
(12) STANDARD PATENT (11) Application No. AU 2005332284 B8
(19) AUSTRALIAN PATENT OFFICE

(54)

(51)

Title
Data-mover controller with plural registers for supporting ciphering operations

International Patent Classification(s)
HO4L 9/18 (2006.01) HO4L 9/00 (2006.01)
G06F 13/00 (2006.01) HO4L 29/06 (2006.01)
G06F21/00 (2006.01) GO6F 12/00 (2006.01)

(21)

(87)

(31)

Application No: 2005332284

WIPO No: W005/117329

Priority Data

(22) Date of Filing: 2005.05.06

Number
60/573,789
10/878,729

(32) Date
2004.05.24
2004.06.28

(33) Country
US
US

(43)
(43)
(44)
(48)

(71)

(72)

(74)

(56)

Publication Date:
Publication Journal Date:
Accepted Journal Date:
Corrigenda Journal Date:

2007.01.11
2007.01.11
2008.05.29
2008.08.14

Applicant(s)
InterDigital Technology Corporation

Inventor(s)
Gazda, Robert G.;Hepler, Edward L.

Agent Attorney
Watermark Patent Trademark Attorneys, Level 2 302 Burwood Road, Hawthorn, VIC,
3122

Related Art
3GPP TS 35.201 v3.2.0
WO 2002/101977 Al
US 2003/0215090 Al

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization

International Bureau

(43) International Publication Date
8 December 2005 (08.12.2005)

1111111111lll 11111111111 11111 1111 lllllllllllllllllllllllllllllllllllll lllll11111l 1111111111 1 l
(10) International Publication Number

WO 2005/117329 A2PCT

(51) International Patent Classification 7

(21) International Application Number:
P(

(22) International Filing Date: 6 May

H04L 9/00

:T/US2005/016026

2005 (06.05.2005)

Filing Language:

(26) Publication Language:

Priority Data:
60/573,789
10/878,729

3151 GAZDA, Robert, G. [US/US]; 28 Highgate
Circle, Spring City, PA 19475 (US).

(74) Agent: BALLARINI, Robert, Volpe and Koenig, P.C.,
United Plaza, Suite 1600, 30 South 17th Street, Philadel-
phia, Pennsylvania 19103 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA,
MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM,
PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY,
TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU,
ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO,

[Continued on next page]

24 May 2004 (24.05.2004)
28 June 2004 (28.06.2004)

O

C

C

(71) Applicant (for all designated States except US): INTER-
DIGITAL TECHNOLOGY CORPORATION [US/US];
300 Delaware Avenue, Suite 527, Wilmington, Delaware
19801 (US).

(72) Inventors; and
Inventors/Applicants (for US only): HEPLER, Edward,
L. [US/US]; 794 Bass Cove, Malvern, Pennsylvania 19355-

(54) Title: DATA-MOVER CONTROLLER WITH PLURAL REGISTERS FOR SUPPORTING CIPHERING OPERATIONS

DATA PROCESSING SYSTEM 100
D M140 NO

135 155 64BITSx4 G

145 1 5 u

1 -165

SDR

SM R MEM(

130 CIPHERING X
G

ENGINE

G 128

DATA MOVER CONTROLLER
(REGISTERS/COUNTERS)

12

PROCESSOR L
(CONTROL CPU)

(57) Abstract: A data processing system ciphers and transfers data between a first memory unit and a second memory unit, such
as, for example, between a share memory architecture (SMA) static random access memory (SRAM) and a double data rate (DDR)
synchronous dynamic random access memory (SDRAM). The system includes a ciphering engine and a data-mover controller. The
data-mover controller includes at least one register having a field that specifies whether or not the transferred data should be ciphered.
If the field specifies that the transferred data should be ciphered, the field also specifies the type of ciphering that is to be performed,
such as a third generation partnership project (3GPP) standardized confidentially cipher algorithm "f8" or integrity cipher algorithm
"f9".

W O 2005/117329 A2 111111111 1111111111111111 11111 1111111 liii 11111111111 111111111111 iii 1111IlI

SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, For two-letter codes and other abbreviations, refer to the "Guid-
GQ, GW, ML, MR, NE, SN, TD, TG). ance Notes on Codes andAbbreviations" appearing at the begin-

Published: ning of each regular issue of the PCT Gazette.

without international search report and to be republished
upon receipt of that report

WO 2005/117329 PCT/US2005/016026

[0001] DATA-MOVER CONTROLLER WITH PLURAL
REGISTERS FOR SUPPORTING CIPHERING OPERATIONS

[0002] FIELD OF THE INVENTION

[0003] The present invention relates to the field of data processing which

may be used for wireless communication applications. More specifically, the

present invention relates to the ciphering and transferring of data between two

different types of memory devices using a data-mover controller and a ciphering

engine.

[0004] BACKGROUND

[0005] Many early Third Generation Partnership Project (3GPP) modems

implement the layer 1 protocol in software. As data rates have increased, the

need for hardware support for some fimunctions has been required. In wireless

communication systems such as 3GPP, Global System for Mobile

Communications (GSM) and Universal Mobile Telecommunications Systems

(UMTS), hardware modules have recently been introduced to act as accelerators

for some of the more compute-intensive operations.

[0006] One such operation is ciphering, whereby the manipulation of

encryption keys and the actual encryption of data increases required processing

capacity in proportion to the amount of data being manipulated. Within the

security architecture ofa 3GPP system, there are two standardized algorithms: a

confidentially cipher algorithm "f8" and an integrity cipher algorithm "f9".

[0007] A means for efficiently performing ciphering calculations while data

is being moved from one memory layer) to another is desired.

[0008] SUMMARY

[0009] A data processing system ciphers and transfers data between a

first memory unit and a second memory unit, such as, for example, between a

share memory architecture (SMA) static random access memory (SRAM) and a

double data rate (DDR) synchronous dynamic random access memory (SDRAM).

The system includes a ciphering engine and a data-mover controller. The data-

00
mover controller includes at least one register having a field that specifies

whether or not the transferred data should be ciphered by the ciphering engine.

If the field specifies that the transferred data should be ciphered, the field

may also specify the type of ciphering that is to be performed by the ciphering

engine, such as a 3GPP standardized confidentially cipher algorithm "f8" or

integrity cipher algorithm "f9".

00 The register may include another field which specifies a message
(N

N authentication code (MAC) value calculated by the standardized integrity cipher

algorithm f9 calculation.

The register may :nclude yet another field which specifies whether data is

moved from the first memory unit to the second memory unit, or from the second

memory unit to the first memory unit. The first and second memory units may

differ in processing speed.

The register may include yet another field which specifies the size of a

block of data to be transferred by the data-mover controller. The data block size

may be four bytes, eight bytes, sixteen bytes or thirty-two bytes.

The register may include yet another field which specifies the number of

data blocks to be transferred by the data-mover controller.

The register may include yet another field which specifies whether an

interrupt pulse should be generated when the transfer of data is completed.

The register may include yet another field which specifies a value

embedded in a cipher header and processed by the ciphering engine.

The register may include yet another field which specifies an encryption

length.

The register may include yet another field which specifies a value

embedded in an encrypted header and processed by the ciphering engine.

The register may include yet another field which specifies a key used by

the ciphering engine for ciphering the data as it is moved. The key may be a 128-

bit key.

According to a first aspect, the present invention provides a data

processing system for ciphering and transferring data between a first memory unit

and a second memory unit, the system including:

00
a ciphering engine for ciphering data while it is being transferred between

the memory units;

a data-mover controller including at least one register having a first field

specifying whether or not the transferred data should be ciphered by the ciphering

engine;

a processor electrically coupled to the first memory unit and the second

00 memory unit for writing a control block into the first memory unit, the control block

including control parameters needed to configure the data-mover controller, and

for outputting a control signal to the data-mover controller to initiate a data moving

operation;

a first controller electrically coupled to the first memory unit, the data mover

controller and the processor for controlling the first memory unit; and

a second controller electrically coupled to the second memory unit, the

data mover controller and the processor for controlling the second memory unit,

wherein the data-mover controller retrieves the control block from the first

memory unit in response to receiving the control signal from the processor, and

the data-mover controller determines which type of function is to be performed

based on the control parameters in the retrieved control block.

According to a further aspect, the present invention provides an integrated

circuit (IC) for ciphering and transferring data between a first memory unit and a

second memory unit, the IC including:

a ciphering engine for ciphering data while it is being transferred between

the memory units;

a data-mover controller including at least one register having a first field

specifying whether or not the transferred data should be ciphered by the ciphering

engine;

a processor electrically coupled to the first memory unit and the second

memory unit for writing a control block into the first memory unit, the control block

including control parameters needed to configure the data-mover controller, and

for outputting a control signal to the data-mover controller to initiate a data moving

operation;

a first controller electrically coupled to the first memory unit, the data mover

controller and the processor for controlling the first memory unit; and

00
O a second controller electrically coupled to the second memory unit, the

data mover controller and the processor for controlling the second memory unit,

C wherein the data-mover controller retrieves the control block from the first

memory unit in response to receiving the control signal from the processor, and

the data-mover controller determines which type of function is to be performed

based on the control parameters in the retrieved control block.

00 According to a still further aspect, the present invention provides a wireless
(N

transmit/receive unit (WTRU) for ciphering and transferring data between a first

memory unit and a second memory unit, the WTRU including:

a ciphering engine for ciphering data while it is being transferred between

the memory units;

a data-mover controller including at least one register having a first field

specifying whether or not the transferred data should be ciphered by the ciphering

engine;

a processor electrically coupled to the first memory unit and the second

memory unit for writing a control block into the first memory unit, the control block

including control parameters needed to configure the data-mover controller, and

for outputting a control signal to the data-mover controller to initiate a data moving

operation;

a first controller electrically coupled to the first memory unit, the data mover

controller and the processor for controlling the first memory unit; and

a second controller electrically coupled to the second memory unit, the

data mover controller and the processor for controlling the second memory unit,

wherein the data-mover controller retrieves the control block from the first

memory unit in response to receiving the control signal from the processor, and

the data-mover controller determines which type of function is to be performed

based on the control parameters in the retrieved control block.

WO 2005/117329 PCT/US2005/016026

[0020] BRIEF DESCRIPTION OF THE DRAWINGS

[0021] A more detailed understanding of the invention may be had from the

following description, given by way of example and to be understood in

conjunction with the accompanying drawings wherein:

[0022] Fig. 1 is a diagram of a data processing system for ciphering and

transferring data from one memory to another in accordance with a preferred

embodiment of the present invention;

[0023] Fig. 2 shows an exemplary configuration of registers incorporated

into a data-mover controller;

[0024] Fig. 3 shows a register defining the data-mover controller starting

address for source accesses from SDRAM;

[0025] Fig. 4 shows a register defining the data-mover controller starting

address for destination accesses to SDRAM;

[0026] Fig. 5 shows a register defining the data-mover controller starting

address for source accesses to SMA memory;

[0027] Fig. 6 shows a register defining the data-mover controller starting

address for destination accesses to SMA memory;

[0028] Fig. 7 shows a register defining the number of blocks to be moved

between SDRAM and SMA memory;

[0029] Fig. 8 shows a register specifying the mode of the data-mover

controller;

[0030] Fig. 9 shows a register defining a count value embedded in a cipher

head;

[0031] Fig. 10 shows a register defining a fresh value embedded in the

cipher head;

[0032] Fig. 11 shows a register defining a bearer and direction value that

must be placed in the encrypted header and the total number of bits to be

encrypted;

[0033] Fig. 12 shows a register defining a 128-bit key used for ciphering

during data movement; and

WO 2005/117329 PCT/US2005/016026

[0034] Fig. 13 shows a register which provides a calculated Message

Authentication Code (MAC) value.

[0035] DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT(S)

[0036] The preferred embodiments will be described with reference to the

drawing figures where like numerals represent like elements throughout.

[0037] Preferably, the present invention disclosed herein is incorporated

into a wireless transmit/receive unit (WTRU) and/or a Node B. However, it is

envisioned that the just about any wireless communication scheme could benefit

from the present invention.

[0038] Hereinafter, a WTRU includes but is not limited to a user

equipment, mobile station, fixed or mobile subscriber unit, pager, or any other

type of device capable of operating in a wireless environment. Furthermore, a

Node B includes, but is not limited to, a base station, site controller, access point

or other interfacing device in a wireless environment.

[0039] The features of the present invention may be incorporated into an

integrated circuit (IC) or be configured in a circuit comprising a multitude of

interconnecting components.

[0040] The present invention is applicable to communication systems using

time division duplex (TDD), frequency division duplex (FDD), code division

multiple access (CDMA), CDMA 2000, time division synchronous CDMA

(TDSCDMA), orthogonal frequency division multiplexing (OFDM) or the like.

[0041] The present invention, like many other modem implementations,

has hardware modules (accelerators) to implement data processing functions.

The present invention uses a shared memory to reduce the number of existing

memory instances. Hardware modules and a processor access this memory.

[0042] By using a single memory versus many small dedicated memories,

the die size of an Application-Specific Integrated Circuit (ASIC) version of a

circuit, such as for a modem or the like, is reduced. This memory typically needs

to be very fast. Fast memory (SRAM) is typically very expensive and is not as

dense, from an area point of view, as other forms of memory, DRAM. See,

WO 2005/117329 PCT/US2005/016026

for example, U.S. Patent Application No. 10/414,125, filed April 15,2003, entitled

"Software Parameterizable Control Blocks For Use In Physical Layer

Processing," which is incorporated by reference as if fully set forth.

[0043] The present invention also has other memory available to the

processor to store large amounts of data. This memory is implemented by an

external, commercially available DRAM or SDRAM chip. Reordering queues

and other buffers for storage of data being processed for applications are

examples of the uses for this larger, slower memory.

[0044] In accordance with the present invention, a data-mover controller

has been configured as a hardware accelerator in the movement of data between

the fast, hardware accessible memory (SRAM) and the slower, denser memory

(DRAM). Not having the hardware accelerator would mean that the processor

would have to use a software loop to shuffle the data around, thus expending a

large portion of the processor's calculating resources, as measured by Millions of

Instructions Per Second (MIPS).

[0045] Data is often moved in blocks called Protocol Data Units (PDUs) and

Service Data Units (SDUs). These blocks can be encrypted per the 3GPP

standard. The process of encrypting and decrypting is also very demanding on the

processor. It also requires that the data be accessed, processed, and then written

back to memory.

[0046] The present invention combines Direct Memory Access (DMA)

functionality with ciphering and deciphering in a single hardware accelerator,

whereby a data-mover controller not only moves data, but also ciphers or

deciphers the data blocks during the data moving process. This saves time since

there is hardware assistance and the data is already in the process of being

moved. Thus, fewer accesses are required than if separate hardware accelerators

were implemented.

[0047] In some implementations, each hardware accelerator has its own

internal and interface (buffer) memories. The proliferation of many instances of

memories increases the size of ASIC implementations of these designs.

WO 2005/117329 PCT/US2005/016026

[0048] The number of memory instances may be reduced by combining

many of the interface (buffer) memories into a single shared memory. This

memory is accessed by all of the hardware accelerators via a common memory

controller. This memory is typically implemented using high speed SRAM.

Control software directs the hardware accelerators to perform their respective

operations, including where in the shared memory to fetch incoming data and

where in the shared memory to deposit the processed results. The present

invention provides accelerators for all layer 1 operations,

[0049] Higher layer control (layer 2 and 3) also has access to this shared

memory to communicate with layer 1 and to provide the data to be transmitted

and accept data that has been received. Larger, slower, and less dense memories

are often used by layer 2/3 processes to hold data from applications that is

scheduled to be transmitted or to collect and assemble packets of data for delivery

to applications.

[0050] Data must be moved between this slower, less dense memory and

the faster, (more expensive), memory as packets of information are received or

scheduled to be transmitted. These packets must, in some cases, also must be

encrypted and/or decrypted.

[0051] Accelerators that move data and assist in ciphering have been

combined to form the data-mover controller. This combination reduces the

number of accesses that must be performed and relieves the processor from the

expensive process of moving and ciphering the data.

[0052] When the data is moved between layers 1 and 2 or 3, additional

layers of control must often be "wrapped" around the data packets. This is often

represented in the form of a "header" that is attached to the data packet. The

addressing scheme of the data-mover controller accounts for this by permitting

the source and/or destination addresses to include an offset. This permits the

processor to move data from one memory space to another, but offset the

destination data by, for example, 3 bytes. Once the movement has completed, the

processor can write the appropriate header information into the area that was

WO 2005/117329 PCT/US2005/016026

reserved for this purpose through the offset. This reduces the data shuffling that

sometimes occurs when formatting data for the layer 2 or 3 protocols.

[0053] The present invention is a data processing system that can transfer

data between a SMA SRAM and a DDR SDRAM. It can also move data from one

location in a SDRAM to another location in the same SDRAM. While data is

being moved, it can be, if so programmed, passed through logic that performs

ciphering calculations.

[0054] Fig. 1 shows a block diagram of an exemplary data processing

system 100 used for transferring data between an SMA SRAM memory 105 and

an SDRAM 110, while at the same time ciphering or deciphering the data in

accordance with a preferred embodiment of the present invention. An SMA

memory controller 115 serves as an interface between the SMA SRAM 105 and

the data processing system 100. An SDRAM memory controller 120 serves as an

interface between the SDRAM 110 and the data processing system 100. A

processor 125 control CPU) maintains control over the data processing

system 100, the SMA SRAM 105, SMA memory controller 115, the SDRAM 110

and the SDRAM memory controller 120.

[0055] The data processing system 100 includes a data-mover controller

128, a ciphering engine 130, input data registers 135, 140, output data registers

145, 150, input multiplexer (MUX) 155, output MUX 160, and a first-in first-out

(FIFO) register 165.

[0056] The data-mover controller 128 is programmed by writing the

SDRAM 110 address register with the address of the initial word of data to be

accessed in the SDRAM 110 memory space. The SMA SRAM 105 address

register is written with the address of the initial word of data to be accessed in a

memory space in the SMA SRAM 105. A "Num_blocks_to_move" register is

written with the number of data blocks to move. The mode register determines

the direction of data movement from SMA SRAM 105 to SDRAM 110,

from SDRAM 110 to SMA SRAM 105). The size of each block is also

defined, the number of 32-bit words per block. The total number of 32-bit

words transferred is designated as "num_blocks_to_move*block_size". A mode

WO 2005/117329 PCT/US2005/016026

register within the data-mover controller 128 of the data processing system 100

indicates whether data should be transferred directly or whether the data should

pass through the ciphering engine 130 as the data transfer occurs. Writing the

mode register causes the data-mover controller 128 to initiate a data moving

procedure. When data transfer is completed, an interrupt is optionally set by the

data-mover controller 128.

[0057] A step-by-step example will now be described showing a procedure

used by the data processing system 100 to move data from one memory the

SMA SRAM 105) to another memory the SDRAM 110), while passing the

data through the ciphering engine 130. A determination is made to move a block

of data stored in the SMA SRAM 105 to the SDRAM 110. The processor 125 then

writes a control block into the SMA SRAM 105. The control block contains all of

the parameters needed to configure the data-mover controller 128 for the

intended operation. The processor 125 outputs, via a programmed I/O operation,

a control signal a start pulse) to the data-mover controller 128 to initiate a

data moving operation. The data-mover controller 128, (effectively a state

machine), receives the control signal and sequences through a series of states to

retrieve the control block from SMA SRAM 105. This is accomplished by properly

asserting requests from the SMA memory 105 via the SMA memory controller

115. Data from the SMA memory 105 is input into the register 115 and passed to

the appropriate configuration register within the data-mover controller 128.

[0058] Once the associated control parameters have been received, the

information contained therein is interpreted to further direct the data-mover

controller 128 as to what type of function is to be performed. In this example,

data is to be moved from the SMA SRAM 105 to the SDRAM 110. If appropriate,

the data-mover controller 128 causes the cipher header information contained in

the associated registers to pass through the input register 135, input MUX 155,

FIFO 165, ciphering engine 130, MUX 160 and out to the SDRAM 110 via the

output register 150 and the SDRAM memory controller 120. The data-mover

controller 128 continues to sequence through the appropriate states to transfer

WO 2005/117329 PCT/US2005/016026

data from the SMA SRAM 105 until the appropriate number of items has been

transferred.

[0059] If requested, an interrupt is generated by a register within the data-

mover controller 128, indicating that the data movement has been completed.

The data-mover controller 128 then checks to see if another control block is

available to be moved. If so, another data-mover controller procedure is initiated.

[0060] The data-mover controller 128 uses burst accesses to transfer data

to/from the DDR-SDRAM 110 and a single word access to/from the SMA SRAM

105. It is up to the programmer to guarantee that the block size and DDR

SDRAM 110 address are set such that no single SDRAMI burst access will cross

an SDRAM page boundary.

[0061] Fig. 2 shows an exemplary configuration of the registers 205 255 in

the data-mover controller 128 of Fig. 1.

[0062] Fig. 3 shows a register 205 defining the data-mover controller 128

starting address for source accesses reads) to the SDRAM 110 for initiating

data transfers to the SMA SRAM 105 or to the SDRAM 110. The address is a

byte address and must be aligned to an address that conforms to the block size

specified in the "mode" register. The value written to the register relates to the

beginning of the SDRAM address space. The address register may only be

written when the data-mover controller 128 is idle. The least significant bits are

ignored during the access, but are used when ciphering to specify the offset of the

data within the word.

[0063] Fig. 4 shows a register 215 defining the data-mover controller

starting address for destination accesses writes) to the SDRAM 110 for

initiating data transfers from the SMA SRAM 105 or from the SDRAM 110. The

address is a byte address and must be aligned to an address that conforms to the

block size specified in the "mode" register. The value written to the register

relates to the beginning of the SDRAM address space. The address register may

only be written when the data-mover controller 128 is idle. The least significant

bits are ignored during the access, but are used when ciphering to specify the

offset of the data within the word.

WO 2005/117329 PCT/US2005/016026

[0064] Fig. 5 shows a register 210 defining the data-mover controller 128

starting address for source accesses reads) to the SMA SRAM 105. The

value written to the register relates to the beginning of the SMA address space.

The address register may only be written when the data-mover controller 128 is

idle. The least significant bits are ignored during the access, but are used when

ciphering to specify the offset of the data within the word.

[0065] Fig. 6 shows a register 220 defining the data-mover controller 128

starting address for destination accesses writes) to SMA SRAM 105. The

starting address for the data-mover controller 128 is specified for the data-mover

controller 128 to access the SMA SRAM 105. The value written to the register

relates to the beginning of the SMA address space. The address register may

only be written when the data-mover controller 128 is idle. The least significant

bits are ignored during the access, but are used when ciphering to specify the

offset of the data within the word.

[0066] Fig. 7 shows a register 225 defining the number of blocks to be

moved between the SDRAM 110 and the SMA SRAM 105. When initiated, the

data-mover controller will transfer the number of blocks represented by the value

in this register. Each block will consist of the number of 32-bit words specified in

the "bs" field of the mode register.

[0067] Fig. 8 shows a mode register 230 which specifies the mode of the

data-mover controller 128. Various fields 805, 810, 815, 820, 825, within the

mode register 230 may be written to control the activity of the data-mover

controller when in operation.

[0068] An field 805 is read-only and indicates to the processor 195

whether or not logic 0 for not complete or logic 1 for completed) the data

moving operation has been completed.

[0069] A field 810 may be written to indicate whether or not data should

be passed through the cipher engine, and if so which variety of ciphering to

perform. When the field 810 is no ciphering is performed and data

simply passes from the source address space to the destination address space.

When the field 810 is data is moved from the source address space to the

WO 2005/117329 PCT/US2005/016026

destination address space but is passed through the ciphering engine 145 and

encrypted and/or decrypted using the 3GPP "f8" cipher algorithm as the data

movement occurs. When the field 810 is data is accessed from the source

address space and passed through the ciphering engine 145 using the 3GPP "f9"

cipher algorithm, but the data is not stored. The ciphering engine 145 uses the

key and associated control register values to calculate a Message Authentication

Code value that is made available to the processor 195 via the register 255.

[0070] An field 815 may be programmed to generate an interrupt when

the movement of data has completed. When the field 815 is no interrupt

is generated. When the field 815 is the interrupt is generated when the

data movement operation has completed.

[0071] A field 820 identifies one or more memories to be used as the

source and destination address spaces and specifies the direction of data

movement. For example, when the field 820 is data is moved from the

SMA SRAM 105 to the SDRAM 110. When the field 820 is data is

moved from the SDRAM 110 to the SMA SRAM 105. When the field 820 is

data is moved from one location to another within the SDRAM 110. The "d"

field 820 is used to determine which memory address pointers to invoke via

access requests.

[0072] A "bs" field 825 determines the size of each access block that is to be

moved. The "bs" field 825 may be set to a values per block access that indicates

one word four bytes), two words eight bytes), four words

sixteen bytes), or eight words thirty-two bytes). The number of words to

be moved and/or ciphered is predetermined by programming the "bs" field 825

and the number of blocks to move. The total data movement is calculated based

on the product of the value represented by the "bs" field 825 and the number of

blocks specified in register 225.

[0073] Fig. 9 shows a register 235 defining the count value embedded in the

cipher head.

[0074] Fig. 10 shows a register 240 defining a "fresh" value embedded in

the cipher head.

-11-

WO 2005/117329 PCT/US2005/016026

[0075] Fig. 11 shows a register 245 defining a bearer and direction value

that must be placed in the encrypted header and the total number of bits to be

encrypted. Registers 235, 240, and 245 contain values that are written by the

processor 195 that are defined by the 3GPP standards to be included in the

cipher header. When ciphering is included in the data movement, these values

are inserted by the data-mover controller in the appropriate locations. The

encryption length field specifies how many bits are to pass through the cipher

engine. The number of blocks and the number of words per block is

predetermined by a programmer and must account for this length.

[0076] Fig. 12 shows a register 250 defining a 128-bit key used for

ciphering during data movement. The key value is used as described in the 3GPP

standard to encrypt/decrypt data when performing the f8 and f9 cipher

algorithms.

[0077] Fig. 13 shows a register 255 which provides a calculated MAC value.

The f9 cipher algorithm creates a signature using the key value and the values

of the data stream presented to it. This signature is reported as the MAC for use

by the system.

[0078] The description of the registers disclosed herein is exemplary in

nature, whereby other arbitrary definitions could be derived based on a

combination of control fields to perform the same functionality.

[0079] While the present invention has been described in terms of the

preferred embodiment, other variations which are within the scope of the

invention as outlined in the claims below will be apparent to those skilled in the

art.

00
THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

S 1. A data processing system for ciphering and transferring data between a

first memory unit and a second memory unit, the system including:

Sa ciphering enginu for ciphering data while it is being transferred between

the memory units;

o00 a data-mover controller including at least one register having a first field

c specifying whether or not the transferred data should be ciphered by the ciphering

Sengine;

Sa processor electrically coupled to the first memory unit and the second

c 10 memory unit for writing a control block into the first memory unit, the control block

including control parameters needed to configure the data-mover controller, and

for outputting a control signal to the data-mover controller to initiate a data moving

operation;

a first controller electrically coupled to the first memory unit, the data mover

controller and the processor for controlling the first memory unit; and

a second controller electrically coupled to the second memory unit, the

data mover controller and the processor for controlling the second memory unit,

wherein the data-mover controller retrieves the control block from the first

memory unit in response to receiving the control signal from the processor, and

the data-mover controller determines which type of function is to be performed

based on the control parameters in the retrieved control block.

2. The system of claim 1 wherein if the first field specifies that the transferred

data should be ciphered, the first field also specifies the type of ciphering that is

to be performed by the ciphering engine.

3. The system of claim 2 wherein the system is a third generation partnership

project (3GPP) system and the type of ciphering that is to be

IPEAUS
I I ll l :ii iii, 11:11 ii; iB .J il;':ii p ii"i O i Ei,

performed by the ciphering engine is a standardized confidentially cipher

algorithm fB.

4. The system of claim 2 wherein the system is a third generation

partnership project (3GPP) system and the type of ciphering that is to be

performed by the ciphering engine is a standardized integrity cipher

algorithm f9.

The system of claim 4 wherein the register includes a second field

which specifies a message authentication code (MAC) value calculated by the

standardized integrity cipher algorithm f9.

6. The system of claim 1 wherein the register includes a second

field which specifies whether data is moved from the first memory unit to the

second memory unit, or from the second memory unit to the first memory

unit.

7. The system of claim 1 wherein the register includes a second field

which specifies the size of a block of data to be transferred by the data-mover

controller.

8. The system of claim 7 wherein the data block size is four bytes.

9. The system of claim 7 wherein the data block size is eight bytes.

The system of claim 7 wherein the data block size is sixteen

bytes.

11. The system of claim 7 wherein the data block size is thirty-two

bytes.

-14-

AMENDED SHEET

IPEANU8
I iP ,II ,11 f l l i ili l|:i ii ll:ii i, 1 j i E11 j 1 3i i i

12. The system of claim 1 wherein the register includes a sedcnd

field which specifies the number of data blocks to be transferred by the data-

mover controller.

13. The system of claim 1 wherein the first memory is a share

memory architecture (SMA) static random access memory (SRAM).

14. The system of claim 1 wherein the second memory is a

synchronous dynamic random access memory (SDRAM).

The system of claim 1 wherein the first and second memory

units differ in processing speed.

16. The system of claim 1 wherein the register includes a second

field which specifies whether an interrupt pulse should be generated when the

transfer of data is completed.

17. The system of claim 1 wherein the register includes a second

field which specifies a value embedded in a cipher header and processed by

the ciphering engine.

18. The system of claim 1 wherein the register includes a second

field which specifies an encryption length.

19. The system of claim 1 wherein the register includes a second

field which specifies a value embedded in an encrypted header and processed

by the ciphering engine.

The system of claim 1 wherein the register includes a second

field which specifies a key used by the ciphering engine for ciphering the data

as it is moved.

AMENDED SHEET

00

C 21. The system of claim 20 wherein the key is a 128-bit key.

22. An integrated circuit (IC) for ciphering and transferring data between a first

cmemory unit and a second memory unit, the IC including:

a ciphering engine for ciphering data while it is being transferred between

o00 5 the memory units;
c a data-mover controller including at least one register having a first field

Sspecifying whether or not the transferred data should be ciphered by the ciphering

engine;

C a processor electrically coupled to the first memory unit and the second

memory unit for writing a control block into the first memory unit, the control block

including control parameters needed to configure the data-mover controller, and

for outputting a control signal to the data-mover controller to initiate a data moving

operation;

a first controller electrically coupled to the first memory unit, the data mover

controller and the processor for controlling the first memory unit; and

a second controller electrically coupled to the second memory unit, the

data mover controller anl the processor for controlling the second memory unit,

wherein the data-mover controller retrieves the control block from the first

memory unit in response to receiving the control signal from the processor, and

the data-mover controller determines which type of function is to be performed

based on the control parameters in the retrieved control block.

23. The IC of claim 22 whereill if the first field specifies that the transferred

data should be ciphered, the first field also specifies the type of ciphering that is

to be performed by the ciphering engine.

The IC of claim 23 wherein the IC operates in conjunction with a third generation

partnership project (3GPP) system and the type of ciphering that is to be

performed by the ciphering engine is a standardized

ll,;i ,O "11- IPEA/US
confidentially cipher algorithm f8.

The IC of claim 23 wherein the IC operates in conjunction with

a third generation partnership project (3GPP) system and the type of

ciphering that is to be performed by the ciphering engine is a standardized

integrity cipher algorithm f9.

26. The IC of claim 25 wherein the register includes a second field

which specifies a message authentication code (MAC) value calculated by the

standardized integrity cipher algorithm if.

27. The IC of claim 22 wherein the register includes a second field

which specifies whether data is moved from the first memory unit to the

second memory unit, or from the second memory unit to the first memory

unit.

28. The IC of claim 22 wherein the register includes a second field

which specifies the size of a block of data to be transferred by the data-mover

controller.

29. The IC of claim 28 wherein the data block size is four bytes.

The IC of claim 28 wherein the data block size is eight bytes.

31. The IC of claim 28 wherein the data block size is sixteen bytes.

32. The IC of claim 28 wherein the data block size is thirty-two

bytes.

33. The IC of claim 22 wherein the register includes a second field

which specifies the number of data blocks to be transferred by the data-mover

-17-

AMENDED SHEET

controller.

34. The IC of claim 22 wherein the first memory is a share memory

architecture (SMA) static random access memory (SRAM).

The IC of claim 22 wherein the second memory is a synchronous

dynamic random access memory (SDRAM).

36. The IC of claim 22 wherein the first and second memory units

differ in processing speed.

37. The IC of claim 22 wherein the register includes a second field

which specifies whether an interrupt pulse should be generated when the

transfer of data is completed.

38. The IC of claim 22 wherein the register includes a second field

which specifies a value embedded in a cipher header and processed by the

ciphering engine.

39. The IC of claim 22 wherein the register includes a second field

which specifies an encryption length.

The IC of claim 22 wherein the register includes a second field

which specifies a value embedded in an encrypted header and processed by

the ciphering engine.

41. The IC of claim 22 wherein the register includes a second field

which specifies a key used by the ciphering engine for ciphering the data as it

is moved.

42. The IC of claim 41 wherein the key is a 128-bit key.

-18-

AMENDED SHEET

00O

S43. A wireless transmit/receive unit (WTRU) for ciphering and transferring data

between a first memory unit and a second memory unit, the WTRU including:

a ciphering engine for ciphering data while it is being transferred between

the memory units;

a data-mover controller including at least one register having a first field

00 specifying whether or not the transferred data should be ciphered by the ciphering
Nengine;

0 a processor electrically coupled to the first memory unit and the second

memory unit for writing a control block into the first memory unit, the control block

including control parameters needed to configure the data-mover controller, and

for outputting a control signal to the data-mover controller to initiate a data moving

operation;

a first controller electrically coupled to the first memory unit, the data mover

controller and the processor for controlling the first memory unit; and

a second controller electrically coupled to the second memory unit, the

data mover controller and the processor for controlling the second memory unit,

wherein the data-mover controller retrieves the control block from the first

memory unit in response to receiving the control signal from the processor, and

the data-mover controller determines which type of function is to be performed

based on the control parameters in the retrieved control block.

44. The WTRU of claim 43 wherein if the first field specifies that the transferred

data should be ciphered, the first field also specifies the type of ciphering that is

to be performed.

The WTRU of claim 44 wherein the WTRU operates in conjunction with a

third generation partnership project (3GPP) system and the type of ciphering that

is to be performed is a standardized confidentially cipher algorithm f8.

46. The WTRU of claim 44 wherein the WTRU operates in
conjunction with a third generation partnership project (3GPP) system and
the type of ciphering that is to be performed is a standardized integrity cipher

algorithm f9.

47. The WTRU of claim 46 wherein the register includes a second
field which specifies a message authentication code (MAC) value calculated by
the standardized integrity cipher algorithm f9.

48. The WTRU of claim 43 wherein the register includes a second
field which specifies whether data is moved from the first memory unit to the
second memory unit, or from the second memory unit to the first memory

unit.

49. The WTRU of claim 43 wherein the register includes a second
field which specifies the size of a block of data to be transferred by the data-
mover controller.

The WTRU of claim 49 wherein the data block size is four bytes.

51. The WTRU of claim 49 wherein the data block size is eight

bytes.

52. The WTRU of claim 49 wherein the data block size is sixteen

bytes.

53. The WTRU of claim 49 wherein the data block size is thirty-two

bytes.

54. The WTRU of claim 43 wherein the register includes a second

AMENDED SHEET

y P EA /IUSP lil. *I I:il l. 0 E! Ill;'i, iii:l 1B IP EA /U S
field which specifies the number of data blocks to be transferred by the data-
mover controller.

The WTRU of claim 43 wherein the first memory is a share
memory architecture (SMA) static random access memory (SRAM).

56. The WTRU of claim 43 wherein the second memory is a
synchronous dynamic random access memory (SDRAM).

57. The WTRU of claim 43 wherein the first and second memory
units differ in processing speed.

58. The WTRU of claim 43 wherein the register includes a second
field which specifies whether an interrupt pulse should be generated when the
transfer of data is completed.

59. The WTRU of claim 43 wherein the register includes a second
field which specifies a value embedded in a cipher header and processed by
the ciphering engine.

The WTRU of claim 43 wherein the register includes a second
field which specifies an encryption length.

61. The WTRU of claim 43 wherein the register includes a second
field which specifies a value embedded in an encrypted header and processed
by the ciphering engine.

62. The WTRU of claim 43 wherein the register includes a second
field which specifies a key used by the ciphering engine for ciphering the data
as it is moved.

AMENDED SHEET

oo
o 63. The WTRU of claim 62 wherein the key is a 128-bit key.

64. A data processing system for ciphering and transferring data between a

first memory unit and a second memory unit according to claim 1 and

substantially as hereinbefore described with reference to the drawings.

00oo 65. An integrated circuit (IC) for ciphering and transferring data between a first

Imemory unit and a second memory unit according to claim 22 and substantially

as hereinbefore described with reference to the drawings.

66. A wireless transmit/receive unit (WTRU) for ciphering and transferring data

between a first memory unit and a second memory unit according to claim 43 and

substantially as hereinbefore described with reference to the drawings.

INTERDIGITAL TECHNOLOGY CORPORATION

WATERMARK PATENT TRADE MARK ATTORNEYS

P28021AU00

IDATA PROCESSING SYSTEM 10014

iq~I 55 64 BITS x4 GI

READ

160 150

145

DATA MOVER CONTROLLER I
L (REGISTERS/COUNTERS) I

I

.,125

PROCESSOR
(CONTROL CPL

FIG. 1

WO 2005/117329 PCT/US2005/016026

2/9

205-

210-

215-

220-

225

230

235-

240-

245-

SDRAM SOURCE ADDRESS

SMA SOURCE ADDRESS (IN SMA CNTL)

SDRAM DESTINATION ADDRESS

SMA DESTINATION ADDRESS (IN SMA CNTL)

NUM_BLOCKSTOMOVE

MODE: DIRECTION, INTERRUPT ON COMPLETION, BLOCKSIZE (1,2,4,8)

CIPHER COUNT

CIPHER FRESH

CIPHER MODE: BEARER, DIRECTION, LENGTH
250A

CIPHER KEY (BITS 127:96)
-250B

CIPHER KEY (BITS 95:64)
,250C
CIPHER KEY (BITS 63:32)
,-250D
CIPHER KEY (BITS 31:0)

250-

255 CIPHER f9 RESULT (MAC)

FIG. 2

DMSDRAMSOURCEADDRESS
THIS REGISTER DEFINES THE DATA MOVER STARTING ADDRESS FOR SOURCE ACCESSES TO SDRAM.

NAME: DM SDRAM SOURCE ADDRESS ADDRESS: 040800100 WRITTEN BY: RIGHTARM

BIT- 31130129128127126125124123122 21120119118 1716115 14113 1211111019 18 I7 16 I5 14 I3 12111
DATA: ADDR

-FIELD ENUMERATION BIT INDEX

205

ADDR 31:0

3

DMSDRAMDESTINATIONADDRESS
THIS REGISTER DEFINES THE DATA MOVER STARTING ADDRESS FOR DESTINATION ACCESSES TO SDRAM.

NAME: DM SDRAM DESTINATION ADDRESS ADDRESS: 1x480O011O WRITTEN BY: IRIGHTARM

BIT: 31130129128127126125124123122, 21120119118117116115114113 1211111019 18 17 16 15 14 13 12 1110~
DATA: ADDR

-FIELD ENUMERATION BIT INDEX

ADDR 31:0
215

FIG. 4

DMSMASOURCEADDRESS
THIS REGISTER DEFINES THE DATA MOVER STARTING ADDRESS FOR SOURCE ACCESSES TO SMA.

NAME: DM SMA SOURCE ADDRESS ADDRESS: ISMA POINTER IWRITTEN BY: IRIGHT ARM

BIT: 31130129128127126125 124123122 2.112011911811711611511411311211111019 18 17 16 15 14 13 12 11
DATA: ADDR

-FIELD ENUMERATION BIT INDEX

210

ADDR 31:0

DM_ -SMA_-DESTI NATIONAD DRESS
THIS REGISTER DEFINES THE DATA MOVER STARTING ADDRESS FOR DESTINATION ACCESSES TO SMA.

NAME: DM SMA DESTINATION ADDRESS ADDRESS: ISMA POINTER WRITTEN BY: IRIGHT ARM

IBIT: 131130129128127126125124123122 21120119118117116115114113 1211111019 18 I7 16 15 I4 13 12 1110~
DATA: ADDRI

-FIELD ENUMERATION BIT INDEX

ADDR 31:0
220

FIG. 6

DMNUMBLOCKS
THIS REGISTER DEFINES THE NUMBER OF BLOCKS TO BE MOVED BETWEEN SDRAM AND SMA MEMORY. EACH BLOCK
CONSISTS OF THE NUMBER OF WORDS SPECIFIED BY THE "MODE" REGISTER (UP TO 8 4-BYTE WORDS (32 BYTES)).

NAME: DMNUMBLOCKS ADDRESS: 0x08e00120 WRITTEN BY: RIGHT ARM

BIT: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15114113 1211111019 8 7 16 5 4 13 2 1 I0
DATA: NUM

FIELD ENUMERATION BIT INDEX DESCRIPTION

RESERVED 31:16' FUTURE USE

NUM 15:0 SPECIFIES THE NUMBER OF BLOCKS TO MOVE
BETWEEN SDRAM AND SMA MEMORIES.

DESCRIPTION: NOTE THAT WRITING THIS REGISTER STARTS THE DATA MOVER. WHEN WRITTEN,THE 'f'
BIT OF THE "MODE" REGISTER IS CLEARED. WHEN THE TRANSFERS HAVE COMPLETED,
THE BIT IS SET AND AN OPTIONAL INTERRUPT PULSE IS GENERATED.

225

FIG. 7

DM_MODE
THIS REGISTER SPECIFIES THE MODE OF THE DATA MOVER.

230 FIG. 8

8C

NAME: DMMODE ADDRESS: Ox08e00130 WRITTEN BY: RIGHTARM

BIT: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1111019 8 7 6 5 4 3 12 1 I0
DATA: f c i d bs

)5 FIELD ENUMERATION BIT INDEX DESCRIPTION

f 'O'-NOT DONE 31 FINISHED FLAG
'1'-DONE

SRESERVED 30:7 FUTURE USE

I '00'-NO CIPHERING SPECIFIES CIPHER MODE
C '01'-DATA IS MOVED USING f8 TYPE CIPHERING

IS ACCESSED AND f9 CIPHERING IS PERFORMED

'O'-NO INTERRUPT IS GENERATED 4 SPECIFIES WHETHER AN INTERRUPT
'1'-INTERRUPT IS GENERATED WHEN PULSE SHOULD BE GENERATED WHEN
MOVEMENT IS COMPLETE THE DATA MOVEMENT HAS COMPLETED

0 'O0'-SMA TO SDRAM SPECIFIES DIRECTION OF DATA MOVEMENT
d '01'-SDRAM TO SDRAM 3:2

TO SMA

'00'-ONE WORD (4 BYTES) SPECIFIES THE SIZE OF THE BLOCK TO MOVE
S bs '01'-TWO WORDS (8 BYTES)

WORDS (16 BYTES)
'11'-EIGHT WORDS (32 BYTES)

DESCRIPTION: THE MODE REGISTER DETERMINES THE SIZE OF THE BLOCKS ACTED UPON BY THE DATA MOVER. IT ALSO SPECIFIES THE
DIRECTION OF MOVEMENT AND WHETHER OR NOT AN INTERRUPT IS GENERATED WHEN THE DATA MOVEMENT HAS COMPLETED.

NOTE THAT "BURSTS" INTO/OUT OF SDRAM WILL BE MADE BASED ON THE BLOCK SIZE.

82

82

DMCIPHERCOUNT 235
THIS REGISTER DEFINES THE COUNT VALUE EMBEDDED IN THE CIPHER HEADER.

FIG. 9
NAME: DMCIPHER_COUNT ADDRESS: 0x08e00140 WRITTEN BY: RIGHT ARM
BIT: 31130129128127126125124123122 21120119118 17116115114113 1211110 19 8 7 6 5 4 3 2 1 0
DATA: COUNT

FIELD ENUMERATION BIT INDEX DESCRIPTION
SPECIFIES THE COUNT VALUE EMBEDDED

COUNT 31:0T IN THE CIPHER HEADER.

DESCRIPTION: THIS REGISTER SPECIFIES THE COUNT VALUE EMBEDDED IN THE CIPHER HEADER. IT
MUST BE WRITTEN BEFORE THE DATA MOVER IS STARTED (WHEN CIPHERING MODE
IS USED).

DMCIPHERFRESH 240 FIG.
THIS REGISTER DEFINES THE FRESH VALUE EMBEDDED IN THE CIPHER HEADER.

NAME: DM_CIPHER_FRESH ADDRESS: 0x08e00150 WRITTEN BY: RIGHT ARM
BIT: 31130129128127126125124123122 21120119118 17116115114113 1211111019 8 7 6 15 14 13 12 1 0
DATA: COUNT

FIELD ENUMERATION BIT INDEX DESCRIPTION
SPECIFIES THE FRESH VALUE EMBEDDED

COUNT 31:0
S3 IN THE CIPHER HEADER.

DESCRIPTION: THIS REGISTER SPECIFIES THE FRESH VALUE EMBEDDED IN THE CIPHER HEADER. THIS
VALUE IS ONLY USED IN THE "f9" CIPHER MODE. IT MUST BE WRITTEN BEFORE THE DATA
MOVER IS STARTED (WHEN CIPHERING MODE IS USED).

DM_CIPHER_MODE
THIS REGISTER REPORTS WHICH FIRQ INTERRUPT SOURCES ARE CURRENTLY ACTIVE.
THE ACTIVE FIRQ INTERRUPT BITS ARE CLEARED.

NAME: DM CIPHER MODE ADDRESS: Ox08e00130 WRITTEN BY: RIGHT ARM

BIT: 31130129128127 26 25 24 23 22 21 20 19 18 17116115114113 1211111019 8 17 6 5 4 3 2 1 0
DATA: BEARER d LENGTH

FIELD ENUMERATION BIT INDEX DESCRIPTION

BEARER 31:27 SPECIFIES THE BEARER VALUE EMBEDDED
IN THE ENCRYPTED HEADER.

SPECIFIES DIRECTION VALUE EMBEDDED
d 26 IN THE ENCRYPTED HEADER.

RESERVED 25:18 FUTURE USE

LENGTH 17:0 SPECIFIES THE ENCRYPTION LENGTH (BITS).

DESCRIPTION: THIS REGISTER CONTAINS THE BEARER AND DIRECTION VALUES EMBEDDED IN THE
CIPHER HEADER. THE LENGTH FIELD SPECIFIES THE NUMBER OF DATA BITS TO BE CIPHERED.

245

FIG. 11

DM_CIPHER_KEY_n
THESE REGISTERS DEFINE THE 128-BIT KEY USED FOR CIPHERING DURING DATA MOVEMENT.

250 FIG. 12

NAME: DM CIPHER KEY n ADDRESS: Ox08e001nO WRITTEN BY: RIGHTARM

BIT: 31130129128127126125124123122 21120119118 17 16115114113 1211111019 8 7 6 5 4 13 121 I0
DATA: KEY

FIELD ENUMERATION BIT INDEX DESCRIPTION

KEY_0 HOLDS BITS 127:96; 31:0 SPECIFIES THE 128-BIT KEY USED FOR

KEY_ HOLDS BITS 93:64; CIPHERING AS DATA IS MOVED.
KEY

KEY_2 HOLDS BITS 63:32;

KEY_3 HOLDS BITS 31:0.

DESCRIPTION: THESE REGISTERS HOLD THE 128-BIT KEY USED FOR CIPHERING AS DATA IS MOVED BY THE DATA MOVER.
THESE REGISTERS MUST BE WRITTEN BEFORE THE DATA MOVER IS STARTED (WHEN CIPHERING MODE IS USED).

DM_CIPHER_MAC
THIS REGISTER PROVIDES THE CALCULATED MAC VALUE.

255 FIG. 13
NAME: DMCIPHERMAC ADDRESS: Ox08e00200 WRITTEN BY: RIGHT ARM

BIT: 31130129128127126125 24123122 21120119118 17116115114113 1211111019 8 7 6 5 4 3 2 1 0
DATA: MAC

FIELD ENUMERATION BIT INDEX DESCRIPTION

MAC 31:0 SPECIFIES CALCULATED MAC VALUE
AFTER f9 CIPHER CALCULATION.

DESCRIPTION: THIS REGISTER CONTAINS THE RESULT AFTER PERFORMING THE f9 CIPHER CALCULATION.

	Abstract
	Description
	Claims
	Drawings

