
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2015/0280739 A1

Dunayer

US 20150280739A1

(43) Pub. Date: Oct. 1, 2015

(54)

(71)

(72)

(21)

(22)

(63)

VARABLE BIT LENGTH RETERATIVE
LOSSLESS COMPRESSION SYSTEMAND
METHOD

Applicant: Npression Technologies, LLC, Dallas,
TX (US)

Inventor: Sidney Dunayer, Pine Bush, NY (US)

Appl. No.: 14/502,443

Filed: Sep. 30, 2014

Related U.S. Application Data
Continuation of application No. 14/229.515, filed on
Mar. 28, 2014, now Pat. No. 8,878,705.

Encode and
store the N
symbols

Substitute iteration
Store for Digital

Data Set

Analyze:
Determines the best values
for little-n, big-n and model

Compressible?

More bits to
analyze?

Limiting
condition
eached

Output stored data

Publication Classification

(51) Int. Cl.
H03M 7/40 (2006.01)

(52) U.S. Cl.
CPC H03M 7/40 (2013.01)

(57) ABSTRACT

A computer-implemented method of performing lossless
compression of a digital data set uses an iterative compression
process in which the number of symbols N and bit length per
symbol in may vary on Successive iterations. The process
includes analyzing at least a part of the data set to establish a
partition thereof into N symbols of symbol length n, and to
determine whether the N symbols can be further compressed,
and, if so, a model to be used in encoding the N symbols.

110

Store the N 135
bits

Yes

150

170

Patent Application Publication Oct. 1, 2015 Sheet 1 of 7 US 2015/0280739 A1

110

Analyze:
Determines the best values
for little-n, big-n and model

Compressible?

Encode and
Store the N
symbols

Store the N 135
bits

Substitute literation
Store for Digital

Data Set
More bits to
analyze?

150
Limiting
Condition
eached

170
Output stored data

Fig. 1

Patent Application Publication Oct. 1, 2015 Sheet 2 of 7 US 2015/0280739 A1

Analyzer Process

211
Determines the best values

for little-n, big-n and model and store in
the Analysis FIFO

213

More data to
analyze?

Substitute
Iteration
Store for
Digital

Data Set

NO

230

235

Retrieve Set of
Values from

Analysis FIFO

222

Yes NO
223 Compressible? 224

Encode and store
the N symbols Store the N bits

225

Yes
More sets of values to

process?

Limiting
Condition
eached2

Fig. 2

Patent Application Publication Oct. 1, 2015 Sheet 3 of 7 US 2015/0280739 A1

Store values for little-n

1320
Analysis Loop Process

310

Retrieve distinct Value of little-n 321

322

Receive a symbol

For each model, Compute entropy value and add to
Entropy Accumulator for that model. Compute

optimal value for big-n and a compression score for
each model.

324
More

symbols to
go?

NO 325

Store the model, big-N and compression
score for the model having the highest

COmpression SCOre.

Endpoint
condition
reached?

330 NO

Yes

Evaluate stored compression 340
Scores and determine the

highest score.

350
Return values with

highest score

Fig. 3

Oct. 1, 2015 Sheet 4 of 7 US 2015/0280739 A1 Patent Application Publication

- - - - - - - - - - ~~~~ • •

SS30Old dooT sisÁ?euw - ----J

SS3DO) dooT sisÁ?euw
- - - - - -Í

SS300.Jd dooT sisÁ?euw
0„V,

Patent Application Publication Oct. 1, 2015 Sheet 5 of 7 US 2015/0280739 A1

/410
Analysis Loop Process

Retrieve distinct value for little-n

411

412

Receive a symbol

For each model, compute entropy
value and add to Entropy Accumulator
for that model. Compute optimal value
for big-n and a compression score for

each model.

More symbols to
go?

NO
415

Store the model, big-N and
compression score for the model
having the highest compression

SCOe.

- - - sor -- a- a w- - - - - - - rs as w see - - - - - - - - -w- w - - - - - - - - - - - - - -

Oct. 1, 2015 Sheet 6 of 7 US 2015/0280739 A1 Patent Application Publication

| || 9

Patent Application Publication Oct. 1, 2015 Sheet 7 of 7 US 2015/0280739 A1

610 y 6OO

: Decompression Process

611

Compressed
partition?

Retrieve stored values
for little-n and model

Retrieve stored
value for length

NO
Last partition?

Yes

Retrieve number of
trailing bits to discard

Decode and store symbols
from the partition

Store bits from the
partition

Substitute contents
of the

decompression
Store for the

compressed digital
data set.

Endpoint
reached? Output stored data

630
Fig. 6

US 2015/0280739 A1

VARABLE BIT LENGTH REITERATIVE
LOSSLESS COMPRESSION SYSTEMAND

METHOD

PRIORITY

0001. The present U.S. Continuation Patent Application
claims priority from U.S. patent application Ser. No. 14/229,
515 entitled Variable Bit-Length Reiterative Lossless Com
pression System and Method, filed on Mar. 28, 2014, which is
incorporated herein by reference in its entirety.

TECHNICAL FIELD

0002 The present invention relates to compression of
digital data, and more particularly to variable bit-length reit
erative lossless compression.

BACKGROUND ART

0003 Information theory teaches that entropy is a measure
of the disorder of a system and is directly related to the

Oct. 1, 2015

replaced with symbols that occupy, on average, less space
than the original symbols or symbol patterns.
0005 Examples of lossless data compression techniques
include Run Length Encoding, Huffman Coding, Arithmetic
Coding and Dictionary-Based Compression. Several of these
methods utilize one or more probability tables to represent the
frequency distributions of the various symbols or symbol
patterns. For example, an Order-O Adaptive Model for an
alphabet of n symbols begins with each symbol having a
frequency of 1 and a cumulative frequency of n. This gives
each symbol a probability of 1/n. As a symbol is seen in the
input data set, the frequency of that symbol is increased by 1
and hence the cumulative frequency is also increased by 1.
This increases the probability that the symbol will occur and
lowers the entropy of that symbol.
0006 To show the behavior of this particular model in
practice, Suppose we have an alphabet of 8-bit symbols drawn
from the set A, B, C, D, E, F and we wish to encode a data
set that contains the characters ABCDAAFEFDA. The table
below shows the entropy calculations for each step:

TABLE 1.

Symbol Freq(A) Freq(B) Freq (C) Freq(D) Freq (E) Freq (F) CumFreq Entropy

(e l d)

amount of information contained within that system. A low
entropy system is highly ordered and can usually be repre
sented in fewer bits of information than a disordered, high
entropy system. Information theory further teaches that the
entropy of a binary symbol, i.e. the number of bits required to
express that symbol, is the negative base-2 logarithm of the
probability of the symbols occurrence:

H=-log2(FREQ/CUMFREQ)

where H is the entropy, FREQ is the frequency of occurrence
of the symbol so far and CUMFREQ is the cumulative fre
quency of all symbols seen so far. Furthermore, the total
entropy of a data set of binary symbols is the sum of the
entropies of the individual symbols:

H(p) = X. H.

where H(p) is the total entropy of the data set and H, is the
entropy of the i-th symbol in the data set.
0004 Most methods of lossless data compression are
based on an encoding technique in which repetitive symbols
or symbol patterns within a data set are identified and then

1 1 1 1 1 1 6

1 1 1 1 1 1 6 2.58
2 1 1 1 1 1 7 2.8O

2 2 1 1 1 1 8 3.00

2 2 2 1 1 1 9 3.17
2 2 2 2 1 1 10 2.32
3 2 2 2 1 1 11 1.87

4 2 2 2 1 1 12 3.58
4 2 2 2 1 2 13 3.70

4 2 2 2 2 2 14 2.81
4 2 2 2 2 3 15 2.90

4 2 2 3 2 3 16 2.OO
5 2 2 3 2 3 17

0007. The original data set contained 11 8-bit symbols or
88 bits and the compressed data set encoded using an Order-0
Adaptive Model is expected to contain around 31 bits.
0008 Based upon the frequency distribution of the origi
nal input data set, different models and encoding techniques
provide different levels of compression. If we understand the
nature of the data beforehand, we can better choose an appro
priate model and encoding technique to use.
0009. Each of the encoding methods relies on the substi
tution of a smaller binary string for a larger binary string
based on the frequency of symbols or symbol patterns within
the uncompressed data. The desired result of this process is a
data set that is Smaller than the original.
0010. To achieve compression, an uneven frequency dis
tribution of symbols or symbol patterns must be present in the
uncompressed data set. Greater unevenness of the frequency
distribution in the original data set allows us to achieve
greater compression.
0011 All known methods of lossless data compression
result in a more even frequency distribution of the symbols in
the compressed data set. Since lossless data compression
methods rely upon an uneven frequency distribution of sym
bols or symbol patterns, the even frequency distribution
makes further compression near impossible.

US 2015/0280739 A1

0012 Most known compression techniques and the cur
rent state of the art focus on achieving the maximum possible
compression in the minimum amount of time in order to
accommodate real time applications. This, by its very nature,
dictates that only one pass across the data set can occur.
0013. It is known in the prior art to use a rules-based
virtual machine for variable bit-length processing, and it has
been speculated that variable bit-length processes might be
used in achieving compression. See U.S. Pat. Nos. 5,600,726
and 5,893,084. Although these patents mention a number of
lossless compression methods that could possibly be adapted
to use an n-bit symbol, they fail to disclose a method for
determining an optimal value for “n”. While U.S. Pat. No.
7,111,094, to Liu et al., appears to disclose a strategy for
calculating an optimal value for “n”, for each one of a series
of blocks to be compressed, the approach of the Lieu patent is
to transform the data to be compressed in an attempt to change
its frequency distribution. However, the Liu patent fails to
specify how to determine the length of a block, and fails to
specify a particular compression model to be used for the
compression.

SUMMARY OF THE EMBODIMENTS

0014 Embodiments of the current invention for perform
ing variable bit-length lossless compression may employ
many passes to achieve a desired or maximum compression.
Thus, embodiments of the present invention may sacrifice
speed for a reduction in data size. Embodiments of the inven
tion are directed to applications that require minimum size for
storage. Possible applications for embodiments of the current
invention include, but are in no way limited to, medical imag
ing and streaming media.
0015. In a first embodiment of the invention there is pro
vided a computer-implemented method of performing loss
less compression of a digital data set. In this embodiment, the
method includes performing a compression process includ
1ng:

0016 analyzing at least a part of the data set to establish
a partition thereof into N symbols of symbol length n,
and to determine whether the N symbols can be further
compressed, and, if so, a model to be used in encoding
the N symbols;

0017 if it has been determined that the N symbols can
be further compressed, encoding the N symbols using
the model and storing the encoded data in an iteration
Store;

0018 if it has been determined that the N symbols can
not be compressed, storing the N symbols in the iteration
Store;

0019 determining whether any part of the digital data
set remains to be processed, and if so, then repeating the
compression process for an additional part of the digital
data set; and if not, then Substituting the contents of the
iteration store for the data set and repeating the compres
sion process on the data set thus updated until a specified
end condition has been met, and then providing an out
put from the iteration store.

0020. In another embodiment, there is provided a com
puter-implemented method of analyzing a digital data set to
establish a partition thereof into N symbols of symbol length
n, and to determine whether the N symbols can be further
compressed, and, if so, a model to be used in encoding the N
symbols. In this embodiment, the method includes:

Oct. 1, 2015

0021 storing for later retrieval a set of values for a
natural number in that is greater than 0;

OO22 erforming an analysis loop process including: p 9. y pp 9.
0023 retrieving a distinct one of the stored values for

0024 for each symbol of length n in the data set,
performing an entropy calculation including:
0025 receiving such symbol from the digital data
set at an input;

0026 for each model in a set of models,
0027 computing an entropy value and adding
the computed entropy value to an entropy accu
mulator for Such model; and

0028 using the value in the entropy accumula
tor, computing, for Such symbol, a compression
score and an updated value of partition size N for
Such model;

0029 using the values in the entropy accumulators
for each of the models, identifying the model hav
ing the best compression score; and storing the
identified model, its corresponding value of N, and
its compression score;

0030) determining whether a processing end point has
been reached, and if not, then

0.031 repeating the analysis loop process for an addi
tional value of n; otherwise

0.032 evaluating the stored compression scores for each
value of n to identify the value of n having the best
compression score; and returning the identified value of
n, and its corresponding model and its corresponding
value of N.

0033 a computer-implemented method of analyzing a
digital data set to establish a partition thereof into N symbols
of symbol length n, and to determine whether the N symbols
can be further compressed, and, if so, a model to be used in
encoding the N symbols. In this embodiment, the method
includes:

0034 storing for later retrieval a set of values for a
natural number in that is greater than 0;

0035 performing an analysis loop process including:
0036 retrieving a distinct value for n:
0037 for each symbol of length n in the data set,
performing an entropy calculation including:
0038 receiving such symbol from the digital data
set at an input;

0039 for each model in a set of models,
0040 computing an entropy value and adding the
computed entropy value to an entropy accumulator
for Such model; and

0041 using the value in the entropy accumulator,
computing for Such symbol, a compression score
and an updated value of partition size N for such
model;

0042 using the values in the entropy accumulators
for each of the models, and identifying the model
having the best compression score; and storing the
identified model, its corresponding value of N, and its
compression score;

0.043 evaluating the stored compression scores for each
value of n to identify the value of n having the best
compression score; and

0044) returning the identified value of n, and its corre
sponding model and its corresponding value of N.

US 2015/0280739 A1

0045. In a further related embodiment, a first analysis loop
process is performed for a first distinct value of n in parallel
with performing a second analysis loop process for a second
distinct value of n. Inafurther related embodiment, the stored
set of values for n are stored in a FIFO and the retrieved
distinct values of n are retrieved from the FIFO. In a further
related embodiment, the processing end point is completion
of processing for all values of n. In a further related embodi
ment, the processing endpoint is when the compression score
for at least one value of n and using at least one model is
deemed sufficient.

0046. In another embodiment of the invention, there is
provided a computer-implemented method of analyzing a
digital data set to establish a partition thereof into N symbols
of symbol length n, and to determine whether the N symbols
can be further compressed, and, if so, a model to be used in
encoding the N symbols. The method of this embodiment
includes:

0047 in a parallel processing procedure, for each of a
plurality of analysis loops, assigning a distinct value of
n, wherein the value of n is selected from a set of natural
numbers having a value greater than 0, and using a FIFO
to communicate to each of the analysis loops its assigned
value of n:
0048 in each analysis loop:

0049 for each symbol of length n in the data set,
performing an entropy calculation including:
0050 receiving such symbol from the digital
data set at an input;

0051 for each model in a set of models,
computing an entropy value and adding the com
puted entropy value to an entropy accumulator
for Such model; and
using the value in the entropy accumulator, com
puting for Such symbol, a compression score and
an updated value of partition size N for such
model;

0.052 using the values in the entropy accumula
tors for each of the models, and identifying the
model having the best compression score; and
storing the identified model, its corresponding
value of N, and its compression score;

0053 determining whether a processing end point has
been reached, and if not, then repeating the parallel
processing procedure; otherwise
0054 evaluating the stored compression scores for
each value of n to identify the value of n having the
best compression score; and returning the identified
value of n, and its corresponding model and its corre
sponding value of N.

0055. In another embodiment, the invention provides a
computer-implemented method of performing lossless com
pression of a digital data set. In this embodiment, the method
includes:

0056 performing an analysis process including:
0057 analyzing at least a part of the data set to estab
lish a partition thereof into N symbols of symbol
length n, and to determine whether the N symbols can
be further compressed, and, if so, a model to be used
in encoding the N symbols;

0.058 storing, in an analysis FIFO, a set of values of
n, N, and the model for the just-analyzed portion of
the digital data set;

Oct. 1, 2015

0059) determining whether any part of the digital data
set remains to be processed, and if so, then repeating the
analysis process for an additional part of the digital data
set; for each set of values in the analysis FIFIO, perform
ing an encoding process including:
0060 retrieving, from the analysis FIFO, such set of
values of n, N, and the model;

0061 if it has been determined that the N symbols
can be further compressed, encoding the N symbols
using the retrieved model and retrieved value of n and
storing the compressed data in an iteration store;

0062) if it has been determined that the N symbols
cannot be compressed, storing the N symbols in the
iteration store;

0.063 substituting the contents of the iteration store for
the data set and repeating the analysis process and the
compression process on the data set thus updated until a
specified end condition has been met, and then providing
an output from the iteration store.

0064. In a related embodiment, the analyzing process and
the compression process operate in parallel at least Some of
the time.
0065. In yet another embodiment, there is provided a non
Volatile storage medium in which is stored a compressed
digital data set. In this embodiment, the compressed data set
includes:

0.066 a sentinel indicating whether or not the results of
decompressing said compressed digital data set results
in an endpoint condition;

0067 a set of partitions, wherein at least one of the
partitions includes compressed digital data, and each
partition includes:
0068 a partition header, the header including:

0069 a type field indicating whether the partition
contains compressed or uncompressed data;

0070 a sentinel indicating whether the partition is
the last partition in the compressed digital data set;

0071 if the type field indicates that the partition
contains uncompressed data, a length field indicat
ing the number of bits of uncompressed data in the
partition;

0072 if the type field indicates that the partition
contains compressed data, a symbol field contain
ing a value of little-n in the partition, a model field
containing a value identifying the model used in the
partition, and if the last partition, a discard field
indicating a number of bits in the last decom
pressed symbol from the partition that must be
discarded; and

0073 data of the partition, such data having content
and format characterized by the partition header.

0074. In another embodiment, the invention provides a
computer-implemented method for decompressing a digital
data set compressed using a variable bit-length reiterative
lossless compression method, the compressed digital data set
including a set of partitions. The method of this embodiment
includes:

0075 performing a decompression process including:
0.076 for each partition in the compressed digital data

Set,
0077 examining a partition header for the partition to
determine if its data is compressed or uncompressed
and if the partition is the last partition;

US 2015/0280739 A1

0078 if the partition's data is determined to be com
pressed,
0079 retrieving from the partition header a value
of little-n for the partition and a value identifying
the model;

0080 if the partition is determined to be the last
partition, retrieving from the header a number of
bits in the last decompressed symbol from the par
tition that must be discarded;

0081 decoding the partition data using the model
identified for the partition and the value of little-n
for the partition and storing the decoded partition
data in a decompression store;

0082 if the partitions data is determined to be
uncompressed,

0.083 retrieving from the partition header a value
indicating the number of bits of uncompressed data
in the partition;

0084 using the value indicating the number of bits
of uncompressed data in the partition, copying the
partition's data to the decompression store;

I0085 if an endpoint condition has not been reached,
then Substituting the contents of the decompression
store for the compressed digital data set and repeating
the decompression process;

I0086 otherwise, providing an output from the decom
pression store.

BRIEF DESCRIPTION OF THE DRAWINGS

0087. The foregoing features of embodiments will be
more readily understood by reference to the following
detailed description, taken with reference to the accompany
ing drawings, in which:
0088 FIG. 1 is a flow chart showing an exemplary
embodiment of logical processes used in compressing a digi
tal data set in accordance with the present invention.
0089 FIG. 2 is a flow chart showing an exemplary
embodiment of logical processes, similar to those in FIG. 1,
used in compressing a digital data set, but where the Analysis
and Compression processes are performed in parallel in
accordance with the present invention.
0090 FIG. 3 is a flow chart showing an exemplary
embodiment of logical processes that can be used to analyze
at least a portion of a digital data set in the Analysis processes
of FIG. 1 (110) or FIG. 2 (211) in accordance with the present
invention.
0091 FIG. 4A is a flow chart showing an exemplary
embodiment of logical processes, similar to those of FIG. 3,
but wherein the Analysis loop is performed in parallel, so that
the logical processes here can be used to analyze at least a
portion of a digital data set in the Analysis processes of FIG.
1 (110) or FIG. 2 (211) in accordance with the present inven
tion.
0092 FIG. 4B is a flow chart showing an exemplary
embodiment of logical processes used to implement each
Analysis loop of FIG. 4A in accordance with the present
invention.
0093 FIG. 5 is a diagram of the structure of a compressed
digital data set stored in the iteration store, inaccordance with
an exemplary embodiment of the present invention, resulting
from operation of any of the embodiments of FIG. 1 or FIG.
2.
0094 FIG. 6 is a flow chart showing an exemplary
embodiment of logical processes used for decompressing a

Oct. 1, 2015

digital data set that has been compressed using the processes
shown in FIG. 1 or FIG. 2, all in accordance with the present
invention.

DETAILED DESCRIPTION OF SPECIFIC
EMBODIMENTS

0.095 Definitions. As used in this description and the
accompanying claims, the following terms shall have the
meanings indicated, unless the context otherwise requires:
0096. The term “entropy” as applied to a partition of a data
set means the number of bits required to encode the partition.
0097. The term “n” or “little-n' means the number of bits
in a symbol.
(0098. The term “N” or “big-n” refers to the number of
symbols of length little-n to be encoded or copied.
0099. A “model is a probability model and/or an encod
ing scheme used by an encoder. There may be one or more
models that can possibly be used for any partition, but only
one model will be selected for use in encoding a given parti
tion.
0100. A “computer is a device that processes digital data
in Software executed in an environment including a process
ing unit and memory or in hardware Such as field-program
mable gate arrays.
0101. A “FIFO is a logical device achieving flow of data
from one process to another process and having the charac
teristic that data exits the device in the exact same order the
order in which it enters the device. A FIFO has the additional
characteristic that if no data currently is available, a retrieving
process is made to wait until additional data is available or
until the device is notified that no additional data will be
presented (commonly referred to as an “End of File' condi
tion). AFIFO may be implemented as a queue, a linked list, a
memory buffer, an inter-process communication or any other
mechanism that achieves the specified behavior.
0102. A “digital data set is a sequence of bits that repre
sent the data that is to be compressed. A digital data set also
has a length attribute that indicates the number of bits of
actual data represented.
0103) A “symbol' is a sequence of bits of a fixed size used
in encoding.
0104. A “compression score' is a calculated estimate of
how well a defined partition of the digital data set can be
compressed. Factors that influence the compression score
may include such things as a theoretical compression ratio for
the partition and a theoretical number of bits saved by com
pressing the partition.
0105. A “field' is a series of one or more bits used to hold
information.
0106. A “sentinel’ is a field used to hold an endpoint
indicator.
0107. A "partition' is a portion of a compressed digital
data set containing a header followed by a sequence of bits
that represent either compressed or uncompressed data.
0108. A “computer process” is the performance of a
described function in a computer using computer hardware
(such as a processor, field-programmable gate array or other
electronic combinatorial logic, or similar device), which may
be operating under control of software or firmware or a com
bination of any of these or operating outside control of any of
the foregoing. All or part of the described function may be
performed by active or passive electronic components, such
as transistors or resistors. In using the term "computer pro
cess' we do not necessarily require a schedulable entity, or

US 2015/0280739 A1

operation of a computer program or a part thereof, although,
in some embodiments, a computer process may be imple
mented by Such a schedulable entity, or operation of a com
puter program or a part thereof. Furthermore, unless the con
text otherwise requires, a “process may be implemented
using more than one processor or more than one (single- or
multi-processor) computer.
0109 FIG. 1 is a flow chart showing an exemplary
embodiment of logical processes used in compressing a digi
tal data set in accordance with the present invention. The
process begins at point 100 with an input digital data set. The
digital data set is then processed by Analyzer 110, which
processes at least part of the digital data set and returns
optimal values for the symbol length (little-n), the partition
size (big-n) and a probability model. If the Analyzer deter
mines that compression is not possible, it also indicates this
fact and returns the number of bits that should be copied from
the digital data set.
0110. Once the Analyzer returns it results, a determination

is made at decision block 120 as to whether or not the partition
contains compressible data. If the partition contains com
pressible data, Encoder 130 encodes N symbols of symbol
length n using the model selected by Analyzer 110 and stores
the results in an Iteration Store. If the partition contains non
compressible data, then process 135 stores N bits of data from
the partition into the Iteration Store.
0111. At decision block 140, a determination is made as to
whether or not all data from the digital data set has been
processed.
0112) If all data has not been processed, then the flow goes
back to Analyzer 110 to continue processing the remainder of
the digital data set.
0113. If all data has been processed, then decision block
150 determines whether a limiting condition has been
reached. For example, a limiting condition may be estab
lished as the achievement of a desired amount of compression
expressed as a percentage of the original file size. Another
limiting condition may be established as when the difference
in compression achieved on two Successive passes is less than
a specified percentage of the file size. Alternatively, the lim
iting condition may be expressed as a combination of these
endpoints.
0114. If the limiting condition has not been reached, then
process 160 substitutes the contents of the Iteration Store for
the digital data set and the entire process is repeated Starting
at point 100.
0115 If the limiting condition has been reached, then the
contents of the Iteration Store are returned as the compressed
digital dataset.
0116 FIG. 2 is a flow chart showing an exemplary
embodiment of logical processes, similar to those in FIG. 1,
used in compressing a digital data set, but where the Analysis
and Compression processes are performed in parallel in
accordance with the present invention. This process begins at
point 200 with an input digital data set. Said dataset is pre
sented to Analyzer Process 210, which processes at least part
of the digital dataset at Analyzer 211, and if compression is
possible, places optimal values for the symbol length (little
n), the partition size (big-n) and a probability model into an
Analysis FIFO. If the Analyzer determines that compression
is not possible, it stores an indicator and the number of bits
that should be copied from the digital data set into the Analy
SiS FIFO.

Oct. 1, 2015

0117. At decision block 212 a determination is made
whether all the data from the digital data set has been pro
cessed. If all the data has not been processed, then the flow
goes back to Analyzer 211 to process the reminder of the data.
If all the data has been processed, then Analyzer Process
terminates.
0118 Compression Process 220 operates in parallel with
the Analyzer Process 210. A set of values are retrieved from
the Analysis FIFO at step 221. Each set represents values for
little-n, big-n and model if there is compressible data, or an
indicator and a length if there is non-compressible data. If the
decision block 222 determines that there is compressible data,
then Encoder 223 encodes N symbols of symbol length in
using the specified mode and stores the results in the Iteration
Store. If the data is not compressible, then process 224 stores
N bits from the digital data set into the Iteration Store with no
additional processing.
0119 Decision block 225 determines whether it has pro
cessed all data from the digital data set.
I0120 If not, then the flow returns to step 221 to retrieve
additional values from the Analyzer FIFO.
I0121. If all the data has been processed, then decision
block 230 determines whether a limiting condition has been
reached.
I0122) If the limiting condition has not been reached, then
process 235 substitutes the contents of the Iteration Store for
the digital data set and the flow returns to point 200.
I0123. If the limiting condition has been reached, then step
240 returns the contents of the Iteration Store as the com
pressed digital dataset.
0.124 FIG. 3 is a flow chart showing an exemplary
embodiment of logical processes that can be used to analyze
at least a portion of a digital data set in the Analysis process of
FIG. 1 (item 110) or FIG.2 (item 211) in accordance with the
present invention.
0.125. This process begins at point 300 where it is pre
sented with at least a portion of a digital data set. Step 310
stores a set of values for little-n selected from a set of natural
numbers having a value greater than 0. The process then
continues by executing Analysis loop process 320. The
Analysis loop process 320 retrieves a distinct value for little-n
at step 321. Using this value, a symbol of length little-n is
received from the digital data set at step 322. Step 323 com
putes an entropy value for the received symbol for each model
in a set of models and adds the computed entropy value to an
Entropy Accumulator for that model and then uses the
updated values to compute the optimal partition size (big-n)
and a compression score for each model. Decision block 324
determines whether more symbols are available for process
ing and if so, control passes back to step 322. Otherwise, step
325 stores the model and values of big-N and compression
score for the model with the highest compression score. The
computations in step 325 reflect values for the entire digital
data set.
0.126 Decision block 330 determines if an endpoint con
dition has been reached. If it has not reached an endpoint
condition, then control passes to step 310 to store another
value for little-n and execute Analysis loop process 320. If it
has reached an endpoint condition, the stored values from the
Analysis loop process are evaluated at step 340 and the values
with the highest compression score are returned at step 350.
I0127 FIG. 4A is flow chart showing an exemplary
embodiment of logical processes, similar to those of FIG. 3,
but wherein the Analysis loop process is performed in paral

US 2015/0280739 A1

lel, so that the logical processes here can be used to analyze at
least a portion of a digital data set in the Analysis processes of
FIG. 1 (item 110) or FIG. 2 (item 211) in accordance with the
present invention.
0128. The process starts at step 400 where all the possible
values for little-n selected from a set of natural numbers
greater than Zero are placed in a FIFO and made available to
one or more Analysis loop processes 410 running as parallel
processes. Each Analysis Loop 410 retrieves a value of little-n
from the FIFO and uses that value to determine values for
partition size (big-n), model and compression score that yield
optimum compression for symbol size little-n and stores them
for later processing.
0129 Decision block 420 determines whether an endpoint
condition has been reached. If it has not reached an endpoint
condition, the Analysis loop processes continue to process. If
it has reached an endpoint condition, then the stored values
from the Analysis loop processes are evaluated at step 430 and
the values with the highest compression score are returned at
step 440.
0130 FIG. 4B is a flow chart showing an exemplary
embodiment of logical processes used to implement each
Analysis loop process of FIG. 4A in accordance with the
present invention.
0131 The Analysis loop process 410 retrieves a value for

little-n from a FIFO at step 411. Using this value, it then
receives a symbol of length little-n from the digital data set at
step 412. Step 413 computes an entropy value for the received
symbol for each model in a set of models and adds the com
puted entropy value to an Entropy Accumulator for that
model and then uses the updated values to compute the opti
mal partition size (big-n) and a compression score for each
model. Decision block 414 determines whether more sym
bols are available for processing and if so, control passes back
to step 412. Otherwise, step 415 stores the model and values
of big-N and compression score for the model with the high
est compression score.
0132 FIG. 5 is a diagram of the structure of a compressed
digital data set stored in the iteration store, inaccordance with
an exemplary embodiment of the present invention, resulting
from operation of any of the embodiments of FIG. 1 or FIG.
2. The compressed digital data set 500 begins with a single bit
referred to as the “sentinel 501. This bit is set to “1” during
the first compression iteration and to “0” on all subsequent
iterations. A decompression system uses the sentinel to deter
mine when it has reached the last iteration in the decompres
sion process.
0133) Following the sentinel are one or more “partitions'
502. Each partition contains a “partition header 511 and
“partition data' 512. The fields in a partition header can be
placed in any desired order, and claims below specifying
fields of the partition do not require any specific order. In one
embodiment each partition header begins with two single bit
fields. The first field 521 indicates whether the partition data
is compressed data. The second field 522, namely the senti
nel, indicates whether or not this is the last partition in the
compressed digital data set.
0134) For compressed data, there are two additional fields
that hold the values of little-n 523 and model 524 that the
decoder must use. In addition, if this is the last data partition,
an additional field 525 is present that indicates the number of
bits in the last decoded symbol must be discarded. This is
necessary since the number of bits in the uncompressed par

Oct. 1, 2015

tition might not have been evenly divisible by little-n and
hence, additional bits were inserted to fill out the last symbol.
0.135 For partitions that contain uncompressed data, the
header contains a field (526) indicating the total number of
bits in the partition.
0.136. Since a “compressed digital data set contains the
contents of an Iteration Store, this also describes an exem
plary embodiment of an Iteration Store.
0.137 FIG. 6 is a flow chart showing an exemplary
embodiment of logical processes used for decompressing a
digital data set that has been compressed using the processes
shown in FIG. 1 or FIG. 2, all in accordance with the present
invention. This process starts at point 600 with a compressed
digital data set. The decompression process 610 processes
each partition in the compressed digital data set in sequence.
0.138 A partition header is examined at process 611. The
decision block 612 determines if the partition contains com
pressed data and if it does, process 613 retrieves values for
little-n and model from the header. Decision block 614 deter
mines if this is the last partition and if so, process 615 retrieves
the value for the number of trailing bits to discard. Then, the
partition data is processed by decoder 616 using the retrieved
values for little-n, model and trailing bits to discard and the
resulting decoded symbols are stored in a decompression
StOre.

0.139. If the partition contains uncompressed data, process
617 retrieves the value for length from the partition header.
Process 618 then stores the partition data directly in the
decompression store with no additional processing.
0140 Decision block 619 determines if any more parti
tions require processing and if they do, processing continues
at step 611.
0.141. After all partitions are processed, decision block
620 determines if an endpoint condition has been reached. If
not, additional iterations are needed and process 630 substi
tutes the contents of the decompression store for the com
pressed digital data set and the decompression process con
tinues at point 600. Otherwise, step 640 returns the contents
of the decompression store as the digital data set. Analyzer
loops can run in parallel. For example, various embodiments
can be configured to so that little in can take on 32 different
values and, therefore, there may be 32 simultaneous loops.”
0.142 A proof of concept test was conducted using a com
pressed Linux archive file created using the “tar utility and
then compressed using the 'gZip' compression utility. The
resulting file had a size of 86,744,700 bytes. This file was then
input to three different compression programs, 'gZip', 'zip’
and the current invention. The sizes of the resulting com
pressed output files were recorded and then each output file
was input into the utility that created it. For proof of concept
testing, the methods described in this application in connec
tion with FIGS. 1 and 3 were employed and the resulting
output file conformed to FIG. 5. In this testing, an arithmetic
encoder was used, and the compression models used were an
order-0 adaptive model and an order-1 adaptive model. A total
of three compression passes were performed for each com
pression utility.
0.143 Table 2 shows the results of this test. While each of
the utilities achieved some compression after the first pass,
only the current invention proof of concept embodiment was
able to achieve additional compression in the second and third
passes. The other utilities could only achieve “negative com
pression” in later passes, i.e., the output file was larger than
the input file.

US 2015/0280739 A1

TABLE 2

Original Size After Pass 1 After Pass 2 After Pass 3

original file 86,7447OO
gZip 86694822 867O8713 86,722464
Zip 86694.961 866.951.27 866953O1
proof of 86588S63 86S10641 86415482
concept

0144. The present invention may be embodied in many
different forms, including, but in no way limited to, computer
program logic for use with a processor (e.g., a microproces
Sor, microcontroller, digital signal processor, or general pur
pose computer), programmable logic for use with a program
mable logic device (e.g., a Field Programmable Gate Array
(FPGA) or other PLD), discrete components, integrated cir
cuitry (e.g., an Application Specific Integrated Circuit
(ASIC)), or any other means including any combination
thereof.
0145 Computer program logic implementing all or part of
the functionality previously described herein may be embod
ied in various forms, including, but in no way limited to, a
Source code form, a computer executable form, and various
intermediate forms (e.g., forms generated by an assembler,
compiler, networker, or locator.) Source code may include a
series of computer program instructions implemented in any
of various programming languages (e.g., an object code, an
assembly language, or a high-level language such as FOR
TRAN, C, C++, JAVA, or HTML) for use with various oper
ating systems or operating environments. The source code
may define and use various data structures and communica
tion messages. The Source code may be in a computer execut
able form (e.g., via an interpreter), or the source code may be
converted (e.g., via a translator, assembler, or compiler) into
a computer executable form.
0146 The computer program may be fixed in any form
(e.g., source code form, computer executable form, or an
intermediate form) either permanently or transitorily in a
tangible storage medium, Such as a semiconductor memory
device (e.g., a RAM, ROM, PROM, EEPROM, or Flash
Programmable RAM), a magnetic memory device (e.g., a
diskette or fixed disk), an optical memory device (e.g., a
CD-ROM), a PC card (e.g., PCMCIA card), or other memory
device. The computer program may be fixed in any form in a
signal that is transmittable to a computer using any of various
communication technologies, including, but in no way lim
ited to, analog technologies, digital technologies, optical
technologies, wireless technologies, networking technolo
gies, and internetworking technologies. The computer pro
gram may be distributed in any form as a removable storage
medium with accompanying printed or electronic documen
tation (e.g., shrink wrapped software or a magnetic tape),
preloaded with a computer system (e.g., on system ROM or
fixed disk), or distributed from a server or electronic bulletin
board over the communication system (e.g., the Internet or
World WideWeb.)
0147 Hardware logic (including programmable logic for
use with a programmable logic device) implementing all or
part of the functionality previously described herein may be
designed using traditional manual methods, or may be
designed, captured, simulated, or documented electronically
using various tools, such as Computer Aided Design (CAD),

Oct. 1, 2015

a hardware description language (e.g., VHDL or AHDL), or a
PLD programming language (e.g., PALASM. ABEL, or
CUPL.)
0148 While the invention has been particularly shown and
described with reference to specific embodiments, it will be
understood by those skilled in the art that various changes in
form and detail may be made therein without departing from
the spirit and scope of the invention as defined by the
appended clauses. As will be apparent to those skilled in the
art, techniques described above for panoramas may be
applied to images that have been captured as non-panoramic
images, and vice versa.
0149 Embodiments of the present invention may be
described, without limitation, by the following clauses. While
these embodiments have been described in the clauses by
process steps, an apparatus comprising a computer with asso
ciated display capable of executing the process steps in the
clauses below is also included in the present invention. Like
wise, a computer program product including computer
executable instructions for executing the process steps in the
clauses below and stored on a computer readable medium is
included within the present invention.
0150. The embodiments of the invention described above
are intended to be merely exemplary; numerous variations
and modifications will be apparent to those skilled in the art.
All such variations and modifications are intended to be
within the scope of the present invention as defined in any
appended claims.
What is claimed is:
1. A computer-implemented method for decompressing a

digital data set compressed using a variable bit-length reit
erative lossless compression method, the compressed digital
data set including a set of partitions, the method comprising:

performing a decompression process including:
for each partition in the compressed digital data set,

examining a partition header for the partition to deter
mine if its data is compressed or uncompressed and if
the partition is the last partition;

if the partition's data is determined to be compressed,
retrieving from the partition header a value of little-n for

the partition and a value identifying the model;
if the partition is determined to be the last partition,

retrieving from the header a number of bits in the last
decompressed symbol from the partition that must be
discarded;

decoding the partition data using the model identified for
the partition and the value of little-n for the partition
and storing the decoded partition data in a decompres
sion store;

if the partition's data is determined to be uncompressed,
retrieving from the partition header a value indicating

the number of bits of uncompressed data in the parti
tion;

using the value indicating the number of bits of uncom
pressed data in the partition, copying the partitions
data to the decompression store;

if an endpoint condition has not been reached, then
Substituting the contents of the decompression store
for the compressed digital data set and repeating the
decompression process;

otherwise, providing an output from the decompression
StOre.

