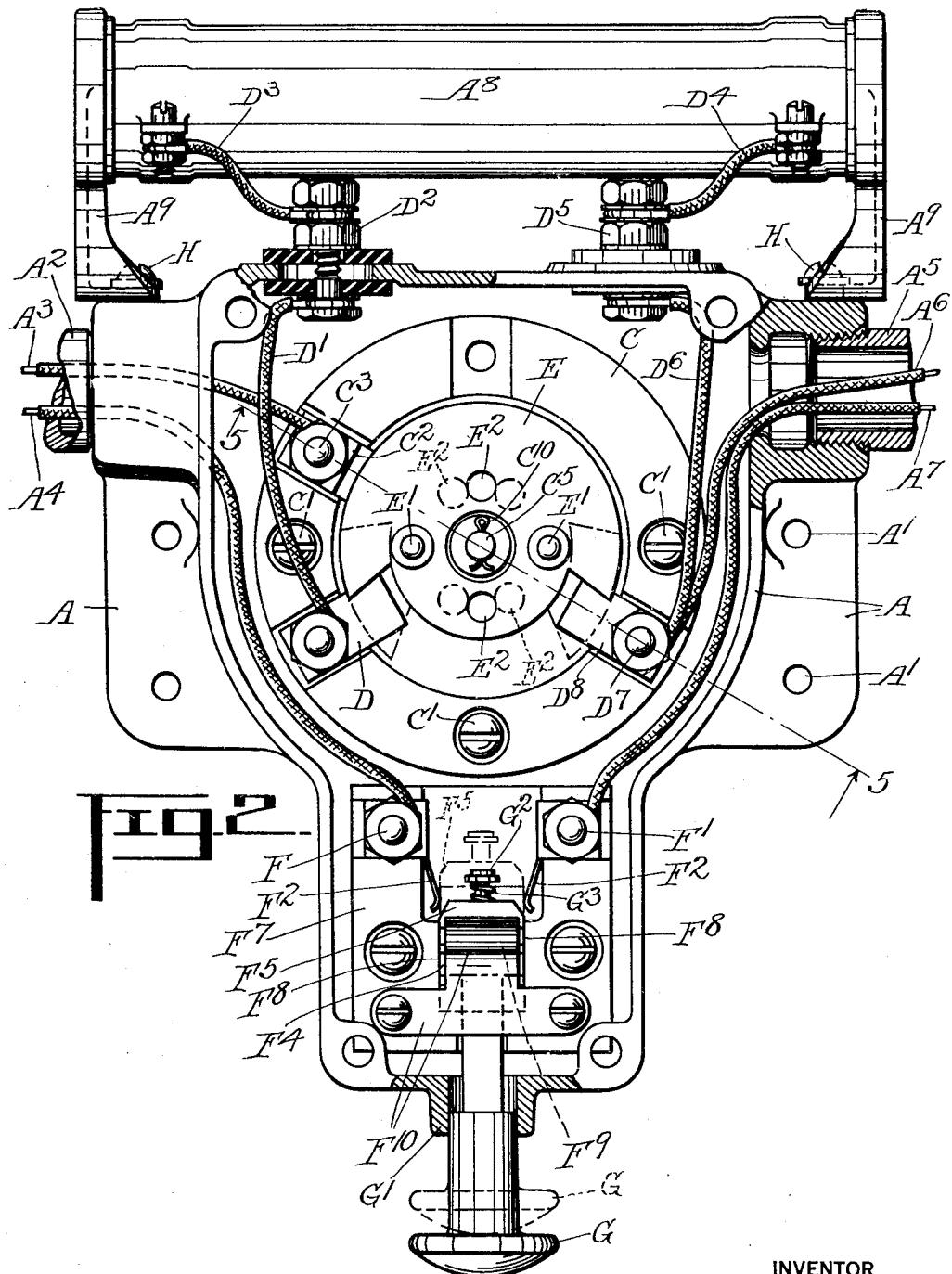

April 19, 1932.

J. A. AMOS

1,854,919

ELECTRIC SWITCH

Original Filed Aug. 9, 1926 4 Sheets-Sheet 1


April 19, 1932.

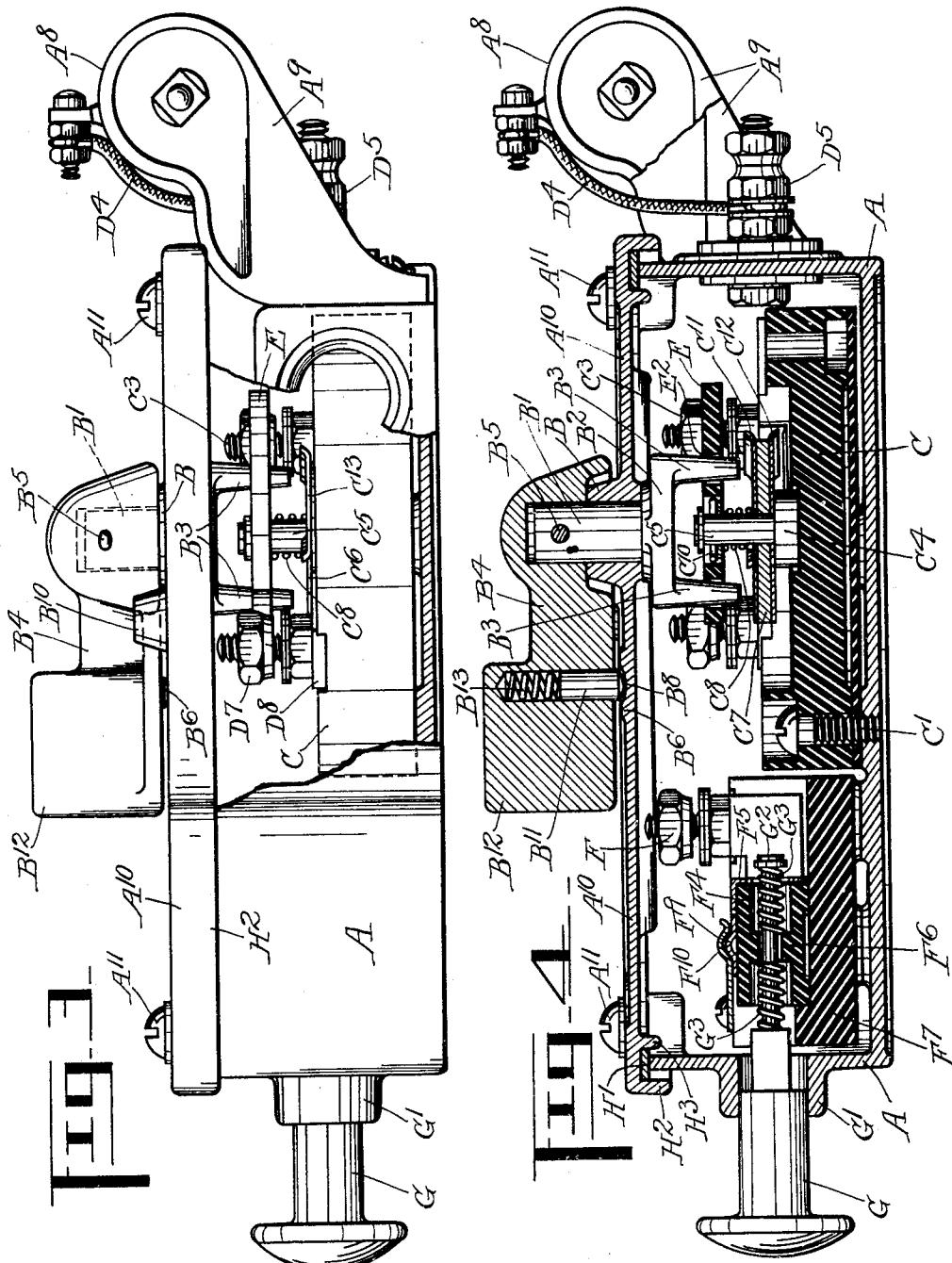
J. A. AMOS

1,854,919

ELECTRIC SWITCH

Original Filed Aug. 9, 1926 4 Sheets-Sheet 2

INVENTOR
John A. Amos
BY
Parker Carter
ATTORNEY


April 19, 1932.

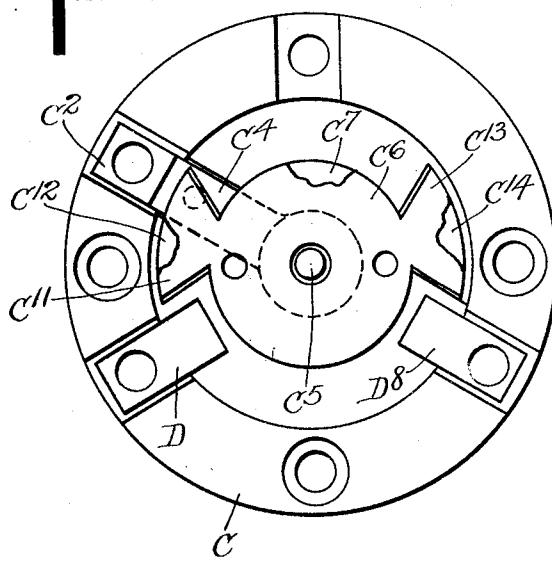
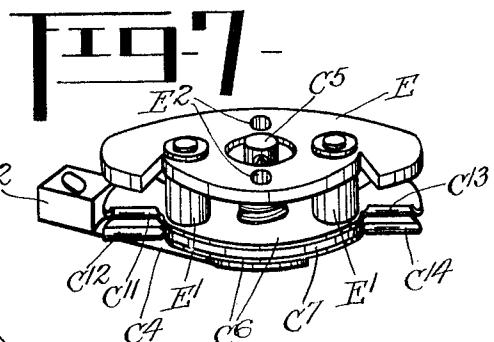
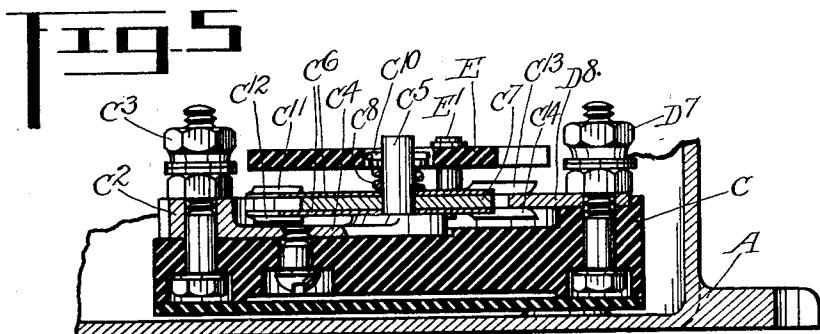
J. A. AMOS

1,854,919

ELECTRIC SWITCH

Original Filed Aug. 9, 1926 4 Sheets-Sheet 3

INVENTOR
John A. Amos
BY
P. R. H. & Co. ATTORNEY




April 19, 1932.

J. A. AMOS

1,854,919

ELECTRIC SWITCH

Original Filed Aug. 9, 1926 4 Sheets-Sheet 4

INVENTOR
John A. Amos
BY
Parke L. Latta
ATTORNEY

UNITED STATES PATENT OFFICE

JOHN A. AMOS, OF CHICAGO, ILLINOIS, ASSIGNOR TO THE PYLE-NATIONAL COMPANY, OF CHICAGO, ILLINOIS, A CORPORATION OF NEW JERSEY

ELECTRIC SWITCH

Original application filed August 9, 1926, Serial No. 128,112. Divided and this application filed December 17, 1926, Serial No. 155,369. Renewed August 28, 1931.

My invention relates to improvements in electric switches particularly for use in connection with electric lighting systems of a locomotive and has for one object to provide a new and improved form of switch which combines the dimmer element and control means for the headlight and the control means for the running and cab lights in a single unitary housing. Another object of my invention is to provide a switch arrangement and switch housing which will be fool-proof and durable and of such strength as to stand up under railroad service. Other objects of my invention will appear from time to time throughout the specification and claims.

My invention is illustrated more or less diagrammatically in the accompanying drawings, wherein—

20 Figure 1 is a plan view;

Figure 2 is a plan view with parts omitted and parts broken away;

Figure 3 is a side elevation with parts in section and parts broken away;

25 Figure 4 is a section along the line 4—4 of Figure 1;

Figure 5 is a section with parts omitted and parts broken away along the line 5—5 of Figure 2;

30 Figure 6 is a plan view of the headlight switch contact elements;

Figure 7 is a perspective view showing the headlight contact elements and control means.

35 Like parts are indicated by like characters throughout the specification and drawings.

A is the base or housing adapted to be held in place by bolts not shown, through the bolt holes A¹ at any suitable point in the locomotive cab. It may be supported vertically or horizontally as the case may be. A² is a conduit leading into the housing to contain conductor wires A³ A⁴ leading from the generator. A⁵ is a conduit communicating

40 with the housing to contain conductor wires A⁶ A⁷ leading to the headlight and to the cab lights. A⁸ is the resistance unit provided with legs A⁹ bolted to the housing A. A¹⁰ is a cover for the housing held in place

45 by the screws A¹¹.

B is a boss in the cover A¹⁰ to provide a bearing for the switch pin B¹ which pin has a switch fork B² terminating in driving fingers B³ B³ inside the housing. The pin B¹ projects outwardly beyond the boss B to 55 engage the handle B⁴ being held against rotation thereon by means of the pin B⁵ which passes through the handle head and the pin and holds the pin and switch handle in position on the cover. B⁶ is a quadrant recessed on the face of the cover. A plurality of notches or pockets B⁷, B⁸ and B⁹ are formed in the cover A¹⁰ arranged in arcuate relation. Stops B¹⁰ are disposed at each end of the 60 row of notches, serving as stops for the handle B¹² as the same is swung to and fro as hereinafter described for establishing different circuit relations in the switch. A lock plunger B¹¹ is slideable in the hand piece B¹² of the handle and is pressed outwardly 65 against the quadrant by the spring B¹³. When the pin engages the pocket B⁸ as shown in Figure 1, the headlight switch is in off position. When it has been swung to the left and engages the pocket B⁷, the headlight switch is in on position. When it is swung to the right engaging the pocket B⁹ the headlight switch is in the dim position.

C is an insulating block fastened in the housing by means of the screws C¹. C² is a 70 conductor piece bolted to the block C. It has a binding post C³ at which terminates the cable A³. It also has an arm C⁴ extending to the center of the block C and carrying the pin C⁵ on which is rotatably mounted the 75 switch member C⁶. This switch member comprises two opposed plates disposed one on either side of a filler block C⁷ held yieldingly together by a spring C⁸ surrounding the pin C⁵ and held under tension by the cotter pin C¹⁰. These switch plates C⁶ have at opposed sides spaced spring fingers C¹¹ C¹² C¹³ C¹⁴.

80 Mounted on the insulating block C is a dimmer contact D which, when the parts are 85 in the position shown in dotted lines at the left hand side of Figure 2 is gripped between the members C¹¹ C¹² to close a circuit through the cable A³, binding post C³, pin C⁵, finger C¹¹ C¹², contact member D, conductor D¹, binding post D², conductor D³ to 90 95 100

the resistance unit A⁸. Under these conditions a current leads from the other bolt through the resistance unit A⁸, conductor D⁴, binding post D⁵, conductor D⁶, binding post D⁷ through the conductor A⁶ to the headlight, thus reducing the current and giving a dim light. When on the other hand the parts are in the position shown in full lines in Figure 2, the blade C¹³ is in contact with the terminal member D⁸ associated with the binding post D⁷ and in this case current leads from A³, through C³, C⁵, C⁶, the finger C¹³, the member D⁸ direct to the conductor A⁶ and the full current pressure is supplied to the light thus short circuiting the resistance element. When the parts are in the position shown in Figure 6, however, both the terminals D and D⁸ are idle and the light is turned completely off.

E is a driving plate concentric with the plate C⁶, spaced thereabove by means of holding pins E¹ E¹. This plate has a pair of diametrically opposed apertures E² E² adapted to engage the prongs or forks B³ B³ so that rotation of the hand switch causes rotation of the switch members.

Referring now to the cab light switch, the conductor A⁴ comes into the housing to the binding post F. The conductor A⁷ leads out through the housing from the binding post F¹. F² F² are springs associated with said binding posts extending inwardly toward each other. F⁴ is a slidably mounted contact block which, when pushed forward to the dotted line position in Figure 2 engages both springs and when drawn to full line position, is out of contact with the spring F². This block has a conducting surface F⁵ to engage these spring fingers F² while the body F⁶ thereof is of insulating material. This block slides on an insulating block F⁷ traveling between the guides F⁸ and has on its surface an upwardly bent lug strip F⁹ to engage the upwardly bent portion of a spring F¹⁰, which spring serves to hold the block either in or out of contact with the spring F².

G is a switch handle slidable in a boss G¹ in the housing having a pin G² extending through the block F⁴. Springs G³ G³ are interposed between this rod and this block so as to provide a flexible driving connection to insure that the operator will not move the block too far in either direction if he hits the handle G too hard.

The resistance element A⁸ is removably mounted on the brackets A⁹ by means of the screws H which may be released to permit the exchange of the element. The binding posts D² D³ disposed outside of the housing and associated with the conductors D³ D⁴ make it possible to remove and replace the resistance element without opening the housing and therefore without admitting dirt, dust and moisture to enter. The housing itself is closed by means of the packing member H¹

engaging the upper edge of the housing wall and contained between the outer rib H² and the inner rib H³ on the cover A¹⁰.

This application is a division of my co-pending application Ser. No. 128,112 Au-¹⁰ gust 9, 1926.

I claim:

1. A rotary switch for electric lights and the like, comprising an insulating block, a conductor pin projecting upwardly therefrom, a switch element rotatably mounted on and in electric connection therewith, a plurality of contact fingers on the block, pairs of opposed contact fingers on the switch element adapted to grip the contact fingers on the block, the relative position of fingers on block and switch element being such that in one position they are all out of contact with each other, and in other positions one pair only of the fingers on the switch element are in contact with a finger on the block, the parts being so arranged, however, that the switch element is never simultaneously in contact with both fingers on the block.

2. A rotary switch for electric lights and the like, comprising an insulating block, a conductor pin projecting upwardly therefrom, a switch element rotatably mounted on and in electric connection therewith, a plurality of contact fingers on the block, pairs of opposed contact fingers on the switch element adapted to grip the contact fingers on the block, the relative position of fingers on block and switch element being such that in one position they are all out of contact with each other, and in other positions one pair only of the fingers on the switch element are in contact with a finger on the block, the parts being so arranged, however, that the switch element is never simultaneously in contact with both fingers on the block; an insulating driving plate mounted upon the switch element and insulated therefrom, said driving plate having apertures therein and a switch handle, a connector pin mounted to rotate with the handle and adapted to loosely engage an aperture in the driving plate.

3. A rotary electric switch comprising a central conducting pin, a switch element mounted for rotation thereon, contact members in the path of the switch element, an apertured insulating driving plate mounted for rotation on the pin and rotatably connected to the switch element, a fork loosely engaging the aperture and means to rotate the fork to operate the switch; a housing containing the switch, a removable cover therefor, the fork and the operating means being mounted as a unit on the cover and adapted to operatively engage the driving member only when the cover is in place.

4. An electric switch comprising a pair of conductor plates, having each a pair of contact fingers projecting from its periphery, superposed in pairs and spaced apart, contact fin-¹²⁰

gers fixed adjacent the peripheries of the plate and engageable by the spaced peripheral fingers, an insulating plate parallel with the conductor plates and spaced above them, a driving connection between the insulating plate and the conductor plate, a terminal member, a pin projecting upwardly therethrough, a spring encircling such pin and holding the plates against the terminal member, means in cooperation with the insulating plate for limiting the angular movement of said plate, a handle above the plate having a driving pin adapted to engage apertures in the insulating plate whereby rotation of the handle will cause rotation of the conductor plate.

5. An electric switch comprising a pair of conductor plates having each a pair of contact fingers projecting from its periphery, superposed in pairs and spaced apart, contact fingers fixed adjacent the peripheries of the plates and engageable by the spaced peripheral fingers, an insulating plate parallel with the conductor plates and spaced above them, and a driving connection between the insulating plate and the conductor plate.

6. An electric switch comprising a pair of conductor plates, having each a pair of contact fingers projecting from its periphery, superposed in pairs and spaced apart, contact fingers fixed adjacent the peripheries of the plate, and engageable by the spaced peripheral fingers, an insulating plate parallel with the conductor plates and spaced above them, a driving connection between the insulating plate and the conductor plate, a terminal member, a pin projecting upwardly therethrough, a spring encircling such pin and holding the plates against the terminal member.

7. An electric switch comprising a pair of conductor plates, having each a pair of contact fingers projecting from its periphery, superposed in pairs and spaced apart, contact fingers fixed adjacent the peripheries of the plate, and engageable by the spaced peripheral fingers, an insulating plate parallel with the conductor plates and spaced above them, a driving connection between the insulating plate and the conductor plate, a terminal member, a pin projecting upwardly therethrough, a spring encircling such pin and holding the plates against the terminal member, means in cooperation with the insulating plate for limiting the angular movement of said plate.

Signed at Chicago, County of Cook, and State of Illinois, this 10th day of December, 1926.

JOHN A. AMOS.