The present invention relates to benzo[b]furane and benzo[b]thiophene derivatives of the general formula IV as the free base or salts thereof and their use.
BENZO[B]FURANE AND
BENZO[B]THIOPHENE DERIVATIVES

FIELD OF THE INVENTION

The present invention relates to compounds of formula I and the medical use thereof in the treatment of affective disorders, pain disorders, attention deficit hyperactivity disorder (ADHD) and stress urinary incontinence.

BACKGROUND OF THE INVENTION

The majority of currently available antidepressants can be classified in 3 classes:

1. monoamine oxidase inhibitors (MAOIs),
2. biogenic amine neurotransmitter [serotonin (5-HT), norepinephrine (NE) and dopamine (DA)] transporter reuptake blockers, and
3. modulators, especially blockers of one or more of the 5-HT and/or NE receptors.

Since depression is associated with a relative deficiency of the biogenic amines, the use of 5-HT and/or NE-receptor blockers (i.e. 5-HT and or NE-antagonist’s) have not proven very successful in the treatment of depression and anxiety and the preferred and currently most efficacious treatments are based on the enhancement of 5-HT and/or NE neurotransmission by blocking their reuptake back from the synaptic eft (Slattery, D. A. et al., “The evolution of antidepressant mechanisms”, fundamental and Clinical pharmacology, 2004, 18, 1-21; Schloss, P. et al., “new insights into the mechanism of antidepressant therapy”, Pharmacology and therapeutics, 2004, 102, 47-60).

Selective serotonin reuptake inhibitors (hereinafter referred to as SSRIs) have become first choice therapeutics in the treatment of depression, certain forms of anxiety and social phobias, because they generally are effective, well tolerated and have a favourable safety profile compared to the classic tricyclic antidepressants. Drugs claimed to be SSRIs are for example fluoxetine, sertraline and paroxetine.

However, clinical studies on depression indicate that non-response to the known SSRIs is substantial, up to 30%. Another, often neglected, factor in the treatment of depression is the delay in the onset of the therapeutic effect of the SSRIs. Sometimes symptoms even worsen during the first weeks of treatment. Furthermore, sexual dysfunction is generally a side effect common to SSRIs. Accordingly, there is a desire for the development of compounds capable of improving the treatment of depression and other diseases related to malfunctioning of serotonin.

Dual re-uptake inhibitors providing the combined effect of 5-HT reuptake inhibition and NE (norepinephrine is also named noradrenalin, NA) reuptake inhibition on depression is explored in clinical studies of compounds such as Duloxetine (Wong, “Duloxetine (LY-248686): an inhibitor of serotonin and noradrenaline uptake and an antidepressant drug candidate”, Expert Opinion on Investigational Drugs, 1998, 7, 10, 1691-1699) and Venlafaxine (Khan-A et al, 30 “Venlafaxine in depressed outpatients”, Psychopharmacology Bulletin, 1991, 27, 141-144). Compounds having such dual effect are also named SNRIs, “serotonin and noradrenaline reuptake inhibitors”, or NSRIs, “noradrenaline and serotonin reuptake inhibitors”.

Since treatment with the selective NE reuptake inhibitor reboxetine has been shown to stimulate 5-HT neurons and mediate the release of 5-HT in the brain (Svensson, T. et al, J. Neural. Transmission, 2004, 111, 127) there might be a synergistic advantage using SNRI’s in the treatment of depression or anxiety.

The use of SNRI’s have been shown in clinical studies to have a beneficial effect on pain (e.g. Fibromyalgia syndrome, overall pain, back pain, shoulder pain, headache, pain while awake and during daily activities) and especially pain associated with depression (Berk, M. Expert Rev. Neurotherapeutics 2003, 3, 47-451; Fishbain, D. A. et al., “Evidence-based data from animal and human experimental studies on pain relief with antidepressants: A structured review” Pain Medicine 2000 1:310-316).

SNRI’s have also been shown in clinical studies to have a beneficial effect in attention deficit hyperactivity disorder (ADHD) (N. M. Mukaddess; Venlafaxine in attention deficit hyperactivity disorder, European Neuropsychopharmacology, Volume 12, Supplement 3, October 2002, Page 421).

Furthermore, SNRI’s have been shown to be effective for the treatment of stress urinary incontinence (Dmochowski R. R. et al. “Duloxetine versus placebo for the treatment of North American women with stress urinary incontinence”, Journal of Urology 2003, 170, 1259-1263.)

Diphenyl sulphides of formula I and variations thereof have been disclosed as serotonin re-uptake inhibitors and have been suggested for use in treatment of depression, cf. e.g. WO200929232(A1).
Diphenyl sulphides of formula II and variations thereof have been disclosed as serotonin re-uptake inhibitors and have been suggested for use in treatment of depression, cf. e.g. U.S. Pat. No. 5,095,039, U.S. Pat. No. 4,056,632, EP 396827 A1 and WO 93/12080. EP 402097 describes halogen substituted diphenylsulphides claimed to be selective serotonin inhibitors for treatment of depression. Likewise WO 97/1325 disclose derivatives of N,N-dimethyl-2-(arylthio)benzylamine claimed to be selective serotonin transport inhibitors and suggest their use as antidepressants. J. Jilek et al., Collect. Czech Chem. Commun. 1989, 54, 3294-3338 also discloses various derivatives of diphenyl sulphides, "phenyl-thio-benzylamines" as antidepressants. Furthermore, diphenyl sulphides are also disclosed in U.S. Pat. No. 3,803,143 and claimed useful as antidepressant.

The above-mentioned references do not disclose compounds comprising an benzof[b]furane or benzof[b]thiophene group like the compounds of the present invention.

The present invention provides benzof[b]furane and benzof[b]thiophene derivatives of formula IV which are serotonin reuptake inhibitors. A particular aspect of the invention provides compounds possessing the combined effect of serotonin reuptake inhibition and norepinephrine reuptake inhibition. Furthermore, some of the compounds are also triple 5-HT, NE and DA re-uptake inhibitors.

One object of the invention is the provision of compounds, which are serotonin reuptake inhibitors. Another object of the invention is the provision of compounds, which are both serotonin reuptake inhibitors and noradrenaline reuptake inhibitors. Yet another object of the invention is the provision of compounds, which are serotonin reuptake inhibitors and dopamine reuptake inhibitors. Yet another object of the invention is the provision of compounds, which are serotonin reuptake inhibitors, noradrenaline reuptake inhibitors and dopamine reuptake inhibitors.

The compounds of the invention are substituted benzof[b]furane and benzof[b]thiophene derivatives of the general formula IV as the free base or salts thereof.

The invention provides a compound according to the above for use as a medicament.

The invention provides a pharmaceutical composition comprising a compound according to the above and at least one pharmaceutically acceptable carrier or diluent.

The invention provides the use of a compound according to the above for the preparation of a pharmaceutical composition for the treatment of affective disorders, pain disorders, ADHD and stress urinary incontinence.

The invention furthermore concerns the use of a compound according to the above in a method of treatment of affective disorders, pain disorders, ADHD and stress urinary incontinence.

Definition of Substituents

The term heteroatom refers to a nitrogen, oxygen or sulphur atom.

Halogen means halogen. Halogen means fluoro, chloro, bromo or iodo.

The expression "C_{1-6}-alk(en/yn)yl" means a C_{1-6}-alkyl, a C_{2-6}-alkenyl or a C_{2-6}-alkynyl group. The term "C_{1-6}-alkyl" refers to a branched or unbranched alkyl group having from one to six carbon atoms inclusive, including but not limited to methyl, ethyl, 1-propyl, 2-propyl, 1-butyl, 2-butyl, 2-methyl-2-propyl and 2-methyl-1-propyl. The term "C_{2-6}-alkenyl" refers to a branched or unbranched alkenyl group having from two to six carbon atoms, including one double bond, including but not limited to ethenyl, propenyl, and butenyl. The term "C_{2-6}-alkynyl" refers to a branched or unbranched alkynyl group having from two to six carbon atoms, including one triple bond, including but not limited to ethynyl, propargyl, and butynyl.
atoms, including one triple bond, including but not limited to ethynyl, propynyl and butynyl.

[0033] The expression "C_{3,8}-cycloalk(eny)yl" means a C_{3,8}-cycloalkyl or a C_{3,8}-cycloalkenyl group. The term "C_{3,8}-cycloalkyl" designates a monocyclic or bicyclic carbocycle having three to eight C-atoms, including but not limited to cyclopropyl, cyclopetlyl, and cyclohexenyl. The term "C_{3,8}-cycloalkenyl" designates a monocyclic or bicyclic carbocycle having three to eight C-atoms and one double bond, including but not limited to cyclopropenyl, cyclopetenyl and cyclohexenyl.

[0033] In the expression "C_{3,8}-cycloalk(eny)yl-C_{1,6}-alk(eny)yl", "C_{1,6}-alk(eny)ylaminino", "di-(C_{1,6}-alk(eny)yl) amino", "C_{3,8}-cycloalk(eny)lamino", "C_{3,8}-cycloalk(eny)yl-C_{1,6}-alk(eny)ylaminino", "C_{1,6}-alk(eny)yl oxyxylino", "C_{3,8}-cycloalk(eny)xylino", "C_{3,8}-cycloalk(eny)yl-C_{1,6}-alk(eny)yl oxyxylino", "C_{1,6}-alk(eny)yl oxyxylino", the terms "aminino", "C_{3,8}-cycloalk(eny)yl-C_{1,6}-alk(eny)yl oxyxylino", "C_{1,6}-alk(eny)yl oxyxylino", "halo-C_{1,6}-alk(eny)yl", "halo-C_{3,8}-cycloalk(eny)yl", "halo-C_{3,8}-cycloalk(eny)yl-C_{1,6}-alk(eny)yl", the terms "aminino", "C_{3,8}-cycloalk(eny)yl-C_{1,6}-alk(eny)yl oxyxylino", "C_{1,6}-alk(eny)yl oxyxylino", "halo-C_{1,6}-alk(eny)yl" and "halo-C_{3,8}-cycloalk(eny)yl" are as defined above.

[0034] The term "R" and "R" together with the nitrogen form a 4-7 membered ring containing zero or one double bond, optionally said ring in addition to said nitrogen comprises one further heteroatom selected from oxygen and sulphur" refers to such ring systems wherein a ring is formed by the nitrogen to which R and R are attached and 3-6 atoms selected from 2-6 carbon atoms and 0-1 heteroatoms selected from sulphur and oxygen, said ring contains zero or one double bond. Examples of rings formed by R, R and the nitrogen to which they are attached are pyrrolidine, piperidine, morpholine and thiomorpholine.

DESCRIPTION OF THE INVENTION

[0035] The present invention relates to the free base or a salt of the compounds represented by the general formula IV

\[
\text{formula IV}
\]

wherein

U is oxygen or sulphur;
R¹-R⁹ are independently selected from the group consisting of hydrogen, C_{1,6}-alk(eny)yl, C_{3,8}-cycloalk(eny)yl, and C_{3,8}-cycloalk(eny)yl-C_{1,6}-alk(eny)yl; or R¹ and R⁹ together with the nitrogen to which they are attached form a 4-7 membered ring containing zero or one double bond, optionally said ring in addition to said nitrogen comprises one further heteroatom selected from oxygen and sulphur;
R¹-R⁹ are independently selected from the group consisting of hydrogen, halogen, cyano, C_{1,6}-alk(eny)yl, C_{3,8}-cycloalk(eny)yl, C_{3,8}-cycloalk(eny)yl-C_{1,6}-alk(eny)yl, halo-C_{1,6}-alk(eny)yl, halo-C_{3,8}-cycloalk(eny)yl and halo-C_{3,8}-cycloalk(eny)yl-C_{1,6}-alk(eny)yl; R² is selected from the group consisting of hydrogen, C_{1,6}-alk(eny)yl, C_{3,8}-cycloalk(eny)yl and C_{3,8}-cycloalk(eny)yl-C_{1,6}-alk(eny)yl;
R²-R¹¹ are independently selected from the group consisting of hydrogen, halogen, cyano, C_{1,6}-alk(eny)yl, C_{3,8}-cycloalk(eny)yl, C_{3,8}-cycloalk(eny)yl-C_{1,6}-alk(eny)yl, halo-C_{1,6}-alk(eny)yl, halo-C_{3,8}-cycloalk(eny)yl, halo-C_{3,8}-cycloalk(eny)yl-C_{1,6}-alk(eny)yl, nitro, amino, C_{1,6}-alk(eny)yl ammino, di-(C_{1,6}-alk(eny)yl)amino, C_{3,8}-cycloalk(eny)yl ammino, C_{3,8}-cycloalk(eny)yl-C_{1,6}-alk(eny)yl ammino, hydroxyl, C_{1,6}-alk(eny)yl hydroxyl, C_{3,8}-cycloalk(eny)yl hydroxyl, C_{3,8}-cycloalk(eny)yl-C_{1,6}-alk(eny)yl hydroxyl, yl sulfanyl, C_{3,8}-cycloalk(eny)yl yl sulfanyl and C_{3,8}-cycloalk(eny)yl-C_{1,6}-alk(eny)yl yl sulfanyl; m, n, o and p are independently 0 or 1; X is selected from the group consisting of CH₂, CHR₁² and CR²R¹⁴; Y is selected from the group consisting of CH₂, CHR₁⁵ and CR²R¹⁷; Z is selected from the group consisting of CH₂, CHR₁⁸ and CR²R²⁰; and Q is selected from the group consisting of CH₂, CHR₂¹ and CR²R₂³; wherein R¹²-R²³ are independently selected from the group consisting of C_{1,6}-alk(eny)yl, C_{3,8}-cycloalk(eny)yl and C_{3,8}-cycloalk(eny)yl-C_{1,6}-alk(eny)yl; as the free base or a salt thereof.

[0036] In one embodiment of the compound of formula IV, U is oxygen; in another embodiment of the compound of formula IV, U is sulphur.

[0037] In one embodiment of the compound of formula IV, R¹ and R² are independently selected from the group consisting of C_{3,8}-cycloalk(eny)yl and C_{3,8}-cycloalk(eny)yl-C_{1,6}-alk(eny)yl. In a further embodiment of the compound of formula IV, R¹ and R² are independently selected from the group consisting of hydrogen and C_{1,6}-alk(eny)yl; or R¹ and R² together with the nitrogen form a 4-7 membered ring containing zero or one double bond, optionally said ring in addition to said nitrogen comprises one further heteroatom selected from oxygen and sulphur.

[0038] To further illustrate without limiting the invention an embodiment of R¹ is hydrogen; another embodiment of R¹ is C_{1,6}-alk(eny)yl such as methyl.

[0039] To further illustrate without limiting the invention an embodiment of R² is hydrogen; another embodiment of R² is C_{1,6}-alk(eny)yl such as methyl.

[0040] To further illustrate without limiting the invention, an embodiment of the compound of formula IV concerns such compounds wherein R¹ and R² together with the nitrogen form a 4-7 membered ring containing zero or one double bond, optionally said ring in addition to said nitrogen comprises one further heteroatom selected from oxygen and sulphur. In one embodiment said 4-7 membered ring does not contain any double bond; in another embodiment said 4-7 membered ring does contain one double bond. In one embodiment the only heteroatom contained in said 4-7 membered ring is the nitrogen to which R¹ and R² are attached. In another embodiment said 4-7 membered ring contains one heteroatom in addition to the nitrogen to which R¹ and R² are attached; in a further embodiment said heteroatom is sulphur; in another embodiment said heteroatom is oxygen. Typically
said 4-7 membered ring is selected from the group consisting of morpholine and thiomorpholine.

In a further embodiment of the compound of formula IV, R^2-R^6 are independently selected from the group consisting of cyano, C_{3,8}-cycloalk(en)yl, C_{3,8}-cycloalk(en)yl-C_{1,8}-alk(en/yn)yl, halo-C_{3,8}-cycloalk(en)yl, halo-C_{3,8}-cycloalk(en)yl-C_{1,8}-alk(en/yn)yl and halo-C_{3,8}-cycloalk(en)yl-C_{1,8}-alk(en/yn)yl.

In a further embodiment of the compound of formula IV, R^2-R^6 are independently selected from the group consisting of hydrogen, halogen, cyano, C_{1,8}-alk(en/yn)yl, C_{3,8}-cycloalk(en)yl and C_{3,8}-cycloalk(en)yl-C_{1,8}-alk(en/yn)yl.

Typically, R^2-R^6 are independently selected from the group consisting of hydrogen, halogen and C_{1,8}-alk(en/yn)yl.

To further illustrate without limiting the invention an embodiment of R^3 is hydrogen.

Typically, R^4 is selected from the group consisting of hydrogen and C_{1,8}-alk(en/yn)yl. To further illustrate without limiting the invention an embodiment of R^4 is hydrogen; another embodiment of R^4 is halogen such as chloro.

Typically, R^5 is selected from the group consisting of hydrogen and halogen. To further illustrate without limiting the invention an embodiment of R^5 is hydrogen; another embodiment of R^5 is halogen such as chloro.

In a further embodiment of the compound of formula IV, R^7 is selected from the group consisting of C_{3,8}-cycloalk(en)yl and C_{3,8}-cycloalk(en)yl-C_{1,8}-alk(en/yn)yl.

Typically, R^7 is selected from the group consisting of hydrogen and C_{1,8}-alk(en/yn)yl.

To further illustrate without limiting the invention an embodiment of R^7 is hydrogen.

In a further embodiment of the compound of formula IV, R^8 is independently selected from the group consisting of cyano, C_{3,8}-cycloalk(en)yl, halo-C_{3,8}-cycloalk(en)yl, halo-C_{3,8}-cycloalk(en)yl-C_{1,8}-alk(en/yn)yl, amino, C_{1,8}-alk(en/yn)ylamino, C_{1,8}-cycloalk(en)ylamino, C_{1,8}-cycloalk(en)yl-C_{1,8}-alk(en/yn)ylamino, di-(C_{1,8}-alk(en/yn)yl)amino, hydroxy, C_{3,8}-cycloalk(en)ylhydroxy, C_{3,8}-cycloalk(en)yl-C_{1,8}-alk(en/yn)ylhydroxy.

Typically, R^9 is independently selected from the group consisting of hydrogen, halogen, C_{1,8}-alk(en/yn)yl, di-(C_{1,8}-alk(en/yn)yl)amino, hydroxy and C_{1,8}-alk(en/yn)ylhydroxy.

Typically, R^10 is selected from the group consisting of hydrogen, halogen, C_{1,8}-alk(en/yn)yl, di-(C_{1,8}-alk(en/yn)yl)amino and hydroxy. To further illustrate without limiting the invention an embodiment of R^10 is hydrogen; another embodiment of R^10 is halogen such as fluoro; another embodiment of R^10 is C_{1,8}-alk(en/yn)yl such as methyl.

Typically, R^11 is selected from the group consisting of hydrogen and C_{1,8}-alk(en/yn)yl. To further illustrate without limiting the invention an embodiment of R^11 is hydrogen; another embodiment of R^11 is C_{1,8}-alk(en/yn)yl such as methyl.

Typically, R^11 is selected from the group consisting of hydrogen, C_{1,8}-alk(en/yn)yl and C_{1,8}-alk(en/yn)ylhydroxy. To further illustrate without limiting the invention an embodiment of R^11 is hydrogen; another embodiment of R^11 is halogen such as amethoxy.

In a further embodiment of the compound of formula IV, X is selected from the group consisting of CH=CHR and CR=CHR, Y is selected from the group consisting of CH=CHR and CR=CHR, Z is selected from the group consisting of CH=CHR and CR=CHR, and Q is selected from the group consisting of CH=CHR and CR=CHR.

In a further embodiment of the compound of formula IV, X, Y, Z and Q are CH_{2}.

In a further embodiment of the compound of formula IV, m+n+o+p equals to 1, 2, 3 or 4; in another embodiment of formula IV, m+n+o+p equals to 1; in another embodiment of formula IV, m+n+o+p equals to 2; in another embodiment of formula IV, m+n+o+p equals to 3; in another embodiment of formula IV, m+n+o+p equals to 4.

In a further embodiment of the compound of formula IV said compound is selected from the following list of compounds:

<table>
<thead>
<tr>
<th>Compound No</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>[2-(Benzof[b]furan-3-yl)sulfonyl]-bezyl)-methyl-amine</td>
</tr>
<tr>
<td>2</td>
<td>[2-(Benzof[b]thiophen-3-yl)sulfonyl]-bezyl)-methyl-amine</td>
</tr>
<tr>
<td>3</td>
<td>Methyl-[2-(2-methyl-benzof[b]thiophen-3-ylsulfonyl]-bezyl]-methyl-amine</td>
</tr>
<tr>
<td>4</td>
<td>[2-(5-Fluoro-benzof[b]thiophen-3-yl)sulfonyl]-bezyl]-methyl-amine</td>
</tr>
<tr>
<td>5</td>
<td>Methyl-[2-(2-methyl-benzof[b]furan-3-ylsulfonyl]-bezyl]-methyl-amine</td>
</tr>
<tr>
<td>6</td>
<td>Methyl-[2-(5-methyl-benzof[b]thiophen-3-ylsulfonyl]-bezyl]-methyl-amine</td>
</tr>
<tr>
<td>Compound No</td>
<td>Name</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
</tr>
<tr>
<td>7</td>
<td>2-(5-Chloro-benzobthiophen-3-ylsulfanyl)-benzyl-methyl-amine</td>
</tr>
<tr>
<td>8</td>
<td>2-(Benzobthiophen-3-ylsulfanyl)-benzyl-dimethyl-amine</td>
</tr>
<tr>
<td>9</td>
<td>2-(Benzobthiophen-3-ylsulfanyl)-5-methyl-benzyl-methyl-amine</td>
</tr>
<tr>
<td>10</td>
<td>2-(Benzobthiophen-3-ylsulfanyl)-4-chloro-benzyl-methyl-amine</td>
</tr>
<tr>
<td>11</td>
<td>2-(4-Fluoro-benzobthiophen-3-ylsulfanyl)-benzyl-methyl-amine</td>
</tr>
<tr>
<td>12</td>
<td>Dimethyl-[2-(2-methylaminoethyl-phenylsulfanyl)-benzobthiophen-5-yl]-amine</td>
</tr>
<tr>
<td>13</td>
<td>Methyl-[2-(7-methyl-benzobthiophen-3-ylsulfanyl)-benzyl]-amine</td>
</tr>
<tr>
<td>14</td>
<td>2,4,7-Dimethyl-benzobthiophen-3-ylsulfanyl)-benzyl-methyl-amine</td>
</tr>
<tr>
<td>15</td>
<td>3-[2-Methylaminomethyl-phenylsulfanyl]-benzo[b]thiophen-5-ol</td>
</tr>
<tr>
<td>16</td>
<td>Methyl-[2-(6-methyl-benzobthiophen-3-ylsulfanyl)-benzyl]-amine</td>
</tr>
<tr>
<td>17</td>
<td>2-(7-Methoxy-benzobthiophen-3-ylsulfanyl)-benzyl-methyl-amine</td>
</tr>
<tr>
<td>18</td>
<td>2-(2 Benzobthiophen-3-ylsulfanyl)-ethylyl-methyl-amine</td>
</tr>
<tr>
<td>19</td>
<td>2-(2-Benzobthiophen-3-ylsulfanyl)-phenyl-ethyl-methyl-amine</td>
</tr>
<tr>
<td>20</td>
<td>3-[2-(Benzobthiophen-3-ylsulfanyl)-phenyl]-propyl-methyl-amine</td>
</tr>
<tr>
<td>21</td>
<td>3-[2-Benzobthiophen-3-ylsulfanyl)-phenyl]-propyl-methyl-amine</td>
</tr>
<tr>
<td>22</td>
<td>4-[2-(Benzobthiophen-3-ylsulfanyl)-phenyl]-butyl-methyl-amine</td>
</tr>
<tr>
<td>23</td>
<td>4-[2-(Benzobthiophen-3-ylsulfanyl)-phenyl]-butyl-methyl-amine</td>
</tr>
<tr>
<td>24</td>
<td>2-[Benzobthiophen-3-ylsulfanyl]-benzyllamine</td>
</tr>
<tr>
<td>25</td>
<td>4-[2-Benzobthiophen-3-ylsulfanyl]-benzyl-morpholine</td>
</tr>
<tr>
<td>26</td>
<td>4-[2-Benzobthiophen-3-ylsulfanyl]-benzyl-thiomorpholine</td>
</tr>
</tbody>
</table>

as the free base or a salt thereof. Each of these compounds is considered a specific embodiment and may be subjected to individual claims.

[0062] The present invention comprises the free base and salts of the compounds of the invention, typically, pharmaceutically acceptable salts. The salts of the invention include acid addition salts, metal salts, ammonium and alkylammonium salts.

[0063] The salts of the invention are preferably acid addition salts. The acid addition salts of the invention are preferably pharmaceutically acceptable salts of the compounds of the invention formed with non-toxic acids. Acid addition salts include salts of inorganic acids as well as organic acids. Examples of suitable inorganic acids include hydrochloric, hydrobromic, hydroiodic, phosphoric, sulfuric, sulfamic, nitric acids and the like. Examples of suitable organic acids include formic, acetic, trichloroacetic, trifluoroacetic, propionic, benzoic, cinnamic, citric, fumaric, glycolic, lactic, methanesulfonic, maleic, malic, malonic, mandelic, oxalic, picric, pyruvic, salicylic, succinic, methane sulfonic, ethanesulfonic, tartaric, ascobic, pamoic, bis(methylen)salicyclic, ethandisulfonic, gluconic, citraconic, aspartic, stearic, palmitic, EDTA, glycolic, p-aminoenzolic, glutamic, benzenesulfonic, p-toluensulfonic acids, theophylline acetic acids, as well as the 8-allotheophyllines, for example 8-bromotheophylline and the like. Further examples of pharmaceutically acceptable inorganic or organic acid addition salts include the pharmaceutically acceptable salts listed in J. Pharm. Sci. 1977, 66, 2, which is incorporated herein by reference.

[0064] Also intended as acid addition salts are the hydrates, which the present compounds are able to form.

[0065] Examples of metal salts include lithium, sodium, potassium, magnesium salts and the like.

[0066] Examples of ammonium and alkylammonium salts include ammonium, methyl-, dimethyl-, trimethyl-, ethyl-, hydroxyethyl-, diethyl-, n-butyl-, sec-butyl-, tert-butyl-, tetramethylammonium salts and the like.

[0067] Further, the compounds of this invention may exist in unsolvated as well as in solvated forms with pharmaceutically acceptable solvents such as water, ethanol and the like. In general, the solvated forms are considered equivalent to the unsolvated forms for the purposes of this invention.

[0068] The compounds of the present invention may have one or more asymmetric centres and it is intended that any optical isomers (i.e. enantiomers or diastereomers), as separated, pure or partially purified optical isomers and any mixtures thereof including racemic mixtures, i.e. a mixture of stereoisomers, are included within the scope of the invention.

[0069] Racemic forms can be resolved into the optical antipodes by known methods, for example, by separation of diastereomeric salts thereof with an optically active acid, and liberating the optically active amine compound by treatment with a base. Another method for resolving racemates into the optical antipodes is based upon chromatography on an optically active matrix. Racemic compounds of the present invention can also be resolved into their optical antipodes, e.g. by fractional crystallization. The compounds of the present invention may also be resolved by the formation of diastereomeric derivatives. Additional methods for the resolution of optical isomers, known to those skilled in the art, may be used. Such methods include those discussed by J. Jaques, A. Collet and S. Wilen in "Enantiomers, Racemates, and Resolutions", John Wiley and Sons, New York (1981). Optically active compounds can also be prepared from optically active starting materials, or by stereoselective synthesis.

[0070] Furthermore, when a double bond or a fully or partially saturated ring system is present in the molecule geometric isomers may be formed. It is intended that any geometric isomers, as separated, pure or partially purified geometric isomers or mixtures thereof are included within the scope of the invention. Likewise, molecules having a bond with restricted rotation may form geometric isomers. These are also intended to be included within the scope of the present invention.

[0071] Furthermore, some of the compounds of the present invention may exist in different tautomeric forms and it is
intended that any tautomeric forms that the compounds are able to form are included within the scope of the present invention.

[0072] The invention also encompasses prodrugs of the present compounds, which on administration undergo chemical conversion by metabolic processes before becoming pharmaceutically active substances. In general, such prodrugs will be functional derivatives of the compounds of the general formula IV which are readily convertible in vivo into the required compound of the formula IV. Conventional procedures for the selection and preparation of suitable prodrug derivatives are described, for example, in “Design of Prodrugs”, ed. H. Bundgaard, Elsevier, 1985.

[0073] The invention also encompasses active metabolites of the present compounds.

[0074] Some compounds according to the invention inhibit the serotonin transporter and are thus serotonin reuptake inhibitors. Typically, the compounds have an in vitro uptake inhibition (IC50) of ≤ 5 μM or less, typically of ≤ 1 μM or less, preferably less than 500 nM or less than 100 nM or less than 50 nM, preferably as measured by the method described in Example 20—Measurements of \[^3H\]5-HT uptake into rat cortical synaptosomes”.

[0075] Some compounds according to the invention inhibit the norepinephrine transporter and are thus norepinephrine reuptake inhibitors. The compounds typically have an in vitro uptake inhibition (IC50) of ≤ 5 μM or less, typically of ≤ 1 μM or less, preferably less than 500 nM, less than 100 nM or less than 50 nM, as measured by the method described in Example 20—Measurements of \[^3H\]noradrenaline uptake into rat cortical synaptosomes”.

[0076] Some compounds according to the invention inhibit the dopamine transporter and are thus dopamine reuptake inhibitors. Typically, such compounds have an in vitro uptake inhibition (IC50) of ≤ 5 μM or less, typically of ≤ 1 μM or less, preferably less than 500 nM, less than 100 nM or less than 50 nM, preferably as measured by the method described in Example 20—Measurements of \[^3H\]dopamine uptake into rat cortical synaptosomes”.

[0077] As already mentioned, the compounds according to the invention are serotonin reuptake inhibitors and they are thus considered to be applicable in the treatment of one or more of the following diseases and disorders: affective disorders, pain disorders, ADHD and stress urinary incontinence.

[0078] An embodiment concerns compounds of the invention having dual action, said compounds being serotonin reuptake inhibitors and norepinephrine reuptake inhibitors at the same time. Typically, such compounds have an in vitro uptake inhibition for the serotonin transporter which is at least 1, typically at least 5 or even more typically at least 10, 20 or 30 times higher than the in vitro uptake inhibition for the norepinephrine transporter as measured by the methods described in Example 20—Measurements of \[^3H\]5-HT uptake into rat cortical synaptosomes” and “Measurements of \[^3H\]noradrenaline uptake into rat cortical synaptosomes”.

[0079] An embodiment concerns compounds of the invention having dual action, said compounds being serotonin reuptake inhibitors and dopamine reuptake inhibitors at the same time. Typically, such compounds have an in vitro uptake inhibition for the serotonin transporter which is at least 1, typically at least 5 or even more typically at least 10, 20 or 30 times higher than the in vitro uptake inhibition for the dopamine transporter as measured by the methods described in Example 20—Measurements of \[^3H\]5-HT uptake into rat cortical synaptosomes” and “Measurements of \[^3H\]dopamine uptake into rat cortical synaptosomes”.

[0080] A further embodiment concerns compounds of the invention having triple action and thus being serotonin reuptake inhibitors, norepinephrine reuptake inhibitors and dopamine reuptake inhibitors.

[0081] In a further aspect the invention provides a compound of formula IV as the free base or a salt thereof for use as a medicament.

[0082] An embodiment of the invention provides a pharmaceutical composition comprising a compound of formula IV as the free base or a salt thereof and at least one pharmaceutically acceptable carrier or diluent. The composition may comprise any one of the embodiments of formula IV described above.

[0083] A further embodiment of the invention relates to the use of a compound of formula IV as the free base or a salt thereof for the preparation of a pharmaceutical composition for the treatment of a disease or disorder wherein a serotonin reuptake inhibitor is beneficial. Such pharmaceutical composition may comprise any one of the embodiments of formula IV described above.

[0084] A further embodiment of the invention relates to the use of a compound of formula IV as the free base or a salt thereof for the preparation of a pharmaceutical composition for the treatment of a disease or disorder wherein a combined serotonin and norepinephrine reuptake inhibitor is beneficial. Such pharmaceutical composition may comprise any one of the embodiments of formula IV described above.

[0085] A further embodiment of the invention relates to the use of a compound of formula IV as the free base or a salt thereof for the preparation of a pharmaceutical composition for the treatment of a disease or disorder wherein a combined serotonin and dopamine reuptake inhibitor is beneficial. Such pharmaceutical composition may comprise any one of the embodiments of formula IV described above.

[0086] A further embodiment of the present invention relates to the use of a compound of formula IV as the free base or a salt thereof for the preparation of a pharmaceutical composition for the treatment of a disease or disorder wherein a combined serotonin, norepinephrine and dopamine reuptake inhibitor is beneficial. Such pharmaceutical composition may comprise any one of the embodiments of formula IV described above.

[0087] A further embodiment of the invention relates to the use of a compound of formula IV as the free base or a salt thereof for the preparation of a pharmaceutical composition for the treatment of affective disorders, pain disorders, ADHD and stress urinary incontinence.

[0088] In a further embodiment the present invention relates to the use of a compound of formula IV as the free base or a salt thereof for the preparation of a pharmaceutical composition for the treatment of affective disorders. To further illustrate without limiting the invention, the affective disorder to be treated is selected from the group consisting of depressive disorders and anxiety disorders.

[0089] A further embodiment concerns the use of a compound of formula IV as the free base or a salt thereof for the preparation of a pharmaceutical composition for the treatment of depressive disorders. Typically, the depressive disorder to be treated is selected from the group consisting of major depressive disorder, postnatal depression, dysphoria and depression associated with bipolar disorder, alzheimer’s, psychosis or parkinson’s.
A further embodiment concerns the use of a compound of formula IV as the free base or a salt thereof for the preparation of a pharmaceutical composition for the treatment of anxiety disorders. Typically, the anxiety disorders to be treated are selected from the group consisting of general anxiety disorder, social anxiety disorder, post traumatic stress disorder, obsessive compulsive disorder, panic disorder, panic attacks, specific phobias, social phobia and agoraphobia.

In a further embodiment the present invention relates to the use of a compound of formula IV as the free base or a salt thereof for the preparation of a pharmaceutical composition for the treatment of pain disorders. To further illustrate without limiting the invention, the pain disorder to be treated is selected from the group consisting of fibromyalgia syndrome (FMS), overall pain, back pain, shoulder pain, headache as well as pain while awake and during daily activities.

In a further embodiment the present invention relates to the use of a compound of formula IV as the free base or a salt thereof for the preparation of a pharmaceutical composition for the treatment of attention deficit hyperactivity disorder.

In a further embodiment the present invention relates to the use of a compound of formula IV as the free base or a salt thereof for the preparation of a pharmaceutical composition for the treatment of stress urinary incontinence.

In a further aspect, the present invention relates to a method of preparing a compound of formula IV, comprising the nucleophilic substitution reaction of an appropriately substituted benzo[b]furan or benzo[b]thiophene and an appropriately substituted benzene sulfenyl chloride activated by an appropriate Lewis Acid.

The term “treatment” as used herein in connection with a disease or disorders includes also prevention as the case may be.

Pharmaceutical Compositions

The present invention also relates to a pharmaceutical composition. The compounds of the invention may be administered alone or in combination with pharmaceutically acceptable carriers or diluents, in either single or multiple doses. The pharmaceutical compositions according to the invention may be formulated with pharmaceutically acceptable carriers or diluents as well as any other known adjuvants and excipients in accordance with conventional techniques such as those disclosed in Remington: The Science and Practice of Pharmacy, 19 Edition, Gennaro, Ed., Mack Publishing Co., Easton, Pa., 1995.

The pharmaceutical compositions may be specifically formulated for administration by any suitable route such as the oral, rectal, nasal, pulmonary, topical (including buccal and sublingual), transdermal, intracutaneous, intraperitoneal, vaginal and parenteral (including subcutaneous, intramuscular, intrathecal, intravenous and intradural) route, the oral route being preferred. It will be appreciated that the preferred route will depend on the general condition and age of the subject to be treated, the nature of the condition to be treated and the active ingredient chosen.

The pharmaceutical compositions formed by combining the compound of the invention and the pharmaceutically acceptable carriers are then readily administered in a variety of dosage forms suitable for the disclosed routes of administration. The formulations may conveniently be presented in unit dosage form by methods known in the art of pharmacy.

The compounds of this invention are generally utilized as the free substance (base) or as a pharmaceutically acceptable salt thereof. One example is an acid addition salt of a compound having the utility of a free base. When a compound of the invention contains a free base such salts are prepared in a conventional manner by treating a solution or suspension of a free base of the invention with a chemical equivalent of a pharmaceutically acceptable acid. Representative examples are mentioned above.

Pharmaceutical compositions for oral administration may be solid or liquid. Solid dosage forms for oral administration include e.g. capsules, tablets, dragees, pills, lozenges, powders, granules and tablettte e.g. placed in a hard gelatin capsule in powder or pellet form or e.g. in the form of a troche or lozenge. Where appropriate, pharmaceutical compositions for oral administration may be prepared with coatings such as enteric coatings or they can be formulated so as to provide controlled release of the active ingredient such as sustained or prolonged release according to methods well known in the art. Liquid dosage forms for oral administration include e.g. solutions, emulsions, suspensions, syrups and elixirs.

Formulations of the present invention suitable for oral administration may be presented as discrete units such as capsules or tablets, each containing a predetermined amount of the active ingredient, and which may include a suitable excipient. Furthermore, the orally available formulations may be in the form of a powder or granules, a solution or suspension in an aqueous or non-aqueous liquid, or an oil-in-water or water-in-oil liquid emulsion.

Suitable pharmaceutical carriers include inert solid diluents or fillers, sterile aqueous solution and various organic solvents. Examples of solid carriers are lactose, terra alba, sucrose, cyclodextrin, talc, gelatine, agar, pectin, acacia, magnesium stearate, stearic acid, lower alkyl ethers of cellulose, corn starch, potato starch, gums and the like. Examples of liquid carriers are syrup, peanut oil, olive oil, phospho lipids, fatty acids, fatty acid amines, polyoxyethylene and water.

The carrier or diluent may include any sustained release material known in the art, such as glyceryl monostearate or glyceryl distearate, alone or mixed with a wax.

Any adjuvants or additives usually used for such purposes such as colourings, flavourings, preservatives etc. may be used provided that they are compatible with the active ingredients.

The amount of solid carrier may vary but will usually be from about 25 mg to about 1 g. If a liquid carrier is used, the preparation may be in the form of a syrup, emulsion, soft gelatin capsule or sterile injectable liquid such as an aqueous or non-aqueous liquid suspension or solution.

Tablets may be prepared by mixing the active ingredient with ordinary adjuvants and/or diluents and subsequently compressing the mixture in a conventional tableting machine.

Pharmaceutical compositions for parenteral administration include sterile aqueous and nonaqueous injectable solutions, dispersions, suspensions or emulsions as well as sterile powders to be reconstituted in sterile injectable solutions or dispersions prior to use. Depot injectable formulations are also contemplated as being within the scope of the present invention.
For parenteral administration, solutions of the compound of the invention in sterile aqueous solution, aqueous propylene glycol, aqueous vitamin E or sesame or peanut oil may be employed. Such aqueous solutions should be suitably buffered if necessary and the liquid diluent first rendered isotonic with sufficient saline or glucose. The aqueous solutions are particularly suitable for intravenous, intramuscular, subcutaneous and intraperitoneal administration. The sterile aqueous media employed are all readily available by standard techniques known to those skilled in the art.

Solutions for injections may be prepared by dissolving the active ingredient and possible additives in a part of the solvent for injection, preferably sterile water, adjusting the solution to the desired volume, sterilising the solution and filling it in suitable ampoules or vials. Any suitable additive conventionally used in the art may be added, such as toxicity agents, preservatives, antioxidants, etc.

Other suitable administration forms include suppositories, sprays, ointments, cures, gels, inhalants, dermal patches, implants, etc.

A typical oral dosage is in the range of from about 0.001 to about 100 mg/kg body weight per day, preferably from about 0.01 to about 50 mg/kg body weight per day, and more preferably from about 0.05 to about 10 mg/kg body weight per day administered in one or more dosages such as 1, 2 or 3 dosages. The exact dosage will depend upon the frequency and mode of administration, the sex, age, weight and general condition of the subject treated, the nature and severity of the condition treated and any concomitant diseases to be treated and other factors evident to those skilled in the art.

The formulations may conveniently be presented in unit dosage form by methods known to those skilled in the art. A typical unit dosage form for oral administration one or more times per day such as 1, 2 or 3 times per day may contain from 0.01 to about 1000 mg, such as about 0.01 to 100 mg, preferably from about 0.05 to about 500 mg, and more preferably from about 0.5 mg to about 200 mg.

For parenteral routes such as intravenous, intramuscular and similar administration, typically doses are in the order of about half the dose employed for oral administration.

Typical examples of recipes for the formulation of the invention are as follows:

1) Tablets Containing 5.0 mg of a Compound of the Invention Calculated as the Free Base:

<table>
<thead>
<tr>
<th>Compound of the invention</th>
<th>5.0 mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lactose</td>
<td>60 mg</td>
</tr>
<tr>
<td>Maize starch</td>
<td>30 mg</td>
</tr>
<tr>
<td>Hydroxypropylcellulose</td>
<td>2.4 mg</td>
</tr>
<tr>
<td>Microcrystalline cellulose</td>
<td>19.2 mg</td>
</tr>
<tr>
<td>Croscarmellose Sodium Type A</td>
<td>2.4 mg</td>
</tr>
<tr>
<td>Magnesium stearate</td>
<td>0.84 mg</td>
</tr>
</tbody>
</table>

2) Tablets Containing 0.5 mg of a Compound of the Invention Calculated as the Free Base:

<table>
<thead>
<tr>
<th>Compound of the invention</th>
<th>0.5 mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lactose</td>
<td>46.9 mg</td>
</tr>
<tr>
<td>Maize starch</td>
<td>23.5 mg</td>
</tr>
<tr>
<td>Povidone</td>
<td>1.8 mg</td>
</tr>
<tr>
<td>Microcrystalline cellulose</td>
<td>14.4 mg</td>
</tr>
<tr>
<td>Croscarmellose Sodium Type A</td>
<td>1.8 mg</td>
</tr>
<tr>
<td>Magnesium stearate</td>
<td>0.63 mg</td>
</tr>
</tbody>
</table>

3) Syrup Containing Per Millilitre:

<table>
<thead>
<tr>
<th>Compound of the invention</th>
<th>25 mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sorbitol</td>
<td>500 mg</td>
</tr>
<tr>
<td>Hydroxypropylcellulose</td>
<td>15 mg</td>
</tr>
<tr>
<td>Glycerol</td>
<td>50 mg</td>
</tr>
<tr>
<td>Methyl-paraben</td>
<td>1 mg</td>
</tr>
<tr>
<td>Propyl-paraben</td>
<td>0.1 mg</td>
</tr>
<tr>
<td>Ethanol</td>
<td>0.005 mL</td>
</tr>
<tr>
<td>Flavour</td>
<td>0.05 mg</td>
</tr>
<tr>
<td>Saccharin sodium</td>
<td>0.5 mg</td>
</tr>
<tr>
<td>Water</td>
<td>ad 1 mL</td>
</tr>
</tbody>
</table>

4) Solution for Injection Containing Per Millilitre:

<table>
<thead>
<tr>
<th>Compound of the invention</th>
<th>0.5 mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sorbitol</td>
<td>5.1 mg</td>
</tr>
<tr>
<td>Acetic Acid</td>
<td>0.05 mg</td>
</tr>
<tr>
<td>Saccharin sodium</td>
<td>0.5 mg</td>
</tr>
<tr>
<td>Water</td>
<td>ad 1 mL</td>
</tr>
</tbody>
</table>

By the expression a compound of the invention is meant any one of the embodiments of formula IV as described herein.

In a further aspect the present invention relates to a method of preparing a compound of the invention as described in the following.

Methods of Preparation of the Compounds of the Invention

The compounds of the invention may be prepared by conventional synthetic techniques as described in the methods below.

Method 1.

For the preparation of compounds of formula IV with R1=H. Compounds of formula V are deprotected by standard techniques detailed in the textbook "Protective Groups in Organic Synthesis" Greene and Wuts, Wiley Interscience, (1999), ISBN 0471160199. The product of formula IV is isolated as the free base or a salt thereof.
where R^2-R^{11}, U, X, Y, Z, Q, m, n, o, p are as defined herein and PG is a nitrogen protecting group such as e.g. a tert-butoxy carbonyl group.

Method 2.

[0123] For the preparation of compounds of formula IV (for $p=1, Q=\text{CH}_3$): Compounds of formula VI are treated with a reducing agent such as e.g. LiAlH$_4$ or AlH$_3$. The product of formula IV is isolated as the free base or a salt thereof.

where R^1-R^{11}, U, X, Y, Z, m, n, o are as defined herein.

Method 3.

[0124] For the preparation of compounds of formula IV (for $p=1, Q=\text{CH}_3$): Transformation of the alcohol moiety of a compound of formula VII to a leaving group such as e.g. chloride, bromide, mesylate or tosylate, followed by reaction with an amine of formula VIII in the presence of an appropriate base such as e.g. triethyl amine or excess amine of formula VIII.

where R^2-R^{11}, U, X, Y, Z, Q, m, n, o, p are as defined herein and PG is a nitrogen protecting group such as e.g. a tert-butoxy carbonyl group and R^{22} is a halogen such as iodine or bromine or R^{23} is a pseudo halogen such as e.g. a trifluoro methyl sulphonyl group or a nonanuoro butyl sulphonyl group. Benzo$[b]$furanes or benzo$[b]$thiophenes of formula IX are either commercially available or can be prepared according to methods described in Arnould, J. C. et al. Tetrahedron Letters, 1996, 37, 4523 and Winn M. et al. J. Med. Chem., 2001, 44, 4393.

Method 4.

Method 5.

[0127] For the preparation of compounds of formula X: Deprotection of the thiol moiety of a protected thiol of for-
mula XI, by e.g. using a fluoride donor such as e.g. triethylamine tris(hydrogen fluoride).

\[
\text{Formula XI:}
\]

\[
\begin{align*}
\text{R}_{2} & \equiv \text{R}_{6} \equiv \text{R}_{24} \equiv \text{R}_{23} \equiv \text{R}_{3} \\
\text{X} & \equiv \text{Y} \\
\text{Z} & \equiv \text{Q} \\
\text{m} & \equiv \text{n} \\
\text{o} & \equiv \text{p}
\end{align*}
\]

where \(\text{R}_{2} - \text{R}_{6}\), \(\text{X}, \text{Y}, \text{Z}, \text{Q}, \text{m}, \text{n}, \text{o}, \text{p}\) are as defined herein. \(\text{PG}\) is a nitrogen protecting group such as e.g. a tert-butoxycarbonyl group and \(\text{SPG}\) is a thiol protecting group, e.g. a triisopropyl silyl group.

Method 6.

\[
\text{Formula XII:}
\]

\[
\begin{align*}
\text{R} & \equiv \text{R}_{22} \\
\text{X} & \equiv \text{Y} \\
\text{Z} & \equiv \text{Q} \\
\text{m} & \equiv \text{n} \\
\text{o} & \equiv \text{p}
\end{align*}
\]

where \(\text{R}_{22}\), \(\text{X}, \text{Y}, \text{Z}, \text{Q}, \text{m}, \text{n}, \text{o}, \text{p}\) are as defined herein. \(\text{PG}\) is a nitrogen protecting group such as e.g. a tert-butoxycarbonyl group and \(\text{SPG}\) is a thiol protecting group, e.g. a triisopropyl silyl group.

Method 6.

[0130] For the preparation of compounds of formula XV: Activation of a carboxylic acid of formula XV with an activating reagent such as e.g. thionyl chloride or carbonyl diimidazole followed by reaction with an amine of formula XVI.

\[
\text{Formula XV:}
\]

\[
\begin{align*}
\text{R} & \equiv \text{R}_{2} \\
\text{X} & \equiv \text{Y} \\
\text{Z} & \equiv \text{Q} \\
\text{m} & \equiv \text{n} \\
\text{o} & \equiv \text{p}
\end{align*}
\]

where \(\text{R}_{2}, \text{X}, \text{Y}, \text{Z}, \text{m}, \text{n}, \text{o}\) are as defined herein and \(\text{R}_{24}\) is a halogen such as iodine or bromine or \(\text{R}_{24}^{+}\) is a pseudo halogen such as e.g. a trifluoro methyl sulphonyl group or a nonfluoro butyl sulphonyl group. Carboxylic acids of formula XV and amines of formula XVI are commercially available or can be prepared according to methods described in standard works such as Houben-Weyl, Methoden der organischen Chemie (Methods of Organic Chemistry), Georg-Thieme-Verlag, Stuttgart; Organic Reactions, John Wiley & Sons, Inc. New York, namely under reaction conditions such as those which are known as suitable for such reactions.

Method 9.

[0131] For the preparation of compounds of formula XVI: Activation of a carboxylic acid of formula XVII with an activating reagent such as e.g. carbonyl diimidazole or \(\text{N,N}'\)-dicyclohexylcarbodiimide followed by reaction with an amine of formula VIII.

\[
\text{Formula XVII:}
\]

\[
\begin{align*}
\text{R} & \equiv \text{R}_{10} \\
\text{X} & \equiv \text{Y} \\
\text{Z} & \equiv \text{Q} \\
\text{m} & \equiv \text{n} \\
\text{o} & \equiv \text{p}
\end{align*}
\]

where \(\text{R}_{10}, \text{X}, \text{Y}, \text{Z}, \text{m}, \text{n}, \text{o}\) are as defined herein.
Method 10.

[0132] For the preparation of compounds of formula XVII: Hydrolysis of a carboxylic acid ester of formula XVII.

where $R^3-R^{11}, U, X, Y, Z, m, n, o$ are as defined herein.

Method 11.

[0133] For the preparation of compounds of formula XVII: Reduction of a carboxylic acid of formula XVII or a carboxylic acid ester of formula XVIII with a reducing agent such as e.g. LiAlH$_4$, AlH$_3$, BH$_3$ or LiBH$_4$.

where $R^3-R^{11}, U, X, Y, Z, m, n, o$ are as defined herein.

Method 12.

[0134] For the preparation of compounds of formula XVIII: The appropriate benzo[b]furan or benzo[b]thiophene of formula XIX is combined with the appropriate sulfenyl chloride of formula XX in the presence of a Lewis acid such as e.g. AlCl$_3$, TiCl$_4$ or SiCl$_4$ to generate the desired product of formula XVIII.

where $R^3-R^6, X, Y, Z, m, n, o$ are as defined herein.

Method 13.

[0135] For the preparation of compounds of formula XXI: Deprotection of the thiol moiety of a protected thiol of formula XXII.

where $R^3-R^6, X, Y, Z, m, n, o$ are as defined herein and SPG is a thiol protecting group, e.g. a tri-isopropyl silyl group.
Method 15.

where $R^1 - R^6$, X, Y, Z, m, n, o are as defined herein and R^2 is a halogen such as iodine or bromine or R^3 is a pseudo halogen such as e.g. a trifluoromethyl sulphonyl group or a nonafluoro butyl sulphonil group.

Method 16.

For the preparation of compounds of formula XXIII: Fischer esterification of a carboxylic acid of formula XV.

Method 17.

For the preparation of compounds of formula XX: Reaction of a disulphide of formula XXIV with a chlorinating reagent such as sulfunyl chloride.

where $R^1 - R^6$, X, Y, Z, m, n, o are as defined herein. Anilines of formula XXVI are commercially available or can be prepared according to methods described in standard works such as Houwen-Weyl, Methoden der organischen Chemie (Methods of Organic Chemistry), Georg Thieme-Verlag, Stuttgart; Organic Reactions, John Wiley & Sons, Inc. New York, namely under reaction conditions such as those which are known as suitable for such reactions.

Method 20.

For the preparation of compounds of formula XII (for $Q = \text{CH}_2$ or CHR^1): Reductive amination of an aldehyde of formula XXVII or a ketone of formula XXVIII with an amine of formula XVI, using a reducing reagent such as e.g. sodium cyanoborohydride, followed by protection of the nitrogen moiety with a nitrogen protecting group such as e.g. a tert-butoxycarbonyl group.
where \(R^2-R^9, \ X, \ Y, \ Z, \ m, \ n, \ o \) are as defined herein and \(R^{24} \) is a halogen such as iodine or bromine or \(R^{24} \) is a pseudo halogen such as e.g. a trifluoro methyl sulphonyl group or a nonafluoro butyl sulphonyl group.

Method 21.

[0143] For the preparation of compounds of formula XXVII (for \(m=1, \ X=CH_2, \ Y=CH_2, \ CHR^{16}, \ R^{24}=Br \)) and for the preparation of compounds of formula XXVIII (for \(m=1, \ X=CH_2, \ Y=CH_2, \ CHR^{16}, \ R^{24}=Br \)): A tandem Heck-isomerization reaction of a 1-bromo-2-iodobenzene compound of formula XXIX and an olefin of formula XXX or of formula XXXI according to Gibson et al. Synlett 1999, 954 and Qadir et al. Tetrahedron Letters, 44, 2003, 3675.

Method 22.

[0144] For the preparation of benzo[b]thiophenes or benzo[b] thiophenes of formula IX (for \(R^{24}=Br \)). The appropriate benzo[b]thiophene or benzo[b]thiophene of formula XIX is brominated with \(Br_3 \) a to give a compound of formula XXXII,

which after treatment with an appropriate base gives 3-bromo-benzo[b]furane or 3-bromo-benzo[b]thiophene of formula IX (with \(R^{24}=Br \)).

where \(R^7-R^{11}, \ U \) are as defined herein and \(R^{24} \) is Br.

EXAMPLES

[0145] Analytical LC-MS data (Method A) were obtained on a PE Sciex API 150EX instrument equipped with atmospheric pressure photo ionisation and a Shimadzu LC-8A/SLC-10A LC system. Column: 30x4.6 mm Waters Symmetry C18 column with 3.5 \(\mu \)m particle size; Solvent system: A=water/trifluoroacetic acid (100:0.05) and B=water/acetonitrile/trifluoroacetic acid (5:95:0.03); Method: Linear gradient elution with 50% A to 100% B in 4 minutes and with a flow rate of 2 mL/minute. Purity was determined by integration of the UV (254 nm) and ELSD trace. The retention times (\(t_R \)) are expressed in minutes.

[0146] Preparative LC-MS-purification was performed on the same instrument with atmospheric pressure chemical ionisation. Column: 50x20 mm YMC ODS-A with 5 \(\mu \)m particle size; Method: Linear gradient elution with 80% A to 100% B in 7 minutes and with a flow rate of 22.7 mL/minute. Fraction collection was performed by split-flow MS detection.

[0147] Analytical LC-MS-TOF (TOF=time of flight) data (Method B) were obtained on a micromass LCT 4-ways MUX equipped with a Waters 2488/Sedex 754 detector system. Column: 30x4.6 mm Waters Symmetry C18 column with 3.5 \(\mu \)m particle size; Solvent system: A=water/trifluoroacetic acid (100:0.05) and B=water/acetonitrile/trifluoroacetic acid (5:95:0.03); Method: Linear gradient elution with
90% A to 100% B in 4 minutes and with a flow rate of 2 mL/minute. Purity was determined by integration of the UV (254 nm) and ELSD trace. The retention times (t_R) are expressed in minutes.

[0148] The invention disclosed herein is further illustrated by the following non-limiting examples.

Preparation of the Compounds of the Invention

Example 1

Synthesis of 1. [2-(benzo[b]furan-3-ylsulfanyl)-benzyl]-methyl-amine (Method 1)

[0149] [2-(Benzo[b]furan-3-ylsulfanyl)-benzyl]-methyl-carbamic acid tert-butyl ester (9.2 g, 24.9 mmol) is dissolved in methanol (75 mL) and diethyl ether saturated with hydrochloric acid (75 mL) is added. The mixture is stirred at ambient temperature for 1 hour and then concentrated in vacuo. Water (50 mL) is added to the remanence and the mixture is basified by addition of aqueous ammonia (conc.). The aqueous fraction is extracted with ethyl acetate (3x100 mL). The combined organic fractions are dried (MgSO_4) and concentrated in vacuo. The product is purified by preparative HPLC or by silica gel chromatography eluting with ethyl acetate-triethyl amine (25:1) to furnish the title compound as an oil. This oil can be redissolved in ethyl acetate (75 mL). Diethyl ether saturated with hydrochloric acid can be added here to precipitate the product. The precipitated material can then be filtered off and dried in vacuo to give 6.9 g (91%) of [2-(benzo[b]furan-3-ylsulfanyl)-benzyl]-methyl-amine as a white crystalline material.

[0150] Analytical data are shown in Table 2.

[0151] The following compounds are prepared analogously:

[0152] 18. [2-(Benzo[b]thiophen-3-ylsulfanyl)-phenyl]-ethyl]-methyl-amine

[0153] 19. [2-(Benzo[b]furan-3-ylsulfanyl)-phenyl]-ethyl]-methyl-amine

[0154] 20. [3-[2-(Benzo[b]thiophen-3-ylsulfanyl)-phenyl]-propyl]-methyl-amine

[0155] 21. [3-[2-(Benzo[b]furan-3-ylsulfanyl)-phenyl]-propyl]-methyl-amine

[0156] 22. [4-[2-(Benzo[b]thiophen-3-ylsulfanyl)-phenyl]-butyl]-methyl-amine

[0157] 23. [4-[2-(Benzo[b]furan-3-ylsulfanyl)-phenyl]-butyl]-methyl-amine

Example 2

Synthesis of 9. [2-(benzo[b]thiophen-3-ylsulfanyl)-5-methyl-benzyl]-methyl-amine (Method 2.)

[0158] Lithium aluminum hydride (250 g, 6.6 mmol) is suspended in dry diethyl ether (50 mL) and cooled to 0°C. Aluminum chloride (295 mg, 2.2 mmol) dissolved in dry diethyl ether (50 mL) is added dropwise at 0-5°C. The cooling bath is removed and the mixture is stirred at ambient temperature for 1 hour. The resulting aluminum hydride reagent solution is cooled to 0°C, followed by slow dropwise addition of 2-(benzo[b]thiophen-3-ylsulfanyl)-5,N,N-dimethyl-benzamide (327 mg, 2.0 mmol) in 10 mL dry THF. After complete addition the solution is allowed to heat to ambient temperature and stirring is continued for 16 hours. The mixture is cooled to 10°C followed by slow dropwise addition of water (5 mL) followed by 2M sodium hydroxide (0.5 mL) and water (2.5 mL) to quench excessive reducing agent. The mixture is filtered and concentrated in vacuo. The remanence is redissolved in ethyl acetate (100 mL), dried (MgSO_4) and concentrated in vacuo. The product is purified by preparative HPLC or by silica gel chromatography eluting with ethyl acetate-triethyl amine to furnish the title compound.

[0159] The following compounds are prepared analogously:

[0160] 10. [2-(Benzo[b]thiophen-3-ylsulfanyl)-4-chloro-benzyl]-methyl-amine

[0161] 24. [2-(Benzo[b]thiophen-3-ylsulfanyl)-benzyl]-amine

Example 3

Synthesis of 3. methyl-[2-(2-methyl-benzyl)-thiophen-3-ylsulfanyl]-benzyl]-methyl-amine (Method 3.)

[0162] Methanesulfonyl chloride (170 μL, 2.2 mmol) is added to a solution of [2-(2-Methyl-benzyl)[thiophen-3-ylsulfanyl]-phenyl]-methyl alcohol (590 mg, 2.1 mmol) and triethyl amine (350 μL, 2.5 mmol) in 10 mL dry THF at 0°C under an argon atmosphere. The reaction mixture is stirred for 1 hour at room temperature and cooled to 0°C. 2 M methyl amine in THF is added and the reaction is stirred at room temperature for 3 hours. Saturated aqueous NaHCO_3 is added and the mixture is extracted with ethyl acetate. The organic phase is washed with brine, dried with MgSO_4 and concentrated in vacuo. The residue is purified by flash chromatography on silica gel using ethyl acetate and then ethyl acetate-methanol-triethyl amine (3:1:1) as eluents. This furnishes 460 mg (75%) of the title compound as an oil.

[0163] The following compounds were prepared analogously:

[0164] 2. [2-(Benzo[b]thiophen-3-ylsulfanyl)-benzyl]-methyamine

[0165] 4. [2-(5-Fluoro-benzyl)[thiophen-3-ylsulfanyl]-benzyl]-methyamine

[0166] 5. Methyl-[2-(2-methyl-benzyl)[thiophen-3-ylsulfanyl]-benzyl]-amine

[0167] 6. Methyl-[2-(5-methyl-benzyl)[thiophen-3-ylsulfanyl]-benzyl]-amine

[0168] 7. [2-(5-Chloro-benzyl)[thiophen-3-ylsulfanyl]-benzyl]-methyamine

[0169] Analytical data are shown in Table 2.

[0170] The following compounds are prepared analogously:

[0171] 8. [2-(Benzo[b]thiophen-3-ylsulfanyl)-benzyl]-dimethyl-amine

[0172] 11. [2-(4-Fluoro-benzyl)[thiophen-3-ylsulfanyl]-benzyl]-methyamine

[0173] 12. Dimethyl-[3-(2-methylaminomethyl-phenylsulfanyl)-benzyl][thiophen-5-yl]-amine

[0174] 13. Methyl-[2-(7-methyl-benzyl)[thiophen-3-ylsulfanyl]-benzyl]-amine

[0175] 14. [2-(4,7-Dimethyl-benzyl)[thiophen-3-ylsulfanyl]-benzyl]-methyl-amine

[0176] 16. Methyl-[2-(6-methyl-benzyl)[thiophen-3-ylsulfanyl]-benzyl]-amine

[0177] 17. [2-(7-Methoxy-benzyl)[thiophen-3-ylsulfanyl]-benzyl]-methyl-amine

[0178] 25. 4-[2-(Benzo[b]thiophen-3-ylsulfanyl)-benzyl]-mromorpholine

[0179] 26. 4-[2-(Benzo[b]thiophen-3-ylsulfanyl)-benzyl]-thiomorpholine
Preparation of Intermediates

Example 4

Synthesis of [(2-benzofuranyl-3-ylsulfanyl)]-benzyl-methyl-carbamic acid tert-butyl ester (Method 4, Method 5.)

[0180] Methyl-(2-trisopropylisilyl)sulfanyl-benzyl)-methyl-carbamic acid tert-butyl ester (11.7 g, 28.6 mmol) is dissolved in ethanol (150 mL) and ammonium fluoride (1.10 g, 28.6 mmol) is added. The resulting mixture is stirred at ambient temperature for 30 minutes, then concentrated in vacuo. The remanence is redissolved in dry toluene (175 mL). Tris(dibenzyldieneacetone)dipalladium (0) (0.65 g, 0.71 mmol), bis(2-diphenylphosphinophenyl)ether (0.77 g, 1.43 mmol), sodium tert-butoxide (5.50 g, 57.1 mmol) and 3-bromo-benzo[b]furan (5.60 g, 28.6 mmol) are added hereto and the resulting mixture is stirred at 100°C for 1 hour. Upon cooling the mixture is filtered through celite and the filtrate is poured onto a plug of silica. Unpolar byproducts are flushed out with ethyl acetate-heptane (1:2). The product is then eluted with ethyl acetate-heptane (1:9). This furnishes 9.2 g (88%) of the title compound as an oil, which is used in the next step without further purification.

[0181] The following intermediates are prepared analogously:

[0182] 2-[2-[2-Benzofuran-3-ylsulfanyl]-phenyl]-ethyl-methyl-carbamic acid tert-butyl ester

[0183] 2-[2-[2-Benzofuran-3-ylsulfanyl]-phenyl]-methyl-carbamic acid tert-butyl ester

[0184] 3-[2-[2-Benzofuran-3-ylsulfanyl]-phenyl]-propyl-methyl-carbamic acid tert-butyl ester

[0185] 3-[2-[2-Benzofuran-3-ylsulfanyl]-phenyl]-propyl-methyl-carbamic acid tert-butyl ester

[0186] 4-[2-[2-Benzofuran-3-ylsulfanyl]-phenyl]-butyl-methyl-carbamic acid tert-butyl ester

[0187] 4-[2-[2-Benzofuran-3-ylsulfanyl]-phenyl]-butyl-methyl-carbamic acid tert-butyl ester

Example 5

Synthesis of methyl-(2-trisopropylsilanylsulfanyl-benzyl)-carbamic acid tert-butyl ester (Method 6.)

[0188] (2-Iodo-benzyl)-methyl-carbamic acid tert-butyl ester (3.0 g, 8.64 mmol), tris(dibenzyldieneacetone)dipalladium (0) (79 mg, 0.086 mmol), bis(2-diphenylphosphinothonophenyl)ether (93 mg, 0.17 mmol), sodium tert-butoxide (1.10 g, 11.2 mmol), trisopropylsilanethiol (1.73 g, 9.07 mmol) and dry toluene (15 mL) are all placed in an Emrys Optimizer EXP 20 mL microwave reactor tube. The reaction vessel is sealed and subjected to microwave heating at 160°C for 15 minutes. Upon cooling the mixture is poured onto a plug of silica and the product is eluted with ethyl acetate-heptane (1:4). This procedure is repeated an additional 3 times to furnish a total of 13.7 g (97%) of the title compound as an oil which is used in the next step without further purification.

[0189] The following compounds were prepared analogously:

[0190] Methyl-[2-(2-trisopropylsilyl)sulfanyl-phenyl]-ethyl-methyl-carbamic acid tert-butyl ester

[0191] Methyl-[3-(2-trisopropylsilanylsulfanyl-phenyl)-propyl-methyl-carbamic acid tert-butyl ester

[0192] Methyl-[4-(2-trisopropylsilanylsulfanyl-phenyl)-butyl]-methyl-carbamic acid tert-butyl ester

Example 6

Synthesis of [(2-iodo-benzyl)-methyl-carbamic acid tert-butyl ester (Method 7.)

[0193] Lithium aluminum hydride (14.8 g, 390 mmol) is suspended in dry diethyl ether (250 mL) and cooled to 0°C. Aluminum chloride (16.0 g, 121 mmol) dissolved in dry diethyl ether (250 mL) is added dropwise at 0-5°C. The cooling bath is removed and the mixture is stirred at ambient temperature for 1 hour. The resulting aluminum hydride reagent solution is cooled to 0°C. Followed by dropwise addition of 2-iodo-N-methyl-benzamide (50.8 g, 195 mmol) dissolved in dry THF (500 mL). After complete addition the solution is allowed to heat to ambient temperature and stirring is continued for 16 hours. The mixture is cooled to 0°C followed by slow dropwise addition of water (30 mL) followed by 2M sodium hydroxide (30 mL) and water (150 mL). MgSO₄ is added and the mixture is stirred for 10 minutes, filtered and concentrated in vacuo. The remanence is resolved in ethyl acetate (500 mL), dried (MgSO₄) and concentrated again to furnish 45.2 g (94%) of (2-iodo-benzyl)-methyl-amine as an oil. (2-iodo-benzyl)-methyl-amine (20.0 g, 80.9 mmol) is dissolved in dry THF (300 mL) and di-tert-butyl dicarbonate (18.5 g, 85.0 mmol) is added. The mixture is stirred for 1 hour at ambient temperature. The volatiles are removed by means of evaporation and the crude mixture is purified by silica gel chromatography eluting with ethyl acetate-heptane (1:4) to furnish 28.5 g (quant.) of the title compound as an oil.

[0194] The following intermediates were prepared analogously:

[0195] 2-(2-Iodo-phenyl)-ethyl]-methyl-carbamic acid tert-butyl ester

[0196] 4-(2-Bromo-phenyl)-butyl]-methyl-carbamic acid tert-butyl ester

Example 7

Synthesis of 2-iodo-N-methyl-benzamide (Method 8)

[0197] Triethylamine (29.4 mL, 404 mmol) is added to a solution of (2-iodo-benzonic acid (50.0 g, 202 mmol) in dry toluene (600 mL). The mixture is heated to reflux for 4 hours and the solvent is removed in vacuo. The remanence is redissolved in dry toluene (600 mL) and cooled to 0°C. 40% methyllamine (aq., 94.1 mL, 1.21 mol) is added dropwise at 0-5°C during 30 minutes. The mixture is then stirred at ambient temperature for 16 hours, poured onto water (300 mL) and extracted with ethyl acetate (3×300 mL). The combined organic fractions are washed successively with saturated sodium bicarbonate solution (250 mL) and brine (250 mL), dried (MgSO₄) and concentrated in vacuo. This gives 50.8 g (96%) of crystalline 2-iodo-N-methyl-benzamide.

[0198] The following intermediates were prepared analogously:

[0199] 2-(2-Iodo-phenyl)-N-methyl-acetamide

[0200] 4-(2-Bromo-phenyl)-N-methyl-butryramide
Example 8
Synthesis of [3-(2-bromo-phenyl)-propyl]-methyl-carbamic acid tert-butyl ester (Method 20.)

[0201] Methyl amine (8 M in ethanol, 38 ml, 304 mmol) is added to 3-(2-bromo-phenyl)-propionaldehyde (6.32 g, 29.7 mmol) and sodium cyanoborohydride (2.24 g, 35.6 mmol) in methanol. The reaction mixture is cooled to 0°C and oxalic acid is added slowly until pH<7. The reaction mixture is stirred for ½ hour and neutralized with aqueous sodium hydroxide. Methanol is removed in vacuo and ethyl acetate and brine are added. The aqueous phase is extracted with ethyl acetate and the combined organic phases are dried with MgSO₄ and concentrated in vacuo. The residue is dissolved in THF (150 ml) and di-tert-butyl dicarbonate (7.2 g, 33 mmol) and triethyl amine (5.2 ml, 37.1 mmol) are added. The reaction mixture is stirred for 2 hours, filtered through silica gel and concentrated in vacuo. The residue is purified by flash chromatography (silica gel, ethyl acetate/heptane) to give 3.23 g (33%) of the title compound.

Example 9
Synthesis of 3-bromo-benzof[b]furan (Method 22.)

[0202] Bromine (131 ml, 250 mmol) dissolved in chloroform (50 ml) is added dropwise to a solution of benzo[b]furan (25 g, 210 mmol) in chloroform (200 ml) at -10°C over 20 minutes. The mixture is then stirred at 0°C for 1 hour and the volatiles are evaporated. The residue is stirred with ethanol (50 ml) and then filtered. The solid material is washed with diethyl ether (100 ml) on the filter. This furnishes 23.0 g (39%) of 2,3-dibromo-2,3-dihydro-benzo[b]furan as white crystalline material. Potassium hydroxide pellets (9.3 g, 165 mmol) are dissolved in ethanol (40 ml) and cooled to 0°C. 2,3-Dibromo-2,3-dihydro-benzo[b]furan (23.0 g, 62.7 mmol) dissolved in ethanol (90 ml) is added dropwise hereto at a constant temperature of 0°C. After complete addition the mixture is heated to reflux for 2 hours. The mixture is concentrated in vacuo and water (100 ml) is added. The aqueous layer is extracted with ethyl acetate (3x100 ml). The combined organic fractions are washed with brine (100 ml), dried (MgSO₄) and concentrated to furnish 14.7 g (90%) of the wanted product as an oil.

Example 10
Synthesis of [2-(2-methyl-benzof[b]thiophen-3-sulfonyl)-phenyl]-methanol (Method 11.)

[0203] Lithium aluminum hydride (250 mg, 6.6 mmol) is added to a solution of 2-(2-methyl-benzof[b]thiophen-3-sulfonyl)-benzoic acid methyl ester (651 mg, 2.07 mmol) in 10 ml dry THF at 0°C. The reaction mixture is stirred for 16 hours at room temperature. The reaction is quenched with 0.5 ml water. The reaction mixture is stirred for ½ hour and 0.25 ml 15% NaOH (aq) is added. The reaction mixture is stirred for 1 hour, then 1 ml water is added and stirring is continued for another hour. The mixture is filtered, dried with MgSO₄ and concentrated in vacuo to give the title compound, which is used without further purification.

[0204] The following intermediates were prepared analogously:

[0205] [2-(Benzof[b]thiophen-3-sulfonyl)-phenyl]-methanol
[0206] [2-(5-Fluoro-benzof[b]thiophen-3-sulfonyl)-phenyl]-methanol
[0207] [2-(2-Methyl-benzof[b]furan-3-ylsulfonyl)-phenyl]-methanol
[0208] [2-(5-Methyl-benzof[b]thiophen-3-ylsulfonyl)-phenyl]-methanol
[0209] [2-(5-Chloro-benzof[b]thiophen-3-ylsulfonyl)-phenyl]-methanol
[0210] 3-(2-Bromo-phenyl)-propan-1-ol
[0211] The following intermediates are prepared analogously:

[0212] [2-(4-Fluoro-benzof[b]thiophen-3-ylsulfonyl)-phenyl]-methanol
[0213] [2-(5-Dimethylamino-benzof[b]thiophen-3-ylsulfonyl)-phenyl]-methanol
[0214] [2-(7-Methyl-benzof[b]thiophen-3-ylsulfonyl)-phenyl]-methanol
[0215] [2-(4,7-Dimethyl-benzof[b]thiophen-3-ylsulfonyl)-phenyl]-methanol
[0216] [2-(6-Methyl-benzof[b]thiophen-3-ylsulfonyl)-phenyl]-methanol
[0217] [2-(7-Methoxy-benzof[b]thiophen-3-ylsulfonyl)-phenyl]-methanol

Example 11
Synthesis of 2-(methoxy-carbonyl)phenyl sulfonyl chloride (Method 17.)

[0218] Sulfonyl chloride (0.88 ml, 11 mmol) is added to methyl 2-[[2-(methoxy-carbonyl)phenyl]dithio]benzoate in 75 ml dry 1,2-dichloro-ethane. The reaction mixture is stirred for 1 hour at room temperature to give a 0.29 M solution of 2-(methoxy-carbonyl)phenyl sulfonyl chloride.

Example 12
Synthesis of 2-(2-methyl-benzof[b]thiophen-3-sulfonyl)-benzoic acid methyl ester (Method 12.)

[0219] 2-(Methoxy-carbonyl)phenyl sulfonyl chloride (10 ml 0.29 M solution in 1,2-dichloro-ethane, 2.9 mmol) is added to a solution of 2-methyl-benzof[b]thiophene (445 mg, 3 mmol) in 5 ml 1,2-dichloro-ethane. The reaction mixture is cooled to 0°C. Aluminium chloride (400 mg, 3 mmol) is added and the reaction mixture is stirred for 4 hours at room temperature. The reaction is quenched with water. The organic phase is washed with brine, dried with MgSO₄ and concentrated in vacuo. The residue is purified by flash chromatography on silica gel using ethyl acetate-heptane as eluent. This furnishes 651 mg (69%) of the title compound as an oil.
The following intermediates are prepared analogously:

- 2-(4-Fluoro-benzol[thiophen-3-ylsulfanyl]-benzoic acid methyl ester
- 2-(5-Dimethylamino-benzol[thiophen-3-ylsulfanyl]-benzoic acid methyl ester
- 2-(7-Methyl-benzol[thiophen-3-ylsulfanyl]-benzoic acid methyl ester
- 2-(6-Methyl-benzol[thiophen-3-ylsulfanyl]-benzoic acid methyl ester
- 2-(7-Methoxy-benzol[thiophen-3-ylsulfanyl]-benzoic acid methyl ester
- 2-(Benzol[thiophen-3-ylsulfanyl]-5-methyl-benzoic acid methyl ester
- 2-(Benzol[thiophen-3-ylsulfanyl]-4-chloro-benzoic acid methyl ester

Example 13
Synthesis of methyl 2-[2-(methoxycarbonyl)phenyl]dithio]benzoate (Method 18.)

- 6 mL Sulphuric acid is added to 2,2'-dithiodibenzoiacetic acid (20 g, 65.3 mmol) in 150 mL methanol. The reaction mixture is refluxed 3 days. The reaction mixture is cooled to room temperature and saturated aqueous NaHCO₃ is added. Methanol is removed in vacuo. The resulting heterogeneous mixture is extracted with ethyl acetate. The organic phase is washed with brine, dried with MgSO₄ and concentrated in vacuo to give 17.8 g (82%) of the title compound as a solid, which is used without further purification.

Example 14
Synthesis of 2-methoxycarbonyl-4-methyl-benzene-sulfonyl chloride (Method 13., Method 14.)

- Triethylamine tris(hydrogen fluoride) (500 µL, 3.1 mmol) is added to (2-triisopropylsilanylsulfonyl-phenyl)-acetic acid methyl ester in THF (10 mL). The resulting mixture is stirred at 50°C for 30 minutes, then concentrated in vacuo. The residue is put on a silica gel plug and (2-mercapto-phenyl)-acetic acid methyl ester is eluted with ethyl acetate-heptane (1:4) and concentrated in vacuo.

- The following intermediate is prepared analogously:

- 4-Chloro-2-mercapto-benzoic acid methyl ester
- 2-Mercapto-5-methyl-benzoic acid methyl ester (from above) is dissolved in 15 mL 1.2-dichloro-ethane and added to N-chloro succinimide (414 mg, 3.1 mmol) in 10 mL 1.2-dichloro-ethane at 0°C. The resulting mixture is stirred at room temperature for 15 minutes to give a solution of the title compound, which is used without purification.

- The following intermediate is prepared analogously:

- 3-chloro-6-methoxycarbonyl-benzene-sulfonyl chloride

Example 15
Synthesis of 5-methyl-2-triisopropylsilanylsulfonyl-benzoic acid methyl ester (Method 15.)

- 2-Bromo-5-methyl-benzoic acid methyl ester (2.06 g, 9.00 mmol), tris(dibenzylideneacetone)dipalladium (0) (83 mg, 0.09 mmol), bis(2-diphenylphosphinophenyl)ether (97 mg, 0.18 mmol), sodium terti-butoxide (100 g, 10.4 mmol), triisopropylsilanol (1.37 g, 7.2 mmol) and dry toluene (10 mL) are all placed in an Emrys Optimizer iXP 20 mL microwave reactor tube. The reaction vessel is sealed and subjected to microwave heating at 150°C for 30 minutes. Upon cooling the mixture is passed under a plug of silica and the product is eluted with ethyl acetate-heptane (2:8). This furnishes the title compound as an oil, which is used in the next step without further purification.

Example 16
Synthesis of 2-bromo-5-methyl-benzoic acid methyl ester (Method 16.)

- 1 mL H₂SO₄ is added to 2-bromo-5-methyl-benzoic acid (7.5 g, 70 mmol) in 75 mL methanol. The reaction mixture is refluxed 16 hours and cooled to room temperature. 100 mL saturated NaHCO₃ (aq) is added. Methanol is removed in vacuo. The resulting mixture is extracted with ethyl acetate. The organic phase is washed with brine, dried with MgSO₄ and concentrated in vacuo to give the title compound.

Example 17
Synthesis of 2-(Benzol[thiophen-3-ylsulfanyl]-5-N,N-dimethyl-benzamide (Method 9.)

- Carbonyldimidazole (324 mg, 2 mmol) is added to 2-(benzo[b]thiophen-3-ylsulfanyl)-5-methyl-benzoic acid (300 mg, 1 mmol) in mL dry THF and stirred for 2 hours at room temperature. 2.5 mL methyl amine (2M in THF, 5 mmol) is added and the reaction mixture is stirred for 16 hours at room temperature. Ethyl acetate is added and the organic phase is washed with 1 N HCl (aq) and brine, dried with MgSO₄ and concentrated in vacuo to give the title compound, which is used in the next step without further purification.

Example 18
Synthesis of 2-(benzo[b]thiophen-3-ylsulfanyl)-5-methyl-benzoic acid (Method 10.)

- LiOH (480 mg, 20 mmol) is added to 2-(benzo[b]thiophen-3-ylsulfanyl)-5-methyl-benzoic acid methyl ester (630 mg, 2 mmol) in 16 mL mixture of THF/water (3:1). The reaction mixture is refluxed for 2 hours and cooled to room temperature. Water and ethyl acetate is added and the organic phase is washed with brine, dried with MgSO₄ and concentrated in vacuo to give the title compound, which is used in the next step without further purification.

The following intermediates are prepared analogously:

- 2-(Benzol[thiophen-3-ylsulfanyl]-4-chloro-benzoic acid
- 2-(Benzo[b]thiophen-3-ylsulfanyl)-benzoic acid
Example 19

Synthesis of 4-(2-bromo-phenyl)-butyric acid

[0257] Methanesulfonyl chloride (7.7 mL, 97 mmol) in 100 mL dry THF is added to a solution of 3-(2-bromo-phenyl)-propan-1-ol (17.4 g, 80.9 mmol) and triethyl amine (14.7 g, 146 mmol) in 200 mL dry THF at 0°C under an argon atmosphere. Water is added and the mixture is extracted with ethyl acetate. The organic phase is washed with brine, dried with MgSO4 and concentrated in vacuo to give 23 g (97%) methanesulfonic acid 3-(2-bromo-phenyl)-propyl ester as an oil. Methanesulfonic acid 3-(2-bromo-phenyl)-propyl ester (23 g, 78 mmol) in 300 mL dry DMF is added to a suspension of potassium cyanide (15.5 g, 235 mmol) in dry DMF. The reaction mixture is stirred at 60°C for 16 hours. Water is added and the mixture is extracted with ethyl acetate (3 times). The organic phase is washed with brine (twice), dried with MgSO4 and concentrated in vacuo. The residue is placed on a plug of silica gel and eluted with ethyl acetate/heptane (1:4) and concentrated in vacuo to give 16.0 g 4-(2-bromo-phenyl)-butyronitrile (91%) as an oil. 300 mL concentrated HCl is added to 4-(2-bromo-phenyl)-butyronitrile (16.0 g, 71 mmol) in 150 mL acetic acid. The reaction mixture is stirred at 60°C for 16 hours. The reaction mixture concentrated in vacuo partly and is poured into water. The mixture is extracted with ethyl acetate (3 times). The organic phase is washed with brine (twice), dried with MgSO4 and concentrated in vacuo to give the title compound as a crystalline material.

TABLE 1

Reagents used for the preparation of compounds in Example 1-19.

<table>
<thead>
<tr>
<th>Name</th>
<th>Supplier</th>
<th>CAS no.</th>
<th>Cat. no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzo[b]furan</td>
<td>Aldrich</td>
<td>271-89-6</td>
<td>B800-2</td>
</tr>
<tr>
<td>2-Methylnbenzo[b]furan</td>
<td>Aldrich</td>
<td>4265-25-2</td>
<td>22,434-0</td>
</tr>
<tr>
<td>Benzo[b]thiophene</td>
<td>Aldrich</td>
<td>95-15-8</td>
<td></td>
</tr>
<tr>
<td>3-Bromobenzo[b]thiophene</td>
<td>Aldrich</td>
<td>7342-82-7</td>
<td>49,497-6</td>
</tr>
<tr>
<td>2-Methylnbenzo[b]thiophene</td>
<td>Aldrich</td>
<td>1195-14-8</td>
<td>46,745-6</td>
</tr>
<tr>
<td>5-Methylnbenzo[b]thiophene</td>
<td>Aldrich</td>
<td>14315-14-1</td>
<td>AV12666</td>
</tr>
<tr>
<td>2,5-Dimethylothiophenol</td>
<td>Aldrich</td>
<td>4001-61-0</td>
<td>27,546-8</td>
</tr>
<tr>
<td>4-Thiophenol</td>
<td>Aldrich</td>
<td>371-42-6</td>
<td>F1,531-5</td>
</tr>
<tr>
<td>Chlorothiophenol</td>
<td>ALFA-DM</td>
<td>106-54-7</td>
<td>19445</td>
</tr>
<tr>
<td>1-Bromo-4-thiopho-2-iodobenzene</td>
<td>Aldrich</td>
<td>202865-72-3</td>
<td>52,893-5</td>
</tr>
<tr>
<td>4-Chloromethylaminothiophenol</td>
<td>Aldrich</td>
<td>494622-0</td>
<td>23125</td>
</tr>
<tr>
<td>2-Thiophene</td>
<td>Aldrich</td>
<td>137-06-4</td>
<td>T2,850-9</td>
</tr>
<tr>
<td>4-Hydroxythiophenol</td>
<td>Aldrich</td>
<td>637-89-8</td>
<td>27,539-5</td>
</tr>
<tr>
<td>2-Methoxybenzenethiol</td>
<td>Aldrich</td>
<td>7217-59-6</td>
<td>18,405-5</td>
</tr>
<tr>
<td>2-Bromo-3-methylsalanine</td>
<td>Aldrich</td>
<td>54879-20-8</td>
<td>64,562-1</td>
</tr>
<tr>
<td>Bromoadetalicde diethyl acetal</td>
<td>Aldrich</td>
<td>2032-35-1</td>
<td>12,308-6</td>
</tr>
<tr>
<td>Bromoadetalicde diethyl acetal</td>
<td>Aldrich</td>
<td>7252-83-7</td>
<td>24,250-1</td>
</tr>
<tr>
<td>Polyphosphoric acid</td>
<td>Aldrich</td>
<td>8017-16-1</td>
<td>F20,821-3</td>
</tr>
<tr>
<td>Methylamine</td>
<td>Aldrich</td>
<td>74-89-5</td>
<td>42,646-6</td>
</tr>
<tr>
<td>Dimethylamine</td>
<td>Aldrich</td>
<td>124-40-3</td>
<td>39,195-6</td>
</tr>
<tr>
<td>Mopropiolone</td>
<td>Aldrich</td>
<td>110-91-8</td>
<td>25,236-0</td>
</tr>
<tr>
<td>Thioropiolone</td>
<td>Fluka</td>
<td>123-90-0</td>
<td>88885</td>
</tr>
<tr>
<td>2,2-Dithiodibromobenzoic acid</td>
<td>Fluka</td>
<td>119-89-2</td>
<td>43761</td>
</tr>
<tr>
<td>2,4-Dibromobenzoic acid</td>
<td>Aldrich</td>
<td>88-69-5</td>
<td>17075</td>
</tr>
<tr>
<td>2-Iodo-5-methylbenzoic acid</td>
<td>Aldrich</td>
<td>52548-14-8</td>
<td>H188-8</td>
</tr>
<tr>
<td>2-Bromo-4-chlorobenzene acid</td>
<td>Matrex</td>
<td>936-08-3</td>
<td>1635</td>
</tr>
<tr>
<td>2-Iodophenylacetic acid</td>
<td>Aldrich</td>
<td>18698-96-9</td>
<td>53,147-2</td>
</tr>
<tr>
<td>3-(2-Bromophenyl)propanoic acid</td>
<td>Transiol</td>
<td>15115-58-9</td>
<td>B3193</td>
</tr>
<tr>
<td>1-Bromo-2-iodobenzene</td>
<td>Aldrich</td>
<td>583-55-1</td>
<td>24,261-6</td>
</tr>
<tr>
<td>Allyl alcohol</td>
<td>Aldrich</td>
<td>107-18-6</td>
<td>24,035-2</td>
</tr>
<tr>
<td>Di-tert-butyl dicarbonate</td>
<td>Fluka</td>
<td>24424-98-5</td>
<td>34601-0</td>
</tr>
<tr>
<td>3-Buten-1-ol</td>
<td>Fluka</td>
<td>627-27-0</td>
<td>11,036-1</td>
</tr>
<tr>
<td>N-Chlorosuccinimide</td>
<td>Aldrich</td>
<td>128-09-6</td>
<td>10,988-1</td>
</tr>
<tr>
<td>Bromine</td>
<td>Aldrich</td>
<td>7726-95-6</td>
<td>40,718-6</td>
</tr>
<tr>
<td>Sulfonyl Chloride</td>
<td>Aldrich</td>
<td>7791-25-5</td>
<td>27,850-5</td>
</tr>
<tr>
<td>Methanesulfonyl chloride</td>
<td>Aldrich</td>
<td>126-63-6</td>
<td>47,125-9</td>
</tr>
<tr>
<td>Trisopropylsilylanethiol</td>
<td>Aldrich</td>
<td>150275-96-6</td>
<td>42,993-7</td>
</tr>
<tr>
<td>Bis(2-diphenylphosphinophenyl)ether</td>
<td>Fluka</td>
<td>166303-10-5</td>
<td>51,001-7</td>
</tr>
<tr>
<td>Triadibenzylideneacetone(dipalladium (0))</td>
<td>Aldrich</td>
<td>52406-22-0</td>
<td>32,877-4</td>
</tr>
<tr>
<td>Sodium tert-butoxide</td>
<td>Aldrich</td>
<td>865-48-5</td>
<td>35,927-0</td>
</tr>
<tr>
<td>Ammonium fluoride</td>
<td>Fluka</td>
<td>12125-01-8</td>
<td>69273</td>
</tr>
<tr>
<td>Triethylamine succinimide(hydrogen fluoride)</td>
<td>Fluka</td>
<td>73602-61-6</td>
<td>34,464-8</td>
</tr>
<tr>
<td>Sodium cyanoborohydride</td>
<td>Aldrich</td>
<td>25895-60-7</td>
<td>15,615-9</td>
</tr>
<tr>
<td>Lithium aluminum hydride</td>
<td>Aldrich</td>
<td>16853-85-3</td>
<td>21,277-6</td>
</tr>
<tr>
<td>Aluminum chloride</td>
<td>Aldrich</td>
<td>7446-70-0</td>
<td>29,471-3</td>
</tr>
<tr>
<td>1,1-Dicyclohexylideneboronate</td>
<td>Aldrich</td>
<td>530-62-1</td>
<td>11,553-3</td>
</tr>
<tr>
<td>NN-Dicyclohexylderoboridimide</td>
<td>Aldrich</td>
<td>538-75-0</td>
<td>D8,000-2</td>
</tr>
<tr>
<td>Thiouyl chloride</td>
<td>Acros</td>
<td>7719-09-7</td>
<td>16949-0010</td>
</tr>
</tbody>
</table>

NA: not available
Table 2

<table>
<thead>
<tr>
<th>Compound</th>
<th>LC/MS method</th>
<th>t_R (min)</th>
<th>UV-purity (%)</th>
<th>ELSD-purity (%)</th>
<th>M+H^+</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>1.79</td>
<td>97</td>
<td>100</td>
<td>269.9</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>1.97</td>
<td>99</td>
<td>99</td>
<td>285.9</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>1.94</td>
<td>99</td>
<td>99</td>
<td>300.1</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>1.95</td>
<td>98</td>
<td>99</td>
<td>304.0</td>
</tr>
<tr>
<td>5</td>
<td>A</td>
<td>1.95</td>
<td>98</td>
<td>99</td>
<td>304.0</td>
</tr>
<tr>
<td>6</td>
<td>A</td>
<td>2.05</td>
<td>82</td>
<td>100</td>
<td>284.1</td>
</tr>
<tr>
<td>7</td>
<td>A</td>
<td>2.07</td>
<td>93</td>
<td>99</td>
<td>319.9</td>
</tr>
</tbody>
</table>

Example 20

Transmitter Inhibition Assay

[0258] Measurements of \[^{3}H\] dopamine uptake into rat cortical synaptosomes

[0259] Whole brains from male Wistar rats (125-225 g) excluding cerebellum, are homogenized in 0.4 M sucrose supplemented with 1 mM nialamid with a glass/tetlon homogenizer. The homogenate is centrifuged at 1000xg for 10 min at 4°C. The pellet is discarded and the supernatant is centrifuged at 40,000xg for 20 min. The final pellet is homogenized in assay buffer (0.5 mg original tissue/well). Test compounds (or buffer) and 10 nM [\(^{3}H\)]-dopamine are added to 96 well plates. Composition of assay buffer: 123 mM NaCl, 4.82 mM KCl, 0.973 mM CaCl\(_2\), 1.12 mM MgSO\(_4\), 12.66 mM Na\(_2\)HPO\(_4\), 2.97 mM NaH\(_2\)PO\(_4\), 0.162 mM EDTA, 2 g/l glucose and 0.2 g/l ascorbic acid. Buffer is oxygenated with 95% O\(_2/5% CO\(_2\) for 10 min. The incubation is started by adding tissue to a final assay volume of 0.2 mL. After 15 min incubation with radioligand at 37°C, samples are filtered directly on Unifilter GF/C glass fiber filters (soaked for 30 min in 0.1% polyethylenimine) under vacuum and immediately washed with 1x0.2 ml assay buffer. Non-specific uptake is determined using citalopram (10 μM final concentration). Citalopram is included as reference in all experiments as dose-response curve.

[0259] Measurements of \[^{3}H\] dopamine uptake into rat cortical synaptosomes

[0260] Fresh occipital-, temporal- or parietal cortex from male Wistar rats (125-225 g) are homogenized in 0.4M sucrose with a glass/tetlon homogenizer. The homogenate is centrifuged at 1000xg for 10 min at 4°C. The pellet is discarded and the supernatant is centrifuged at 40,000xg for 20 min. The final pellet is homogenized in this assay buffer: 123 mM NaCl, 4.82 mM KCl, 0.973 mM CaCl\(_2\), 1.12 mM MgSO\(_4\), 12.66 mM Na\(_2\)HPO\(_4\), 2.97 mM NaH\(_2\)PO\(_4\), 0.162 mM EDTA, 2 g/l glucose and 0.2 g/l ascorbic acid (7.2 mg original tissue/mL=1 mg/140 μl). Buffer is oxygenated with 95% O\(_2/5% CO\(_2\) for 10 min. Pellet is suspended in 140 volumes of assay buffer. Tissue is mixed with test compounds and after 10 min pre-incubation, 10 nM [\(^{3}H\)]-noradrenaline is added to a final volume of 0.2 ml and the mixture is incubated for 15 min at 37°C. After 15 min incubation, samples are filtered directly on Unifilter GF/C glass fiber filters (soaked for 30 min in 0.1% polyethylenimine) under vacuum and immediately washed with 1x0.2 ml assay buffer. Non-specific uptake is determined using taliusophem (10 μM final concentration). Duloxetine is included as reference in all experiments as dose-response curve.

Measurements of \[^{3}H\] dopamine uptake into rat cortical synaptosomes

[0261] Tissue preparation: male wistar rats (125-250 g) are sacrificed by decapitation and striatum quickly dissected out and placed in ice cold 0.4 M sucrose. The tissue is gently homogenized (glass tetlon homogeniser) and the P2 fraction is obtained by centrifugation (1000 g, 10 minutes and 40000 g, 20 minutes, 4°C) and suspended in 500 volumes of a modified Krebs-Ringer-phosphate buffer, pH 7.4.

[0262] Tissue 0.25 mg/well (140 μl) (original tissue) is mixed with test suspension. After 5 minutes pre-incubation at room temperature, 12.5 nM 3H-dopamine is added and the mixture is incubated for 5 minutes at room temperature. Final volume is 0.2 ml.

[0263] The incubation is terminated by filtering the samples under vacuum through Whatman GF/C filters with a wash of 1x0.2 ml buffer. The filters are dried and appropriate scintillation fluid (Optiphase Supermix) is added. After storage for 2 hours in the dark the content of radioactivity is determined by liquid scintillation counting. Uptake is obtained by subtracting the non-specific binding and passive transport measured in the presence of 100 μM of benztoprin. For determination of the inhibition of uptake ten concentrations of drugs covering 6 decades are used.

[0264] \[^{3}H\] DA=3,4-(ring-2,5,6-H)dopamine hydrochloride from New England Nuclear, specific activity 30-50 Ci/mmol.

[0265] Hyttel, Biochem. Pharmacol. 1978, 27, 1063-1068;

1. A compound of the general formula IV:

```
formula IV
```

wherein:
U is oxygen;
R1-R2 are independently selected from the group consisting of hydrogen, C1=C-alk(en/yn)yl, C3=C-cycloalk(en)yl, and C3=C-cycloalk(en)yl-CN; or
R1 and R2 together with the nitrogen to which they are attached form a 4-7 membered ring containing zero or one double bond, optionally said ring in addition to said nitrogen comprises one further heteroatom selected from oxygen and sulphur;
R3-R4 are independently selected from the group consisting of hydrogen, halogen, cyano, C1=C-alk(en/yn)yl, C3=C-cycloalk(en)yl, C3=C-cycloalk(en)yl-CN, halo-C1=C-alk(en/yn)yl, halo-C3=C-cycloalk(en)yl and halo-C3=C-cycloalk(en)yl-CN;
R² is selected from the group consisting of hydrogen, C₁₋₆-alk(en/yn)yl, C₅₋₈-cycloalk(en)yl and C₃₋₈-cycloalk(en)yl-C₁₋₆-alk(en/yn)yl;
R³⁻R¹⁴ are independently selected from the group consisting of hydrogen, halogen, cyano, C₁₋₆-alk(en/yn)yl, C₃₋₈-cycloalk(en)yl, C₅₋₈-cycloalk(en)yl-C₁₋₆-alk(en/yn)yl, halo-C₁₋₆-alk(en/yn)yl, halo-C₅₋₈-cycloalk(en)yl, halo-C₃₋₈-cycloalk(en)yl-C₁₋₆-alk(en/yn)yl, nitro, amino, C₁₋₆-alk(en/yn)ylamino, di-(C₁₋₆-alk(en/yn)yl)amino, C₅₋₈-cycloalk(en)ylamino, C₃₋₈-cycloalk(en)yl-C₁₋₆-alk(en/yn)ylamino, hydroxy, C₁₋₆-alk(en/yn)yl oxy, C₅₋₈-cycloalk(en)yl oxy, C₃₋₈-cycloalk(en)yl-C₁₋₆-alk(en/yn)yl oxy, C₁₋₆-alk(en/yn)ylsulfanyl, C₅₋₈-cycloalk(en)ylsulfanyl and C₃₋₈-cycloalk(en)yl-C₁₋₆-alk(en/yn)ylsulfanyl;
m, n, o, p are independently 0 or 1;
X is selected from the group consisting of CH₂, CHR¹₂ and CR³⁻R¹⁴;
Y is selected from the group consisting of CH₂, CHR¹₅ and CR³⁻R¹⁷;
Z is selected from the group consisting of CH₂, CHR¹₈ and CR³⁻R¹⁹; and
Q is selected from the group consisting of CH₂, CHR²¹ and CR³⁻R²₃,
wherein R¹⁻R⁷ are independently selected from the group consisting of C₁₋₆-alk(en/yn)yl, C₅₋₈-cycloalk(en)yl and C₃₋₈-cycloalk(en)yl-C₁₋₆-alk(en/yn)yl; or a pharmaceutically acceptable salt thereof.

2-3. (canceled)

4. The compound according to claim 1 wherein R¹ and R² are independently hydrogen and C₁₋₆-alk(en/yn)yl or wherein R¹ and R² together with the nitrogen form a 4-7 membered ring containing zero or one double bond, optionally said ring in addition to said nitrogen comprises one further heteroatom selected from the group consisting of oxygen and sulphur.

5. The compound according to claim 1 wherein R²⁻R³ are independently selected from the group consisting of hydrogen, halogen and C₁₋₆-alk(en/yn)yl.

6. The compound according to claim 1 wherein R⁷ is hydrogen or C₁₋₆-alk(en/yn)yl.

7. The compound according to claim 1 wherein R³⁻R¹² are independently selected from the group consisting of hydrogen, halogen, C₁₋₆-alk(en/yn)yl, di-(C₁₋₆-alk(en/yn)yl) amino, hydroxy and C₁₋₆-alk(en/yn)yl oxy.

8. The compound according to claim 1 wherein X, Y, Z and Q are CH₂.

9. (canceled)

10. A pharmaceutical composition comprising a compound according to claim 1 and at least one pharmaceutically acceptable carrier or diluent.

11. A method for treating a subject suffering from a disease or disorder comprising administering to the subject a therapeutically effective amount of a compound according to claim 1, wherein the disease or disorder is treated by the inhibition of the serotonin transporter.

12-18. (canceled)

19. The method according to claim 11, wherein the disease or disorder is an affective disorder.

20-24. (canceled)

25. The method of claim 19, wherein the affective disorder is a depressive disorder.

26. The method of claim 25, wherein the depressive disorder is selected from the group consisting of major depressive disorder, postnatal depression, dysthymia or depression associated with bipolar disorder, depression associated with Alzheimer’s disease, depression associated with psychosis and depression associated with Parkinson’s disease.

27. The method of claim 19, wherein the affective disorder is an anxiety disorder.

28. The method of claim 27, wherein the anxiety disorder is selected from the group consisting of general anxiety disorder, social anxiety disorder, post traumatic stress disorder, obsessive compulsive disorder, panic disorder, panic attacks, specific phobias, social phobia and agoraphobia.

29. The method of claim 11, wherein the disease or disorder is a pain disorder.

30. The method of claim 29, wherein the pain disorder is selected from a group consisting of fibromyalgia syndrome, overall pain, back pain, shoulder pain, and headache.

31. The method of claim 29, wherein the pain disorder occurs while awake and during daily activities.

32. The method according to claim 11, wherein the disease or disorder is attention deficit hyperactivity disorder.

33. The method according to claim 11, wherein said disease or disorder is stress urinary incontinence.

34. The compound of claim 1, selected from the group consisting of:

- [2-(Benzo[b]furan-3-ylsulfanyl)]-benzyl]-methyl-amine;
- Methyl-[2-(2-methyl-benzofuran-3-ylsulfanyl)]-benzyl]-amine;
- [2-(2-(Benzo[b]furan-3-ylsulfanyl)]-phenyl]-ethyl]-methyl-amine;
- [3-(2-(Benzo[b]furan-3-ylsulfanyl)]-phenyl]-propyl]-methyl-amine; and
- [4-(2-(Benzo[b]furan-3-ylsulfanyl)]-phenyl]-butyl]-methyl-amine; or a pharmaceutically acceptable salt thereof.