WO 2006/035448 A2 || 0000000 0 000 O 0 0 A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
6 April 2006 (06.04.2006)

// S
AP0 00000 0O O O AR

(10) International Publication Number

WO 2006/035448 A2

(51) International Patent Classification: Not classified

(21) International Application Number:
PCT/IL2005/001056

(22) International Filing Date:
29 September 2005 (29.09.2005)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

60/613,942 29 September 2004 (29.09.2004) US

(71) Applicant and
(72) Inventor: ATLAN, Moshe [IL/IL]; 156, 90641 Kokhav
hash’har (IL).

(74) Agent: APPELFELD ZER LAW OFFICE; 29 Lilin-
blum, 65133 Tel-aviv (IL).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,

AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, LY,
MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO,
NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK,
SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ,
VC, VN, YU, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARTPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, 7ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

(84)

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: DYNAMIC FUNCTIONAL PROGRAMMING

10
1 Acquire business logic ‘

1

11
l Write business rules in semiformal language

12
L Result: Initial functional analysis l

13
‘ Automatically complete functional analysis ‘

14
‘ Result: Locally complete functional analysis ‘

|

| Y |

Filter redundant business rules

16
{ Result: Filtered functional analysis ‘
17
Automatically generate source code

17
‘ Prototyped source code ‘

(57) Abstract: The present invention provides a
user-centric method and system for programming software
modules based on automatic source code prototyping
directly from functional requirements. It enables, before
producing any source code, distribution of implemented
business rules among predefined software modules. The
invention is based on the formal characterization of the
properties intrinsic to functional analysis and independent
of any implementation techniques, conditioning the
possibility of implementing business rules as a textually
contiguous set of elementary instructions. The invention
starts with an initial functional analysis wherein the
functional requirements of a system are expressed in terms
of rules. An automatic functional analysis completion
algorithm produces a locally complete functional analysis
from the initial functional analysis. Next, a filtered
functional analysis presents the computational properties
of a correct implementation from the locally complete
functional analysis. Finally, the filtered functional analysis
can be automatically translated into object oriented
program source code.

10

15

20

WO 2006/035448 PCT/IL2005/001056

DYNAMIC FUNCTIONAL PROGRAMMING

FIELD OF THE INVENTION

The present invention relates to software program development. More
particularly it relates to a method for optimizing the modularity of object

oriented programming.

BACKGROUND OF THE INVENTION

Reduced programming effort is an important goal of software
engineering. It is commonly accepted that programming effort is strongly
correlated to source code modularity, which enhances understandability and
facilitates maintenance and reusability [10].Particularly, in areas with high
process variability, such as enterprise resource planning (ERP), there is
strong economic interest in finding methods for optimizing source code
modularity[5].

Object Oriented Programming (OOP) techniques play a central role in
modern software engineering because they enable a high degree of
modularity. However, the full potential of OOP has yet to be realized. Indeed,
there remain tangling code and cross-cutting concerns that break the
modularity of source code. These issues are expressed by source code
segments that are redundant and mix various concerns. They considerably
increase the programming and maintenance effort because they require
taking into account many concerns simultaneously and considering many
potential consequences in other parts of the source code during a local

modification.

10

15

20

25

30

WO 2006/035448 PCT/IL2005/001056

Aspect oriented programming (AOP) techniques have been designed to
overcome limitations of basic OOP techniques regarding the separation of
concerns [7]. They allow aggregation of elementary instructions related to
the same concern regarding to tangling and cross-cutting source code. A
major implementation of the AOP paradigm is Aspect] [1][6][8], which is
based on the abstraction of the functional interaction between classes or
objects into Aspects, which are themselves Java classes. Aspects contain
meta-programming rules that modify, either statically during compilation or

dynamically at run time, the implementation of class or object behaviors.

Nevertheless, AOP does not have any methodology for determining
objective conditions that justify Aspect implementation in a particular case
[3]. Indeed, AOP tools extract the relevant Aspects from implemented source
code. Thus, the Aspect structure is an emergent property of source code at a
given implementation stage. Therefore, it is always possible to reject an
Aspect model since it might result more from a bad object implementation
than from intrinsic properties of the underlying functional analysis or OOP
technique's limitations. Thus, AOP is still based on empirical observations and
on a fundamental hypothesis according to which it is not always possible to
implement the separation of concerns with basic OOP techniques. The lack of
a theoretical basis for AOP prevents leading ERP programmers from
developing AOP projects on an industrial scale.

Program slicing, which was introduced by Weiser in the 1980s [13] for
procedural programming and extended to OOP by Larsen and Harrold in 1996
[9], is a powerful tool for giving a modular view of an isolated program's
statement. The original research of Weiser was motivated by the need for
tools facilitating the debugging operation. The slice of a program with respect
to a set of program elements S is a projection of the program that includes
only program elements that might affect (either directly or transitively) the
values of the variables used at members of S. Slicing allows one to find
semantically meaningful decompositions of programs, where the

decompositions consist of elements that are not textually contiguous in the

2

10

15

20

25

WO 2006/035448 PCT/IL2005/001056

program source code. For broad survey on program slicing and its
applications, see Binkley and Gallagher's work [4], Tip's work [12], and the
Wisconsin program slicing project home page [14].

Program slicing is mainly aimed at software documentation
improvement while Aspect Oriented Programming is a paradigm aimed at
improving source code modularity itself. Therefore, the application of
program slicing to AOP is a novel research topic [2][15][16]. In these
researches, program slicing (or similar algorithms) is used to provide AOP
with analytic method to justify and to analyze aspect composition.

Our invention is based on a similar approach in order to decide and to
implement automatically the best separation of concerns strategy with
respect of the desired functional composition of the different software

modules.

The present invention provides an innovative algebraic theory of
functional analysis, which we refer to as dynamic functional programming
(DFP). DFP makes it possible, working from a functional analeis and before
writing any source code, to decide the best separation of concerns strategy
at the functional requirement level. The starting point, as in program slicing,
is the determination of the reference variable set and of the influence
variable set for each variable assignment statement. Then an aggregation
algorithm decides which statements will be implemented as a textually
contiguous block of instructions and which ones will be delocalized. Finally,
decision rules are used in the automatic implementation of the aggregated
statement by choosing the application of aspect oriented programming or

polymorphism.

The present invention optimizes the modularity level that OOP

techniques can implement thanks to the invention's novel analytic method.

10

15

20

WO 2006/035448 PCT/IL2005/001056

The present invention has many applications in software development.
For example, it can provide ERP solutions with highly adaptive features at low

acquisition and integration cost.

In the present invention one can choose, before coding, the rules
embodied in the functional description to be represented in the final source
code by an aggregated sequence of elementary instructions, referred in the
following as aggregated rules, that significantly decreasing programming

effort and maximizing the reusability of programs' modules.

In this optimized source code, any elementary instruction related to a
given aggregated rule is grouped only with other elementary instructions
related to the same business rule. We refer in the present invention to this
property of source code as “functional connectivity,” which means a formal
definition of separation of concerns at the business rule level. The present
invention optimizes the functional connectivity of the source code, that is a

formal definition of separation of concerns at business rule scale.

When source code has optimized functional connectivity, a
programmer does not need to painfully navigate when implementing a new
business rule. Also, there is no need, before modifying a given business rule,
to carry out an impact analysis to find which source code segments will be

impacted by the modification.

Other objects and advantages of the present invention will become
apparent after reading the present specification and reviewing the

accompanying drawings.

10

15

20

25

WO 2006/035448 PCT/IL2005/001056

BRIEF DESCRIPTION OF THE INVENTION

The present invention optimizes the modularity of object-oriented
programming. This in turn substantially reduces software development and
maintenance costs and enhancing modules reusability, particularly in areas
with a high level of process variability, such as enterprise resource planning
(ERP).

The present invention is a new separation of concerns strategy,
referred to as dynamic functional programming (DFP), which provides the
basis for an original automatic programming engine optimizing the source
code modularity. The present invention substantially reduces programming
effort by translating functional requirements expressed under the form of a
business rule set into modular source code. In the generated source code,
any elementary instruction related to a given rule is textually contiguous only
to other elementary instructions related to the same rule. We refer to this

property of the source code as functional connectivity.

In order to analyze the formal conditions of functional connectivity
conservation in a program source code, we have designed an algebraic
theory of functional analysis, which we refer to as Dynamic Functional

Programming (DFP).

We define the implementation of a functional analysis in the context of

a causal analysis of asynchronous state machine transitions.

We formulate the Causal Equivalence Principle (CEP), which provides
the basis of an automatic functional analysis completion algorithm.

We prove the Reciprocal Cross Disaggregation (RCD) theorem,
establishing the formal conditions under which it is impossible to aggregate
the elementary instructions of two distinct business rules.

10

15

20

WO 2006/035448 PCT/IL2005/001056

The RCD theorem, combined with CEP, provides the basis of an
automatic software engineering process that is suitable for automated,

highly-modular, source code prototyping.

DFP allows bypassing the negative effects of the RCD theorem. DFP
can be advantageously integrated into existing off-the-shelf object designing

and programming tools.

The added value of such a process is particularly high in areas with a
high level of business process variability, such as ERP. For example, software
customization no longer requires parameter setting, rather preprogrammed
software module recombination. Such a software customization process,
called Software Profiling, implies the best compromise between development,
maintenance end integration costs [5].

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 is a generalized flowchart of a preferred embodiment of the
present invention.

FIG. 2 is a diagram of a generic exception management process for
eliminating tangled code coming from transactional logic

management.

DETAILED DESCRIPTION OF THE INVENTION

Programming is a translation task that takes a functional description of
a system's logic and culminates in elementary instructions in programming

language syntax.

10

15

20

25

WO 2006/035448 PCT/IL2005/001056

A common format for functional descriptions, particularly in ERP
applications, is as a set of business rules. This disclosure of the present
invention is based on a system functional description expressed as a set of
business rules. It should be noted that from the I/S (Information System)
perspective, a business rule pertains to the facts of the system that are
recorded as data and to the constraints on changes to the values of those
facts. The business perspective of business rules involves the behavior of
people in the business system, where business should not be understood in a
restrictive way: business refers to human activity in general.This detailed
description starts with an overview of the present invention, followed by a

description of the theoretical basis of the invention, and examples.

FIG. 1 summarizes the major steps by which the present invention

converts the logic of a given system into modular source code:

Step 10 Acquire business logic: Acquire the logic of a system that is to
be implemented into source code. This is usually provided by an expert in the
domain of the system. For example, a business expert could describe in free
text the parts of his business operation (such as billing) that he wants

implemented in an ERP application.

Step 11 Write business rules in semiformal language: A designer (who
is not obliged to have any programation skill) expresses the acquired system
logic in terms of rules Ri for each variable Vi where a rule comprises a causal

part and a functional part, as follows:

Causal part:

Precondition variables PRi: comprise those variables the
recalculation of which causes recalculation of Vi (the Reference
set in Program Slicing). For example, a variable value-added-

tax is a precondition variable for a variable subtotal because a

10

15

20

25

WO 2006/035448 PCT/IL2005/001056

change in the value of the former causes recalculation of the

latter.

Postcondition variables POi: comprises those variables for
which a recalculation of Vi causes their recalculation (the
Influence set in Program Slicing). For example, subtotal is a

postcondition variable of value-added-tax.

Functional part:

The formula according to which Vi is calculated. For example,
subtotal = (1+value-added-tax) (before-taxes-price)

A given rule Ri is a set of elementary rules, each elementary rule being
defined as comprising Vi and either a precondition variable PRi or a
postcondition variable POi. Therefore, for a given rule Ri, the number of
elementary rules equals the total number of its precondition and

postcondition variables.

It will be noted that the designer is free to express each rule Ri in the
manner he finds most convenient: by listing post conditions POi,

preconditions PRi, or a combination of them.

The result at this point is initial functional analysis 12.

Step 13 automatically complete functional analysis: This step is
performed automatically by a program implementing this part of the method
of the present invention. When the designer in step 12 has expressed rule Ri
of var Vi in terms of a set of preconditions PRi and a set of postconditions
POi, then a completion algorithm, based on the causal equivalence principle
(CEP) (defined later in this disclosure), adds Vi to the postcondition set of the
rule of each of these PRi and adds Vi to the precondictions set of the rule of
each of these POi.

10

15

20

25

WO 2006/035448 PCT/IL2005/001056

Thus, each elementary rule is expressed twice in the locally complete

functional analysis.

The result at this point is locally complete functional analysis 14.

Step 15 Filter redundant business rules: Filter the locally complete
functional analysis according to the “reciprocal cross disaggregation” theorem
(RCD) (defined later in this disclosure) by choosing, for every pair of
equivalent elementary rules, one of them to implement. This task is
performed automatically by a program implementing this part of the method

of the present invention.

Filtering can be performed according to various strategies, according
to the desired format for the final program source code. For example:

A implement the elementary rules involving preconditions and remove

the elementary rules involving postconditions

B implement the elementary rules involving postconditions and remove

the elementary rules involving preconditions

Strategy A or B will usually lead to redundant method calls in the final
program source code. These redundant method calls, referred to as
crosscutting instructions in the context of aspect oriented programming,
break the source code modularity. Therefore, one could choose a different

filtering strategy that optimizes the modularity (minimizes crosscutting):

C implement the elementary rules involving preconditions from
precondition variables sets containing more than one variable and
remove the equivalent elementary rules involving postconditions.
After such a strategy has been applied to all the rules, implement the
remaining elementary rules involving postconditions.

Strategy C presents the advantages of minimizing cross-cutting
concerns and being entirely automatic but does not guaranty the desired

WO 2006/035448 PCT/IL2005/001056

distribution of business rules among the software modules that we call
functional distribution. In order to obtain precisely a given functional
distribution, one has to choose the rule to be aggregated by hand :

D for every pair of equivalent elementary rules, choose by hand the

5 one to implement. Thanks to the “reciprocal cross disaggregation”

theorem (RCD) (defined later in this disclosure), the consequences of

such an operation, on the aggregation of the other rules, is
immediately knowable.

The result at this point is filtered functional analysis 16.

10 Step 17 Automatically generate source code: Generate the final
program source code from the implementation results by translating the
filtered rules into the programming language syntax. This task is performed
by the automatically by a program implementing this part of the method of
the present invention.

15 The final result is prototyped source code 18.

We now present a more detailed description of the underlying
principles of the present invention.

In terms of object programming, a class is a set of n attributes, each
of them being defined by its functional interactions with other attributes of
20 the same or other classes. A class instance, an object, is obtained by

assigning values to each of its attributes.

As a consequence, a class can be defined as an n dimension
asynchronous automat.

10

WO 2006/035448 PCT/IL2005/001056

This formalism of state automata presents the advantage of being
dense in the programs space (since it allows defining all the basic logic
operations of a Turing machine) and allows functional programming, which is

very close to functional analysis, from a syntax.point of view.

5 We can define a class C as the following system:
s = fi(E)
15 = f:(E)
(5, = Ju(E)

where s; is a state variable (property) and fi is its state transition

function (method), which depends on the global system state E (state of the

runtime environment).

10 Eis defined by
Sl,l . . . si,l . . . Sp,l
sl,nl . . . si,ni . . . Sp’np

where S—i,;=(Si,j,I,...,.S‘i,j,k,...,.S'i,j,n) is the state vector (class’s attributes

values) of an instance j of the class Ci, written Cij and s, ;, is the attribute k

of the instance j of the class i.

11

WO 2006/035448 PCT/IL2005/001056

The iteration of the state variable s, ;, is written o, ;,. The increment

of o, ,;, triggers a transition of s, ;, according to f;,;(E) (f,-,j,k =filk V(j,l)).

We define the postcondition at attribute s, ;. level as the attributes set
simn that has to be recalculated consequent to a modification of the value of

5 sijx. The postcondition of s« is written i« and is defined by :

Vijk = {sl,m,n;dgi,j,k #0= Dt mn =Pl mn +l}

With additive constraints on indexes i, k, I, n, one distinguishes class
postcondition from attribute postcondition. For instance, if one forces only
k=n, one defines the postcondition down to the lowest level between two

10 attributes of the same class. By forcing i#/, one defines the postcondition

between two different classes.

In order to build a virtual machine providing an execution environment

for DFP, it is necessary to consider the class instance. However, such a
consideration remains outside the scope of the present work, which considers

15 only source code and not the execution environment. Thus, in order to

simplify we will not continue to consider the instance index.

From here on, we will consider only the attribute i of the class j;

s; ;and its postcondition y, ;. On the other hand, E will no longer be the set

of instances state vectors in the execution environment, but rather the set of
20 classes attributes, E=1s, |

The pOStCOﬂditlon rate Of si,j ‘S Ei,j =Card(‘{’,’j).

12

WO 2006/035448 PCT/IL2005/001056

By symmetry, the precondition of s, ; is given by the set of attributes
sy, Whose transition implies the recalculation of s, ;. It is written @Q,;, and

defined by:
Q, j =trsij € Wiy
5 The precondition rate of s, ; is p; ; = Card(Q; ;).

In terms of AOP, the set Q,; is the cross-cutting set induced by the
attribute s, ;. Indeed, without an aggregation strategy, the set of attributes
s;; Whose transition implies the recalculation of s;; is expressed in the
source code by redundant calls to the calculation method of s, ; each time the

10 value of an attribute s5,, changes.

The full business rule of the attribute s, ; is defined by:

l’j
M, ; =(fi,j§Qi,j§‘f’i,j)-

where the calculation method f, ; constitutes the functional part of the
rule, and where the precondition state transitions of s, ;: Q,;;. and its
15 postcondition state transitions: V¥, ;. together constitute the causal part of

the rule.

The complete functional description, called the functional analysis F,
of an implementation Imp is the set of full business rules of all the attributes

F(Imp)={M,-,j}. Since the expression for each attribute s, ;, of the two sets y; ;
20 and Q,; describes completely and locally u;;, such a functional analysis is

called locally complete.

13

WO 2006/035448 PCT/IL2005/001056

We now describe the aggregation of the causal part of the business
rules, putting aside the aggregation of the functional part. The aggregation
conditions of the functional part depend more on considerations related to
implementation techniques, such as transactional logic management or the

5 localization of all the information necessary to compute locally a transition

(see later discussion analyzing sources of tangled code).

Let the filtering rule operator be:
R%P(M; ;) ={fi,j;Qi,j No;\¥; ; ﬂl’} where (o, p)e (P(E))2

which produces a sub rule ofs;;, M>F from its full rule w,

i,j J I

10 considering only a portion of the consequences on the environment and a

portion of the causes coming from the environment.

In order to simplify the representation of rules, we can rewrite some
rules as follows:

- An unspecified precondition rule of s;; comes from o=¢ and

15 p=¢, it is written M;’J . It is elementary if Card(o)=1.

- The aggregated precondition rule of s;,; comes from o=Q,; and

p=4¢, it is written M?j .

- An unspecified postcondition rule of s, ; comes from o=¢ and p=g¢,

it is written le”’, . It is elementary if Card(p)=1.

»J

20 - The aggregated postcondition rule of s, ; comes from o=¢ and

p=Y¥,,, itis written M;_*’, .

>

14

WO 2006/035448 PCT/IL2005/001056

(4
We can now express the causal equality (indicated by =) between two

unspecified elementary rules as:
. biiJe €, wbi)
(i, j, k1) Mi,j —Mk’l
Indeed:

5 M%.’ll. is the elementary precondition rule of s, ;, which expresses the

effect of a transition of 5., on the transition of s, ;.

M;{;i’j} is the elementary postcondition rule of s, , which expresses the

effect of a transition of s,, on the transition of s, ;.

Thus these two distinct elementary rules of two distinct attributes are

10 causally equal.

The disaggregation of a rule into a set of sub-rules coming from itself

is called a homogeneous disaggregation.

Let the homogeneous disaggregation operator x of an unspecified rule

M{f}!’ be :
15 roazp)-{ ks azp) | reer e)|

which decomposes M,.‘j;” into the set of its card(o) elementary

precondition rules M,.{Z.}" and card(p) elementary postcondition rUIESMi"’j{’}.

15

WO 2006/035448 PCT/IL2005/001056

From causal equality, we can deduce the causal intersection written

4

ﬂ of two unspecified rules by applying the homogeneous disaggregation

operator:

. c o ls; &
[
5 thus MiO}PnMZ’;={Mi{’SJI.€’I}.eX (M;jf)}

We can now formulate the causal equivalence principle (CEP) according to

which a precondition rule M?, exists, in a locally complete functional

s

analysis, in at least two equivalent forms: its natural aggregated form and its

disaggregated postcondition form written M?‘."*’ :

?

10 X (M‘?.FM b {R"&i’j}(’”fm) St € S }

5] i,j

i {M,?,’-"”}EQ"”' } —x[u8)

15 By symmetry, the CEP gives the disaggregated precondition form of an
integrated postcondition rule:

X(MW)iM‘P—mz {R{’i,j}'(MI?m) ;s,,me‘I’i’j}

iJj)

16

10

15

20

WO 2006/035448 PCT/IL2005/001056

In contrast to homogeneous disaggregation of a rule into a set of
elementary rules coming from itself, heterogeneous disaggregation
disaggregates a rule into sub-rules coming from other rules according to the
CEP.

This is precisely the form of disaggregation (or inversely, aggregation)
that induces constraints that condition the conservation of source code

functional connectivity.

Indeed, when a programmer tries to produce the most modular source
code possible, he attempts to aggregate elementary instructions according to
the cardinality of the precondition and postcondition sets. In other words, he
tries to conserve the functional connectivity by implementing the locally
complete functional analysis. However, such an implementation is necessarily
redundant according to the CEP and furthermore breaks the program
consistency.

As a consequence, during programming, the programmer propagates
in his source code some disaggregation constraints that force him to reject

some previous implementation options and he is obliged, at the same time,
to give up the functional connectivity.

We will now formalize these disaggregation constraints.

Let Im p(F) be an implementation of a functional analysis F=1{u, ;} :

m p(F)= 7 |

It is consistent (not redundant) if:

[

o,p N o,p] =
v {Mi,j ’Ml‘c]ﬂ,laaj}dmp(F)' X(Mi,j) nX(Mi?,I)‘¢

17

5

10

15

WO 2006/035448 PCT/IL2005/001056

It is complete if:
[
VM, F, 3 {M,‘:’f}c 1m p(F) such that :{X(M,“”,P)} = x(m; ;)

We write a consistent and complete implementation of F , Imp . (F).

The reciprocal cross disaggregation (RCD) theorem asserts that it is
impossible to aggregate at the same time the postcondition part of a rule

M;; and the precondition part of another rule My, in a consistent

i’j
implementation, if a transition of the attribute s;; implies a transition of the
attribute s, :

Y Q
0o M ke }G Fand s;;€Qp = {M'LJ"MI:,I}eE Im pec (F)

Proof :
, DRk,
X(Mlsc?l)z{Ml&? pk }

since s;; €eQyy

thus M,E’,"fl' e X(M,ff,).

. al e [ki a
Since Mk’lﬂMi,j ={Mk,l’ EX(Mk,I)}’

4
it works out that: M,?,ﬂM,:‘} y

18

10

15

20

25

WO 2006/035448 PCT/IL2005/001056

The RCD theorem provides the constraints to be satisfied by the
aggregation algorithm that produces a consistent implementation from the
locally complete functional analysis. The different aggregation strategies, also

called filtering strategies, are presented above as strategies A, B, C and D.

Once the aggregation strategy has been designed at the level of the
causal part, we still have to decide the implementation techniques for
merging the elementary instructions in the source code. We identify three

such techniques:

- Postcondition aggregation. This is the most natural way to program.
It doesn’t imply any particular object programming or aspect
techniques. It is enough to merge at the same place, in the source
code in the attribute's transition method definition, all the method

calls triggered by the transition of the considered attribute.

- Polymorph precondition aggregation. In some cases, aggregation
can be implemented by polymorphism, merging the method calls of
an attribute’s precondition rule. This aggregation technique is
possible only if all the attributes of the considered precondition set
are inherited from a unique attribute of a common ancestor class.

Indeed, in this case the cross-cutting induced by a precondition set
containing more than one element is an artifact coming from
inheritance. It is therefore natural to solve it with a polymorphism

aggregative mechanism.

- Aspect precondition aggregation. In cases where precondition
aggregation cannot be implemented by polymorphism without
altering the business logic contained in the class model, it is

necessary to implement aggregation using AOP techniques.

19

10

15

20

25

WO 2006/035448 PCT/IL2005/001056

Now that the problem of aggregation of the business rule’s causal part
has been studied, it remains to analyze the functional part’s aggregation,
which conditions the emergence of tangling code. Like cross-cutting
concerns, tangling code breaks the source code modularity. The functional
part of arules, , =(f, ;9 ;;¥; ;) is fi,-

Tangled code occurs when the attribute’s value calculation is

delocalized from the place where the value is set.

The analysis of the tangling code emergence conditions at

implementation level make appear two main sources of tangled code:
- The first source comes from response time optimization.

- The second source comes from transactional logic management.

In both cases, automatic aggregation of the source code remains
possible since the necessary information is included in the dynamic functional

program.

The first source of tangled code, response time optimization, appears
when the programmer is led to delocalize the calculation of an attribute
value. This happens when the necessary information for optimal calculation is

not available locally, where the value is set.

For instance, for optimization reasons one can choose to implement an
attribute’s transition in an incremental way at the place where a differential
appears at the place of a precondition attribute’s value calculation. We find
this case in the following example: an invoice header needs to recalculate the
total weight of the group of delivered products included in the invoice lines,
each time one of these products or its delivered quantity changes. This
calculation could be implemented very simply and locally as the sum of every
line’s weight. But in order to optimize this calculation by avoiding the need to

load every invoice’s line each time one of them changes, the programmer

20

10

15

20

WO 2006/035448 PCT/IL2005/001056

may be led to implement it in an incremental way in the invoice’s line when
either the article changes or the quantity changes. Such an implementation is
optimal in terms of calculation time, but clearly induces tangled code because
the calculation of the invoice header total weight is delocalized among the

invoice lines.

A good compromise allowing simultaneous optimization of the
calculation time and avoidance of tangled code is to conserve in each object
the differential value (or previous value for symbolical attributes) of every
attribute at any time. Then, it is possible to implement the calculation of
every transition in an optimal and local way by passing to the method a

reference of the object where a differential appeared.

Since all the necessary information is naturally contained in the
dynamical functional program, it is easy to perform the automatic translation
from absolute formula to incremental formula at the source code prototyping

stage.

The second source of tangled code is the transactional logic
management, which aims to guarantee data coherence between various
interactive objects. As in the first case, this leads the programmer to
delocalize the calculation instructions from where the attribute’s value is set.
Such a delocalized implementation is motivated by the precedence
constraints arising from the need to first perform all the calculations and then
verify the data relevance, while setting the values is postponed until after the

verification.

21

10

15

20

25

WO 2006/035448 PCT/IL2005/001056

This second source of tangled code can be eradicated by a generic
exception management procedure (FIG. 2) implemented on an application
server 30 using a data base management system (DBMS) 60 and
guaranteeing both data coherence and synchronization between DBMS 60,
the dynamic memory of the application server, and graphical user interface
(GUI) 50. (See also call to such a procedure in sample code implementation
of rule no. 6 provided in discussion of TABLE 3 later in this description.)

The procedure is as follows: state transition is induced 40 at object
level A from GUI 50, which opens a transaction T. A causal chain is triggered
in the transaction T from object A to object C. When an exception 34 is
raised at object level C, it cancels the transaction T by a rollback mechanism
32 at DBMS 60 level, and then reloads 36 the objects in transaction T in the
application server’s dynamic memory, and finally propagates a reload signal
to the opéning transaction point at GUI 50 level.

The transactional structure is naturally represented in the dynamic
functional program’s causal graph as the different paths from root nodes

(attributes s, , with an empty precondition set, p;;= 0) to terminal nodes
(attributes s, ; with an empty postcondition set, &, ;= 0). Thus, it is possible

to automatically generate instructions requesting the activation of an
application server’s synchronization mechanism at source code prototyping

stage.

Such a process allows the programmer to ignore transactional logic
management and lets him aggregate freely the implementation of the

functional part.

At this point, we have:

- An aggregating algorithm that rearranges the causal parts of the

business rules contained in a given functional analysis, in order to

22

10

15

20

25

WO 2006/035448 PCT/IL2005/001056

optimize the functional connectivity of the implementation by

removing cross-cutting concerns.

- Decision rules to guide the choice among different implementation
techniques to implement the aggregation strategy produced by the
aggregating algorithm.

- Heuristic rules for tangle code sources identification, leading to the
aggregation of the business rules' functional part.

Thus we are ready, using the class model and dynamic functional
program, to automate the prototyping of the source code that implements
the best possible level of separation of concerns, on the scale of business

rules.

We now provide a simple billing example to illustrate the aggregation
algorithm. This example is based on a few business rules related to various
bills such as invoices, orders and delivery bills with product movement in the

warehouses.

TABLE 1 (see Appendix) is an example of a look-up table mapping the
logic of business rules describing a business system and expressed in natural
language (functional analysis) (right column) into a dynamic functional
program (DFP) (left column) comprising an initial functional analysis, in

accordance with a preferred embodiment of the present invention.

In the DFP column, after the attribute and its transition function
declaration, its postcondition set is given (shown in braces - {}) according to
the attributes set to be recalculated after the transition. The table also
includes validity constraints (shown in brackets - []). This last feature will
allow us to illustrate the abstraction of the transactional logic at application
server level used to separate functional concerns from non-functional
concerns in order to avoid tangled code.

23

10

15

20

25

WO 2006/035448 PCT/IL2005/001056

At the dynamic functional program level, it is clear that no
programming option has been performed yet. At this level, one finds only the
pure functional description of the problem. It is still possible to implement it

in many different ways.

Still, it is possible to forecast from this functional description, the
cross-cuttings and tangling code problems the programmer will have to deal

with at the programming stage.

TABLE 2 (see Appendix) is the locally complete functional analysis
(described by a causal graph giving, for each attribute: its postconditions and
preconditions) produced by local completion of the initial functional analysis
by application of the CEP (an attribute of the precondition or postcondition
set is prefixed only if its class is different from that one of the attributes

affected by the business rule).

The table is a representation of the bi-directional transition. It
immediately makes apparent the attributes inducing cross-cuttings as well as

the disaggregation constraints.

For instance, rule no. 5 states that modification of a bill header’s after-
tax price (at) does not imply any other transition, it is a terminal node of the
graph. However, every modification of the header’'s VAT (vat) or before-tax
price (bt) implies the calculation of the new after-tax price (at). Thus, the
management of this attribute’s value is a cross-cutting source since it
contains more than one element in its precondition set (VAT and before-tax
price).

To eradicate this cross-cutting source, it is necessary to implement this
business rule according to its precondition aggregated form. At the same
time, in order to satisfy the RCD constraints, the equivalent elementary
subrules set - that is, the occurrences of the attribute SaleBilHeader.at in the
postconditions set of attributes vat and bt- in the rules no. 3 and 4.

24

10

15

20

25

WO 2006/035448 PCT/IL2005/001056

Since the postcondition sets of the attributes VAT (vat) and before tax
(bt) (rules no. 3 and 4) contain only one element (the after-tax-price: at),
the disaggregation of the postcondition parts of rules no. 3 and 4, by
removing an attribute from them, conserves the functional connectivity.

Thus, the local completion of functional analysis by applying CEP and
filtering under RCD constraints eradicates the cross-cutting source coming
from the management of the after taxes (at) attribute of the class bill
header.

TABLE 3 (see Appendix) is the filtered functional analysis, which
exhibits the computational properties (consistency and completeness) of a
correct implementation of the initial functional analysis. This filtered
functional analysis results from filtering under RCD constraints, according to
the filtering strategy C as referred above, of the whole set of locally complete

business rules presented in TABLE 2.

One can verify this implementation is complete and consistent. That is
to say, it contains one and only one occurrence of each business rule present

in the original functional analysis.

First of all, all cross-cutting has been eradicated; each of the attributes
of the postcondition sets column occurs only one time. This will yield a source
code without multiple calls to the same method, which characterizes cross-
cutting. Second, every conserved postcondition or precondition rule has been
conserved according to its aggregated form.

By means of this case study we have demonstrated our main resulit:

the aggregation algorithm converges toward the most modular way of

“implementing a given functional requirement.

It remains only, for each rule, to choose a practical technique for

implementing the produced source code aggregation strategy and to

25

10

15

20

25

WO 2006/035448 PCT/IL2005/001056

generate the corresponding source code according to the syntax of the
selected programming language. As mentioned earlier in this disclosure,
aspect-oriented, polymorphic, and basic object-oriented programming

techniques for doing so are well known to those skilled in the art.

The following samples (with reference to TABLE 3) illustrate the
produced source code implemented in Java (trademark of Sun Microsystems,

Inc.) programming language.

The following is a precondition aggregate example implementing rule
no. 6. In this case, the aggregation of the causal part of the rule is
implemented in the most natural way by calling the methods updating the
line's before-taxes-price and the header’s weight just after the update of the

line’s quantity.
public class SaleBilLine {
Public void setQ (BigDecimal q)' throws Exception {
This.DeltaQ = q - this.q;
this.q = q;
try {getSaleBillHeader.updateWeight (this);}

catch (RollBackException) e)
{getSession().rollback(e.getTransaction); throw e}

this.computeBeforeTaxesPrice(),;

This simple code example also demonstrates the aggregation of the
functional part of the rule managing the header’s weight thanks to differential
calculus and to the transactional logic abstraction (catch etc.) at application

server level as described previously (with reference to FIG. 2).

26

10

15

20

25

WO 2006/035448 PCT/IL2005/001056

Each time a line's quantity is updated, the quantity’s differential is also
updated. The header weight's method receives a reference to the line itself
that calls it. Then the weight update at header level is performed in an
incremental way, without requiring loading of all the lines, and locally (see
the method’s call above and the method implementation below).

Moreover, the validity constraint on the header weight is managed
according to transactional logic thanks to the exception propagation
mechanism describ_ed previously (with reference to FIG. 2) without any
tangling code. This mechanism refers, in the previous code example, to the
rollback invocation inside the try-catch block. The following code example
shows the incremental calculus of the header's weight attribute and the
origin of the exception propagation mechanism by throwing a
RollIBackException.

public class SaleBillHeader {
void updateWeight (SaleBilLine sbl) throws Exception {
weight += sbl.getDeltaQ () * sbl.getArticle.getUnitWeight(),;
if (weight.doubleValue() > maxW)

throw new RollBackException (this.getTransaction()),;

This example is a good illustration of how the information contained in
the PFD allows simultaneous aggregation of the causal part of rule no. 6 and
of the functional part of rule no. 2. This is accomplished while also optimizing
the computational time and satisfying the transactional logic thanks to its

abstraction at application server level.

The following is an Aspect-based precondition aggregate example
implementing rule no. 5. The condition of Aspect requirement is satisfied (the

27

10

15

20

25

WO 2006/035448 PCT/IL2005/001056

two attributes VAT (vat) and before-taxes price (bt) dont come from a

common ancestor).
public aspect SaleBilAfterTaxesPrice {
pointcut calculationPredicate () :
call (void SaleBilHeader.setVAT ()) ||
call (BigDecimal SaleBilHeader.computeBeforeTaxesPrice ()
after () : calculationPredicate () {

SaleBilHeader.computeAfterTaxesPrice (),;

The following is a polymorph precondition aggregate example
implementing rule no. 13. The condition of Aspect requirement is not
satisfied (the two attributes SaleDeliveryBLine.q and Salelnvoiceline.q come
from one common ancestor SaleBilLine.q). Thus this aggregate can be

conserved by polymorph implementation.
public class SaleDeliveryBLine extends SaleBilLine {

/* Delivery Bill specific operations and SaleBilLine abstract methods

implementation */
}
public class SalelnvoicelLine extends SaleBilLine {

/* Invoice specific operations and -SaleBilLine abstract methods

implementation */

}

public abstract class SaleBilLine {

28

WO 2006/035448 PCT/IL2005/001056

public void setQuantity (BigDecimal q) {
deltaQ = q - this.q,
this.q = q;
String className = this.getClass().getName(),;
5 : Warehouse warehouse = getWarehouse;
If (className.compareTo ("SaleDeliveryBLine”) == (0 ||

className.compareTo (“"SaleInvoiceLine”) ==

warehouse.updateQuantityOut (deltaQ),

10 }

In conclusion, the DFP theory of the present invention makes clear the
major source of pain in object programming. If the programmer doesn’t
analyze the disaggregation constraints that are self-contained in functional

15 analysis, prior to coding, he discovers these RCD constraints while coding
and is continuously led to reject previous implementation options.

Thanks to DFP, it is now possible to anticipate these constraints prior
to producing any source code, which sets the basis of a new methodological
framework which embeds separation of concerns techniques such as aspect

20 oriented programming.

It is possible to consider two different approaches exploiting the DFP
Theory in order to bypass the negative effects of the RCD Theorem on

functional connectivity.

The first approach is automatic source code prototyping, which

25 maximizes the separation of concerns from functional analysis.

29

10

15

20

25

WO 2006/035448 PCT/IL2005/001056

A DFP graph, which is a graphical designing tool, with its integrated
source code prototyping mechanism could be mounted on existing UML
object modeling tools. For the business rules that not have been
implemented as aggregated set of instructions, the program slicing tools may
provide the textually contiguous view of them in the source code. This can
provide a business-rule-driven source code browser for object programming

frameworks.

The second approach is a runtime environment for DFP aimed at
making functional concerns the central concerns of the software engineering
process, moving aside the technical considerations, and providing a user-

centric way of programming software.

Since a dynamic functional program defines the functional
requirements with a set of formalized and local business rules, it is possible
to design a virtual machine that is easily programmable considering only

functional requirements.

The programming language could be produced by hybridizing a
functional language such as LISP or PROLOG and an object language such as
C++ or Java.

By reducing the required programming skill, the methodology and
associated production tools of the present invention make business expertise
play a more important role in software engineering processes. This increases
quality, decreases production and maintenance costs.

It should be clear that the description of the embodiments and
attached Figures set forth in this specification serves only for a better
understanding of the invention, without limiting its scope as covered by the

following Claims.

30

10

15

20

25

WO 2006/035448 PCT/IL2005/001056

It should also be clear that a person skilled in the art, after reading the
present specification could make adjustments or amendments to the
attached Figures and above described embodiments that would still be

covered by the following Claims.

REFERENCES

[1]Aspect] home page. http://www.aspectj.org.

[2]Balzarotti D. and Monga M. 2004. Using program slicing to analyze
aspect-oriented composition. In Proceedings of Foundations of Aspect-
Oriented Languages Workshop at AOSD 2004.

[3]Bakker J. and Tekinerdogan B. 2005. Characterization of Early Aspects
Approaches. In Proceedings of the International Conference on Aspect-
Oriented Software Development, 2005, March 14-18, Chicago, USA.
2005.

[4]Binkley D.W. and Gallagher K.B. 1996. Program Slicing. Advances in
Computers, Vol. 43:pp. 1-50.

[5]Bouaziz P. and Seinturier L. From Software Parameterization to
Software Profiling. 2001. In Awais Rashid and Lynne Blair (eds.).
Proceedings of the International Workshop Lancaster University, UK.
pp 8 - 12.

[6]Kiczales G., Hilsdale E., Hugunin J., Kersten M., Palm J. and Griswold
W. 2001. An overview of Aspect]. In Proceedings of the 15th European
Conference on Object-Oriented Programming (ECOOP'01), Lecture

Notes in Computer Science.

[7]Kiczales G., Lamping J., Mendhekar A., Maeda C., Lopes C., Loingtier
J.M. and Irwin J. 1997. Aspect-Oriented Programming. In Proceedings
of the 11th European Conference on Object-Oriented Programming
(ECOOP'97), Lecture Notes in Computer Science. pp 220-242.
Springer.

31

WO 2006/035448 PCT/IL2005/001056

[8]Laddad R. 2003. Aspect] in Action. Manning. ISBN 1-930-11093-6.

[9]Larsen L. and Harrold M.]. 1996. Slicing object-oriented software. In
Proceedings of the 18th international conference on Software
engineering, Vol. 21, pp 495-505

5 [10] Parnas D. 1972. On the criteria to be used in decomposing systems
into modules. In Communications of the ACM 15, 12. pp 1053-1058.

[11] Rumbaugh J., Jacobson I. and Booch G. 2004. Unified Modeling
Language Reference Manual. Addison-Wesley.

[12] Tip F. 1995. A Survey of Program Slicing Techniques. Journai of
10 Programming Languages, Vol.3, No.3, pp.121-189.

[13] Weiser M. Program Slicing. 1981. in Proceedings of the Fifth
International Conference on Software Engineering, pp 439-449.

[14] Wisconsin Program-Silicing Project home page.
http://www.cs.wisc.edu/wpis/html/#disclaimer.

15 [15] Zhang C. and Jacobsen H.-A. 2003. A Prism for Research in
Software Modularization Through Aspect Mining. Technical
Communication, September 2003, Middleware Systems Research
Group, University of Toronto.

[16] Zhao J. 2002. Slicing Aspect Oriented Software. In Proceeding of
20 the 10th IEE International Workshop of Programming Comprehension.
Pages 251 - 260, June 2002.

32

WO 2006/035448

PCT/IL2005/001056

APPENDIX
TABLE 1
DFP Business rules in natural language
SaleBillHeader Sale bill header

customer; {vat}

weight = Sum line = 1, nbLines - (4 *
art.weight); {}; [weight < MaxWeight]

vat = customer.vat; {at}
bt = Sum (line ; - 1, nbLines . bt); {at}

at = ht * (1 + vat / 100);

If the customer changes, update the
VAT.

The total weight is the sum of line's
quantity multiplied by the line’s unit article
weight over the lines; Updating the total
weight does not affect other attributes; The
total weight should be less than the
parameter MaxWeight value.

By default, the VAT is the customer’s
VAT, If the VAT changes, update the after-
taxes-price (at).

Before-taxes-price (bt) = sum of lines bt
prices; if the bt changes, update the at
price.

After-taxes-price = bt « (1 + vat /
100) ;

SaleBillLine
q = 1; {bt, header.weight}

art; {q}

bt = q « art.price; {header.bt}

Sale bill line

By default, the quantity is 1. If it
changes, update the bt price and the
header’s weight.

At article setting, initialize the quantity.

bt = quantity * article unit price; If the
bt price changes, update the header before-
taxes-price.

SaleOrderLine extends SaleBillLine

q; {warehouse.qRes}

Order line (is a particular case of the
general sale bill line)

If the quantity changes, update the
reserved quantity of the associated
warehouse.

33

WO 2006/035448

PCT/IL2005/001056

TABLE 1

DFP

Business rules in natural language

SaleDeliveryBLine extends SaleBillLine

q; {warehouse.qOut}

Deliver bill line (is a particular case of the
general sale bill line)

If the quantity changes, update the
quantity that went out of the associated
warehouse.

SalelInvoiceline extends SaleBillLine

q; {warehouse.qOut}

Invoice line (is a particular case of the
general sale bill line)

If the quantity changes, update the
quantity that went out of the associated
warehouse.

WareHouse
aln ; {q}

qout ; {q}

gRes ; {qAvl}

gAvl = q - qRes ;

q = gIn - qOut ; {qAvl}

Warehouse

If the entered quantity changes, update
the current quantity.

If the quantity that went out of the
warehouse changes, update the current
quantity.

If the reserved quantity changes, update
the available quantity. ’

Available quantity = current quantity -
reserved quantity.

Current quantity = entered quantity -
left quantity; if the current quantity
changes, update the available quantity.

TABLE 2

Business Rule

Postcondition

Precondition

1| SaleBilHeader.customer |vat

2 | SaleBilHeader.weight SaleBilLine.q

3 | SaleBilHeader.vat at customer
SaleBilHeader.bt at SaleBilLine.bt
SaleBilHeader.at vat, bt

) 0 &

SaleBilLine.q

SaleBilHeader.weight, bt |art

34

WO 2006/035448

PCT/IL2005/001056

TABLE 2

Business Rule Postcondition Precondition
7 | SaleBilLine.art q
8 | SaleBilLine.bt SaleBilHeader.bt q
9 | SaleOrderLine.q Warehouse.qRes
10| SaleDeliveryBLine.q Warehouse.qOut
11 | Salelnvoiceline.q Warehouse.qOut
12 | Warehouse.qgln q
13 | Warehouse.qOut q SaleDeliveryBLine.q,

Salelnvoiceline.q
14 | Warehouse.qRes qAvi SaleOrderLine.q
15| Warehouse.gAvl gRes, q
16 | Warehouse.q gAvl QIn, qOut
TABLE 3

Business Rule Postcondition Precondition
1| SaleBilHeader.customer |vat
2 | SaleBilHeader.weight
3 | SaleBilHeader.vat
4 | SaleBilHeader.bt
5 | SaleBilHeader.at vat, bt
6 | SaleBilLine.q SaleBilHeader.weight,

bt

7 | SaleBilLine.art q
8 | SaleBilLine.bt SaleBilHeader.bt
9 [SaleOrderLine.q Warehouse.qRes

35

WO 2006/035448

PCT/IL2005/001056

TABLE 3

Business Rule

Postcondition

Precondition

10

SaleDeliveryBLine.q

11

SalelnvoicelLine.q

12

Warehouse.qln

13

Warehouse.qOut

SaleDeliveryBLine.q,
Salelnvoiceline.q

14 | Warehouse.qRes
15 | Warehouse.qAvi dRes, q
16 | Warehouse.q QIn, qOut

36

10

15

20

25

WO 2006/035448 PCT/IL2005/001056

CLAIMS

1. In a computer system having a processor and memory, a method for

‘dynamically optimizing the modularity of object oriented implementation

of functional requirements, said method comprising of:

defining each class as asynchronous state automat, wherein

state is the set of class’s attributes’ values;

for each given attribute, in accordance with the functional
requirements, defining the precondition set of all attributes
wherein a change in their value affect the value of said given

attribute;

for each given attribute, in accordance with the functional
requirements, defining the postcondition set of all attributes
wherein a change in the value of said given attribute affect the

value of attributes of the postcondition set;

for each attribute defining a rule, in accordance with the
functional requirements, said rule comprising the precondition
set of said attribute, postcondition set of said attribute and the
formula according to which said attribute changes its value.

- filtering each pair of elementary rules, said elementary
rule comprising either a precondition of a given attribute or a
post condition of another attribute, each expressing the same
causality, where filtering comprises selecting whether to
implement the precondition or the postcondition of the pair
according to a given filtering strategy;

- generating the program source code implementing the
selected postconditions and preconditions.

2 The method of claim 1 wherein the rule for any attribute s, ; , wherein i

is the class index and j is the attribute index, is defined as:

37

10

15

20

25

WO 2006/035448 PCT/IL2005/001056

Mi,j =(,f},j;Qi,j;lPi,j)'
where f, ; is the transition method for calculating the new value
of attribute s, ;, Q,;is the precondition set of s;;, and ¥, ;. is

postcondition set of s, ;.

The method of claim 2 wherein the calculation of a new value of s, ; is

triggered by a change in a value of an attribute in the precondition set

Qi,j'

The method of claim 1 wherein the calculation of a new value of s, ;

triggers a change in the value of each attribute in the postcondition set

lP’,_] .

The method of claim 1 wherein the given filtering strategy comprises

removing the elementary rules involving postconditions.

The method of claim 1 wherein the given filtering strategy comprises

removing the elementary rules involving preconditions.
The method of claim 1 wherein the given filtering strategy comprises :

- removing the elementary rules involving postconditions
equivalent to the elementary rules involving preconditions from

precondition variables sets containing more than one variable.

- Removing the elementary rules involving preconditions from
precondition variables sets containing only one variable.

The method of claim 1 wherein the given strategy comprises selecting
from a graphical interface, the elementary rule to be implemented

among each equivalent elementary rules pair.

The method of claim 2 wherein the generation of the program source
comprises implementing the postcondition set and precondition set, of
every attribute, remaining after filtering.

38

10

15

20

25

30

WO 2006/035448 PCT/IL2005/001056

10

11.

12.

13.

14.

The method of claim 9 wherein the implementation of the
postcondition set of a given attribute comprises merging in the given
attribute's transition method source code, all the transition method calls
of all the attributes in the post condition set, said calls triggered by a

change in the value of the given attribute .

The method of claim 9 wherein the implementation of the precondition
set of a given attribute comprises calling only one time the transition
method of the given attribute, by means of either polymorph merging or
aspect merging, after a value change occurs in anyone of the attributes
of the precondition set.

The method of claim 11 wherein polymorph merging, which is only
possible if all the attributes of the given attribute's precondition set are
inherited from the same common ancestor, comprises calling only one
time the transition method of the given attribute in the transition
method of the common ancestor of all the attributes of the precondition

set.

The method of claim 11 wherein aspect merging comprises calling only
one time the transition method of the given attribute in the after()
clause of an aspect pointcut containing a call statement for every
transition method of every attribute of the given attribute's precondition
set.

The method of claim 11 further adapted for managing generic
exceptions by removing tangled code arising from transactional logic
management, the method comprising providing a system comprising a
graphical user interface for system management, an application server,
and a relational database management module, the system configured
so that a signal from the graphical user interface opens a transaction by
calling a method of an object on the application server, the called
method in turn calling other methods of other objects or of the same

object, the sequence of method calls continuing up to a final call

39

10

15

20

25

30

WO 2006/035448 PCT/IL2005/001056

15.

16.

determining the natural end of the transaction; the managing generic

exceptions method further comprising:

upon an exception, at an object method level in a current
transaction, canceling the transaction at the relational database

management module level by a rollback mechanism;

reloading the objects involved in the transaction to the application
server’'s dynamic memory from the relational database
management module and back-propagating a reload signal to
the graphical user interface, forcing the graphical user interface
to refresh the displayed data according the state of objects in
application server dynamic memory, after they have been

reloaded.
The method of claim 1 implemented on a computer-readable medium.

A computer system for dynamic optimization of the modularity of object
oriented implementation of functional requirements, said system

comprising a processor and memory, the processor configured to:

- define each class as asynchronous state automat, wherein state
is the set of class’s attributes’ values;

- for each given attribute, in accordance with the functional
requirements, define the precondition set of all attributes
wherein a change in their value affect the value of said given

attribute;

- for each given attribute, in accordance with the functional
requirements, define the postcondition set of all attributes
wherein a change in the value of said given attribute affect the

value of attributes of the postcondition set;

for each attribute define a rule, in accordance with the functional
requirements, said rule comprising the precondition set of said
attribute, postcondition set of said attribute and the formula

according to which said attribute changes its value.

40

10

15

WO 2006/035448 PCT/IL2005/001056

17.

18.

19.

filter each pair of elementary rules, said elementary rule comprising
either a precondition of a given attribute or a post condition of
another attribute, each expressing the same causality, where filtering
comprises selecting whether to implement the precondition or the

postcondition of the pair according to a given strategy;

generate the program source code implementing the selected

postconditions and preconditions.

The system of claim 16 adapted for automated source code prototyping,
the system further comprising a computing device adapted to provide a
graphical designing tool with an integrated source code prototyping

mechanism.

The system of claim 17, configured to allow a textually contiguous view
of business rule implementations in source code, thereby providing a
business-rule-driven source code browser for object programming
frameworks.

The system of claim 17 wherein the graphical designing tool is

implemented on an object modeling tool.

41

WO 2006/035448

PCT/IL2005/001056

112

10
Acquire business logic

11
Write business rules in semiformal language

12
Result: Initial functional analysis

13
Automatically complete functional analysis

14
Result: Locally complete functional analysis

15
Filter redundant business rules

16
Result: Filtered functional analysis

17
Automatically generate source code

17
Prototyped source code

FIG. 1

WO 2006/035448

60

2/2

30

>

PCT/IL2005/001056

Application Server
< 32

(

DBMS

U

—— . ——— — — — — — — — — - & — — —— —— = — — — —

T.RollBack

Réload
® Exception]
b d |

o

Open Trans\action T

3 /T3

50

)

40/

GUI
Form

FIG. 2

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

