
(19) United States
US 20070256082A1

(12) Patent Application Publication (10) Pub. No.: US 2007/0256082 A1
Bhagwan et al. (43) Pub. Date: Nov. 1, 2007

(54) MONITORING AND CONTROLLING
APPLICATIONS EXECUTING IN A
COMPUTING NODE

(75) Inventors: Varun Bhagwan, San Jose, CA (US);
Daniel Frederick Gruhl, San Jose, CA
(US)

Correspondence Address:
SCHMEISER, OLSEN & WATTS
22 CENTURY HILL DRIVE
SUTE 3O2

LATHAM, NY 12110 (US)

(73) Assignee: International Business Machines Cor
poration, Armonk, NY

(21) Appl. No.: 11/415,035

(22) Filed: May 1, 2006

First Monitoring
and Control
PrOCeSS

(Interface to
External Processes)

Request

212

Shared Memory

Publication Classification

(51) Int. Cl.
G06F 9/44 (2006.01)

(52) U.S. Cl. .. 71.9/316
(57) ABSTRACT

A method and system for monitoring and controlling appli
cations executing on computing nodes of a computing
system. A status request process, one or more control
processes, an untrusted application and one other application
are executed on a computing node. The status request
process receives and processes requests for the statuses of
the untrusted and the other application. A first control
process controls the execution of the untrusted application.
A second control process controls the execution of the other
application. The execution of the untrusted application ter
minates based on a failure of the untrusted application. A
capability of the status request process to receive and
process the requests for statuses, and a capability of the
second control process to control the execution of the other
application are preserved in response to the termination of
the untrusted application.

220

PrOCeSS
State Second Monitoring and

Control Process

Application

Second Monitoring and
Control Process

Application

Second Monitoring and
Control Process

Application
228

Patent Application Publication Nov. 1, 2007 Sheet 1 of 7 US 2007/0256082 A1

100

FIG. 1

US 2007/0256082 A1

(sæSS300/d IeuJ01XE ZOZ

Patent Application Publication Nov. 1, 2007 Sheet 2 of 7

US 2007/0256082 A1 Patent Application Publication Nov. 1, 2007 Sheet 3 of 7

US 2007/0256082 A1 Nov. 1, 2007 Sheet 4 of 7 Patent Application Publication

ZOZ

Patent Application Publication Nov. 1, 2007 Sheet 5 of 7 US 2007/0256082 A1

Monitoring and 300
Controlling Applications

On Each Node, Create a First PrOCeSS
to Perform Status Reporting and
Overall Coordination of Multiple

Applications on the Node

302

On Each Node, Create One Or More
Second Processes, Each Second

Process Executing at Least One of the
Node's Applications

304

The First PrOCeSS Communicates With
Each Second Process via Shared
Memory to Monitor and Control

Applications while isolating Faults
Therein from the Rest of the System

FIG. 3

306

Patent Application Publication Nov. 1, 2007 Sheet 6 of 7 US 2007/0256082 A1

Running an Application 400
Under Monitoring and

Control System

First PrOCeSS Sends Start Command 402
Message to Second Process via

Shared Memory

Second Process Receives Start 404
Command Message

Second Process Uses Fork System
Call to Spawn off the Desired

Application
406

SeCond PrOCeSS Sends
Acknowledgment Message to First 408

Process via Shared Memory

Desired Application Runs on the 410
System

SeCOnd PrOCeSS MonitorS and 412
Controls the Running Application

414

END FIG. 4

Patent Application Publication Nov. 1, 2007 Sheet 7 of 7 US 2007/0256082 A1

500

Computing Unit

502

Application
6 Monitoring and

Control System
50

I/O
Interface

I/O
510 Devices Storage Unit

FIG. 5

US 2007/0256082 A1

MONITORING AND CONTROLLING
APPLICATIONS EXECUTING IN A COMPUTING

NODE

BACKGROUND OF THE INVENTION

0001) 1. Technical Field
0002 The present invention relates to a method and
system for monitoring and controlling applications execut
ing in a computing node of a computing system, and more
particularly to a technique for monitoring and controlling a
plurality of applications in a computing node of a distributed
computing system, where one or more applications of the
plurality of applications are untrusted applications.
0003 2. Related Art
0004 Conventional process monitoring tools do not
include adequate built-in sandboxing features to allow
proper execution of unreliable code in a distributed or
clustered computing system, where the code is not tested or
not exhaustively tested. Insufficient testing of code is com
monplace in a text analytics platform such as the WebFoun
tain cluster, due to the difficulty of simulating the complex
computing environment. The WebFountain cluster is a large
text analytics platform, which includes applications that
provide crawling of the Internet, storage and access of the
data resulting from the crawling, and indexing of the data.
Further, inadequately tested code in Such a complex com
puting environment leads to Byzantine faults that are not
Sufficiently protected against by known monitoring tools. A
Byzantine fault is an arbitrary failure mode characterized by
the erroneous, inconsistent and potentially malicious behav
ior of system components. Still further, known monitoring
tools do not ensure, in a programmatic manner, that a failure
of an unreliable child application that causes the child’s
parent application to also fail does not adversely affect
critical components in the rest of the computing system (e.g.,
by causing or facilitating a failure of other child applications
of the failed parent application). Thus, there exists a need to
overcome at least one of the preceding deficiencies and
limitations of the related art.

SUMMARY OF THE INVENTION

0005. In first embodiments, the present invention pro
vides a method of monitoring and controlling applications
executing on a plurality of computing nodes of a computing
System, comprising:
0006 executing, on a computing node of the plurality of
computing nodes, a status request process included in a
plurality of processes capable of being executed on the
computing node,
0007 executing, on the computing node, one or more
control processes included in the plurality of processes;
0008 executing, on the computing node, an untrusted
application of a plurality of applications capable of being
executed on the computing node, the executing the untrusted
application including performing a first execution of the
untrusted application, and the untrusted application desig
nated as likely to experience a failure based on pre-defined
criteria;
0009 executing, on the computing node, another appli
cation of the plurality of applications, the executing the

Nov. 1, 2007

another application including performing a second execu
tion of the another application, wherein the another appli
cation is different from the untrusted application;
0010 receiving and processing, by the status request
process, a first request for a first status of the untrusted
application,

0011 receiving and processing, by the status request
process, a second request for a second status of the another
application;

0012 controlling, exclusively by a first control process of
the one or more control processes, the first execution of the
untrusted application;

0013 controlling, exclusively by a second control pro
cess of the one or more control processes, the second
execution of the another application;

0014 terminating the first execution of the untrusted
application based on a failure of the untrusted application;
and

00.15 preserving, in response to the terminating, a capa
bility of the status request process to perform the receiving
and the processing the first request and to perform the
receiving and the processing the second request, and a
capability of the second control process to perform the
controlling the second execution of the another application.

0016 Advantageously, the present invention provides a
technique for monitoring the status and performance, and
controlling the execution of a plurality of applications on a
computing node while isolating a failure of one of the
applications (e.g., an untrusted application). The isolation of
the failure allows the monitoring and controlling of the other
applications to be preserved.

BRIEF DESCRIPTION OF THE DRAWINGS

0017 FIG. 1 is a block diagram of a system for moni
toring and controlling applications executing on a comput
ing node of a distributed or clustered computing system, in
accordance with embodiments of the present invention.

0018 FIG. 2A is a block diagram of a computing node in
a first implementation of the system of FIG. 1, where
multiple applications executing on the computing node are
associated with a single application execution control pro
cess, in accordance with embodiments of the present inven
tion.

0019 FIG. 2B is a block diagram of a computing node in
a second implementation of the system of FIG. 1, where
multiple applications executing on the computing node are
associated with multiple application execution control pro
cesses in a one-to-one correspondence, in accordance with
embodiments of the present invention.

0020 FIG. 2C is a block diagram of a computing node in
a third implementation of the system of FIG. 1, where each
untrusted application executing on the computing node is
associated with an application execution control process in
a one-to-one correspondence, and multiple trusted applica
tions running on the computing node are associated with a
single application execution control process, in accordance
with embodiments of the present invention.

US 2007/0256082 A1

0021 FIG. 3 is a flow chart of a process of monitoring
and controlling applications running on a computing node of
FIGS. 2A, 2B or 2C, in accordance with embodiments of the
present invention.
0022 FIG. 4 is a flow chart of an exemplary process of
executing an application on a computing node of FIGS. 2A,
2B or 2C, in accordance with embodiments of the present
invention.

0023 FIG. 5 is a block diagram of a computing system
for implementing the process of FIG. 3, in accordance with
embodiments of the present invention.

DETAILED DESCRIPTION OF THE
INVENTION

Overview

0024. The present invention provides a technique for
monitoring and controlling a plurality of applications run
ning on multiple computing nodes of a computing system
(e.g., a distributed or clustered computing environment).
One or more applications of the plurality of applications are
executed on each of the computing nodes. At least one of the
applications executing on the computing nodes is an
untrusted application. The configuration of each computing
node facilitates the isolation of a failure of an untrusted
application so that the rest of the computing system is
unaffected by the failure (i.e., in response to the failure, other
applications and processes of the computing system do not
fail and the monitoring and controlling capabilities are
preserved). As used herein, an untrusted application is
defined to be an application (a.k.a. process) designated as
likely to fail based on pre-defined criteria. For example, an
application is untrusted if the code of the application is
untested or not exhaustively tested and the application is
designed to be executed in a complex computing environ
ment that is difficult to simulate (e.g., the WebFountain
cluster).
0.025 The aforementioned failure isolation is provided by
a first process (a.k.a. status request process) and a second
process (a.k.a. control process) executing on each comput
ing node, whereby the first process's processing of a request
for any application’s status is segregated from the second
process's control of the execution of the application. In this
way, Sandboxing of the application’s execution is facilitated.

0026 FIG. 1 is a block diagram of a system for moni
toring and controlling applications executing on a comput
ing node of a distributed or clustered computing system, in
accordance with embodiments of the present invention.
System 100 includes multiple computing nodes 102, 104,
106, 108, 110, 112, which communicate with each other via
a network 114. Each computing node is a computing unit or
computing system such as a personal computer, workstation,
client, or server. Each of the multiple computing nodes
102-112 can employ any one of the configurations shown in
FIGS. 2A, 2B and 2C. A computing node includes a plurality
of applications executing thereon, where one or more of the
applications are untrusted.

0027 System 100 provides resources shared among com
puting nodes 102-112. The shared resources can include, for
example, shared data storage devices (not shown). Network
114 can be any system that provides communication among

Nov. 1, 2007

computing nodes 102-112. Such as a local area network,
wide area network, or global data transmission network
(e.g., the Internet).
Computing Node Configurations

0028 FIG. 2A is a block diagram of a computing node in
a first implementation of the system of FIG. 1, where
multiple applications executing on the computing node are
associated with a single application execution control pro
cess, in accordance with embodiments of the present inven
tion. In a first embodiment, a computing node of system 100
(see FIG. 1) is a computing node 200, which includes a first
monitoring and control process 202 (hereinafter referred to
as the “first process') and a second monitoring and control
process 204 (hereinafter referred to as the “second process').
First process 202 provides overall coordination of the func
tions of computing node 200 and an interface for commu
nication between computing node 200 and processes (not
shown) that are external to computing node 200. The inter
face functionality of first process 202 can be implemented
by a remote procedure call system or a service-oriented
architecture interface (e.g., a Vinci interface provided by
International Business Machines Corporation of Armonk,
N.Y.). Second process 204 provides control of an execution
of any application of a plurality of applications running on
computing node 200 (e.g., applications 206, 208, 210). One
or more of applications 206, 208, 210 are designated as
untrusted. First process 202 and second process 204 com
municate with each other via a shared memory 212. Shared
memory 212 is divided into two size-configurable portions.
A first portion 214 (a.k.a. request portion) of shared memory
212 is used to communicate commands to second process
204. A second portion 216 (a.k.a. process state portion) of
shared memory 212 is a location to which second process
204 periodically writes the status of all applications running
under the control of second process 204. The aforemen
tioned periodic writing is performed at pre-defined time
intervals. First process 202 retrieves from process state
portion 216 the application statuses that second process 204
wrote to the process state portion. In one embodiment, this
status retrieval is performed by first process 202 periodically
at pre-defined intervals.

0029. In one embodiment, computing node 200 (see FIG.
2A) is configured to include a second process (not shown)
controlling the execution of first process 202 (see FIG. 2A)
in response to the presence of one or more untrusted
applications among the plurality of applications 206, 208,
210. This configuration facilitates the automatic restart of
first process 202 by the aforementioned second process in
response to a failure of the first process.

0030 FIG. 2B is a block diagram of a computing node in
a second implementation of the system of FIG. 1, where
multiple applications executing on the computing node are
associated with multiple application execution control pro
cesses in a one-to-one correspondence, in accordance with
embodiments of the present invention. In a second embodi
ment, computing node 220 of system 100 (see FIG. 1)
includes a first monitoring and control process 202 (a.k.a.
“first process”) and a plurality of second monitoring and
control processes 222-1, 222-2, 222-3 (hereinafter, collec
tively referred to as “second processes 222). First process
202 and second processes 222 communicate via shared
memory 212. First process 202, shared memory 212 and

US 2007/0256082 A1

shared memory's request portion 214 and process state
portion 216 share the functionality of their analogous com
ponents in computing node 200 of FIG. 2A. Instead of the
computing node including only one second process which
controls multiple applications (see computing node 200 of
FIG. 2A), computing node 220 includes a plurality of second
processes 222, where each second process provides control
for a single corresponding application. That is, second
processes 222-1, 222-2, and 222-3 provide control of the
execution of application 224, application 226 and applica
tion 228, respectively. Similar to FIG. 2A, second processes
222 periodically write at pre-defined time intervals the
statuses of applications 224, 226, 228 to process state
portion 216. Further, one or more of applications 224, 226
and 228 are designated as untrusted.
0031 FIG. 2C is a block diagram of a computing node in
a third implementation of the system of FIG. 1, where each
untrusted application executing on the computing node is
associated with an application execution control process in
a one-to-one correspondence, and multiple trusted applica
tions running on the computing node are associated with a
single application execution control process, in accordance
with embodiments of the present invention. In a third
embodiment, computing node 240 of system 100 (see FIG.
1) includes first process 202 and a plurality of second
monitoring and control processes 242-1, 242-2, 242-3 (here
inafter, collectively referred to as “second processes 242).
First process 202 and second processes 242 communicate
via shared memory 212. First process 202, shared memory
212 and shared memory's request portion 214 and process
state portion 216 share the functionality of their analogous
components in computing node 200 of FIG. 2A and com
puting node 220 of FIG. 2B. Instead of the computing node
including only one second process which controls all of a
plurality of applications on the node (see FIG. 2A), and
instead of the computing node including second processes
controlling applications in a one-to-one correspondence,
computing node 240 includes a plurality of second processes
242, where one or more second processes 242-1, 242-2
control the execution of untrusted applications 244, 246 in
a one-to-one correspondence, and where a single second
process 242-3 controls the execution of one or more trusted
applications 248, 250. Similar to FIGS. 2A and 2B, second
processes 242 periodically write at pre-defined time inter
vals the statuses of applications 244, 246, 248, 250 to
process state portion 216.
0032 Comparing the computing node configurations of
FIGS. 2A, 2B and 2C, the one second process per node
arrangement of FIG. 2A provides relatively simple applica
tion control, and consumes computing resources (e.g., CPU
resources and memory resources) more efficiently (i.e., the
only one second process of FIG. 2A consumes fewer
resources than the multiple second processes of FIG. 2B). As
compared to FIG. 2A, the one second process per applica
tion arrangement of FIG. 2B enhances the isolation of a
failed application from the rest of the computing system.
The computing node arrangement of FIG. 2C is a mixture of
FIG. 2A and FIG. 2B, and facilitates balancing the tradeoff
between resource usage and the protection provided by the
isolation of application failures. As compared to FIG. 2B,
the computing node of FIG. 2C consumes fewer resources as
the number of trusted applications increases, but still pro
vides the same level of failure isolation for untrusted appli
cations.

Nov. 1, 2007

0033. In one embodiment, computing nodes 102-112 (see
FIG. 1) of system 100 (see FIG. 1) include one of the
configurations shown in FIGS. 2A, 2B or 2C. Alternatively,
computing nodes 102-112 (see FIG. 1) include any combi
nation of configurations illustrated in FIGS. 2A, 2B and 2C.
0034. In one embodiment, shared memory 212 in FIGS.
2A, 2B or 2C is a System V Inter-Process Communication
(IPC) shared memory. Synchronized access to System VIPC
shared memory by first process 202 (see FIGS. 2A, 2B and
2C) and the at least one second process (e.g., second process
204 of FIG. 2A) is provided by System V IPC semaphores.
Application Monitoring and Control
0035 FIG. 3 is a flow chart of a process of monitoring
and controlling applications executing on a computing node
of FIGS. 2A, 2B or 2C, in accordance with embodiments of
the present invention. The application monitoring and con
trolling process starts at step 300. Unless otherwise noted,
components of computing node 200 of FIG. 2A are refer
enced relative to the discussion of FIG. 3 presented below.
It will be understood, however, that the process of FIG. 3 can
also be implemented by components of computing node 220
(see FIG. 2B) or by components of computing node 240 (see
FIG. 2C).
0036) A plurality of processes including a status request
process and one or more control processes are capable of
being executed on computing node 200 (see FIG. 2A). In
step 302, a status request process (e.g., first process 202 of
FIG. 2A) is created on each computing node 102-112 (see
FIG. 1). First process 202 (see FIG. 2A) executes on
computing node 200 (see FIG. 2A), and its capabilities
include receiving and processing requests for a status of
application 206, 208 or 210 (see FIG. 2A), providing an
interface to processes external to computing node 200 (see
FIG. 2A), and providing an overall coordination of the
plurality of applications 206, 208, 210 executing on com
puting node 200 (see FIG. 2A). Specific functions relative to
the aforementioned capabilities of first process 202 (see
FIG. 2A) are described below.
0037. In step 304, one or more control processes (e.g.,
second process 204 of FIG. 2A) are created on each com
puting node 102-112 (see FIG. 1). That is, each computing
node of system 100 (see FIG. 1) includes one of the
following configurations: (1) a single second process 204
(see FIG. 2A) capable of controlling the execution of the
plurality of applications 206, 208, 210 (see FIG. 2A), (2) a
plurality of second processes 222 (see FIG. 2B) capable of
controlling the execution of a plurality of applications 224,
226, 228 (see FIG. 2B) in a one-to-one correspondence, and
(3) a plurality of second processes 242 (see FIG. 2C) where
one or more second processes 242-1, 242-2 (see FIG. 2C)
are capable of controlling the execution of one or more
untrusted applications 244, 246 (see FIG. 2C), in a one-to
one correspondence, and where a single second process
242-3 (see FIG. 2C) is capable of controlling the execution
of one or more trusted applications 248, 250 (see FIG. 2C).
0038. In step 306, applications 206, 208 and 210 (see
FIG. 2A) are executed on computing node 200 (see FIG.
2A), and first process 202 (see FIG. 2A) communicates with
second process 204 via shared memory 212 (see FIG. 2A) to
monitor and control applications 206, 208, 210 (see FIG.
2A) via status request operations and application control
operations.

US 2007/0256082 A1

0039. A status request process (e.g., first process 202 of
FIG. 2A) performs status request operations to monitor
applications 206, 208, 210 (see FIG. 2A). These status
request operations include receiving and processing, by first
process 202 (see FIG. 2A), a first request for a first status of
an untrusted application (e.g., application 206 of FIG. 2A).
The first request can be received from, for example, a
process external to computing node 200 (see FIG. 2A).
Further, the status request operations include receiving and
processing, by first process 202 (see FIG. 2A), a second
request for a second status of another application (e.g.,
application 208 of FIG. 2A). The second request can also be
received from, for example, a process external to computing
node 200 (see FIG. 2A).
0040. The one or more control processes (e.g., second
process 204 of FIG. 2A) of a computing node (e.g., com
puting node 200 of FIG. 2A) perform application control
operations to control the execution of applications on the
computing node. The control operations performed by sec
ond process 204 (see FIG. 2A) include starting, stopping and
restarting the execution of one or more of the applications
206, 208, 210 (see FIG. 2A).
0041. The specific commands and operations that provide
the status request operations and the application control
operations are described below.
0042. In step 306, an untrusted application (e.g., appli
cation 206) fails and its execution is thereby terminated. The
failure of the untrusted application is isolated from the rest
of the system 100 (see FIG. 1) that includes computing node
200 (see FIG. 2A). By isolating the failure of an application,
the remaining parts of system 100 (see FIG. 1) are not
adversely affected by the failure. That is, in response to the
termination of the failed untrusted application, the capability
of first process 202 (see FIG. 2A) to perform status request
operations and the capability of second process 204 (see
FIG. 2A) to perform application control operations are
preserved. For example, in response to a failure of applica
tion 206 (see FIG. 2A), a request for a status of application
206 or 208 (see FIG. 2A) is still successfully received and
processed by first process 202 (see FIG. 2A). Further, in this
example, second process 204 (see FIG. 2A) continues to
execute and continues to control the execution of the appli
cations that have not terminated (e.g., application 208 and
210 of FIG. 2A). The application monitoring and controlling
process ends at step 308.
0043 Segregation of status request and application con

trol operations facilitates the preservation of the capabilities
to perform Such operations in response to a failure of an
untrusted application. This segregation is provided by per
forming the status request operations exclusively by the
status request process (e.g., first process 202 of FIG. 2A),
and by performing the application control operations exclu
sively by at least one control process of the one or more
control processes (e.g., second process 204 of FIG. 2A)
executing on the computing node (e.g., computing node 200
of FIG. 2A). To ensure this segregation, the first process is
not identical to any of the second processes.
0044) In one embodiment, computing node 240 (see FIG.
2C) separates a control of an untrusted application 244 (see
FIG. 2C) from a control of another application 248 (see FIG.
2C). As used herein, control of an application is defined to
be control of an execution of the application. This separation

Nov. 1, 2007

of control is provided by a first control process 242-1 (see
FIG. 2C) exclusively controlling the execution of untrusted
application 244 (see FIG. 2C) and by a second control
process 242-3 (see FIG. 2C) exclusively controlling the
execution of the other application 248 (see FIG. 2C). To
ensure the separation of control, the first control process is
different from the second control process. Moreover, this
separation of control facilitates the aforementioned preser
vation of the capabilities relative to the status request
operations and the application control operations. For
example, the separation of control allows control of the
execution of application 248 (see FIG. 2C) to continue after
untrusted application 244 (see FIG. 2C) fails. It will be
understood to those skilled in the art that this embodiment
can also utilize an untrusted application 246 (see FIG. 2C)
in place of trusted application 248 (see FIG. 2C).
0045. In the configuration of FIG. 2A, the preservation of
the aforementioned capabilities is also facilitated by a par
ticular division of types of tasks performed by first process
202 (see FIG. 2A) and second process 204 (see FIG. 2A).
The first process performs tasks that utilize more complex
code (i.e., “heavy-duty tasks”) than the code utilized by the
second process. These heavy-duty tasks include tasks per
formed by agents that provide application monitoring and
sandboxing features. For instance, the first process is respon
sible for the heavy-duty tasks of coordinating external
interactions, ensuring automatic restarts, and performing
cleanups. In contrast, the second process performs no heavy
duty or non-stable tasks. Instead, the second process
includes non-complex code that employs only system calls
that are stable (e.g., Linux system calls such as fork, wait,
etc.). This division of the types of tasks performed by the
first and second processes increases the likelihood that the
second process will continue to execute in response to a
failure of one of the applications running under the control
of the second process. That is, the stability of the system
calls employed by the second process facilitates the contin
ued operation of the second process in response to the
application failure.
0046. In one embodiment, first process 202 (see FIG. 2A)

is communicating with one or more external processes, and
therefore first process 202 (see FIG. 2A) can fail due to
network issues, receiving improper requests, etc. In response
to first process 202 (see FIG. 2A) failing, transparent pre
parenting of applications 206, 208, 210 (see FIG. 2A) and a
restart of applications 206, 208, 210 (see FIG. 2A) are not
required. Instead, the present invention isolates the failure of
first process 202 (see FIG. 2A) and facilitates the continuing
operability of second process 204 (see FIG. 2A).
0047. The capabilities of first process 202 (see FIG. 2A)
include the ability to receive or initiate the following com
mands, and communicate the commands to second process
204 (see FIG. 2A):
0048 (1) automatically restart second process 204 (see
FIG. 2A) in response to a termination of the second process,
0049) (2) start an application 206, 208 or 210 (see FIG.
2A),
0050 (3) stop an application 206, 208 or 210 (see FIG.
2A),
0051 (4) clean up an application 206, 208 or 210 (see
FIG. 2A),

US 2007/0256082 A1

0.052 (5) obtain a log of standard-output and/or standard
error for an application 206, 208 or 210 via a corresponding
standard-output and/or standard-error logging operation per
formed by second process 204 (see FIG. 2A),
0053 (6) stop all of the plurality of applications 206, 208,
210 (see FIG. 2A),
0054 (7) obtain a status of all applications of the plurality
of applications 206, 208, 210 from process state portion 216
(see FIG. 2A),
0.055 (8) obtain a status of a single application 206, 208
or 210 (see FIG. 2A) from process state portion 216 (see
FIG. 2A),
0056 (9) restart an application 206, 208 or 210 (see FIG.
2A), and
0057 (10) shut down computing node 200 (see FIG. 2A)
or system 100 (see FIG. 1).
0.058. The above-listed commands that start, restart, and
stop one or more applications, or obtain a status of one or
more applications can be initiated by first process 202, or by
a process external to the computing node on which first
process 202 is running.
0059. The monitoring and control functionality of one of
the second processes (e.g., second process 204 of FIG. 2A)
includes the capability to perform the operations listed
below. Unless otherwise indicated, the operations listed
below can be performed by, for example, second process 204
of FIG. 2A, any second process of second processes 222 (see
FIG. 2B) or any second process of second processes 242 (see
FIG. 2C). Further, the application acted upon by operations
listed below can be, for example, any application selected
from applications 206, 208 and 210 of FIG. 2A, applications
224, 226 and 228 of FIG. 2B, and applications 244, 246, 248
and 250 of FIG. 2C.

0060 (a) automatically restart first process 202 (see FIG.
2A) in response to a termination of the first process,
0061 (b) start an application in response to the process
ing of command (2) listed above,
0062 (c) restart an application in response to the pro
cessing of command (9) listed above,
0063 (d) monitor the status or performance of an appli
cation via, for example, periodically obtaining a status of the
application at pre-defined intervals,

0064 (e) redirect standard-output from one device that
was set as a default device to another device,

0065 (f) redirect standard-error from one device that was
set as a default device to another device,
0066 (g) limita usage of resources by an application, and
0067 (h) send a status of an application to process state
portion 216 (see FIGS. 2A, 2B or 2C), where first process
202 (see FIGS. 2A, 2B or 2C) is capable of retrieving the
status from the process state portion 216 (see FIGS. 2A, 2B
or 2C), and where the sending of the status is performed
periodically at pre-defined time intervals.

0068. In one embodiment, operation (a) listed above is
available only if the computing node that includes the first
process to be restarted (e.g., first process 202 of FIGS. 2A,

Nov. 1, 2007

2B or 2C) also includes one or more untrusted applications.
Further, operation (a) is performed by a second process (not
shown in FIGS. 2A, 2B or 2C) that is executed on the
computing node that includes the first process to be restarted
and controls only the execution of that first process, rather
than by second process 204 of FIG. 2A, second processes
222 of FIG. 2B or second processes 242 of FIG. 2C.
0069. As compared to the commands issued by first
process 202, the operations performed by the second pro
cesses (e.g., second processes 204) are simpler in function
ality and require only system calls (e.g., Linux system calls),
Such as fork, wait, etc. This relative simplicity in function
ality allows each second process to have Substantially less
code size and code complexity as compared to the first
process. Further, the relative functional simplicity of a
second process that controls an untrusted application facili
tates the continued operability of the second process in
response to a failure of the untrusted application.
0070. Other features provided by the first process and the
at least one second process executing on a computing node
include remote process control of applications 206, 208, 210
and a means to monitor, report on, and limit the resource
usage of the applications. Further, the present invention
uniquely identifies each instance of multiple instances of an
application running on the same computing node. In addi
tion to a computing node identifier, the present invention
maintains an instance identifier along with an application
identifier. The combination of these identifiers allows a
unique identification of an instance on any computing node
in a cluster.

EXAMPLE 1.

0071. As one example of the monitoring and control
process of FIG. 3, a configuration of computing node 240 is
provided. In this example, each reference numeral corre
sponds to a reference numeral in FIG. 2C, but it will be
understood that the steps of this example can also be
implemented in the computing node configuration of FIG.
2A or FIG. 2B. Computing node 240 executes untrusted
application 244 and one other application 246. It will be
understood that the other application can also be a trusted
application such as application 248 or 250. The steps of an
execution of an application are included in Example 2
presented below. Second process 242-1 functions as the
parent application to the untrusted application 244. As a
parent application, second process 242-1 is capable of
obtaining a status of application 244. Computing node 240
also executes first process (i.e., status request process) 202
and second processes (i.e., control processes) 242-1 and
242-2.

0072. In this example, a process external to computing
node 240 sends a first request for a status of application 244.
and also sends a second request for a status of application
246. First process 202 receives and processes the first
request and the second request. Second process 242-1 con
trols the execution of application 244 and second process
242-2 controls the execution of application 246. Controlling
the execution of an application includes, for example, start
ing, stopping and restarting the application.
0073. Second process 242-1 periodically sends the status
of application 244 to the process state portion 216 of shared
memory 212. Similarly, second process 242-2 periodically

US 2007/0256082 A1

sends the status of application 246 to the process state
portion 216. The periodic sending of these statuses occurs at
pre-defined intervals. Process state portion 216 receives the
statuses of application 244 and 246. The processing of the
first and second requests by first process 202 includes
obtaining the statuses of application 244 and 246 from
process state portion 216.
0074 Due to a fault in the code of untrusted application
244, application 244 fails and its execution is terminated.
Second process 242-1 continues executing, and sends a
status (i.e., a failure status) indicating the failure of appli
cation 244 to process state 216 at a time indicated by the
aforementioned pre-defined intervals. First process 202
retrieves the failure status from process state 216, thereby
making the failure status available to any external process
that requests the status of application 244.
0075 Although the execution of application 244 has
terminated, monitoring and control capabilities of first pro
cess 202 and second process 242-2 are preserved. These
preserved monitoring and control capabilities include a
capability of first process 202 to receive and process
requests for the statuses of applications 244 and 246, and a
capability of second process 242-2 to control the execution
of application 246.

0.076 The aforementioned successful retrieval of the sta
tus of application 244 by first process 202 is one example of
preserving the aforementioned capability of first process 202
in response to the failure of application 244, and the present
inventions isolation of the failure of application 244 from
the rest of the computing system (i.e., the computing system
that includes computing node 240). For instance, since first
process 202 continues to execute, a command issued by first
process 202 that monitors or controls another application
(e.g., application 246, 248 or 250) is successfully received
and processed (e.g., by the second process 242 that com
municates with the application being monitored or con
trolled via the command) even though application 244 has
failed.

EXAMPLE 2

0.077 FIG. 4 is a flow chart of an exemplary process of
executing an application on a computing node of FIGS. 2A,
2B or 2C, in accordance with embodiments of the present
invention. In this example, reference numerals refer to
components of FIG. 2B, and the application to be executed
is application 224, but it will be understood that the steps in
this example can also be implemented to execute an analo
gous application in the computing node configuration of
FIG. 2A or FIG. 2C.

0078. The application execution process begins at step
400. In step 402, first process 202 sends a start command
message to second process 222-1 via request portion 214 of
shared memory 212. The start command message indicates
that an execution of application 224 is to be initiated. In step
404, second process 222-1 receives the start command
message from request portion 214 of shared memory 212. In
step 406, second process 222-1 utilizes a fork system to
spawn off application 224. In step 408, second process 222-1
sends an acknowledgment message (i.e., a message
acknowledging receipt of the start command) to first process
202 via shared memory 212. In step 410, application 224
executes on computing node 220. In step 412, second

Nov. 1, 2007

process 222-1 utilizes one or more of the operations (a)-(h)
listed above to monitor and control application 224 as it
executes on computing node 220. The application execution
process of FIG. 4 ends at step 414.
Computing System
0079 FIG. 5 is a block diagram of a computing unit 500
for implementing the process of FIG. 3, in accordance with
embodiments of the present invention. Computing unit 500
is suitable for storing and/or executing program code of
application monitoring and control system 514, and gener
ally comprises a central processing unit (CPU) 502, a
memory 504, an input/output (I/O) interface 506, a bus 508,
I/O devices 510 and a storage unit 512. CPU 502 performs
computation and control functions of computing unit 500.
CPU 502 may comprise a single processing unit, or be
distributed across one or more processing units in one or
more locations (e.g., on a client and server).
0080 Memory 504 may comprise any known type of data
storage and/or transmission media, including bulk storage,
magnetic media, optical media, random access memory
(RAM), read-only memory (ROM), a data cache, a data
object, etc. Memory 504 includes computer program code
comprising application monitoring and control system 514.
Local memory elements of memory 504 are employed
during actual execution of the program code of application
monitoring and control system 514. Cache memory ele
ments of memory 504 provide temporary storage of at least
some program code in order to reduce the number of times
code must be retrieved from bulk storage during execution.
Storage unit 512 is, for example, a magnetic disk drive or an
optical disk drive that stores data utilized by application
monitoring and control system 514. Moreover, similar to
CPU 502, memory 504 may reside at a single physical
location, comprising one or more types of data storage, or be
distributed across a plurality of physical systems in various
forms. Further, memory 504 can include data distributed
across, for example, a LAN, WAN or storage area network
(SAN) (not shown). Still further, memory 504 may include
other systems not shown in FIG. 5. Such as an operating
system (e.g., Linux) that runs on CPU 502 and provides
control of various components within and/or connected to
computing unit 500.
0081. I/O interface 506 comprises any system for
exchanging information to or from an external source. I/O
devices 510 comprise any known type of external device,
including a display monitor, keyboard, mouse, printer,
speakers, handheld device, printer, facsimile, etc. Bus 508
provides a communication link between each of the com
ponents in computing unit 500, and may comprise any type
of transmission link, including electrical, optical, wireless,
etc.

0082 I/O interface 506 also allows computing unit 500 to
store and retrieve information (e.g., program instructions or
data) from an auxiliary storage device (e.g., storage unit
512). The auxiliary storage device may be a non-volatile
storage device (e.g., a CD-ROM drive which receives a
CD-ROM disk). Computing unit 500 can store and retrieve
information from other auxiliary storage devices (not
shown), which can include a direct access storage device
(DASD) (e.g., hard disk or floppy diskette), a magneto
optical disk drive, a tape drive, or a wireless communication
device.

US 2007/0256082 A1

0083. The invention can take the form of an entirely
hardware embodiment, an entirely software embodiment or
an embodiment containing both hardware and software
elements. In a preferred embodiment, the invention is imple
mented in software, which includes but is not limited to
firmware, resident Software, microcode, etc.

0084. Furthermore, the invention can take the form of a
computer program product accessible from a computer
usable or computer-readable medium providing program
code of application monitoring and control system 514 for
use by or in connection with a computing unit 500 or any
instruction execution system to provide and facilitate the
capabilities of the present invention. For the purposes of this
description, a computer-usable or computer-readable
medium can be any apparatus that can contain, store, com
municate, propagate, or transport the program for use by or
in connection with the instruction execution system, appa
ratus, or device.

0085. The aforementioned medium can be an electronic,
magnetic, optical, electromagnetic, infrared, or semiconduc
tor system (or apparatus or device) or a propagation
medium. Examples of a computer-readable medium include
a semiconductor or Solid state memory, magnetic tape, a
removable computer diskette, RAM 504, ROM, a rigid
magnetic disk and an optical disk. Current examples of
optical disks include compact disk-read-only memory (CD
ROM), compact disk-read/write (CD-R/W) and DVD.
0086) The flow diagrams depicted herein are provided by
way of example. There may be variations to these diagrams
or the steps (or operations) described herein without depart
ing from the spirit of the invention. For instance, in certain
cases, the steps may be performed in differing order, or steps
may be added, deleted or modified. All of these variations
are considered a part of the present invention as recited in
the appended claims.
0087 While embodiments of the present invention have
been described herein for purposes of illustration, many
modifications and changes will become apparent to those
skilled in the art. Accordingly, the appended claims are
intended to encompass all such modifications and changes as
fall within the true spirit and scope of this invention.
What is claimed is:

1. A method of monitoring and controlling applications
executing on a plurality of computing nodes of a computing
System, comprising:

executing, on a computing node of said plurality of
computing nodes, a status request process included in
a plurality of processes capable of being executed on
said computing node:

executing, on said computing node, one or more control
processes included in said plurality of processes;

executing, on said computing node, an untrusted applica
tion of a plurality of applications capable of being
executed on said computing node, said executing said
untrusted application including performing a first
execution of said untrusted application, and said
untrusted application designated as likely to experience
a failure based on pre-defined criteria:

executing, on said computing node, another application of
said plurality of applications, said executing said

Nov. 1, 2007

another application including performing a second
execution of said another application, wherein said
another application is different from said untrusted
application;

receiving and processing, by said status request process,
a first request for a first status of said untrusted appli
cation,

receiving and processing, by said status request process,
a second request for a second status of said another
application;

controlling, exclusively by a first control process of said
one or more control processes, said first execution of
said untrusted application;

controlling, exclusively by a second control process of
said one or more control processes, said second execu
tion of said another application;

terminating said first execution of said untrusted applica
tion based on a failure of said untrusted application;
and

preserving, in response to said terminating, a capability of
said status request process to perform said receiving
and said processing said first request and to perform
said receiving and said processing said second request,
and a capability of said second control process to
perform said controlling said second execution of said
another application.

2. The method of claim 1, further comprising:
segregating a plurality of status request operations from a

plurality of control operations,

wherein said status request operations include said receiv
ing and said processing said first request and said
receiving and said processing said second request,

wherein said control operations include controlling said
first execution and controlling said second execution,

wherein said segregating comprises:
performing said status request operations exclusively
by said status request process; and

performing said control operations exclusively by at
least one control process of said one or more control
processes,

wherein said status request process is different from any
control process of said one or more control processes;
and

wherein said segregating facilitates said preserving in
response to said terminating.

3. The method of claim 1, further comprising:

separating a control of said untrusted application from a
control of said another application, said separating
provided by said controlling exclusively by said first
control process and said controlling exclusively by said
second control process,

wherein said first control process is different from said
second control process, and

wherein said separating facilitates said preserving.

US 2007/0256082 A1

4. The method of claim 1, wherein said one or more
control processes is one of:

a single control process that controls an execution of any
application of said plurality of applications, wherein
said first control process and said second control pro
cess are said single control process;

a plurality of control processes that controls executions of
said plurality of applications in a one-to-one correspon
dence, wherein said first control process and said
second control process are different, and wherein said
plurality of applications are designated as likely to fail
based on said pre-defined criteria, and

a control process and a first set of one or more control
processes, said first set including said first control
process;

wherein said control process controls an execution of any
trusted application of a first group of one or more
trusted applications, said first group included in said
plurality of applications, each trusted application of
said first group designated as not likely to fail based on
said pre-defined criteria, and

wherein said one or more control processes of said first set
control executions of one or more untrusted applica
tions of a second group in a one-to-one correspon
dence, said second group included in said plurality of
applications, each untrusted application of said second
group designated as likely to fail based on said pre
defined criteria.

5. The method of claim 1, further comprising:
communicating between said first process and said second

process via a shared memory coupled to said comput
ing node, wherein said communicating comprises:
sending said first status of said untrusted application to

said shared memory by said first control process;
receiving said first status by said shared memory in

response to said sending; and
retrieving said first status from said shared memory by

said status request process.
6. The method of claim 5, wherein said sending is

performed by said first control process at pre-defined inter
vals of a first set of intervals, and wherein said retrieving is
performed by said status request process at pre-defined
intervals of a second set of intervals.

7. The method of claim 5, further comprising:
dividing said shared memory into a process state portion

and a request portion, wherein said receiving comprises
receiving said first status by said process State portion.

8. The method of claim 7, further comprising:
communicating a command from said status request pro

cess to said first control process via said request portion
of said shared memory, said command selected from a
group consisting of

a first command to automatically restart said first control
process in response to a termination of said first control
process,

a second command to start said untrusted application,
wherein said communicating said second command
initiates a starting of said untrusted application by said
first control process,

Nov. 1, 2007

a third command to stop said untrusted application,
wherein said communicating said third command ini
tiates a stopping of said untrusted application by said
first control process,

a fourth command to clean-up said untrusted application,
a fifth command to obtain a log of at least one of

standard-output and standard-error for said untrusted
application, wherein said communicating said fifth
command initiates a logging, by said first control
process, of at least one of standard-output and standard
error for said untrusted application,

a sixth command to stop said plurality of applications,
a seventh command to obtain a status of each application

of said plurality of applications from said process state
portion of said shared memory,

an eighth command to obtain said first status from said
process state portion of said shared memory,

a ninth command to restart said untrusted application, and
a tenth command to shut down said computing system.
9. The method of claim 8, further comprising:
executing, on said computing node, a third control process

of said one or more control processes, said third control
process controlling an execution of said status request
process, said execution performed by said executing
said status request process; and

performing an operation selected from a group consisting
of:

a first operation to automatically restart said status request
process in response to a termination of said status
request process,

a second operation to start said untrusted application, said
second operation initiated by said second command,

a third operation to restart said untrusted application, said
third operation initiated by said ninth command,

a fourth operation to monitor said untrusted application,
a fifth operation to redirect standard-output from a first

device set as a default standard-output device to a
second device,

a sixth operation to redirect standard-error from a third
device set as a default standard-error device to a fourth
device,

a seventh operation to limit a usage of resources by said
untrusted application, and

an eighth operation to send said first status to said process
state portion of said shared memory, said first status
capable of being retrieved by said status request pro
cess from said process state portion, said eighth opera
tion performed by said first control process periodically
at pre-defined time intervals,

wherein said first operation is performed by said third
control process, and

wherein said second operation through said eighth opera
tion inclusive are performed by said first control pro
CCSS,

US 2007/0256082 A1

10. The method of claim 9, further comprising:
communicating said second command to start said

untrusted application, said communicating including
sending said second command from said status request
process to said first control process via said request
portion of said shared memory;

receiving said second command by said first control
process;

spawning said untrusted application by said first control
process;

sending a message from said first control process to said
status request process via said shared memory to
acknowledge said receiving said second command;

initiating a start of an execution of said untrusted appli
cation on said computing node; and

monitoring and controlling said untrusted application by
said first control process, said monitoring and control
ling performed in response to said initiating said start,
and said monitoring and controlling including perform
ing said eighth operation.

11. The method of claim 1, further comprising:
terminating said executing said status request process,

wherein said executing said first control process is not
terminated in response to said terminating said execut
ing said status request process.

12. The method of claim 5, wherein said shared memory
is a System V Inter-Process Communication (IPC) shared
memory and said shared memory utilizes System V IPC
semaphores.

13. The method of claim 1, wherein said computing
system is a distributed computing system or a clustered
computing System.

14. A system for monitoring and controlling applications
executing on a plurality of computing nodes of a computing
System, comprising:

means for executing, on a computing node of said plu
rality of computing nodes, a status request process
included in a plurality of processes capable of being
executed on said computing node;

means for executing, on said computing node, one or
more control processes included in said plurality of
processes;

means for executing, on said computing node, an
untrusted application of a plurality of applications
capable of being executed on said computing node, said
executing said untrusted application including perform
ing a first execution of said untrusted application, and
said untrusted application designated as likely to expe
rience a failure based on pre-defined criteria:

means for executing, on said computing node, another
application of said plurality of applications, said
executing said another application including perform
ing a second execution of said another application,
wherein said another application is different from said
untrusted application;

means for receiving and processing, by said status request
process, a first request for a first status of said untrusted
application,

Nov. 1, 2007

means for receiving and processing, by said status request
process, a second request for a second status of said
another application;

means for controlling, exclusively by a first control pro
cess of said one or more control processes, said first
execution of said untrusted application;

means for controlling, exclusively by a second control
process of said one or more control processes, said
second execution of said another application;

means for terminating said first execution of said
untrusted application based on a failure of said
untrusted application; and

means for preserving, in response to said terminating, a
capability of said status request process to perform said
receiving and said processing said first request and to
perform said receiving and said processing said second
request, and a capability of said second control process
to perform said controlling said second execution of
said another application.

15. The system of claim 14, further comprising:
means for segregating a plurality of status request opera

tions from a plurality of control operations,
wherein said status request operations include said receiv

ing and said processing said first request and said
receiving and said processing said second request,

wherein said control operations include controlling said
first execution and controlling said second execution,

wherein said means for segregating comprises:
means for performing said status request operations

exclusively by said status request process; and
means for performing said control operations exclu

sively by at least one control process of said one or
more control processes,

wherein said status request process is different from any
control process of said one or more control processes;
and

wherein said segregating facilitates said preserving in
response to said terminating.

16. The system of claim 14, further comprising:
means for separating a control of said untrusted applica

tion from a control of said another application, said
separating provided by said controlling exclusively by
said first control process and said controlling exclu
sively by said second control process,

wherein said first control process is different from said
second control process, and

wherein said separating facilitates said preserving.
17. The system of claim 14, wherein said one or more

control processes is one of:
a single control process that controls an execution of any

application of said plurality of applications, wherein
said first control process and said second control pro
cess are said single control process;

a plurality of control processes that controls executions of
said plurality of applications in a one-to-one correspon
dence, wherein said first control process and said

US 2007/0256082 A1

second control process are different, and wherein said
plurality of applications are designated as likely to fail
based on said pre-defined criteria, and

a control process and a first set of one or more control
processes, said first set including said first control
process;

wherein said control process controls an execution of any
trusted application of a first group of one or more
trusted applications, said first group included in said
plurality of applications, each trusted application of
said first group designated as not likely to fail based on
said pre-defined criteria, and

wherein said one or more control processes of said first set
control executions of one or more untrusted applica
tions of a second group in a one-to-one correspon
dence, said second group included in said plurality of
applications, each untrusted application of said second
group designated as likely to fail based on said pre
defined criteria.

18. A computer program product comprising a computer
usable medium including computer-usable program code for
monitoring and controlling applications executing on a
plurality of computing nodes of a computing system, said
computer program product including:

computer-usable code for executing, on a computing node
of said plurality of computing nodes, a status request
process included in a plurality of processes capable of
being executed on said computing node:

computer-usable code for executing, on said computing
node, one or more control processes included in said
plurality of processes;

computer-usable code for executing, on said computing
node, an untrusted application of a plurality of appli
cations capable of being executed on said computing
node, said executing said untrusted application includ
ing performing a first execution of said untrusted
application, and said untrusted application designated
as likely to experience a failure based on pre-defined
criteria;

computer-usable code for executing, on said computing
node, another application of said plurality of applica
tions, said executing said another application including
performing a second execution of said another appli
cation, wherein said another application is different
from said untrusted application;

computer-usable code for receiving and processing, by
said status request process, a first request for a first
status of said untrusted application,

computer-usable code for receiving and processing, by
said status request process, a second request for a
second status of said another application;

Nov. 1, 2007

computer-usable code for controlling, exclusively by a
first control process of said one or more control pro
cesses, said first execution of said untrusted applica
tion;

computer-usable code for controlling, exclusively by a
second control process of said one or more control
processes, said second execution of said another appli
cation;

computer-usable code for terminating said first execution
of said untrusted application based on a failure of said
untrusted application; and

computer-usable code for preserving, in response to said
terminating, a capability of said status request process
to perform said receiving and said processing said first
request and to perform said receiving and said process
ing said second request, and a capability of said second
control process to perform said controlling said second
execution of said another application.

19. The program product of claim 18, further comprising:
computer-usable code for segregating a plurality of status

request operations from a plurality of control opera
tions,

wherein said status request operations include said receiv
ing and said processing said first request and said
receiving and said processing said second request,

wherein said control operations include controlling said
first execution and controlling said second execution,

wherein said computer-usable code for segregating com
prises:
computer-usable code for performing said status

request operations exclusively by said status request
process; and

computer-usable code for performing said control
operations exclusively by at least one control process
of said one or more control processes,

wherein said status request process is different from any
control process of said one or more control processes;
and

wherein said segregating facilitates said preserving in
response to said terminating.

20. The program product of claim 18, further comprising:
computer-usable code for separating a control of said

untrusted application from a control of said another
application, said separating provided by said control
ling exclusively by said first control process and said
controlling exclusively by said second control process,

wherein said first control process is different from said
second control process, and

wherein said separating facilitates said preserving.
k k k k k

