique identifiers without rolling over.
For example, in some embodiments an unsigned eight-bit
integer may be used as the counter, allowing 256 unique
identifiers. As another example, to ensure identifiers are
unique, the computing device 100 may maintain a map of
identifiers and select an unused identifier using the map. The
map may be embodied as eight unsigned thirty-two bit
integers including a total of 256 bits, with each bit of the
map representing whether a particular identifier has been
assigned.

In block 1012, the computing device 100 may set data
dependencies between the blocks to control the order that
the blocks are evaluated. Controlling the order of execution
allows the computing device 100 to generate a repeatable set
of unique identifiers for the unassigned current touch points.
As described above, the data dependencies may be used by
the scoreboard 128 of the processor graphics 124 to control
execution order. For example, data dependencies may be set
to search the blocks columnwise, traversing each column
vertically before advancing to the next column. The data
dependencies may include the global counter or the map of
identifiers discussed above, allowing each block to calculate
unique identifiers based on the results of the previous block.

Referring now to FIG. 11, in use, the computing device
100 may execute a method 1100 for assigning identifiers to

5

10

15

25

30

35

40

45

50

55

60

65

14
current touch points. The method 1100 begins in block 1102,
in which the computing device 100 dispatches a task for
each of the predicted touch points in parallel on the proces
sor graphics 124. For each of the tasks, in block 1104, the
computing device 100 retrieves all current touch points of
the current input frame within a window around the location
of the predicted touch point. As described above, the com
puting device 100 may organize the input frame in memory
by grouping the input frame cells into square blocks, for
example into four-by-four blocks or three-by-three cell
blocks. Such grouping into blocks may be similar to the
organization for centroid detection described above in con
nection with block 502 of FIG. 5. Touch point information
for each block may be stored in a format that may be readily
loaded, stored, and otherwise manipulated by the processor
graphics 124. Such as an image or texture format. For
example, touch point information for each block may be
stored in a thirty-two-bit float two-dimensional surface
format. The window is sized to be large enough to include
all cells within the tracking distance threshold of the pre
dicted touch point. For example, two four-by-four blocks or
three three-by-three blocks are required to cover a seven-cell
tracking distance threshold, and the tracking distance thresh
old may be covered in all directions from the predicted touch
point. Thus in some embodiments, for four-by-four cell
blocks, the window may be five blocks square, and for three
three-by-three blocks, the window may be seven blocks
square. The block containing the predicted touch point is
positioned at the center of the window.

In block 1106, the computing device 100 finds the closest
current touch point to the predicted touch point located
within the window. The computing device 100 stores that
closest current touch point for later processing as the best
matched touch point.

In block 1108, the computing device 100 finds all pre
dicted touch points within a window around the best
matched touch point identified in block 1106. The window
is the same size as the window searched in block 1104.
However, because the best-matched touch point may be
located in a different block, the computing device 100 may
retrieve and search different blocks. In block 1110, the
computing device 100 assigns the identifier of the closest
predicted touch point to the best-matched touch point. Thus,
the best-matched touch point may be assigned an identifier
different than that of the predicted touch point originally
searched in block 1104. After assigning the identifier, the
method 1100 returns.

Referring now to FIG. 12, in use, the computing device
100 may execute a method 1200 for removing duplicate
identifiers. The method 1200 begins in block 1202, in which
the computing device 100 dispatches a task for each of the
predicted touch points in parallel on the processor graphics
124. In block 1204, the computing device 100 retrieves all
current touch points within a window around the predicted
touch point. As described above with respect to block 1104
of FIG. 10, the window is sized to include all blocks
containing cells within the tracking distance threshold of the
predicted touch point, and may be embodied as a five-by
five block square window or a seven-by-seven block square
window, depending on the block size.

In block 1206, the computing device 100 finds all current
touch points within the window having an identifier match
ing the identifier of the predicted touch point. In block 1208,
the computing device determines whether more than one
current touch point has the same identifier as the predicted

US 9,448,663 B2
15

touch point. If not, no identifier need be removed and the
method 1200 returns. If so, the method 1200 advances to
block 1210.

In block 1210, of the current touch points having match
ing identifiers, the computing device 100 keeps the identifier
for the closest current touch point and removes the identifier
from the rest. Each current touch point having an identifier
removed reverts to its original, unassigned State. Thus, after
completing block 1210, all duplicate identifiers have been
removed, and the method 1200 returns.

Referring now to FIG. 13, in use, the computing device
100 may execute a method 1300 for assigning unused
predicted touch point identifiers. The method 1300 begins in
block 1302, in which the computing device 100 dispatches
a task for each of the predicted touch points in parallel on the
processor graphics 124. In block 1304, the computing device
100 determines whether the predicted touch point is unused.
That is, the computing device 100 determines whether the
identifier of the predicted touch point has been assigned to
any current touch point. If the predicted touch point is not
unused; that is, if the predicted touch point has been
assigned, the method 1300 returns. If the predicted touch
point is unused, the method 1300 advances to block 1306.

In block 1306, the computing device 100 retrieves all
current touch points within a window around the unused
predicted touch point. As described above with respect to
block 1104 of FIG. 11, the window is sized to include all
blocks containing cells within the tracking distance thresh
old of the predicted touch point, and may be embodied as a
five-by-five block square window or a seven-by-seven block
square window, depending on the block size. In block 1308,
the computing device 100 assigns the predicted touch point
identifier to the closest unassigned current touch point. If no
unassigned current touch points may be found within the
window, the predicted touch point remains unused. The
predicted touch point may be deleted if unused, or may be
aged out if unused for Some length of time (not illustrated).
After completing block 1308, the method 1300 returns.

EXAMPLES

Illustrative examples of the technologies disclosed herein
are provided below. An embodiment of the technologies may
include any one or more, and any combination of the
examples described below.

Example 1 includes a computing device for touch point
centroid detection, the computing device comprising a touch
screen; an input frame module to receive an input frame
from the touch screen, the input frame defining a plurality of
cells, each cell having a touch data value; and a centroid
detection module to group the cells of the input frame into
a plurality of blocks; search for a local maximum cell within
each of the plurality of blocks, the local maximum cell
having a touch data value having a predefined relationship
with a signal threshold value; identify each of the local
maximum cells as a centroid; merge centroids that are
located within a touch distance threshold of each other; and
detect a cluster boundary around each of the merged cen
troids, each cluster boundary to include at least one cell of
the input frame.

Example 2 includes the subject matter of Example 1, and
wherein each of the blocks comprises one of: a four-cell
square block of sixteen continuous cells, or a three-cell
square block of nine continuous cells.

Example 3 includes the subject matter of any of Examples
1 and 2, and wherein to search for the local maximum cell

10

15

25

30

35

40

45

50

55

60

65

16
comprises to search for a local maximum cell having a touch
data value greater than or equal to the signal threshold value.
Example 4 includes the subject matter of any of Examples

1-3, and wherein to merge the centroids comprises to
traverse the blocks in vertical stripes and merging centroids
in neighboring blocks separated vertically by less than the
touch distance threshold; traverse the blocks in horizontal
stripes and merging centroids in neighboring blocks sepa
rated horizontally by less than the touch distance threshold;
and traverse the blocks in diagonally adjacent pairs and
merging centroids in neighboring blocks separated diago
nally by less than the touch distance threshold.
Example 5 includes the subject matter of any of Examples

1-4, and wherein to merge the centroids in neighboring
blocks comprises to identify a first centroid and a second
centroid of a pair of centroids separated by less than the
touch distance threshold, wherein the first centroid includes
a first touch data value greater than a second touch data
value of the second centroid; and remove the identification
as a centroid from the second centroid.
Example 6 includes the subject matter of any of Examples

1-5, and wherein the touch distance threshold comprises two
cells.
Example 7 includes the subject matter of any of Examples

1-6, and further including a processor graphics, wherein to
traverse the blocks in vertical stripes comprises to dispatch
one task per block using the processor graphics, wherein
each task comprises to merge a centroid within the block that
is located within the touch distance threshold from another
centroid located in the neighboring block; and set data
dependencies between the tasks using a scoreboard of the
processor graphics to traverse the blocks in vertical stripes;
wherein to traverse the blocks in horizontal stripes com
prises to dispatch one task per block using the processor
graphics, wherein each task comprises to merge a centroid
within the block that is located within the touch distance
threshold from another centroid located in the neighboring
block; and set data dependencies between the tasks using the
scoreboard of the processor graphics to traverse the blocks
in horizontal stripes; and wherein to traverse the blocks in
diagonally adjacent pairs comprises to dispatch one task per
square group of four blocks using the processor graphics,
wherein each task comprises to merge centroids within the
square group of blocks that are located within the touch
distance threshold from another centroid located in a neigh
boring block; and set data dependencies between the tasks
using the scoreboard of the processor graphics to traverse
the blocks in diagonally adjacent pairs.

Example 8 includes the subject matter of any of Examples
1-7, and wherein to detect the cluster boundary around each
of the merged centroids comprises to load data from the
input frame for cells Surrounding the centroid; Zero cells
including a touch data value less than the signal threshold
value; define an input window including cells of the input
frame Surrounding the cluster boundary; replicate edge cells
of the cluster to build a comparison window having a size
equal to a size of the input window; Subtract a touch data
value of each edge cell of the input window from a touch
data value of a corresponding replicated edge cell of the
comparison window to determine a plurality of edge cell
differences; increase the comparison window size in
response to a determination that none of the edge cell
differences is less than Zero; and count a number of valid
cells in the input window in response to a determination that
any of the edge cell differences is less than Zero, each valid
cell having a corresponding edge cell difference not less than
ZO.

US 9,448,663 B2
17

Example 9 includes the subject matter of any of Examples
1-8, and wherein to load the input frame data comprises to
load data from a sixteen-by-sixteen square of cells Surround
ing the centroid.

Example 10 includes the subject matter of any of 5
Examples 1-9, and wherein to subtract a touch data value of
each edge cell comprises to pack an edge of the input
window into a first vector, pack an edge of the comparison
window into a second vector; and subtract the first vector
from the second vector using a single-instruction-multiple- 10
data Subtraction instruction of the processor graphics.

Example 11 includes the subject matter of any of
Examples 1-10, and wherein to count the number of valid
cells comprises to count the number of valid cells using a
single-instruction-multiple-data Sum instruction of the pro- 15
cessor graphics.

Example 12 includes the subject matter of any of
Examples 1-11, and wherein to detect the cluster boundary
around each of the merged centroids comprises to load data
from the input frame for cells surrounding the centroid: Zero 20
cells including a touch data value less than the signal
threshold value; calculate a first maximum of edge cells
within the first window; calculate a sum of edge cells within
a second window of the input frame Surrounding the cen
troid, the second window surrounding the first window; 25
calculate a second maximum of edge cells within the second
window; determine whether the sum is less than the number
of edge cells within the second window multiplied by the
signal threshold; determine whether the second maximum is
greater than the first maximum; increase a size of the first 30
window and the second window in response to a determi
nation that the sum is not less than the number of edge cells
within the second window multiplied by the signal threshold
and a determination that the second maximum is not greater
than the first maximum; and count a number of valid cells in 35
the first window in response to a determination that the Sum
is less than the number of edge cells within the second
window multiplied by the signal threshold or a determina
tion that the second maximum is greater than the first
maximum. 40

Example 13 includes the subject matter of any of
Examples 1-12, and further including a processor graphics;
and a parallel dispatch module; wherein to search for the
local maximum cell comprises to assign one search task per
block to be executed by the processor graphics; to merge the 45
centroids comprises to assign one merge task per block to be
executed by the processor graphics; and to detect the cluster
boundary around each of the merged centroids comprises to
assign one detection task per merged centroid to be executed
by the processor graphics; wherein the parallel dispatch 50
module to (i) execute the search tasks in parallel, (ii) execute
the merge tasks in parallel, and (iii) execute the detection
tasks in parallel using multiple execution units of the pro
cessor graphics.

Example 14 includes the subject matter of any of 55
Examples 1-13, and wherein the centroid detection module
to perform at least one of to: Search for the local maximum
cell, merge centroids, or detect the cluster boundary using a
single-instruction-multiple-data instruction of the processor
graphics. 60

Example 15 includes a computing device for touch point
tracking, the computing device comprising a touch screen;
an input frame module to (i) receive a previous input frame
from the touch screen, the previous input frame defining a
plurality of cells identifying a plurality of previously tracked 65
touch points and (ii) receive a current input frame from the
touch screen, the current input frame defining a plurality of

18
cells and identifying a plurality of current touch points; and
a touch point tracking module to predict a location of each
of the plurality of previously tracked touch points identified
in the previous input frame; assign an identifier of a previ
ously tracked touch point to a current touch point having a
current location within a tracking distance threshold of the
predicted location of the previously tracked touch point:
remove duplicate identifiers assigned to the current touch
points; assign each unassigned identifier of the previously
tracked touch points to a current touch point (i) that is the
closest current touch point to the previously tracked touch
point within the tracking distance threshold and (ii) that has
not previously been assigned an identifier of the previously
tracked touch points; and assign a unique identifier to each
unassigned current touch point.

Example 16 includes the subject matter of Example 15,
and wherein to predict the location of each of the plurality
of previously tracked touch points comprises one of to: (i)
determine a location of each of the plurality of previously
tracked touch points in the previous input frame, or (ii)
determine a speed of each of the plurality of previously
tracked touch points and predict the location as a function of
the speed.

Example 17 includes the subject matter of any of
Examples 15 and 16, and wherein to assign the identifier of
the previously tracked touch point to the current touch point
comprises to retrieve all current touch points of the input
frame located within the tracking distance threshold of the
predicted location of the previously tracked touch point:
identify a closest current touch point of the retrieved current
touch points to the predicted location; retrieve all previously
tracked touch points having predicted locations within the
tracking distance threshold of the closest current touch
point; identify a closest previously tracked touch point of the
retrieved previously tracked touch points to the closest
current touch point; and assign an identifier of the closest
previously tracked touch point to the closest current touch
point.
Example 18 includes the subject matter of any of

Examples 15-17, and wherein to remove the duplicate
identifiers assigned to the current touch point comprises to
retrieve all current touch points of the input frame located
within the tracking distance threshold of the predicted
location of the previously tracked touch point; determine
whether more than one of the retrieved current touch points
has an identifier matching the identifier of the previously
tracked touch point; and in response to a determination that
more than one of the retrieved current touch points has an
identifier matching the identifier of the previously tracked
touch point identify a closest current touch point of the
retrieved current touch points having (i) a location closest to
the previously tracked touch point and (ii) an identifier
matching the identifier of the previously tracked touch point:
retain the identifier of the closest current touch point; and
remove the identifier of the other current touch points of the
retrieved current touch points having an identifier matching
the identifier of the previously tracked touch point.

Example 19 includes the subject matter of any of
Examples 15-18, and wherein the current input frame com
prises a current input frame formatted as image data recog
nized by a processor graphics of the computing device.
Example 20 includes the subject matter of any of

Examples 15-19, and wherein the image data recognized by
the processor graphics comprises a thirty-two bit float two
dimensional Surface format.

US 9,448,663 B2
19

Example 21 includes the subject matter of any of
Examples 15-20, and wherein the tracking distance thresh
old comprises seven input cells of the current input frame.

Example 22 includes the subject matter of any of
Examples 15-21, and further including a processor graphics
and a parallel dispatch module, wherein to assign the iden
tifier of the previously tracked touch point comprises to
assign one assignment task per previously tracked touch
point to be executed by the processor graphics; to remove
the duplicate identifiers comprises to assign one removal
task per previously tracked touch point to be executed by the
processor graphics; to assign the identifier of each unused
previously tracked touch point comprises to assign one
unused identifier assignment task per previously tracked
touch point to be executed by the processor graphics; and to
assign a unique identifier to each unassigned current touch
point comprises to group cells of the current input frame into
a plurality of blocks; assign one unique identifier assignment
task per block to be executed by the processor graphics; and
set data dependencies between the blocks using a scoreboard
of the processor graphics; wherein the parallel dispatch
module is to execute (i) the assignment tasks in parallel, (ii)
the removal tasks in parallel, (iii) the unused identifier
assignment tasks in parallel, and (iv) the unique identifier
assignment tasks in parallel using multiple execution units
of the processor graphics.

Example 23 includes the subject matter of any of
Examples 15-22, and wherein the touch point tracking
module to perform at least one of to: assign the identifier of
the previously tracked touch point, remove duplicate iden
tifiers, assign each unassigned identifier, or assign the unique
identifier to each unassigned current touch point using a
single-instruction-multiple-data instruction of the processor
graphics.

Example 24 includes a method for detecting touch point
centroids on a computing device, the method comprising
receiving, on the computing device, an input frame from a
touch screen of the computing device, the input frame
defining a plurality of cells, each cell having a touch data
value; grouping, on the computing device, the cells of the
input frame into a plurality of blocks; searching, on the
computing device, for a local maximum cell within each of
the plurality of blocks, the local maximum cell having a
touch data value having a predefined relationship with a
signal threshold value; identifying, on the computing device,
each of the local maximum cells as a centroid; merging, on
the computing device, centroids that are located within a
touch distance threshold of each other, and detecting, on the
computing device, a cluster boundary around each of the
merged centroids, each cluster boundary including at least
one cell of the input frame.

Example 25 includes the subject matter of Example 24,
and wherein grouping the cells comprises one of grouping
sixteen contiguous cells into a four-cell square block, or
grouping nine contiguous cells into a three-cell Square
block.

Example 26 includes the subject matter of any of
Examples 24 and 25, and wherein searching for the local
maximum cell comprises searching for a local maximum
cell having a touch data value greater than or equal to the
signal threshold value.

Example 27 includes the subject matter of any of
Examples 24-26, and wherein merging the centroids com
prises traversing the blocks in Vertical stripes and merging
centroids in neighboring blocks separated vertically by less
than the touch distance threshold; traversing the blocks in
horizontal stripes and merging centroids in neighboring

5

10

15

25

30

35

40

45

50

55

60

65

20
blocks separated horizontally by less than the touch distance
threshold; and traversing the blocks in diagonally adjacent
pairs and merging centroids in neighboring blocks separated
diagonally by less than the touch distance threshold.
Example 28 includes the subject matter of any of

Examples 24-27, and wherein merging the centroids in
neighboring blocks comprises identifying a first centroid and
a second centroid of a pair of centroids separated by less
than the touch distance threshold, wherein the first centroid
includes a first touch data value greater than a second touch
data value of the second centroid; and removing the iden
tification as a centroid from the second centroid.

Example 29 includes the subject matter of any of
Examples 24-28, and wherein merging the centroids com
prises merging centroids in neighboring blocks separated by
less than two cells in a direction of traversal.
Example 30 includes the subject matter of any of

Examples 24-29, and wherein traversing the blocks in ver
tical Stripes comprises dispatching one task per block using
a processor graphics of the computing device, wherein each
task comprises merging a centroid within the block that is
located within the touch distance threshold from another
centroid located in the neighboring block; and setting data
dependencies between the tasks using a scoreboard of the
processor graphics to traverse the blocks in Vertical Stripes;
traversing the blocks in horizontal stripes comprises dis
patching one task per block using the processor graphics,
wherein each task comprises merging a centroid within the
block that is located within the touch distance threshold
from another centroid located in the neighboring block; and
setting data dependencies between the tasks using the score
board of the processor graphics to traverse the blocks in
horizontal stripes; and traversing the blocks in diagonally
adjacent pairs comprises dispatching one task per square
group of four blocks using the processor graphics, wherein
each task comprises merging centroids within the square
group of blocks that are located within the touch distance
threshold from another centroid located in a neighboring
block; and setting data dependencies between the tasks using
the scoreboard of the processor graphics to traverse the
blocks in diagonally adjacent pairs.

Example 31 includes the subject matter of any of
Examples 24-30, and wherein detecting the cluster boundary
around each of the merged centroids comprises loading data
from the input frame for cells surrounding the centroid:
Zeroing cells including a touch data value less than the signal
threshold value; defining an input window including cells of
the input frame Surrounding the cluster boundary; replicat
ing edge cells of the cluster to build a comparison window
having a size equal to a size of the input window; Subtracting
a touch data value of each edge cell of the input window
from a touch data value of a corresponding replicated edge
cell of the comparison window to determine a plurality of
edge cell differences; increasing the comparison window
size in response to determining that none of the edge cell
differences is less than Zero; and counting a number of valid
cells in the input window in response to determining that any
of the edge cell differences is less than Zero, each valid cell
having a corresponding edge cell difference not less than
ZO.

Example 32 includes the subject matter of any of
Examples 24-31, and wherein loading the input frame data
comprises loading data from a sixteen-by-sixteen square of
cells Surrounding the centroid.
Example 33 includes the subject matter of any of

Examples 24-32, and wherein Subtracting a touch data value
of each edge cell comprises packing an edge of the input

US 9,448,663 B2
21

window into a first vector, packing an edge of the compari
son window into a second vector; and Subtracting the first
vector from the second vector using a single-instruction
multiple-data Subtraction instruction of the processor graph
1CS

Example 34 includes the subject matter of any of
Examples 24-33, and wherein counting the number of valid
cells comprises counting the number of valid cells using a
single-instruction-multiple-data Sum instruction of the pro
cessor graphics.

Example 35 includes the subject matter of any of
Examples 24-34, and wherein detecting the cluster boundary
around each of the merged centroids comprises loading data
from the input frame for cells surrounding the centroid:
Zeroing cells including a touch data value less than the signal
threshold value; calculating a first maximum of edge cells
within the first window; calculating a sum of edge cells
within a second window of the input frame Surrounding the
centroid, the second window Surrounding the first window;
calculating a second maximum of edge cells within the
second window; determining whether the Sum is less than
the number of edge cells within the second window multi
plied by the signal threshold; determining whether the
second maximum is greater than the first maximum; increas
ing a size of the first window and the second window in
response to determining that the Sum is not less than the
number of edge cells within the second window multiplied
by the signal threshold and determining that the second
maximum is not greater than the first maximum; and count
ing a number of valid cells in the first window in response
to determining that the sum is less than the number of edge
cells within the second window multiplied by the signal
threshold or determining that the second maximum is greater
than the first maximum.

Example 36 includes the subject matter of any of
Examples 24-35, and wherein searching for the local maxi
mum cell comprises assigning one search task per block to
be executed by a processor graphics of the computing
device; and executing the search tasks in parallel using
multiple execution units of the processor graphics; merging
the centroids comprises assigning one merge task per block
to be executed by the processor graphics; and executing the
merge tasks in parallel using multiple execution units of the
processor graphics; and detecting the cluster boundary
around each of the merged centroids comprises assigning
one detection task per merged centroid to be executed by the
processor graphics; and executing the detection tasks in
parallel using multiple execution units of the processor
graphics.

Example 37 includes the subject matter of any of
Examples 24-36, and further including performing one of
searching for the local maximum cell, merging centroids, or
detecting the cluster boundary using a single-instruction
multiple-data instruction of the processor graphics.

Example 38 includes a method for touch point tracking,
the method comprising predicting, on a computing device, a
location of each of a plurality of previously tracked touch
points identified in a previous input frame received from a
touch screen of the computing device, the previous input
frame defining a plurality of cells; receiving, on the com
puting device, a current input frame from the touch screen,
the current input frame defining a plurality of cells and
identifying a plurality of current touch points; assigning, on
the computing device, an identifier of a previously tracked
touch point to a current touch point having a current location
within a tracking distance threshold of the predicted location
of the previously tracked touch point; removing, on the

10

15

25

30

35

40

45

50

55

60

65

22
computing device, duplicate identifiers assigned to the cur
rent touch points; assigning, on the computing device, each
unassigned identifier of the previously tracked touch points
to a current touch point (i) that is the closest current touch
point to the previously tracked touch point within the
tracking distance threshold and (ii) that has not previously
been assigned an identifier of the previously tracked touch
points; and assigning, on the computing device, a unique
identifier to each unassigned current touch point.
Example 39 includes the subject matter of Example 38,

and wherein predicting the location of each of the plurality
of previously tracked touch points comprises one of: (i)
determining a location of each of the plurality of previously
tracked touch points in the previous input frame, or (ii)
determining a speed of each of the plurality of previously
tracked touch points and predicting the location as a function
of the speed.
Example 40 includes the subject matter of any of

Examples 38 and 39, and wherein assigning the identifier of
the previously tracked touch point to the current touch point
comprises retrieving all current touch points of the input
frame located within the tracking distance threshold of the
predicted location of the previously tracked touch point:
identifying a closest current touch point of the retrieved
current touch points to the predicted location; retrieving all
previously tracked touch points having predicted locations
within the tracking distance threshold of the closest current
touch point; identifying a closest previously tracked touch
point of the retrieved previously tracked touch points to the
closest current touch point; and assigning an identifier of the
closest previously tracked touch point to the closest current
touch point.

Example 41 includes the subject matter of any of
Examples 38-40, and wherein removing the duplicate iden
tifiers assigned to the current touch point comprises retriev
ing all current touch points of the input frame located within
the tracking distance threshold of the predicted location of
the previously tracked touch point; determining whether
more than one of the retrieved current touch points has an
identifier matching the identifier of the previously tracked
touch point; and in response to determining more than one
of the retrieved current touch points has an identifier match
ing the identifier of the previously tracked touch point
identifying a closest current touch point of the retrieved
current touch points having (i) a location closest to the
previously tracked touch point and (ii) an identifier matching
the identifier of the previously tracked touch point; retaining
the identifier of the closest current touch point; and remov
ing the identifier of the other current touch points of the
retrieved current touch points having an identifier matching
the identifier of the previously tracked touch point.

Example 42 includes the subject matter of any of
Examples 38-41, and wherein receiving the current input
frame comprises receiving the current input frame formatted
as image data recognized by a processor graphics of the
computing device.
Example 43 includes the subject matter of any of

Examples 38-42, and wherein receiving the current input
frame formatted as image data comprises receiving the
current input frame formatted in a thirty-two bit float two
dimensional Surface format.
Example 44 includes the subject matter of any of

Examples 38-43, and wherein the tracking distance thresh
old comprises seven input cells of the current input frame.
Example 45 includes the subject matter of any of

Examples 38-44, and wherein assigning the identifier of the
previously tracked touch point comprises assigning one

US 9,448,663 B2
23

assignment task per previously tracked touch point to be
executed by a processor graphics of the computing device;
and executing the assignment tasks in parallel using multiple
execution units of the processor graphics; removing the
duplicate identifiers comprises assigning one removal task
per previously tracked touch point to be executed by the
processor graphics; and executing the removal tasks in
parallel using multiple execution units of the processor
graphics; assigning the identifier of each unused previously
tracked touch point comprises assigning one assignment task
per previously tracked touch point to be executed by the
processor graphics; and executing the assignment tasks in
parallel using multiple execution units of the processor
graphics; and assigning a unique identifier to each unas
signed current touch point comprises grouping cells of the
current input frame into a plurality of blocks; assigning one
assignment task per block to be executed by the processor
graphics; setting data dependencies between the blocks
using a scoreboard of the processor graphics; and executing
the assignment tasks in parallel using multiple execution
units of the processor graphics.

Example 46 includes the subject matter of any of
Examples 38-45, and further including performing at least
one of assigning the identifier of the previously tracked
touch point, removing duplicate identifiers, assigning each
unassigned identifier, or assigning the unique identifier to
each unassigned current touch point using a single-instruc
tion-multiple-data instruction of the processor graphics.

Example 47 includes a computing device comprising a
processor, and a memory having stored therein a plurality of
instructions that when executed by the processor cause the
computing device to perform the method of any of Examples
24-46.

Example 48 includes one or more machine-readable stor
age media comprising a plurality of instructions stored
thereon that in response to being executed result in a
computing device performing the method of any of
Examples 24-46.

Example 49 includes a computing device for touch point
centroid detection, the computing device comprising means
for performing the method of any of Examples 24-46.

The invention claimed is:
1. A computing device for touch point centroid detection,

the computing device comprising:
a processor graphics;
a touch screen;
an input frame module to receive an input frame from the

touch screen, the input frame defining a plurality of
cells, each cell having a touch data value;

a centroid detection module to:
group the cells of the input frame into a plurality of

blocks, wherein each block includes a predetermined
number of cells;

search for a local maximum cell within each of the
plurality of blocks, the local maximum cell having a
touch data value having a predefined relationship
with a signal threshold value, wherein to search for
the local maximum cell comprises to assign one
search task per block to be executed by the processor
graphics;

identify each of the local maximum cells as a centroid;
merge centroids that are located within a touch distance

threshold of each other, wherein to merge the cen
troids comprises to select a merged centroid from
two or more centroids that are located within the
touch distance threshold of each other, and wherein

10

15

25

30

35

40

45

50

55

60

65

24
to merge the centroids comprises to assign one merge
task per block to be executed by the processor
graphics; and

detect a cluster boundary around each of the merged
centroids, each cluster boundary to include at least
one cell of the input frame, wherein to detect the
cluster boundary around each of the merged cen
troids comprises to assign one detection task per
merged centroid to be executed by the processor
graphics; and

a parallel dispatch module to (i) execute the search tasks
in parallel, (ii) execute the merge tasks in parallel, and
(iii) execute the detection tasks in parallel using mul
tiple execution units of the processor graphics.

2. The computing device of claim 1, wherein to merge the
centroids comprises to:

traverse the blocks in vertical stripes and merging cen
troids in neighboring blocks separated vertically by less
than the touch distance threshold;

traverse the blocks in horizontal stripes and merging
centroids in neighboring blocks separated horizontally
by less than the touch distance threshold; and

traverse the blocks in diagonally adjacent pairs and merg
ing centroids in neighboring blocks separated diago
nally by less than the touch distance threshold.

3. The computing device of claim 2, wherein to:
traverse the blocks in vertical stripes comprises to:

dispatch one task per block using the processor graph
ics, wherein each task comprises to merge a centroid
within the block that is located within the touch
distance threshold from another centroid located in
the neighboring block; and

set data dependencies between the tasks using a score
board of the processor graphics to traverse the blocks
in Vertical stripes;

traverse the blocks in horizontal Stripes comprises to:
dispatch one task per block using the processor graph

ics, wherein each task comprises to merge a centroid
within the block that is located within the touch
distance threshold from another centroid located in
the neighboring block; and

set data dependencies between the tasks using the
scoreboard of the processor graphics to traverse the
blocks in horizontal Stripes; and

traverse the blocks in diagonally adjacent pairs comprises
tO:
dispatch one task per square group of four blocks using

the processor graphics, wherein each task comprises
to merge centroids within the square group of blocks
that are located within the touch distance threshold
from another centroid located in a neighboring
block; and

set data dependencies between the tasks using the
scoreboard of the processor graphics to traverse the
blocks in diagonally adjacent pairs.

4. The computing device of claim 1, wherein to detect the
cluster boundary around each of the merged centroids com
prises to:

load data from the input frame for cells surrounding the
centroid;

Zero cells including a touch data value less than the signal
threshold value;

define an input window including cells of the input frame
Surrounding the cluster boundary;

replicate edge cells of the cluster to build a comparison
window having a size equal to a size of the input
window;

US 9,448,663 B2
25

subtract a touch data value of each edge cell of the input
window from a touch data value of a corresponding
replicated edge cell of the comparison window to
determine a plurality of edge cell differences;

increase the comparison window size in response to a
determination that none of the edge cell differences is
less than Zero; and

count a number of valid cells in the input window in
response to a determination that any of the edge cell
differences is less than Zero, each valid cell having a
corresponding edge cell difference not less than Zero.

5. The computing device of claim 1, wherein to detect the
cluster boundary around each of the merged centroids com
prises to:

load data from the input frame for cells surrounding the
centroid;

Zero cells including a touch data value less than the signal
threshold value;

calculate a first maximum of edge cells within the first
window;

calculate a sum of edge cells within a second window of
the input frame Surrounding the centroid, the second
window surrounding the first window;

calculate a second maximum of edge cells within the
second window;

determine whether the sum is less than the number of edge
cells within the second window multiplied by the signal
threshold;

determine whether the second maximum is greater than
the first maximum;

increase a size of the first window and the second window
in response to a determination that the Sum is not less
than the number of edge cells within the second win
dow multiplied by the signal threshold and a determi
nation that the second maximum is not greater than the
first maximum; and

count a number of valid cells in the first window in
response to a determination that the sum is less than the
number of edge cells within the second window mul
tiplied by the signal threshold or a determination that
the second maximum is greater than the first maximum.

6. The computing device of claim 1, wherein the centroid
detection module is to perform at least one of to: search for
the local maximum cell, merge centroids, or detect the
cluster boundary using a single-instruction-multiple-data
instruction of the processor graphics.

7. A method for detecting touch point centroids on a
computing device, the method comprising:

receiving, on the computing device, an input frame from
a touch screen of the computing device, the input frame
defining a plurality of cells, each cell having a touch
data value;

grouping, on the computing device, the cells of the input
frame into a plurality of blocks, wherein each block
includes a predetermined number of cells;

searching, on the computing device, for a local maximum
cell within each of the plurality of blocks, the local
maximum cell having a touch data value having a
predefined relationship with a signal threshold value,
wherein searching for the local maximum cell com
prises assigning one search task per block to be
executed by a processor graphics of the computing
device and executing the search tasks in parallel using
multiple execution units of the processor graphics;

identifying, on the computing device, each of the local
maximum cells as a centroid;

10

15

25

30

35

40

45

50

55

60

65

26
merging, on the computing device, centroids that are

located within a touch distance threshold of each other,
wherein merging the centroids comprises selecting a
merged centroid from two or more centroids that are
located within the touch distance threshold of each
other, and wherein merging the centroids comprises
assigning one merge task per block to be executed by
the processor graphics and executing the merge tasks in
parallel using multiple execution units of the processor
graphics; and

detecting, on the computing device, a cluster boundary
around each of the merged centroids, each cluster
boundary including at least one cell of the input frame,
wherein detecting the cluster boundary around each of
the merged centroids comprises assigning one detec
tion task per merged centroid to be executed by the
processor graphics and executing the detection tasks in
parallel using multiple execution units of the processor
graphics.

8. The method of claim 7, wherein merging the centroids
comprises:

traversing the blocks in Vertical stripes and merging
centroids in neighboring blocks separated vertically by
less than the touch distance threshold;

traversing the blocks in horizontal stripes and merging
centroids in neighboring blocks separated horizontally
by less than the touch distance threshold; and

traversing the blocks in diagonally adjacent pairs and
merging centroids in neighboring blocks separated
diagonally by less than the touch distance threshold.

9. The method of claim 7, wherein detecting the cluster
boundary around each of the merged centroids comprises:

loading data from the input frame for cells Surrounding
the centroid;

Zeroing cells including a touch data value less than the
signal threshold value;

defining an input window including cells of the input
frame Surrounding the cluster boundary;

replicating edge cells of the cluster to build a comparison
window having a size equal to a size of the input
window;

Subtracting a touch data value of each edge cell of the
input window from a touch data value of a correspond
ing replicated edge cell of the comparison window to
determine a plurality of edge cell differences;

increasing the comparison window size in response to
determining that none of the edge cell differences is less
than Zero; and

counting a number of valid cells in the input window in
response to determining that any of the edge cell
differences is less than Zero, each valid cell having a
corresponding edge cell difference not less than Zero.

10. The method of claim 7, wherein detecting the cluster
boundary around each of the merged centroids comprises:

loading data from the input frame for cells Surrounding
the centroid;

Zeroing cells including a touch data value less than the
signal threshold value;

calculating a first maximum of edge cells within the first
window;

calculating a Sum of edge cells within a second window
of the input frame Surrounding the centroid, the second
window surrounding the first window;

calculating a second maximum of edge cells within the
second window;

US 9,448,663 B2
27

determining whether the sum is less than the number of
edge cells within the second window multiplied by the
signal threshold;

determining whether the second maximum is greater than
the first maximum;

increasing a size of the first window and the second
window in response to determining that the Sum is not
less than the number of edge cells within the second
window multiplied by the signal threshold and deter
mining that the second maximum is not greater than the
first maximum; and

counting a number of valid cells in the first window in
response to determining that the sum is less than the
number of edge cells within the second window mul
tiplied by the signal threshold or determining that the
second maximum is greater than the first maximum.

11. One or more non-transitory, machine readable storage
media comprising a plurality of instructions that in response
to being executed cause a computing device to:

receive an input frame from a touch screen of the com
puting device, the input frame defining a plurality of
cells, each cell having a touch data value, wherein each
block includes a predetermined number of cells;

group the cells of the input frame into a plurality of
blocks;

search for a local maximum cell within each of the
plurality of blocks, the local maximum cell having a
touch data value having a predefined relationship with
a signal threshold value, wherein to search for the local
maximum cell comprises to assign one search task per
block to be executed by a processor graphics of the
computing device;

identify each of the local maximum cells as a centroid;
merge centroids that are located within a touch distance

threshold of each other, wherein to merge the centroids
comprises to select a merged centroid from two or more
centroids that are located within the touch distance
threshold of each other, and wherein to merge the
centroids comprises to assign one merge task per block
to be executed by the processor graphics;

detect a cluster boundary around each of the merged
centroids, each cluster boundary including at least one
cell of the input frame, wherein to detect the cluster
boundary around each of the merged centroids com
prises to assign one detection task per merged centroid
to be executed by the processor graphics; and

execute (i) the search tasks in parallel, (ii) the merge tasks
in parallel, and (iii) the detection tasks in parallel using
multiple execution units of the processor graphics.

12. The non-transitory, machine readable media of claim
11, wherein to merge the centroids comprises to:

traverse the blocks in vertical stripes and merge centroids
in neighboring blocks separated vertically by less than
the touch distance threshold;

traverse the blocks in horizontal stripes and merge cen
troids in neighboring blocks separated horizontally by
less than the touch distance threshold; and

traverse the blocks in diagonally adjacent pairs and merge
centroids in neighboring blocks separated diagonally
by less than the touch distance threshold.

13. The non-transitory, machine readable media of claim
12, wherein:

to traverse the blocks in vertical stripes comprises to:
dispatch one task per block using the processor graph

ics, wherein each task comprises a plurality of
instructions that in response to being executed cause
the computing device to merge a centroid within the

10

15

25

30

35

40

45

50

55

60

65

28
block that is located within the touch distance thresh
old from another centroid located in the neighboring
block; and

set data dependencies between the tasks using a score
board of the processor graphics to traverse the blocks
in Vertical stripes;

to traverse the blocks in horizontal Stripes comprises to:
dispatch one task per block using the processor graph

ics, wherein each task comprises a plurality of
instructions that in response to being executed cause
the computing device to merge a centroid within the
block that is located within the touch distance thresh
old from another centroid located in the neighboring
block; and

set data dependencies between the tasks using the
scoreboard of the processor graphics to traverse the
blocks in horizontal Stripes; and

to traverse the blocks in diagonally adjacent pairs com
prises to:
dispatch one task per square group of four blocks using

a processor graphics of the computing device,
wherein each task comprises a plurality of instruc
tions that in response to being executed cause the
computing device to merge centroids within the
square group of blocks that are located within the
touch distance threshold from another centroid
located in a neighboring block; and

set data dependencies between the tasks using a score
board of the processor graphics to traverse the blocks
in diagonally adjacent pairs.

14. The non-transitory, machine readable media of claim
11, whereinto detect the cluster boundary around each of the
merged centroids comprises to:

load data from the input frame for cells surrounding the
centroid;

Zero cells including a touch data value less than the signal
threshold value;

define an input window including cells of the input frame
Surrounding the cluster boundary;

replicate edge cells of the cluster to build a comparison
window having a size equal to a size of the input
window;

subtract a touch data value of each edge cell of the input
window from a touch data value of a corresponding
replicated edge cell of the comparison window to
determine a plurality of edge cell differences;

increase the comparison window size in response to
determining that none of the edge cell differences is less
than Zero; and

count a number of valid cells in the input window in
response to determining that any of the edge cell
differences is less than Zero, each valid cell having a
corresponding edge cell difference not less than Zero.

15. The non-transitory, machine readable media of claim
11, wherein to detect the cluster boundary around each of the
merged centroids comprises to:

load data from the input frame for cells surrounding the
centroid;

Zero cells including a touch data value less than the signal
threshold value;

calculate a first maximum of edge cells within the first
window;

calculate a sum of edge cells within a second window of
the input frame Surrounding the centroid, the second
window surrounding the first window;

calculate a second maximum of edge cells within the
second window;

US 9,448,663 B2
29

determine whether the sum is less than the number of edge
cells within the second window multiplied by the signal
threshold;

determine whether the second maximum is greater than
the first maximum;

increase a size of the first window and the second window
in response to determining that the sum is not less than
the number of edge cells within the second window
multiplied by the signal threshold and determining that
the second maximum is not greater than the first
maximum; and

count a number of valid cells in the first window in
response to determining that the sum is less than the
number of edge cells within the second window mul
tiplied by the signal threshold or determining that the
Second maximum is greater than the first maximum.

16. The non-transitory, machine readable media of claim
11, wherein the plurality of instructions comprises a single
instruction-multiple-data instruction of the processor graph
1CS

17. A computing device for touch point tracking, the
computing device comprising:

a touch screen;
a processor graphics;
an input frame module to (i) receive a previous input

frame from the touch screen, the previous input frame
defining a plurality of cells identifying a plurality of
previously tracked touch points and (ii) receive a
current input frame from the touch screen, the current
input frame defining a plurality of cells and identifying
a plurality of current touch points;

a touch point tracking module to:
predict a location of each of the plurality of previously

tracked touch points identified in the previous input
frame;

assign an identifier of a previously tracked touch point
to a current touch point having a current location
within a tracking distance threshold of the predicted
location of the previously tracked touch point,
wherein to assign the identifier of the previously
tracked touch point comprises to assign one assign
ment task per previously tracked touch point to be
executed by the processor graphics;

remove duplicate identifiers assigned to the current
touch points, wherein to remove the duplicate iden
tifiers comprises to assign one removal task per
previously tracked touch point to be executed by the
processor graphics;

assign each unassigned identifier of the previously
tracked touch points to a current touch point (i) that
is the closest current touch point to the previously
tracked touch point within the tracking distance
threshold and (ii) that has not previously been
assigned an identifier of the previously tracked touch
points, wherein to assign each unassigned identifier
comprises to assign one unused identifier assignment
task per previously tracked touch point to be
executed by the processor graphics; and

assign a unique identifier to each unassigned current
touch point, wherein to assign a unique identifier to
each unassigned current touch point comprises to
group cells of the current input frame into a plurality

5

10

25

30

35

40

45

50

55

60

30
of blocks, assign one unique identifier assignment
task per block to be executed by the processor
graphics, and set data dependencies between the
blocks using a scoreboard of the processor graphics;
and

parallel dispatch module is to execute (i) the assignment
tasks in parallel, (ii) the removal tasks in parallel, (iii)
the unused identifier assignment tasks in parallel, and
(iv) the unique identifier assignment tasks in parallel
using multiple execution units of the processor graph
1CS.

18. The computing device of claim 17, wherein to assign
the identifier of the previously tracked touch point to the
current touch point comprises to:

retrieve all current touch points of the input frame located
within the tracking distance threshold of the predicted
location of the previously tracked touch point;

identify a closest current touch point of the retrieved
current touch points to the predicted location;

retrieve all previously tracked touch points having pre
dicted locations within the tracking distance threshold
of the closest current touch point:

identify a closest previously tracked touch point of the
retrieved previously tracked touch points to the closest
current touch point; and

assign an identifier of the closest previously tracked touch
point to the closest current touch point.

19. The computing device of claim 17, wherein to remove
the duplicate identifiers assigned to the current touch point
comprises to:

retrieve all current touch points of the input frame located
within the tracking distance threshold of the predicted
location of the previously tracked touch point;

determine whether more than one of the retrieved current
touch points has an identifier matching the identifier of
the previously tracked touch point; and

in response to a determination that more than one of the
retrieved current touch points has an identifier match
ing the identifier of the previously tracked touch point:
identify a closest current touch point of the retrieved

current touch points having (i) a location closest to
the previously tracked touch point and (ii) an iden
tifier matching the identifier of the previously
tracked touch point;

retain the identifier of the closest current touch point:
and

remove the identifier of the other current touch points
of the retrieved current touch points having an iden
tifier matching the identifier of the previously
tracked touch point.

20. The computing device of claim 17, wherein the
current input frame comprises a current input frame format
ted as image data recognized by a processor graphics of the
computing device.

21. The computing device of claim 17, wherein the touch
point tracking module to perform at least one of to: assign
the identifier of the previously tracked touch point, remove
duplicate identifiers, assign each unassigned identifier, or
assign the unique identifier to each unassigned current touch
point using a single-instruction-multiple-data instruction of
the processor graphics.

ck ck k k ck

