

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(10) International Publication Number

WO 2013/187727 A1

(43) International Publication Date
19 December 2013 (19.12.2013)

(51) International Patent Classification:

C07D 31/18 (2006.01) A61P 21/00 (2006.01)
A61K 31/357 (2006.01)

(21) International Application Number:

PCT/KR2013/005279

(22) International Filing Date:

14 June 2013 (14.06.2013)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

61/660,064 15 June 2012 (15.06.2012) US

(71) Applicant: BIO-PHARM SOLUTIONS CO., LTD.
[KR/KR]; B1F, D1 Bldg., Advanced Institute of Convergence Technology, 145, Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-270 (KR).

(72) Inventor: CHOI, Yong Moon; 341-701 III-Zium Apt. 62, Jamsil-ro, Songpa-gu, Seoul 138-891 (KR).

(74) Agent: YANG, Boo-Hyun; Suite 301, Chungdong Building, 1659-2 Inhundong, Gwanak-gu, Seoul 151-832 (KR).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM,

AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:

- with international search report (Art. 21(3))
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))

WO 2013/187727 A1

(54) Title: PHENYLALKYL SULFAMATE COMPOUND AND MUSCLE RELAXANT COMPOSITION COMPRISING THE SAME

(57) Abstract: The present invention relates to novel phenylalkyl sulfamate compounds, a method for preventing or treating a disease associated with muscle spasm. The present invention ensures the enhancement of muscle relaxation activity essential for alleviation of muscle spasm, such that it is promising for preventing or treating various diseases associated with muscle spasm.

PHENYLALKYL SULFAMATE COMPOUND AND MUSCLE RELAXANT
COMPOSITION COMPRISING THE SAME

5 **BACKGROUND OF THE INVENTION**

FIELD OF THE INVENTION

The present invention relates to novel phenylalkyl sulfamate compounds, a muscle relaxation and a method for preventing or treating a disease associated with muscle spasm.

10

DESCRIPTION OF THE RELATED ART

Myotony or spasm is frequently observed as a sequel of head injuries, and is difficult to treat.

Myotony is one of skeletal muscle dysfunctions resulting from muscle tone increase, and is caused by central nervous system damage due to wound and various other causes. The causes of muscle tone are abnormal posture, fatigue, degenerative change in spine, etc. And, Myotony can be induced by one of various causes including skeletal muscle spasticity and spastic paralysis causing serious hindrance to daily life. Particularly, spastic paralysis involves symptoms such as tension of the hand and feet, stiffness, difficulty when walking, etc., and causes serious hindrance to daily life. Centrally acting muscle relaxants block receptors related to the excitement of skeletal muscle function, or excite receptors related to the inhibition of skeletal muscle function, in order to relax muscle tone or decrease excessively activated reflection function thus causing muscle relaxation. The centrally acting muscle relaxants may include methocarbaamol, chlormezanon, carisoprodol, eperisone, phenprobamide, etc. However, these drugs act on spinal cord interneurons to inhibit monosynapse and polysynapse, and thus, have side effects including central nervous system depression and muscle weakness.

U.S. Patent No. 3,313,692 describes racemic carbamate compounds useful as

central nervous system drugs with significantly decreased side effects. U.S. Patent No. 2,884,444, U.S. Patent No. 2,937,119, and U.S. Patent No. 3,265,727 describe dicarbamate compounds useful as central nervous system drugs, and N-isopropyl-2-methyl-2-propyl-1,3-propandiol dicarbamate described in U.S. Patent No. 2,937,119 was released on the market as a muscle relaxant under the product name of Soma. Muscle relaxants are used as an agent for improving symptoms including hernia of an intervertebral disk related to muscle spasm that is involved in skeletal muscle diseases, and vascular disorders of the spinal cord, spastic paralysis of the spinal cord, cervical spondylosis, cerebral palsy, sequelae of injuries(spinal cord injuries, head injuries), spinocerebellar degeneration, etc., and Muscle relaxants are also used as an adjuvant to anesthetic agents.

Throughout this application, various publications and patents are referred and citations are provided in parentheses. The disclosures of these publications and patents in their entities are hereby incorporated by references into this application in order to fully describe this invention and the state of the art to which this invention pertains.

SUMMARY OF THE INVENTION

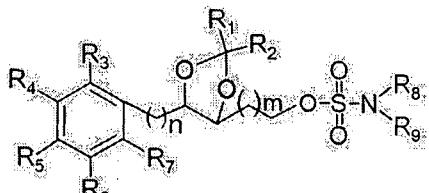
The present inventor has made intensive studies to develop a novel muscle relaxant with excellent activity and low toxicity which may be applied to effective treatment for various disease associated with muscle spasm. As results, the present inventors have discovered that the phenylalkyl sulfamate derivatives represented by above formula 1 provide highly enhanced muscle relaxation activity with significantly decreased side effects.

Accordingly, it is an object of this invention to provide a novel phenylalkyl sulfamate derivatives or pharmaceutically acceptable salt thereof:

It is another object of this invention to provide a method for muscle

relaxation.

It is still another object of this invention to provide a method for preventing or treating a disease associated with muscle spasm.


It is still another object of this invention to provide a composition for preventing or treating a disease associated with muscle spasm.

Other objects and advantages of the present invention will become apparent from the following detailed description together with the appended claims and drawings.

10

DETAILED DESCRIPTION OF THE INVENTION

In one aspect of this invention, there is provided a compound represented by the following formula 1 or pharmaceutically acceptable salt thereof:

15 (1)

wherein R₁ and R₂ are each independently selected from the group consisting of hydrogen, C₁-C₅ alkyl group and C₆-C₁₀ aryl group or R₁ and R₂ together with the carbon atom to which they attach form C₅-C₆ cycloalkyl group; R₃, R₄, R₅, R₆ and R₇ are each independently selected from the group consisting of hydrogen, halogen, C₁-C₅ alkyl group, nitro group and unsubstituted or C₁-C₃ alkyl-substituted amine group; R₈ and R₉ are each independently hydrogen or C₁-C₃ alkyl group; n and m are each independently integer of 0-2.

20 The present inventor has made intensive studies to develop a novel muscle relaxant with excellent activity and low toxicity which may be applied to effective treatment for various disease associated with muscle spasm. As results, the present inventors have discovered that the novel phenylalkyl sulfamate derivatives

represented by above formula 1 provide highly enhanced muscle relaxation activity with significantly decreased side effects.

5 The term "alkyl" as used herein, refers to a straight or branched chain of saturated hydrocarbon group, *e.g.*, methyl, ethyl, propyl, butyl, isobutyl, tert butyl and pentyl. "C₁-C₅ alkyl group" as used herein, refers to an alkyl group with carbon number of 1-5.

The term "aryl" as used herein, refers to a totally or partially unsaturated monocyclic or polycyclic carbon rings having aromaticity. The aryl group of the present invention is preferably monoaryl or biaryl.

10 The term "cycloalkyl" as used herein, refers to a monocyclic or polycyclic saturated ring comprising carbon and hydrogen atoms.

15 According to a concrete embodiment, R₁ and R₂ are each independently selected from the group consisting of hydrogen, C₁-C₃ alkyl group and phenyl group or R₁ and R₂ together with the carbon atom to which they attach form C₅-C₆ cycloalkyl group, and wherein R¹ and R² are not hydrogen at the same time.

According to a concrete embodiment, R₃, R₄, R₅, R₆ and R₇ are each independently selected from the group consisting of hydrogen, chlorine, fluorine, iodine, C₁-C₃ alkyl group, nitro group and unsubstituted or methyl-substituted amine group.

20 According to a concrete embodiment, R₈ and R₉ are hydrogen.

According to a concrete embodiment, n and m are each independently integer of 0-1.

According to more concrete embodiment, the compound is selected from the group consisting of:

25 (1) (5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methylsulfamate;
(2) (5-(2-chlorophenyl)-2-methyl-1,3-dioxolan-4-yl) methyl sulfamate;
(3) (5-(2-chlorophenyl)-2,2-diethyl-1,3-dioxolan-4-yl)methyl sulfamate;
(4) (3-(2-chlorophenyl)-1,4-dioxaspiro[4,4]nonan-2-yl)methyl sulfamate;

- (5) (3-(2-chlorophenyl)-1,4-dioxaspiro[4,5]decan-2-yl)methyl sulfamate;
- (6) (5-(2-chlorophenyl)-2-phenyl-1,3-dioxolan-4-yl)methyl sulfamate;
- (7) (5-(2-fluorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methyl sulfamate;
- (8) (5-(2-fluorophenyl)-2-methyl-1,3-dioxolan-4-yl) methyl sulfamate;
- 5 (9) (5-(2-fluorophenyl)-2,2-diethyl-1,3-dioxolan-4-yl)methyl sulfamate;
- (10) (3-(2-fluorophenyl)-1,4-dioxaspiro[4,4]nonan-2-yl)methyl sulfamate;
- (11) (3-(2-fluorophenyl)-1,4-dioxaspiro[4,5]decan-2-yl)methyl sulfamate;
- (12) (5-(2-fluorophenyl)-2-phenyl-1,3-dioxolan-4-yl)methyl sulfamate;
- (13) (5-(2-iodophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methyl sulfamate;
- 10 (14) (5-(2-iodophenyl)-2-methyl-1,3-dioxolan-4-yl) methyl sulfamate;
- (15) (5-(2-iodophenyl)-2,2-diethyl-1,3-dioxolan-4-yl) methyl sulfamate;
- (16) (3-(2-iodophenyl)-1,4-dioxaspiro[4,4]nonan-2-yl) methyl sulfamate;
- (17) (3-(2-iodophenyl)-1,4-dioxaspiro[4,5]decan-2-yl)methyl sulfamate;
- (18) (5-(2-iodophenyl)-2-phenyl-1,3-dioxolan-4-yl)methyl sulfamate;
- 15 (19) (5-(2,4-dichlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methyl sulfamate;
- (20) (5-(2,4-dichlorophenyl)-2-methyl-1,3-dioxolan-4-yl)methyl sulfamate;
- (21) (5-(2,4-dichlorophenyl)-2,2-diethyl-1,3-dioxolan-4-yl)methyl sulfamate;
- (22) (3-(2,4-dichlorophenyl)-1,4-dioxaspiro[4,4]nonan-2-yl)methyl sulfamate;
- (23) (3-(2,4-dichlorophenyl)-1,4-dioxaspiro[4,5]decan-2-yl)methyl sulfamate;
- 20 (24) (5-(2,4-dichlorophenyl)-2-phenyl-1,3-dioxolan-4-yl)methyl sulfamate;
- (25) (5-(2,6-dichlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methylsulfamate;
- (26) (5-(2,6-dichlorophenyl)-2-methyl-1,3-dioxolan-4-yl)methyl sulfamate;
- (27) (5-(2,6-dichlorophenyl)-2,2-diethyl-1,3-dioxolan-4-yl)methyl sulfamate;
- (28) (3-(2,6-dichlorophenyl)-1,4-dioxaspiro[4,4]nonan-2-yl)methyl sulfamate;
- 25 (29) (3-(2,6-dichlorophenyl)-1,4-dioxaspiro[4,5]decan-2-yl)methyl sulfamate;
- (30) (5-(2,6-dichlorophenyl)-2-phenyl-1,3-dioxolan-4-yl)methyl sulfamate;
- (31) (5-(2-aminophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methyl sulfamate;
- (32) (5-(2-aminophenyl)-2-methyl-1,3-dioxolan-4-yl)methyl sulfamate;

(33) (5-(2-aminophenyl)-2,2-diethyl-1,3-dioxolan-4-yl)methyl sulfamate;

(34) (3-(2-aminophenyl)-1,4-dioxaspiro[4,4]nonan-2-yl)methyl sulfamate;

(35) (3-(2-aminophenyl)-1,4-dioxaspiro[4,5]decan-2-yl)methyl sulfamate;

(36) (5-(2-aminophenyl)-2-phenyl-1,3-dioxolan-4-yl)methyl sulfamate;

5 (37) (5-(2-nitrophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methyl sulfamate;

(38) (5-(2-nitrophenyl)-2-methyl-1,3-dioxolan-4-yl) methyl sulfamate;

(39) (5-(2-nitrophenyl)-2,2-diethyl-1,3-dioxolan-4-yl)methyl sulfamate;

(40) (3-(2-nitrophenyl)-1,4-dioxaspiro[4,4]nonan-2-yl)methyl sulfamate;

10 (41) (3-(2-nitrophenyl)-1,4-dioxaspiro[4,5]decan-2-yl)methyl sulfamate;

(42) (5-(2-nitrophenyl)-2-phenyl-1,3-dioxolan-4-yl)methyl sulfamate;

(43) (5-(2-nitrophenyl)-2-oxo-1,3-dioxolan-4-yl)methyl sulfamate;

(44) (5-(2-methylphenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methyl sulfamate;

(45) (5-(2-methylphenyl)-2-methyl-1,3-dioxolan-4-yl)methyl sulfamate;

15 (46) (5-(2-methylphenyl)-2,2-diethyl-1,3-dioxolan-4-yl)methyl sulfamate;

(47) (3-(2-methylphenyl)-1,4-dioxaspiro[4,4]nonan-2-yl)methyl sulfamate;

(48) (3-(2-methylphenyl)-1,4-dioxaspiro[4,5]decan-2-yl)methyl sulfamate;

(49) (5-(2-methylphenyl)-2-phenyl-1,3-dioxolan-4-yl)methyl sulfamate;

20 (50) (5-(2-methylaminophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methyl methyl sulfamate;

(51) (5-phenyl-2,2-dimethyl-1,3-dioxolan-4-yl)methyl sulfamate;

(52) (5-phenyl-2,2-diethyl-1,3-dioxolan-4-yl)methyl sulfamate;

(53) (3-phenyl-1,4-dioxaspiro[4,4]nonan-2-yl)methyl sulfamate;

(54) (3-phenyl-1,4-dioxaspiro[4,5]decan-2-yl)methyl sulfamate;

(55) 2-(5-benzyl-2,2-dimethyl-1,3-dioxolan-4-yl)ethyl sulfamate;

25 (56) 2-(5-benzyl-2,2-diethyl-1,3-dioxolan-4-yl)ethyl sulfamate;

(57) 2-(5-benzyl-1,4-dioxaspiro[4,4]nonan-2-yl)ethyl sulfamate;

(58) 2-(3-benzyl-1,4-dioxaspiro[4,5]decane-2-yl)ethyl sulfamate;

(59) 2-(5-benzyl-2,2-dimethyl-1,3-dioxolan-4-yl)methyl sulfamate;

(60) 2-(5-benzyl-2,2-diethyl-1,3-dioxolan-4-yl)methyl sulfamate;
(61) 2-(3-benzyl-1,4-dioxaspiro[4,4]nonan-2-yl)methyl sulfamate;
(62) 2-(3-benzyl-1,4-dioxaspiro[4,5]decan-2-yl)methyl sulfamate;
(63) (5-phenyl-2,2-dimethyl-1,3-dioxolan-4-yl)ethyl sulfamate;
5 (64) (5-phenyl-2,2-diethyl-1,3-dioxolan-4-yl)ethyl sulfamate;
(65) (3-phenyl-1,4-dioxaspiro[4,4]nonan-2-yl)ethyl sulfamate;
(66) (3-phenyl-1,4-dioxaspiro[4,5]decan-2-yl)ethyl sulfamate;
(67) 2-(5-(2-chlorobenzyl)-2,2-dimethyl-1,3-dioxolan-4-yl)ethyl sulfamate;
(68) 2-(5-(2-chlorobenzyl)-2,2-diethyl-1,3-dioxolan-4-yl)ethyl sulfamate;
10 (69) 2-(3-(2-chlorobenzyl)-1,4-dioxaspiro[4,4]nonan-2-yl)ethyl sulfamate;
(70) 2-(3-(2-chlorobenzyl)-1,4-dioxaspiro[4,5]decan-2-yl)ethyl sulfamate;
(71) 2-(5-(2-chlorobenzyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methyl sulfamate;
(72) 2-(5-(2-chlorobenzyl)-2,2-diethyl-1,3-dioxolan-4-yl)methyl sulfamate;
15 (73) 2-(3-(2-chlorobenzyl)-1,4-dioxaspiro[4,4]nonan-2-yl)methyl sulfamate;
(74) 2-(3-(2-chlorobenzyl)-1,4-dioxaspiro[4,5]decan-2-yl)methyl sulfamate;
(75) (5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)ethyl sulfamate;
(76) (5-(2-chlorophenyl)-2,2-diethyl-1,3-dioxolan-4-yl)ethyl sulfamate;
20 (77) (3-(2-chlorophenyl)-1,4-dioxaspiro[4,4]nonan-2-yl)ethyl sulfamate; and
(78) (3-(2-chlorophenyl)-1,4-dioxaspiro[4,5]decan-2-yl)ethyl sulfamate.

20

According to more concrete embodiment, the compound is selected from the group consisting of:

25

(1) (5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methylsulfamate;
(2) (5-(2-chlorophenyl)-2-methyl-1,3-dioxolan-4-yl) methyl sulfamate;
(3) (5-(2-chlorophenyl)-2,2-diethyl-1,3-dioxolan-4-yl)methyl sulfamate;
(5) (3-(2-chlorophenyl)-1,4-dioxaspiro[4,5]decan-2-yl)methyl sulfamate;
(25) (5-(2,6-dichlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methylsulfamate;
(43) (5-(2-nitrophenyl)-2-oxo-1,3-dioxolan-4-yl)methyl sulfamate;

- (44) (5-(2-methylphenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methyl sulfamate;
- (54) (3-phenyl-1,4-dioxaspiro[4,5]decan-2-yl)methyl sulfamate; and
- (64) (5-phenyl-2,2-diethyl-1,3-dioxolan-4-yl)ethyl sulfamate.

5 According to a concrete embodiment, the compound is in the form of racemate, enantiomer, diastereomer, a mixture of enantiomer or a mixture of diastereomer.

10 As seen in the Examples, the present inventors have synthesized the compounds of various stereochemistries, and investigated their muscle relaxation activity by multilateral experiments.

15 The term "enantiomer" as used herein, refers to one of two stereoisomers that are mirror images of each other which are non-superposable due to existence of one or more chiral carbons. According to a concrete embodiment, the enantiomer of the present invention is one in which chiral carbons of C₄ and C₅ are diverse in stereo-configuration.

The term "diastereomer" as used herein, refers to stereoisomers that are not enantiomers, which occurs when two or more stereoisomers of a compound have different configurations at one or more (but not all) of the equivalent chiral centers thus are not mirror images of each other.

20 The term "racemate" as used herein, refers to one that has equal amounts of two enantiomers of different stereo-configuration, and lack in optical activity.

It would be obvious to the skilled artisan from the Examples below that the compounds of this invention are not limited to those with specific stereochemistry.

25 According to a concrete embodiment, the pharmaceutically acceptable salt is produced by reacting the compound with an inorganic acid, an organic acid, an amino acid, sulfonic acid, an alkali metal or ammonium ion.

The pharmaceutically acceptable salts of the present invention are those which can be manufactured by using a method known in the art, for example, but

not limited to, salts with inorganic acids such as hydrochloric acid, bromic acid, sulfuric acid, sodium hydrogen sulfate, phosphate, nitrate and carbonate; and salts with organic acids such as formic acid, acetic acid, propionic acid, oxalic acid, succinic acid, benzoic acid, citric acid, maleic acid, malonic acid, tartaric acid, 5 gluconic acid, lactic acid, gestisic acid, fumaric acid, lactobionic acid, salicylic acid, trifluoroacetic acid and acetylsalicylic acid (aspirin); or salts with amino acids such as glycine, alanine, valine, isoleucine, serine, cysteine, cystine, aspartic acid, glutamine, lysine, arginine, tyrosine, and proline; salts with sulfonic acid such as methane sulfonate, ethane sulfonate, benzene sulfonate and toluene sulfonate; 10 metal salts by reaction with an alkali metal such as sodium and potassium; or salts with ammonium ion.

In another aspect of this invention, there is provided a method for muscle relaxation comprising administering pharmaceutically effective amount of the compound of the present invention or pharmaceutically acceptable salt thereof to a 15 subject in need thereof.

As the common descriptions regarding the compounds of this invention are mentioned above, they are omitted herein to avoid excessive overlaps.

According to the present invention, the present inventor has observed that administration of the compound of the present invention significantly increased grip 20 strength and residence time on rotarod rotating of mice, suggesting that the compound of the present invention may be effectively used for improving muscle relaxation activity.

In still another aspect of this invention, there is provided a method for preventing or treating a disease associated with muscle spasm comprising 25 administering pharmaceutically effective amount of the compound of the present invention or pharmaceutically acceptable salt thereof to a subject in need thereof.

As discussed, the compound of the present invention has a superior activity for muscle relaxation with low toxicity. Therefore, it has potential to be developed as

a therapeutic agent for preventing and treating various diseases associated with muscle spasm.

The term "disease associated with muscle spasm" as used herein, refers to a disease or disorder resulted from muscle spasm caused by dysfunctional muscle relaxation or excessive muscle tone; or disease or disorder inducing muscle spasm.

As used herein, "muscle spasm" is used interchangeably with "myotony".

According to a concrete embodiment, the disease associated with muscle spasm is selected from the group consisting of herniation of intervertebral disk, vascular disorders of the spinal cord, spastic spinal paralysis, cervical spondylosis, 10 cerebral palsy, sequelae of spinal cord injuries, sequelae of head injuries.

In still another aspect of this invention, there is provided a composition for preventing or treating a disease associated with muscle spasm, comprising the compound of the present invention or pharmaceutically acceptable salt thereof as an active ingredient.

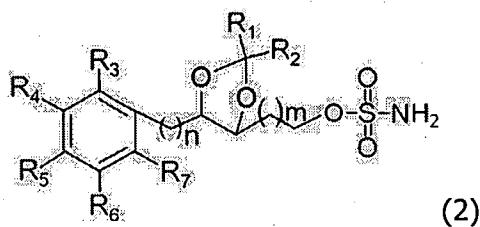
15 As the common descriptions regarding the compound of this invention and the diseases prevented or treated thereby are mentioned above, they are omitted herein to avoid excessive overlaps.

The composition of this invention may be provided as a pharmaceutical composition comprising a pharmaceutically effective amount of the compound or 20 pharmaceutically acceptable salt thereof.

The term "pharmaceutically effective amount" as used herein, refers to an amount enough to show and accomplish efficacies and activities for preventing, alleviating, treating a disease associated with muscle spasm.

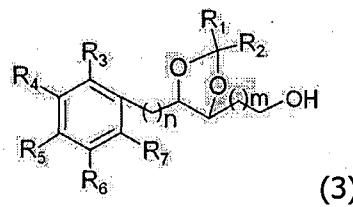
25 The pharmaceutical composition of this invention includes a pharmaceutically acceptable carrier besides the active ingredient compound. The pharmaceutically acceptable carrier contained in the pharmaceutical composition of the present invention, which is commonly used in pharmaceutical formulations, but is not limited to, includes lactose, dextrose, sucrose, sorbitol, mannitol, starch, rubber arable,

potassium phosphate, arginate, gelatin, potassium silicate, microcrystalline cellulose, polyvinylpyrrolidone, cellulose, water, syrups, methylcellulose, methylhydroxy benzoate, propylhydroxy benzoate, talc, magnesium stearate, and mineral oils. The pharmaceutical composition according to the present invention may further include a 5 lubricant, a humectant, a sweetener, a flavoring agent, an emulsifier, a suspending agent, and a preservative. Details of suitable pharmaceutically acceptable carriers and formulations can be found in *Remington's Pharmaceutical Sciences* (19th ed., 1995).


The pharmaceutical composition according to the present invention may be 10 administered orally or parenterally, and concretely, administered parenterally. For parenteral administration, it may be administered intravenously, subcutaneously, intramuscularly, intraperitoneally, transdermally or intra-articularly. More concretely, it is administered intramuscularly or intraperitoneally.

15 A suitable dosage amount of the pharmaceutical composition of the present invention may vary depending on pharmaceutical formulation methods, administration methods, the patient's age, body weight, sex, pathogenic state, diet, administration time, administration route, an excretion rate and sensitivity for a used pharmaceutical composition. Preferably, pharmaceutical composition of the present 20 invention may be administered with a daily dosage of 0.001-10000 mg/kg (body weight).

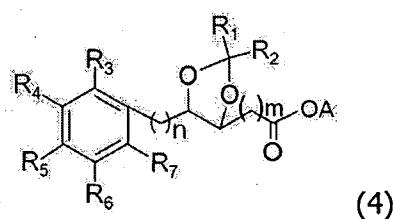
According to the conventional techniques known to those skilled in the art, the pharmaceutical composition according to the present invention may be 25 formulated with pharmaceutically acceptable carrier and/or vehicle as described above, finally providing several forms including a unit dose form and a multi-dose form. Non-limiting examples of the formulations include, but not limited to, a solution, a suspension or an emulsion in oil or aqueous medium, an elixir, a powder,


a granule, a tablet and a capsule, and may further comprise a dispersion agent or a stabilizer.

5 In still another aspect of this invention, there is provided a method for preparing a compound represented by the following formula 2:

comprising:

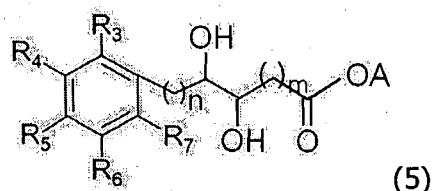
(a) performing sulfamation of a compound represented by the following formula 3:

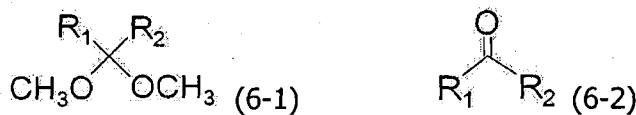

10

wherein R₁ to R₇, n and m are same as defined in formular 1.

The term "sulfamation" as used herein, refers to a reaction in which a sulfamate group is substituted on a hydroxyl group of an alcohol. Sulfamation may be performed by various reagents including, but not limited to, chlorosulfonyl isocyanate, sulfamide and sulfonyl chloride.

15

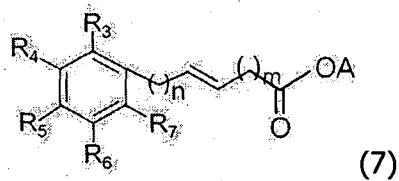

According to a concrete embodiment, the method further comprises reacting a compound represented by the following formula 4:


with a reducing agent to form the compound of formula 3 prior to the step (a), wherein R₁ to R₇, n and m are same as defined in formular 1, and, wherein A is C₁-C₃ alkoxy C₁-C₃ alkyl.

The reducing agent is used for reduction of the ester such that the compound of formula 3 is obtained. Non-limiting example of reducing agent is LiAlH₄, but any reducing agent which reduces ester to primary alcohol may be used in the present invention.

According to a more concrete embodiment, the method further comprises
reacting a compound represented by the following formula 5:

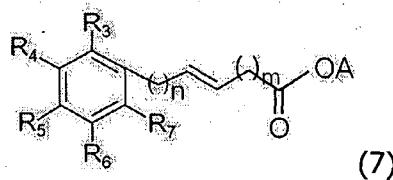
with an acid and a compound represented by the following formula 6-1 or formula 6-2 to form the compound of formula 4:



15 wherein R_1 to R_7 , n, m and A are same as defined in formula 4

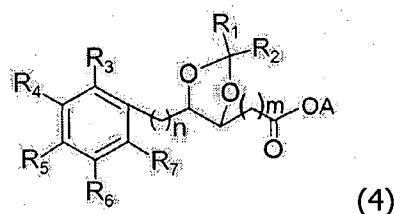
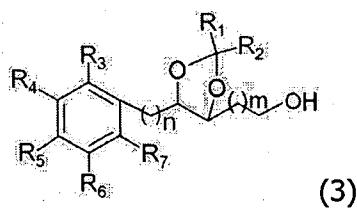
The acid of the present invention is used for protonations on methoxy groups in the compound of formula 6-1 or on carbonyl oxygen in the compound of formula 6-2 such that resultant methanols or water may leave well when diol of the compound of formula 5 reacts with the compound of formula 6-1 or 6-2.

20


According to even more concrete embodiment, the method further comprises performing dihydroxylation of a compound represented by the following formula 7:

with an oxidant to form the compound of formula 5, wherein R₃ to R₇, n, m and A are same as defined in formula 4.

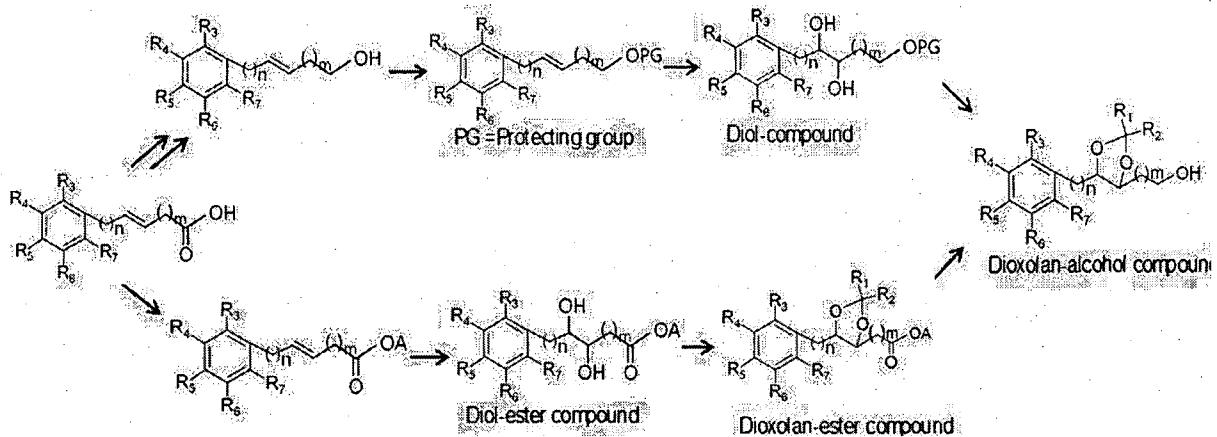
The term "dihydroxylation" as used herein, refers to a reaction in which an oxidant is added to alkenes to form vicinal diols. Concretely, the dihydroxylation is performed by syn-addition of two hydroxyl groups to an alkene. The dihydroxylation may be performed by oxidant including, but not limited to, OsO₄, K₂OsO₄, and KMnO₄.



According to even more concrete embodiment, the method further comprises performing dihydroxylation of a compound represented by the following formula 7:

with an oxidant to form the compound of formula 5, wherein R₃ to R₇, n, m and A are same as defined in formula 4.

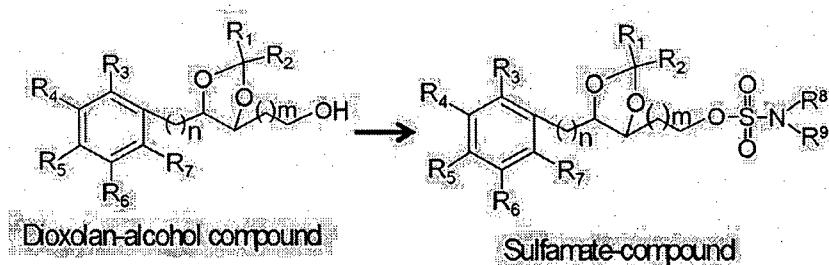
The term "dihydroxylation" as used herein, refers to a reaction in which an oxidant is added to alkenes to form vicinal diols. Concretely, the dihydroxylation is performed by syn-addition or anti-addition of two hydroxyl groups to an alkene. The dihydroxylation may be performed by oxidant including, but not limited to, OsO₄, K₂OsO₄, K₂CO₃ and KMnO₄.

In still another aspect of this invention, there is provided a compound represented by the following formula 3 or 4:

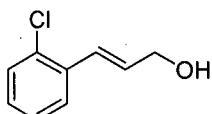

wherein R₁ to R₇, n, m and A are same as defined above

5 The present invention will now be described in further detail by examples. It would be obvious to those skilled in the art that these examples are intended to be more concretely illustrative and the scope of the present invention as set forth in the appended claims is not limited to or by the examples.

10


EXAMPLES

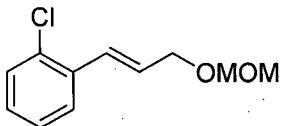
[Reaction formula 1] Synthesis of dioxolan-alcohol compound



15 A dioxolan-alcohol compound used in the synthesis of a sulfamate compound is synthesized by dihydroxylation, condensation and a deprotection reaction.

[Reaction formula 2] Synthesis of Sulfamate compound

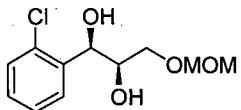
Preparation example 1 : (E)-3-(2-chlorophenyl)prop-2-en-1-ol



5 To a 100ml round-bottomed flask, 2-Chlorocinnamic acid (5g, 7.3mmol) and THF (20ml) were added and the reaction mixture was cooled to 0°C. Triethylamine (4.2ml, 30.1mmol) and Ethyl chloroformate (2.88ml, 30.1mmol) were added. The reaction mixture was precipitated as a white solid during stirring. After 2hr, the reaction mixture was filtered with THF (white solid + yellow solution).

10 The yellow solution was added dropwise to Sodium borohydride (2.68g, 142.3mmol) in H₂O at 0°C and stirred for 2hrs, quenched with 1N HCl solution. The reaction mixture was extracted by EtOAc and washed with H₂O. The combined organic extracts were dried over anhydrous magnesium sulfate (MgSO₄), filtered and concentrated under vacuum. The crude compound was purified by a silica gel column to produce the title compound (2.96g, 60~70%).

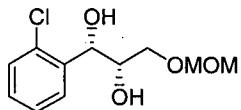
15 ¹H NMR(400MHz, CDCl₃) δ1.67(s, 1H), 4.39(t, J=4.0, 2H), 6.37(dt J=5.6, 16.0, 1H), 7.03(d, J=16.0, 1H), 7.18~7.38(m, 4H),


Preparation example 2 : (E)-1-chloro-2-(3-(methoxymethoxy)prop-1-enyl)benzene

To a 250ml round-bottomed flask, (E)-3-(2-chlorophenyl)prop-2-en-1-ol (2.96g, 17.5mmol, Preparation example 1) and Dichloromethane (17.5ml) were added and the reaction mixture was cooled to 0°C. Diisopropylethylamine (6.1ml, 35.1mmol) was added and stirred at 0°C. Methyl chloromethyl ether (2.77ml, 35.1mmol) was added dropwise and stirred for overnight. The reaction mixture was quenched with 1N NaOH solution, extracted by dichloromethane. The combined organic extracts were dried over anhydrous magnesium sulfate ($MgSO_4$), filtered and concentrated under vacuum. The crude compound was purified by a silica gel column to produce the title compound(3.43g, 85~95%).

1H NMR(400MHz, $CDCl_3$) δ 3.44(s, 3H), 4.30(dd, $J=8.0, 1.6, 1H$), 4.73(s, 2H), 6.30(1H, dt, $J=6.0, 16$), 7.04(d, $J=16.0, 1H$), 7.20~7.57(m, 4H)

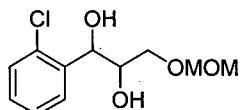
15 **Preparation example 3: (1R,2R)-1-(2-chlorophenyl)-3-(methoxymethoxy)propane-1,2-diol**



A 250ml round-bottomed flask, equipped with a magnetic stirrer, was filled with 80 ml of tert-butyl alcohol, 80ml of water, and $K_3Fe(CN)_6$ (15.93g, 48.3mmol), $K_2C_0_3$ (6.7g, 48.3mmol), $(DHQD)_2-PHAL$ (0.12g, 0.16mmol), $K_2OsO_2(OH)_4$, (11.8mg, 0.03mmol), and Methanesulfonamide (1.53g, 16.1mmol). Stirring at 0°C. (E)-1-chloro-2-(3-(methoxymethoxy)prop-1-enyl)benzene (3.43g, 16.1mmol, Preparation example 2) was added at once, and the mixture was stirred vigorously at 0°C overnight. While the mixture was stirred at 0°C, solid sodium sulfite (Na_2SO_3 , 24.4g,

193.5mmol) was added and the mixture was allowed to warm to room temperature. Ethyl acetate was added to the reaction mixture, and after the separation of the layers, the aqueous phase was further extracted with the organic solvent. The combined organic layers were washed with 2 N KOH. The combined organic extracts 5 were dried over anhydrous magnesium sulfate ($MgSO_4$), filtered and concentrated under vacuum. The crude compound was purified by a silica gel column to produce the title compound (3.31g, 75~90%).

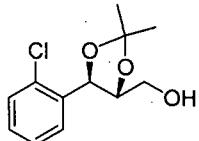
10 1H NMR(400MHz, $CDCl_3$) δ 3.09(d, $J=5.6$, 1H), 3.27(d, $J=4.4$, 1H), 3.41(s, 3H), 3.69~3.77(m, 2H), 3.96~3.99(m, 1H), 4.69(s, 2H), 5.19(t, $J=4.4$, 1H), 7.23~7.61(m, 1H)


Preparation example 4: (1S,2S)-1-(2-chlorophenyl)-3-(methoxymethoxy)propane-1,2-diol

15 The substantially same method as described in Preparation Example 3 was conducted, except that $(DHQ)_2\text{-PHAL}$ was used instead of $(DHQD)_2\text{-PHAL}$, to obtain the title compound. 3.1g(75~90%).

20 1H NMR(400MHz, $CDCl_3$) δ 3.09(d, $J=5.6$, 1H), 3.27(d, $J=4.4$, 1H), 3.41(s, 3H), 3.69~3.77(m, 2H), 3.96~3.99(m, 1H), 4.69(s, 2H), 5.19(t, $J=4.4$, 1H), 7.23~7.61(m, 4H)

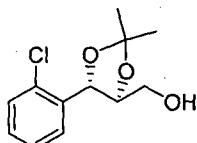
Preparation example 5: 1-(2-chlorophenyl)-3-(methoxymethoxy)propane-1,2-diol



25 (E)-1-chloro-2-(3-(methoxymethoxy)prop-1-enyl)benzene(9.1g, Preparation Example

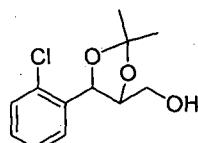
2) was dissolved in 45mL of a mixture of acetone/t-BuOH/H₂O(5:1:1 V/V). At room temperature, N-methylmorpholine-N-oxide (7.51g) and OsO₄ (0.54g) were added thereto and stirred for 2-3 hours. When the reaction was completed, the obtained product was washed with water and methylenechloride (MC). Then, the organic layer was dehydrated with anhydrous magnesium sulfate (MgSO₄), filtrated, and concentrated under reduced pressure. The crude compound was purified by a silica gel column to produce the title compound (7.42g, 70~90%).

¹H NMR(400MHz, CDCl₃) δ3.09(d, J=5.6, 1H), 3.27(d, J=4.4, 1H), 3.41(s, 3H), 3.69~3.77(m, 2H), 3.96~3.99(m, 1H), 4.69(s, 2H), 5.19(t, J=4.4, 1H), 7.23~7.61(m, 4H)


Preparation example 6 : ((4R,5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol

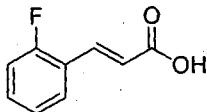
To (1R,2R)-1-(2-chlorophenyl)-3-(methoxymethoxy)propane-1,2-diol (3.31g, 13.4mmol, Preparation example 3), Dichloromethane was added and cooled to 0°C. 2,2-Dimethoxypropane (3.3ml, 26.8mmol) and p-toluenesulfonic acid (2g, 10.7mmol) was added and stirred at room temperature for 5hrs. The reaction mixture was quenched with H₂O, extracted with DCM, and washed with H₂O. The organic layer was dried over anhydrous magnesium sulfate(MgSO₄), filtered and concentrated. The crude compound was purified by a silica gel column to produce the title compound(1.05g, 30~40%).

¹H NMR(400MHz, CDCl₃) δ1.57(s, 3H), 1.63(s, 3H), 1.95~1.98(m, 1H), 3.88~3.89(m, 1H), 3.90~3.96(m, 2H), 5.41(d, J=8.4, 1H), 7.25~7.66(m, 4H)


Preparation example 7: ((4S,5S)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol

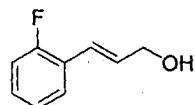
The substantially same method as described in Preparation Example 6 was conducted, except that (1S,2S)-1-(2-chlorophenyl)-3-(methoxymethoxy)propane-1,2-diol(Preparation example 4) was used instead of (1R,2R)-1-(2-chlorophenyl)-3-(methoxymethoxy)propane-1,2-diol(Preparation example 3), to obtain the title compound(1.1g, 30~40%).

10 ^1H NMR(400MHz, CDCl_3) δ 1.57(s, 3H), 1.64(s, 3H), 1.98(m, 1H), 3.76~3.83(m, 1H), 3.88~3.90(m, 2H), 5.41(d, J =8.4, 1H), 7.25~7.66(m, 4H)


Preparation example 8: (5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol

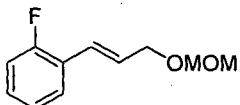
15 The substantially same method as described in Preparation Example 6 was conducted, except that 1-(2-chlorophenyl)-3-(methoxymethoxy)propane-1,2-diol(Preparation example 5) was used instead of (1R,2R)-1-(2-chlorophenyl)-3-(methoxymethoxy)propane-1,2-diol (Preparation example 3), to obtain the title compound (2.1g, 30~40%).

20 ^1H NMR(400MHz, CDCl_3) δ 1.57(s, 3H), 1.63(s, 3H), 1.95~1.98(m, 1H), 3.88~3.89(m, 1H), 3.90~3.96(m, 2H), 5.41(d, J =8.4, 1H), 7.25~7.66(m, 4H)


Preparation example 9 : (E)-3-(2-fluorophenyl)-acrylic acid

Piperidine (247mg, 2.90mmol) was added to a stirred solution of malonic acid (3.1g, 29.00mmol) and 2-fluoroaldehyde (3g, 24.17mmol) in pyridine at room temperature under N₂ condition. The solution was cooled to room temperature, then quenched with HCl solution. The residue was treated with EA and H₂O. The organic layer was separated and the aqueous layer was extracted further with EA. The combined extracts were washed with brine. The organic layer was dried over Na₂SO₄, filtered and concentrated. The crude compound was purified by a silica gel column to produce the title compound (3.66g, 70~90%).

10 ¹H NMR(400MHz, CDCl₃) δ6.60(d, J=16.0, 1H), 7.24~7.50(m, 3H), 7.66(d, J=16.0, 1H), 7.84(t, J=8.0, 1H)


Preparation example 10 : (E)-3-(2-fluorophenyl)-prop-2-en-1-ol

15 The substantially same method as described in Preparation Example 1 was conducted, except that (E)-3-(2-fluorophenyl)-acrylic acid (Preparation example 9) was used instead of 2-Chlorocinnamic acid, to obtain the title compound(1.6g, 30~40%).

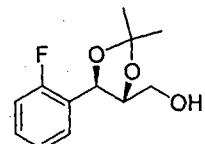
20 ¹H NMR(400MHz, CDCl₃) δ1.67 (s, 1H), 4.39 (t, J=4.0, 2H), 6.34~6.41 (m, 1H), 7.00~7.38 (m, 4H)


Preparation example 11 : (E)-1-Fluoro-2-(3-(methoxymethoxy)prop-1-enyl)benzene

The substantially same method as described in Preparation Example 2 was conducted, except that (E)-3-(2-fluorophenyl)-prop-2-en-1-ol(Preparation example 10) was used instead of (E)-3-(2-chlorophenyl)-prop-2-en-1-ol(Preparation example 1), to obtain the title compound (2.23g, 85~95%).

¹H NMR(400MHz, CDCl₃) δ3.44(s, 3H), 4.30 (dd, J=1.6, 8.0, 1H), 4.73(s, 2H), 6.27~6.37(m, 1H), 7.02~7.57(m, 4H)

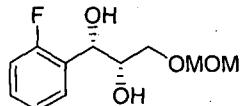
Preparation example 12: (1R,2R)-1-(2-fluorophenyl)-3-(methoxymethoxy)propane-1,2-diol



The substantially same method as described in Preparation Example 3 was conducted, except that (E)-1-Fluoro-2-(3-(methoxymethoxy)prop-1-enyl)benzene (Preparation example 11) was used instead of (E)-1-chloro-2-(3-(methoxymethoxy)prop-1-enyl)benzene(Preparation example 2), to obtain the title compound (2.13g, 75~90%).

¹H NMR(400MHz, CDCl₃) δ3.09(d, J=5.6, 1H), 3.27(d, J=4.4, 1H), 3.41(s, 3H), 3.69~3.77(m, 2H), 3.96~3.99(m, 1H), 4.69(s, 2H), 5.19(t, J=4.4, 1H), 7.23~7.61(m, 4H)

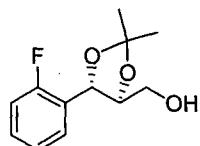
20


Preparation example 13 : ((4R,5R)-5-(2-fluorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol

The substantially same method as described in Preparation Example 6 was conducted, except that (1R, 2R)-1-(2-fluorophenyl)-3-(methoxymethoxy)propane-1,2-diol(Preparation example 12) was used instead of (1R, 2R)-1-(2-chlorophenyl)-3-(methoxymethoxy)propane-1,2-diol(Preparation example 3), to obtain the title compound (1.73g, 30~40%).

¹H NMR(400MHz, CDCl₃) δ1.57(s, 3H), 1.63(s, 3H), 1.95~1.98(m, 1H), 3.88~3.89(m, 1H), 3.90~3.96(m, 2H), 5.41(d, J=8.4, 1H), 7.25~7.66(m, 4H)

Preparation example 14: (1S,2S)-1-(2-fluorophenyl)-3-(methoxymethoxy)propane-1,2-diol

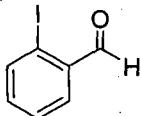


The substantially same method as described in Preparation Example 4 was conducted, except that (E)-1-Fluoro-2-(3-(methoxymethoxy)prop-1-enyl)benzene(Preparation example 11) was used instead of (E)-1-chloro-2-(3-(methoxymethoxy)prop-1-enyl)benzene(Preparation example 2), to obtain the title compound (2.13g, 75~90%).

¹H NMR(400MHz, CDCl₃) δ3.09(d, J=5.6, 1H), 3.27(d, J=4.4, 1H), 3.41(s, 3H), 3.69~3.77(m, 2H), 3.96~3.99(m, 1H), 4.69(s, 2H), 5.19(t, J=4.4, 1H), 7.23~7.61(m, 4H)

20

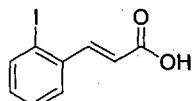
Preparation example 15 : ((4S,5S)-5-(2-fluorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol



The substantially same method as described in Preparation Example 6 was

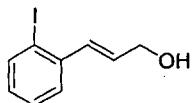
conducted, except that (1S, 2S)-1-(2-fluorophenyl)-3-(methoxymethoxy)propane-1,2-diol(Preparation example 14) was used instead of (1R, 2R)-1-(2-chlorophenyl)-3-(methoxymethoxy)propane-1,2-diol(Preparation example 3), to obtain the title compound (1.73g, 30~40%).

5 ^1H NMR(400MHz, CDCl_3) δ 1.57(s, 3H), 1.63(s, 3H), 1.95~1.98(m, 1H), 3.88~3.89(m, 1H), 3.90~3.96(m, 2H), 5.41(d, J =8.4, 1H), 7.25~7.66(m, 4H)


Preparation example 16 : 2-Iodobenzenealdehyde

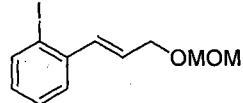
10 In a flask, 2-iodobenzyl alcohol (4g, 17.09mmol) was dissolved in dichloromethane (MC, 85ml), and then, manganese oxide (MnO_2 , 14.86g, 170.92mmol) was added thereto. The obtained reaction product was stirred under reflux. When the reaction was completed, the obtained reaction product was cooled to room temperature, and then, filtered and concentrated using celite, to obtain the title compound (3.6g, yield 75~90%).

15 ^1H NMR(400MHz, CDCl_3) δ 7.30~7.99(m, 4H), 10.10(s, 1H)


Preparation example 17: (E)-3-(2-iodophenyl)-acrylic acid

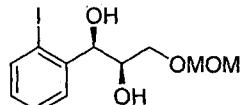
20 The substantially same method as described in Preparation Example 9 was conducted, except that 2-Iodobenzenealdehyde(Preparation example 16) was used instead of 2-Fluoroaldehyde, to obtain the title compound (2.06g, 70~90%)

^1H NMR(400MHz, CDCl_3) δ 6.60(d, J =16.0, 1H), 7.24~7.50(m, 3H), 7.66(d, J =16.0, 1H), 7.84(t, J =8.0, 1H)


Preparation example 18 : (E)-3-(2-iodophenyl)-prop-2-en-1-ol

The substantially same method as described in Preparation Example 1 was conducted, except that (E)-3-(2-iodophenyl)-acrylic acid (Preparation example 17) was used instead of 2-Chlorocinnamic acid, to obtain the title compound(1.08g, 30~40%).

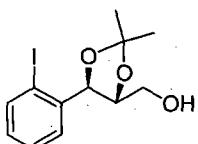
¹H NMR(400MHz, CDCl₃) δ1.67 (s, 1H), 4.39 (t, J=4.0, 2H), 6.34~6.41 (m, 1H), 7.00~7.38 (m, 4H)


Preparation example 19 : (E)-1-Iodo-2-(3-(methoxymethoxy)prop-1-enyl)benzene

The substantially same method as described in Preparation Example 2 was conducted, except that (E)-3-(2-iodophenyl)-prop-2-en-1-ol(Preparation example 18) was used instead of (E)-3-(2-chlorophenyl)-prop-2-en-1-ol(Preparation example 1), to obtain the title compound (1.37g, 85~95%).

¹H NMR(400MHz, CDCl₃) δ3.44(s, 3H), 4.30(dd, J=8.0, 1.6, 1H), 4.73(s, 2H), 6.27~6.34(m, 1H), 7.02~7.57(m, 4H)

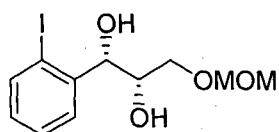
Preparation example 20 : (1R, 2R)-1-(2-iodophenyl)-3-(methoxymethoxy)propane-1,2-diol



The substantially same method as described in Preparation Example 3 was conducted, except that (E)-1-Iodo-2-(3-(methoxymethoxy)prop-1-enyl)benzene(Preparation example 19) was used instead of (E)-1-chloro-2-(3-

(methoxymethoxy)prop-1-enyl)benzene(Preparation example 2), to obtain the title compound (1.32g, 75~90%).

¹H NMR(400MHz, CDCl₃) δ3.09(d, J=5.6, 1H), 3.27(d, J=4.4, 1H), 3.41(s, 3H), 3.69~3.77(m, 2H), 3.96~3.99(m, 1H), 4.69(s, 2H), 5.19(t, J=4.4, 1H), 7.23~7.61(m, 5 4H)

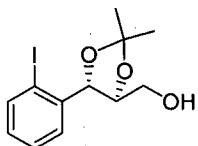

Preparation example 21 : ((4R, 5R)-5-(2-iodophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol

10 The substantially same method as described in Preparation Example 6 was conducted, except that (1R, 2R)-1-(2-iodophenyl)-3-(methoxymethoxy)propane-1,2-diol(Preparation example 20) was used instead of (1R,2R)-1-(2-chlorophenyl)-3-(methoxymethoxy)propane-1,2-diol(Preparation example 3), to obtain the title compound (1.33g, 30~40%).

15 ¹H NMR(400MHz, CDCl₃) δ1.57(s, 3H), 1.63(s, 3H), 1.95~1.98(m, 1H), 3.88~3.89(m, 1H), 3.90~3.96(m, 2H), 5.41(d, J=8.4, 1H), 7.25~7.66(m, 4H)

Preparation example 22 : (1S,2S)-1-(2-iodophenyl)-3-(methoxymethoxy)propane-1,2-diol

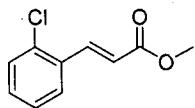
20


The substantially same method as described in Preparation Example 4 was conducted, except that (E)-1-Iodo-2-(3-(methoxymethoxy)prop-1-enyl)benzene(Preparation example 19) was used instead of (E)-1-chloro-2-(3-

(methoxymethoxy)prop-1-enyl)benzene(Preparation example 2), to obtain the title compound (1.32g, 75~90%).

¹H NMR(400MHz, CDCl₃) δ3.09(d, J=5.6, 1H), 3.27(d, J=4.4, 1H), 3.41(s, 3H), 3.69~3.77(m, 2H), 3.96~3.99(m, 1H), 4.69(s, 2H), 5.19(t, J=4.4, 1H), 7.23~7.61(m, 4H)

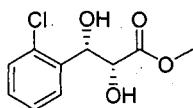
5


Preparation example 23 : ((4S,5S)-5-(2-iodophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol

10 The substantially same method as described in Preparation Example 6 was conducted, except that (1S,2S)-1-(2-iodophenyl)-3-(methoxymethoxy)propane-1,2-diol(Preparation example 22) was used instead of (1R,2R)-1-(2-chlorophenyl)-3-(methoxymethoxy)propane-1,2-diol(Preparation example 3), to obtain the title compound (1.33g, 30~40%).

15 ¹H NMR(400MHz, CDCl₃) δ1.57(s, 3H), 1.63(s, 3H), 1.95~1.98(m, 1H), 3.88~3.89(m, 1H), 3.90~3.96(m, 2H), 5.41(d, J=8.4, 1H), 7.25~7.66(m, 4H)

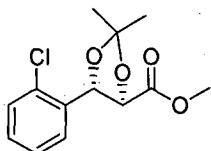
Preparation example 24 : (E)-Methyl-3-(2-chlorophenyl)acrylate


20 To a 250ml round-bottomed flask, 2-Chlorocinnamic acid (25g, 136.9mmol) and MeOH(56ml) were added. POCl₃(1.27ml, 13.6mmol) was added dropwise. The reaction mixture was stirred under reflux for 3~4h. The reaction mixture was cooled to room temperature, quenched with 1N NaOH solution. The mixture was extracted by EtOAc and washed with H₂O. The aqueous layer was further extracted with EtOAc.

The combined organic layer was dried over anhydrous magnesium sulfate($MgSO_4$), filtered and concentrated under vacuum.(26.98g, 85~97%)

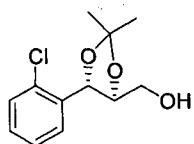
1H NMR(400MHz, $CDCl_3$) δ 3.84 (s, 3H), 6.45 (d, $J=16.0$, 1H), 7.28~7.65 (m, 4H), 8.12 (d, $J=16.0$, 1H)

5


Preparation example 25 : (2S,3R)-methyl-3-(2-chlorophenyl)-2,3-dihydroxypropanoate

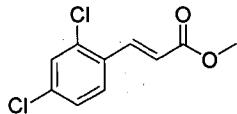
A 1000ml round-bottomed flask, equipped with a magnetic stirrer, was filled with 10 362 ml of tert-butyl alcohol, 362ml of water, $K_3Fe(CN)_6$ (135.53g, 411.63mmol), $K_2C_2O_4$ (56.89g, 411.63mmol), $(DHQ)_2PHAL$ (1.06g, 1.37mmol), $K_2OsO_2(OH)_4$ (0.1g, 0.27mmol), and Methanesulfonamide (13.05g, 137.21mmol) and stirred at 0°C. (E)-Methyl-3-(2-chlorophenyl)acrylate (26.98g, Preparation example 24) was added at once, and the mixture was stirred vigorously at 0°C overnight. While the mixture was 15 stirred at 0°C, solid sodium sulfite (Na_2SO_3 , 24.4g, 193.5mmol), EtOAc and water was added and the mixture was allowed to warm to room temperature and stirred. After the separation of the layer, the aqueous layer was added to EtOAc, and the aqueous layer was separated. The combined organic layers were washed with 0.3M 20 H_2SO_4/Na_2SO_4 solution(H_2SO_4 76ml, H_2O 2L, Na_2SO_4 360g) twice. After separation of the organic layer, the organic layer was washed with H_2O . After separating of the layer, the organic layer were dried over anhydrous $MgSO_4$, filtered and concentrated under vacuum. The crude compound was purified by a silica gel column to produce the title compound(24.42g, 70~90%)

25 1H NMR(400MHz, $CDCl_3$) δ 7.62~7.26 (4H, m), 5.51(1H, dd, $J=7.2$, 2.4), 4.50(1H, dd, $J=5.6$, 2.4), 3.86(3H, s), 3.13(1H, d, $J=6.0$), 2.79(1H, d, $J=7.2$)


Preparation example 26 : (4S,5R)-methyl-5-(2-chlorophenyl)-2,2-dimehtyl-1,3-dioxolane-4-carboxylate

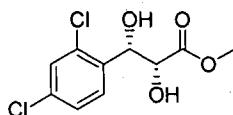
Dichloromethane(DMC) was added to (2S,3R)-methyl-3-(2-chlorophenyl)-2,3-dihydroxypropanoate(24.4g, Preparation example 25) and cooled to 0°C. 2,2-Dimethoxypropane (26ml, 211.77mmol) and p-toluenesulfonic acid (2g, 10.58mmol) was added and stirred at room temperature. The reaction mixture was quenched with H₂O, extracted with DCM, washed with H₂O, dried over anhydrous magnesium sulfate, filtered and concentrated. The crude compound was purified by a silica gel column to produce the title compound(23.6g, 70~95%).

¹H NMR(400MHz, CDCl₃) δ1.63(s, 3H), 1.65(s, 3H), 3.78(s, 3H), 4.30(d, *J*=7.6, 1H), 5.62(d, *J*=7.6, 1H), 7.28~7.64(m, 4H)


Preparation example 27(7) : ((4S,5S)-5-(2-chlorophenyl)-2,2-dimehtyl-1,3-dioxolane-4-yl)methanol

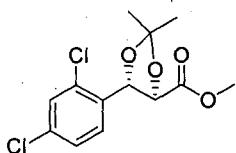
A solution of To a solution LAH(LiAlH₄ 3.31g, 87.25mmol) in THF was added dropwise to a solution of (4S,5R)-methyl 5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolane-4-carboxylate (23.6g, Preparation 26) in THF at 0°C, and the mixture stirred at room temp. The reaction mixture was quenched with H₂O at 0°C, cellite filtered with EtOAc, washed with EtOAc, dried over anhydrous magnesium sulfate(MgSO₄), filtered and concentrated. The crude compound was purified by a silica gel column to produce the title compound (21.13g 70~95%)

¹H NMR(400MHz, CDCl₃) δ1.57(s, 3H), 1.64(s, 3H), 1.98(m, 1H), 3.76~3.83(m, 1H), 3.88~3.90(m, 2H), 5.41(d, *J*=8.4, 1H), 7.25~7.66(m, 4H)


Preparation example 28 : (E)-Methyl-3-(2,4-dichlorophenyl)acrylate

The substantially same method as described in Example 24 was conducted, except that 2,4-dichlorocinnamic acid was used instead of 2-chlorocinnamic acid, to obtain the title compound(9.7g, 70~90%)

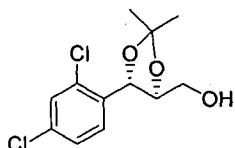
10 ¹H NMR(400MHz, CDCl₃): δ3.84(s, 3H), 6.44(d, *J*=16, 1H), 7.28~7.33(m, 1H), 7.41(d, *J*=2.0, 1H), 7.55(d, *J*= 8.4, 1H), 8.04(d, *J*=16, 1H).


Preparation example 29 : (2S,3R)-methyl-3-(2,4-dichlorophenyl)-2,3-dihydroxypropanoate

15 The substantially same method as described in Example 25 was conducted, except that (E)-Methyl-3-(2,4-dichlorophenyl)acrylate (Preparation example 28) was used instead of (E)-Methyl-3-(2-chlorophenyl)acrylate (Preparation example 24), to obtain the title compound (3.8g, 60~80%)

20 ¹H NMR(400MHz, CDCl₃): δ3.11(s, 1H), 3.88(s, 3H), 4.42(d, *J*=2.4, 1H), 5.43(d, *J*=2.0, 1H), 7.28~7.33(m, 1H), 7.41(d, *J*=2.0, 1H), 7.55(d, *J*= 8.4, 1H).

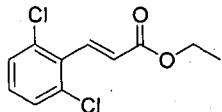
Preparation example 30 : (4S,5R)-methyl-5-(2,4-dichlorophenyl)-2,2-dimethyl-1,3-dioxolane-4-carboxylate



The substantially same method as described in Example 26 was conducted, except that (2S,3R)-methyl-3-(2,4-dichlorophenyl)-2,3-dihydroxypropanoate (Preparation example 29) was used instead of (2S,3R)-methyl-3-(2-chlorophenyl)-2,3-dihydroxypropanoate (Preparation example 25), to obtain the title compound(3.5g, 60~80%)

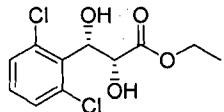
¹H NMR(400MHz, CDCl₃): δ1.59(s, 3H), 1.63(d, *J*=8.8, 3H), 3.78(s, 3H), 4.25(d, *J*=7.6, 1H), 5.56(d, *J*=8.0, 1H), 7.28~7.33(m, 1H), 7.41(d, *J*=2.0, 1H), 7.56(d, *J*=8.4, 1H).

10


Preparation example 31 : ((4S,5S)-5-(2,4-dichlorophenyl)-2,2-dimehtyl-1.3-dioxolane-4-yl)methanol

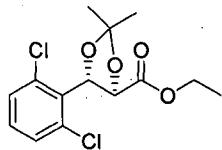
The substantially same method as described in Example 27 was conducted, except that (4S,5R)-methyl-5-(2,4-dichlorophenyl)-2,2-dimehtyl-1.3-dioxolane-4-carboxylate(Preparation example 30) was used instead of (4S,5R)-methyl-5-(2-chlorophenyl)-2,2-dimehtyl-1.3-dioxolane-4-carboxylate (Preparation example 26), to obtain the title compound(3.2g, 70~95%)

¹H NMR(400MHz, CDCl₃): δ1.56(s, 3H), 1.62(d, *J*=4.8, 6H), 1.97(dd, *J*=7.6, *J*=7.2, 1H), 3.75~3.80(m, 1H), 3.82~3.86(m, 1H), 3.89~3.94(m, 1H), 5.36(d, *J*=8.4, 1H), 7.28~7.33(m, 1H), 7.41(d, *J*=2.0, 1H), 7.56(d, *J*= 8.4, 1H).


Preparation example 32 : (E)-Ethyl-3-(2,6-dichlorophenyl)acrylate

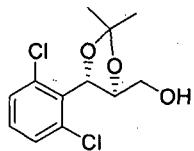
To a stirred solution of 2,6-dichlorobenzaldehyde (5.0g, 28.56mmol) in THF was added triethyl phosphono acetate (6.4g, 28.56mmol) at 0°C. The reaction mixture was added *t*-BuOK (3.2g, 28.56mmol) at room temperature. The mixture was stirred for 10h then the resulting mixture was quenched with 1N HCl, diluted with ether, washed with water, dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude product was purified by SiO₂ gel column chromatography(4.3g 40~60%)

10 ¹H NMR(400MHz, CDCl₃): δ1.36(t, *J*=3.6, 3H), 4.31(q, *J*=3.7, 2H), 6.61(d, *J*=16, 1H), 7.21(t, *J*=4.2, 1H), 7.38(d, *J*=5.2, 1H), 7.81(d, *J*= 16, 1H).


Preparation example 33 : (2S,3R)-ethyl-3-(2,6-dichlorophenyl)-2,3-dihydroxypropanoate

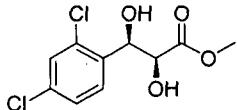
15 The substantially same method as described in Example 25 was conducted, except that (E)-ethyl-3-(2,6-dichlorophenyl)acrylate (Preparation example 32) was used instead of (E)-Methyl-3-(2-chlorophenyl)acrylate (Preparation example 24), to obtain the title compound (3.9g, 60~80%)

20 ¹H NMR(400MHz, CDCl₃): δ1.21(t, *J*=7.2, 3H), 3.22(s, 1H), 3.69(s, 1H), 4.20~4.28(m, 1H), 4.70(d, *J*=5.2, 1H), 5.62(d, *J*=5.6, 1H), 7.19~7.36(m, 3H).


Preparation example 34 : (4S,5R)-ethyl-5-(2,4-dichlorophenyl)-2,2-dimethyl-1,3-dioxolane-4-carboxylate

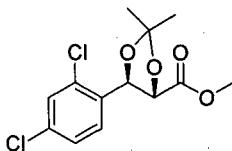
The substantially same method as described in Example 26 was conducted, except that (2S,3R)-ethyl-3-(2,6-dichlorophenyl)-2,3-dihydroxypropanoate (Preparation example 29) was used instead of (2S,3R)-methyl-3-(2-chlorophenyl)-2,3-dihydroxypropanoate (Preparation example 25), to obtain the title compound(4.1g, 60~90%)

¹H NMR(400MHz, CDCl₃): δ1.26(t, *J*=7.2, 3H), 1.58(s, 3H), 1.70(s, 3H), 3.77(s, 3H), 4.24(q, *J*=7.2, 1H), 4.95(q, *J*=4.4, 1H), 5.95(q, *J*=3.0, 1H), 7.20~7.39(m, 3H).


10 **Preparation example 35 : ((4S,5S)-5-(2,6-dichlorophenyl)-2,2-dimehtyl-1.3-dioxolane-4-yl)methanol**

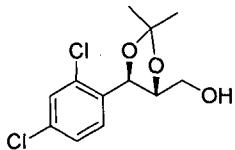
The substantially same method as described in Example 27 was conducted, except that (4S,5R)-ethyl-5-(2,6-dichlorophenyl)-2,2-dimehtyl-1.3-dioxolane-4-carboxylate(Preparation example 33) was used instead of (4S,5R)-methyl-5-(2-chlorophenyl)-2,2-dimehtyl-1.3-dioxolane-4-carboxylate (Preparation example 26), to obtain the title compound(3.5g, 70~95%)

¹H NMR(400MHz, CDCl₃): δ1.55(s, 3H), 1.68(s, 3H), 3.66(q, *J*=5.5, 1H), 3.85(q, *J*=5.1, 1H), 4.56~4.61(m, 1H), 5.78(d, *J*=9.2, 1H), 7.19~7.37(m, 3H).


Preparation example 36 : (2R,3S)-methyl-3-(2,4-dichlorophenyl)-2,3-dihydroxypropanoate

The substantially same method as described in Preparation Example 3 was conducted, except that (E)-Methyl-3-(2,4-dichlorophenyl)acrylate(Preparation example 28) was used instead of (E)-1-chloro-2-(3-(methoxymethoxy)prop-1-enyl)benzene(Preparation example 2), to obtain the title compound (2.4g, 75~90%).

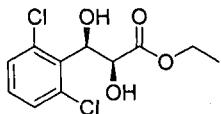
¹H NMR(400MHz, CDCl₃): δ3.11(s, 1H), 3.88(s, 3H), 4.42(d, *J*=2.4, 1H), 5.43(d, *J*=2.0, 1H), 7.28~7.33(m, 1H), 7.41(d, *J*=2.0, 1H), 7.55(d, *J*= 8.4, 1H).


Preparation example 37 : (4R, 5S)-methyl-5-(2,4-dichlorophenyl)-2,2-dimehtyl-1,3-dioxolane-4-carboxylate

The substantially same method as described in Example 26 was conducted, except that (2R,3S)-methyl-3-(2,4-dichlorophenyl)-2,3-dihydroxypropanoate (Preparation example 36) was used instead of (2S,3R)-methyl-3-(2-chlorophenyl)-2,3-dihydroxypropanoate (Preparation example 25), to obtain the title compound(3.2g, 60~80%)

¹H NMR(400MHz, CDCl₃): δ1.59(s, 3H), 1.63(d, *J*=8.8, 3H), 3.78(s, 3H), 4.25(d, *J*=7.6, 1H), 5.56(d, *J*=8.0, 1H), 7.28~7.33(m, 1H), 7.41(d, *J*=2.0, 1H), 7.56(d, *J*= 8.4, 1H).

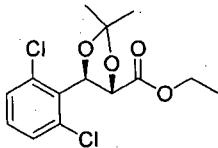
Preparation example 38 : ((4R,5R)-5-(2,4-dichlorophenyl)-2,2-dimehtyl-1,3-dioxolane-4-yl)methanol



The substantially same method as described in Example 27 was conducted, except that (4R,5S)-methyl-5-(2,4-dichlorophenyl)-2,2-dimethyl-1,3-dioxolane-4-carboxylate(Preparation example 37) was used instead of (4S,5R)-methyl-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolane-4-carboxylate (Preparation example 26), to obtain the title compound(3.5g, 70~95%)

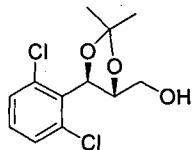
¹H NMR(400MHz, CDCl₃): δ1.56(s, 3H), 1.62(d, *J*=4.8, 6H), 1.97(dd, *J*=7.6, *J*=7.2, 1H), 3.75~3.80(m, 1H), 3.82~3.86(m, 1H), 3.89~3.94(m, 1H), 5.36(d, *J*=8.4, 1H), 7.28~7.33(m, 1H), 7.41(d, *J*=2.0, 1H), 7.56(d, *J*= 8.4, 1H).

10


Preparation example 39 : (2R,3S)-ethyl-3-(2,6-dichlorophenyl)-2,3-dihydroxypropanoate

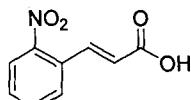
The substantially same method as described in Preparation Example 3 was conducted, except that (E)-ethyl-3-(2,6-dichlorophenyl)acrylate(Preparation example 32) was used instead of (E)-1-chloro-2-(3-(methoxymethoxy)prop-1-enyl)benzene(Preparation example 2), to obtain the title compound (2.8g, 75~90%).

¹H NMR(400MHz, CDCl₃): δ3.11(s, 1H), 3.88(s, 3H), 4.42(d, *J*=2.4, 1H), 5.43(d, *J*=2.0, 1H), 7.28~7.33(m, 1H), 7.41(d, *J*=2.0, 1H), 7.55(d, *J*= 8.4, 1H).¹H NMR(400MHz, CDCl₃): δ=1.21(t, *J*=7.2, 3H), 3.22(s, 1H), 3.69(s, 1H), 4.20~4.28(m, 1H), 4.70(d, *J*=5.2, 1H), 5.62(d, *J*=5.6, 1H), 7.19~7.36(m, 3H).


Preparation example 40 : (4R,5S)-ethyl-5-(2,4-dichlorophenyl)-2,2-dimethyl-1,3-dioxolane-4-carboxylate

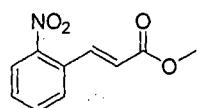
The substantially same method as described in Example 26 was conducted, except that (2R,3S)-ethyl-3-(2,6-dichlorophenyl)-2,3-dihydroxypropanoate (Preparation example 39) was used instead of (2S,3R)-methyl-3-(2-chlorophenyl)-2,3-dihydroxypropanoate (Preparation example 25), to obtain the title compound(4.1g, 60~90%)

¹H NMR(400MHz, CDCl₃): δ1.26(t, *J*=7.2, 3H), 1.58(s, 3H), 1.70(s, 3H), 3.77(s, 3H), 4.24(q, *J*=7.2, 1H), 4.95(q, *J*=4.4, 1H), 5.95(q, *J*=3.0, 1H), 7.20~7.39(m, 3H).


10 **Preparation example 41 : ((4R,5R)-5-(2,6-dichlorophenyl)-2,2-dimehtyl-1.3-dioxolane-4-yl)methanol**

The substantially same method as described in Example 27 was conducted, except that (4R,5S)-ethyl-5-(2,6-dichlorophenyl)-2,2-dimehtyl-1.3-dioxolane-4-carboxylate(Preparation example 40) was used instead of (4S,5R)-methyl-5-(2-chlorophenyl)-2,2-dimehtyl-1.3-dioxolane-4-carboxylate (Preparation example 26), to obtain the title compound(5.2g, 70~95%)

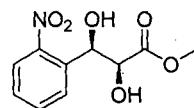
¹H NMR(400MHz, CDCl₃): δ1.55(s, 3H), 1.68(s, 3H), 3.66(q, *J*=5.5, 1H), 3.85(q, *J*=5.1, 1H), 4.56~4.61(m, 1H), 5.78(d, *J*=9.2, 1H), 7.19~7.37(m, 3H).


Preparation example 42: (E)-3-(2-nitrophenyl)-acrylic acid

The substantially same method as described in Preparation Example 9 was conducted, except that 2-nitrobenzenealdehyde was used instead of 2-Fluoroaldehyde, to obtain the title compound (2.06g, 70~90%)

5 ^1H NMR(400MHz, DMSO) δ 6.52(d, $J=15.6$, 1H), 7.65(t, $J=8.1$, 1H), 7.75(t, $J=7.4$, 1H), 7.83(d, $J=15.8$, 1H), 7.92(dd, $J=7.6$, 1.1, 1H), 8.05(dd, $J=8.1$, 1.2, 1H)

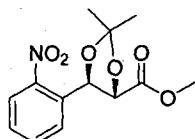
Preparation example 43 : (E)-Methyl-3-(2-nitrophenyl)acrylate



10 The substantially same method as described in Example 24 was conducted, except that (E)-3-(2-nitrophenyl)-acrylic acid (Preparation example 42) was used instead of 2-chlorocinnamic acid, to obtain the title compound(15.8g, 70~90%)

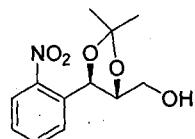
15 ^1H NMR(400MHz, CDCl_3) δ 3.80 (s, 3H), 6.34 (d, $J=15.9$ Hz, 1H), 7.49-7.68 (m, 4H), 8.01 (d, $J=7.9$ Hz, 1H), 8.08 (d, $J=15.9$, 1H).

15


Preparation example 44 : (2R,3S)-methyl-3-(2-nitrophenyl)-2,3-dihydroxypropanoate

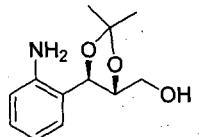
20 The substantially same method as described in Preparation Example 3 was conducted, except that (E)-Methyl-3-(2-nitrophenyl)acrylate(Preparation example 43) was used instead of (E)-1-chloro-2-(3-(methoxymethoxy)prop-1-enyl)benzene (Preparation example 2), to obtain the title compound (12.5g, 75~90%).

25 ^1H NMR(400MHz, CDCl_3): $\delta=4.31$ (s, 3H), 5.44(m, 4H), 5.89(s, 1H), 7.53~7.90(m, 4H).


Preparation example 45 : (4R, 5S)-methyl-5-(2-nitrophenyl)-2,2-dimehtyl-1.3-dioxolane-4-carboxylate

The substantially same method as described in Example 26 was conducted, except
 5 that (2R,3S)-methyl-3-(2-nitrophenyl)-2,3-dihydroxypropanoate (Preparation
 example 44) was used instead of (2S,3R)-methyl-3-(2-chlorophenyl)-2,3-
 dihydroxypropanoate (Preparation example 25), to obtain the title compound(11g,
 60~80%)

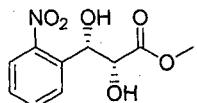
10 ^1H NMR(400MHz, CDCl_3): δ 1.38(s, 3H), 1.40(s, 3H), 3.75(s, 3H), 4.49(d, $J=7.4$, 1H),
 5.25(d, $J=7.4$, 1H), 7.48~7.77(m, 3H, 8.08(m, 1H)


Preparation example 46 : ((4R,5R)-5-(2-nitrophenyl)-2,2-dimehtyl-1.3-dioxolane-4-yl)methanol

15 The substantially same method as described in Example 27 was conducted, except
 that (4R,5S)-methyl-5-(2-nitrophenyl)-2,2-dimehtyl-1.3-dioxolane-4-carboxylate
 (Preparation example 45) was used instead of (4S,5R)-methyl-5-(2-chlorophenyl)-
 2,2-dimehtyl-1.3-dioxolane-4-carboxylate (Preparation example 26), to obtain the
 title compound(13.1g, 70~95%)

20 ^1H NMR(400MHz, CDCl_3): δ 1.38(s, 3H), 1.40(s, 3H), 3.89(d, $J=4.1$, 2H), 4.26(dt,
 $J=7.0$, 4.1, 1H), 5.26(d, $J=7.0$, 1H), 7.55~7.86(m, 3H), 8.08(m, 1H).

Preparation example 47 : ((4R,5R)-5-(2-aminophenyl)-2,2-dimehtyl-1.3-

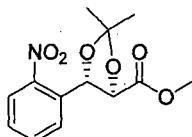

dioxolane-4-yl)methanol

To a stirred solution of ((4R,5R)-5-(2-nitrophenyl)-2,2-dimethyl-1,3-dioxolane-4-yl)methanol(Preparation example 46, 14g) in EtOAc was added Pd(OH)₂ (20wt%, 5 2.8g) under hydrogen gas(balloon). The mixture was stirred for 6h then the resulting mixture was filtered through celite and concentrated under reduced pressure. The crude product was purified by SiO₂ gel column chromatography to give title compound (7.5g 65~85%)

10 ¹H NMR (400MHz, CDCl₃): δ1.39 (s, 3H), 1.40 (s, 3H), 3.88 (d, J=4.27, 2H), 3.99 (dt, J=7.02, J=4.30, 1H), 4.74 (d, J=7.02, 1H), 6.65-6.72 (m, 2H), 6.98 (m, 1H), 7.25 (m, 1H).

Preparation example 48 : (2S,3R)-methyl-3-(2-nitrophenyl)-2,3-dihydroxypropanoate

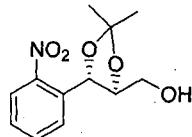
15



The substantially same method as described in Example 25 was conducted, except that (E)-methyl-3-(2-nitrophenyl)acrylate(Preparation example 43) was used instead of (E)-Methyl-3-(2-chlorophenyl)acrylate(Preparation example 24), to obtain the title compound(21.7g, 60~80%)

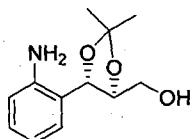
20

¹H NMR(400MHz, CDCl₃): δ4.31(s, 3H), 5.44(m, 4H), 5.89(s, 1H), 7.53~7.90(m, 4H)


Preparation example 49 : (4S,5R)-methyl-5-(2-nitrophenyl)-2,2-dimethyl-1,3-dioxolane-4-carboxylate

The substantially same method as described in Example 26 was conducted, except that (2S,3R)-methyl-3-(2-nitrophenyl)-2,3-dihydroxypropanoate (Preparation example 48) was used instead of (2S,3R)-methyl-3-(2-chlorophenyl)-2,3-dihydroxypropanoate (Preparation example 25), to obtain the title compound(21g, 60~90%)

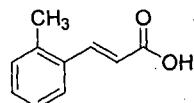
¹H NMR(400MHz, CDCl₃): δ1.38(s, 3H), 1.40(s, 3H), 3.75(s, 3H), 4.49(d, *J*=7.4, 1H), 5.25(d, *J*=7.4, 1H), 7.48~7.77(m, 3H, 8.08(m, 1H)


10 **Preparation example 50 : ((4S,5S)-5-(2-nitrophenyl)-2,2-dimehtyl-1.3-dioxolane-4-yl)methanol**

The substantially same method as described in Example 27 was conducted, except that (4S,5R)-methyl-5-(2-nitrophenyl)-2,2-dimehtyl-1.3-dioxolane-4-carboxylate (Preparation example 48) was used instead of (4S,5R)-methyl-5-(2-chlorophenyl)-2,2-dimehtyl-1.3-dioxolane-4-carboxylate (Preparation example 26), to obtain the title compound(14g, 70~95%)

¹H NMR(400MHz, CDCl₃): δ 1.38(s, 3H), 1.40(s, 3H), 3.89(d, *J*=4.1, 2H), 4.26(dt, *J*=7.0, 4.1, 1H), 5.26(d, *J*=7.0, 1H), 7.55~7.86(m, 3H), 8.08(m, 1H).

Preparation example 51 : ((4S,5S)-5-(2-aminophenyl)-2,2-dimehtyl-1.3-dioxolane-4-yl)methanol

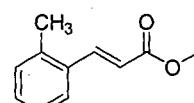


The substantially same method as described in Example 47 was conducted, except that (4S,5S)-methyl-5-(2-nitrophenyl)-2,2-dimethyl-1,3-dioxolane-4-carboxylate (Preparation example 50) was used instead of (4R,5R)-5-(2-nitrophenyl)-2,2-dimethyl-1,3-dioxolane-4-yl)methanol (Preparation example 46), to obtain the title compound (11g, 70~95%)

¹H NMR(400MHz, CDCl₃): δ 1.38(s, 3H), 1.40(s, 3H), 3.89(d, *J*=4.1, 2H), 4.26(dt, *J*=7.0, 4.1, 1H), 5.26(d, *J*=7.0, 1H), 7.55~7.86(m, 3H), 8.08(m, 1H).

10

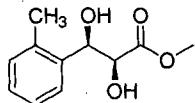
Preparation example 52: (E)-3-*o*-tolyacrylic acid


15

The substantially same method as described in Preparation Example 9 was conducted, except that 2-methylbenzenealdehyde was used instead of 2-Fluoroaldehyde, to obtain the title compound (1.5g, 70~90%)

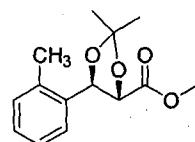
¹H NMR(400MHz, CDCl₃): δ 2.48(s, 3H), 6.16(d, *J*=15.1, 1H), 7.00~7.10(m, 1H), 7.21~7.26(m, 3H), 8.04(d, *J*= 15.1, 1H), 11.0(s, 1H).

20


Preparation example 53 : (E)-Methyl-3-*o*-tolyacrylate

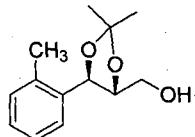
The substantially same method as described in Example 24 was conducted, except that (E)-3-*o*-tolyacrylic acid (Preparation example 52) was used instead of 2-chlorocinnamic acid, to obtain the title compound (1.5g, 70~90%)

¹H NMR(400MHz, CDCl₃): δ2.48(s, 3H), 3.77(s, 3H), 6.14(d, *J*=15.1, 1H), 7.00~7.10(m, 1H), 7.21~7.26(m, 3H), 8.07(d, *J*= 15.1, 1H).


Preparation example 54 : (2R,3S)-methyl-3-(2-methylphenyl)-2,3-dihydroxypropanoate

The substantially same method as described in Preparation Example 3 was conducted, except that (E)-Methyl-3-o-tolyacrylate(Preparation example 53) was used instead of (E)-1-chloro-2-(3-(methoxymethoxy)prop-1-enyl)benzene (Preparation example 2), to obtain the title compound (1.3g, 75~90%).

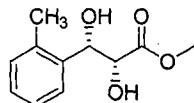
¹H NMR(400MHz, CDCl₃): δ2.34(s, 3H), 2.80(s, 1H), 3.65(s, 1H), 3.68(s, 3H), 4.52(d, *J*=7.0, 1H), 5.22(d, *J*=7.0, 1H), 7.19~7.39(m, 4H).


Preparation example 55 : (4R, 5S)-methyl-5-(2-methylphenyl)-2,2-dimethyl-1,3-dioxolane-4-carboxylate

The substantially same method as described in Example 26 was conducted, except that (2R,3S)-methyl-3-(2-methylphenyl)-2,3-dihydroxypropanoate (Preparation example 54) was used instead of (2S,3R)-methyl-3-(2-chlorophenyl)-2,3-dihydroxypropanoate (Preparation example 25), to obtain the title compound(1.7g, 60~80%)

¹H NMR(400MHz, CDCl₃): δ1.27(s, 6H), 2.34(s, 3H), 3.68(s, 3H), 5.11(d, *J*=7.0, 1H), 5.81(d, *J*=7.0, 1H), 7.19~7.26(m, 3H), 7.37~7.39(m, 1H).

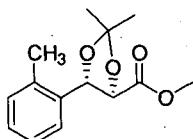
Preparation example 56 : ((4R,5R)-5-(2-methylphenyl)-2,2-dimehtyl-1.3-dioxolane-4-yl)methanol



The substantially same method as described in Example 27 was conducted, except
 5 that (4R,5S)-methyl-5-(2-methylphenyl)-2,2-dimehtyl-1.3-dioxolane-4-carboxylate
 (Preparation example 55) was used instead of (4S,5R)-methyl-5-(2-chlorophenyl)-
 10 2,2-dimehtyl-1.3-dioxolane-4-carboxylate (Preparation example 26), to obtain the
 title compound(1.3g, 70~95%)

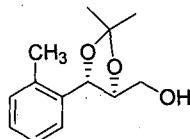
15 ^1H NMR(400MHz, CDCl_3): δ 1.27(s, 6H), 2.34(s, 3H), 3.52~3.60(m, 2H), 3.65(s, 1H), 4.36(dd, J =7.0, J =7.0, 1H), 5.17(d, J =7.0, 1H), 7.19~7.26(m, 3H), 7.37~7.39(m, 1H).

Preparation example 57 : (2S,3R)-methyl-3-(2-methylphenyl)-2,3-dihydroxypropanoate


15

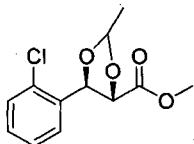
The substantially same method as described in Example 25 was conducted, except
 that (E)-methyl-3-o-tolyacrylate(Preparation example 53) was used instead of (E)-
 10 Methyl-3-(2-chlorophenyl)acrylate(Preparation example 24), to obtain the title
 compound(1.7g, 60~80%)

20 ^1H NMR(400MHz, CDCl_3): δ 2.34(s, 3H), 2.80(s, 1H), 3.65(s, 1H), 3.68(s, 3H), 4.52(d, J =7.0, 1H), 5.22(d, J =7.0, 1H), 7.19~7.39(m, 4H).


Preparation example 58 : (4S,5R)-methyl-5-(2-methylphenyl)-2,2-dimehtyl-1.3-dioxolane-4-carboxylate

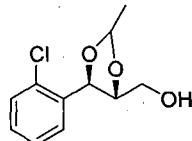
The substantially same method as described in Example 26 was conducted, except that (2S,3R)-methyl-3-(2-methylphenyl)-2,3-dihydroxypropanoate (Preparation example 57) was used instead of (2S,3R)-methyl-3-(2-chlorophenyl)-2,3-dihydroxypropanoate (Preparation example 25), to obtain the title compound(1.9g, 60~90%)

¹H NMR(400MHz, CDCl₃): δ1.27(s, 6H), 2.34(s, 3H), 3.68(s, 3H), 5.11(d, *J*=7.0, 1H), 5.81(d, *J*=7.0, 1H), 7.19~7.26(m, 3H), 7.37~7.39(m, 1H).


10 **Preparation example 59 : ((4S,5S)-5-(2-methylphenyl)-2,2-dimehtyl-1.3-dioxolane-4-yl)methanol**

The substantially same method as described in Example 27 was conducted, except that (4S,5R)-methyl-5-(2-methylphenyl)-2,2-dimehtyl-1.3-dioxolane-4-carboxylate (Preparation example 58) was used instead of (4S,5R)-methyl-5-(2-chlorophenyl)-2,2-dimehtyl-1.3-dioxolane-4-carboxylate (Preparation example 26), to obtain the title compound(1.5g, 70~95%)

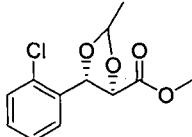
¹H NMR(400MHz, CDCl₃): δ1.27(s, 6H), 2.34(s, 3H), 3.52~3.60(m, 2H), 3.65(s, 1H), 4.36(dd, *J*=7.0, *J*=7.0, 1H), 5.17(d, *J*=7.0, 1H), 7.19~7.26(m, 3H), 7.37~7.39(m, 1H).


20 **Preparation example 60 : ((4R,5S)-methyl-5-(2-chlorophenyl)-2-mehtyl-1.3-dioxolane-4-carboxylate**

Dichloromethane (MC) was added to (2R,3S)-methyl-3-(2-chlorophenyl)-2,3-dihydroxypropanoate at room temperature. 1,1-Diethoxyethane (8ml) and p-toluenesulfonic acid (0.27g) was added and stirred at room temperature. The reaction mixture was quenched with H₂O, extracted with MC, washed with H₂O, dried over anhydrous magnesium sulfate(MgSO₄), filtered and concentrated. The crude compound was purified by a silica gel column to produce the title compound(3.6g, 70~95%).

10 ¹H NMR(400MHz, CDCl₃) δ1.36(d, *J*=6.4, 3H), 3.78(s, 3H), 4.30(d, *J*=7.6, 1H), 5.07(m, 1H), 5.62(d, *J*=7.6, 1H), 7.28~7.64(m, 4H)

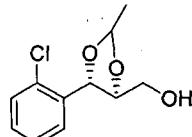
Preparation example 61 : ((4R,5R)-5-(2-chlorophenyl)-2-methyl-1,3-dioxolane-4-yl)methanol



15 The substantially same method as described in Example 27 was conducted, except that (4R,5S)-methyl-5-(2-chlorophenyl)-2-methyl-1,3-dioxolane-4-carboxylate (Preparation example 60) was used instead of (4S,5R)-methyl-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolane-4-carboxylate (Preparation example 26), to obtain the title compound(3.1g, 70~95%)

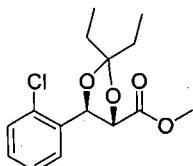
20 ¹H NMR(400MHz, CDCl₃): δ1.37(d, *J*=6.0, 3H), 3.62~3.70(m, 2H), 4.36(dd, *J*=7.0, *J*=7.0, 1H), 5.06(m, 1H), 5.17(d, *J*=7.0, 1H), 7.19~7.26(m, 3H), 7.37~7.39(m, 1H).

Preparation example 62 : ((4S,5R)-methyl-5-(2-chlorophenyl)-2-methyl-


1.3-dioxolane-4-carboxylate

The substantially same method as described in Example 60 was conducted, except that (2S,3R)-methyl-3-(2-chlorophenyl)-2,3-dihydroxypropanoate(Preparation example 25) was used instead of (2S,3R)-methyl-3-(2-chlorophenyl)-2,3-dihydroxypropanoate , to obtain the title compound(2.1g, 70~95%).

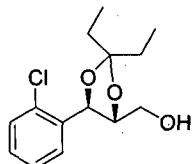
¹H NMR(400MHz, CDCl₃) δ1.36(d, *J*=6.4, 3H), 3.78(s, 3H), 4.30(d, *J*=7.6, 1H), 5.07(m, 1H), 5.62(d, *J*=7.6, 1H), 7.28~7.64(m, 4H)


10 **Preparation example 63 : ((4S,5S)-5-(2-chlorophenyl)-2-methyl-1.3-dioxolane-4-yl)methanol**

The substantially same method as described in Example 27 was conducted, except that (4R,5S)-methyl-5-(2-chlorophenyl)-2-methyl-1.3-dioxolane-4-carboxylate (Preparation example 60) was used instead of (4S,5R)-methyl-5-(2-chlorophenyl)-2,2-dimethyl-1.3-dioxolane-4-carboxylate (Preparation example 26), to obtain the title compound(3.1g, 70~95%)

¹H NMR(400MHz, CDCl₃): δ1.37(d, *J*=6.0, 3H), 3.62~3.70(m, 2H), 4.36(dd, *J*=7.0, *J*=7.0, 1H), 5.06(m, 1H), 5.17(d, *J*=7.0, 1H), 7.19~7.26(m, 3H), 7.37~7.39(m, 1H).

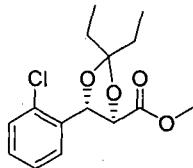
Preparation example 64 : (4R, 5S)-methyl-5-(2-chlorophenyl)-2,2-dimethyl-1.3-dioxolane-4-carboxylate



3-pentanone was added to (2R,3S)-methyl-3-(2-chlorophenyl)-2,3-dihydroxypropanoate at room temperature. Sulfuric acid (H_2SO_4) was added and stirred at room temperature. The reaction mixture was quenched with H_2O , extracted with EA, washed with H_2O , dried over anhydrous sodium sulfate(Na_2SO_4), filtered and concentrated. The crude compound was purified by a silica gel column to produce the title compound(1.6g, 60~85%).

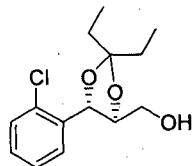
1H NMR(400MHz, $CDCl_3$) δ 0.96(m, 6H), 1.59(m, 4H), 3.67(s, 3H), 5.11(d, J =7.6, 1H), 5.81(d, J =7.6, 1H), 7.22~7.60(m, 4H)

10


Preparation example 65 : ((4R,5R)-5-(2-chlorophenyl)-2,2-diehtyl-1.3-dioxolane-4-yl)methanol

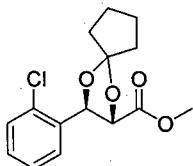
The substantially same method as described in Example 27 was conducted, except that (4R,5S)-methyl-5-(2-chlorophenyl)-2,2-diehtyl-1.3-dioxolane-4-carboxylate (Preparation example 64) was used instead of (4S,5R)-methyl-5-(2-chlorophenyl)-2,2-dimehtyl-1.3-dioxolane-4-carboxylate (Preparation example 26), to obtain the title compound(2.0g, 70~95%)

1H NMR(400MHz, $CDCl_3$): δ 0.96(m, 6H), 1.59(m, 4H), 3.66(d, J =8.0, 2H), 5.09 (d, J =7.6, 1H), 5.88(d, J =7.6, 1H), 7.26~7.62(m, 4H).


Preparation example 66 : (4S, 5R)-methyl-5-(2-chlorophenyl)-2,2-diehtyl-1.3-dioxolane-4-carboxylate

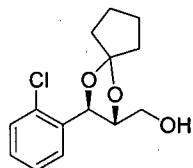
The substantially same method as described in Example 64 was conducted, except that (2S,3R)-methyl-3-(2-chlorophenyl)-2,3-dihydroxypropanoate(Preparation example 25) was used instead of (2S,3R)-methyl-3-(2-chlorophenyl)-2,3-dihydroxypropanoate , to obtain the title compound(1.4g, 70~95%).

¹H NMR(400MHz, CDCl₃) δ0.96(m, 6H), 1.59(m, 4H), 3.67(s, 3H), 5.11(d, *J*=7.6, 1H), 5.81(d, *J*=7.6, 1H), 7.22~7.60(m, 4H)


Preparation example 67 : ((4S,5S)-5-(2-chlorophenyl)-2,2-diehtyl-1.3-dioxolane-4-yl)methanol

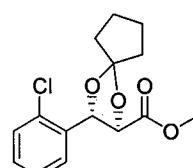
The substantially same method as described in Example 65 was conducted, except that (4S,5R)-methyl-5-(2-chlorophenyl)-2,2-diehtyl-1.3-dioxolane-4-carboxylate (Preparation example 66) was used instead of (4R,5S)-methyl-5-(2-chlorophenyl)-2,2-diehtyl-1.3-dioxolane-4-carboxylate(Preparation example 64), to obtain the title compound(2.2g, 70~95%)

¹H NMR(400MHz, CDCl₃): δ0.96(m, 6H), 1.59(m, 4H), 3.66(d, *J*=8.0, 2H), 5.09 (d, *J*=7.6, 1H), 5.88(d, *J*=7.6, 1H), 7.26~7.62(m, 4H).


20 Preparation example 68 : (2R, 3S)-methyl-3-(2-chlorophenyl)-1,4-dioxaspiro[4,4]nonane-2-carboxylate

The substantially same method as described in Example 64 was conducted, except that cyclopentanone was used instead of 3-pentanone, to obtain the title compound (2.2g, 70~95%).

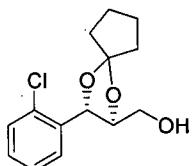
5 ^1H NMR(400MHz, DMSO) δ 1.69~1.71(m, 4H), 1.82~1.86(m, 1H), 1.91~2.00(m, 3H), 3.68(s, 3H), 4.40(d, J =7.2, 1H), 5.39(d, J =7.2, 1H), 7.39~7.61(m, 4H)


Preparation example 69 : ((4R,5R)-5-(2-chlorophenyl)-1,4-dioxaspiro[4,4]nonane-2-yl)methanol

10 The substantially same method as described in Example 65 was conducted, except that (2R, 3S)-methyl-3-(2-chlorophenyl)-1,4-dioxaspiro[4,4]nonane-2-carboxylate (Preparation example 68) was used instead of (4R,5S)-methyl-5-(2-chlorophenyl)-2,2-diehtyl-1,3-dioxolane-4-carboxylate(Preparation example 64), to obtain the title compound (1.7g, 70~95%)

15 ^1H NMR(400MHz, DMSO): δ 1.60~1.72(m, 4H), 1.83~1.94(m, 1H), 3.52~3.65(m, 2H), 3.82~3.86(m, 1H), 4.90(t, J =5.2, 1H), 5.12(d, J =7.6, 1H), 7.34~7.58(m, 4H)

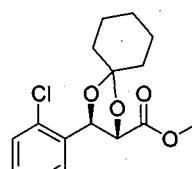
Preparation example 70 : (2S, 3R)-methyl-3-(2-chlorophenyl)-1,4-dioxaspiro[4,4]nonane-2-carboxylate



20 The substantially same method as described in Example 68 was conducted, except

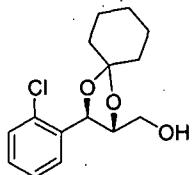
that (2S,3R)-methyl-3-(2-chlorophenyl)-2,3-dihydroxypropanoate was used instead of (2R,3S)-methyl-3-(2-chlorophenyl)-2,3-dihydroxypropanoate, to obtain the title compound(1.5g, 70~95%).

5 ¹H NMR(400MHz, DMSO) δ1.69~1.71(m, 4H), 1.82~1.86(m, 1H), 1.91~2.00(m, 3H), 3.68(s, 3H), 4.40(d, *J*=7.2, 1H), 5.39(d, *J*=7.2, 1H), 7.39~7.61(m, 4H)


Preparation example 71 : ((4R,5R)-5-(2-chlorophenyl)-1,4-dioxaspiro[4,4]nonane-2-yl)methanol

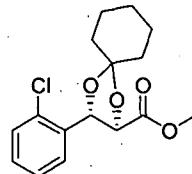
10 The substantially same method as described in Example 69 was conducted, except that (2S, 3R)-methyl-3-(2-chlorophenyl)-1,4-dioxaspiro[4,4]nonane-2-carboxylate (Preparation example 70) was used instead of (2R, 3S)-methyl-3-(2-chlorophenyl)-1,4-dioxaspiro[4,4]nonane-2-carboxylate(Preparation example 68), to obtain the title compound(1.8g, 70~95%)

15 ¹H NMR(400MHz, DMSO): δ1.60~1.72(m, 4H), 1.83~1.94(m, 1H), 3.52~3.65(m, 2H), 3.82~3.86(m, 1H), 4.90(t, *J*=5.2, 1H), 5.12(d, *J*=7.6, 1H), 7.34~7.58(m, 4H)


Preparation example 72 : (2R, 3S)-methyl-3-(2-chlorophenyl)-1,4-dioxaspiro[4,5]decane-2-carboxylate

20 The substantially same method as described in Example 64 was conducted, except that cyclohexanone was used instead of 3-pentanone, to obtain the title compound (1.2g, 70~95%).

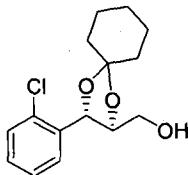
¹H NMR(400MHz, DMSO) δ1.61~1.69(m, 10H), 3.79(s, 3H), 4.33(d, *J*=8.0, 1H), 5.85(d, *J*=8.0, 1H), 7.35~7.63(m, 4H)


Preparation example 73 : ((4R,5R)-5-(2-chlorophenyl)-1,4-dioxaspiro[4,5]decane-2-yl)methanol

The substantially same method as described in Example 65 was conducted, except that (2R, 3S)-methyl-3-(2-chlorophenyl)-1,4-dioxaspiro[4,5]decane-2-carboxylate (Preparation example 72) was used instead of (4R,5S)-methyl-5-(2-chlorophenyl)-2,2-diehtyl-1,3-dioxolane-4-carboxylate(Preparation example 64), to obtain the title compound(1.8g, 70~95%)

¹H NMR(400MHz, DMSO): δ1.63~1.75(m, 10H), 3.52~3.81(m, 2H), 3.95(t, *J*=8.0, 1H), 5.43(d, *J*=7.6, 1H), 7.48~7.87(m, 4H)

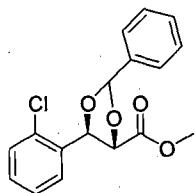
Preparation example 74 : (2S, 3R)-methyl-3-(2-chlorophenyl)-1,4-dioxaspiro[4,5]decane-2-carboxylate



The substantially same method as described in Example 72 was conducted, except that (2S,3R)-methyl-3-(2-chlorophenyl)-2,3-dihydroxypropanoate was used instead of (2R,3S)-methyl-3-(2-chlorophenyl)-2,3-dihydroxypropanoate, to obtain the title compound (2.1 g, 70~95%).

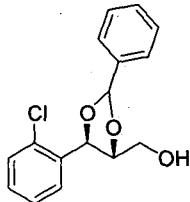
¹H NMR(400MHz, DMSO) δ1.61~1.69(m, 10H), 3.79(s, 3H), 4.33(d, *J*=8.0, 1H),

5.85(d, $J=8.0$, 1H), 7.35~7.63(m, 4H)


Preparation example 75 : ((4S,5S)-5-(2-chlorophenyl)-1,4-dioxaspiro[4,5]decane-2-yl)methanol

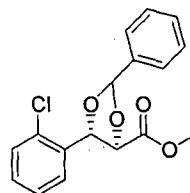
The substantially same method as described in Example 65 was conducted, except that (2S, 3R)-methyl-3-(2-chlorophenyl)-1,4-dioxaspiro[4,5]decane-2-carboxylate (Preparation example 74) was used instead of (4R,5S)-methyl-5-(2-chlorophenyl)-2,2-diehtyl-1,3-dioxolane-4-carboxylate(Preparation example 64), to obtain the title compound(1.6g, 70~95%)

10 ^1H NMR(400MHz, DMSO): δ 1.63~1.75(m, 10H), 3.52~3.81(m, 2H), 3.95(t, $J=8.0$, 1H), 5.43(d, $J=7.6$, 1H), 7.48~7.87(m, 4H)


15 **Preparation example 76 : (2R, 3S)-methyl-3-(2-chlorophenyl)-2-phenyl-1,3-dioxolane-4-carboxylate**

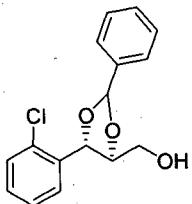
The substantially same method as described in Example 64 was conducted, except that benzaldehyde was used instead of 3-pentanone, to obtain the title compound (1.1g, 50~70%).

20 ^1H NMR(400MHz, DMSO) δ 1.61~1.69(m, 10H), 3.79(s, 3H), 4.33(d, $J=8.0$, 1H), 5.85(d, $J=8.0$, 1H), 7.35~7.63(m, 4H)


Preparation example 77 : ((4R,5R)-5-(2-chlorophenyl)-2-phenyl-1,3-dioxolane-4-yl)methanol

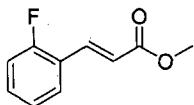
The substantially same method as described in Example 65 was conducted, except
 5 that (2R, 3S)-methyl-3-(2-chlorophenyl)-2-phenyl-1,3-dioxolane-4-carboxylate
 (Preparation example 76) was used instead of (4R,5S)-methyl-5-(2-chlorophenyl)-
 2,2-diehtyl-1,3-dioxolane-4-carboxylate(Preparation example 64), to obtain the title
 compound(0.7g, 70~95%)

10 ^1H NMR(400MHz, DMSO): δ 1.63~1.75(m, 10H), 3.52~3.81(m, 2H), 3.95(t, J =8.0,
 1H), 5.43(d, J =7.6, 1H), 7.48~7.87(m, 4H)


Preparation example 78 : (2S, 3R)-methyl-3-(2-chlorophenyl)-2-phenyl-1,3-dioxolane-4-carboxylate

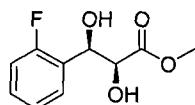
15 The substantially same method as described in Example 66 was conducted, except
 that benzaldehyde was used instead of 3-pentanone, to obtain the title compound
 (1.9g, 50~70%).

20 ^1H NMR(400MHz, DMSO) δ 1.61~1.69(m, 10H), 3.79(s, 3H), 4.33(d, J =8.0, 1H),
 5.85(d, J =8.0, 1H), 7.35~7.63(m, 4H)


Preparation example 79 : ((4S,5S)-5-(2-chlorophenyl)-2-phenyl-1,3-dioxolane-4-yl)methanol

The substantially same method as described in Example 65 was conducted, except that (2S, 3R)-methyl-3-(2-chlorophenyl)-2-phenyl-1,3-dioxolane-4-carboxylate (Preparation example 78) was used instead of (4R,5S)-methyl-5-(2-chlorophenyl)-2,2-diehtyl-1,3-dioxolane-4-carboxylate(Preparation example 64), to obtain the title compound(1.3g, 70~95%)

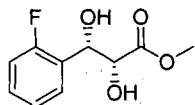
15 ^1H NMR(400MHz, DMSO): δ 1.63~1.75(m, 10H), 3.52~3.81(m, 2H), 3.95(t, J =8.0, 1H), 5.43(d, J =7.6, 1H), 7.48~7.87(m, 4H)


10 **Preparation example 80 : (E)-Methyl-3-(2-fluorophenyl)acrylate**

The substantially same method as described in Example 24 was conducted, except that (E)-3-(2-fluorophenyl)-acrylic acid(Preparation example 9)was used instead of 2-chlorocinnamic acid, to obtain the title compound.(6.98g, 70~90%)

15 ^1H NMR(400MHz, CDCl_3) δ 3.84 (s, 3H), 6.45 (d, J =16.0, 1H), 7.24~7.62 (m, 4H), 8.12 (d, J =16.0, 1H)

20 **Preparation example 81 : (2R,3S)-methyl-3-(2-fluorophenyl)-2,3-dihydroxypropanoate**

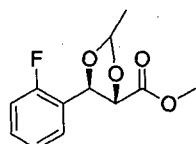

The substantially same method as described in Preparation Example 3 was conducted, except that (E)-Methyl-3-(2-fluorophenyl)acrylate(Preparation example

80) was used instead of (E)-1-chloro-2-(3-(methoxymethoxy)prop-1-enyl)benzene(Preparation example 2), to obtain the title compound (7.5g, 75~90%).

¹H NMR(400MHz, CDCl₃): δ=4.31(s, 3H), 5.44(m, 4H), 5.89(s, 1H), 7.32~7.70(m, 4H).

5

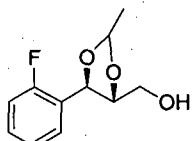
Preparation example 82 : (2S,3R)-methyl-3-(2-fluorophenyl)-2,3-dihydroxypropanoate



The substantially same method as described in Example 25 was conducted, except that (E)-methyl-3-(2-fluorophenyl)acrylate(Preparation example 80) was used instead of (E)-Methyl-3-(2-chlorophenyl)acrylate(Preparation example 24), to obtain the title compound (7.2g, 60~80%)

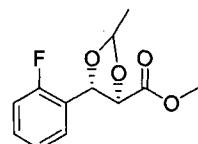
¹H NMR(400MHz, CDCl₃): δ=4.31(s, 3H), 5.44(m, 4H), 5.89(s, 1H), 7.32~7.70(m, 4H).

15


Preparation example 83 : ((4R,5S)-methyl-5-(2-fluorophenyl)-2-methyl-1,3-dioxolane-4-carboxylate

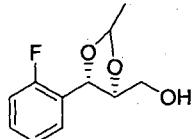
The substantially same method as described in Example 60 was conducted, except that (2R,3S)-methyl-3-(2-fluorophenyl)-2,3-dihydroxypropanoate(Preparation example 81) was used instead of ((2R,3S)-methyl-3-(2-chlorophenyl)-2,3-dihydroxypropanoate, to obtain the title compound(3.1g, 70~95%).

¹H NMR(400MHz, CDCl₃) δ1.36(d, J=6.4, 3H), 3.78(s, 3H), 4.30(d, J=7.6, 1H), 5.07(m, 1H), 5.62(d, J=7.6, 1H), 7.29~7.67(m, 4H)


Preparation example 84 : ((4R,5R)-5-(2-fluorophenyl)-2-mehtyl-1.3-dioxolane-4-yl)methanol

5 The substantially same method as described in Example 27 was conducted, except that (4R,5S)-methyl-5-(2-fluorophenyl)-2-mehtyl-1.3-dioxolane-4-carboxylate (Preparation example 83) was used instead of (4S,5R)-methyl-5-(2-chlorophenyl)-2,2-dimehtyl-1.3-dioxolane-4-carboxylate (Preparation example 26), to obtain the title compound(3.3g, 70~95%)

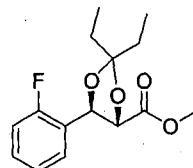
10 ^1H NMR(400MHz, CDCl_3): δ 1.37(d, J =6.0, 3H), 3.62~3.70(m, 2H), 4.36(dd, J =7.0, J =7.0, 1H), 5.06(m, 1H), 5.17(d, J =7.0, 1H), 7.19~7.39(m, 4H).


Preparation example 85 : ((4S,5R)-methyl-5-(2-fluorophenyl)-2-mehtyl-1.3-dioxolane-4-carboxylate

15 The substantially same method as described in Example 60 was conducted, except that (2S,3R)-methyl-3-(2-fluorophenyl)-2,3-dihydroxypropanate(Preparation example 82) was used instead of (2S,3R)-methyl-3-(2-chlorophenyl)-2,3-dihydroxypropanate , to obtain the title compound (2.9g, 70~95%).

20 ^1H NMR(400MHz, CDCl_3) δ 1.36(d, J =6.4, 3H), 3.78(s, 3H), 4.30(d, J =7.6, 1H), 5.07(m, 1H), 5.62(d, J =7.6, 1H), 7.29~7.69(m, 4H)

Preparation example 86 : ((4S,5S)-5-(2-fluorophenyl)-2-mehtyl-1.3-

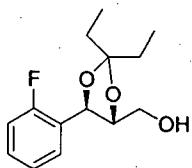

dioxolane-4-yl)methanol

The substantially same method as described in Example 27 was conducted, except that (4R,5S)-methyl-5-(2-fluorophenyl)-2-methyl-1,3-dioxolane-4-carboxylate (Preparation example 85) was used instead of (4S,5R)-methyl-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolane-4-carboxylate (Preparation example 26), to obtain the title compound(3.8g, 70~95%)

¹H NMR(400MHz, CDCl₃): δ1.37(d, *J*=6.0, 3H), 3.62~3.70(m, 2H), 4.36(dd, *J*=7.0, *J*=7.0, 1H), 5.06(m, 1H), 5.17(d, *J*=7.0, 1H), 7.19~7.4.2(m, 4H).

10

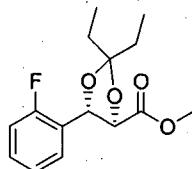
Preparation example 87 : (4R, 5S)-methyl-5-(2-fluorophenyl)-2,2-dimethyl-1,3-dioxolane-4-carboxylate



The substantially same method as described in Example 64 was conducted, except that (2R,3S)-methyl-3-(2-fluorophenyl)-2,3-dihydroxypropanoate (Preparation example 81) was used instead of (2R,3S)-methyl-3-(2-chlorophenyl)-2,3-dihydroxypropanoate, to obtain the title compound (2.1g, 60~85%).

¹H NMR(400MHz, CDCl₃) δ0.96(m, 6H), 1.59(m, 4H), 3.67(s, 3H), 5.11(d, *J*=7.6, 1H), 5.81(d, *J*=7.6, 1H), 7.20~7.61(m, 4H)

20


Preparation example 88: ((4R,5R)-5-(2-fluorophenyl)-2,2-dimethyl-1,3-dioxolane-4-yl)methanol

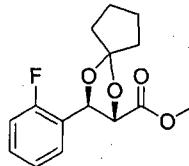
The substantially same method as described in Example 27 was conducted, except that (4R,5S)-methyl-5-(2-fluorophenyl)-2,2-diehtyl-1.3-dioxolane-4-carboxylate (Preparation example 87) was used instead of (4S,5R)-methyl-5-(2-chlorophenyl)-2,2-dimehtyl-1.3-dioxolane-4-carboxylate (Preparation example 26), to obtain the title compound (2.2g, 70~95%)

¹H NMR(400MHz, CDCl₃): δ0.96(m, 6H), 1.59(m, 4H), 3.66(d, *J*=8.0, 2H), 5.09 (d, *J*=7.6, 1H), 5.88(d, *J*=7.6, 1H), 7.23~7.60(m, 4H).

10 **Preparation example 89 : (4S, 5R)-methyl-5-(2-fluorophenyl)-2,2-diehtyl-1.3-dioxolane-4-carboxylate**

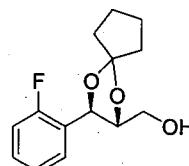
The substantially same method as described in Example 87 was conducted, except that (2S,3R)-methyl-3-(2-fluorophenyl)-2,3-dihydroxypropanoate (Preparation example 82) was used instead of (2R,3S)-methyl-3-(2-fluorophenyl)-2,3-dihydroxypropanote (Preparation example 81) , to obtain the title compound (2.3g, 70~95%).

¹H NMR(400MHz, CDCl₃) δ0.96(m, 6H), 1.59(m, 4H), 3.67(s, 3H), 5.11(d, *J*=7.6, 1H), 5.81(d, *J*=7.6, 1H), 7.20~7.61(m, 4H)


Preparation example 90 : ((4S,5S)-5-(2-fluorophenyl)-2,2-diehtyl-1.3-dioxolane-4-yl)methanol

The substantially same method as described in Example 88 was conducted, except that (4S,5R)-methyl-5-(2-fluorophenyl)-2,2-diehtyl-1,3-dioxolane-4-carboxylate (Preparation example 89) was used instead of (4R,5S)-methyl-5-(2-fluorophenyl)-2,2-diehtyl-1,3-dioxolane-4-carboxylate(Preparation example 87), to obtain the title compound(2.2g, 70~95%)

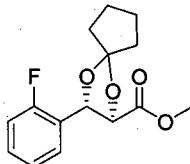
¹H NMR(400MHz, CDCl₃): δ0.96(m, 6H), 1.59(m, 4H), 3.66(d, J=8.0, 2H), 5.09 (d, J=7.6, 1H), 5.88(d, J=7.6, 1H), 7.23~7.62(m, 4H).


10 **Preparation example 91 : (2R, 3S)-methyl-3-(2-fluorophenyl)-1,4-dioxaspiro[4,4]nonane-2-carboxylate**

The substantially same method as described in Example 87 was conducted, except that cyclopentanone was used instead of 3-pentanone, to obtain the title compound (2.1g, 70~95%).

¹H NMR(400MHz, DMSO) δ1.69~1.71(m, 4H), 1.82~1.86(m, 1H), 1.91~2.00(m, 3H), 3.68(s, 3H), 4.40(d, J=7.2, 1H), 5.39(d, J=7.2, 1H), 7.33~7.62(m, 4H)

20 **Preparation example 92 : ((4R,5R)-5-(2-fluorophenyl)-1,4-dioxaspiro[4,4]nonane-2-yl)methanol**

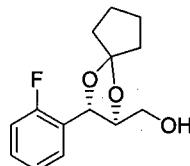


The substantially same method as described in Example 65 was conducted, except

that (2R, 3S)-methyl-3-(2-fluorophenyl)-1,4-dioxaspiro[4,4]nonane-2-carboxylate (Preparation example 91) was used instead of (4R,5S)-methyl-5-(2-chlorophenyl)-2,2-diehtyl-1,3-dioxolane-4-carboxylate(Preparation example 64), to obtain the title compound(1.9g, 70~95%)

5 ^1H NMR(400MHz, DMSO): δ 1.60~1.72(m, 4H), 1.83~1.94(m, 1H), 3.52~3.65(m, 2H), 3.82~3.86(m, 1H), 4.90(t, J =5.2, 1H), 5.12(d, J =7.6, 1H), 7.32~7.57(m, 4H)

Preparation example 93 : (2S, 3R)-methyl-3-(2-fluorophenyl)-1,4-dioxaspiro[4,4]nonane-2-carboxylate

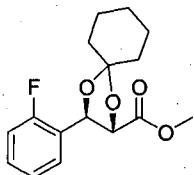


10

The substantially same method as described in Example 91 was conducted, except that (2S,3R)-methyl-3-(2-fluorophenyl)-2,3-dihydroxypropanoate(Preparation example 82) was used instead of (2R,3S)-methyl-3-(2-fluorophenyl)-2,3-dihydroxypropanoate (Preparation example 81), to obtain the title compound (1.5g, 70~95%).

15 ^1H NMR(400MHz, DMSO) δ 1.69~1.71(m, 4H), 1.82~1.86(m, 1H), 1.91~2.00(m, 3H), 3.68(s, 3H), 4.40(d, J =7.2, 1H), 5.39(d, J =7.2, 1H), 7.39~7.61(m, 4H)

Preparation example 94 : ((4R,5R)-5-(2-fluorophenyl)-1,4-dioxaspiro[4,4]nonane-2-yl)methanol

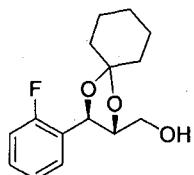


20 The substantially same method as described in Example 88 was conducted, except that (2S,3R)-methyl-3-(2-fluorophenyl)-1,4-dioxaspiro[4,4]nonane-2-carboxylate

(Preparation example 93) was used instead of (4R,5S)-methyl-5-(2-fluorophenyl)-2,2-diehtyl-1,3-dioxolane-4-carboxylate(Preparation example 87), to obtain the title compound (1.2g, 70~95%)

¹H NMR(400MHz, DMSO): δ 1.60~1.72(m, 4H), 1.83~1.94(m, 1H), 3.52~3.65(m, 2H), 3.82~3.86(m, 1H), 4.90(t, J =5.2, 1H), 5.12(d, J =7.6, 1H), 7.38~7.63(m, 4H)

Preparation example 95 : (2R, 3S)-methyl-3-(2-fluorophenyl)-1,4-dioxaspiro[4,5]decane-2-carboxylate

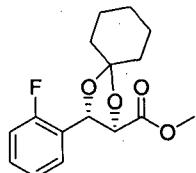


10 The substantially same method as described in Example 91 was conducted, except that cyclohexanone was used instead of cyclopentanone, to obtain the title compound(1.7g, 70~95%).

¹H NMR(400MHz, DMSO) δ 1.61~1.69(m, 10H), 3.79(s, 3H), 4.33(d, J =8.0, 1H), 5.85(d, J =8.0, 1H), 7.37~7.63(m, 4H)

15

Preparation example 96 : ((4R,5R)-5-(2-fluorophenyl)-1,4-dioxaspiro[4,5]decane-2-yl)methanol

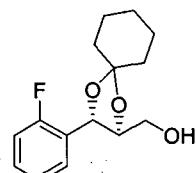


20 The substantially same method as described in Example 73 was conducted, except that (2R, 3S)-methyl-3-(2-fluorophenyl)-1,4-dioxaspiro[4,5]decane-2-carboxylate (Preparation example 95) was used instead of (2R,3S)- methyl-3-(2-chlorophenyl)-1,4-dioxaspiro[4,5]decane-2-carboxylate (Preparation example 72), to obtain the title

compound (1.4g, 70~95%)

¹H NMR(400MHz, DMSO): δ 1.63~1.75(m, 10H), 3.52~3.81(m, 2H), 3.95(t, J =8.0, 1H), 5.43(d, J =7.6, 1H), 7.42~7.89(m, 4H)

5 **Preparation example 97: (2S, 3R)-methyl-3-(2-fluorophenyl)-1,4-dioxaspiro[4,5]decane-2-carboxylate**



The substantially same method as described in Example 95 was conducted, except that (2S,3R)-methyl-3-(2-fluorophenyl)-2,3-dihydroxypropanoate (Preparation example 82) was used instead of (2R,3S)-methyl-3-(2-fluorophenyl)-2,3-dihydroxypropanoate (Preparation example 81), to obtain the title compound (1.8 g, 70~95%).

¹H NMR(400MHz, DMSO) δ 1.61~1.69(m, 10H), 3.79(s, 3H), 4.33(d, J =8.0, 1H), 5.85(d, J =8.0, 1H), 7.32~7.64(m, 4H)

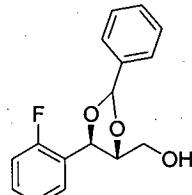
15

Preparation example 98 : ((4S,5S)-5-(2-fluorophenyl)-1,4-dioxaspiro[4,5]decane-2-yl)methanol

The substantially same method as described in Example 96 was conducted, except that (2S, 3R)-methyl-3-(2-fluorophenyl)-1,4-dioxaspiro[4,5]decane-2-carboxylate (Preparation example 97) was used instead of (2R, 3S)-methyl-3-(2-fluorophenyl)-1,4-dioxaspiro[4,5]decane-2-carboxylate (Preparation example 95), to obtain the title

compound(1.5g, 70~95%)

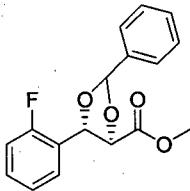
¹H NMR(400MHz, DMSO): δ 1.63~1.75(m, 10H), 3.52~3.81(m, 2H), 3.95(t, J =8.0, 1H), 5.43(d, J =7.6, 1H), 7.33~7.67(m, 4H)


5 **Preparation example 99: (2R, 3S)-methyl-3-(2-fluorophenyl)-2-phenyl-1,3-dioxolane-4-carboxylate**

The substantially same method as described in Example 87 was conducted, except that benzaldehyde was used instead of 3-pentanone, to obtain the title compound 10 (1.6g, 50~70%).

¹H NMR(400MHz, DMSO) δ 1.61~1.69(m, 10H), 3.79(s, 3H), 4.33(d, J =8.0, 1H), 5.85(d, J =8.0, 1H), 7.33~7.64(m, 4H)

15 **Preparation example 100: ((4R,5R)-5-(2-fluorophenyl)-2-phenyl-1,3-dioxolane-4-yl)methanol**



The substantially same method as described in Example 65 was conducted, except that (2R, 3S)-methyl-3-(2-fluorophenyl)-2-phenyl-1,3-dioxolane-4-carboxylate (Preparation example 99) was used instead of (4R,5S)-methyl-5-(2-chlorophenyl)-2,2-diehtyl-1,3-dioxolane-4-carboxylate(Preparation example 64), to obtain the title compound(1.3g, 70~95%)

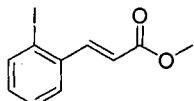
¹H NMR(400MHz, DMSO): δ 1.63~1.75(m, 10H), 3.52~3.81(m, 2H), 3.95(t, J =8.0,

1H), 5.43(d, $J=7.6$, 1H), 7.43~7.85(m, 4H)

Preparation example 101 : (2S, 3R)-methyl-3-(2-fluorophenyl)-2-phenyl-1,3-dioxolane-4-carboxylate

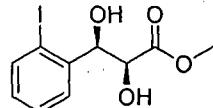
5

The substantially same method as described in Example 89 was conducted, except that benzaldehyde was used instead of 3-pentanone, to obtain the title compound (1.7g, 50~70%).


10 ^1H NMR(400MHz, DMSO) δ 1.61~1.69(m, 10H), 3.79(s, 3H), 4.33(d, $J=8.0$, 1H), 5.85(d, $J=8.0$, 1H), 7.33~7.64(m, 4H)

Preparation example 102 : ((4S,5S)-5-(2-fluorophenyl)-2-phenyl-1,3-dioxolane-4-yl)methanol

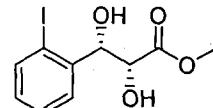
15 The substantially same method as described in Example 65 was conducted, except that (2S, 3R)-methyl-3-(2-fluorophenyl)-2-phenyl-1,3-dioxolane-4-carboxylate (Preparation example 101) was used instead of (4R,5S)-methyl-5-(2-chlorophenyl)-2,2-diehtyl-1,3-dioxolane-4-carboxylate(Preparation example 64), to obtain the title compound (1.1g, 70~95%)


20 ^1H NMR(400MHz, DMSO): δ 1.63~1.75(m, 10H), 3.52~3.81(m, 2H), 3.95(t, $J=8.0$, 1H), 5.43(d, $J=7.6$, 1H), 7.43~7.85(m, 4H)

Preparation example 103 : (E)-Methyl-3-(2-iodophenyl)acrylate

The substantially same method as described in Example 24 was conducted, except that (E)-3(2-iodophenyl)-acrylic acid(Preparation example 17)was used instead of 2-chlorocinnamic acid, to obtain the title compound.(3.2g, 70~90%)

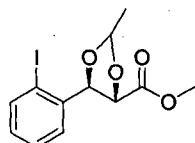
¹H NMR(400MHz, CDCl₃) δ3.84 (s, 3H), 6.45 (d, *J*=16.0, 1H), 7.01~7.35 (m, 4H), 8.09 (d, *J*=16.0, 1H)


Preparation example 104 : (2R,3S)-methyl-3-(2-iodophenyl)-2,3-dihydroxypropanoate

The substantially same method as described in Preparation Example 3 was conducted, except that (E)-Methyl-3-(2-iodophenyl)acrylate (Preparation example 103) was used instead of (E)-1-chloro-2-(3-(methoxymethoxy)prop-1-enyl)benzene (Preparation example 2), to obtain the title compound (3.2g, 75~90%).

¹H NMR(400MHz, CDCl₃): δ=4.31(s, 3H), 5.44(m, 4H), 5.89(s, 1H), 7.30~7.71(m, 4H).

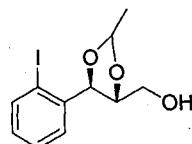
Preparation example 105 : (2S,3R)-methyl-3-(2-iodophenyl)-2,3-dihydroxypropanoate



The substantially same method as described in Example 25 was conducted, except that (E)-methyl-3-(2-iodophenyl)acrylate (Preparation example 103) was used instead of (E)-Methyl-3-(2-chlorophenyl)acrylate (Preparation example 24), to obtain

the title compound (3.1g, 60~80%).

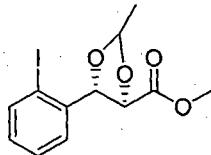
^1H NMR(400MHz, CDCl_3): δ =4.31(s, 3H), 5.44(m, 4H), 5.89(s, 1H), 7.31~7.72(m, 4H).


5 **Preparation example 106 : ((4R,5S)-methyl-5-(2-iodophenyl)-2-mehtyl-1.3-dioxolane-4-carboxylate**

The substantially same method as described in Example 60 was conducted, except that (2R,3S)-methyl-3-(2-iodophenyl)-2,3-dihydroxypropanoate (Preparation example 104) was used instead of ((2R,3S)-methyl-3-(2-chlorophenyl)-2,3-dihydroxypropanoate, to obtain the title compound (2.7g, 70~95%).

^1H NMR(400MHz, CDCl_3) δ 1.36(d, J =6.4, 3H), 3.78(s, 3H), 4.30(d, J =7.6, 1H), 5.07(m, 1H), 5.62(d, J =7.6, 1H), 7.29~7.70 (m, 4H)

15 **Preparation example 107 : ((4R,5R)-5-(2-iodophenyl)-2-mehtyl-1.3-dioxolane-4-yl)methanol**

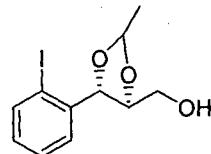


The substantially same method as described in Example 27 was conducted, except that (4R,5S)-methyl-5-(2-iodophenyl)-2-mehtyl-1.3-dioxolane-4-carboxylate (Preparation example 106) was used instead of (4S,5R)-methyl-5-(2-chlorophenyl)-2,2-dimehtyl-1.3-dioxolane-4-carboxylate (Preparation example 26), to obtain the title compound (2.3g, 70~95%)

^1H NMR(400MHz, CDCl_3): δ 1.37(d, J =6.0, 3H), 3.62~3.70(m, 2H), 4.36(dd, J =7.0,

$J=7.0, 1H)$, $5.06(m, 1H)$, $5.17(d, J=7.0, 1H)$, $7.17\sim7.41(m, 4H)$.

Preparation example 108 : ((4S,5R)-methyl-5-(2-iodophenyl)-2-methyl-1.3-dioxolane-4-carboxylate

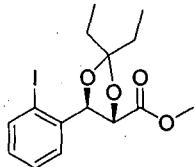

5

The substantially same method as described in Example 60 was conducted, except that (2S,3R)-methyl-3-(2-iodophenyl)-2,3-dihydroxypropanate(Preparation example 104) was used instead of (2S,3R)-methyl-3-(2-chlorophenyl)-2,3-dihydroxypropanate, to obtain the title compound (2.4g, 70~95%).

10

1H NMR(400MHz, $CDCl_3$) δ 1.36(d, $J=6.4, 3H$), 3.78(s, 3H), 4.30(d, $J=7.6, 1H$), 5.07(m, 1H), 5.62(d, $J=7.6, 1H$), 7.29~7.70 (m, 4H)

Preparation example 109 : ((4S,5S)-5-(2-iodophenyl)-2-methyl-1.3-dioxolane-4-yl)methanol

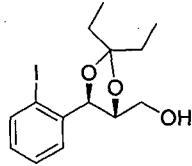


15

The substantially same method as described in Example 107 was conducted, except that (4S,5R)-methyl-5-(2-iodophenyl)-2-methyl-1.3-dioxolane-4-carboxylate (Preparation example 108) was used instead of (4R,5S)-methyl-5-(2-iodophenyl)-2-methyl-1.3-dioxolane-4-carboxylate(Preparation example 106), to obtain the title compound (1.9g, 70~95%)

1H NMR(400MHz, $CDCl_3$): δ 1.37(d, $J=6.0, 3H$), 3.62~3.70(m, 2H), 4.36(dd, $J=7.0, J=7.0, 1H$), 5.06(m, 1H), 5.17(d, $J=7.0, 1H$), 7.17~7.41(m, 4H)

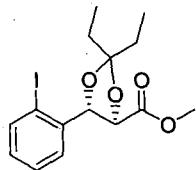
Preparation example 110 : (4R, 5S)-methyl-5-(2-iodophenyl)-2,2-diehtyl-1.3-dioxolane-4-carboxylate



The substantially same method as described in Example 64 was conducted, except
 5 that (2R,3S)-methyl-3-(2-iodophenyl)-2,3-dihydroxypropanoate(Preparation example
 104) was used instead of (2R,3S)-methyl-3-(2-chlorophenyl)-2,3-dihydroxypropanoate, to obtain the title compound (2.6g, 60~85%).

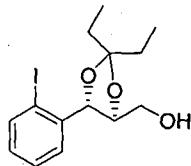
¹H NMR(400MHz, CDCl₃) δ0.96(m, 6H), 1.59(m, 4H), 3.67(s, 3H), 5.11(d, *J*=7.6, 1H), 5.81(d, *J*=7.6, 1H), 7.23~7.65(m, 4H)

10


Preparation example 111 : ((4R,5R)-5-(2-iodophenyl)-2,2-diehtyl-1.3-dioxolane-4-yl)methanol

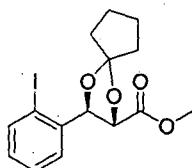
The substantially same method as described in Example 107 was conducted,
 15 except that (4R,5S)-methyl-5-(2-iodophenyl)-2,2-diehtyl-1.3-dioxolane-4-carboxylate
 (Preparation example 110) was used instead of (4R,5S)-methyl-5-(2-iodophenyl)-2-
 mehtyl-1.3-dioxolane-4-carboxylate(Preparation example 106), to obtain the title
 compound(2.1g, 70~95%)

¹H NMR(400MHz, CDCl₃): δ1.37(d, *J*=6.0, 3H), 3.62~3.70(m, 2H), 4.36(dd, *J*=7.0, 20 *J*=7.0, 1H), 5.06(m, 1H), 5.17(d, *J*=7.0, 1H), 7.17~7.41(m, 4H)


Preparation example 112 : (4S, 5R)-methyl-5-(2-iodophenyl)-2,2-diehtyl-1.3-dioxolane-4-carboxylate

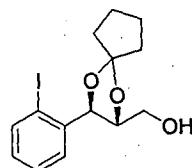
The substantially same method as described in Example 110 was conducted, except that (2S,3R)-methyl-3-(2-iodophenyl)-2,3-dihydroxypropanoate (Preparation example 105) was used instead of (2R,3S)-methyl-3-(2-iodophenyl)-2,3-dihydroxypropanoate (Preparation example 104), to obtain the title compound (2.3g, 60~85%).

¹H NMR(400MHz, CDCl₃) δ0.96(m, 6H), 1.59(m, 4H), 3.67(s, 3H), 5.11(d, *J*=7.6, 1H), 5.81(d, *J*=7.6, 1H), 7.20~7.61(m, 4H)


10 Preparation example 113 : ((4S,5S)-5-(2-iodophenyl)-2,2-diehtyl-1.3-dioxolane-4-yl)methanol

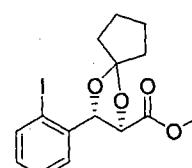
The substantially same method as described in Example 107 was conducted, except that (4S,5R)-methyl-5-(2-iodophenyl)-2,2-diehtyl-1.3-dioxolane-4-carboxylate (Preparation example 112) was used instead of (4R,5S)-methyl-5-(2-iodophenyl)-2-mehyt-1.3-dioxolane-4-carboxylate(Preparation example 106), to obtain the title compound(1.8g, 70~95%)

¹H NMR(400MHz, CDCl₃): δ1.37(d, *J*=6.0, 3H), 3.62~3.70(m, 2H), 4.36(dd, *J*=7.0, *J*=7.0, 1H), 5.06(m, 1H), 5.17(d, *J*=7.0, 1H), 7.17~7.41(m, 4H)


Preparation example 114 : (2R, 3S)-methyl-3-(2-iodophenyl)-1,4-dioxaspiro[4,4]nonane-2-carboxylate

The substantially same method as described in Example 110 was conducted, except that cyclopentanone was used instead of 3-pentanone, to obtain the title compound (2.7g, 70~95%).

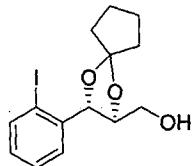
5 ^1H NMR(400MHz, DMSO) δ 1.69~1.71(m, 4H), 1.82~1.86(m, 1H), 1.91~2.00(m, 3H), 3.68(s, 3H), 4.40(d, J =7.2, 1H), 5.39(d, J =7.2, 1H), 7.19~7.44(m, 4H)


Preparation example 115 : ((4R,5R)-5-(2-iodophenyl)-1,4-dioxaspiro[4,4]nonane-2-yl)methanol

10 The substantially same method as described in Example 107 was conducted, except that (2R,3S)-methyl-3-(2-iodophenyl)-1,4-dioxaspiro[4,4]nonane-2-carboxylate (Preparation example 114) was used instead of (4R,5S)-methyl-5-(2-iodophenyl)-2-methyl-1,3-dioxolane-4-carboxylate (Preparation example 106), to obtain the title compound (2.1g, 70~95%)

15 ^1H NMR(400MHz, DMSO): δ 1.60~1.72(m, 4H), 1.83~1.94(m, 1H), 3.52~3.65(m, 2H), 3.82~3.86(m, 1H), 4.90(t, J =5.2, 1H), 5.12(d, J =7.6, 1H), 7.20~7.45(m, 4H)

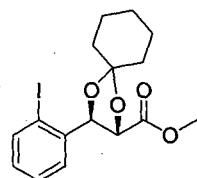
20 **Preparation example 116 : (2S, 3R)-methyl-3-(2-iodophenyl)-1,4-dioxaspiro[4,4]nonane-2-carboxylate**


The substantially same method as described in Example 112 was conducted,

except that cyclopentanone was used instead of 3-pentanone, to obtain the title compound (2.9g, 70~95%).

¹H NMR(400MHz, DMSO) δ1.69~1.71(m, 4H), 1.82~1.86(m, 1H), 1.91~2.00(m, 3H), 3.68(s, 3H), 4.40(d, *J*=7.2, 1H), 5.39(d, *J*=7.2, 1H), 7.19~7.44(m, 4H)

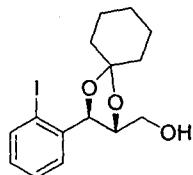
5


Preparation example 117 : ((4R,5R)-5-(2-iodophenyl)-1,4-dioxaspiro[4,4]nonane-2-yl)methanol

The substantially same method as described in Example 107 was conducted, except that (2S,3R)-methyl-3-(2-iodophenyl)-1,4-dioxaspiro[4,4]nonane-2-carboxylate (Preparation example 116) was used instead of (4R,5S)-methyl-5-(2-iodophenyl)-2-methyl-1,3-dioxolane-4-carboxylate(Preparation example 106), to obtain the title compound(1.5g, 70~95%)

¹H NMR(400MHz, DMSO): δ1.60~1.72(m, 4H), 1.83~1.94(m, 1H), 3.52~3.65(m, 2H), 3.82~3.86(m, 1H), 4.90(t, *J*=5.2, 1H), 5.12(d, *J*=7.6, 1H), 7.20~7.45(m, 4H)

Preparation example 118 : (2R, 3S)-methyl-3-(2-iodophenyl)-1,4-dioxaspiro[4,5]decane-2-carboxylate

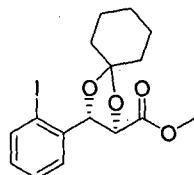


The substantially same method as described in Example 114 was conducted, except that cyclohexanone was used instead of cyclopentanone, to obtain the title compound (1.9g, 70~95%).

¹H NMR(400MHz, DMSO) δ1.61~1.69(m, 10H), 3.79(s, 3H), 4.33(d, *J*=8.0, 1H),

5.85(d, $J=8.0$, 1H), 7.17~7.43(m, 4H)

Preparation example 119 : ((4R,5R)-5-(2-iodophenyl)-1,4-dioxaspiro[4,5]decane-2-yl)methanol

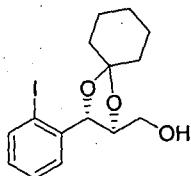


The substantially same method as described in Example 107 was conducted, except that (2R,3S)-methyl-3-(2-iodophenyl)-1,4-dioxaspiro[4,5]decane-2-carboxylate (Preparation example 118) was used instead of (4R,5S)-methyl-5-(2-iodophenyl)-2-methyl-1,3-dioxolane-4-carboxylate (Preparation example 106), to obtain the title compound (1.3g, 70~95%)

^1H NMR(400MHz, DMSO): δ 1.63~1.75(m, 10H), 3.52~3.81(m, 2H), 3.95(t, $J=8.0$, 1H), 5.43(d, $J=7.6$, 1H), 7.19~7.49(m, 4H)

15

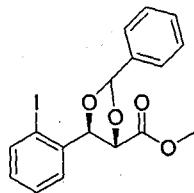
Preparation example 120 : (2S, 3R)-methyl-3-(2-iodophenyl)-1,4-dioxaspiro[4,5]decane-2-carboxylate



The substantially same method as described in Example 116 was conducted, except that cyclohexanone was used instead of cyclopentanone, to obtain the title compound (2.3g, 70~95%).

20

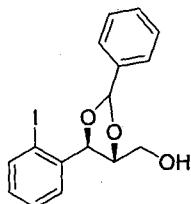
^1H NMR(400MHz, DMSO) δ 1.61~1.69(m, 10H), 3.79(s, 3H), 4.33(d, $J=8.0$, 1H), 5.85(d, $J=8.0$, 1H), 7.17~7.43(m, 4H)


Preparation example 121 : ((4S,5S)-5-(2-iodophenyl)-1,4-dioxaspiro[4,5]decane-2-yl)methanol

The substantially same method as described in Example 107 was conducted,
 5 except that (2S,3R)-methyl-3-(2-iodophenyl)-1,4-dioxaspiro[4,5]decane-2-carboxylate(Preparation example 120) was used instead of (4R,5S)-methyl-5-(2-iodophenyl)-2-methyl-1,3-dioxolane-4-carboxylate(Preparation example 106), to obtain the title compound(1.7g, 70~95%)

10 ^1H NMR(400MHz, DMSO): δ 1.63~1.75(m, 10H), 3.52~3.81(m, 2H), 3.95(t, J =8.0, 1H), 5.43(d, J =7.6, 1H), 7.19~7.49(m, 4H)

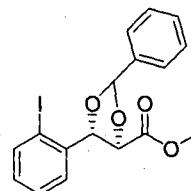
Preparation example 122: (2R, 3S)-methyl-3-(2-iodophenyl)-2-phenyl-1,3-dioxolane-4-carboxylate



15 The substantially same method as described in Example 118 was conducted, except that benzaldehyde was used instead of cyclohexanone, to obtain the title compound(1.9g, 50~70%).

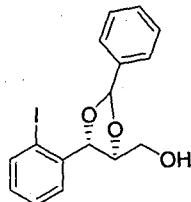
20 ^1H NMR(400MHz, DMSO) δ 3.67(s, 3H), 5.11(d, J =8.0, 1H), 5.81(d, J =8.0, 1H), 6.18(s, 1H), 6.96~7.57(m, 9H)

20


Preparation example 123: ((4R,5R)-5-(2-iodophenyl)-2-phenyl-1,3-dioxolane-4-yl)methanol

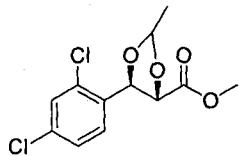
The substantially same method as described in Example 107 was conducted, except that (2R,3S)-methyl-3-(2-iodophenyl)-2-phenyl-1,3-dioxolane-4-carboxylate (Preparation example 122) was used instead of (4R,5S)-methyl-5-(2-iodophenyl)-2-methyl-1,3-dioxolane-4-carboxylate(Preparation example 106), to obtain the title compound(1.4g, 70~95%)

¹H NMR(400MHz, DMSO): δ3.66(d, $J=7.6$, 2H), 4.36(m, 1H), 5.17(d, $J=8.0$, 1H), 6.18(s, 1H), 6.94~7.59(m, 9H)


10 **Preparation example 124 : (2S, 3R)-methyl-3-(2-iodophenyl)-2-phenyl-1,3-dioxolane-4-carboxylate**

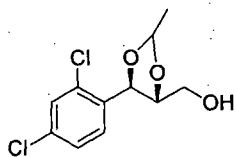
The substantially same method as described in Example 120 was conducted, except benzaldehyde that was used instead of cyclohexanone, to obtain the title compound (2.1g, 50~70%).

¹H NMR(400MHz, DMSO) δ3.67(s, 3H), 5.11(d, $J=8.0$, 1H), 5.81(d, $J=8.0$, 1H), 6.18(s, 1H), 6.96~7.57(m, 9H)


20 **Preparation example 125 : ((4S,5S)-5-(2-iodophenyl)-2-phenyl-1,3-dioxolane-4-yl)methanol**

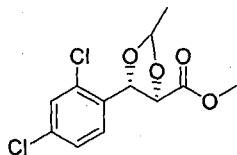
The substantially same method as described in Example 107 was conducted, except that (2S,3R)-methyl-3-(2-iodophenyl)-2-phenyl-1,3-dioxolane-4-carboxylate (Preparation example 124) was used instead of (4R,5S)-methyl-5-(2-iodophenyl)-2-methyl-1,3-dioxolane-4-carboxylate(Preparation example 106), to obtain the title compound(1.3g, 70~95%)

¹H NMR(400MHz, DMSO): δ 3.66(d, J =7.6, 2H), 4.36(m, 1H), 5.17(d, J =8.0, 1H), 6.18(s, 1H), 6.94~7.59(m, 9H)


10 **Preparation example 126 : ((4R,5S)-methyl-5-(2,4-dichlorophenyl)-2-methyl-1,3-dioxolane-4-carboxylate**

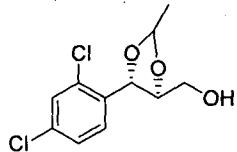
The substantially same method as described in Example 60 was conducted, except that (2R,3S)-methyl-3-(2,4-dichlorophenyl)-2,3-dihydroxypropanoate(Preparation example 36) was used instead of ((2R,3S)-methyl-3-(2-chlorophenyl)-2,3-dihydroxypropanoate, to obtain the title compound(0.9g, 70~95%).

¹H NMR(400MHz, CDCl₃) δ 1.36(d, J =6.4, 3H), 3.78(s, 3H), 4.30(d, J =7.6, 1H), 5.07(m, 1H), 5.62(d, J =7.6, 1H), 7.07~7.21(m, 3H)


20 **Preparation example 127 : ((4R,5R)-5-(2,4-dichlorophenyl)-2-methyl-1,3-dioxolane-4-yl)methanol**

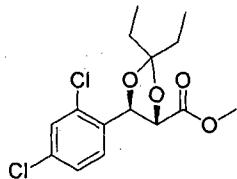
The substantially same method as described in Example 27 was conducted, except that ((4R,5S)-methyl-5-(2,4-dichlorophenyl)-2-methyl-1,3-dioxolane-4-carboxylate (Preparation example 126) was used instead of (4S,5R)-methyl-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolane-4-carboxylate (Preparation example 26), to obtain the title compound(0.7g, 70~95%)

¹H NMR(400MHz, CDCl₃): δ1.37(d, *J*=6.0, 3H), 3.62~3.70(m, 2H), 4.36(dd, *J*=7.0, *J*=7.0, 1H), 5.06(m, 1H), 5.17(d, *J*=7.0, 1H), 7.08~7.39(m, 3H).


10 **Preparation example 128 : ((4S,5R)-methyl-5-(2,4-dichlorophenyl)-2-methyl-1,3-dioxolane-4-carboxylate**

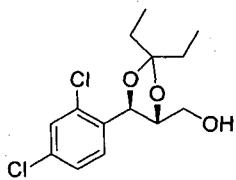
The substantially same method as described in Example 126 was conducted, except that (2S,3R)-methyl-3-(2,4-dichlorophenyl)-2,3-dihydroxypropanoate (Preparation example 29) was used instead of (2R,3S)-methyl-3-(2,4-dichlorophenyl)-2,3-dihydroxypropanoate (Preparation example 36), to obtain the title compound (1.9g, 70~95%).

¹H NMR(400MHz, CDCl₃) δ1.36(d, *J*=6.4, 3H), 3.78(s, 3H), 4.30(d, *J*=7.6, 1H), 5.07(m, 1H), 5.62(d, *J*=7.6, 1H), 7.07~7.21(m, 3H).


Preparation example 129 : ((4S,5S)-5-(2,4-dichlorophenyl)-2-methyl-1,3-dioxolane-4-yl)methanol

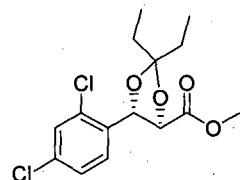
The substantially same method as described in Example 27 was conducted, except that (4S,5R)-methyl-5-(2,4-dichlorophenyl)-2-methyl-1,3-dioxolane-4-carboxylate (Preparation example 128) was used instead of (4S,5R)-methyl-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolane-4-carboxylate (Preparation example 26), to obtain the title compound(1.5g, 70~95%)

¹H NMR(400MHz, CDCl₃): δ1.37(d, *J*=6.0, 3H), 3.62~3.70(m, 2H), 4.36(dd, *J*=7.0, *J*=7.0, 1H), 5.06(m, 1H), 5.17(d, *J*=7.0, 1H), 7.08~7.39(m, 3H).


10 **Preparation example 130 : (4R, 5S)-methyl-5-(2,4-dichlorophenyl)-2,2-dimethyl-1,3-dioxolane-4-carboxylate**

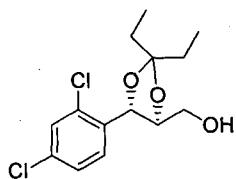
The substantially same method as described in Example 64 was conducted, except that (2R,3S)-methyl-3-(2,4-dichlorophenyl)-2,3-dihydroxypropanoate (Preparation example 36) was used instead of (2R,3S)-methyl-3-(2-chlorophenyl)-2,3-dihydroxypropanoate, to obtain the title compound (2.2g, 60~85%).

¹H NMR(400MHz, CDCl₃) δ0.96(m, 6H), 1.59(m, 4H), 3.67(s, 3H), 5.11(d, *J*=7.6, 1H), 5.81(d, *J*=7.6, 1H), 7.12~7.37(m, 3H)


20 **Preparation example 131: ((4R,5R)-5-(2,4-dichlorophenyl)-2,2-dimethyl-1,3-dioxolane-4-yl)methanol**

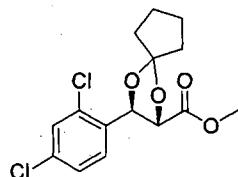
The substantially same method as described in Example 27 was conducted, except that (4R,5S)-methyl-5-(2,4-dichlorophenyl)-2,2-dieethyl-1,3-dioxolane-4-carboxylate (Preparation example 130) was used instead of (4S,5R)-methyl-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolane-4-carboxylate (Preparation example 26), to obtain the title compound(1.4g, 70~95%)

¹H NMR(400MHz, CDCl₃): δ1.37(d, *J*=6.0, 3H), 3.62~3.70(m, 2H), 4.36(dd, *J*=7.0, *J*=7.0, 1H), 5.06(m, 1H), 5.17(d, *J*=7.0, 1H), 7.08~7.39(m, 3H).


10 **Preparation example 132 : (4S, 5R)-methyl-5-(2,4-chlorophenyl)-2,2-dieethyl-1,3-dioxolane-4-carboxylate**

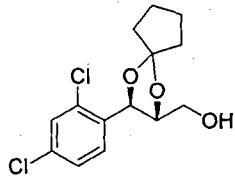
The substantially same method as described in Example 130 was conducted, except that (2S,3R)-methyl-3-(2,4-dichlorophenyl)-2,3-dihydroxypropanoate (Preparation example 29) was used instead of (2R,3S)-methyl-3-(2,4-dichlorophenyl)-2,3-dihydroxypropanoate (Preparation example 36), to obtain the title compound (2.1g, 70~95%).

¹H NMR(400MHz, CDCl₃) δ0.96(m, 6H), 1.59(m, 4H), 3.67(s, 3H), 5.11(d, *J*=7.6, 1H), 5.81(d, *J*=7.6, 1H), 7.12~7.37(m, 3H)


Preparation example 133 : ((4S,5S)-5-(2,4-chlorophenyl)-2,2-diehtyl-1,3-dioxolane-4-yl)methanol

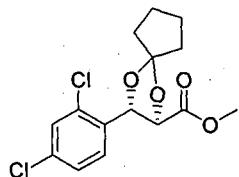
The substantially same method as described in Example 131 was conducted, except that (4S,5R)-methyl-5-(2,4-dichlorophenyl)-2,2-diehtyl-1,3-dioxolane-4-carboxylate (Preparation example 132) was used instead of ((4R,5S)-methyl-5-(2,4-dichlorophenyl)-2,2-diehtyl-1,3-dioxolane-4-carboxylate (Preparation example 130), to obtain the title compound (1.2g, 70~95%).

¹H NMR(400MHz, CDCl₃): δ1.37(d, *J*=6.0, 3H), 3.62~3.70(m, 2H), 4.36(dd, *J*=7.0, *J*=7.0, 1H), 5.06(m, 1H), 5.17(d, *J*=7.0, 1H), 7.08~7.39(m, 3H).


10 **Preparation example 134 : (2R, 3S)-methyl-3-(2,4-chlorophenyl)-1,4-dioxaspiro[4,4]nonane-2-carboxylate**

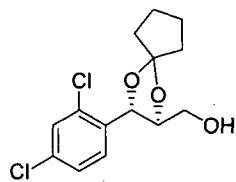
The substantially same method as described in Example 131 was conducted, except that cyclopentanone was used instead of 3-pentanone, to obtain the title compound (2.5g, 70~95%).

¹H NMR(400MHz, DMSO) δ1.69~1.71(m, 4H), 1.82~1.86(m, 1H), 1.91~2.00(m, 3H), 3.68(s, 3H), 4.40(d, *J*=7.2, 1H), 5.39(d, *J*=7.2, 1H), 7.03~7.36(m, 3H)


20 **Preparation example 135 : ((4R,5R)-5-(2,4-chlorophenyl)-1,4-dioxaspiro[4,4]nonane-2-yl)methanol**

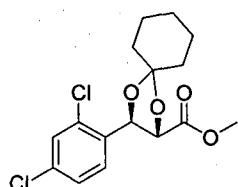
The substantially same method as described in Example 65 was conducted, except that (2R,3S)-methyl-3-(2,4-dichlorophenyl)-1,4-dioxaspiro[4,4]nonane-2-carboxylate (Preparation example 134) was used instead of (4R,5S)-methyl-5-(2-chlorophenyl)-2,2-diehtyl-1,3-dioxolane-4-carboxylate(Preparation example 64), to obtain the title compound(1.8g, 70~95%)

¹H NMR(400MHz, DMSO): δ1.60~1.72(m, 4H), 1.83~1.94(m, 1H), 3.52~3.65(m, 2H), 3.82~3.86(m, 1H), 4.90(t, *J*=5.2, 1H), 5.12(d, *J*=7.6, 1H), 7.02~7.37(m, 3H)


10 **Preparation example 136 : (2S, 3R)-methyl-3-(2,4-chlorophenyl)-1,4-dioxaspiro[4,4]nonane-2-carboxylate**

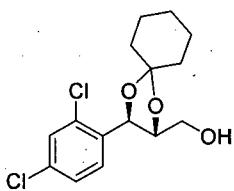
The substantially same method as described in Example 132 was conducted, except that cyclopentanone was used instead of 3-pentanone, to obtain the title compound (2.2g, 70~95%).

¹H NMR(400MHz, DMSO) δ1.69~1.71(m, 4H), 1.82~1.86(m, 1H), 1.91~2.00(m, 3H), 3.68(s, 3H), 4.40(d, *J*=7.2, 1H), 5.39(d, *J*=7.2, 1H), 7.03~7.36(m, 3H)


20 **Preparation example 137 : ((4R,5R)-5-(2,4-chlorophenyl)-1,4-dioxaspiro[4,4]nonane-2-yl)methanol**

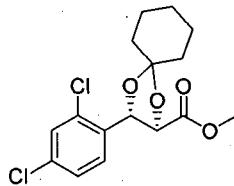
The substantially same method as described in Example 135 was conducted, except that (2S,3R)-methyl-3-(2,4-dichlorophenyl)-1,4-dioxaspiro[4,4]nonane-2-carboxylate (Preparation example 136) was used instead of (2R, 3S)-methyl-3-(2,4-dichlorophenyl)-1,4-dioxaspiro[4,4]nonane-2-carboxylate(Preparation example 134), to obtain the title compound(1.2g, 70~95%)

¹H NMR(400MHz, DMSO): δ1.60~1.72(m, 4H), 1.83~1.94(m, 1H), 3.52~3.65(m, 2H), 3.82~3.86(m, 1H), 4.90(t, *J*=5.2, 1H), 5.12(d, *J*=7.6, 1H), 7.02~7.37(m, 3H)


10 **Preparation example 138 : (2R, 3S)-methyl-3-(2,4-chlorophenyl)-1,4-dioxaspiro[4,5]decane-2-carboxylate**

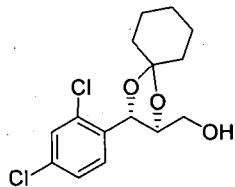
The substantially same method as described in Example 134 was conducted, except that cyclohexanone was used instead of cyclopentanone, to obtain the title compound(1.8g, 70~95%).

¹H NMR(400MHz, DMSO) δ1.61~1.69(m, 10H), 3.79(s, 3H), 4.33(d, *J*=8.0, 1H), 5.85(d, *J*=8.0, 1H), 7.07~7.41(m, 3H)


20 **Preparation example 139 : ((4R,5R)-5-(2,4-chlorophenyl)-1,4-dioxaspiro[4,5]decane-2-yl)methanol**

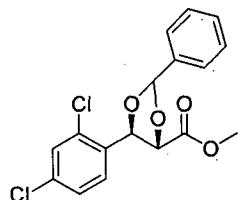
The substantially same method as described in Example 73 was conducted, except that (2R,3S)-methyl-3-(2,4-dichlorophenyl)-1,4-dioxaspiro[4,5]decane-2-carboxylate (Preparation example 138) was used instead of (2R,3S)- methyl-3-(2-chlorophenyl)-1,4-dioxaspiro[4,5]decane-2-carboxylate(Preparation example 72), to obtain the title compound(1.3g, 70~95%)

¹H NMR(400MHz, DMSO): δ 1.63~1.75(m, 10H), 3.52~3.81(m, 2H), 3.95(t, J =8.0, 1H), 5.43(d, J =7.6, 1H), 7.04~7.40(m, 3H)


10 **Preparation example 140: (2S, 3R)-methyl-3-(2,4-chlorophenyl)-1,4-dioxaspiro[4,5]decane-2-carboxylate**

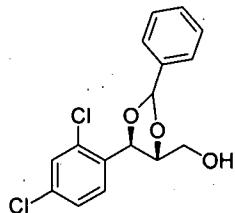
The substantially same method as described in Example 136 was conducted, except that cyclohexanone was used instead of cyclopentanone, to obtain the title compound(1.6g, 70~95%).

¹H NMR(400MHz, DMSO) δ 1.61~1.69(m, 10H), 3.79(s, 3H), 4.33(d, J =8.0, 1H), 5.85(d, J =8.0, 1H), 7.07~7.41(m, 3H)


20 **Preparation example 141 : ((4S,5S)-5-(2,4-chlorophenyl)-1,4-dioxaspiro[4,5]decane-2-yl)methanol**

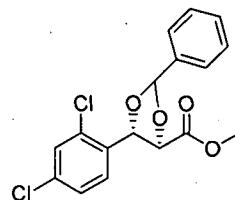
The substantially same method as described in Example 139 was conducted, except that (2S,3R)-methyl-3-(2,4-dichlorophenyl)-1,4-dioxaspiro[4,5]decane-2-carboxylate (Preparation example 140) was used instead of (2R, 3S)-methyl-3-(2,4-dichlorophenyl)-1,4-dioxaspiro[4,5]decane-2-carboxylate(Preparation example 138), to obtain the title compound(1.2g, 70~95%)

¹H NMR(400MHz, DMSO): δ1.63~1.75(m, 10H), 3.52~3.81(m, 2H), 3.95(t, *J*=8.0, 1H), 5.43(d, *J*=7.6, 1H), 7.04~7.40(m, 3H)


10 **Preparation example 142: (2R, 3S)-methyl-3-(2,4-chlorophenyl)-2-phenyl-1,3-dioxolane-4-carboxylate**

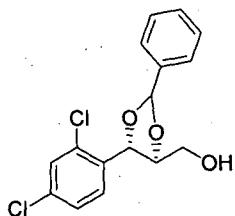
The substantially same method as described in Example 138 was conducted, except that benzaldehyde was used instead of cyclohexanone, to obtain the title compound (1.9g, 50~70%).

¹H NMR(400MHz, DMSO) δ1.61~1.69(m, 10H), 3.79(s, 3H), 4.33(d, *J*=8.0, 1H), 5.85(d, *J*=8.0, 1H), 7.03~7.41(m, 3H)


20 **Preparation example 143: ((4R,5R)-5-(2,4-chlorophenyl)-2-phenyl-1,3-dioxolane-4-yl)methanol**

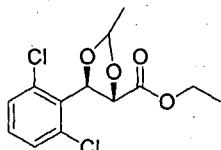
The substantially same method as described in Example 65 was conducted, except that (2R,3S)-methyl-3-(2,4-chlorophenyl)-2-phenyl-1,3-dioxolane-4-carboxylate (Preparation example 142) was used instead of (4R,5S)-methyl-5-(2-chlorophenyl)-2,2-diehtyl-1,3-dioxolane-4-carboxylate(Preparation example 64), to obtain the title compound(1.5g, 70~95%)

¹H NMR(400MHz, DMSO): δ 1.63~1.75(m, 10H), 3.52~3.81(m, 2H), 3.95(t, J =8.0, 1H), 5.43(d, J =7.6, 1H), 7.04~7.42(m, 3H)


10 **Preparation example 144 : (2S, 3R)-methyl-3-(2,4-chlorophenyl)-2-phenyl-1,3-dioxolane-4-carboxylate**

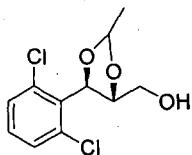
The substantially same method as described in Example 140 was conducted, except that benzaldehyde was used instead of cyclohexanone, to obtain the title compound (1.6g, 50~70%).

¹H NMR(400MHz, DMSO) δ 1.61~1.69(m, 10H), 3.79(s, 3H), 4.33(d, J =8.0, 1H), 5.85(d, J =8.0, 1H), 7.03~7.41(m, 3H)


20 **Preparation example 145 : ((4S,5S)-5-(2,4-chlorophenyl)-2-phenyl-1,3-dioxolane-4-yl)methanol**

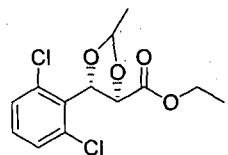
The substantially same method as described in Example 143 was conducted, except that (2S, 3R)-methyl-3-(2,4-chlorophenyl)-2-phenyl-1,3-dioxolane-4-carboxylate (Preparation example 144) was used instead of (2R, 3S)-methyl-3-(2,4-chlorophenyl)-2-phenyl-1,3-dioxolane-4-carboxylate(Preparation example 142), to obtain the title compound(1.2g, 70~95%)

¹H NMR(400MHz, DMSO): δ 1.63~1.75(m, 10H), 3.52~3.81(m, 2H), 3.95(t, J =8.0, 1H), 5.43(d, J =7.6, 1H), 7.04~7.42(m, 3H)


10 **Preparation example 146 : ((4R,5S)-ethyl-5-(2,6-dichlorophenyl)-2-methyl-1.3-dioxolane-4-carboxylate**

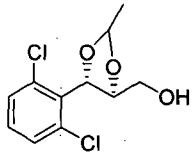
The substantially same method as described in Example 60 was conducted, except that (2R,3S)-ethyl-3-(2,6-dichlorophenyl)-2,3-dihydroxypropanoate (Preparation example 39) was used instead of ((2R,3S)-methyl-3-(2-chlorophenyl)-2,3-dihydroxypropanoate, to obtain the title compound(1.7g, 70~95%).

¹H NMR(400MHz, CDCl₃) δ 1.36(d, J =6.4, 3H), 3.78(s, 3H), 4.15(m, 2H), 4.30(d, J =7.6, 1H), 5.07(m, 1H), 5.62(d, J =7.6, 1H), 7.17~7.36(m, 3H)


20 **Preparation example 147 : ((4R,5R)-5-(2,6-dichlorophenyl)-2-methyl-1.3-dioxolane-4-yl)methanol**

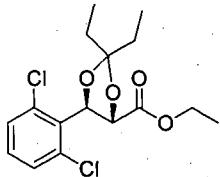
The substantially same method as described in Example 27 was conducted, except that ((4R,5S)-ethyl-5-(2,6-dichlorophenyl)-2-methyl-1,3-dioxolane-4-carboxylate (Preparation example 146) was used instead of (4S,5R)-methyl-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolane-4-carboxylate (Preparation example 26), to obtain the title compound(1.2g, 70~95%).

¹H NMR(400MHz, CDCl₃): δ1.37(d, *J*=6.0, 3H), 3.62~3.70(m, 2H), 4.36(dd, *J*=7.0, *J*=7.0, 1H), 5.06(m, 1H), 5.17(d, *J*=7.0, 1H), 7.18~7.39(m, 3H).


10 **Preparation example 148 : ((4S,5R)-ethyl-5-(2,6-dichlorophenyl)-2-methyl-1,3-dioxolane-4-carboxylate**

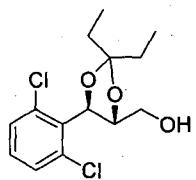
The substantially same method as described in Example 146 was conducted, except that (2S,3R)-ethyl-3-(2,6-dichlorophenyl)-2,3-dihydroxypropanoate (Preparation example 33) was used instead of (2R,3S)-methyl-3-(2,4-dichlorophenyl)-2,3-dihydroxypropanoate (Preparation example 39), to obtain the title compound(1.8g, 70~95%).

¹H NMR(400MHz, CDCl₃) δ1.36(d, *J*=6.4, 3H), 3.78(s, 3H), 4.15(m, 2H), 4.30(d, *J*=7.6, 1H), 5.07(m, 1H), 5.62(d, *J*=7.6, 1H), 7.17~7.36(m, 3H).


Preparation example 149 : ((4S,5S)-5-(2,6-dichlorophenyl)-2-methyl-1,3-dioxolane-4-yl)methanol

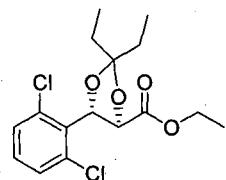
The substantially same method as described in Example 147 was conducted, except that ((4S,5R)-ethyl-5-(2,6-dichlorophenyl)-2-methyl-1,3-dioxolane-4-carboxylate (Preparation example 148) was used instead of ((4R,5S)-ethyl-5-(2,6-dichlorophenyl)-2-methyl-1,3-dioxolane-4-carboxylate(Preparation example 146), to obtain the title compound (1.3g, 70~95%)

¹H NMR(400MHz, CDCl₃): δ1.37(d, *J*=6.0, 3H), 3.62~3.70(m, 2H), 4.36(dd, *J*=7.0, *J*=7.0, 1H), 5.06(m, 1H), 5.17(d, *J*=7.0, 1H), 7.18~7.39(m, 3H).


10 **Preparation example 150 : (4R, 5S)-ethyl-5-(2,6-dichlorophenyl)-2,2-diehtyl-1,3-dioxolane-4-carboxylate**

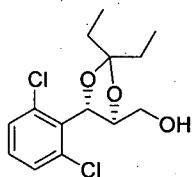
The substantially same method as described in Example 130 was conducted, except that (2R,3S)-ethyl-3-(2,6-dichlorophenyl)-2,3-dihydroxypropanoate (Preparation example 39) was used instead of (2R,3S)-methyl-3-(2,6-dichlorophenyl)-2,3-dihydroxypropanoate (Preparation example 36), to obtain the title compound (1.8g, 60~85%).

¹H NMR(400MHz, CDCl₃) δ0.96(m, 6H), 1.30(t, *J*=8.0, 3H), 1.59(m, 4H), 4.12(m, 2H), 5.11(d, *J*=7.6, 1H), 5.81(d, *J*=7.6, 1H), 7.08~7.26(m, 3H)


Preparation example 151: ((4R,5R)-5-(2,6-dichlorophenyl)-2,2-diehtyl-1,3-dioxolane-4-yl)methanol

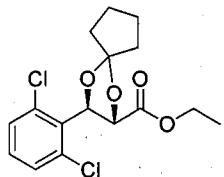
The substantially same method as described in Example 147 was conducted, except that (4R,5S)-ethyl-5-(2,6-dichlorophenyl)-2,2-diehtyl-1,3-dioxolane-4-carboxylate (Preparation example 150)was used instead of ((4R,5S)-ethyl-5-(2,6-dichlorophenyl)-2-mehtyl-1,3-dioxolane-4-carboxylate (Preparation example 146), to obtain the title compound (1.2g, 70~95%)

¹H NMR(400MHz, CDCl₃): δ1.37(d, $J=6.0$, 3H), 3.62~3.70(m, 2H), 4.36(dd, $J=7.0$, $J=7.0$, 1H), 5.06(m, 1H), 5.17(d, $J=7.0$, 1H), 7.07~7.29(m, 3H).


10 **Preparation example 152 : (4S, 5R)-ethyl-5-(2,6-chlorophenyl)-2,2-diehtyl-1,3-dioxolane-4-carboxylate**

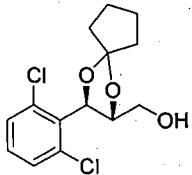
The substantially same method as described in Example 150 was conducted, except that 2S,3R)-ethyl-3-(2,6-ichlorophenyl)-2,3-dihydroxypropanoate (Preparation example 33) was used instead of (2R,3S)-ethyl-3-(2,6-dichlorophenyl)-2,3-dihydroxypropanoate (Preparation example 39), to obtain the title compound(2.5g, 70~95%).

¹H NMR(400MHz, CDCl₃) δ0.96(m, 6H), 1.30(t, $J=8.0$, 3H), 1.59(m, 4H), 4.12(m, 2H), 5.11(d, $J=7.6$, 1H), 5.81(d, $J=7.6$, 1H), 7.08~7.26(m, 3H)


Preparation example 153 : ((4S,5S)-5-(2,6-chlorophenyl)-2,2-diehtyl-1,3-dioxolane-4-yl)methanol

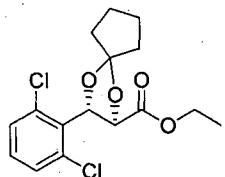
The substantially same method as described in Example 151 was conducted, except that (4S,5R)-ethyl-5-(2,6-dichlorophenyl)-2,2-diehtyl-1,3-dioxolane-4-carboxylate (Preparation example 152) was used instead of (4R,5S)-ethyl-5-(2,6-dichlorophenyl)-2,2-diehtyl-1,3-dioxolane-4-carboxylate(Preparation example 150), to obtain the title compound(2.1g, 70~95%)

¹H NMR(400MHz, CDCl₃): δ1.37(d, J=6.0, 3H), 3.62~3.70(m, 2H), 4.36(dd, J=7.0, J=7.0, 1H), 5.06(m, 1H), 5.17(d, J=7.0, 1H), 7.07~7.29(m, 3H).


10 **Preparation example 154 : (2R, 3S)-ethyl-3-(2,6-chlorophenyl)-1,4-dioxaspiro[4,4]nonane-2-carboxylate**

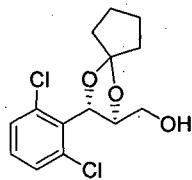
The substantially same method as described in Example 150 was conducted, except that cyclopentanone was used instead of 3-pentanone, to obtain the title compound (2.1g, 70~95%).

¹H NMR(400MHz, DMSO) δ1.30(t, J=7.8hz, 3H), 1.69~1.71(m, 4H), 1.73~1.86(m, 4H), 4.07~4.14(m, 2H), 5.11(d, J=7.2, 1H), 5.81(d, J=7.2, 1H), 7.07~7.31(m, 3H)


20 **Preparation example 155 : ((4R,5R)-5-(2,6-chlorophenyl)-1,4-dioxaspiro[4,4]nonane-2-yl)methanol**

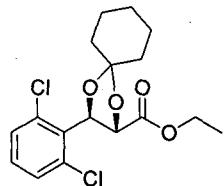
The substantially same method as described in Example 151 was conducted, except that (2R,3S)-ethyl-3-(2,6-dichlorophenyl)-1,4-dioxaspiro[4,4]nonane-2-carboxylate (Preparation example 154) was used instead of (4R,5S)-ethyl-5-(2,6-dichlorophenyl)-2,2-diehtyl-1,3-dioxolane-4-carboxylate (Preparation example 150), to obtain the title compound (1.7g, 70~95%)

¹H NMR(400MHz, DMSO): δ 1.60~1.72(m, 4H), 1.83~1.94(m, 4H), 3.52~3.65(m, 2H), 4.90(t, J =5.2, 1H), 5.12(d, J =7.6, 1H), 7.08~7.32(m, 3H)


10 **Preparation example 156 : (2S, 3R)-ethyl-3-(2,6-chlorophenyl)-1,4-dioxaspiro[4,4]nonane-2-carboxylate**

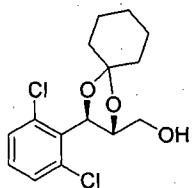
The substantially same method as described in Example 152 was conducted, except that cyclopentanone was used instead of 3-pentanone, to obtain the title compound (2.5g, 70~95%).

¹H NMR(400MHz, DMSO) δ 1.30(t, J =7.8hz, 3H), 1.69~1.71(m, 4H), 1.73~1.86(m, 4H), 4.07~4.14(m, 2H), 5.11(d, J =7.2, 1H), 5.81(d, J =7.2, 1H), 7.07~7.31(m, 3H)


20 **Preparation example 157 : ((4R,5R)-5-(2,6-chlorophenyl)-1,4-dioxaspiro[4,4]nonane-2-yl)methanol**

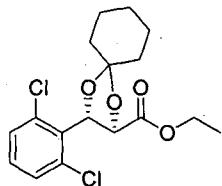
The substantially same method as described in Example 155 was conducted, except that (2S,3R)-ethyl-3-(2,6-dichlorophenyl)-1,4-dioxaspiro[4,4]nonane-2-carboxylate (Preparation example 156) was used instead of (2R, 3S)-ethyl-3-(2,6-dichlorophenyl)-1,4-dioxaspiro[4,4]nonane-2-carboxylate(Preparation example 154), to obtain the title compound (2.0g, 70~95%)

¹H NMR(400MHz, DMSO): δ1.60~1.72(m, 4H), 1.83~1.94(m, 4H), 3.52~3.65(m, 2H), 4.90(t, *J*=5.2, 1H), 5.12(d, *J*=7.6, 1H), 7.08~7.32(m, 3H)


10 **Preparation example 158 : (2R, 3S)-ethyl-3-(2,6-chlorophenyl)-1,4-dioxaspiro[4,5]decane-2-carboxylate**

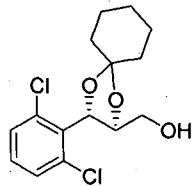
The substantially same method as described in Example 154 was conducted, except that cyclohexanone was used instead of cyclopentanone, to obtain the title compound (2.2g, 70~95%).

¹H NMR(400MHz, DMSO) δ1.30(t, *J*=7.6, 3H), 1.61~1.69(m, 10H), 4.08~4.18(d, 2H), 4.33(d, *J*=8.0, 1H), 5.85(d, *J*=8.0, 1H), 7.07~7.31(m, 3H)


20 **Preparation example 159 : ((4R,5R)-5-(2,6-chlorophenyl)-1,4-dioxaspiro[4,5]decane-2-yl)methanol**

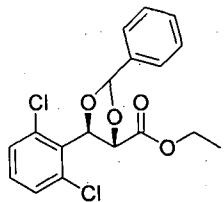
The substantially same method as described in Example 155 was conducted, except that (2R,3S)-ethyl-3-(2,6-dichlorophenyl)-1,4-dioxaspiro[4,5]decane-2-carboxylate (Preparation example 158) was used instead of (2R, 3S)-ethyl-3-(2,6-dichlorophenyl)-1,4-dioxaspiro[4,4]nonane-2-carboxylate (Preparation example 154), to obtain the title compound(1.7g, 70~95%)

¹H NMR(400MHz, DMSO): δ 1.63~1.75(m, 10H), 3.52~3.81(m, 2H), 3.95(t, J =8.0, 1H), 5.43(d, J =7.6, 1H), 7.05~7.30(m, 3H)


10 **Preparation example 160: (2S, 3R)-ethyl-3-(2,6-chlorophenyl)-1,4-dioxaspiro[4,5]decane-2-carboxylate**

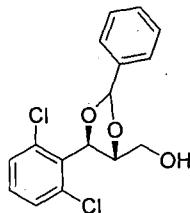
The substantially same method as described in Example 156 was conducted, except that cyclohexanone was used instead of cyclopentanone, to obtain the title compound (1.9g, 70~95%).

¹H NMR(400MHz, DMSO) δ 1.30(t, J =7.6, 3H), 1.61~1.69(m, 10H), 4.08~4.18(d, 2H), 4.33(d, J =8.0, 1H), 5.85(d, J =8.0, 1H), 7.07~7.31(m, 3H)


20 **Preparation example 161 : ((4S,5S)-5-(2,6-chlorophenyl)-1,4-dioxaspiro[4,5]decane-2-yl)methanol**

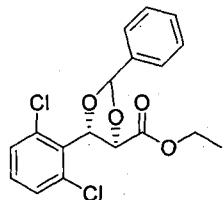
The substantially same method as described in Example 159 was conducted, except that (2S,3R)-ethyl-3-(2,6-dichlorophenyl)-1,4-dioxaspiro[4,5]decane-2-carboxylate (Preparation example 160) was used instead of (2R, 3S)-ethyl-3-(2,6-dichlorophenyl)-1,4-dioxaspiro[4,5]decane-2-carboxylate (Preparation example 158), to obtain the title compound (1.5g, 70~95%)

¹H NMR(400MHz, DMSO): δ1.63~1.75(m, 10H), 3.52~3.81(m, 2H), 3.95(t, *J*=8.0, 1H), 5.43(d, *J*=7.6, 1H), 7.05~7.30(m, 3H)


10 **Preparation example 162: (2R, 3S)-ethyl-3-(2,6-chlorophenyl)-2-phenyl-1,3-dioxolane-4-carboxylate**

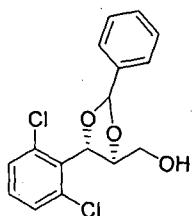
The substantially same method as described in Example 158 was conducted, except that benzaldehyde was used instead of cyclohexanone, to obtain the title compound (2.0g, 50~70%).

¹H NMR(400MHz, DMSO) δ1.30(t, *J*=7.6, 3H), 4.08~4.18(d, 2H), 5.13(d, *J*=8.0, 1H), 5.85(d, *J*=8.0, 1H), 6.18(s, 1H), 7.03~7.22(m, 8H)


20 **Preparation example 163: ((4R,5R)-5-(2,6-chlorophenyl)-2-phenyl-1,3-dioxolane-4-yl)methanol**

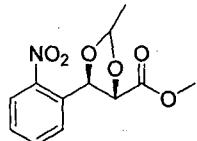
The substantially same method as described in Example 159 was conducted, except that (2R, 3S)-ethyl-3-(2,6-chlorophenyl)-2-phenyl-1,3-dioxolane-4-carboxylate (Preparation example 162) was used instead of (2R, 3S)-ethyl-3-(2,6-dichlorophenyl)-1,4-dioxaspiro[4,5]decane-2-carboxylate (Preparation example 158), to obtain the title compound (1.6g, 70~95%).

¹H NMR(400MHz, DMSO): δ 3.50~3.79(m, 2H), 5.13(d, J =8.0, 1H), 5.85(d, J =8.0, 1H), 6.18(s, 1H), 7.03~7.22(m, 8H)


10 **Preparation example 164 : (2S, 3R)-ethyl-3-(2,6-chlorophenyl)-2-phenyl-1,3-dioxolane-4-carboxylate**

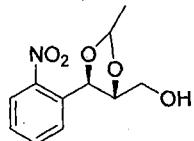
The substantially same method as described in Example 160 was conducted, except that benzaldehyde was used instead of cyclohexanone, to obtain the title compound (1.8g, 50~70%).

¹H NMR(400MHz, DMSO) δ 1.30(t, J =7.6, 3H), 4.08~4.18(d, 2H), 5.13(d, J =8.0, 1H), 5.85(d, J =8.0, 1H), 6.18(s, 1H), 7.03~7.22(m, 8H)


20 **Preparation example 165 : ((4S,5S)-5-(2,6-chlorophenyl)-2-phenyl-1,3-dioxolane-4-yl)methanol**

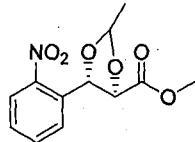
The substantially same method as described in Example 163 was conducted, except that (2S, 3R)-ethyl-3-(2,6-dichlorophenyl)-2-phenyl-1,3-dioxolane-4-carboxylate (Preparation example 164) was used instead of (2R, 3S)-ethyl-3-(2,6-dichlorophenyl)-2-phenyl-1,3-dioxolane-4-carboxylate(Preparation example 162), to obtain the title compound(1.4g, 70~95%)

¹H NMR(400MHz, DMSO): δ 3.50~3.79(m, 2H), 5.13(d, J =8.0, 1H), 5.85(d, J =8.0, 1H), 6.18(s, 1H), 7.03~7.22(m, 8H)


10 **Preparation example 166 : ((4R,5S)-methyl-5-(2-nitrophenyl)-2-methyl-1.3-dioxolane-4-carboxylate**

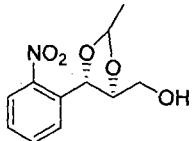
The substantially same method as described in Example 60 was conducted, except that (2R,3S)-methyl-3-(2-nitrophenyl)-2,3-dihydroxypropanoate (Preparation example 44) was used instead of ((2R,3S)-methyl-3-(2-chlorophenyl)-2,3-dihydroxypropanoate, to obtain the title compound (2.3g, 70~95%).

¹H NMR(400MHz, CDCl₃) δ 1.36(d, J =6.4, 3H), 3.78(s, 3H), 4.30(d, J =7.6, 1H), 5.07(m, 1H), 5.62(d, J =7.6, 1H), 7.45~8.12 (m, 4H)


20 **Preparation example 167 : ((4R,5R)-5-(2-nitrophenyl)-2-methyl-1.3-dioxolane-4-yl)methanol**

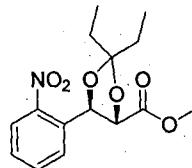
The substantially same method as described in Example 27 was conducted, except that (4R,5S)-methyl-5-(2-nitrophenyl)-2-methyl-1,3-dioxolane-4-carboxylate (Preparation example 166) was used instead of (4S,5R)-methyl-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolane-4-carboxylate (Preparation example 26), to obtain the title compound(1.9g, 70~95%)

^1H NMR(400MHz, CDCl_3): δ 1.37(d, J =6.0, 3H), 3.62~3.70(m, 2H), 4.36(dd, J =7.0, J =7.0, 1H), 5.06(m, 1H), 5.17(d, J =7.0, 1H), 7.47~8.11(m, 4H).


10 **Preparation example 168 : ((4S,5R)-methyl-5-(2-nitrophenyl)-2-methyl-1,3-dioxolane-4-carboxylate**

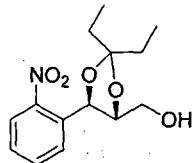
The substantially same method as described in Example 160 was conducted, except that (2S,3R)-methyl-3-(2-nitrophenyl)-2,3-dihydroxypropanoate(Preparation example 48)was used instead of (2R,3S)-methyl-3-(2-nitrophenyl)-2,3-dihydroxypropanoate(Preparation example 44), to obtain the title compound(2.0g, 70~95%).

^1H NMR(400MHz, CDCl_3) δ 1.36(d, J =6.4, 3H), 3.78(s, 3H), 4.30(d, J =7.6, 1H), 5.07(m, 1H), 5.62(d, J =7.6, 1H), 7.45~8.12 (m, 4H)


Preparation example 169 : ((4S,5S)-5-(2-nitrophenyl)-2-methyl-1,3-dioxolane-4-yl)methanol

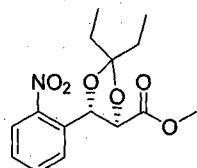
The substantially same method as described in Example 167 was conducted, except that (4S,5R)-methyl-5-(2-nitrophenyl)-2-methyl-1,3-dioxolane-4-carboxylate (Preparation example 168) was used instead of (4R,5S)-methyl-5-(2-nitrophenyl)-2-methyl-1,3-dioxolane-4-carboxylate (Preparation example 166), to obtain the title compound (1.6g, 70~95%).

¹H NMR(400MHz, CDCl₃): δ1.37(d, *J*=6.0, 3H), 3.62~3.70(m, 2H), 4.36(dd, *J*=7.0, *J*=7.0, 1H), 5.06(m, 1H), 5.17(d, *J*=7.0, 1H), 7.47~8.11(m, 4H).


10 **Preparation example 170 : (4R, 5S)-methyl-5-(2-nitrophenyl)-2,2-diehtyl-1,3-dioxolane-4-carboxylate**

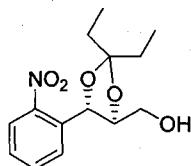
The substantially same method as described in Example 150 was conducted, except that (2R,3S)-methyl-3-(2-nitrophenyl)-2,3-dihydroxypropanoate (Preparation example 44) was used instead of (2R,3S)-ethyl-3-(2,6-dichlorophenyl)-2,3-dihydroxypropanoate (Preparation example 39), to obtain the title compound (2.4g, 60~85%).

¹H NMR(400MHz, CDCl₃) δ0.96(m, 6H), 1.59(m, 4H), 3.67(s, 3H), 5.11(d, *J*=7.6, 1H), 5.81(d, *J*=7.6, 1H), 7.43~8.10(m, 4H)


Preparation example 171 : ((4R,5R)-5-(2-nitrophenyl)-2,2-diehtyl-1,3-dioxolane-4-yl)methanol

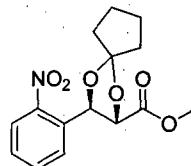
The substantially same method as described in Example 167 was conducted, except that (4R,5S)-methyl-5-(2-nitrophenyl)-2,2-diehtyl-1.3-dioxolane-4-carboxylate (Preparation example 170) was used instead of 4R,5S)-methyl-5-(2-nitrophenyl)-2-mehyl-1.3-dioxolane-4-carboxylate (Preparation example 166), to obtain the title compound (1.9g, 70~95%)

¹H NMR(400MHz, CDCl₃): δ0.96(m, 6H), 1.59(m, 4H), 3.62~3.70(m, 2H), 4.36(dd, J=7.0, J=7.0, 1H), 5.17(d, J=7.0, 1H), 7.37~8.09(m, 4H)


10 **Preparation example 172 : (4S, 5R)-methyl-5-(2-nitrophenyl)-2,2-diehtyl-1.3-dioxolane-4-carboxylate**

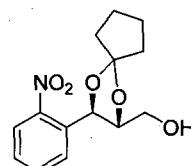
The substantially same method as described in Example 170 was conducted, except that (2S,3R)-methyl-3-(2-nitrophenyl)-2,3-dihydroxypropanoate(Preparation example 48)was used instead of (2R,3S)-methyl-3-(2-nitrophenyl)-2,3-dihydroxypropanoate(Preparation example 44), to obtain the title compound (2.5g, 60~85%).

¹H NMR(400MHz, CDCl₃) δ0.96(m, 6H), 1.59(m, 4H), 3.67(s, 3H), 5.11(d, J=7.6, 1H), 5.81(d, J=7.6, 1H), 7.43~8.10(m, 4H)


Preparation example 173 : ((4S,5S)-5-(2-nitrophenyl)-2,2-diehtyl-1.3-dioxolane-4-yl)methanol

The substantially same method as described in Example 171 was conducted, except that (4S,5R)-methyl-5-(2-nitrophenyl)-2,2-diehtyl-1,3-dioxolane-4-carboxylate (Preparation example 172) was used instead of (4R,5S)-methyl-5-(2-nitrophenyl)-2,2-diehtyl-1,3-dioxolane-4-carboxylate(Preparation example 170), to obtain the title compound(2.0g, 70~95%)

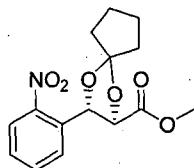
¹H NMR(400MHz, CDCl₃): δ0.96(m, 6H), 1.59(m, 4H), 3.62~3.70(m, 2H), 4.36(dd, J=7.0, J=7.0, 1H), 5.17(d, J=7.0, 1H), 7.37~8.09(m, 4H)


10 Preparation example 174 : (2R, 3S)-methyl-3-(2-nitrophenyl)-1,4-dioxaspiro[4,4]nonane-2-carboxylate

The substantially same method as described in Example 170 was conducted, except that cyclopentanone was used instead of 3-pentanone, to obtain the title compound (2.5g, 70~95%).

¹H NMR(400MHz, DMSO) δ1.69~1.71(m, 4H), 1.82~1.86(m, 4H), 3.68(s, 3H), 4.40(d, J=7.2, 1H), 5.39(d, J=7.2, 1H), 7.44~8.06(m, 4H)

20 Preparation example 175 : ((4R,5R)-5-(2-nitrophenyl)-1,4-dioxaspiro[4,4]nonane-2-yl)methanol

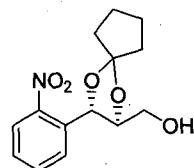


The substantially same method as described in Example 171 was conducted,

except that (2R, 3S)-methyl-3-(2-nitrophenyl)-1,4-dioxaspiro[4,4]nonane-2-carboxylate (Preparation example 174) was used instead of (4R,5S)-methyl-5-(2-nitrophenyl)-2,2-diehtyl-1,3-dioxolane-4-carboxylate(Preparation example 170), to obtain the title compound (2.1g, 70~95%)

5 ^1H NMR(400MHz, DMSO): δ 1.60~1.72(m, 4H), 1.83~1.94(m, 4H), 3.52~3.65(m, 2H), 4.90(t, J =5.2, 1H), 5.12(d, J =7.6, 1H), 7.46~8.09(m, 4H)

Preparation example 176 : (2S, 3R)-methyl-3-(2-nitrophenyl)-1,4-dioxaspiro[4,4]nonane-2-carboxylate

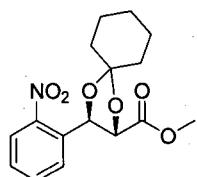

10

The substantially same method as described in Example 172 was conducted, except that cyclopentanone was used instead of 3-pentanone, to obtain the title compound (2.9g, 70~95%).

15

^1H NMR(400MHz, DMSO) δ 1.69~1.71(m, 4H), 1.82~1.86(m, 4H), 3.68(s, 3H), 4.40(d, J =7.2, 1H), 5.39(d, J =7.2, 1H), 7.44~8.06(m, 4H)

Preparation example 177 : ((4R,5R)-5-(2-nitrophenyl)-1,4-dioxaspiro[4,4]nonane-2-yl)methanol


20

The substantially same method as described in Example 175 was conducted, except that (2S, 3R)-methyl-3-(2-nitrophenyl)-1,4-dioxaspiro[4,4]nonane-2-carboxylate (Preparation example 176) was used instead of (2R, 3S)-methyl-3-(2-nitrophenyl)-1,4-dioxaspiro[4,4]nonane-2-carboxylate(Preparation example 174), to

obtain the title compound (2.0g, 70~95%)

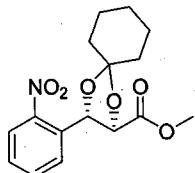
¹H NMR(400MHz, DMSO): δ 1.60~1.72(m, 4H), 1.83~1.94(m, 4H), 3.52~3.65(m, 2H), 4.90(t, J =5.2, 1H), 5.12(d, J =7.6, 1H), 7.46~8.09(m, 4H)

5 **Preparation example 178 : (2R, 3S)-methyl-3-(2-nitrophenyl)-1,4-dioxaspiro[4,5]decane-2-carboxylate**

10 The substantially same method as described in Example 174 was conducted, except that cyclohexanone was used instead of cyclopentanone, to obtain the title compound (1.7g, 70~95%).

¹H NMR(400MHz, DMSO) δ 1.61~1.69(m, 10H), 3.79(s, 3H), 4.33(d, J =8.0, 1H), 5.85(d, J =8.0, 1H), 7.45~8.12(m, 4H)

15 **Preparation example 179 : ((4R,5R)-5-(2-nitrophenyl)-1,4-dioxaspiro[4,5]decane-2-yl)methanol**

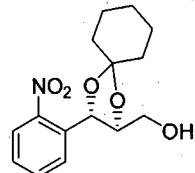


20 The substantially same method as described in Example 175 was conducted, except that (2R, 3S)-methyl-3-(2-nitrophenyl)-1,4-dioxaspiro[4,5]decane-2-carboxylate (Preparation example 178) was used instead of (2R, 3S)-methyl-3-(2-nitrophenyl)-1,4-dioxaspiro[4,4]nonane-2-carboxylate (Preparation example 174), to obtain the title compound (1.4g, 70~95%)

¹H NMR(400MHz, DMSO): δ 1.63~1.75(m, 10H), 3.52~3.81(m, 2H), 3.95(t, J =8.0,

1H), 5.43(d, $J=7.6$, 1H), 7.46~8.09(m, 4H)

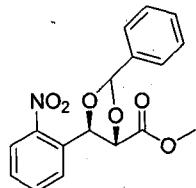
Preparation example 180 : (2S, 3R)-methyl-3-(2-nitrophenyl)-1,4-dioxaspiro[4,5]decane-2-carboxylate



5

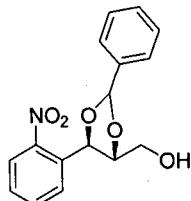
The substantially same method as described in Example 176 was conducted, except that cyclohexanone was used instead of cyclopentanone, to obtain the title compound(2.2g, 70~95%).

10 ^1H NMR(400MHz, DMSO) δ 1.61~1.69(m, 10H), 3.79(s, 3H), 4.33(d, $J=8.0$, 1H), 5.85(d, $J=8.0$, 1H), 7.45~8.12(m, 4H)


Preparation example 181 : ((4S,5S)-5-(2-nitrophenyl)-1,4-dioxaspiro[4,5]decane-2-yl)methanol

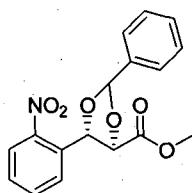
15 The substantially same method as described in Example 179 was conducted, except that (2S, 3R)-methyl-3-(2-nitrophenyl)-1,4-dioxaspiro[4,5]decane-2-carboxylate (Preparation example 180) was used instead of (2R, 3S)-methyl-3-(2-nitrophenyl)-1,4-dioxaspiro[4,5]decane-2-carboxylate(Preparation example 178), to obtain the title compound(1.5g, 70~95%)

20 ^1H NMR(400MHz, DMSO): δ 1.63~1.75(m, 10H), 3.52~3.81(m, 2H), 3.95(t, $J=8.0$, 1H), 5.43(d, $J=7.6$, 1H), 7.19~7.49(m, 4H)


Preparation example 182: (2R, 3S)-methyl-3-(2-nitrophenyl)-2-phenyl-1,3-dioxolane-4-carboxylate

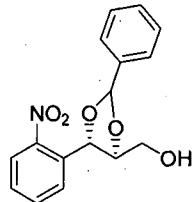
The substantially same method as described in Example 178 was conducted,
5 except that benzaldehyde was used instead of cyclohexanone, to obtain the title compound (1.9g, 50~70%).

¹H NMR(400MHz, DMSO) δ3.67(s, 3H), 5.11(d, *J*=8.0, 1H), 5.81(d, *J*=8.0, 1H),
6.18(s, 1H), 6.96~8.12(m, 9H)


10 **Preparation example 183: ((4R,5R)-5-(2-nitrophenyl)-2-phenyl-1,3-dioxolane-4-yl)methanol**

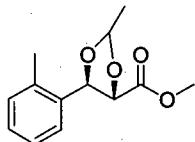
The substantially same method as described in Example 179 was conducted,
except that (2R, 3S)-methyl-3-(2-nitrophenyl)-2-phenyl-1,3-dioxolane-4-carboxylate
15 (Preparation example 182) was used instead of (2R, 3S)-methyl-3-(2-nitrophenyl)-1,4-dioxaspiro[4,4]nonane-2-carboxylate(Preparation example 174), to obtain the title compound(1.5g, 70~95%)

¹H NMR(400MHz, DMSO): δ3.66(d, *J*=7.6, 2H), 4.36(m, 1H), 5.17(d, *J*=8.0, 1H),
6.18(s, 1H), 7.06~8.14(m, 9H)


Preparation example 184 : (2S, 3R)-methyl-3-(2-nitrophenyl)-2-phenyl-1,3-dioxolane-4-carboxylate

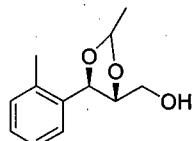
The substantially same method as described in Example 180 was conducted, except benzaldehyde that was used instead of cyclohexanone, to obtain the title compound (1.8g, 50~70%).

5 ^1H NMR(400MHz, DMSO) δ 3.67(s, 3H), 5.11(d, $J=8.0$, 1H), 5.81(d, $J=8.0$, 1H), 6.18(s, 1H), 6.96~8.12(m, 9H)


Preparation example 185 : ((4S,5S)-5-(2-nitrophenyl)-2-phenyl-1,3-dioxolane-4-yl)methanol

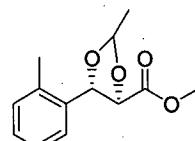
10 The substantially same method as described in Example 183 was conducted, except that (2S, 3R)-methyl-3-(2-nitrophenyl)-2-phenyl-1,3-dioxolane-4-carboxylate(Preparation example 184)was used instead of 2R, 3S)-methyl-3-(2-nitrophenyl)-2-phenyl-1,3-dioxolane-4-carboxylate(Preparation example 182), to obtain the title compound(1.3g, 70~95%)

15 ^1H NMR(400MHz, DMSO): δ 3.66(d, $J=7.6$, 2H), 4.36(m, 1H), 5.17(d, $J=8.0$, 1H), 6.18(s, 1H), 7.06~8.14(m, 9H)


Preparation example 186 : (4R,5S)-methyl-5-(2-methylphenyl)-2-methyl-1,3-dioxolane-4-carboxylate

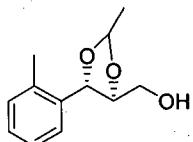
The substantially same method as described in Example 60 was conducted, except that (2R,3S)-methyl-3-(2-methylphenyl)-2,3-dihydroxypropanoate (Preparation example 54) was used instead of (2R,3S)-methyl-3-(2-chlorophenyl)-2,3-dihydroxypropanoate, to obtain the title compound(2.1g, 70~95%).

¹H NMR(400MHz, CDCl₃) δ1.36(d, *J*=6.4, 3H), 2.35(s, 3H), 3.68(s, 3H), 5.07(m, 1H), 5.11(d, *J*=7.6, 1H), 5.82(d, *J*=7.6, 1H), 7.19~7.39 (m, 4H)


Preparation example 187 : ((4R,5R)-5-(2-methylphenyl)-2-methyl-1,3dioxolane-4-yl)methanol

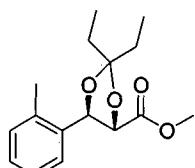
The substantially same method as described in Example 185 was conducted, except that (4R,5S)-methyl-2-methyl-5-(2-methylphenyl)-1,3-dioxolane-4-carboxylate (Preparation example 186) was used instead of (2S,3R)-methyl-3-(2-nitrophenyl)-2-phenyl-1,3-dioxolane-4-carboxylate (Preparation example 184), to obtain the title compound (1.7g, 70~95%)

¹H NMR(400MHz, CDCl₃): δ1.37(d, *J*=6.0, 3H), 3.62~3.70(m, 2H), 4.36(dd, *J*=7.0, *J*=7.0, 1H), 5.06(m, 1H), 5.17(d, *J*=7.0, 1H), 7.17~7.41(m, 4H).


Preparation example 188 : (4S,5R)-methyl-5-(2-methylphenyl)-2-methyl-1,3-dioxolane-4-carboxylate

The substantially same method as described in Example 186 was conducted, except that (2S,3R)-methyl-3-(2-methylphenyl)-2,3-dihydroxypropanoate(Preparation example 57) was used instead of (2R,3S)-methyl-3-(2-methylphenyl)-2,3-dihydroxypropanoate (Preparation example 54), to obtain the title compound (1.8g, 5 70~95%).

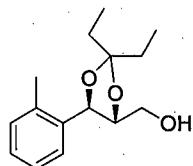
¹H NMR(400MHz, CDCl₃) δ1.36(d, *J*=6.4, 3H), 2.35(s, 3H), 3.68(s, 3H), 5.07(m, 1H), 5.11(d, *J*=7.6, 1H), 5.82(d, *J*=7.6, 1H), 7.19~7.39 (m, 4H)


10 **Preparation example 189 : ((4S,5S)-5-(2-methylphenyl)-2-methyl-1,3-dioxolane-4-yl)methanol**

The substantially same method as described in Example 187 was conducted, except that (4S,5R)-methyl-2-methyl-5-(2-methylphenyl)-1,3-dioxolane-4-carboxylate (Preparation example 188) was used instead of (4R,5S)-methyl-2-methyl-5-(2-methylphenyl)-1,3-dioxolane-4-carboxylate(Preparation example 186), to obtain the title compound(1.6g, 70~95%)

¹H NMR(400MHz, CDCl₃): δ1.37(d, *J*=6.0, 3H), 3.62~3.70(m, 2H), 4.36(dd, *J*=7.0, *J*=7.0, 1H), 5.06(m, 1H), 5.17(d, *J*=7.0, 1H), 7.17~7.41(m, 4H).

20 **Preparation example 190 : (4R, 5S)-methyl-5-(2-methylphenyl)-2,2-diethyl-1,3-dioxolane-4-carboxylate**

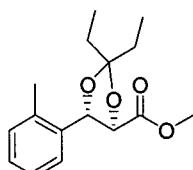


The substantially same method as described in Example 170 was conducted,

except that (2R,3S)-methyl-3-(2-methylphenyl)-2,3-dihydroxypropanoate (Preparation example 54) was used instead of (2R,3S)-methyl-3-(2-nitrophenyl)-2,3-dihydroxypropanoate (Preparation example 44), to obtain the title compound (2.1g, 60~85%).

5 ^1H NMR(400MHz, CDCl_3) δ 0.96(m, 6H), 1.59(m, 4H), 2.33(s, 1H), 3.67(s, 3H), 5.11(d, $J=7.6$, 1H), 5.81(d, $J=7.6$, 1H), 7.00~7.17(m, 4H)

Preparation example 191 : ((4R,5R-5-(2-methylphenyl)-2,2-diethyl-1.3-dioxolane-4-yl)methanol

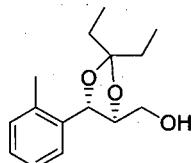

10

The substantially same method as described in Example 187 was conducted, except that (4R,5S)-methyl-2,2-diethyl-5-o-tolyl-1,3-dioxolane-4-carboxylate (Preparation example 190) was used instead of (4R,5S)-methyl-2-methyl-5-o-tolyl-1,3-dioxolane-4-carboxylate (Preparation example 186), to obtain the title compound (1.7g, 70~95%)

15 ^1H NMR(400MHz, CDCl_3): δ 0.96(m, 6H), 1.59(m, 4H), 2.37(s, 3H), 3.62~3.70(m, 2H), 4.36(dd, $J=7.0$, $J=7.0$, 1H), 5.17(d, $J=7.0$, 1H), 7.15~7.39(m, 4H)

20

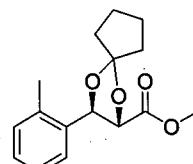
Preparation example 192 : (4S, 5R)-methyl-5-(2-methylphenyl)-2,2-diethyl-1,3-dioxolane-4-carboxylate



The substantially same method as described in Example 190 was conducted, except that (2S,3R)-methyl-3-(2-methylphenyl)-2,3-dihydroxypropanoate

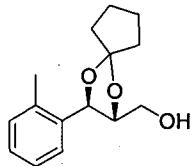
(Preparation example 57) was used instead of (2R,3S)-methyl-3-(2-methylphenyl)-2,3-dihydroxypropanoate (Preparation example 54), to obtain the title compound (2.2g, 60~85%).

10 ^1H NMR(400MHz, CDCl_3) δ 0.96(m, 6H), 1.59(m, 4H), 2.33(s, 1H), 3.67(s, 3H),
5.11(d, $J=7.6$, 1H), 5.81(d, $J=7.6$, 1H), 7.00~7.17(m, 4H)


Preparation example 193 : ((4S,5S-5-(2-methylphenyl)-2,2-diethyl-1,3-dioxolane-4-yl)methanol

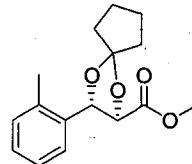
10 The substantially same method as described in Example 191 was conducted, except that (4S,5R)-methyl-2,2-diethyl-5-o-tolyl-1,3-dioxolane-4-carboxylate (Preparation example 192) was used instead of (4R, 5S)-methyl-2,2-diethyl-5-o-tolyl-1,3-dioxolane-4-carboxylate (Preparation example 190), to obtain the title compound (1.8g, 70~95%)

15 ^1H NMR(400MHz, CDCl_3): δ 0.96(m, 6H), 1.59(m, 4H), 2.37(s, 3H), 3.62~3.70(m, 2H), 4.36(dd, $J=7.0$, $J=7.0$, 1H), 5.17(d, $J=7.0$, 1H), 7.15~7.39(m, 4H)


Preparation example 194 : (2R, 3S)-methyl-3-(2-methylphenyl)-1,4-dioxaspiro[4,4]nonane-2-carboxylate

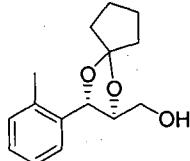
20 The substantially same method as described in Example 190 was conducted, except that cyclopentanone was used instead of 3-pentanone, to obtain the title compound (2.1g, 70~95%).

¹H NMR(400MHz, DMSO) δ1.49~1.57(m, 4H), 1.72~1.81(m, 4H), 2.35(s, 3H), 3.68(s, 3H), 5.14(d, *J*=7.2, 1H), 5.89(d, *J*=7.2, 1H), 7.02~7.25(m, 4H)


Preparation example 195 : ((4R,5R)-3-(2-methylphenyl)-1,4-dioxaspiro[4,4]nonane-2-yl)methanol

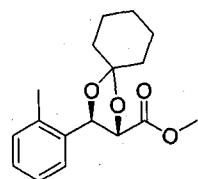
The substantially same method as described in Example 191 was conducted, except that (2R, 3S)-methyl-3-o-tolyl-1,4-dioxaspiro[4,4]nonane-2-carboxylate (Preparation example 194) was used instead of (4R, 5S)-methyl-2,2-diehtyl-5-o-tolyl-1,3-dioxolane-4-carboxylate(Preparation example 190), to obtain the title compound(1.6g, 70~95%)

¹H NMR(400MHz, DMSO): δ1.49~1.57(m, 4H), 1.72~1.81(m, 4H), 2.35(s, 3H), 3.52~3.65(m, 2H), 4.90(t, *J*=5.2, 1H), 5.12(d, *J*=7.6, 1H), 7.02~7.25(m, 4H)


Preparation example 196 : (2S, 3R)-methyl-3-(2-methylphenyl)-1,4-dioxaspiro[4,4]nonane-2-carboxylate

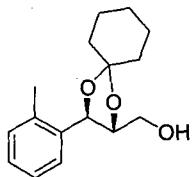
The substantially same method as described in Example 192 was conducted, except that cyclopentanone was used instead of 3-pentanone, to obtain the title compound (2.5g, 70~95%).

¹H NMR(400MHz, DMSO) δ1.49~1.57(m, 4H), 1.72~1.81(m, 4H), 2.35(s, 3H), 3.68(s, 3H), 5.14(d, *J*=7.2, 1H), 5.89(d, *J*=7.2, 1H), 7.02~7.25(m, 4H)


Preparation example 197 : ((4R,5R)-3-(2-methylphenyl)-1,4-dioxaspiro[4,4]nonane-2-yl)methanol

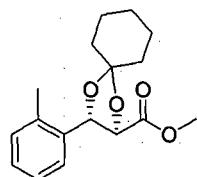
The substantially same method as described in Example 195 was conducted, except that (2S, 3R)-methyl-3-o-tolyl-1,4-dioxaspiro[4,4]nonane-2-carboxylate (Preparation example 196) was used instead of (2R, 3S)-methyl-3-o-tolyl-1,4-dioxaspiro[4,4]nonane-2-carboxylate(Preparation example 194), to obtain the title compound(2.0g, 70~95%)

¹H NMR(400MHz, DMSO): δ 1.49~1.57(m, 4H), 1.72~1.81(m, 4H), 2.35(s, 3H), 3.52~3.65(m, 2H), 4.90(t, J =5.2, 1H), 5.12(d, J =7.6, 1H), 7.02~7.25(m, 4H)


Preparation example 198 : (2R, 3S)-methyl-3-(2-methylphenyl)-1,4-dioxaspiro[4,5]decane-2-carboxylate

The substantially same method as described in Example 194 was conducted, except that cyclohexanone was used instead of cyclopentanone, to obtain the title compound (1.8g, 70~95%).

¹H NMR(400MHz, DMSO) δ 1.61~1.69(m, 10H), 2.34(s, 3H), 3.79(s, 3H), 4.33(d, J =8.0, 1H), 5.85(d, J =8.0, 1H), 7.01~7.30(m, 4H)


Preparation example 199 : ((4R,5R)-3-(2-methylphenyl)-1,4-dioxaspiro[4,5]decane-2-yl)methanol

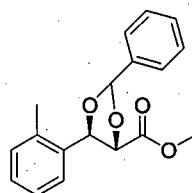
The substantially same method as described in Example 195 was conducted, except that (2R, 3S)-methyl-3-o-tosyl-1,4-dioxaspiro[4,5]decane-2-carboxylate (Preparation example 198) was used instead of (2R, 3S)-methyl-3-o-tolyl-1,4-dioxaspiro[4,4]nonane-2-carboxylate (Preparation example 194), to obtain the title compound (1.5g, 70~95%).

¹H NMR(400MHz, DMSO): δ 1.63~1.75(m, 10H), 2.33(s, 3H), 3.52~3.81(m, 2H), 3.95(t, J =8.0, 1H), 5.43(d, J =7.6, 1H), 7.02~7.28(m, 4H)

10 **Preparation example 200 : (2S, 3R)-methyl-3-(2-methylphenyl)-1,4-dioxaspiro[4,5]decane-2-carboxylate**

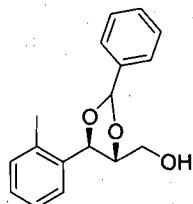
The substantially same method as described in Example 196 was conducted, except that cyclohexanone was used instead of cyclopentanone, to obtain the title compound(2.2g, 70~95%).

¹H NMR(400MHz, DMSO) δ 1.61~1.69(m, 10H), 2.34(s, 3H), 3.79(s, 3H), 4.33(d, J =8.0, 1H), 5.85(d, J =8.0, 1H), 7.01~7.30(m, 4H)


20 **Preparation example 201 : ((4S,5S)-3-(2-methylphenyl)-1,4-dioxaspiro[4,5]decane-2-yl)methanol**

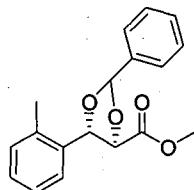
The substantially same method as described in Example 199 was conducted, except that (2S, 3R)-methyl-3-o-tosyl-1,4-dioxaspiro[4,5]decane-2-carboxylate (Preparation example 200) was used instead of (2R, 3S)-methyl-3-o-tosyl-1,4-dioxaspiro[4,5]decane-2-carboxylate (Preparation example 198), to obtain the title compound (1.5g, 70~95%)

¹H NMR(400MHz, DMSO): δ 1.63~1.75(m, 10H), 2.33(s, 3H), 3.52~3.81(m, 2H), 3.95(t, J =8.0, 1H), 5.43(d, J =7.6, 1H), 7.02~7.28(m, 4H)


10 **Preparation example 202: (2R, 3S)-methyl-3-(2-methylphenyl)-2-phenyl-1,3-dioxolane-4-carboxylate**

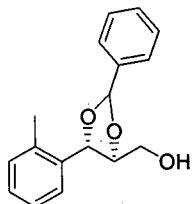
The substantially same method as described in Example 198 was conducted, except that benzaldehyde was used instead of cyclohexanone, to obtain the title compound (2.2g, 50~70%).

¹H NMR(400MHz, DMSO) δ 2.33(s, 3H), 3.67(s, 3H), 5.11(d, J =8.0, 1H), 5.81(d, J =8.0, 1H), 6.18(s, 1H), 6.96~7.32(m, 9H)


20 **Preparation example 203: ((4R,5R)-3-(2-methylphenyl)-2-phenyl-1,3-dioxolane-4-yl)methanol**

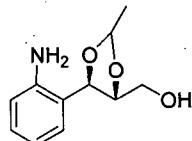
The substantially same method as described in Example 199 was conducted, except that (2R, 3S)-methyl-3-o-tosyl-2-phenyl-1,3-dioxolane-4-carboxylate (Preparation example 202) was used instead of (2R, 3S)-methyl-3-o-tosyl-1,4-dioxaspiro[4,5]decane-2-carboxylate(Preparation example 198), to obtain the title compound(1.6g, 70~95%)

¹H NMR(400MHz, DMSO): δ 2.32(s, 3H), 3.66(d, J =7.6, 2H), 4.36(m, 1H), 5.17(d, J =8.0, 1H), 6.18(s, 1H), 6.99~7.33(m, 9H)


10 **Preparation example 204 : (2S, 3R)-methyl-3-(2-methylphenyl)-2-phenyl-1,3-dioxolane-4-carboxylate**

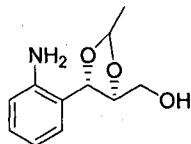
The substantially same method as described in Example 200 was conducted, except benzaldehyde that was used instead of cyclohexanone, to obtain the title compound (1.9g, 50~70%).

¹H NMR(400MHz, DMSO) δ 2.33(s, 3H), 3.67(s, 3H), 5.11(d, J =8.0, 1H), 5.81(d, J =8.0, 1H), 6.18(s, 1H), 6.96~7.32(m, 9H)


20 **Preparation example 205 : ((4S,5S)-5-(2-methylphenyl)-2-phenyl-1,3-dioxolane-4-yl)methanol**

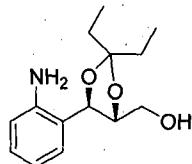
The substantially same method as described in Example 203 was conducted, except that (2S, 3R)-methyl-3-o-tosyl-2-phenyl-1,3-dioxolane-4-carboxylate (Preparation example 204) was used instead of (2R, 3S)-methyl-3-o-tosyl-2-phenyl-1,3-dioxolane-4-carboxylate (Preparation example 202), to obtain the title compound (1.3g, 70~95%)

¹H NMR(400MHz, DMSO): δ 2.32(s, 3H), 3.66(d, J =7.6, 2H), 4.36(m, 1H), 5.17(d, J =8.0, 1H), 6.18(s, 1H), 6.99~7.33(m, 9H)


10 **Preparation example 206 : ((4R,5R)-5-(2-aminophenyl)-2-mehtyl-1.3-dioxolane-4-yl)methanol**

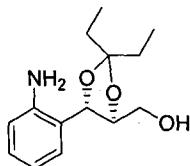
The substantially same method as described in Example 47 was conducted, except that ((4R,5R)-5-(2-nitrophenyl)-2-mehtyl-1.3-dioxolane-4-yl)methanol(Preparation example 167) was used instead of ((4R,5R)-5-(2-nitrophenyl)-2,2-dimehtyl-1.3-dioxolane-4-yl)methanol (Preparation example 46), to obtain the title compound (1.5g, 65~85%)

¹H NMR(400MHz, CDCl₃): δ 1.37(d, J =6.0, 3H), 3.62~3.70(m, 2H), 4.36(dd, J =7.0, J =7.0, 1H), 5.06(m, 1H), 5.17(d, J =7.0, 1H), 7.57~8.08(m, 4H).


Preparation example 207 : ((4S,5S)-5-(2-aminophenyl)-2-mehtyl-1.3-dioxolane-4-yl)methanol

The substantially same method as described in Example 47 was conducted, except that ((4S,5S)-5-(2-nitrophenyl)-2-methyl-1,3-dioxolane-4-yl)methanol (Preparation example 169) was used instead of ((4R,5R)-5-(2-nitrophenyl)-2,2-dimethyl-1,3-dioxolane-4-yl)methanol (Preparation example 46), to obtain the title compound (1.1g, 65~85%)

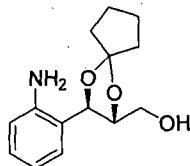
¹H NMR(400MHz, CDCl₃): δ1.37(d, *J*=6.0, 3H), 3.62~3.70(m, 2H), 4.36(dd, *J*=7.0, *J*=7.0, 1H), 5.06(m, 1H), 5.17(d, *J*=7.0, 1H), 7.57~8.08(m, 4H).


10 **Preparation example 208 : ((4R,5R)-5-(2-aminophenyl)-2,2-dimethyl-1,3-dioxolane-4-yl)methanol**

The substantially same method as described in Example 47 was conducted, except that ((4R,5R)-5-(2-nitrophenyl)-2,2-dimethyl-1,3-dioxolane-4-yl)methanol (Preparation example 171) was used instead of ((4R,5R)-5-(2-nitrophenyl)-2,2-dimethyl-1,3-dioxolane-4-yl)methanol (Preparation example 46), to obtain the title compound (1.5g, 65~85%)

¹H NMR(400MHz, CDCl₃): δ0.96(m, 6H), 1.59(m, 4H), 3.62~3.70(m, 2H), 4.36(dd, *J*=7.0, *J*=7.0, 1H), 5.17(d, *J*=7.0, 1H), 7.55~8.09(m, 4H)

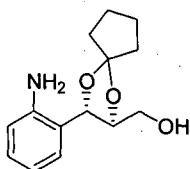
Preparation example 209 : ((4S,5S)-5-(2-aminophenyl)-2,2-dimethyl-1,3-dioxolane-4-yl)methanol



The substantially same method as described in Example 47 was conducted, except that ((4S,5S)-5-(2-nitrophenyl)-2,2-diehtyl-1,3-dioxolane-4-yl)methanol(Preparation example 173) was used instead of ((4R,5R)-5-(2-nitrophenyl)-2,2-dimehtyl-1,3-dioxolane-4-yl)methanol (Preparation example 46), to obtain the title compound(1.4g, 65~85%)

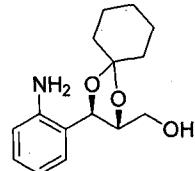
¹H NMR(400MHz, CDCl₃): δ0.96(m, 6H), 1.59(m, 4H), 3.62~3.70(m, 2H), 4.36(dd, J=7.0, J=7.0, 1H), 5.17(d, J=7.0, 1H), 7.55~8.09(m, 4H)

10


Preparation example 210 : ((4R,5R)-5-(2-aminophenyl)-1,4-dioxaspiro[4,4]nonane-2-yl)methanol

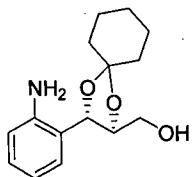
The substantially same method as described in Example 47 was conducted, except that ((4R,5R)-5-(2-nitrophenyl)-1,4-dioxaspiro[4,4]nonane-2-yl)methanol (Preparation example 175) was used instead of ((4R,5R)-5-(2-nitrophenyl)-2,2-dimehtyl-1,3-dioxolane-4-yl)methanol (Preparation example 46), to obtain the title compound (1.7g, 65~85%)

¹H NMR(400MHz, DMSO): δ1.62~1.73(m, 4H), 1.82~1.95(m, 4H), 3.52~3.65(m, 2H), 4.90(t, J=5.2, 1H), 5.12(d, J=7.6, 1H), 7.56~8.11(m, 4H)


Preparation example 211 : ((4R,5R)-5-(2-aminophenyl)-1,4-dioxaspiro[4,4]nonane-2-yl)methanol

The substantially same method as described in Example 47 was conducted, except that ((4S,5S)-5-(2-nitrophenyl)-1,4-dioxaspiro[4,4]nonane-2-yl)methanol (Preparation example 177) was used instead of ((4R,5R)-5-(2-nitrophenyl)-2,2-dimethyl-1,3-dioxolane-4-yl)methanol (Preparation example 46), to obtain the title compound(1.6g, 65~85%)

¹H NMR(400MHz, DMSO): δ1.62~1.73(m, 4H), 1.82~1.95(m, 4H), 3.52~3.65(m, 2H), 4.90(t, *J*=5.2, 1H), 5.12(d, *J*=7.6, 1H), 7.56~8.11(m, 4H)


10 **Preparation example 212 : ((4R,5R)-5-(2-aminophenyl)-1,4-dioxaspiro[4,5]decane-2-yl)methanol**

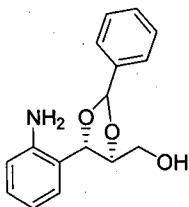
The substantially same method as described in Example 47 was conducted, except that ((4R,5R)-5-(2-nitrophenyl)-1,4-dioxaspiro[4,5]decane-2-yl)methanol (Preparation example 179) was used instead of ((4R,5R)-5-(2-nitrophenyl)-2,2-dimethyl-1,3-dioxolane-4-yl)methanol (Preparation example 46), to obtain the title compound(1.1g, 65~85%)

¹H NMR(400MHz, DMSO): δ1.61~1.75(m, 10H), 3.52~3.81(m, 2H), 3.95(t, *J*=8.0, 1H), 5.43(d, *J*=7.6, 1H), 7.49~8.12(m, 4H)

Preparation example 213 : ((4S,5S)-5-(2-aminophenyl)-1,4-dioxaspiro[4,5]decane-2-yl)methanol

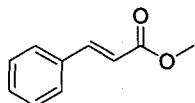
The substantially same method as described in Example 47 was conducted, except that ((4S,5S)-5-(2-nitrophenyl)-1,4-dioxaspiro[4,5]decane-2-yl)methanol(Preparation example 181) was used instead of ((4R,5R)-5-(2-nitrophenyl)-2,2-dimethyl-1,3-dioxolane-4-yl)methanol (Preparation example 46), to obtain the title compound(1.0g, 65~85%)

¹H NMR(400MHz, DMSO): δ 1.61~1.75(m, 10H), 3.52~3.81(m, 2H), 3.95(t, J =8.0, 1H), 5.43(d, J =7.6, 1H), 7.49~8.12(m, 4H)


10 **Preparation example 214: ((4R,5R)-5-(2-aminophenyl)-2-phenyl-1,3-dioxolane-4-yl)methanol**

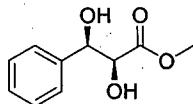
The substantially same method as described in Example 47 was conducted, except that ((4R,5R)-5-(2-nitrophenyl)-2-phenyl-1,3-dioxolane-4-yl)methanol(Preparation example 183) was used instead of ((4R,5R)-5-(2-nitrophenyl)-2,2-dimethyl-1,3-dioxolane-4-yl)methanol (Preparation example 46), to obtain the title compound (1.2g, 65~85%)

¹H NMR(400MHz, DMSO): δ 3.66(d, J =7.6, 2H), 4.36(m, 1H), 5.17(d, J =8.0, 1H), 6.18(s, 1H), 7.06~8.14(m, 9H)


Preparation example 215 : ((4S,5S)-5-(2-aminophenyl)-2-phenyl-1,3-dioxolane-4-yl)methanol

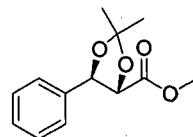
The substantially same method as described in Example 47 was conducted, except that ((4S,5S)-5-(2-nitrophenyl)-2-phenyl-1,3-dioxolane-4-yl)methanol (Preparation example 185) was used instead of ((4R,5R)-5-(2-nitrophenyl)-2,2-dimethyl-1,3-dioxolane-4-yl)methanol (Preparation example 46), to obtain the title compound(0.9g, 65~85%)

¹H NMR(400MHz, DMSO): δ3.66(d, J=7.6, 2H), 4.36(m, 1H), 5.17(d, J=8.0, 1H), 6.18(s, 1H), 7.06~8.14(m, 9H)


10 **Preparation example 216 : (E)-Methyl cinnamate**

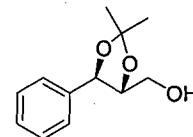
To a round-bottomed flask, *trans*-cinnamic acid (7g, 47.25mmol) and MeOH(70mL) were added. POCl₃(0.43mL, 4.73mmol) was added dropwise. The reaction mixture was stirred under reflux for 3h. The reaction mixture was cooled to room temperature, quenched with 1N NaOH solution. The mixture was extracted by EtOAc and washed with H₂O. The aqueous layer was further extracted with EtOAc. The combined organic layer was dried over anhydrous magnesium sulfate (MgSO₄), filtered and concentrated under vacuum (7.1g, 80~95%)

¹H NMR(400MHz, CDCl₃): δ3.81(s, 3H), 6.42(d, J=15.9, 1H), 7.37~7.39(m, 3H), 7.50~7.53(m, 2H), 7.67(d, J=15.9, 1H)


20 **Preparation example 217 : (2R, 3S)-methyl-3-phenyl-2,3-dihydroxypropanoate**

The substantially same method as described in Example 36 was conducted, except that (E)-Methyl cinnamate (Preparation example 216) was used instead of (E)-methyl-3-(2,4-dichlorophenyl)acrylate (Preparation example 28), to obtain the title compound(6.2g, 70~95%)

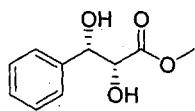
¹H NMR(400MHz, CDCl₃): δ2.70(bs, 1H), 3.08(bs, 1H), 3.82(s, 3H), 4.38(d, J=2.9, 1H), 5.03(d, J=2.9, 1H), 7.30~7.42(m, 5H)


Preparation example 218 : (4R, 5S)-methyl-2,2-dimethyl-5-phenyl-1,3-dioxolane-4-carboxylate

The substantially same method as described in Example 45 was conducted, except that (2R, 3S)-methyl-3-phenyl-2,3-dihydroxypropanoate (Preparation example 217) was used instead of (2R, 3S)-methyl-3-(2-nitrophenyl)-2,3-dihydroxypropanoate (Preparation example 44), to obtain the title compound (5.6g, 70~95%)

¹H NMR(400MHz, CDCl₃): δ1.56(s, 3H), 1.61(s, 3H), 3.79(s, 3H), 4.36(d, J=7.8, 1H), 5.17(d, J=7.8, 1H), 7.31~7.40(m, 5H)

Preparation example 219 : ((4R, 5R)-5-phenyl-2,2-dimethyl-1,3-dioxolane-4-yl)methanol

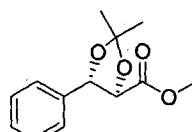

The substantially same method as described in Example 46 was conducted, except

that (4R, 5S)-methyl-2,2-dimethyl-5-phenyl-1,3-dioxolane-4-carboxylate(Preparation example 218) was used instead of (4R, 5S)-methyl-5-(2-nitrophenyl)-1,3-dioxolane-4-carboxylate (Preparation example 45), to obtain the title compound(4.4g, 70~95%)

5 ^1H NMR(400MHz, CDCl_3): δ 1.41(s, 3H), 1.46(s, 3H), 2.79(bs, 1H), 3.48~3.52(m, 1H), 3.68~3.76(m, 2H), 4.76(d, J =8.8, 1H), 7.18~7.28(m, 5H)

Preparation example 220 : (2S, 3R)-methyl-3-phenyl-2,3-dihydroxypropanoate

10


The substantially same method as described in Example 30 was conducted, except that (E)-Methyl cinnamate (Preparation example 216) was used instead of (E)-methyl-3-(2,4-dichlorophenyl)acrylate(Preparation example 28), to obtain the title compound(8.6g, 70~95%)

15

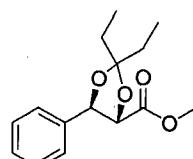
^1H NMR(400MHz, CDCl_3): δ 2.70(bs, 1H), 3.08(bs, 1H), 3.82(s, 3H), 4.38(d, J =2.9, 1H), 5.03(d, J =2.9, 1H), 7.30~7.42(m, 5H)

Preparation example 221 : (4S, 5R)-methyl-2,2-dimethyl-5-phenyl-1,3-dioxolane-4-carboxylate


20

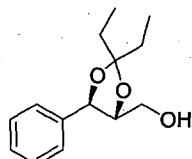
The substantially same method as described in Example 45 was conducted, except that (2R, 3S)-methyl-3-phenyl-2,3-dihydroxypropanoate(Preparation example 217) was used instead of (2R, 3S)-methyl-3-(2-nitrophenyl)-2,3-dihydroxypropanoate (Preparation example 44), to obtain the title compound(5.6g, 70~95%)

¹H NMR(400MHz, CDCl₃): δ1.56(s, 3H), 1.61(s, 3H), 3.79(s, 3H), 4.36(d, J=7.8, 1H), 5.17(d, J=7.8, 1H), 7.31~7.40(m, 5H)


5 **Preparation example 222 : ((4S, 5S)-5-phenyl-2,2-dimethyl-1,3-dioxolane-4-yl)methanol**

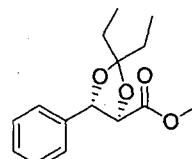
The substantially same method as described in Example 46 was conducted, except that (4S, 5R)-methyl-2,2-dimethyl-5-phenyl-1,3-dioxolane-4-carboxylate(Preparation example 221) was used instead of (4R, 5S)-methyl-5-(2-nitrophenyl)-1,3-dioxolane-4-carboxylate(Preparation example 45), to obtain the title compound(6.5g, 70~95%)

10 ¹H NMR(400MHz, CDCl₃): δ1.41(s, 3H), 1.46(s, 3H), 2.79(bs, 1H), 3.48~3.52(m, 1H), 3.68~3.76(m, 2H), 4.76(d, J=8.8, 1H), 7.18~7.28(m, 5H)


15 **Preparation example 223 : (4R, 5S)-methyl-2,2-diethyl-5-phenyl-1,3-dioxolane-4-carboxylate**

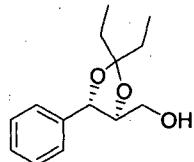
The substantially same method as described in Example 190 was conducted, except that (2R, 3S)-methyl-3-phenyl-2,3-dihydroxypropanoate(Preparation example 217) was used instead of (2R, 3S)-methyl-3-(2-methylphenyl)-2,3-dihydroxypropanoate (Preparation example 54), to obtain the title compound(1.9g, 70~95%)

20 ¹H NMR(400MHz, CDCl₃): δ=1.01(t, J=7.4, 1H), 1.06(t, J=7.6, 3H), 1.78~1.90(m, 4H), 3.78(s, 3H), 5.12(d, J=8.4, 1H), 7.32~7.45(m, 5H)


Preparation example 224 : ((4R, 5R)-5-phenyl-2,2-diethyl-1,3-dioxolane-4-yl)methanol

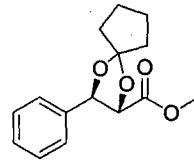
5 The substantially same method as described in Example 219 was conducted, except that (4R, 5S)-methyl-2,2-diethyl-5-phenyl-1,3-dioxolane-4-carboxylate (Preparation example 223) was used instead of (4R, 5S)-methyl-2,2-dimethyl-5-phenyl-1,3-dioxolane-4-carboxylate(Preparation example 218), to obtain the title compound(1.3g, 70~95%)

10 ^1H NMR(400MHz, CDCl_3): δ =1.00(t, $J=7.6$, 1H), 1.06(t, $J=7.4$, 1H), 1.74~1.90(m, 4H), 3.64(ddd, $J=3.4$, 8.4, 12.1, 1H), 3.84~3.91(m, 2H), 4.89(d, $J=8.8$, 1H), 7.30~7.43(m, 5H)


15 **Preparation example 225 : (4S, 5R)-methyl-2,2-diethyl-5-phenyl-1,3-dioxolane-4-carboxylate**

20 The substantially same method as described in Example 223 was conducted, except that (2S, 3R)-methyl-3-phenyl-2,3-dihydroxypropanoate(Preparation example 220)was used instead of (2R, 3S)-methyl-3-phenyl-2,3-dihydroxypropanoate (Preparation example 217), to obtain the title compound(5.6g, 70~95%)

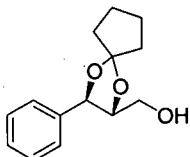
^1H NMR(400MHz, CDCl_3): δ =1.01(t, $J=7.4$, 1H), 1.06(t, $J=7.6$, 3H), 1.78~1.90(m, 4H), 3.78(s, 3H), 5.12(d, $J=8.4$, 1H), 7.32~7.45(m, 5H)


Preparation example 226 : ((4S, 5S)-5-phenyl-2,2-dimethyl-1,3-dioxolane-4-yl)methanol

The substantially same method as described in Example 224 was conducted,
 5 except that (4S, 5R)-methyl-2,2-dimethyl-5-phenyl-1,3-dioxolane-4-carboxylate
 (Preparation example 225) was used instead of (4R, 5S)-methyl-2,2-dimethyl-5-phenyl-1,3-dioxolane-4-carboxylate(Preparation example 218), to obtain the title compound(6.5g, 70~95%)

¹H NMR(400MHz, CDCl₃): δ=1.00(t, J=7.6, 1H), 1.06(t, J=7.4, 1H), 1.74~1.90(m, 4H), 3.64(ddd, J=3.4, 8.4, 12.1, 1H), 3.84~3.91(m, 2H), 4.89(d, J=8.8, 1H), 7.30~7.43(m, 5H)

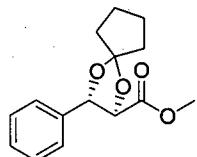
Preparation example 227 : (4R, 5S)-methyl-3-phenyl-1,4-dioxapiro[4,4]nonane-2-carboxylate



15

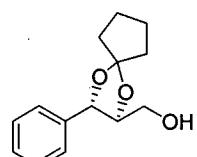
The substantially same method as described in Example 223 was conducted,
 except that cyclopetanone was used instead of 3-pantanone, to obtain the title
 compound (0.9g, 50~75%)

¹H NMR(400MHz, CDCl₃): δ=1.71~1.80(m, 4H), 1.87~1.94(m, 1H), 2.00~2.08(m, 3H), 3.79(s, 3H), 4.35(d, J=7.2, 1H), 5.08(d, J=7.2, 1H), 7.32~7.45(m, 5H)


Preparation example 228: ((4R, 5R)-5-phenyl-1,4-dioxapiro[4,4]nonan-2-yl)methanol

The substantially same method as described in Example 224 was conducted, except that (4R, 5S)-methyl-3-phenyl-1,4-dioxapiro[4,4]nonane-2-carboxylate (Preparation example 227) was used instead of (4R, 5S)-methyl-2,2-diethyl-5-phenyl-1,3-dioxolane-4-carboxylate (Preparation example 223), to obtain the title compound (0.7g, 70~95%)

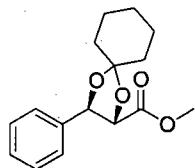
¹H NMR(400MHz, CDCl₃): δ=1.69~1.82(m, 4H), 1.85~2.03(m, 4H), 3.66(ddd, J=3.7, 8.1, 12.1, 1H), 3.83~3.90(m, 2H), 4.84(d, J=8.4, 1H), 7.26~7.41(m, 5H)


10 **Preparation example 229 : (4S, 5R)-methyl-3-phenyl-1,4-dioxapiro[4,4]nonane-2-carboxylate**

15 The substantially same method as described in Example 225 was conducted, except that cyclopentanone was used instead of 3-pantanone, to obtain the title compound (0.8g, 50~75%)

¹H NMR(400MHz, CDCl₃): δ=1.71~1.80(m, 4H), 1.87~1.94(m, 1H), 2.00~2.08(m, 3H), 3.79(s, 3H), 4.35(d, J=7.2, 1H), 5.08(d, J=7.2, 1H), 7.32~7.45(m, 5H)

20 **Preparation example 230 : ((4S, 5S)-5-phenyl-1,4-dioxapiro[4,4]nonan-2-yl)methanol**

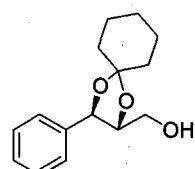


The substantially same method as described in Example 228 was conducted,

except that (4S, 5R)-methyl-3-phenyl-1,4-dioxapiro[4,4]nonane-2-carboxylate (Preparation example 229) was used instead (4R, 5S)-methyl-3-phenyl-1,4-dioxapiro[4,4]nonane-2-carboxylate (Preparation example 227), to obtain the title compound(0.5g, 70~95%)

5 ^1H NMR(400MHz, CDCl_3): δ =1.69~1.82(m, 4H), 1.85~2.03(m, 4H), 3.66(ddd, J =3.7, 8.1, 12.1, 1H), 3.83~3.90(m, 2H), 4.84(d, J =8.4, 1H), 7.26~7.41(m, 5H)

Preparation example 231 : (4R, 5S)-methyl-3-phenyl-1,4-dioxapiro[4,5]decane-2-carboxylate

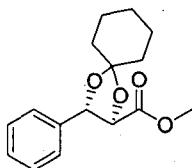


10

The substantially same method as described in Example 227 was conducted, except that cyclohexanone was used instead of cyclopentanone, to obtain the title compound (1.4g, 50~75%)

15 ^1H NMR(400MHz, CDCl_3): δ =1.41~1.49(m, 2H), 1.58~1.76(m, 4H), 1.79~1.90(m, 4H), 3.78(s, 3H), 4.36(d, J =7.6, 1H), 5.16(d, J =7.2, 1H), 7.31~7.44(m, 5H)

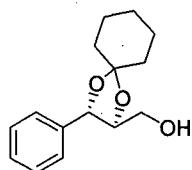
Preparation example 232: ((4R, 5R)-5-phenyl-1,4-dioxapiro[4,5]decan-2-yl)methanol


20

The substantially same method as described in Example 224 was conducted, except that (4R, 5S)-methyl-3-phenyl-1,4-dioxapiro[4,5]decane-2-carboxylate (Preparation example 231) was used instead of (4R, 5S)-methyl-2,2-diethyl-5-phenyl-1,3-dioxolane-4-carboxylate(Preparation example 223), to obtain the title

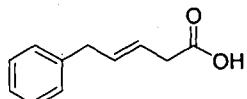
compound(1.0g, 70~95%)

¹H NMR(400MHz, CDCl₃): δ=1.41~1.50(m, 2H), 1.61~1.89(m, 8H), 3.60~3.66(m, 1H), 3.85~3.90(m, 2H), 4.91(d, J=8.4, 1H), 7.30~7.42(m, 5H)


5 **Preparation example 233 : (4S, 5R)-methyl-3-phenyl-1,4-dioxapiro[4,5]decane-2-carboxylate**

The substantially same method as described in Example 229 was conducted, except that cyclohexanone was used instead of cyclopentanone, to obtain the title 10 compound (1.2g, 50~75%)

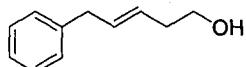
¹H NMR(400MHz, CDCl₃): δ=1.41~1.49(m, 2H), 1.58~1.76(m, 4H), 1.79~1.90(m, 4H), 3.78(s, 3H), 4.36(d, J=7.6, 1H), 5.16(d, J=7.2, 1H), 7.31~7.44(m, 5H)


15 **Preparation example 234: ((4S, 5S)-5-phenyl-1,4-dioxapiro[4,5]decane-2-yl)methanol**

The substantially same method as described in Example 232 was conducted, except that (4S, 5R)-methyl-3-phenyl-1,4-dioxapiro[4,5]decane-2-carboxylate (Preparation example 233) was used instead of (4R, 5S)-methyl-3-phenyl-1,4-dioxapiro[4,5]decane-2-carboxylate (Preparation example 231), to obtain the title 20 compound (0.8g, 70~95%)

¹H NMR(400MHz, CDCl₃): δ=1.41~1.50(m, 2H), 1.61~1.89(m, 8H), 3.60~3.66(m, 1H), 3.85~3.90(m, 2H), 4.91(d, J=8.4, 1H), 7.30~7.42(m, 5H)

Preparation example 235: (E)-5-phenylpent-3-enoic acid



A solution of malonic acid (17.06g, 163.96mmol) in DMSO (65mL) was treated
 5 with a solution of AcOH (0.1mL, 1.49mmol) and piperidine (0.15mL, 1.49mmol) in
 DMSO (4mL). The reaction solution was warmed to 65°C and hydrocinnamaldehyde
 (10g, 74.53mmol) was added dropwise within 1.5hr. After the addition ended, the
 reaction mixture was stirred for further 2h at 65°C. The solution was cooled to room
 temperature, taken up in H₂O and extracted with Et₂O. The combined organic
 10 extracts were washed with 5% aqueous KHSO₄ and brine, dried over MgSO₄, and
 evaporated to dryness. The crude compound was purified by a silica gel column to
 produce the title compound (10.4g, 75~90%)

¹H NMR(400MHz, CDCl₃): δ=3.19(d, J=6.9, 2H), 3.46(d, J= 6.9, 2H), 5.69~5.78(m,
 1H), 5.83~5.91(m, 1H), 7.01~7.56(m, 5H), 11.79(s, 1H)

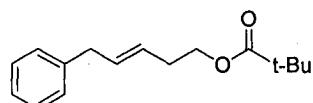
15

Preparation example 236 : (E)-5-phenylpent-3-en-1-ol

To stirred solution of LAH(LiAlH₄, 3.3g, 86.73mmol) in THF(66mL) was added
 20 dropwise a solution (E)-5-phenylpent-3-enoic acid (Preparation example 235, 11.0g,
 57.82mmol) in THF(44mL) at 0°C then stirred at room temperature for 1h. The
 reaction mixture was quenched with H₂O at 0°C, filtered through celite, washed with
 EtOAc, dried over anhydrous magnesium sulfate (MgSO₄), filtered and concentrated.
 The crude compound was purified by a silica gel column to produce the title
 compound (7.2g, 70~90%)

25 ¹H NMR(400MHz, CDCl₃): δ=1.40(bs, 1H), 2.31(q, J=6.3, 2H), 3.37(d, J=6.8, 2H),

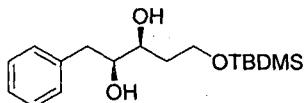
3.66(t, $J=6.4$, 2H), 5.49(dt, $J=4.9$, 11.0, 1H), 5.73(dt, $J=4.8$, 10.9, 1H),
7.17~7.31(m, 5H)


Preparation example 237 : (E)-tert-butyldimethyl(5-phenylpent-3-enyloxy)silane

To a stirred solution of (E)-5-phenylpent-3-en-1-ol (Preparation example 236, 6.3g, 38.83mmol) in CH_2Cl_2 was added imidazole (3.4g, 50.48mmol) and TBDMS-Cl (7.6g, 50.48mmol) at 0°C then stirred for 1h at room temperature. The resulting mixture was diluted with EtOAc, washed with water, dried over MgSO_4 , filtered, and concentrated under reduced pressure. The crude compound was purified by a silica gel column to produce the title compound (10.6g, 80~98%)

^1H NMR(400MHz, CDCl_3): $\delta=0.00$ (s, 6H), 0.84(s, 9H), 2.21(ddd, $J=6.8$, 13.6, 0.8, 2H), 3.29(d, $J=6.8$, 2H), 3.59(t, $J=6.8$, 2H), 5.41~5.49(m, 1H), 5.56~5.63(m, 1H),
7.13~7.26(m, 5H)

Preparation example 238 : (E)-5-phenylpent-3-enyl pivalate

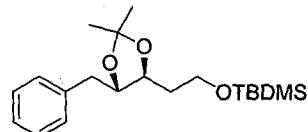


To a stirred solution of (E)-5-phenylpent-3-en-1-ol (Preparation example 236, 3.8g, 23.42mmol) in CH_2Cl_2 (40mL) was added pyridine (2.3mL, 28.1mmol) and pivaloyl chloride (3.5mL, 28.1mmol) at 0°C under N_2 . The mixture was stirred for 14h. The resulting mixture was diluted with CH_2Cl_2 , washed with water, dried over MgSO_4 , filtered, and concentrated under reduced pressure. The crude compound was purified by a silica gel column to produce the title compound (5.5g, 80~95%)

^1H NMR(400MHz, CDCl_3): $\delta=1.17$ (s, 9H), 2.36(q, $J=6.7$, 2H), 3.34(d, $J=6.8$, 2H),

4.09(t, $J=6.8$, 2H), 5.45~5.51(m, 1H), 5.64~5.69(m, 1H), 7.16~7.21(m, 3H), 7.26~7.30(m, 2H)

Preparation example 239 : (2S,3S)-5-(tert-butyldimethylsilyloxy)-1-phenylpentane-2,3-diol

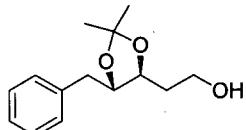


The substantially same method as described in Example 217 was conducted, except that (E)-tert-butyldimethyl(5-phenylpent-3-enyloxy)silane(Preparation example 237) was used instead of (E)-Methyl cinnamate (Preparation example 216), to obtain the title compound(8.7g, 70~95%)

^1H NMR(400MHz, CDCl_3): $\delta=0.00(\text{s}, 6\text{H})$, 0.82(s, 9H), 1.57~1.62(m, 1H), 1.73~1.80(m, 1H), 2.51(d, $J=6.0$, 1H), 2.77(dq, $J=6.9, 14.9$, 2H), 3.50(d, $J=3.6$, 1H), 3.59~3.62(m, 1H), 3.66(dq, $J=3.1, 5.4$, 1H), 3.72~3.82(m, 2H), 7.12~7.25(m, 5H)

15

Preparation example 240 : (2-((4S,5S)-5-benzyl-2,2-dimethyl-1,3-dioxolane-4-yl)ethoxy)(tert-butyl)dimethylsilane

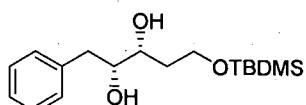


The substantially same method as described in Example 218 was conducted, except that (2S,3S)-5-(tert-butyldimethylsilyloxy)-1-phenylpentane-2,3-diol(Preparation example 239) was used instead of (2R, 3S)-methyl-3-phenyl-2,3-dihydroxypropanoate(Preparation example 217), to obtain the title compound(9.5g, 70~95%)

^1H NMR(400MHz, CDCl_3): $\delta=0.00(\text{s}, 6\text{H})$, 0.85(s, 9H), 1.29(s, 3H), 1.34(s, 3H),

1.52~1.58(m, 2H), 2.87(dq, $J=5.5, 14.2$, 2H), 3.64~3.69(m, 2H), 3.80~3.88(m, 2H),
7.18~7.27(m, 5H)

Preparation example 241 : 2-((4S,5S)-5-benzyl-2,2-dimethyl-1,3-dioxolane-4-yl)ethanol

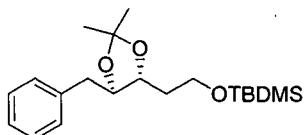


To a stirred solution of (2-((4S,5S)-5-benzyl-2,2-dimethyl-1,3-dioxolan-4-yl)ethoxy)(tert-butyl)dimethylsilane (Preparation example 240, 11.5g, 32.80mmol) in THF (115mL) was slowly added tetrabutylammonium fluoride (TBAF, 1.0M in THF, 48.8mL, 48.8mmol) at room temperature. The mixture was stirred for 5h. The resulting mixture was diluted with EtOAc, washed with water, dried over anhydrous magnesium sulfate, filtered and concentrated. The crude compound was purified by a silica gel column to produce the title compound (7.3g, 80~95%)

^1H NMR(400MHz, CDCl_3): $\delta=1.38(\text{s}, 3\text{H})$, 1.40(s, 3H), 1.50~1.63(m, 2H), 2.29(t, $J=5.4$, 1H), 2.82(dd, $J=5.8, 13.8$, 1H), 3.01(dd, $J=6.4, 14.0$, 1H), 3.72(q, $J=5.5$, 2H), 3.86(dt, $J=3.2, 8.4$, 1H), 3.92~3.97(m, 1H), 7.22~7.32(m, 5H)

Preparation example 242 : (2R,3R)-5-(tert-butyldimethylsilyloxy)-1-phenylpentane-2,3-diol

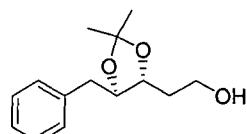
20



The substantially same method as described in Example 220 was conducted, except that (E)-tert-butyldimethyl(5-phenylpent-3-enyloxy)silane(Preparation example 237) was used instead of (E)-Methyl cinnamate (Preparation example 216), to obtain the title compound(10.6g, 70~95%)

¹H NMR(400MHz, CDCl₃): δ=0.00(s, 6H), 0.82(s, 9H), 1.57~1.62(m, 1H), 1.73~1.80(m, 1H), 2.51(d, J=6.0, 1H), 2.77(dq, J=6.9, 14.9, 2H), 3.50(d, J=3.6, 1H), 3.59~3.62(m, 1H), 3.66(dq, J=3.1, 5.4, 1H), 3.72~3.82(m, 2H), 7.12~7.25(m, 5H)

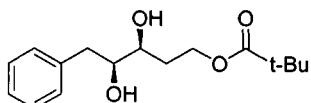
5


Preparation example 243 : (2-((4R,5R)-5-benzyl-2,2-dimethyl-1,3-dioxolane-4-yl)ethoxy)(tert-butyl)dimethylsilane

The substantially same method as described in Example 221 was conducted, except that (2R,3R)-5-(tert-butyldimethylsilyloxy)-1-phenylpentane-2,3-diol(Preparation example 242) was used instead of (2R, 3S)-methyl-3-phenyl-2,3-dihydroxypropanoate(Preparation example 217), to obtain the title compound(11.5g, 70~95%)

¹H NMR(400MHz, CDCl₃): δ=0.00(s, 6H), 0.85(s, 9H), 1.29(s, 3H), 1.34(s, 3H), 1.52~1.58(m, 2H), 2.87(dq, J=5.5, 14.2, 2H), 3.64~3.69(m, 2H), 3.80~3.88(m, 2H), 7.18~7.27(m, 5H)

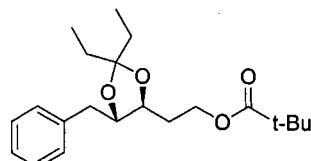
Preparation example 244 : 2-((4R,5R)-5-benzyl-2,2-dimethyl-1,3-dioxolane-4-yl)ethanol


The substantially same method as described in Example 241 was conducted, except that (2-((4R,5R)-5-benzyl-2,2-dimethyl-1,3-dioxolan-4-yl)ethoxy)(tert-butyl)dimethylsilane(Preparation example 243) was used instead of (2-((4S,5S)-5-

20

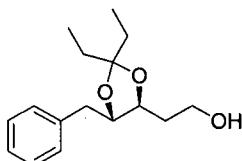
benzyl-2,2-dimethyl-1,3-dioxolan-4-yl)ethoxy)(tert-butyl)dimethylsilane(Preparation example 240), to obtain the title compound(7.4g, 80~95%)

5 ^1H NMR(400MHz, CDCl_3): δ =1.38(s, 3H), 1.40(s, 3H), 1.50~1.63(m, 2H), 2.29(t, J =5.4, 1H), 2.82(dd, J =5.8, 13.8, 1H), 3.01(dd, J =6.4, 14.0, 1H), 3.72(q, J =5.5, 2H), 3.86(dt, J =3.2, 8.4, 1H), 3.92~3.97(m, 1H), 7.22~7.32(m, 5H)


Preparation example 245 : (3S,4S)-3,4-dihydroxy-5-phenylpentyl pivalate

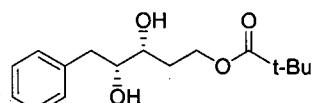
The substantially same method as described in Example 239 was conducted, except that (E)-5-phenylpent-3-enyl pivalate(Preparation example 238) was used instead of (E)-tert-butyldimethyl(5-phenylpent-3-enyloxy)silane(Preparation example 237), to obtain the title compound(5.5g, 70~95%)

10 ^1H NMR(400MHz, CDCl_3): δ =1.16(s, 9H), 1.83~1.88(m, 2H), 2.08(d, J =4.8, 1H), 2.67(d, J =5.2, 1H), 2.80(dd, J =8.0, 13.6, 1H), 2.92(dd, J =5.2, 13.6, 1H), 3.50~3.55(m, 1H), 3.66~3.71(m, 1H), 4.09~4.19(m, 1H), 4.35~4.41(m, 1H), 7.22~7.25(m, 3H), 7.29~7.33(m, 2H)


Preparation example 246 : (2-((4S,5S)-5-benzyl-2,2-diethyl-1,3-dioxolane-4-yl)ethyl pivalate

20 The substantially same method as described in Example 223 was conducted, except that (3S,4S)-3,4-dihydroxy-5-phenylpentyl pivalate(Preparation example 245) was used instead of (2R, 3S)-methyl-3-phenyl-2,3-dihydroxypropanoate(Preparation example 217), to obtain the title compound(0.9g, 70~95%)

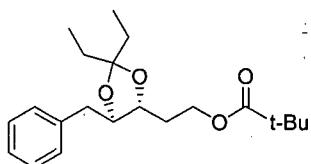
¹H NMR(400MHz, CDCl₃): δ=1.15(s, 9H), 1.76(q, J=7.6, 2H), 1.84~1.90(m, 2H), 2.00~2.07(m, 2H), 3.85(dt, J=3.7, 8.5, 1H), 4.14~4.27(m, 2H), 5.17(d, J=8.4, 1H), 7.22~7.28(m, 1H), 7.32~7.38(m, 2H), 7.64(dd, J=1.4, 7.8, 1H)


5 **Preparation example 247 : 2-((4S,5S)-5-benzyl-2,2-diethyl-1,3-dioxolane-4-yl)ethanol**

To a stirred solution of (2-((4S,5S)-5-benzyl-2,2-diethyl-1,3-dioxolan-4-yl)ethyl pivalate(Preparation example 246, 1.0g, 2.87mmol) in MeOH(10mL) was added 10 NaOMe (0.47g, 8.61mmol) and then warm to 45°C. The mixture was stirred for 14h. The resulting mixture was diluted with EtOAc, washed with water, dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude compound was purified by a silica gel column to produce the title compound (0.7g, 80~95%);

¹H NMR(400MHz, CDCl₃): δ=0.89(t, J=7.4, 6H), 1.44~1.50(m, 1H), 1.54~1.66(m, 5H), 2.37(t, J=5.6, 1H), 2.80(dd, J=5.6, 14.0, 1H), 3.03(dd, J=6.4, 14.0, 1H), 3.72(q, J=5.5, 2H), 3.80~3.85(m, 1H), 3.89~3.94(m, 1H), 7.21~7.24(m, 3H), 7.28~7.31(m, 2H)

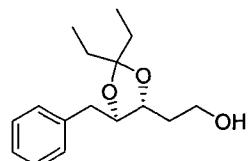
20 **Preparation example 248 : (3R,4R)-3,4-dihydroxy-5-phenylpentyl pivalate**



The substantially same method as described in Example 242 was conducted, except that (E)-5-phenylpent-3-enyl pivalate (Preparation example 238) was used instead of (E)-tert-butyldimethyl(5-phenylpent-3-enyloxy)silane (Preparation example 237), to obtain the title compound (4.5g, 70~95%)

¹H NMR(400MHz, CDCl₃): δ=1.16(s, 9H), 1.83~1.88(m, 2H), 2.08(d, J=4.8, 1H), 2.67(d, J=5.2, 1H), 2.80(dd, J=8.0, 13.6, 1H), 2.92(dd, J=5.2, 13.6, 1H), 3.50~3.55(m, 1H), 3.66~3.71(m, 1H), 4.09~4.19(m, 1H), 4.35~4.41(m, 1H), 7.22~7.25(m, 3H), 7.29~7.33(m, 2H)

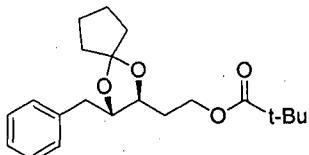
5


Preparation example 249 : (2-((4R, 5R)-5-benzyl-2,2-diethyl-1,3-dioxolane-4-yl)ethyl pivalate

The substantially same method as described in Example 246 was conducted, except that (3R,4R)-3,4-dihydroxy-5-phenylpentyl pivalate(Preparation example 248) was used instead of (3S,4S)-3,4-dihydroxy-5-phenylpentyl pivalate (Preparation example 245), to obtain the title compound(1.1g, 70~95%)

¹H NMR(400MHz, CDCl₃): δ=1.15(s, 9H), 1.76(q, J=7.6, 2H), 1.84~1.90(m, 2H), 2.00~2.07(m, 2H), 3.85(dt, J=3.7, 8.5, 1H), 4.14~4.27(m, 2H), 5.17(d, J=8.4, 1H), 7.22~7.28(m, 1H), 7.32~7.38(m, 2H), 7.64(dd, J=1.4, 7.8, 1H)

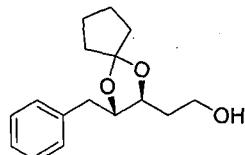
Preparation example 250 : 2-((4R, 5R)-5-benzyl-2,2-diethyl-1,3-dioxolane-4-yl)ethanol



The substantially same method as described in Example 247 was conducted, except that (2-((4R,5R)-5-benzyl-2,2-diethyl-1,3-dioxolan-4-yl)ethyl pivalate(Preparation example 249) was used instead of (2-((4S,5S)-5-benzyl-2,2-diethyl-1,3-dioxolan-4-yl)ethyl pivalate(Preparation example 246), to obtain the title

compound (0.9g, 80~95%)

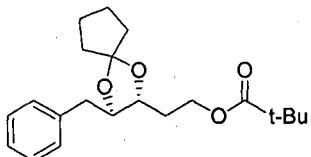
¹H NMR(400MHz, CDCl₃): δ=0.89(t, J=7.4, 6H), 1.44~1.50(m, 1H), 1.54~1.66(m, 5H), 2.37(t, J=5.6, 1H), 2.80(dd, J=5.6, 14.0, 1H), 3.03(dd, J=6.4, 14.0, 1H), 3.72(q, J=5.5, 2H), 3.80~3.85(m, 1H), 3.89~3.94(m, 1H), 7.21~7.24(m, 3H), 7.28~7.31(m, 2H)


Preparation example 251 : 2-((2S, 3S)-3-benzyl-1,4-dioxaspiro[4.4]nonane-2-yl)ethyl pivalate

10 The substantially same method as described in Example 246 was conducted, except that cyclopentanone was used instead of 3-pantanone, to obtain the title compound (1.2g, 60~85%)

¹H NMR(400MHz, CDCl₃): δ=1.18(s, 9H), 1.53~1.80(m, 10H), 2.81(dd, J=6.0, 13.6, 1H), 3.00(dd, J=6.4, 14.0, 1H), 3.75~3.80(m, 1H), 3.84~3.89(m, 1H), 4.05~4.16(m, 2H), 7.20~7.24(m, 3H), 7.27~7.31(m, 2H)

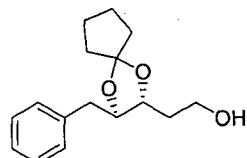
Preparation example 252 : 2-((2S, 3S)-3-benzyl-1,4-dioxaspiro[4.4]nonane-2-yl)ethanol



20 The substantially same method as described in Example 247 was conducted, except that 2-((2S,3S)-3-benzyl-1,4-dioxaspiro[4.4]nonan-2-yl)ethyl pivalate (Preparation example 251) was used instead of (2-((4S,5S)-5-benzyl-2,2-diethyl-1,3-dioxolan-4-yl)ethyl pivalate (Preparation example 246), to obtain the title compound

(0.7g, 80~95%)

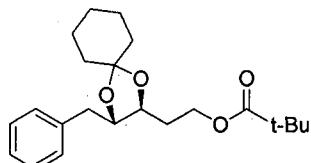
¹H NMR(400MHz, CDCl₃): δ=1.44~1.51(m, 1H), 1.56~1.60(m, 1H), 1.63~1.70(m, 4H), 1.72~1.81(m, 4H), 2.26(t, J=5.4, 1H), 2.80(dd, J=6.0, 14.0, 1H), 3.03(dd, J=6.4, 14.0, 1H), 3.71(q, J=5.5, 2H), 3.81~3.92(m, 2H), 7.22~7.24(m, 3H), 7.28~7.32(m, 2H)


Preparation example 253 : 2-((2R, 3R)-3-benzyl-1,4-dioxaspiro[4.4]nonane-2-yl)ethyl pivalate

10 The substantially same method as described in Example 249 was conducted, except that cyclopentanone was used instead of 3-pantanone, to obtain the title compound (1.7g, 60~85%)

¹H NMR(400MHz, CDCl₃): δ=1.18(s, 9H), 1.53~1.80(m, 10H), 2.81(dd, J=6.0, 13.6, 1H), 3.00(dd, J=6.4, 14.0, 1H), 3.75~3.80(m, 1H), 3.84~3.89(m, 1H), 4.05~4.16(m, 2H), 7.20~7.24(m, 3H), 7.27~7.31(m, 2H)

Preparation example 254 : 2-((2R, 3R)-3-benzyl-1,4-dioxaspiro[4.4]nonane-2-yl)ethanol

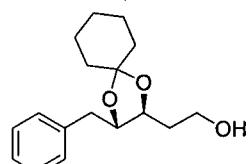

20 The substantially same method as described in Example 252 was conducted, except that 2-((2R,3R)-3-benzyl-1,4-dioxaspiro[4.4]nonan-2-yl)ethyl pivalate (Preparation example 253) was used instead of 2-((2S,3S)-3-benzyl-1,4-dioxaspiro[4.4]nonan-2-yl)ethyl pivalate (Preparation example 251), to obtain the

title compound (0.8g, 80~95%)

¹H NMR(400MHz, CDCl₃): δ=1.44~1.51(m, 1H), 1.56~1.60(m, 1H), 1.63~1.70(m, 4H), 1.72~1.81(m, 4H), 2.26(t, J=5.4, 1H), 2.80(dd, J=6.0, 14.0, 1H), 3.03(dd, J=6.4, 14.0, 1H), 3.71(q, J=5.5, 2H), 3.81~3.92(m, 2H), 7.22~7.24(m, 3H), 7.28~7.32(m, 2H)

5

Preparation example 255 : 2-((2S, 3S)-3-benzyl-1,4-dioxaspiro[4.5]decane-2-yl)ethyl pivalate

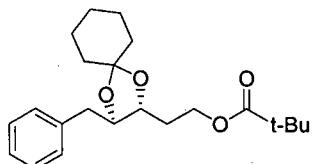


10 The substantially same method as described in Example 251 was conducted, except that cyclohexanone was used instead of cyclopentanone, to obtain the title compound (1.4g, 60~85%)

¹H NMR(400MHz, CDCl₃): δ=1.18(s, 9H), 1.53~1.60(m, 10H), 1.61~1.66(m, 2H), 2.83(dd, J=5.6, 14.0, 1H), 2.98(dd, J=6.0, 14.0, 1H), 3.78(dt, J=3.5, 8.2, 1H), 3.86~3.91(m, 1H), 4.11~4.15(m, 2H), 7.20~7.31(m, 5H)

15

Preparation example 256 : 2-((2S, 3S)-3-benzyl-1,4-dioxaspiro[4.5]decane-2-yl)ethanol

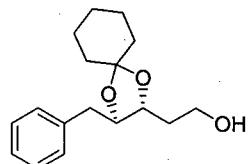

20 The substantially same method as described in Example 254 was conducted, except that 2-((2S, 3S)-3-benzyl-1,4-dioxaspiro[4.5]decane-2-yl)ethyl pivalate (Preparation example 255) was used instead of 2-((2R,3R)-3-benzyl-1,4-dioxaspiro[4.4]nonan-2-yl)ethyl pivalate (Preparation example 253), to obtain the

title compound (1.0g, 80~95%)

¹H NMR(400MHz, CDCl₃): δ=1.34~1.43(m, 2H), 1.48~1.61(m, 10H), 2.42(t, J=5.6, 1H), 2.81(dd, J=5.6, 14.0, 1H), 3.02(dd, J=6.2, 13.8, 1H), 3.72(q, J=5.5, 2H), 3.82~3.87(m, 1H), 3.91~3.96(m, 1H), 7.21~7.31(m, 5H)

5

Preparation example 257 : 2-((2R, 3R)-3-benzyl-1,4-dioxaspiro[4.5]decane-2-yl)ethyl pivalate

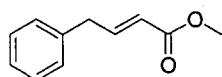


The substantially same method as described in Example 253 was conducted, except that cyclohexanone was used instead of cyclopentanone, to obtain the title compound (1.6g, 60~85%)

¹H NMR(400MHz, CDCl₃): δ=1.18(s, 9H), 1.53~1.60(m, 10H), 1.61~1.66(m, 2H), 2.83(dd, J=5.6, 14.0, 1H), 2.98(dd, J=6.0, 14.0, 1H), 3.78(dt, J=3.5, 8.2, 1H), 3.86~3.91(m, 1H), 4.11~4.15(m, 2H), 7.20~7.31(m, 5H)

15

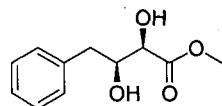
Preparation example 258 : 2-((2R, 3R)-3-benzyl-1,4-dioxaspiro[4.5]decane-2-yl)ethanol



The substantially same method as described in Example 256 was conducted, except that 2-((2R, 3R)-3-benzyl-1,4-dioxaspiro[4.5]decane-2-yl)ethyl pivalate (Preparation example 257) was used instead of 2-((2S, 3S)-3-benzyl-1,4-dioxaspiro[4.5]decane-2-yl)ethyl pivalate (Preparation example 255), to obtain the title compound (1.1g, 80~95%)

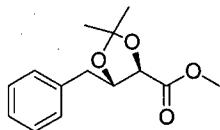
¹H NMR(400MHz, CDCl₃): δ=1.34~1.43(m, 2H), 1.48~1.61(m, 10H), 2.42(t, J=5.6, 1H), 2.81(dd, J=5.6, 14.0, 1H), 3.02(dd, J=6.2, 13.8, 1H), 3.72(q, J=5.5, 2H), 3.82~3.87(m, 1H), 3.91~3.96(m, 1H), 7.21~7.31(m, 5H)

5


Preparation example 259 : (E)-methyl-4-phenylbut-2-enoate

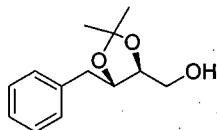
To a solution of phenyl acetaldehyde (5.0g, 41.61mmol) in toluene (500mL) was added methyl (triphenylphosphoranylidene)acetate (13.9g, 41.61mmol). The reaction mixture was stirred at reflux for 3 h. The resulting mixture was diluted with 10 EtOAc, washed with water, dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude product was added ether/hexane(=1:1, v/v) at 0°C then stirred for 30min. The filtrate was concentrated then purified by a silica gel column to produce the title compound (5.9g, 70~90%)

¹H NMR(400MHz, CDCl₃): δ=3.47(d, J=6.8, 2H), 3.67(s, 3H), 5.79(d, J=15.4, 1H), 7.06(dt, J=15.4, 6.8, 1H), 7.28~7.12(m, 5H)


Preparation example 260 : (2R, 3S)-methyl 2,3-dihydroxy-4-phenylbutanoate

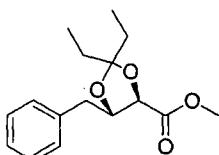
20 The substantially same method as described in Example 245 was conducted, except that (E)-methyl-4-phenylbut-2-enoate(Preparation example 259) was used instead of (E)-5-phenylpent-3-enyl pivalate(Preparation example 238), to obtain the title compound(3.5g, 70~95%)

¹H NMR(400MHz, CDCl₃): δ=2.96(ddd, J=7.3, 13.5, 17.1, 2H), 3.10(d, J=5.2, 1H), 3.80(s, 3H), 4.08(dd, J=1.4, 5.4, 1H), 7.23~7.34(m, 5H)


Preparation example 261 : (4R,5S)-methyl-5-benzyl-2,2-dimethyl-1,3-dioxolane-4-carboxylate

5 The substantially same method as described in Example 240 was conducted, except that (2R, 3S)-methyl 2,3-dihydroxy-4-phenylbutanoate(Preparation example 260) was used instead of (2S,3S)-5-(tert-butyldimethylsilyloxy)-1-phenylpentane-2,3-diol(Preparation example 239), to obtain the title compound(3.1g, 70~95%)

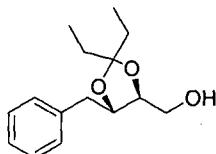
10 ^1H NMR(400MHz, CDCl_3): δ =1.42(s, 3H), 1.43(s, 3H), 3.01(dd, J =6.8, 14.4, 1H), 3.12(dd, J =4.4, 14.4, 1H), 3.72(s, 3H), 4.19(d, J =7.6, 1H), 4.40(ddd, J =4.4, 7.0, 7.8, 1H), 7.22~7.33(m, 5H)


Preparation example 262 : ((4S, 5S)-5-benzyl-2,2-dimethyl-1,3-dioxolan-4-yl)methanol

15 The substantially same method as described in Example 234 was conducted, except that (4R,5S)-methyl 5-benzyl-2,2-dimethyl-1,3-dioxolane-4-carboxylate(Preparation example 261) was used instead of (4S, 5R)-methyl-3-phenyl-1,4-dioxapiro[4,5]decane-2-carboxylate (Preparation example 233), to obtain the title compound(2.3g, 70~95%)

20 ^1H NMR(400MHz, CDCl_3): δ =1.41(s, 6H), 1.79(q, J =4.3, 1H), 2.83(dd, J =6.2, 13.8, 1H), 3.07(dd, J =6.4, 14.0, 1H), 3.29(ddd, J =4.7, 7.5, 12.1, 1H), 3.54(ddd, J =2.8, 5.2, 12.0, 1H), 3.83(ddd, J =3.9, 3.9, 7.1, 1H), 4.15(q, J =7.1, 1H), 7.22~7.32(m, 5H)

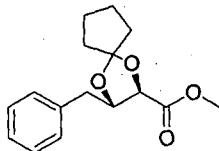
Preparation example 263 : (4R,5S)-methyl-5-benzyl-2,2-diethyl-1,3-dioxolane-4-carboxylate



5 To a stirred solution of (2R, 3S)-methyl 2,3-dihydroxy-4-phenylbutanoate(Preparation example 260, 2.0g, 9.51mmol) in 3-pentanone (5mL, 47.55mmol) was added a catalytic amount of H_2SO_4 (0.051mL, 0.951mmol) at room temperature. The mixture was stirred for 20h. The resulting mixture was diluted with EtOAc, washed with water, dried over $MgSO_4$, filtered, and concentrated under reduced pressure. The crude compound was purified by a silica gel column to produce the title compound (1.2g, 50~75%)

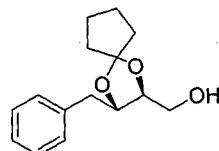
10 1H NMR(400MHz, $CDCl_3$): δ =0.85(t, J =6.0, 3H), 0.92(t, J =7.6, 3H), 1.66(dq, J =7.6, 14.7, 4H), 3.01(dd, J =6.6, 14.2, 1H), 3.10(dd, J =4.4, 14.4, 1H), 3.71(s, 3H), 4.17(d, J =8.4, 1H), 4.32~4.37(m, 1H), 7.23~7.32(m, 5H)

15


Preparation example 264 : ((4S, 5S)-5-benzyl-2,2-diethyl-1,3-dioxolan-4-yl)methanol

20 The substantially same method as described in Example 262 was conducted, except that (4R,5S)-methyl-5-benzyl-2,2-dimethyl-1,3-dioxolane-4-carboxylate (Preparation example 263) was used instead of (4R,5S)-methyl 5-benzyl-2,2-dimethyl-1,3-dioxolane-4-carboxylate(Preparation example 261), to obtain the title compound(0.8g, 70~95%)

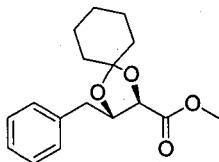
¹H NMR(400MHz, CDCl₃): δ=0.91(dt, J=1.9, 7.5, 6H), 1.61~1.68(m, 4H), 1.77(t, J=6.2, 1H), 2.81(dd, J=6.4, 14.0, 1H), 3.09(dd, J=6.2, 13.8, 1H), 3.24~3.30(m, 1H), 3.49~3.54(m, 1H), 3.78~3.82(m, 1H), 4.08~4.13(m, 1H), 7.21~7.32(m, 5H)


5 **Preparation example 265 : (2R, 3S)-methyl 3-benzyl-1,4-dioxaspiro[4.4]nonane-2-carboxylate**

The substantially same method as described in Example 263 was conducted, except that cyclopentanone was used instead of 3-pantanone, to obtain the title compound (1.3g, 60~85%)

10 ¹H NMR(400MHz, CDCl₃): δ=1.61~1.79(m, 5H), 1.85~1.92(m, 3H), 3.00~3.11(m, 2H), 3.70(s, 3H), 4.17(d, J=7.2, 1H), 4.32(dt, J=4.9, 7.0, 1H), 7.21~7.33(m, 5H)

15 **Preparation example 266 : ((2S, 3S)-3-benzyl-1,4-dioxaspiro[4.4]nonane-2-yl)methanol**

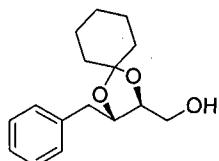


The substantially same method as described in Example 264 was conducted, except that (2R, 3S)-methyl 3-benzyl-1,4-dioxaspiro[4.4]nonane-2-carboxylate (Preparation example 265) was used instead of (4R,5S)-methyl-5-benzyl-2,2-dimethyl-1,3-dioxolane-4-carboxylate(Preparation example 263), to obtain the title compound (0.8g, 70~95%)

20 ¹H NMR(400MHz, CDCl₃): δ=1.57~1.88(m, 8H), 2.82(dd, J=6.6, 13.8, 1H), 3.08(dd, J=6.4, 14.0, 1H), 3.27~3.33(m, 1H), 3.47~3.52(m, 1H), 3.79~3.83(m, 1H),

4.07(q, $J=6.8$, 1H), 7.21~7.32(m, 5H)

Preparation example 267 : (2R,3S)-methyl-3-benzyl-1,4-dioxaspiro[4.5]decane-2-carboxylate

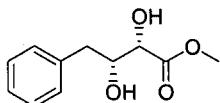

5

The substantially same method as described in Example 265 was conducted, except that cyclohexanone was used instead of cyclopentanone, to obtain the title compound (1.5g, 60~85%)

^1H NMR(400MHz, CDCl_3): $\delta=1.54\sim1.74$ (m, 10H), 2.99~3.12(m, 2H), 3.70(s, 3H),

10 4.18(d, $J=7.6$, 1H), 4.36~4.41(m, 1H), 7.21~7.32(m, 5H)

Preparation example 268 : ((2S, 3S)-3-benzyl-1,4-dioxaspiro[4.4]decan-2-yl)methanol

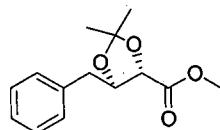

15 The substantially same method as described in Example 266 was conducted, except that (2R, 3S)-methyl-3-benzyl-1,4-dioxaspiro[4.5]decane-2-carboxylate (Preparation example 267) was used instead of (2R, 3S)-methyl 3-benzyl-1,4-dioxaspiro[4.4]nonane-2-carboxylate (Preparation example 265), to obtain the title compound (0.8g, 70~95%)

20 ^1H NMR(400MHz, CDCl_3): $\delta=1.53\sim1.65$ (m, 10H), 2.82(dd, $J=6.2, 13.8$, 1H),

3.07(dd, $J=6.4, 13.6$, 1H), 3.24~3.30(m, 1H), 3.52~3.56(m, 1H), 3.80~3.84(m, 1H),

4.10~4.15(m, 1H), 7.21~7.31(m, 5H)

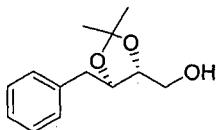
Preparation example 269 : (2S, 3R)-methyl-2,3-dihydroxy-4-phenylbutanoate



The substantially same method as described in Example 242 was conducted, except that (E)-methyl-4-phenylbut-2-enoate(Preparation example 259) was used instead of (E)-tert-butyldimethyl(5-phenylpent-3-enyloxy)silane(Preparation example 237), to obtain the title compound(3.5g, 70~95%)

¹H NMR(400MHz, CDCl₃): δ=2.96(ddd, J=7.3, 13.5, 17.1, 2H), 3.10(d, J=5.2, 1H), 3.80(s, 3H), 4.08(dd, J=1.4, 5.4, 1H), 7.23~7.34(m, 5H)

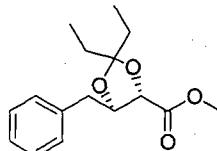
10


Preparation example 270 : (4S, 5R)-methyl-5-benzyl-2,2-dimethyl-1,3-dioxolane-4-carboxylate

The substantially same method as described in Example 261 was conducted, except that (2S, 3R)-methyl-2,3-dihydroxy-4-phenylbutanoate (Preparation example 269) was used instead of (2R, 3S)-methyl 2,3-dihydroxy-4-phenylbutanoate (Preparation example 260), to obtain the title compound(3.4g, 70~95%)

¹H NMR(400MHz, CDCl₃): δ=1.41(s, 6H), 1.79(q, J=4.3, 1H), 2.83(dd, J=6.2, 13.8, 1H), 3.07(dd, J=6.4, 14.0, 1H), 3.29(ddd, J=4.7, 7.5, 12.1, 1H), 3.54(ddd, J=2.8, 5.2, 12.0, 1H), 3.83(ddd, J=3.9, 3.9, 7.1, 1H), 4.15(q, J=7.1, 1H), 7.22~7.32(m, 5H)

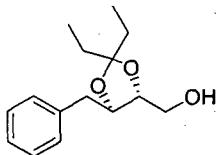
Preparation example 271 : ((4S, 5S)-5-benzyl-2,2-dimethyl-1,3-dioxolan-4-yl)methanol



The substantially same method as described in Example 262 was conducted, except that (4S,5R)-methyl-5-benzyl-2,2-dimethyl-1,3-dioxolane-4-carboxylate (Preparation example 270) was used instead of (4R,5S)-methyl 5-benzyl-2,2-dimethyl-1,3-dioxolane-4-carboxylate(Preparation example 261), to obtain the title compound (2.7g, 70~95%)

¹H NMR(400MHz, CDCl₃): δ=1.41(s, 6H), 1.79(q, J=4.3, 1H), 2.83(dd, J=6.2, 13.8, 1H), 3.07(dd, J=6.4, 14.0, 1H), 3.29(ddd, J=4.7, 7.5, 12.1, 1H), 3.54(ddd, J=2.8, 5.2, 12.0, 1H), 3.83(ddd, J=3.9, 3.9, 7.1, 1H), 4.15(q, J=7.1, 1H), 7.22~7.32(m, 5H)

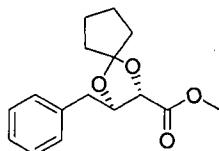
10


Preparation example 272 : (4S, 5R)-methyl-5-benzyl-2,2-diethyl-1,3-dioxolane-4-carboxylate

The substantially same method as described in Example 263 was conducted, except that (2S, 3R)-methyl-2,3-dihydroxy-4-phenylbutanoate (Preparation example 269)was used instead of (2,3-dihydroxy-4-phenylbutanoate (Preparation example 260), to obtain the title compound (1.5g, 50~75%)

¹H NMR(400MHz, CDCl₃): δ=0.85(t, J=6.0, 3H), 0.92(t, J=7.6, 3H), 1.66(dq, J=7.6, 14.7, 4H), 3.01(dd, J=6.6, 14.2, 1H), 3.10(dd, J=4.4, 14.4, 1H), 3.71(s, 3H), 4.17(d, J=8.4, 1H), 4.32~4.37(m, 1H), 7.23~7.32(m, 5H)

Preparation example 273 : ((4R, 5R)-5-benzyl-2,2-diethyl-1,3-dioxolan-4-yl)methanol

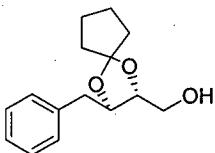


The substantially same method as described in Example 264 was conducted, except that (4S,5R)-methyl-5-benzyl-2,2-dimethyl-1,3-dioxolane-4-carboxylate (Preparation example 272) was used instead of (4R,5S)-methyl-5-benzyl-2,2-dimethyl-1,3-dioxolane-4-carboxylate (Preparation example 263), to obtain the title compound (1.2g, 70~95%)

¹H NMR(400MHz, CDCl₃): δ=0.91(dt, J=1.9, 7.5, 6H), 1.61~1.68(m, 4H), 1.77(t, J=6.2, 1H), 2.81(dd, J=6.4, 14.0, 1H), 3.09(dd, J=6.2, 13.8, 1H), 3.24~3.30(m, 1H), 3.49~3.54(m, 1H), 3.78~3.82(m, 1H), 4.08~4.13(m, 1H), 7.21~7.32(m, 5H)

10

Preparation example 274 : (2S, 3R)-methyl-3-benzyl-1,4-dioxaspiro[4.4]nonane-2-carboxylate

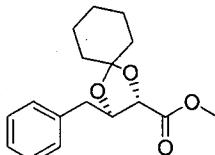


The substantially same method as described in Example 272 was conducted, except that cyclopentanone was used instead of 3-pantanone, to obtain the title compound (1.2g, 60~85%)

¹H NMR(400MHz, CDCl₃): δ=1.61~1.79(m, 5H), 1.85~1.92(m, 3H), 3.00~3.11(m, 2H), 3.70(s, 3H), 4.17(d, J=7.2, 1H), 4.32(dt, J=4.9, 7.0, 1H), 7.21~7.33(m, 5H)

20

Preparation example 275 : ((2R, 3R)-3-benzyl-1,4-dioxaspiro[4.4]nonane-2-yl)methanol

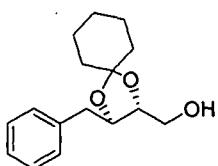


The substantially same method as described in Example 266 was conducted, except that (2S, 3R)-methyl-3-benzyl-1,4-dioxaspiro[4.4]nonane-2-carboxylate (Preparation example 274) was used instead of (2R, 3S)-methyl-3-benzyl-1,4-dioxaspiro[4.4]nonane-2-carboxylate (Preparation example 265), to obtain the title compound (1.1g, 70~95%)

¹H NMR(400MHz, CDCl₃): δ=1.57~1.88(m, 8H), 2.82(dd, J=6.6, 13.8, 1H), 3.08(dd, J=6.4, 14.0, 1H), 3.27~3.33(m, 1H), 3.47~3.52(m, 1H), 3.79~3.83(m, 1H), 4.07(q, J=6.8, 1H), 7.21~7.32(m, 5H)

10

Preparation example 276 : (2S, 3R)-methyl-3-benzyl-1,4-dioxaspiro[4.5]decane-2-carboxylate

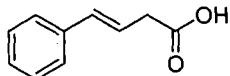


The substantially same method as described in Example 274 was conducted, except that cyclohexanone was used instead of cyclopentanone, to obtain the title compound (1.4g, 60~85%)

¹H NMR(400MHz, CDCl₃): δ=1.54~1.74(m, 10H), 2.99~3.12(m, 2H), 3.70(s, 3H), 4.18(d, J=7.6, 1H), 4.36~4.41(m, 1H), 7.21~7.32(m, 5H)

20

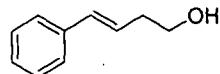
Preparation example 277 : ((2R, 3R)-3-benzyl-1,4-dioxaspiro[4.4]nonane-2-yl)methanol



The substantially same method as described in Example 268 was conducted, except that (2S, 3R)-methyl-3-benzyl-1,4-dioxaspiro[4.5]decane-2-carboxylate (Preparation example 276) was used instead of (2R, 3S)-methyl-3-benzyl-1,4-dioxaspiro[4.5]decane-2-carboxylate (Preparation example 267), to obtain the title compound (1.4g, 70~95%)

¹H NMR(400MHz, CDCl₃): δ=1.53~1.65(m, 10H), 2.82(dd, J=6.2, 13.8, 1H), 3.07(dd, J=6.4, 13.6, 1H), 3.24~3.30(m, 1H), 3.52~3.56(m, 1H), 3.80~3.84(m, 1H), 4.10~4.15(m, 1H), 7.21~7.31(m, 5H)

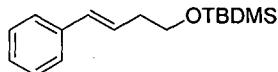
10


Preparation example 278: (E)-4-phenylbut-3-enoic acid

To a stirred solution of 2-phenylacetaldehyde (5.0g, 32.3mmol) and malonic acid (4.0g, 38.8mmol) in pyridine (25.0mL) was added a catalytic amount of piperidine (0.64mL, 6.46mmol) then heated to reflux. After 3h, the resulting mixture was cooled to room temperature and concentrated under reduced pressure. The crude product was slowly added 2N HCl. The white precipitate was filtered off and dried under vacuum to produce the title compound (3.5g, 55~80%)

¹H NMR(400MHz, CDCl₃): δ=3.39(d, J=8.8, 2H), 6.31(td, J=7.9, 14.8, 1H), 6.94(d, J=16, 1H), 7.17~7.45(m, 3H), 7.56~7.59(m, 1H)

Preparation example 279 : (E)-4-phenylbut-3-en-1-ol

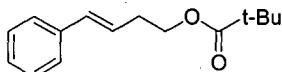


To stirred solution of Zn(BH₄)₂ (40.0mL, 20.0mmol) in THF(40mL) was added

dropwise a solution **1** (2.0g, 10.0mmol) in THF(5mL) at 0°C then heated to reflux for 0.5h. The reaction mixture was quenched with H₂O at 0°C, filtered through celite, washed with EtOAc, dried over anhydrous magnesium sulfate(MgSO₄), filtered and concentrated. The crude compound was purified by a silica gel column to produce 5 the title compound (1.0g, 50~75%)

¹H NMR(400MHz, CDCl₃): δ=2.55(ddd, J= 4.1, 11.9, 21.5, 2H), 3.82(t, J=5.8, 2H), 6.24(td, J=7.2, 15.7, 1H), 6.87(d, J=14.8, 1H), 7.12~7.25(m, 3H), 7.36(dd, J=1.2, 8.0, 1H), 7.52(dd, J=1.6, 9.2, 1H)

10 **Preparation example 280 : (E)-tert-butyldimethyl(4-phenylbut-3-enyloxy)silane**

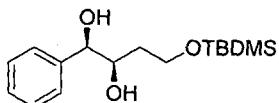


The substantially same method as described in Example 237 was conducted, except that (E)-4-phenylbut-3-en-1-ol (Preparation example 279) was used instead 15 of (E)-5-phenylpent-3-en-1-ol(Preparation example 236), to obtain the title compound(1.7g, 80~98%)

¹H NMR(400MHz, CDCl₃): δ=0.07(s, 3H), 0.10(s, 3H), 0.92(d, J=6.4, 9H), 2.51(q, J=4.5, 2H), 3.78(t, J=6.6, 2H), 6.26(td, J=7.2, 15.7, 1H), 6.84(d, J=15.6, 1H), 7.13~7.24(m, 3H), 7.36(dd, J=5.6, 12.4, 1H), 7.53(dd, J=1.4, 7.8, 1H)

20

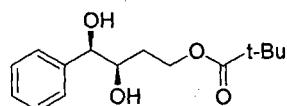
Preparation example 281 : (E)-4-phenylbut-3-enyl pivalate


The substantially same method as described in Example 238 was conducted, except 25 that (E)-4-phenylbut-3-en-1-ol (Preparation example 279) was used instead of (E)-5-phenylpent-3-en-1-ol (Preparation example 236), to obtain the title compound(10.8g,

75~95%)

¹H NMR(400MHz, CDCl₃): δ=1.22(s, 9H), 2.57(ddd, J=1.3, 6.7, 13.5, 2H), 4.22(t, J=6.6, 2H), 6.19(td, J=7.0, 16.0, 1H), 6.49(d, J=16.0, 1H), 7.23~7.26(m, 1H), 7.31~7.41(m, 4H)

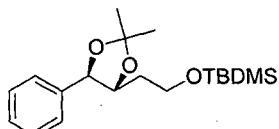
5


Preparation example 282 : (1R, 2R)-4-(tert-butyldimethylsilyloxy)-1-phenylbutane-1,2-diol

The substantially same method as described in Example 239 was conducted, except that (E)-tert-butyldimethyl(4-phenylbut-3-enyloxy)silane(Preparation example 280) was used instead of (E)-tert-butyldimethyl(5-phenylpent-3-enyloxy)silane (Preparation example 237), to obtain the title compound(0.8g, 70~95%)

¹H NMR(400MHz, CDCl₃): δ=0.10(s, 3H), 0.11(s, 3H), 0.92(s, 9H), 1.69~1.70(m, 1H), 1.93~2.07(m, 1H), 3.51(d, J=4.8, 1H), 3.86(d, J=3.2, 1H), 3.87(dd, J=3.2, 9.2, 1H), 3.91~3.96(m, 1H), 4.01~4.06(m, 1H), 5.05(t, J=4.6, 1H), 7.22~7.26(m, 1H), 7.31~7.37(m, 2H), 7.59(dd, J=1.2, 7.6, 1H)

Preparation example 283 : (3R, 4R)-3,4-dihydroxy-4-phenylbutyl pivalate

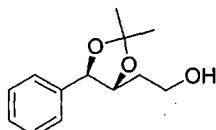


The substantially same method as described in Example 282 was conducted, except that (E)-4-phenylbut-3-enyl pivalate (Preparation example 281) was used instead of (E)-tert-butyldimethyl(4-phenylbut-3-enyloxy)silane (Preparation example 280), to obtain the title compound(8.7g, 70~95%)

¹H NMR(400MHz, CDCl₃): δ=1.18(s, 9H), 1.65~1.74(m, 2H), 2.83(d, J=2.4, 1H), 2.96(d, J=3.2, 1H), 3.74~3.79(m, 1H), 4.10~4.17(m, 1H), 4.33(ddd, J=4.0, 7.2,

12.6, 1H), 4.49(d, $J=5.6$, 1H), 7.31~7.41(m, 5H)

Preparation example 284 : tert-butyl(2-((4R, 5R)-5-phenyl-2,2-dimethyl-1,3-dioxolan-4-yl)ethoxy)dimethylsilane



5

The substantially same method as described in Example 218 was conducted, except that (1R, 2R)-4-(tert-butyldimethylsilyloxy)-1-phenylbutane-1,2-diol (Preparation example 282) was used instead of (2R, 3S)-methyl-3-phenyl-2,3-dihydroxypropanoate(Preparation example 217), to obtain the title compound(1.6g, 70~95%)

¹H NMR(400MHz, CDCl₃): $\delta=0.02$ (s, 3H), 0.07(s, 3H), 0.86(s, 9H), 1.50(s, 3H), 1.58(s, 3H), 1.82~1.99(m, 2H), 3.68~3.78(m, 2H), 3.95(dt, $J=3.3, 8.7$, 1H), 5.16(d, $J=8.4$, 1H), 7.21~7.27(m, 1H), 7.31~7.38(m, 2H), 7.60(dd, $J=1.6, 7.6$, 1H)

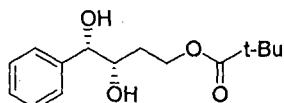
15 **Preparation example 285 : 2-((4R, 5R)-5-phenyl-2,2-dimethyl-1,3-dioxolan-4-yl)ethanol**

The substantially same method as described in Example 244 was conducted, except that tert-butyl(2-((4R,5R)-5-phenyl-2,2-dimethyl-1,3-dioxolan-4-yl)ethoxy)dimethylsilane (Preparation example 284) was used instead of (2-((4R,5R)-5-benzyl-2,2-dimethyl-1,3-dioxolan-4-yl)ethoxy)(tert-butyl)dimethylsilane(Preparation example 243), to obtain the title compound (1.4g, 80~95%).

¹H NMR(400MHz, CDCl₃): $\delta=1.56$ (s, 3H), 1.62(s, 3H), 1.92~2.04(m, 2H), 2.26(q,

$J=3.7, 1H), 3.75\sim3.90(m, 2H), 3.94(td, J=3.9, 8.5, 1H), 5.23(d, J=15.6, 1H),$
 $7.22\sim7.27(m, 1H), 7.33\sim7.39(m, 2H), 7.62(dd, J=1.6, 7.6, 1H)$

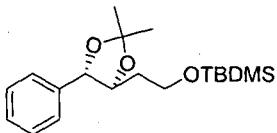
Preparation example 286 : (1S, 2S)-4-(tert-butyldimethylsilyloxy)-1-phenylbutane-1,2-diol



The substantially same method as described in Example 242 was conducted, except that (E)-tert-butyldimethyl(4-phenylbut-3-enyloxy)silane(Preparation example 280) was used instead of (E)-tert-butyldimethyl(5-phenylpent-3-enyloxy)silane (Preparation example 237), to obtain the title compound(0.7g, 70~95%)

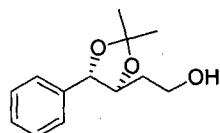
1H NMR(400MHz, $CDCl_3$): $\delta=0.10(s, 3H), 0.11(s, 3H), 0.92(s, 9H), 1.69\sim1.70(m, 1H), 1.93\sim2.07(m, 1H), 3.51(d, J=4.8, 1H), 3.86(d, J=3.2, 1H), 3.87(dd, J=3.2, 9.2, 1H), 3.91\sim3.96(m, 1H), 4.01\sim4.06(m, 1H), 5.05(t, J=4.6, 1H), 7.22\sim7.26(m, 1H), 7.31\sim7.37(m, 2H), 7.59(dd, J=1.2, 7.6, 1H)$

15.


Preparation example 287 : (3S, 4S)-3,4-dihydroxy-4-phenylbutyl pivalate

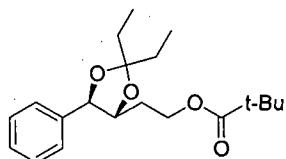
The substantially same method as described in Example 286 was conducted, except that (E)-4-phenylbut-3-enyl pivalate(Preparation example 281) was used instead of (E)-tert-butyldimethyl(4-phenylbut-3-enyloxy)silane(Preparation example 280), to obtain the title compound(10.4g, 70~95%)

1H NMR(400MHz, $CDCl_3$): $\delta=1.18(s, 9H), 1.65\sim1.74(m, 2H), 2.83(d, J=2.4, 1H), 2.96(d, J=3.2, 1H), 3.74\sim3.79(m, 1H), 4.10\sim4.17(m, 1H), 4.33(dd, J=4.0, 7.2, 12.6, 1H), 4.49(d, J=5.6, 1H), 7.31\sim7.41(m, 5H)$


Preparation example 288 : tert-butyl(2-((4S, 5S)-5-phenyl-2,2-dimethyl-1,3-dioxolan-4-yl)ethoxy)dimethylsilane

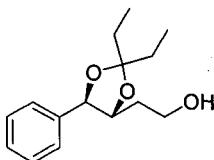
The substantially same method as described in Example 284 was conducted, except that (1S, 2S)-4-(tert-butyldimethylsilyloxy)-1-phenylbutane-1,2-diol (Preparation example 286) was used instead of (1R, 2R)-4-(tert-butyldimethylsilyloxy)-1-phenylbutane-1,2-diol (Preparation example 282), to obtain the title compound(0.7g, 70~95%)

10 ^1H NMR(400MHz, CDCl_3): δ =0.02(s, 3H), 0.07(s, 3H), 0.86(s, 9H), 1.50(s, 3H), 1.58(s, 3H), 1.82~1.99(m, 2H), 3.68~3.78(m, 2H), 3.95(dt, J =3.3, 8.7, 1H), 5.16(d, J =8.4, 1H), 7.21~7.27(m, 1H), 7.31~7.38(m, 2H), 7.60(dd, J =1.6, 7.6, 1H)


Preparation example 289 : 2-((4S, 5S)-5-phenyl-2,2-dimethyl-1,3-dioxolan-4-yl)ethanol

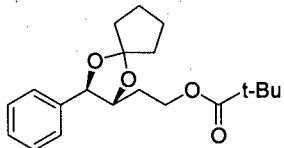
The substantially same method as described in Example 285 was conducted, except that tert-butyl(2-((4S,5S)-5-phenyl-2,2-dimethyl-1,3-dioxolan-4-yl)ethoxy)dimethylsilane (Preparation example 288) was used instead of that tert-butyl(2-((4R,5R)-5-phenyl-2,2-dimethyl-1,3-dioxolan-4-yl)ethoxy)dimethylsilane (Preparation example 284), to obtain the title compound(0.4g, 80~95%)

15 ^1H NMR(400MHz, CDCl_3): δ =1.56(s, 3H), 1.62(s, 3H), 1.92~2.04(m, 2H), 2.26(q, J =3.7, 1H), 3.75~3.90(m, 2H), 3.94(td, J =3.9, 8.5, 1H), 5.23(d, J =15.6, 1H), 7.22~7.27(m, 1H), 7.33~7.39(m, 2H), 7.62(dd, J =1.6, 7.6, 1H)


Preparation example 290 : 2-((4R, 5R)-2,2-diethyl-5-phenyl-1,3-dioxolan-4-yl)ethyl pivalate

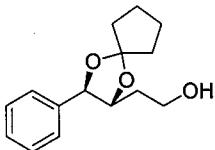
5 The substantially same method as described in Example 264 was conducted, except that (3R, 4R)-3,4-dihydroxy-4-phenylbutyl pivalate(Preparation example 283) was used instead of (4R,5S)-methyl-5-benzyl-2,2-dimethyl-1,3-dioxolane-4-carboxylate (Preparation example 263), to obtain the title compound(1.8g, 70~95%)

10 ^1H NMR(400MHz, CDCl_3): δ =1.00(t, J =7.4, 3H), 1.08(t, J =7.6, 3H), 1.14(s, 9H), 1.76(q, J =7.5, 2H), 1.81~1.89(m, 2H), 1.91~1.98(m, 2H), 3.87(td, J =5.8, 8.8, 1H), 4.13~4.18(m, 1H), 4.22~4.28(m, 1H), 4.58(d, J =8.8, 1H), 7.31~7.43(m, 5H)


Preparation example 291 : 2-((4R, 5R)-2,2-diethyl-5-phenyl-1,3-dioxolan-4-yl)ethyl pivalate

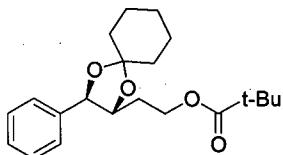
15 The substantially same method as described in Example 258 was conducted, except that 2-((4R, 5R)-2,2-diethyl-5-phenyl-1,3-dioxolan-4-yl)ethyl pivalate (Preparation example 290) was used instead of 2-((2R, 3R)-3-benzyl-1,4-dioxaspiro[4.5]decan-2-yl)ethyl pivalate (Preparation example 257), to obtain the title compound (0.9g, 80~95%)

20 ^1H NMR(400MHz, CDCl_3): δ =1.01(t, J =7.4, 3H), 1.07(t, J =7.6, 3H), 1.79(q, J =7.5, 2H), 1.83~1.90(m, 4H), 2.38(q, J =3.7, 1H), 3.75~3.87(m, 2H), 3.90~3.95(m, 1H), 4.63(d, J =8.8, 1H), 7.32~7.43(m, 5H)


Preparation example 292 : 2-((2R, 3R)-3-phenyl-1,4-dioxaspiro[4.4]nonan-2-yl)ethyl pivalate

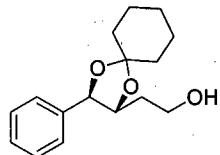
5 The substantially same method as described in Example 290 was conducted, except that cyclopentanone was used instead of 3-pantanone, to obtain the title compound(1.8g, 60~85%)

10 ^1H NMR(400MHz, CDCl_3): δ =1.14(s, 9H), 1.67~1.83(m, 4H), 1.88~2.07(m, 6H),
 J =6.0, 8.4, 1H), 4.13(td, J =7.0, 11.1, 1H), 4.24(td, J =6.4, 11.2, 1H), 4.55(d,
 J =8.4, 1H), 7.31~7.39(m, 5H)


Preparation example 293 : 2-((2R, 3R)-3-phenyl-1,4-dioxaspiro[4.4]nonan-2-yl)ethanol

15 The substantially same method as described in Example 291 was conducted, except that 2-((2R, 3R)-3-phenyl-1,4-dioxaspiro[4.4]nonan-2-yl)ethyl pivalate(Preparation example 292) was used instead of that 2-((4S,5S)-2,2-diethyl-5-phenyl-1,3-dioxolan-4-yl)ethyl pivalate(Preparation example 290), to obtain the title compound (0.9g, 80~95%)

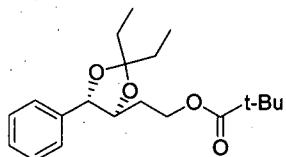
20 ^1H NMR(400MHz, CDCl_3): δ =1.71~1.81(m, 4H), 1.87~2.07(m, 6H), 2.27(q, J =3.7, 1H), 3.79~3.85(m, 2H), 3.89~3.92(m, 1H), 4.59(d, J =8.4, 1H), 7.32~7.41(m, 5H)


Preparation example 294 : 2-((2R, 3R)-3-phenyl-1,4-

dioxaspiro[4.5]decan-2-yl)ethyl pivalate

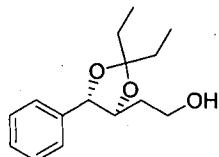
The substantially same method as described in Example 292 was conducted, except that cyclohexanone was used instead of cyclopentanone, to obtain the title compound(2.0g, 60~85%)

¹H NMR(400MHz, CDCl₃): δ=1.14(s, 9H), 1.67~1.83(m, 4H), 1.88~2.07(m, 6H), 3.84(td, J=6.0, 8.4, 1H), 4.10~4.17(m, 1H), 4.21~4.27(m, 1H), 4.55(d, J=8.4, 1H), 7.31~7.39(m, 5H)


10 **Preparation example 295 : 2-((2R, 3R)-3-phenyl-1,4-dioxaspiro[4.5]decan-2-yl)ethanol**

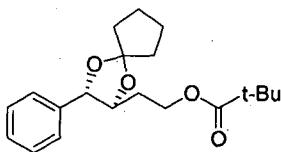
The substantially same method as described in Example 293 was conducted, except that 2-((2R, 3R)-3-phenyl-1,4-dioxaspiro[4.5]decan-2-yl)ethyl pivalate(Preparation example 294) was used instead of that 2-((2R, 3R)-3-phenyl-1,4-dioxaspiro[4.4]nonan-2-yl)ethyl pivalate (Preparation example 292), to obtain the title compound (1.2g, 80~95%)

¹H NMR(400MHz, CDCl₃): δ=1.71~1.83(m, 4H), 1.87~2.05(m, 6H), 2.27(q, J=3.7, 1H), 3.79~3.85(m, 2H), 3.86~3.91(m, 1H), 4.59(d, J=8.4, 1H), 7.32~7.41(m, 5H)


20 **Preparation example 296 : 2-((4S, 5S)-2,2-diethyl-5-phenyl-1,3-dioxolan-4-yl)ethyl pivalate**

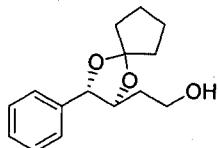
The substantially same method as described in Example 290 was conducted, except that (3S, 4S)-3,4-dihydroxy-4-phenylbutyl pivalate(Preparation example 287) was used instead of (3R, 4R)-3,4-dihydroxy-4-phenylbutyl pivalate(Preparation example 283), to obtain the title compound(2.2g, 70~95%)

¹H NMR(400MHz, CDCl₃): δ=1.00(t, J=7.4, 3H), 1.08(t, J=7.6, 3H), 1.14(s, 9H), 1.76(q, J=7.5, 2H), 1.81~1.89(m, 2H), 1.91~1.98(m, 2H), 3.87(td, J=5.8, 8.8, 1H), 4.13~4.18(m, 1H), 4.22~4.28(m, 1H), 4.58(d, J=8.8, 1H), 7.31~7.43(m, 5H)


10 **Preparation example 297 : 2-((4S, 5S)-2,2-diethyl-5-phenyl-1,3-dioxolan-4-yl)ethyl pivalate**

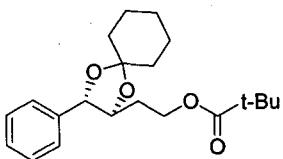
The substantially same method as described in Example 295 was conducted, except 2-((4S, 5S)-2,2-diethyl-5-phenyl-1,3-dioxolan-4-yl)ethyl pivalate (Preparation example 296) was used instead of 2-((2R, 3R)-3-phenyl-1,4-dioxaspiro[4.5]decan-2-yl)ethyl pivalate (Preparation example 294), to obtain the title compound (0.7g, 80~95%)

¹H NMR(400MHz, CDCl₃): δ=1.01(t, J=7.4, 3H), 1.07(t, J=7.6, 3H), 1.79(q, J=7.5, 2H), 1.83~1.90(m, 4H), 2.38(q, J=3.7, 1H), 3.75~3.87(m, 2H), 3.90~3.95(m, 1H), 4.63(d, J=8.8, 1H), 7.32~7.43(m, 5H)


Preparation example 298 : 2-((2S, 3S)-3-phenyl-1,4-dioxaspiro[4.4]nonan-2-yl)ethyl pivalate

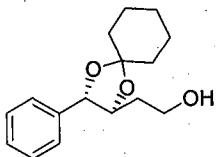
The substantially same method as described in Example 296 was conducted, except that cyclopentanone was used instead of 3-pantanone, to obtain the title compound(2.4g, 60~85%)

5 ¹H NMR(400MHz, CDCl₃): δ=1.14(s, 9H), 1.67~1.83(m, 4H), 1.88~2.07(m, 6H),
3.84(td, J=6.0, 8.4, 1H), 4.13(td, J=7.0, 11.1, 1H), 4.24(td, J=6.4, 11.2, 1H), 4.55(d,
J=8.4, 1H), 7.31~7.39(m, 5H)


10 Preparation example 299 : 2-((2S, 3S)-3-phenyl-1,4-
dioxaspiro[4.4]nonan-2-yl)ethanol

The substantially same method as described in Example 297 was conducted, except that 2-((2S, 3S)-3-phenyl-1,4-dioxaspiro[4.4]nonan-2-yl)ethyl pivalate(Preparation example 298) was used instead of that 2-((4S, 5S)-2,2-diethyl-15 5-phenyl-1,3-dioxolan-4-yl)ethyl pivalate(Preparation example 296), to obtain the title compound (07g, 80~95%)

15 ¹H NMR(400MHz, CDCl₃): δ=1.71~1.81(m, 4H), 1.87~2.07(m, 6H), 2.27(q, J=3.7,
1H), 3.79~3.85(m, 2H), 3.89~3.92(m, 1H), 4.59(d, J=8.4, 1H), 7.32~7.41(m, 5H)


20 Preparation example 300 : 2-((2S, 3S)-3-phenyl-1,4-
dioxaspiro[4.5]decan-2-yl)ethyl pivalate

The substantially same method as described in Example 298 was conducted, except that cyclohexanone was used instead of cyclopentanone, to obtain the title compound(2.4g, 60~85%)

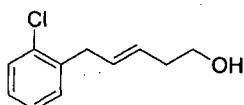
5 ^1H NMR(400MHz, CDCl_3): $\delta=1.14(\text{s}, 9\text{H})$, $1.67\sim1.83(\text{m}, 4\text{H})$, $1.88\sim2.07(\text{m}, 6\text{H})$,
 3.84(td, $J=6.0, 8.4, 1\text{H}$), $4.10\sim4.17(\text{m}, 1\text{H})$, $4.21\sim4.27(\text{m}, 1\text{H})$, $4.55(\text{d}, J=8.4, 1\text{H})$,
 7.31~7.39(m, 5H)

10 **Preparation example 301 : 2-((2S, 3S)-3-phenyl-1,4-dioxaspiro[4.5]decan-2-yl)ethanol**

The substantially same method as described in Example 299 was conducted, except that 2-((2S, 3S)-3-phenyl-1,4-dioxaspiro[4.5]decan-2-yl)ethyl pivalate(Preparation example 300) was used instead of that 2-((2S, 3S)-3-phenyl-1,4-dioxaspiro[4.4]nonan-2-yl)ethyl pivalate(Preparation example 298), to obtain the title compound (1.2g, 80~95%)

15 ^1H NMR(400MHz, CDCl_3): $\delta=1.71\sim1.83(\text{m}, 4\text{H})$, $1.87\sim2.05(\text{m}, 6\text{H})$, $2.27(\text{q}, J=3.7, 1\text{H})$, $3.79\sim3.85(\text{m}, 2\text{H})$, $3.86\sim3.91(\text{m}, 1\text{H})$, $4.59(\text{d}, J=8.4, 1\text{H})$, $7.32\sim7.41(\text{m}, 5\text{H})$

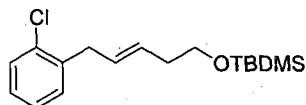
20 **Preparation example 302 : (E)-5-(2-chlorophenyl)pent-3-enoic acid**


The substantially same method as described in Example 235 was conducted,

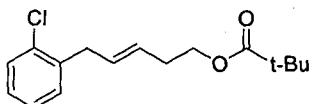
except that 3-(2-chlorophenyl)propanal was used instead of that hydrocinnamaldehyde (6.1g, 70~90%)

¹H NMR(400MHz, CDCl₃): δ=3.15(dd, J=0.8, 6.8, 2H), 3.53(d, J=6.4, 2H), 5.61~5.69(m, 1H), 5.75~5.82(m, 1H), 7.16~7.28(m, 3H), 7.36~7.38(m, 1H)

5

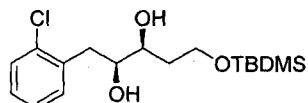

Preparation example 303 : (E)-5-(2-chlorophenyl)pent-3-en-1-ol

The substantially same method as described in Example 236 was conducted, except that (E)-5-(2-chlorophenyl)pent-3-enoic acid(Preparation example 302) was 10 used instead of that (E)-5-phenylpent-3-enoic acid(Preparation example 235), to obtain the title compound (4.6g, 70~90%)


¹H NMR(400MHz, CDCl₃): δ=2.33(dq, J=1.0, 6.5, 2H), 3.50(dd, J=1.8, 5.0, 2H), 3.67(q, J=6.0, 2H), 5.45~5.53(m, 1H), 5.70~5.77(m, 1H), 7.15~7.37(m, 4H)

15 **Preparation example 304 : (E)-tert-butyl(5-(2-chlorophenyl)pent-3-enyloxy)dimethylsilane**

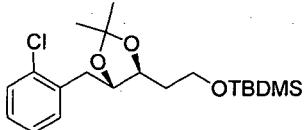
The substantially same method as described in Example 237 was conducted, except that (E)-5-(2-chlorophenyl)pent-3-en-1-ol (Preparation example 303) was 20 used instead of that (E)-5-phenylpent-3-en-1-ol (Preparation example 236), to obtain the title compound (4.9g, 75~95%)


¹H NMR(400MHz, CDCl₃): δ=0.60(s, 6H), 0.90(s, 9H), 2.28(dq, J=1.0, 6.7, 2H), 3.47(d, J=6.4, 2H), 3.65(t, J=6.8, 2H), 5.49~5.56(m, 1H), 5.62~5.70(m, 1H), 7.14~7.36(m, 4H)

Preparation example 305 : (E)-5-(2-chlorophenyl)pent-3-enyl pivalate

The substantially same method as described in Example 238 was conducted, except that (E)-5-(2-chlorophenyl)pent-3-en-1-ol (Preparation example 303) was used instead of that (E)-5-phenylpent-3-en-1-ol (Preparation example 236), to obtain the title compound (7.2g, 75~95%)

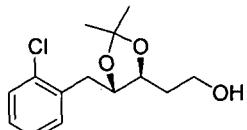
¹H NMR(400MHz, CDCl₃): δ=1.18(s, 9H), 2.36(q, J=6.7, 2H), 3.45(d, J=6.4, 2H), 4.08(t, J=6.6, 2H), 5.43~5.50(m, 1H), 5.63~5.70(m, 1H), 7.12~7.35(m, 4H)


10 **Preparation example 306 : (2S, 3S)-5-(tert-butyldimethylsilyloxy)-1-(2-chlorophenyl)pentane-2,3-diol**

The substantially same method as described in Example 239 was conducted, except that (E)-tert-butyl(5-(2-chlorophenyl)pent-3-enyloxy)dimethylsilane (Preparation example 304) was used instead of that (E)-tert-butyldimethyl(5-phenylpent-3-enyloxy)silane (Preparation example 237), to obtain the title compound (2.8g, 90%)

15 ¹H NMR(400MHz, CDCl₃): δ=0.11(s, 6H), 0.92(s, 9H), 1.68~1.77(m, 1H), 1.87~1.96(m, 1H), 2.64(d, J=6.0, 1H), 2.93(dd, J=8.2, 13.4, 1H), 3.07(dd, J=4.8, 20 13.6, 1H), 3.68(d, J=3.2, 1H), 3.76~3.96(m, 4H), 7.17~7.25(m, 2H), 7.35~7.39(m, 2H)

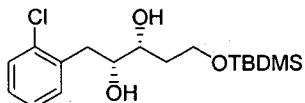
Preparation example 307 : (2-(4S, 5S)-5-(2chlorobenzyl)-2,2-dimethyl-1,3-dioxolan-4-yl)ethoxy(tert-butyl)dimethylsilane



The substantially same method as described in Example 240 was conducted, except that (2S, 3S)-5-(tert-butyldimethylsilyloxy)-1-(2-chlorophenyl)pentane-2,3-diol (Preparation example 306) was used instead of that (2S,3S)-5-(tert-butyldimethylsilyloxy)-1-phenylpentane-2,3-diol (Preparation example 239), to obtain the title compound (3.6g, 75~90%)

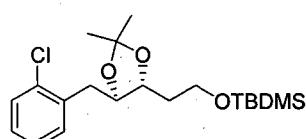
¹H NMR(400MHz, CDCl₃): δ=0.06(s, 6H), 0.91(s, 9H), 1.39(s, 3H), 1.40(s, 3H), 1.69(q, J=6.5, 2H), 3.05(dq, J=5.8, 15.1, 2H), 3.70~3.80(m, 2H), 3.86~3.93(m, 1H), 3.97~4.02(m, 1H), 7.17~7.25(m, 2H), 7.36~7.38(m, 2H)

10


Preparation example 308 : 2-((4S,5S)-5-(2-chlorobenzyl)-2,2-dimethyl-1,3-dioxolan-4-yl)ethanol

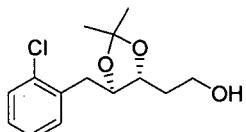
The substantially same method as described in Example 241 was conducted, except that (2-(4S, 5S)-5-(2chlorobenzyl)-2,2-dimethyl-1,3-dioxolan-4-yl)ethoxy(tert-butyl)dimethylsilane (Preparation example 307) was used instead of that (2-(4S,5S)-5-benzyl-2,2-dimethyl-1,3-dioxolan-4-yl)ethoxy(tert-butyl)dimethylsilane (Preparation example 240), to obtain the title compound (3.2g, 80~95%)

¹H NMR(400MHz, CDCl₃): δ=1.38(s, 3H), 1.40(s, 3H), 1.50~1.63(m, 2H), 2.29(t, J=5.4, 1H), 2.82(dd, J=5.8, 13.8, 1H), 3.01(dd, J=6.4, 14.0, 1H), 3.72(q, J=5.5, 2H), 3.86(dt, J=3.2, 8.4, 1H), 3.92~3.97(m, 1H), 7.17~7.25(m, 2H), 7.36~7.38(m, 2H)


Preparation example 309 : (2R, 3R)-5-(tert-butyldimethylsilyloxy)-1-(2-chlorophenyl)pentane-2,3-diol

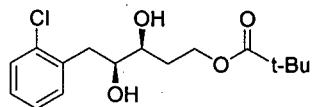
The substantially same method as described in Example 242 was conducted,
 5 except that (E)-tert-butyl(5-(2-chlorophenyl)pent-3-enyloxy)dimethylsilane
 (Preparation example 304) was used instead of that (E)-tert-butyldimethyl(5-phenylpent-3-enyloxy)silane(Preparation example 237), to obtain the title compound (4.4g, 90%)

10 ^1H NMR(400MHz, CDCl_3): δ =0.11(s, 6H), 0.92(s, 9H), 1.68~1.77(m, 1H),
 1.87~1.96(m, 1H), 2.64(d, J =6.0, 1H), 2.93(dd, J =8.2, 13.4, 1H), 3.07(dd, J =4.8, 13.6, 1H), 3.68(d, J =3.2, 1H), 3.76~3.96(m, 4H), 7.17~7.25(m, 2H), 7.35~7.39(m, 2H)


Preparation example 310 : (2-(4R, 5R)-5-(2chlorobenzyl)-2,2-dimethyl-1,3-dioxolan-4-yl)ethoxy)(tert-butyl)dimethylsilane

The substantially same method as described in Example 307 was conducted,
 except that (2R, 3R)-5-(tert-butyldimethylsilyloxy)-1-(2-chlorophenyl)pentane-2,3-diol(Preparation example 309) was used instead of (2S, 3S)-5-(tert-butyldimethylsilyloxy)-1-(2-chlorophenyl)pentane-2,3-diol (Preparation example 306), to obtain the title compound (4.6g, 70~95%)

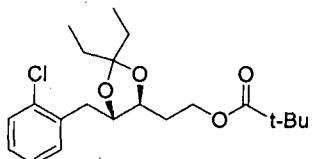
20 ^1H NMR(400MHz, CDCl_3): δ =0.06(s, 6H), 0.91(s, 9H), 1.39(s, 3H), 1.40(s, 3H), 1.69(q, J =6.5, 2H), 3.05(dq, J =5.8, 15.1, 2H), 3.70~3.80(m, 2H), 3.86~3.93(m, 1H), 3.97~4.02(m, 1H), 7.17~7.25(m, 2H), 7.36~7.38(m, 2H)


Preparation example 311 : 2-((4R,5R)-5-(2-chlorobenzyl)-2,2-dimethyl-1,3-dioxolan-4-yl)ethanol

5 The substantially same method as described in Example 241 was conducted, except that (2-(4S, 5S)-5-(2chlorobenzyl)-2,2-dimethyl-1,3-dioxolan-4-yl)ethoxy)(tert-butyl)dimethylsilane (Preparation example 307) was used instead of that (2-(4S, 5S)-5-benzyl-2,2-dimethyl-1,3-dioxolan-4-yl)ethoxy)(tert-butyl)dimethylsilane (Preparation example 240), to obtain the title compound (3.0g, 10 80~95%)

¹H NMR(400MHz, CDCl₃): δ=1.38(s, 3H), 1.40(s, 3H), 1.50~1.63(m, 2H), 2.29(t, J=5.4, 1H), 2.82(dd, J=5.8, 13.8, 1H), 3.01(dd, J=6.4, 14.0, 1H), 3.72(q, J=5.5, 2H), 3.86(dt, J=3.2, 8.4, 1H), 3.92~3.97(m, 1H), 7.17~7.25(m, 2H), 7.36~7.38(m, 2H)

15 **Preparation example 312 : (3S,4S)-3,4-dihydroxy-5-(2chlorophenyl)pentyl pivalate**

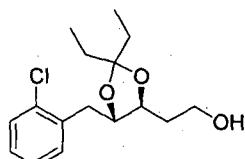


The substantially same method as described in Example 306 was conducted, except that (E)-5-(2-chlorophenyl)pent-3-enyl pivalate (Preparation example 305) was used instead of (E)-tert-butyl(5-(2-chlorophenyl)pent-3-enyloxy)dimethylsilane (Preparation example 304), to obtain the title compound(6.0g, 70~95%)

¹H NMR(400MHz, CDCl₃): δ=1.16(s, 9H), 1.85~1.91(m, 2H), 2.17(d, J=6.0, 1H), 2.73(d, J=5.2, 1H), 2.91(dd, J=8.4, 13.6, 1H), 3.08(dd, J=5.6, 13.6, 1H), 3.52~3.55(m, 1H), 3.77~3.80(m, 1H), 4.11~4.19(m, 1H), 4.37~4.41(m, 1H),

7.18~7.23(m, 2H), 7.31(dd, $J=2.2, 7.0, 1H$), 7.36(dd, $J=1.8, 7.4, 1H$)

Preparation example 313 : 2-((4S,5S)-5-(2-chlorobenzyl)-2,2-diethyl-1,3-dioxolan-4-yl)ethyl pivalate

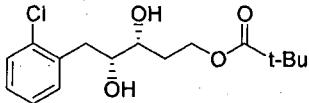


5

The substantially same method as described in Example 246 was conducted, except that (3S,4S)-3,4-dihydroxy-5-(2chlorophenyl)pentyl pivalate(Preparation example 312) was used instead of (3S,4S)-3,4-dihydroxy-5-phenylpentyl pivalate (Preparation example 245), to obtain the title compound(1.7g, 70~95%)

10 ^1H NMR(400MHz, CDCl_3): $\delta=0.90(\text{t}, J=7.4, 6\text{H})$, 1.21(s, 9H), 1.58~1.66(m, 4H), 1.70~1.77(m, 2H), 3.06(d, $J=5.6, 2\text{H}$), 3.81~3.86(m, 1H), 3.94~3.99(m, 1H), 4.15~4.25(m, 2H), 7.18~7.24(m, 2H), 7.36~7.38(m, 2H)

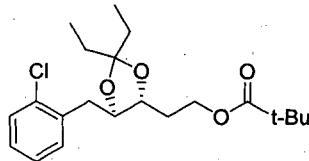
Preparation example 314 : 2-((4S,5S)-5-(2-chlorobenzyl)-2,2-dimethyl-1,3-dioxolan-4-yl)ethanol



15 The substantially same method as described in Example 247 was conducted, except that 2-((4S,5S)-5-(2-chlorobenzyl)-2,2-diethyl-1,3-dioxolan-4-yl)ethyl pivalate (Preparation example 313) was used instead of 2-((4S,5S)-5-benzyl-2,2-diethyl-1,3-dioxolan-4-yl)ethyl pivalate(Preparation example 246), to obtain the title compound (0.9g, 80~95%);

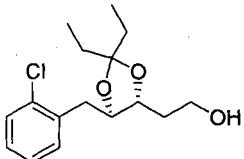
20 ^1H NMR(400MHz, CDCl_3): $\delta=0.91(\text{dt}, J=2.5, 7.5, 6\text{H})$, 1.46~1.79(m, 6H), 2.42(t, $J=5.6, 1\text{H}$), 3.01~3.12(m, 2H), 3.79(q, $J=5.6, 2\text{H}$), 3.88~3.93(m, 1H), 3.98~4.06(m,

1H), 7.18~7.25(m, 2H), 7.35~7.39(m, 2H)


Preparation example 315 : (3R,4R)-3,4-dihydroxy-5-(2-chlorophenyl)pentyl pivalate

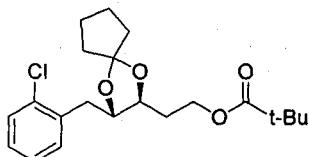
The substantially same method as described in Example 309 was conducted, except that (E)-5-(2-chlorophenyl)pent-3-enyl pivalate (Preparation example 305) was used instead of (E)-tert-butyl(5-(2-chlorophenyl)pent-3-enyloxy)dimethylsilane (Preparation example 304), to obtain the title compound (4.4g, 70~95%)

¹⁰ ¹H NMR(400MHz, CDCl₃): δ=0.11(s, 6H), 0.92(s, 9H), 1.68~1.77(m, 1H), 1.87~1.96(m, 1H), 2.64(d, J=6.0, 1H), 2.93(dd, J=8.2, 13.4, 1H), 3.07(dd, J=4.8, 13.6, 1H), 3.68(d, J=3.2, 1H), 3.76~3.96(m, 4H), 7.17~7.25(m, 2H), 7.35~7.39(m, 2H)


¹⁵ **Preparation example 316 : 2-((4R, 5R)-5-(2-chlorobenzyl)-2,2-diethyl-1,3-dioxolan-4-yl)ethyl pivalate**

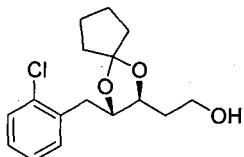
The substantially same method as described in Example 313 was conducted, except that (3R, 4R)-3,4-dihydroxy-5-(2chlorophenyl)pentyl pivalate (Preparation example 315) was used instead of (3S, 4S)-3,4-dihydroxy-5-(2chlorophenyl)pentyl pivalate (Preparation example 312), to obtain the title compound(1.7g, 70~95%)

¹H NMR(400MHz, CDCl₃): δ=0.90(t, J=7.4, 6H), 1.21(s, 9H), 1.58~1.66(m, 4H), 1.70~1.77(m, 2H), 3.06(d, J=5.6, 2H), 3.81~3.86(m, 1H), 3.94~3.99(m, 1H), 4.15~4.25(m, 2H), 7.18~7.24(m, 2H), 7.36~7.38(m, 2H)


Preparation example 317 : 2-((4R, 5R)-5-(2-chlorobenzyl)-2,2-dimethyl-1,3-dioxolan-4-yl)ethanol

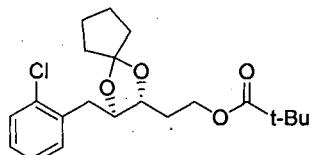
5 The substantially same method as described in Example 314 was conducted, except that 2-((4R, 5R)-5-(2-chlorobenzyl)-2,2-dimethyl-1,3-dioxolan-4-yl)ethyl pivalate (Preparation example 316) was used instead of 2-((4S, 5S)-5-(2-chlorobenzyl)-2,2-dimethyl-1,3-dioxolan-4-yl)ethyl pivalate(Preparation example 313), to obtain the title compound (0.9g, 80~95%)

10 ^1H NMR(400MHz, CDCl_3): δ =0.91(dt, J =2.5, 7.5, 6H), 1.46~1.79(m, 6H), 2.42(t, J =5.6, 1H), 3.01~3.12(m, 2H), 3.79(q, J =5.6, 2H), 3.88~3.93(m, 1H), 3.98~4.06(m, 1H), 7.18~7.25(m, 2H), 7.35~7.39(m, 2H)


Preparation example 318 : 2-((2S, 3S)-3-(2-chlorobenzyl)-1,4-dioxaspiro[4.4]nonan-2-yl)ethyl pivalate

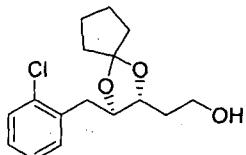
15 The substantially same method as described in Example 313 was conducted, except that cyclopentanone was used instead of 3-pantanone, to obtain the title compound (1.2g, 60~85%)

20 ^1H NMR(400MHz, CDCl_3): δ =1.21(s, 9H), 1.64~1.74(m, 5H), 1.75~1.88(m, 5H), 3.03~3.11(m, 2H), 3.81~3.86(m, 1H), 3.97(q, J =6.5, 1H), 4.12~4.22(m, 2H), 7.18~7.25(m, 2H), 7.34~7.39(m, 2H)


Preparation example 319 : 2-((2S, 3S)-3-(2-chlorobenzyl)-1,4-dioxaspiro[4.4]nonan-2-yl)ethanol

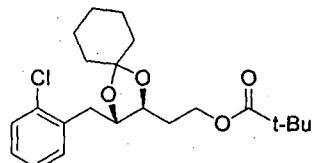
The substantially same method as described in Example 317 was conducted,
 5 except that 2-((2S,3S)-3-(2-chlorobenzyl)-1,4-dioxaspiro[4.4]nonan-2-yl)ethyl pivalate (Preparation example 318) was used instead of 2-((4R, 5R)-5-(2-chlorobenzyl)-2,2-diethyl-1,3-dioxolan-4-yl)ethyl pivalate(Preparation example 316), to obtain the title compound (0.7g, 80~95%)

10 ^1H NMR(400MHz, CDCl_3): δ =1.62~1.74(m, 6H), 1.75~1.88(m, 4H), 2.28(t, J =5.6, 1H), 3.03~3.12(m, 2H), 3.78(q, J =5.6, 1H), 3.88~3.95(m, 1H), 3.97~4.06(m, 1H), 7.18~7.26(m, 2H), 7.34~7.39(m, 2H)


Preparation example 320 : 2-((2R, 3R)-3-(2-chlorobenzyl)-1,4-dioxaspiro[4.4]nonan-2-yl)ethyl pivalate

15 The substantially same method as described in Example 316 was conducted, except that cyclopentanone was used instead of 3-pantanone, to obtain the title compound(1.4g, 60~85%)

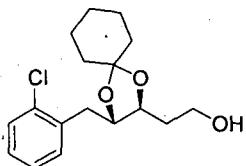
20 ^1H NMR(400MHz, CDCl_3): δ =1.21(s, 9H), 1.64~1.74(m, 5H), 1.75~1.88(m, 5H), 3.03~3.11(m, 2H), 3.81~3.86(m, 1H), 3.97(q, J =6.5, 1H), 4.12~4.22(m, 2H), 7.18~7.25(m, 2H), 7.34~7.39(m, 2H)


Preparation example 321 : 2-((2R, 3R)-3-(2-chlorobenzyl)-1,4-

dioxaspiro[4.4]nonan-2-yl)ethanol

The substantially same method as described in Example 319 was conducted, except that 2-((2R, 3R)-3-(2-chlorobenzyl)-1,4-dioxaspiro[4.4]nonan-2-yl)ethyl pivalate (Preparation example 320) was used instead of 2-((2S,3S)-3-(2-chlorobenzyl)-1,4-dioxaspiro[4.4]nonan-2-yl)ethyl pivalate (Preparation example 318), to obtain the title compound (0.8g, 80~95%)

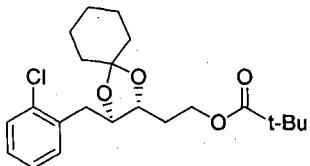
¹H NMR(400MHz, CDCl₃): δ=1.62~1.74(m, 6H), 1.75~1.88(m, 4H), 2.28(t, J=5.6, 1H), 3.03~3.12(m, 2H), 3.78(q, J=5.6, 1H), 3.88~3.95(m, 1H), 3.97~4.06(m, 1H), 7.18~7.26(m, 2H), 7.34~7.39(m, 2H)


Preparation example 322 : 2-((2S, 3S)-3-(2-chlorobenzyl)-1,4-dioxaspiro[4.5]decan-2-yl)ethyl pivalate

The substantially same method as described in Example 318 was conducted, except that cyclohexanone was used instead of cyclopentanone, to obtain the title compound (1.1g, 60~85%)

¹H NMR(400MHz, CDCl₃): δ=1.21(s, 9H), 1.58~1.61(m, 8H), 1.77(q, J=6.8, 2H), 3.07(d, J=6.0, 2H), 3.81~3.88(m, 1H), 3.96~4.01(m, 1H), 4.16~4.22(m, 2H), 7.17~7.25(m, 2H), 7.36~7.39(m, 2H)

Preparation example 323 : 2-((2S, 3S)-3-(2-chlorobenzyl)-1,4-dioxaspiro[4.5]decan-2-yl)ethanol

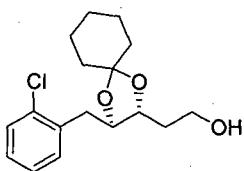


The substantially same method as described in Example 321 was conducted, except that 2-((2S, 3S)-3-(2-chlorobenzyl)-1,4-dioxaspiro[4.5]decan-2-yl)ethyl pivalate (Preparation example 322) was used instead of 2-((2R, 3R)-3-(2-chlorobenzyl)-1,4-dioxaspiro[4.4]nonan-2-yl)ethyl pivalate (Preparation example 320), to obtain the title compound (0.7g, 80~95%)

¹H NMR(400MHz, CDCl₃): δ=1.51~1.64(m, 8H), 1.65~1.74(m, 2H), 2.59~2.63(m, 1H), 3.06(d, J=6.0, 2H), 3.76~3.78(m, 2H), 3.89~3.94(m, 1H), 3.99~4.04(m, 1H), 7.16~7.24(m, 2H), 7.35~7.38(m, 2H)

10

Preparation example 324 : 2-((2R, 3R)-3-(2-chlorobenzyl)-1,4-dioxaspiro[4.5]decan-2-yl)ethyl pivalate

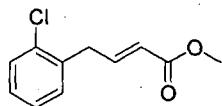


The substantially same method as described in Example 320 was conducted, except that cyclohexanone was used instead of cyclopentanone, to obtain the title compound (1.5g, 60~85%)

¹H NMR(400MHz, CDCl₃): δ=1.21(s, 9H), 1.58~1.61(m, 8H), 1.77(q, J=6.8, 2H), 3.07(d, J=6.0, 2H), 3.81~3.88(m, 1H), 3.96~4.01(m, 1H), 4.16~4.22(m, 2H), 7.17~7.25(m, 2H), 7.36~7.39(m, 2H)

20

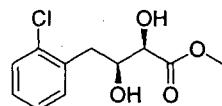
Preparation example 325 : 2-((2R, 3R)-3-(2-chlorobenzyl)-1,4-dioxaspiro[4.5]decan-2-yl)ethanol



The substantially same method as described in Example 323 was conducted, except that 2-((2R, 3R)-3-(2-chlorobenzyl)-1,4-dioxaspiro[4.5]decan-2-yl)ethyl pivalate (Preparation example 324) was used instead of 2-((2S, 3S)-3-(2-chlorobenzyl)-1,4-dioxaspiro[4.5]decan-2-yl)ethyl pivalate (Preparation example 322), to obtain the title compound (0.9g, 80~95%)

¹H NMR(400MHz, CDCl₃): δ=1.51~1.64(m, 8H), 1.65~1.74(m, 2H), 2.59~2.63(m, 1H), 3.06(d, J=6.0, 2H), 3.76~3.78(m, 2H), 3.89~3.94(m, 1H), 3.99~4.04(m, 1H), 7.16~7.24(m, 2H), 7.35~7.38(m, 2H)

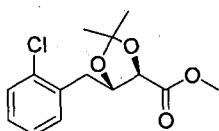
10


Preparation example 326 : (E)-methyl-4-(2-chlorophenyl)but-2-enoate

The substantially same method as described in Example 259 was conducted, except that 2-chlorophenyl acetaldehyde was used instead of phenyl acetaldehyde, to obtain the title compound (5.0g, 65~85%)

¹H NMR(400MHz, CDCl₃): δ=3.47(d, J=6.8, 2H), 3.67(s, 3H), 5.79(d, J=15.4, 1H), 7.06(dt, J=15.4, 6.8, 1H), 7.12~7.28(m, 4H)

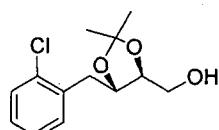
Preparation example 327 : (2R, 3S)-methyl-4-(2chlorophenyl)-2,3-dihydroxybutanoate


The substantially same method as described in Example 260 was conducted, except that (E)-methyl-4-(2-chlorophenyl)but-2-enoate(Preparation example 326)

was used instead of (E)-methyl-4-phenylbut-2-enoate(Preparation example 259), to obtain the title compound(3.0g, 70~95%)

¹H NMR(400MHz, CDCl₃): δ=3.08~3.17(m, 2H), 3.84(s, 3H), 4.12(dd, J=1.6, 5.2, 1H), 4.28~4.34(m, 1H), 7.20~7.27(m, 2H), 7.33~7.36(m, 1H), 7.39~7.41(m, 1H)

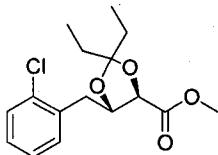
5


Preparation example 328 : (4R, 5S)-methyl-5-(2-chlorobenzyl)-2,2-dimethyl-1,3-dioxolane-4-carboxylate

The substantially same method as described in Example 261 was conducted, except that (2R, 3S)-methyl-4-(2chlorophenyl)-2,3-dihydroxybutanoate(Preparation example 327) was used instead of (2R, 3S)-methyl 2,3-dihydroxy-4-phenylbutanoate(Preparation example 260), to obtain the title compound(0.6g, 70~95%)

¹H NMR(400MHz, CDCl₃): δ=1.45(s, 3H), 1.49(s, 3H), 3.11(dd, J=7.6, 14.4, 1H), 3.35(dd, J=4.4, 14.4, 1H), 3.74(s, 3H), 4.30(d, J=7.6, 1H), 4.50(dt, J=4.0, 7.6, 1H), 7.19~7.26(m, 2H), 7.36~7.40(m, 2H)

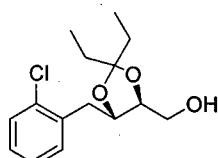
Preparation example 329 : ((4S, 5S)-5-(2-chlorobenzyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol



The substantially same method as described in Example 262 was conducted, except that (4R,5S)-methyl-5-(2-chlorobenzyl)-2,2-dimethyl-1,3-dioxolane-4-carboxylate (Preparation example 328) was used instead of (4R,5S)-methyl 5-benzyl-

2,2-dimethyl-1,3-dioxolane-4-carboxylate(Preparation example 261), to obtain the title compound(0.5g, 70~95%)

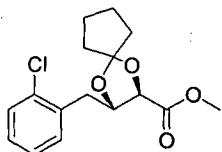
¹H NMR(400MHz, CDCl₃): δ=1.43(s, 6H), 1.83(q, J=4.3, 1H), 3.06~3.17(m, 2H), 3.45(dd, J=4.6, 7.4, 12.0, 1H), 3.68(ddd, J=3.2, 5.2, 12.0, 1H), 3.91(ddd, J=3.3, 4.7, 8.0, 1H), 4.22~4.27(m, 1H), 7.20~7.26(m, 2H), 7.35~7.40(m, 2H)


Preparation example 330 : (4R,5S)-methyl-5-(2-chlorobenzyl)-2,2-diethyl-1,3-dioxolane-4-carboxylate

The substantially same method as described in Example 263 was conducted, except that (2R, 3S)-methyl-4-(2chlorophenyl)-2,3-dihydroxybutanoate(Preparation example 327) was used instead of (2R, 3S)-methyl 2,3-dihydroxy-4-phenylbutanoate(Preparation example 260), to obtain the title compound(0.8g, 50~75%)

¹H NMR(400MHz, CDCl₃): δ=0.93(t, J=7.4, 6H), 1.67~1.74(m, 4H), 3.10(dd, J=8.0, 14.4, 1H), 3.35(dd, J=4.0, 14.4, 1H), 3.73(s, 3H), 4.27(d, J=8.4, 1H), 4.42~4.47(m, 1H), 7.18~7.26(m, 2H), 7.37~7.40(m, 2H)

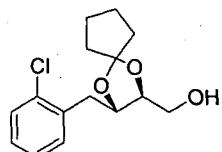
Preparation example 331 : ((4S, 5S)-5-(2-chlorobenzyl)-2,2-diethyl-1,3-dioxolan-4-yl)methanol



The substantially same method as described in Example 329 was conducted, except that (4R,5S)-methyl-5-(2-chlorobenzyl)-2,2-dimethyl-1,3-dioxolane-4-

carboxylate (Preparation example 330) was used instead of (4R,5S)-methyl-5-(2-chlorobenzyl)-2,2-dimethyl-1,3-dioxolane-4-carboxylate(Preparation example 328), to obtain the title compound(0.6g, 70~95%)

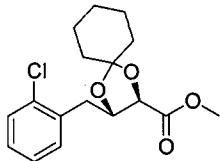
15 ^1H NMR(400MHz, CDCl_3): δ =0.93(dt, J =2.1, 7.5, 6H), 1.62~1.70(m, 4H), 1.83(q, J =4.3, 1H), 3.11(ddd, J =6.0, 14.2, 28.0, 2H), 3.44(ddd, J =4.8, 7.2, 12.0, 1H), 3.64~3.69(m, 1H), 3.88(ddd, J =3.3, 4.9, 8.3, 1H), 4.18~4.24(m, 1H), 7.19~7.26(m, 2H), 7.36~7.39(m, 2H)


10 **Preparation example 332 : (2R, 3S)-methyl-3-(2-chlorobenzyl)-1,4-dioxaspiro[4.4]nonane-2-carboxylate**

The substantially same method as described in Example 330 was conducted, except that cyclopentanone was used instead of 3-pantanone, to obtain the title compound (0.8g, 60~85%)

15 ^1H NMR(400MHz, CDCl_3): δ =1.65~1.80(m, 5H), 1.89~2.00(m, 3H), 3.13(dd, J =7.8, 14.2, 1H), 3.32(dd, J =4.6, 14.2, 1H), 3.72(s, 3H), 4.28(d, J =7.2, 1H), 4.41~4.46(m, 1H), 7.19~7.26(m, 2H), 7.35~7.40(m, 2H)

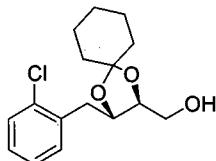
20 **Preparation example 333 : ((2S, 3S)-3-(2-chlorobenzyl)-1,4-dioxaspiro[4.4]nonan-2-yl)methanol**



The substantially same method as described in Example 331 was conducted, except that (2R, 3S)-methyl-3-(2-chlorobenzyl)-1,4-dioxaspiro[4.4]nonane-2-

carboxylate (Preparation example 332) was used instead of (4R,5S)-methyl-5-(2-chlorobenzyl)-2,2-dimethyl-1,3-dioxolane-4-carboxylate (Preparation example 330), to obtain the title compound (0.6g, 70~95%)

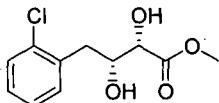
¹H NMR(400MHz, CDCl₃): δ=1.69~1.74(m, 3H), 1.77~1.85(m, 5H), 3.11(ddd, J=6.3, 14.1, 31.3, 2H), 3.42~3.48(m, 1H), 3.61~3.66(m, 1H), 3.87~3.91(m, 1H), 4.19(q, J=6.8, 1H), 7.19~7.26(m, 2H), 7.34~7.40(m, 2H)


Preparation example 334 : (2R,3S)-methyl-3-(2-chlorobenzyl)-1,4-dioxaspiro[4.5]decane-2-carboxylate

The substantially same method as described in Example 332 was conducted, except that cyclohexanone was used instead of cyclopentanone, to obtain the title compound (0.5g, 60~85%)

¹H NMR(400MHz, CDCl₃): δ=1.54~1.77(m, 10H), 3.12(dd, J=7.6, 14.4, 1H), 3.32(dd, J=4.4, 14.4, 1H), 3.72(s, 3H), 4.30(d, J=7.6, 1H), 4.46~4.51(m, 1H), 7.18~7.26(m, 2H), 7.37~7.39(m, 2H)

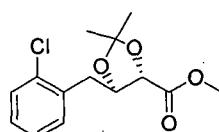
Preparation example 335 : ((2S, 3S)-3-(2-chlorobenzyl)-1,4-dioxaspiro[4.5]decan-2-yl)methanol



The substantially same method as described in Example 333 was conducted, except that (2R, 3S)-methyl-3-(2-chlorobenzyl)-1,4-dioxaspiro[4.5]decane-2-carboxylate(Preparation example 334) was used instead of (2R, 3S)-methyl-3-(2-

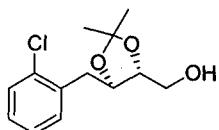
chlorobenzyl)-1,4-dioxaspiro[4.4]nonane-2-carboxylate(Preparation example 332), to obtain the title compound(0.5g, 70~95%)

¹H NMR(400MHz, CDCl₃): δ=1.38~1.45(m, 2H), 1.58~1.63(m, 8H), 1.84(q, J=4.3, 1H), 3.11(ddd, J=7.9, 15.9, 22.1, 2H), 3.43(ddd, J=4.6, 7.6, 12.1, 1H), 3.66~3.71(m, 1H), 3.88~3.92(m, 1H), 4.21~4.26(m, 1H), 7.18~7.26(m, 2H), 7.37~7.39(m, 2H)


Preparation example 336 : (2S, 3R)-methyl-4-(2chlorophenyl)-2,3-dihydroxybutanoate

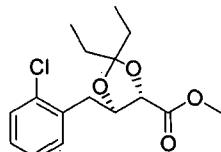
10 The substantially same method as described in Example 269 was conducted, except that (E)-methyl-4-(2-chlorophenyl)but-2-enoate(Preparation example 326) was used instead of (E)-methyl-4-phenylbut-2-enoate(Preparation example 259), to obtain the title compound(3.5g, 70~95%)

¹H NMR(400MHz, CDCl₃): δ=3.08~3.17(m, 2H), 3.84(s, 3H), 4.12(dd, J=1.6, 5.2, 1H), 4.28~4.34(m, 1H), 7.20~7.27(m, 2H), 7.33~7.36(m, 1H), 7.39~7.41(m, 1H)


Preparation example 337 : (4S, 5R)-methyl-5-(2-chlorobenzyl)-2,2-dimethyl-1,3-dioxolane-4-carboxylate

20 The substantially same method as described in Example 328 was conducted, except that (2S, 3R)-methyl-4-(2chlorophenyl)-2,3-dihydroxybutanoate(Preparation example 336) was used instead of (2R, 3S)-methyl-4-(2chlorophenyl)-2,3-dihydroxybutanoate(Preparation example 327), to obtain the title compound(3.4g, 70~95%)

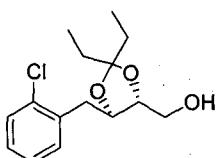
¹H NMR(400MHz, CDCl₃): δ=1.41(s, 6H), 1.79(q, J=4.3, 1H), 2.83(dd, J=6.2, 13.8, 1H), 3.07(dd, J=6.4, 14.0, 1H), 3.29(ddd, J=4.7, 7.5, 12.1, 1H), 3.54(ddd, J=2.8, 5.2, 12.0, 1H), 3.83(ddd, J=3.9, 3.9, 7.1, 1H), 4.15(q, J=7.1, 1H), 7.22~7.32(m, 5H)


5 **Preparation example 338 : ((4R, 5R)-5-(2chlorobenzyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol**

The substantially same method as described in Example 335 was conducted, except that (4S,5R)-methyl-5-(2-chlorobenzyl)-2,2-dimethyl-1,3-dioxolane-4-carboxylate (Preparation example 337) was used instead of (2R, 3S)-methyl-3-(2-chlorobenzyl)-1,4-dioxaspiro[4.5]decane-2-carboxylate(Preparation example 334), to obtain the title compound (2.7g, 70~95%).

10 ¹H NMR(400MHz, CDCl₃): δ=1.41(s, 6H), 1.79(q, J=4.3, 1H), 2.83(dd, J=6.2, 13.8, 1H), 3.07(dd, J=6.4, 14.0, 1H), 3.29(ddd, J=4.7, 7.5, 12.1, 1H), 3.54(ddd, J=2.8, 5.2, 12.0, 1H), 3.83(ddd, J=3.9, 3.9, 7.1, 1H), 4.15(q, J=7.1, 1H), 7.22~7.32(m, 5H)

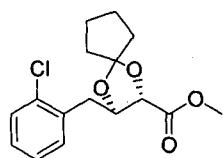
15 **Preparation example 339 : (4S, 5R)-methyl-(5-2-chloro-2,2-diethyl-1,3-dioxolane-4-carboxylate**


20 The substantially same method as described in Example 330 was conducted, except that (2S, 3R)-methyl-2,3-dihydroxy-4-phenylbutanoate (Preparation example 336) was used instead of that (2R, 3S)-methyl-4-(2chlorophenyl)-2,3-dihydroxybutanoate (Preparation example 327), to obtain the title compound (0.6g,

50~75%)

¹H NMR(400MHz, CDCl₃): δ=0.93(t, J=7.4, 6H), 1.67~1.74(m, 4H), 3.10(dd, J=8.0, 14.4, 1H), 3.35(dd, J=4.0, 14.4, 1H), 3.73(s, 3H), 4.27(d, J=8.4, 1H), 4.42~4.47(m, 1H), 7.18~7.26(m, 2H), 7.37~7.40(m, 2H)

5

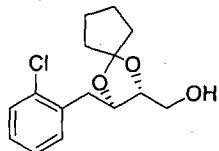

Preparation example 340 : ((4R, 5R)-5-(2-chlorobenzyl)-2,2-diethyl-1,3-dioxolan-4-yl)methanol

The substantially same method as described in Example 338 was conducted, except that (4S, 5R)-methyl-(5-2-chloropropyl)benzyl-2,2-diethyl-1,3-dioxolane-4-carboxylate (Preparation example 339) was used instead of (4S,5R)-methyl-5-(2-chlorobenzyl)-2,2-dimethyl-1,3-dioxolane-4-carboxylate (Preparation example 337), to obtain the title compound (0.5g, 70~95%)

¹H NMR(400MHz, CDCl₃): δ=0.93(dt, J=2.1, 7.5, 6H), 1.62~1.70(m, 4H), 1.83(q, J=4.3, 1H), 3.11(ddd, J=6.0, 14.2, 28.0, 2H), 3.44(ddd, J=4.8, 7.2, 12.0, 1H), 3.64~3.69(m, 1H), 3.88(ddd, J=3.3, 4.9, 8.3, 1H), 4.18~4.24(m, 1H), 7.19~7.26(m, 2H), 7.36~7.39(m, 2H)

Preparation example 341 : (2S, 3R)-methyl-3-(2-chlorobenzyl)-1,4-dioxaspiro[4.4]nonane-2-carboxylate

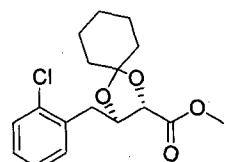
The substantially same method as described in Example 339 was conducted, except that cyclopentanone was used instead of 3-pantanone, to obtain the title


180

compound (0.5g, 60~85%)

¹H NMR(400MHz, CDCl₃): δ=1.65~1.80(m, 5H), 1.89~2.00(m, 3H), 3.13(dd, J=7.8, 14.2, 1H), 3.32(dd, J=4.6, 14.2, 1H), 3.72(s, 3H), 4.28(d, J=7.2, 1H), 4.41~4.46(m, 1H), 7.19~7.26(m, 2H), 7.35~7.40(m, 2H)

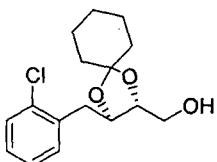
5


Preparation example 342 : ((2R, 3R)-3-(2-chlorobenzyl)-1,4-dioxaspiro[4.4]nonan-2-yl)methanol

The substantially same method as described in Example 340 was conducted, except that (2S, 3R)-methyl-3-(2-chlorobenzyl)-1,4-dioxaspiro[4.4]nonane-2-carboxylate (Preparation example 341) was used instead of that (4S, 5R)-methyl-(5-2-chloropropyl)benzyl-2,2-diethyl-1,3-dioxolane-4-carboxylate(Preparation example 339), to obtain the title compound(0.4g, 70~95%)

¹H NMR(400MHz, CDCl₃): δ=1.69~1.74(m, 3H), 1.77~1.85(m, 5H), 3.11(dd, J=6.3, 14.1, 31.3, 2H), 3.42~3.48(m, 1H), 3.61~3.66(m, 1H), 3.87~3.91(m, 1H), 4.19(q, J=6.8, 1H), 7.19~7.26(m, 2H), 7.34~7.40(m, 2H)

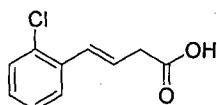
Preparation example 343 : (2S, 3R)-methyl-3-(2-chlorobenzyl)-1,4-dioxaspiro[4.5]decane-2-carboxylate



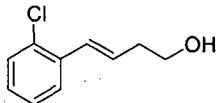
20

The substantially same method as described in Example 341 was conducted, except that cyclohexanone was used instead of cyclopentanone, to obtain the title compound (0.9g, 60~85%)

¹H NMR(400MHz, CDCl₃): δ=1.54~1.77(m, 10H), 3.12(dd, J=7.6, 14.4, 1H), 3.32(dd, J=4.4, 14.4, 1H), 3.72(s, 3H), 4.30(d, J=7.6, 1H), 4.46~4.51(m, 1H), 7.18~7.26(m, 2H), 7.37~7.39(m, 2H)

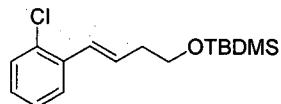

5 **Preparation example 344 : ((2R, 3R)-3-(2-chlorobenzyl)-1,4-dioxaspiro[4.5]decan-2-yl)methanol**

The substantially same method as described in Example 342 was conducted, except that (2S, 3R)-methyl-3-(2-chlorobenzyl)-1,4-dioxaspiro[4.5]decane-2-carboxylate (Preparation example 343) was used instead of (2S, 3R)-methyl-3-(2-chlorobenzyl)-1,4-dioxaspiro[4.4]nonane-2-carboxylate (Preparation example 341), to obtain the title compound (0.7g, 70~95%)


10 ¹H NMR(400MHz, CDCl₃): δ=1.38~1.45(m, 2H), 1.58~1.63(m, 8H), 1.84(q, J=4.3, 1H), 3.11(ddd, J=7.9, 15.9, 22.1, 2H), 3.43(ddd, J=4.6, 7.6, 12.1, 1H), 3.66~3.71(m, 1H), 3.88~3.92(m, 1H), 4.21~4.26(m, 1H), 7.18~7.26(m, 2H), 7.37~7.39(m, 2H)

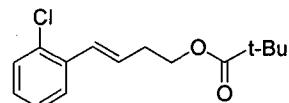
15 **Preparation example 345 : (E)-4-(2chlorophenyl)but-3-enoic acid**

The substantially same method as described in Example 278 was conducted, except that 2-(2-chlorophenyl)acetaldehyde was used instead of phenylacetaldehyde, to obtain the title compound (4.0g, 55~80%)


20 ¹H NMR(400MHz, CDCl₃): δ=3.39(d, J=8.8, 2H), 6.31(td, J=7.9, 14.8, 1H), 6.94(d, J=16, 1H), 7.17~7.45(m, 3H), 7.56~7.59(m, 1H)

Preparation example 346 : (E)-4-(2-chlorophenyl)but-3-en-1-ol

The substantially same method as described in Example 279 was conducted, except that (E)-4-(2-chlorophenyl)but-3-enoic acid(Preparation example 345) was used instead of (E)-4-phenylbut-3-enoic acid(Preparation example 278), to obtain the title compound (1.2g, 55~80%)

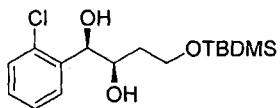

¹H NMR(400MHz, CDCl₃): δ=2.55(ddd, J= 4.1, 11.9, 21.5, 2H), 3.82(t, J=5.8, 2H), 6.24(td, J=7.2, 15.7, 1H), 6.87(d, J=14.8, 1H), 7.12~7.25(m, 3H), 7.36(dd, J=1.2, 8.0, 1H), 7.52(dd, J=1.6, 9.2, 1H)

10

Preparation example 347 : (E)-tert-butyldimethyl(4-(2-chlorophenyl)but-3-enyloxy)silane

The substantially same method as described in Example 280 was conducted, except that (E)-4-(2-chlorophenyl)but-3-en-1-ol(Preparation example 346) was used instead of (E)-4-phenylbut-3-en-1-ol(Preparation example 279), to obtain the title compound(1.1g, 80~98%)

¹H NMR(400MHz, CDCl₃): δ=0.07(s, 3H), 0.10(s, 3H), 0.92(d, J=6.4, 9H), 2.51(q, J=4.5, 2H), 3.78(t, J=6.6, 2H), 6.26(td, J=7.2, 15.7, 1H), 6.84(d, J=15.6, 1H), 7.13~7.24(m, 3H), 7.36(dd, J=5.6, 12.4, 1H), 7.53(dd, J=1.4, 7.8, 1H)

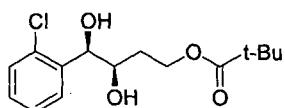

Preparation example 348 : (E)-4-(2-chlorophenyl)but-3-enyl pivalate

The substantially same method as described in Example 281 was conducted,

except that (E)-4-(2-chlorophenyl)but-3-en-1-ol (Preparation example 346) was used instead of (E)-4-phenylbut-3-en-1-ol (Preparation example 279), to obtain the title compound(3.5g, 75~95%)

5 ¹H NMR(400MHz, CDCl₃): δ=1.21(s, 9H), 2.55~2.64(m, 2H), 4.24(t, J=6.4, 2H),
10 6.18(td, J=7.9, 14.8, 1H), 6.86(d, J=16.0, 1H), 7.22~7.26(m, 2H), 7.38(dd, J=3.6, 10.8, 1H), 7.51(dd, J=1.6, 7.6, 1H)

Preparation example 349 : (1R, 2R)-4-(tert-butyldimethylsilyloxy)-1-(2-chlorophenyl)butane-1,2-diol

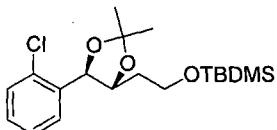

10

The substantially same method as described in Example 282 was conducted, except that (E)-tert-butyldimethyl(4-2-chlorophenyl)but-3-enyloxy)silane(Preparation example 347) was used instead of (E)-tert-butyldimethyl (5-phenylpent-3-enyloxy)silane (Preparation example 237), to obtain the title compound (0.7g, 15 70~95%)

10 ¹H NMR(400MHz, CDCl₃): δ=0.10(s, 3H), 0.11(s, 3H), 0.92(s, 9H), 1.69~1.70(m, 1H), 1.93~2.07(m, 1H), 3.51(d, J=4.8, 1H), 3.86(d, J=3.2, 1H), 3.87(dd, J=3.2, 9.2, 1H), 3.91~3.96(m, 1H), 4.01~4.06(m, 1H), 5.05(t, J=4.6, 1H), 7.22~7.26(m, 1H), 7.31~7.37(m, 2H), 7.59(dd, J=1.2, 7.6, 1H)

20

Preparation example 350 : (3R, 4R)-3,4-dihydroxy-4-(2-chlorophenyl)butyl pivalate



25 The substantially same method as described in Example 349 was conducted, except that (E)-4-(2-chlorophenyl)but-3-enyl pivalate (Preparation example 348) was

used instead of (E)-tert-butyldimethyl(4-2-chlorophenyl)but-3-enyloxy)silane (Preparation example 347), to obtain the title compound(3.2g, 70~95%)

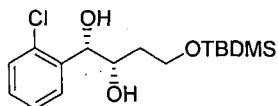
10 ^1H NMR(400MHz, CDCl_3): δ =1.19(s, 9H), 1.76~1.84(m, 1H), 1.90~1.98(m, 1H), 2.70(d, J =4.4, 1H), 2.86(d, J =5.2, 1H), 3.84~3.90(m, 1H), 4.14~4.21(m, 1H), 5 4.35~4.41(m, 1H), 5.05(t, J =5.0, 1H), 7.23~7.39(m, 3H), 7.54(dd, J =1.6, 7.6, 1H)

Preparation example 351 : tert-butyl(2-((4R, 5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)ethoxy)dimethylsilane

10 The substantially same method as described in Example 284 was conducted, except that (1R, 2R)-4-(tert-butyldimethylsilyloxy)-1-(2-chlorophenyl)butane-1,2-diol(Preparation example 349) was used instead of (1R, 2R)-4-(tert-butyldimethylsilyloxy)-1-phenylbutane-1,2-diol (Preparation example 282), to obtain the title compound (0.8g, 70~95%)

15 ^1H NMR(400MHz, CDCl_3): δ =0.02(s, 3H), 0.07(s, 3H), 0.86(s, 9H), 1.50(s, 3H), 1.58(s, 3H), 1.82~1.99(m, 2H), 3.68~3.78(m, 2H), 3.95(dt, J =3.3, 8.7, 1H), 5.16(d, J =8.4, 1H), 7.21~7.27(m, 1H), 7.31~7.38(m, 2H), 7.60(dd, J =1.6, 7.6, 1H)

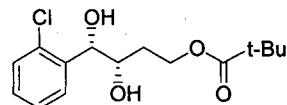
Preparation example 352 : 2-((4R, 5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)ethanol



The substantially same method as described in Example 285 was conducted, except tert-butyl(2-((4R, 5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-

yl)ethoxy)dimethylsilane (Preparation example 351) was used instead of tert-butyl(2-((4R,5R)-5-phenyl-2,2-dimethyl-1,3-dioxolan-4-yl)ethoxy)dimethylsilane (Preparation example 284), to obtain the title compound(0.7g, 80~95%)

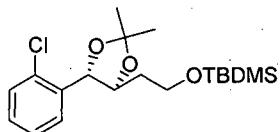
5 ^1H NMR(400MHz, CDCl_3): δ =1.56(s, 3H), 1.62(s, 3H), 1.92~2.04(m, 2H), 2.26(q, J =3.7, 1H), 3.75~3.90(m, 2H), 3.94(td, J =3.9, 8.5, 1H), 5.23(d, J =15.6, 1H), 7.22~7.27(m, 1H), 7.33~7.39(m, 2H), 7.62(dd, J =1.6, 7.6, 1H)


Preparation example 353 : (1S, 2S)-4-(tert-butyldimethylsilyloxy)-1-(2-chlorophenyl)butane-1,2-diol

The substantially same method as described in Example 286 was conducted, except that (E)-tert-butyldimethyl(4-(2-chlorophenyl)but-3-enyloxy)silane (Preparation example 347) was used instead of (E)-tert-butyldimethyl(4-phenylbut-3-enyloxy)silane (Preparation example 280), to obtain the title compound(0.7g, 70~95%)

15 ^1H NMR(400MHz, CDCl_3): δ =1.19(s, 9H), 1.76~1.84(m, 1H), 1.90~1.98(m, 1H), 2.70(d, J =4.4, 1H), 2.86(d, J =5.2, 1H), 3.84~3.90(m, 1H), 4.14~4.21(m, 1H), 4.35~4.41(m, 1H), 5.05(t, J =5.0, 1H), 7.23~7.39(m, 3H), 7.54(dd, J =1.6, 7.6, 1H)

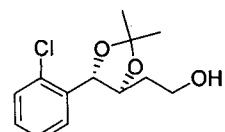
20 **Preparation example 354 : (3S, 4S)-3,4-dihydroxy-4-(2-chlorophenyl)butyl pivalate**


The substantially same method as described in Example 353 was conducted, except that (E)-4-(2-chlorophenyl)but-3-enyl pivalate (Preparation example 348) was used instead of ((E)-tert-butyldimethyl(4-(2-chlorophenyl)but-3-enyloxy)silane

(Preparation example 347), to obtain the title compound(3.0g, 70~95%)

¹H NMR(400MHz, CDCl₃): δ=1.19(s, 9H), 1.76~1.84(m, 1H), 1.90~1.98(m, 1H), 2.70(d, J=4.4, 1H), 2.86(d, J=5.2, 1H), 3.84~3.90(m, 1H), 4.14~4.21(m, 1H), 4.35~4.41(m, 1H), 5.05(t, J=5.0, 1H), 7.23~7.39(m, 3H), 7.54(dd, J=1.6, 7.6, 1H)

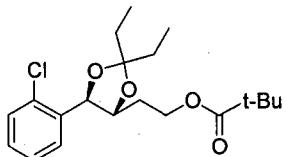
5


Preparation example 355 : tert-butyl(2-((4S, 5S)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)ethoxy)dimethylsilane

The substantially same method as described in Example 351 was conducted, except that (1S, 2S)-4-(tert-butyldimethylsilyloxy)-1-(2-chlorophenyl)butane-1,2-diol (Preparation example 353) was used instead of 1R, 2R)-4-(tert-butyldimethylsilyloxy)-1-(2-chlorophenyl)butane-1,2-diol (Preparation example 349), to obtain the title compound(0.7g, 70~95%)

¹H NMR(400MHz, CDCl₃): δ=0.02(s, 3H), 0.07(s, 3H), 0.86(s, 9H), 1.50(s, 3H), 1.58(s, 3H), 1.82~1.99(m, 2H), 3.68~3.78(m, 2H), 3.95(dt, J=3.3, 8.7, 1H), 5.16(d, J=8.4, 1H), 7.21~7.27(m, 1H), 7.31~7.38(m, 2H), 7.60(dd, J=1.6, 7.6, 1H)

Preparation example 356 : 2-((4S, 5S)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)ethanol


The substantially same method as described in Example 352 was conducted, except that tert-butyl(2-((4S, 5S)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)ethoxy)dimethylsilane(Preparation example 355) was used instead of that tert-

20

butyl(2-((4R,5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)ethoxy)dimethyl silane (Preparation example 351), to obtain the title compound (0.3g, 80~95%).

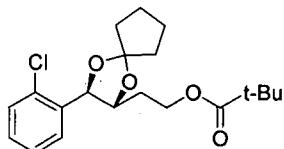
¹H NMR(400MHz, CDCl₃): δ=1.56(s, 3H), 1.62(s, 3H), 1.92~2.04(m, 2H), 2.26(q, J=3.7, 1H), 3.75~3.90(m, 2H), 3.94(td, J=3.9, 8.5, 1H), 5.23(d, J=15.6, 1H), 7.22~7.27(m, 1H), 7.33~7.39(m, 2H), 7.62(dd, J=1.6, 7.6, 1H)


Preparation example 357 : 2-((4R, 5R)-2,2-diethyl-5-(2-chlorophenyl)-1,3-dioxolan-4-yl)ethyl pivalate

10 The substantially same method as described in Example 290 was conducted, except that (3R, 4R)-3,4-dihydroxy-4-(2-chlorophenyl)butyl pivalate (Preparation example 350) was used instead of (3R, 4R)-3,4-dihydroxy-4-phenylbutyl pivalate(Preparation example 283), to obtain the title compound(0.8g, 70~95%)

¹H NMR(400MHz, CDCl₃): δ=1.15(s, 9H), 1.76(q, J=7.6, 2H), 1.84~1.90(m, 2H), 2.00~2.07(m, 2H), 3.85(dt, J=3.7, 8.5, 1H), 4.14~4.27(m, 2H), 5.17(d, J=8.4, 1H), 7.22~7.28(m, 1H), 7.32~7.38(m, 2H), 7.64(dd, J=1.4, 7.8, 1H)

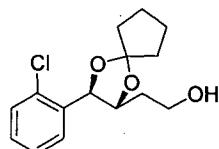
Preparation example 358 : 2-((4R, 5R)-2,2-diethyl-5-(2-chlorophenyl)-1,3-dioxolan-4-yl)ethyl pivalate



20 The substantially same method as described in Example 291 was conducted, except that 2-((4R, 5R)-2,2-diethyl-5-(2-chlorophenyl)-1,3-dioxolan-4-yl)ethyl pivalate (Preparation example 357) was used instead of 2-((4R, 5R)-2,2-diethyl-5-

phenyl-1,3-dioxolan-4-yl)ethyl pivalate(Preparation example 290), to obtain the title compound (0.6g, 80~95%)

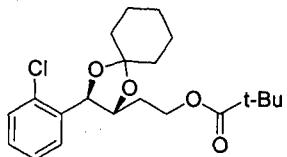
¹H NMR(400MHz, CDCl₃): δ=1.02(t, J=7.4, 3H), 1.08(t, J=7.4, 3H), 1.80(q, J=7.5, 2H), 1.86~1.91(m, 2H), 1.96~2.00(m, 2H), 2.37(q, J=3.7, 1H), 3.76~3.95(m, 3H), 5.23(d, J=8.4, 1H), 7.25~7.27(m, 1H), 7.32~7.39(m, 2H), 7.65(dd, J=1.8, 7.8, 1H)


Preparation example 359 : 2-((2R, 3R)-3-(2-chlorophenyl)-1,4-dioxaspiro[4.4]nonan-2-yl)ethyl pivalate

10 The substantially same method as described in Example 357 was conducted, except that cyclopentanone was used instead of 3-pantanone, to obtain the title compound (0.8g, 60~85%)

¹H NMR(400MHz, CDCl₃): δ=1.17(s, 9H), 1.58~2.02(m, 10H), 3.86(ddd, J=3.8, 8.2, 8.2, 1H), 4.11~4.28(m, 2H), 5.13(d, J=8.0, 1H), 7.20~7.39(m, 3H), 7.58(dd, J=1.6, 8.0, 1H)

Preparation example 360 : 2-((2R, 3R)-3-(2-chlorophenyl)-1,4-dioxaspiro[4.4]nonan-2-yl)ethanol

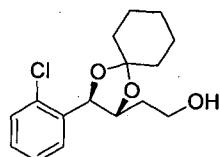

20 The substantially same method as described in Example 358 was conducted, except that 2-((2R, 3R)-3-(2-chlorophenyl)-1,4-dioxaspiro[4.4]nonan-2-yl)ethyl pivalate (Preparation example 359) was used instead of that 2-((4R, 5R)-2,2-diethyl-5-(2-chlorophenyl)-1,3-dioxolan-4-yl)ethyl pivalate (Preparation example 357), to

obtain the title compound (0.5g, 80~95%)

¹H NMR(400MHz, CDCl₃): δ=1.72~1.90(m, 4H), 1.93~1.98(m, 6H), 2.28(q, J=3.7, 1H), 3.76~3.93(m, 3H), 5.18(d, J=8.0, 1H), 7.24~7.29(m, 1H), 7.32~7.38(m, 2H), 7.60(dd, J=1.8, 7.8, 1H)

5

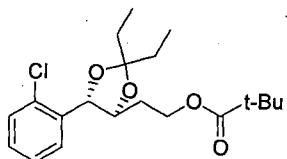
Preparation example 361 : 2-((2R, 3R)-3-(2-chlorophenyl)-1,4-dioxaspiro[4.5]decan-2-yl)ethyl pivalate



The substantially same method as described in Example 359 was conducted, 10 except that cyclohexanone was used instead of cyclopentanone, to obtain the title compound (1.0g, 60~85%)

¹H NMR(400MHz, CDCl₃): δ=1.15(s, 9H), 1.70~1.94(m, 10H), 2.06~2.09(m, 2H), 3.86(dt, J=3.5, 8.5, 1H), 4.16~4.26(m, 2H), 5.18(d, J=8.4, 1H), 7.22~7.28(m, 1H), 7.32~7.38(m, 2H), 7.61(dd, J=1.4, 7.8, 1H)

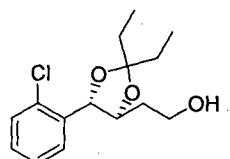
15


Preparation example 362 : 2-((2R, 3R)-3-(2-chlorophenyl)-1,4-dioxaspiro[4.4]nonan-2-yl)ethanol

The substantially same method as described in Example 360 was conducted, 20 except that 2-((2R, 3R)-3-(2-chlorophenyl)-1,4-dioxaspiro[4.5]decan-2-yl)ethyl pivalate (Preparation example 361) was used instead of that 2-((2R, 3R)-3-(2-chlorophenyl)-1,4-dioxaspiro[4.4]nonan-2-yl)ethyl pivalate(Preparation example 359), to obtain the title compound (0.6g, 80~95%)

¹H NMR(400MHz, CDCl₃): δ=1.42~1.50(m, 2H), 1.63~1.77(m, 5H), 1.82~1.89(m, 5H), 2.41(q, J=3.9, 1H), 3.78~3.96(m, 3H), 5.25(d, J=8.4, 1H), 7.21~7.28(m, 1H), 7.32~7.38(m, 2H), 7.63(dd, J=1.4, 7.8, 1H)

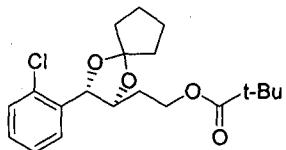
5 **Preparation example 363 : 2-((4S, 5S)-2,2-diethyl-5-(2-chlorophenyl)-1,3-dioxolan-4-yl)ethyl pivalate**



The substantially same method as described in Example 357 was conducted, except that (3S, 4S)-3,4-dihydroxy-4-(2-chlorophenyl)butyl pivalate (Preparation example 354) was used instead of (3R, 4R)-3,4-dihydroxy-4-(2-chlorophenyl)butyl pivalate (Preparation example 350), to obtain the title compound (0.7g, 70~95%).

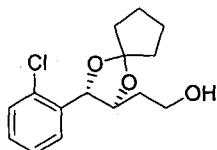
¹H NMR(400MHz, CDCl₃): δ=1.15(s, 9H), 1.76(q, J=7.6, 2H), 1.84~1.90(m, 2H), 2.00~2.07(m, 2H), 3.85(dt, J=3.7, 8.5, 1H), 4.14~4.27(m, 2H), 5.17(d, J=8.4, 1H), 7.22~7.28(m, 1H), 7.32~7.38(m, 2H), 7.64(dd, J=1.4, 7.8, 1H)

15


Preparation example 364 : 2-((4S, 5S)-2,2-diethyl-5-(2-chlorophenyl)-1,3-dioxolan-4-yl)ethyl pivalate

The substantially same method as described in Example 358 was conducted, except that 2-((4S, 5S)-2,2-diethyl-5-(2-chlorophenyl)-1,3-dioxolan-4-yl)ethyl pivalate(Preparation example 363) was used instead of 2-((4R, 5R)-2,2-diethyl-5-(2-chlorophenyl)-1,3-dioxolan-4-yl)ethyl pivalate (Preparation example 357), to obtain the title compound (0.5g, 80~95%)

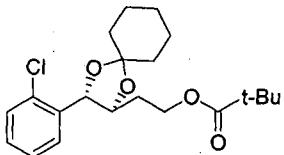
¹H NMR(400MHz, CDCl₃): δ=1.02(t, J=7.4, 3H), 1.08(t, J=7.4, 3H), 1.80(q, J=7.5, 2H), 1.86~1.91(m, 2H), 1.96~2.00(m, 2H), 2.37(q, J=3.7, 1H), 3.76~3.95(m, 3H), 5.23(d, J=8.4, 1H), 7.25~7.27(m, 1H), 7.32~7.39(m, 2H), 7.65(dd, J=1.8, 7.8, 1H)


5 **Preparation example 365 : 2-((2S, 3S)-3-(2-chlorophenyl)-1,4-dioxaspiro[4.4]nonan-2-yl)ethyl pivalate**

The substantially same method as described in Example 363 was conducted, except that cyclopentanone was used instead of 3-pantanone, to obtain the title 10 compound (0.6g, 60~85%)

¹H NMR(400MHz, CDCl₃): δ=1.17(s, 9H), 1.58~2.02(m, 10H), 3.86(dd, J=3.8, 8.2, 8.2, 1H), 4.11~4.28(m, 2H), 5.13(d, J=8.0, 1H), 7.20~7.39(m, 3H), 7.58(dd, J=1.6, 8.0, 1H)

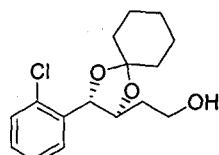
15 **Preparation example 366 : 2-((2S, 3S)-3-(2-chlorophenyl)-1,4-dioxaspiro[4.4]nonan-2-yl)ethanol**



The substantially same method as described in Example 364 was conducted, except that 2-((2S, 3S)-3-(2-chlorophenyl)-1,4-dioxaspiro[4.4]nonan-2-yl)ethyl 20 pivalate (Preparation example 365) was used instead of that 2-((4S, 5S)-2,2-diethyl-5-(2-chlorophenyl)-1,3-dioxolan-4-yl)ethyl pivalate (Preparation example 363), to obtain the title compound (0.4g, 80~95%)

¹H NMR(400MHz, CDCl₃): δ=1.72~1.90(m, 4H), 1.93~1.98(m, 6H), 2.28(q, J=3.7,

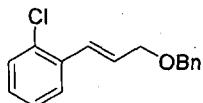
1H), 3.76~3.93(m, 3H), 5.18(d, $J=8.0$, 1H), 7.24~7.29(m, 1H), 7.32~7.38(m, 2H), 7.60(dd, $J=1.8$, 7.8, 1H)


Preparation example 367 : 2-((2S, 3S)-3-(2-chlorophenyl)-1,4-dioxaspiro[4.5]decan-2-yl)ethyl pivalate

The substantially same method as described in Example 366 was conducted, except that cyclohexanone was used instead of cyclopentanone, to obtain the title compound (0.7g, 60~85%)

¹⁰ ^1H NMR(400MHz, CDCl_3): $\delta=1.15(\text{s}, 9\text{H})$, 1.70~1.94(m, 10H), 2.06~2.09(m, 2H), 3.86(dt, $J=3.5$, 8.5, 1H), 4.16~4.26(m, 2H), 5.18(d, $J=8.4$, 1H), 7.22~7.28(m, 1H), 7.32~7.38(m, 2H), 7.61(dd, $J=1.4$, 7.8, 1H)

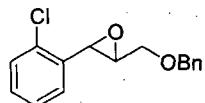
Preparation example 368 : 2-((2R, 3R)-3-(2-chlorophenyl)-1,4-dioxaspiro[4.4]nonan-2-yl)ethanol



The substantially same method as described in Example 366 was conducted, except that 2-((2S,3S)-3-(2-chlorophenyl)-1,4-dioxaspiro[4.5]decan-2-yl)ethyl pivalate (Preparation example 367) was used instead of that 2-((2S, 3S)-3-(2-chlorophenyl)-1,4-dioxaspiro[4.4]nonan-2-yl)ethyl pivalate (Preparation example 365), to obtain the title compound (0.4g, 80~95%).

^1H NMR(400MHz, CDCl_3): $\delta=1.42\sim1.50(\text{m}, 2\text{H})$, 1.63~1.77(m, 5H), 1.82~1.89(m, 5H), 2.41(q, $J=3.9$, 1H), 3.78~3.96(m, 3H), 5.25(d, $J=8.4$, 1H), 7.21~7.28(m, 1H),

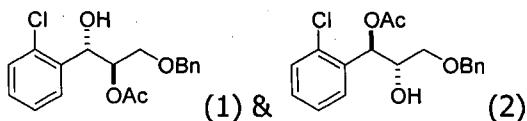
7.32~7.38(m, 2H), 7.63(dd, $J=1.4, 7.8, 1H$)


Preparation example 367 : (E)-1-(3(benzyloxy)prop-1enyl)2-chlorobenzene

5 To a solution of (E)-3-(2-chlorophenyl) prop-2-en-1-ol(Preparation example 1, 5.3 g, 31.6 mmole) in THF was added NaH (60 % in mineral oil, 0.91g, 37.7 mmole) and Benzyl bromide (4.12 mL, 34.8 mmole), sequently at 0°C. The reaction mixture was stirred at room temperature for 18 hr. The TLC showed complete consumption of SM. The reaction mixture was quenched with H₂O at 0°C then extracted with EtOAc. The 10 aqueous layer was extracted with EtOAc and separated. The combined organic layer was washed with H₂O, then dried over MgSO₄ and evaporated under reduced pressure. The crude compound was purified by silica gel column to produce the title compound(4.94 g, 70~90%).

15 ¹H NMR (400 MHz, CDCl₃) δ 7.57 (dd, $J= 7.76, 2, 1H$), 7.42-7.13 (m, 3H), 7.05 (d, $J= 16$ Hz, 1H), 6.37-6.30 (m, 1H), 4.62 (s, 2H), 4.26 (dd, $J= 6, 1.6, 2H$).

Preparation example 368 : (±)-2-(benzyloxymethyl)-3-(2-chlorophenyl)oxirane

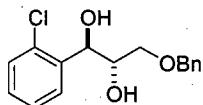


20 To a solution of (E)-1-(3(benzyloxy)prop-1enyl)2-chlorobenzene(Preparation example 367, 4.94 g, 22 mmole) in CH₂Cl₂ (110 mL) was added 3-chloroperoxybenzoic acid (70~75 %, 8 g, 33 mmole) portionwise at 0°C. The mixture was stirred for 18 hr at room temperature. The TLC showed complete consumption of SM. The reaction mixture was quenched with H₂O at 0°C then extracted with

EtOAc. The aqueous layer was extracted with EtOAc and separated. The combined organic layer was washed with sat' NaHCO₃, H₂O, then dried over MgSO₄ and evaporated under reduced pressure. The crude compound was purified by silica gel column to produce the title compound (4.3 g, 60~80%).

5 ¹H NMR (400 MHz, CDCl₃) δ 7.42-7.24 (m, 9H), 4.68 (d, *J* = 14.8, 2H), 4.18 (d, *J* = 2 Hz, 1H), 3.96 (dd, *J* = 11.6, 2.8 Hz, 1H), 3.69-3.64 (m, 1H), 3.14 (qt, *J* = 2.4 Hz, 1H)

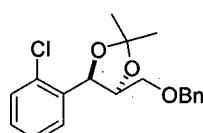
Preparation example 369 : (±)-3-(benzyloxy)-1-(2-chlorophenyl)-2-hydroxypropyl & (±)-3-(benzyloxy)-1-(2-chlorophenyl)-1-hydroxypropan-2-yl acetate



15 To a solution of (±)-2-(benzyloxymethyl)-3-(2-chlorophenyl)oxirane (Preparation example 368, 4.3 g, 15.6 mmole) in Acetic acid (78 mL) was added Cerium Ammonium Nitrate (1.71 g, 3.1 mmole) at room temperature. The mixture was stirred for 18 hr at room temperature. The TLC showed complete consumption of SM. The reaction mixture was quenched with sat'NaHCO₃ to pH7 at 0°C then extracted 20 with EtOAc. The aqueous layer was extracted with EtOAc and separated. The combined organic layer was washed with H₂O, then dried over MgSO₄ and evaporated under reduced pressure. The crude compound was purified by silica gel column to produce the title compound(1) (1.2 g, 23 %). (2)(1.8 g, 34 %).

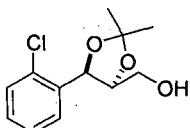
25 (1)¹H NMR (400 MHz, CDCl₃) δ 7.55-7.22 (m, 9H), 5.41 (t, *J* = 5 Hz, 1H), 5.33-5.29 (m, 1H), 4.61-4.47 (m, 2H), 3.70-3.63 (m, 2H, -OH), 2.09 (s, 3H).

(2)¹H NMR (400 MHz, CDCl₃) δ 7.46-7.24 (m, 9H), 6.31 (d, *J* = 5.6 Hz, 1H), 4.55 (d, *J* = 9.6 Hz, 2H), 4.24-4.22 (m, 1H), 3.67-3.55 (m, 2H), 2.52 (d, *J* = 5.2 Hz, -OH), 2.10 (s, 3H).


5 **Preparation example 370 : (±)-3-(benzyloxy)-1-(2-chlorophenyl)propane-1,2-diol(Anti mixture)**

To a solution of (±)-3-(benzyloxy)-1-(2-chlorophenyl)-2-hydroxypropyl and (±)-3-(benzyloxy)-1-(2-chlorophenyl)-1-hydroxypropan-2-yl acetate (Preparation example 369, 3 g, 8.9 mmole) in MeOH (36 mL) and H₂O (4 mL) was added K₂CO₃ (3.69 g, 26.7 mmole) at 0 °C. The mixture was stirred for 1.5 hr at 0°C. The TLC showed complete consumption of SM. The reaction mixture was quenched with H₂O at 0°C then extracted with EtOAc. The aqueous layer was extracted with EtOAc and separated. The combined organic layer was washed with H₂O, then dried over MgSO₄ and evaporated under reduced pressure. The crude compound was purified by silica gel column to produce the title compound(2.4 g, 80~95 %).

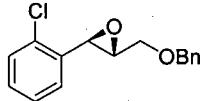
10 ¹H NMR (400 MHz, CDCl₃) δ 7.50 (dd, *J* = 7.6, 1.2 Hz, 1H), 7.35-7.19 (m, 8H), 5.28 (t, *J* = 4.8 Hz, 1H), 4.46 (d, *J* = 6 Hz, 2H), 4.18-4.13 (m, 1H), 3.55-3.42 (m, 3H, -OH), 3.02 (d, *J* = 5.2 Hz, -OH).


15 **Preparation example 371 : (±)-4-(benzyloxymethyl)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolane**

To a solution of (\pm)-3-(benzyloxy)-1-(2-chlorophenyl)propane-1,2-diol (Preparation example 370, 2.4 g, 8.2 mmole) in CH_2Cl_2 (40 mL) was added p-toluenesulfonyl chloride (15.2 g, 0.08 mmole), and dimethoxypropan (8.4mL, 9.84mmole) at 0 °C subsequently. The mixture was stirred for 1.5 hr at room temperature. The TLC showed 5 complete consumption of SM. The reaction mixture was quenched with H_2O then extracted with EtOAc. The aqueous layer was extracted with EtOAc and separated. The combined organic layer was washed with H_2O , then dried over MgSO_4 and evaporated under reduced pressure. The crude compound was purified by silica ge column to produce the title compound (2.2 g, 75~90 %).

10 ^1H NMR (400 MHz, CDCl_3) δ 7.61 (dd, J = 7.4, 1.6 Hz, 1H), 7.35-7.16 (m, 8H), 5.63 (d, J = 6.8, 1H), 4.83-4.78 (m, 1H). 4.26 (d, J = 12 Hz, 2H), 3.14-3.06 (m, 2H), 1.66 (s, 3H), 1.53 (s, 3H).

15 **Preparation example 372 : 5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(SR & RS mixture)**

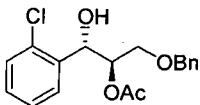


To a solution of (\pm)-4-(benzyloxymethyl)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolane (Preparation example 371, 2.2 g, 6.6 mmole) in EtOAc (33 mL) was added 10% Pd/C on carbon (0.11 g) at room temperature. The mixture was stirred for 1 hr 20 at room temperature under H_2 (g). The TLC showed complete consumption of SM. The reaction mixture was filtered through celite pad then evaporated under reduced pressure. The crude compound was purified by silica ge column to produce the title compound (1.5 g, 80~95 %).

25 ^1H NMR (400 MHz, CDCl_3) δ 7.61 (dd, J = 7.4, 1.6, 1H), 7.35-7.16 (m, 8H), 5.63 (d, J = 6.8 Hz, 1H), 4.83-4.78 (m, 1H), 4.26 (d, J = 12, 2H), 3.14-3.06 (m, 2H), 1.66 (s,

3H), 1.53 (s, 3H).

Preparation example 373 : (2R,3R)-2-(benzyloxymethyl)-3-(2-chlorophenyl)oxirane

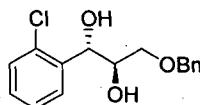


5

To a solution of (*E*)-1-(3-(benzyloxy)prop-1-enyl)-2-chlorobenzene (Preparation example 367, 4.16 g, 18.58 mmole) and 1,2;4,5-di-*O*-isopropylidene- β -D-*erythro*-2,3-hexodiulo-2,6-pyranose (5.76 g, 22.30 mmole) in DME-DMM (3:1, v/v) (185 mL) was added buffer (0.2M K₂CO₃-AcOH in 4 X 10⁻⁴ aq. EDTA, buffer pH = 8.0) (185 mL) and Bu₄NHSO₄ (0.26 g, 0.75 mmole). After the mixture was cooled to 0°C, a solution of Oxone (15.76 g, 25.64 mmole) in 4 X 10⁻⁴ aq. EDTA (100 mL) and a solution of K₂CO₃ (13.6 g, 98.47 mmole) in 4 X 10⁻⁴ aq. EDTA (100 mL) were added dropwise separately over a period of 3.5hr via a syringe pump at 0 °C. The reaction mixture was stirred for 14hr at 0 °C. The reaction mixture was quenched with H₂O then extracted with EtOAc. The aqueous layer was extracted with EtOAc and separated. The combined organic layer was washed with H₂O then dried over MgSO₄ and evaporated under reduced pressure. The crude compound was purified by silica gel column to produce the title compound (2.9 g, 56 %).

¹H NMR (400 MHz, CDCl₃) δ 3.14 (qt, *J* = 2.4 Hz, 1H), 3.69-3.64 (m, 1H), 3.96 (dd, *J* = 11.6, 2.8 Hz, 1H), 4.18 (d, *J* = 2 Hz, 1H), 4.68 (d, *J* = 14.8, 2H), 7.42-7.24 (m, 9H),

Preparation example 374 : (1S, 2R)-3-(benzyloxy)-1-(2-chlorophenyl)-1-hydroxypropan-2-yl acetate

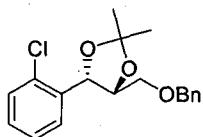


To a solution of (\pm)-2-(benzyloxymethyl)-3-(2-chlorophenyl)oxirane (Preparation example 373, 2.9 g, 10.55 mmole) in Acetic acid (55 mL) was added Cerium Ammonium Nitrate (1.15 g, 2.11 mmole) at room temperature. The mixture was 5 stirred for 18 hr at room temperature. The TLC showed complete consumption of SM.

The reaction mixture was quenched with sat'NaHCO₃ to pH7 at 0°C then extracted with EtOAc. The aqueous layer was extracted with EtOAc and separated. The combined organic layer was washed with H₂O, then dried over MgSO₄ and evaporated under reduced pressure. The crude compound was purified by silica gel column to produce the title compound(1.2 g, 34 %). 10

¹H NMR (400 MHz, CDCl₃) δ 2.10 (s, 3H), 2.52 (d, *J* = 5.2 Hz, -OH), 3.67-3.55 (m, 2H), 4.24-4.22 (m, 1H), 4.55 (d, *J* = 9.6 Hz, 2H), 6.31 (d, *J* = 5.6 Hz, 1H), 7.46-7.24 (m, 9H).

15 **Preparation example 375 : (1S, 2R)-3-(benzyloxy)-1-(2-chlorophenyl)propane-1,2-diol**



To a solution of (1S, 2R)-3-(benzyloxy)-1-(2-chlorophenyl)-1-hydroxypropan-2-yl acetate(Preparation example 374, 1.2 g, 3.58 mmole) in MeOH (16.2 mL) and H₂O (1.8 mL) was added K₂CO₃ (1.48 g, 10.74 mmole) at 0 °C. The mixture was stirred 20 for 1.5 hr at 0°C. The TLC showed complete consumption of SM. The reaction mixture was quenched with H₂O at 0°C then extracted with EtOAc. The aqueous layer was extracted with EtOAc and separated. The combined organic layer was

washed with H_2O , then dried over $MgSO_4$ and evaporated under reduced pressure. The crude compound was purified by silica gel column to produce the title compound (1.0 g, 94 %).

5 1H NMR (400 MHz, $CDCl_3$) δ 3.02 (d, J = 5.2 Hz, 1H), 3.55-3.42 (m, 3H, -OH), 4.18-4.13 (m, 1H), 4.46 (d, J = 6 Hz, 2H), 5.28 (t, J = 4.8 Hz, 1H), 7.35-7.19 (m, 8H), 7.50 (dd, J = 7.6, 1.2 Hz, 1H).

Preparation example 376 : (4S, 5R)-4-(benzyloxymethyl)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolane

10

The substantially same method as described in Example 371 was conducted, except that (1S, 2R)-3-(benzyloxy)-1-(2-chlorophenyl)propane-1,2-diol (Preparation example 375) was used instead of that (\pm)-3-(benzyloxy)-1-(2-chlorophenyl)propane-1,2-diol (Preparation example 370), to obtain the title compound (0.84 g, 85 %).

15 1H NMR (400 MHz, $CDCl_3$) δ 1.53 (s, 3H), 1.66 (s, 3H), 3.14-3.06 (m, 2H), 4.26 (d, J = 12 Hz, 2H), 4.83-4.78 (m, 1H), 5.63 (d, J = 6.8, 1H), 7.35-7.16 (m, 8H), 7.61 (dd, J = 7.4, 1.6 Hz, 1H).

20

Preparation example 377 : ((4S, 5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol

200

The substantially same method as described in Example 372 was conducted, except that ((4S, 5R)-4-(benzyloxymethyl)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolane (Preparation example 376) was used instead of that (\pm)-4-(benzyloxymethyl)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolane (Preparation example 371), to obtain the title compound (0.58 g, 95 %).

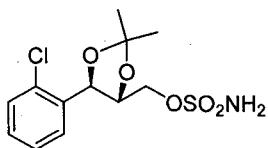
¹H NMR (400 MHz, CDCl₃) δ 1.66 (s, 3H), 1.53 (s, 3H), 3.14-3.06 (m, 2H), 4.26 (d, J = 12, 2H), 4.83-4.78 (m, 1H), 5.63 (d, J = 6.8 Hz, 1H), 7.35-7.16 (m, 8H), 7.61 (dd, J = 7.4, 1.6, 1H).

10

Table 1 : Example of sulfamate compound

No	R ₃ -R ₇	n	m	R ₁	R ₂	R ₈	R ₉	Chiral-1	Chiral-2
1	2-Cl	0	0	Me	Me	H	H	R	R
2	2-Cl	0	0	Me	Me	H	H	S	S
3	2-Cl	0	0	Me	Me	H	H	Rac.(syn)	Rac.(syn)
4	2-Cl	0	0	Me	Me	H	H	Rac.(anti)	Rac.(anti)
5	2-Cl	0	0	Me	H	H	H	R	R
6	2-Cl	0	0	Me	H	H	H	S	S
7	2-Cl	0	0	Et	Et	H	H	R	R
8	2-Cl	0	0	Et	Et	H	H	S	S
9	2-Cl	0	0	Cyclopentyl		H	H	R	R
10	2-Cl	0	0	Cyclopentyl		H	H	S	S
11	2-Cl	0	0	Cyclohexyl		H	H	R	R
12	2-Cl	0	0	Cyclohexyl		H	H	S	S
13	2-Cl	0	0	Methylbenzene		H	H	R	R
14	2-Cl	0	0	Methylbenzene		H	H	S	S
15	2-F	0	0	Me	Me	H	H	R	R
16	2-F	0	0	Me	Me	H	H	S	S
17	2-F	0	0	Me	H	H	H	R	R
18	2-F	0	0	Me	H	H	H	S	S
19	2-F	0	0	Et	Et	H	H	R	R
20	2-F	0	0	Et	Et	H	H	S	S
21	2-F	0	0	Cyclopentyl		H	H	R	R
22	2-F	0	0	Cyclopentyl		H	H	S	S

23	2-F	0	0	Cyclohexyl	H	H	R	R
24	2-F	0	0	Cyclohexyl	H	H	S	S
25	2-F	0	0	Methylbenzene	H	H	R	R
26	2-F	0	0	Methylbenzene	H	H	S	S
27	2-I	0	0	Me	Me	H	R	R
28	2-I	0	0	Me	Me	H	S	S
29	2-I	0	0	Me	H	H	R	R
30	2-I	0	0	Me	H	H	S	S
31	2-I	0	0	Et	Et	H	R	R
32	2-I	0	0	Et	Et	H	S	S
33	2-I	0	0	Cyclopentyl	H	H	R	R
34	2-I	0	0	Cyclopentyl	H	H	S	S
35	2-I	0	0	Cyclohexyl	H	H	R	R
36	2-I	0	0	Cyclohexyl	H	H	S	S
37	2-I	0	0	Methylbenzene	H	H	R	R
38	2-I	0	0	Methylbenzene	H	H	S	S
39	2,4-Cl	0	0	Me	Me	H	R	R
40	2,4-Cl	0	0	Me	Me	H	S	S
41	2,4-Cl	0	0	Me	H	H	R	R
42	2,4-Cl	0	0	Me	H	H	S	S
43	2,4-Cl	0	0	Et	Et	H	R	R
44	2,4-Cl	0	0	Et	Et	H	S	S
45	2,4-Cl	0	0	Cyclopentyl	H	H	R	R
46	2,4-Cl	0	0	Cyclopentyl	H	H	S	S
47	2,4-Cl	0	0	Cyclohexyl	H	H	R	R
48	2,4-Cl	0	0	Cyclohexyl	H	H	S	S
49	2,4-Cl	0	0	Methylbenzene	H	H	R	R
50	2,4-Cl	0	0	Methylbenzene	H	H	S	S
51	2,6-Cl	0	0	Me	Me	H	R	R
52	2,6-Cl	0	0	Me	Me	H	S	S
53	2,6-Cl	0	0	Me	H	H	R	R
54	2,6-Cl	0	0	Me	H	H	S	S
55	2,6-Cl	0	0	Et	Et	H	R	R
56	2,6-Cl	0	0	Et	Et	H	S	S
57	2,6-Cl	0	0	Cyclopentyl	H	H	R	R
58	2,6-Cl	0	0	Cyclopentyl	H	H	S	S
59	2,6-Cl	0	0	Cyclohexyl	H	H	R	R
60	2,6-Cl	0	0	Cyclohexyl	H	H	S	S
61	2,6-Cl	0	0	Methylbenzene	H	H	R	R


62	2,6-Cl	0	0	Methylbenzene		H	H	S	S
63	2-NH2	0	0	Me	Me	H	H	R	R
64	2-NH2	0	0	Me	Me	H	H	S	S
65*	2-NH2	0	0	Me	Me	H	H	R	R
66*	2-NH2	0	0	Me	Me	H	H	S	S
67	2-NH2	0	0	Me	H	H	H	R	R
68	2-NH2	0	0	Me	H	H	H	S	S
69	2-NH2	0	0	Et	Et	H	H	R	R
70	2-NH2	0	0	Et	Et	H	H	S	S
71	2-NH2	0	0	Cyclopentyl		H	H	R	R
72	2-NH2	0	0	Cyclopentyl		H	H	S	S
73	2-NH2	0	0	Cyclohexyl		H	H	R	R
74	2-NH2	0	0	Cyclohexyl		H	H	S	S
75	2-NH2	0	0	Methylbenzene		H	H	R	R
76	2-NH2	0	0	Methylbenzene		H	H	S	S
77	2-NO2	0	0	Me	Me	H	H	R	R
78	2-NO2	0	0	Me	Me	H	H	S	S
79	2-NO2	0	0	Me	H	H	H	R	R
80	2-NO2	0	0	Me	H	H	H	S	S
81	2-NO2	0	0	Et	Et	H	H	R	R
82	2-NO2	0	0	Et	Et	H	H	S	S
83	2-NO2	0	0	Cyclopentyl		H	H	R	R
84	2-NO2	0	0	Cyclopentyl		H	H	S	S
85	2-NO2	0	0	Cyclohexyl		H	H	R	R
86	2-NO2	0	0	Cyclohexyl		H	H	S	S
87	2-NO2	0	0	Methylbenzene		H	H	R	R
88	2-NO2	0	0	Methylbenzene		H	H	S	S
89	2-NO2	0	0	Cyclocarbonyl		H	H	R	R
90	2-NO2	0	0	Cyclocarbonyl		H	H	S	S
91	2-Me	0	0	Me	Me	H	H	R	R
92	2-Me	0	0	Me	Me	H	H	S	S
93	2-Me	0	0	Me	H	H	H	R	R
94	2-Me	0	0	Me	H	H	H	S	S
95	2-Me	0	0	Et	Et	H	H	R	R
96	2-Me	0	0	Et	Et	H	H	S	S
97	2-Me	0	0	Cyclopentyl		H	H	R	R
98	2-Me	0	0	Cyclopentyl		H	H	S	S
99	2-Me	0	0	Cyclohexyl		H	H	R	R
100	2-Me	0	0	Cyclohexyl		H	H	S	S

101	2-Me	0	0	Methylbenzene		H	H	R	R
102	2-Me	0	0	Methylbenzene		H	H	S	S
103	2-MeNH	0	0	Me	Me	Me	H	R	R
104	2-MeNH	0	0	Me	Me	Me	H	S	S
105	H	0	0	Me	Me	H	H	R	R
106	H	0	0	Me	Me	H	H	S	S
107	H	0	0	Et	Et	H	H	R	R
108	H	0	0	Et	Et	H	H	S	S
109	H	0	0	Cyclopentyl		H	H	R	R
110	H	0	0	Cyclopentyl		H	H	S	S
111	H	0	0	Cyclohexyl		H	H	R	R
112	H	0	0	Cyclohexyl		H	H	S	S
113	H	1	1	Me	Me	H	H	R	R
114	H	1	1	Me	Me	H	H	S	S
115	H	1	1	Et	Et	H	H	R	R
116	H	1	1	Et	Et	H	H	S	S
117	H	1	1	Cyclopentyl		H	H	R	R
118	H	1	1	Cyclopentyl		H	H	S	S
119	H	1	1	Cyclohexyl		H	H	R	R
120	H	1	1	Cyclohexyl		H	H	S	S
121	H	1	0	Me	Me	H	H	R	R
122	H	1	0	Me	Me	H	H	S	S
123	H	1	0	Et	Et	H	H	R	R
124	H	1	0	Et	Et	H	H	S	S
125	H	1	0	Cyclopentyl		H	H	R	R
126	H	1	0	Cyclopentyl		H	H	S	S
127	H	1	0	Cyclohexyl		H	H	R	R
128	H	1	0	Cyclohexyl		H	H	S	S
129	H	0	1	Me	Me	H	H	R	R
130	H	0	1	Me	Me	H	H	S	S
131	H	0	1	Et	Et	H	H	R	R
132	H	0	1	Et	Et	H	H	S	S
133	H	0	1	Cyclopentyl		H	H	R	R
134	H	0	1	Cyclopentyl		H	H	S	S
135	H	0	1	Cyclohexyl		H	H	R	R
136	H	0	1	Cyclohexyl		H	H	S	S
137	Cl	1	1	Me	Me	H	H	R	R
138	Cl	1	1	Me	Me	H	H	S	S
139	Cl	1	1	Et	Et	H	H	R	R

140	Cl	1	1	Et	Et	H	H	S	S
141	Cl	1	1	Cyclopentyl		H	H	R	R
142	Cl	1	1	Cyclopentyl		H	H	S	S
143	Cl	1	1	Cyclohexyl		H	H	R	R
144	Cl	1	1	Cyclohexyl		H	H	S	S
145	Cl	1	0	Me	Me	H	H	R	R
146	Cl	1	0	Me	Me	H	H	S	S
147	Cl	1	0	Et	Et	H	H	R	R
148	Cl	1	0	Et	Et	H	H	S	S
149	Cl	1	0	Cyclopentyl		H	H	R	R
150	Cl	1	0	Cyclopentyl		H	H	S	S
151	Cl	1	0	Cyclohexyl		H	H	R	R
152	Cl	1	0	Cyclohexyl		H	H	S	S
153	Cl	0	1	Me	Me	H	H	R	R
154	Cl	0	1	Me	Me	H	H	S	S
155	Cl	0	1	Et	Et	H	H	R	R
156	Cl	0	1	Et	Et	H	H	S	S
157	Cl	0	1	Cyclopentyl		H	H	R	R
158	Cl	0	1	Cyclopentyl		H	H	S	S
159	Cl	0	1	Cyclohexyl		H	H	R	R
160	Cl	0	1	Cyclohexyl		H	H	S	S
161	Cl	0	0	Me	Me	H	H	S	R

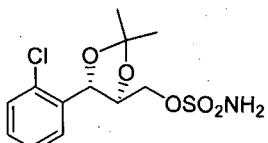
***: Sodium salt**

Example 1-1 : ((4R,5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methyl sulfamate

5

To a 100ml flask, Acetonitrile (2.26ml, 43.2mmol) was added and cooled to 0°C. Chlorosulfonyl isocyanate (1.5ml, 17.3mmol), and formic acid (0.65ml, 17.3mmol) was added dropwise and stirred at room temperature for 6 hours. ((4R,5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol (Preparation example 6, 1.05g, 4.3mmol) in N,N-dimethyl acetamide (13.2ml, 142.7mmol) was slowly added

10

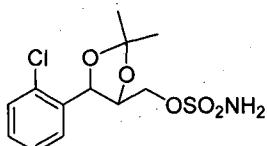

at 0°C and stirred at room temperature for 1 hours. The reaction mixture was quenched with H₂O, extracted with EtOAc, and washed with H₂O. The organic layer was dried over anhydrous magnesium sulfate(MgSO₄), filtered and concentrated. The crude compound was purified by a silica gel column to produce the title compound(1.00g, 50~80%).

¹H NMR (400MHz, CDCl₃) δ 1.57 (s, 3H), 1.63 (s, 3H), 4.11~4.10 (m, 1H), 4.53~4.42 (m, 2H), 4.88 (s, 2H), 5.37 (d, J = 8.4, 1H), 7.28~7.56 (m, 4H)

Example 1-2 : ((4R,5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methyl sulfamate

To a 100 mL RB flask 10.0 g (41.2 mmol) of acetonide alcohol **3**, 50 ml of toluene, 7.92 g (82.4 mmol) of sulfamide and 13.0 g (165 mmol) of pyridine were added at RT. The mixture was refluxed for 1.5 hr (bath temperature 135 °C). The reaction mixture cooled to room temperature then solution was extracted with 27.5 ml (82.4 mmol) of 3N NaOH solution. The aqueous layer was washed with 50 mL of toluene. To the mixture 50 ml of methanol and 35 ml of water was added then acidified to pH 6.0 by slow adding acetic acid to give title compound.(9.9g 60~80%).

Example 2 : ((4S,5S)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methyl sulfamate

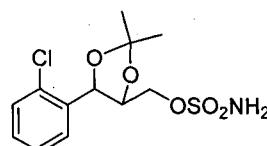


The substantially same method as described in Example 1 was conducted, except that ((4S,5S)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 7, 27) was used instead of ((4R,5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to

obtain the title compound(2.30g, 50~80%).

¹H NMR (400MHz, CDCl₃) δ 1.59 (s, 3H), 1.65 (s, 3H), 4.12~4.07 (m, 1H), 4.54~4.42 (m, 2H), 4.91 (s, 2H), 5.37 (d, J = 8.8, 1H), 7.29~7.65 (m, 4H)

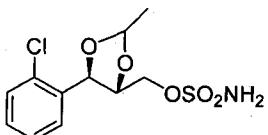
5 **Example 3 : (5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methyl sulfamate(SS & RR mixture)**



The substantially same method as described in Example 1 was conducted, except that (5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 8) was used instead of ((4R,5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(1.74g, 50~80%).

¹H NMR (400MHz, CDCl₃) δ 1.57 (s, 3H), 1.63 (s, 3H), 4.11~4.10 (m, 1H), 4.53~4.42 (m, 2H), 4.88 (s, 2H), 5.37 (d, J = 8.4, 1H) 7.28~7.65 (m, 4H)

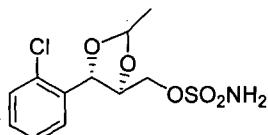
15


Example 4 : (5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methyl sulfamate(SR & RS mixture)

The substantially same method as described in Example 1 was conducted, except that (5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 372(SR&RS mixture)) was used instead of ((4R,5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(1.3g, 50~80%).

¹H NMR (400MHz, CDCl₃) δ 1.59 (s, 3H), 1.65 (s, 3H), 4.11~4.10 (m, 1H), 4.50~4.42 (m, 2H), 4.85 (s, 2H), 5.35 (d, J = 8.4, 1H) 7.28~7.65 (m, 4H)

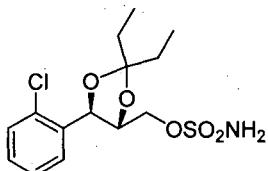
Example 5 : ((4R,5R)-5-(2-chlorophenyl)-2-methyl-1,3-dioxolan-4-yl)methyl sulfamate



The substantially same method as described in Example 1 was conducted, except that ((4S,5S)-5-(2-chlorophenyl)-2-methyl-1,3-dioxolan-4-yl)methanol(Preparation example 61) was used instead of ((4R,5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(2.8g, 55~75%)

¹H NMR (400 MHz, DMSO) δ 1.40 (d, J = 6.4, 3H), 4.22 (dt, J = 7.0, J = 3.3, 1H), 4.7 (d, J = 3.2, 2H), 5.08 (d, J = 7.0, 1H), 5.46 (m, J = 6.4, 1H), 7.26-7.40 (m, 3H), 7.49 (s, 2H), 7.61 (dd, J = 1.2, J = 7.6, 1H).

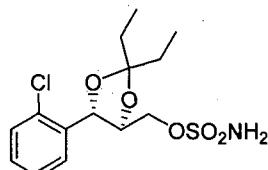
15


Example 6 : ((4S, 5S)-5-(2-chlorophenyl)-2-methyl-1,3-dioxolan-4-yl)methyl sulfamate

The substantially same method as described in Example 1 was conducted, except that ((4R,5R)-5-(2-chlorophenyl)-2-methyl-1,3-dioxolan-4-yl)methanol(Preparation example 63) was used instead of ((4R,5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(2.1g, 55~75%)

¹H NMR (400 MHz, DMSO) δ 1.40 (d, J = 6.4, 3H), 4.22 (dt, J = 7.0, J = 3.3, 1H), 4.7 (d, J = 3.2, 2H), 5.08 (d, J = 7.0, 1H), 5.46 (m, J = 6.4, 1H), 7.26-7.40 (m, 3H), 7.49 (s, 2H), 7.61 (dd, J = 1.2, J = 7.6, 1H).

5 **Example 7 : ((2R, 3R)-5-(2-chlorophenyl)-2,2-diethyl-1,3-dioxolan-4-yl)methyl sulfamate**

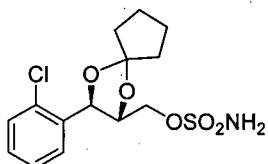


The substantially same method as described in Example 1 was conducted, except that ((4R,5R)-5-(2-chlorophenyl)-2,2-diethyl-1,3-dioxolan-4-yl)methanol(Preparation example 65) was used instead of ((4R,5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(1.5g, 50~80%).

10 ¹H NMR (400MHz, CDCl₃) δ 1.59 (s, 10H), 4.17 (m, 3H), 4.98 (d, J = 8.4, 1H), 5.08 (s, 2H), 6.59 (t, J = 8.4, 1H), 6.68 (d, J = 8.4, 1H), 7.04~7.56 (m, 4H)

15

Example 8 : ((2S, 3S)-5-(2-chlorophenyl)-2,2-diethyl-1,3-dioxolan-4-yl)methyl sulfamate

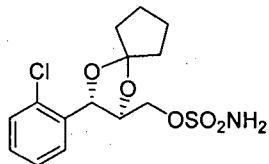


The substantially same method as described in Example 1 was conducted, except that ((4S,5S)-5-(2-chlorophenyl)-2,2-diethyl-1,3-dioxolan-4-yl)methanol(Preparation example 67) was used instead of ((4R,5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(1.2g),

50~80%).

¹H NMR (400MHz, CDCl₃) δ 1.59 (s, 10H), 4.17 (m, 3H), 4.96 (d, J = 8.4, 1H), 5.08 (s, 2H), 6.59 (t, J = 8.4, 1H), 6.68 (d, J = 8.4, 1H), 7.04~7.56 (m, 4H)

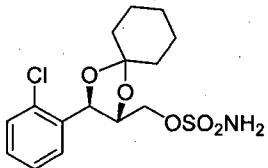
5 **Example 9 : ((2R, 3R)-3-(2-chlorophenyl)-1,4-dioxaspiro[4,4]nonan-2-yl)methyl sulfamate**



The substantially same method as described in Example 1 was conducted, except that ((4R,5R)-5-(2-chlorophenyl)-1,4-dioxaspiro[4,4]nonane-2-yl)methanol(Preparation example 69) was used instead of ((4R,5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound (2.2g, 50~80%).

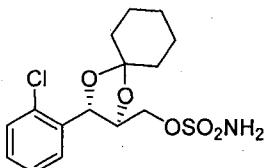
¹H NMR (400MHz, DMSO) δ 1.64~1.72 (m, 4H), 1.85~19.8 (m, 4H), 4.10~4.16 (m, 2H), 4.17~4.25 (m, 1H), 5.20 (d, J = 7.2, 1H), 7.34~7.62 (m, 6H)

15


Example 10 : ((2S,3 S)-3-(2-chlorophenyl)-1,4-dioxaspiro[4,4]nonan-2-yl)methyl sulfamate

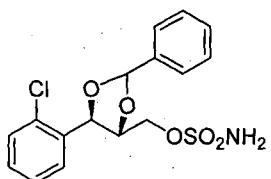
The substantially same method as described in Example 1 was conducted, except that ((4S,5S)-5-(2-chlorophenyl)-1,4-dioxaspiro[4,4]nonane-2-yl)methanol(Preparation example 71) was used instead of ((4R,5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound (2.1g, 50~80%).

¹H NMR (400MHz, DMSO) δ 1.64~1.75 (m, 4H), 1.85~19.9 (m, 4H), 4.10~4.16 (m, 2H), 4.17~4.25 (m, 1H), 5.20 (d, J = 7.2, 1H), 7.34~7.62 (m, 6H)


5 **Example 11 : ((2R, 3R)-3-(2-chlorophenyl)-1,4-dioxaspiro[4,5]decan-2-yl)methyl sulfamate**

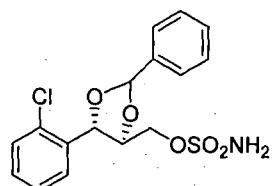
The substantially same method as described in Example 1 was conducted, except that ((4R,5R)-5-(2-chlorophenyl)-1,4-dioxaspiro[4,5]decan-2-yl)methanol(Preparation example 73) was used instead of ((4R,5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound (1.4g, 50~80%).

10 ¹H NMR (400MHz, DMSO) δ 1.51~1.67 (m, 10H), 4.11~4.23 (m, 3H), 4.98 (d, J = 8.0, 2H), 5.08 (s, 1H), 6.59(t, J = 8.0, 1H), 6.68 (d, J = 8.0, 1H), 7.04~7.56 (m, 4H)


15 **Example 12 : ((2S, 3S)-3-(2-chlorophenyl)-1,4-dioxaspiro[4,5]decan-2-yl)methyl sulfamate**

The substantially same method as described in Example 1 was conducted, except that ((4S,5S)-5-(2-chlorophenyl)-1,4-dioxaspiro[4,5]decan-2-yl)methanol(Preparation example 75) was used instead of ((4R,5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound (1.2g, 50~80%).

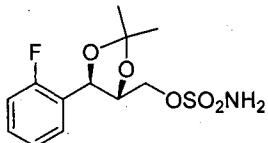
¹H NMR (400MHz, DMSO) δ 1.51~1.67 (m, 10H), 4.11~4.23 (m, 3H), 4.98 (d, J = 8.0, 2H), 5.08 (s, 1H), 6.59 (t, J = 8.0, 1H), 6.68 (d, J = 8.0, 1H), 7.04~7.56 (m, 4H)


5 **Example 13 : ((4R,5R)-5-(2-chlorophenyl)-2-phenyl-1,3-dioxolan-4-yl)methyl sulfamate**

The substantially same method as described in Example 1 was conducted, except that ((4R,5R)-5-(2-chlorophenyl)-2-phenyl-1,3-dioxolan-4-yl)methanol(Preparation example 79) was used instead of ((4R,5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound (1.3g, 50~80%).

10 ¹H NMR (400MHz, DMSO) δ 4.25 (dt, J = 3.3, J = 5.7, 1H), 4.55(d, J = 5.7, 1H), 4.75 (d, J = 3.3, 2H), 5.59 (m, 1H), 6.72~7.75 (m, 2H), 6.92~7.33 (m, 5H), 7.29 (m, 1H), 15 7.76 (m, 1H)

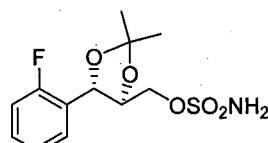
20 **Example 14 : ((4S,5S)- 5-(2-chlorophenyl)-2-phenyl-1,3-dioxolan-4-yl)methyl sulfamate**



The substantially same method as described in Example 1 was conducted, except that ((4S,5S)-5-(2-chlorophenyl)-2-phenyl-1,3-dioxolan-4-yl)methanol(Preparation example 77) was used instead of ((4R,5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-

dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound (2.1g, 50~80%).

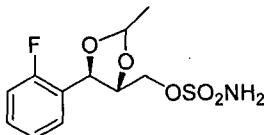
¹H NMR (400MHz, DMSO) δ 4.28 (dt, J = 3.3, J = 5.7, 1H), 4.58 (d, J = 5.7, 1H), 4.75 (d, J = 3.3, 2H), 5.62 (m, 1H), 6.72~7.75 (m, 2H), 6.92~7.33 (m, 5H), 7.29 (m, 5 1H), 7.76 (m, 1H)


Example 15 : ((4R,5R)-5-(2-fluorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methyl sulfamate

10 The substantially same method as described in Example 1 was conducted, except that ((4R,5R)-5-(2-fluorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 13) was used instead of ((4R,5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(1.8g, 50~80%).

15 ¹H NMR (400MHz, DMSO) δ 1.47 (d, J=11.6, 6H), 3.35~3.94 (m, 1H), 4.02~4.20 (m, 1H), 4.23(d, J=2.0 1H), 5.07 (d, J = 8.4, 1H), 7.21~7.58 (m, 4H)

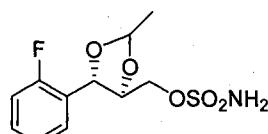
Example 16 : ((4S,5S)-5-(2-fluorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methyl sulfamate


20 The substantially same method as described in Example 1 was conducted, except that ((4S,5S)-5-(2-fluorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 15) was used instead of ((4R,5R)-5-(2-

chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(1.2g, 50~80%).

¹H NMR (400MHz, DMSO) δ 1.47 (d, J=11.6, 6H), 3.35~3.94 (m, 1H), 4.02~4.20 (m, 1H), 4.23(d, J=2.0 1H), 5.07 (d, J = 8.4, 1H), 7.21~7.58 (m, 4H)

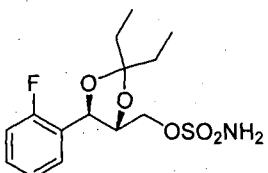
5


Example 17 : ((4R,5R)-5-(2-fluorophenyl)-2-methyl-1,3-dioxolan-4-yl)methyl sulfamate

The substantially same method as described in Example 1 was conducted, except that ((4S,5S)-5-(2-fluorophenyl)-2-methyl-1,3-dioxolan-4-yl)methanol(Preparation example 84) was used instead of ((4R,5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(2.5g, 55~75%)

¹H NMR (400 MHz, DMSO) δ 1.40 (d, J = 6.4, 3H), 4.7 (d, J = 3.2, 2H), 5.46 (m, J = 6.4, 1H), 4.22 (dt, J = 3.3, J = 7.0, 1H), 5.08 (d, J = 7.0, 1H), 7.26-7.40 (m, 3H), 7.49 (s, 2H), 7.61 (dd, J = 1.2, J = 7.6, 1H).

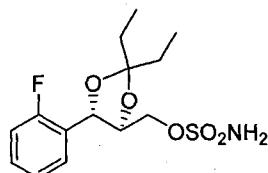
Example 18 : ((4S, 5S)-5-(2-fluorophenyl)-2-methyl-1,3-dioxolan-4-yl)methyl sulfamate


20

The substantially same method as described in Example 1 was conducted, except that ((4R,5R)-5-(2-fluorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 86) was used instead of ((4R,5R)-5-(2-

chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(2.1g, 55~75%)

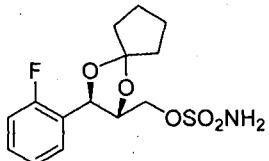
¹H NMR (400 MHz, DMSO) δ 1.40 (d, J = 6.4, 3H), 4.7 (d, J = 3.2, 2H), 5.46 (m, J = 6.4, 1H), 4.22 (dt, J = 3.3, J = 7.0, 1H), 5.18 (d, J = 7.0, 1H), 7.26-7.40 (m, 3H), 7.52 (s, 2H), 7.61 (dd, J = 1.2, J = 7.6, 1H).


Example 19 : ((4R,5R)-5-(2-fluorophenyl)-2,2-diethyl-1,3-dioxolan-4-yl)methyl sulfamate

10 The substantially same method as described in Example 1 was conducted, except that ((4R,5R)-5-(2-fluorophenyl)-2,2-diethyl-1,3-dioxolan-4-yl)methanol(Preparation example 88) was used instead of ((4R,5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound (1.3g, 50~80%).

15 ¹H NMR (400MHz, CDCl₃) δ 1.59 (s, 10H), 4.17 (m, 3H), 4.98 (d, J = 8.4, 1H), 5.08 (s, 2H), 6.59 (t, J = 8.4, 1H), 6.68 (d, J = 8.4, 1H), 7.04~7.56 (m, 4H)

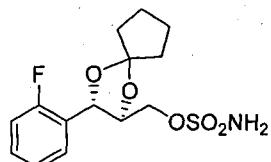
Example 20 : ((4S,5S)-5-(2-fluorophenyl)-2,2-diethyl-1,3-dioxolan-4-yl)methyl sulfamate


20 The substantially same method as described in Example 1 was conducted, except that ((4S,5S)-5-(2-fluorophenyl)-2,2-diethyl-1,3-dioxolan-4-yl)methanol(Preparation

example 90) was used instead of ((4R,5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound (1.6g, 50~80%).

¹H NMR (400MHz, CDCl₃) δ 1.59 (s, 10H), 4.14 (m, 3H), 4.98 (d, J = 8.4, 1H), 5.05

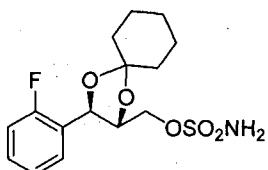
5 (s, 2H), 6.59 (t, J = 8.4, 1H), 6.65 (d, J = 8.4, 1H), 7.04~7.60 (m, 4H)


Example 21 : ((2R, 3R)-3-(2-fluorophenyl)-1,4-dioxaspiro[4,4]nonan-2-yl)methyl sulfamate

10 The substantially same method as described in Example 1 was conducted, except that ((4R,5R)-5-(2-fluorophenyl)-1,4-dioxaspiro[4,4]nonane-2-yl)methanol(Preparation example 92) was used instead of ((4R,5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound (1.5g, 50~80%).

15 ¹H NMR (400MHz, DMSO) δ 1.64~1.72 (m, 4H), 1.84~19.8 (m, 4H), 4.10~4.16 (m, 2H), 4.19~4.25 (m, 1H), 5.25 (d, J = 7.2, 1H), 7.34~7.62 (m, 6H)

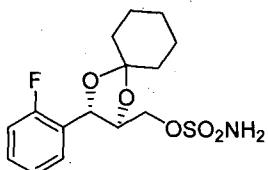
Example 22 : ((2S, 3S)-3-(2-fluorophenyl)-1,4-dioxaspiro[4,4]nonan-2-yl)methyl sulfamate


20 The substantially same method as described in Example 1 was conducted, except that ((4S,5S)-5-(2-fluorophenyl)-1,4-dioxaspiro[4,4]nonane-2-yl)methanol(Preparation example 94) was used instead of ((4R,5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-

dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound (1.0g, 50~80%).

¹H NMR (400MHz, DMSO) δ 1.64~1.72 (m, 4H), 1.85~19.8 (m, 4H), 4.10~4.16 (m, 2H), 4.17~4.25 (m, 1H), 5.20 (d, J = 7.2, 1H), 7.34~7.62 (m, 6H)

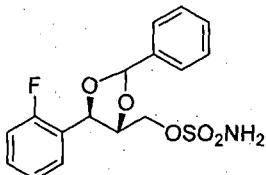
5


Example 23 : ((2R, 3R)-3-(2-fluorophenyl)-1,4-dioxaspiro[4,5]decan-2-yl)methyl sulfamate

The substantially same method as described in Example 1 was conducted, except 10 that ((4R,5R)-5-(2-fluorophenyl)-1,4-dioxaspiro[4,5]decan-2-yl)methanol(Preparation example 96) was used instead of ((4R,5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound (0.9g, 50~80%).

¹H NMR (400MHz, DMSO) δ 1.51~1.67 (m, 10H), 4.11~4.23 (m, 3H), 4.98 (d, J = 8.0, 2H), 5.08 (s, 1H), 6.59 (t, J = 8.0, 1H), 6.68 (d, J = 8.0, 1H), 7.04~7.56 (m, 4H)

Example 24 : ((2S, 3S)-3-(2-fluorophenyl)-1,4-dioxaspiro[4,5]decan-2-yl)methyl sulfamate

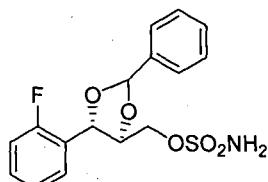

20

The substantially same method as described in Example 1 was conducted, except that ((4S,5S)-5-(2-fluorophenyl)-1,4-dioxaspiro[4,5]decan-2-yl)methanol(Preparation

example 98) was used instead of ((4R,5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound (0.9g, 50~80%).

5 ¹H NMR (400MHz, DMSO) δ 1.51~1.67 (m, 10H), 4.11~4.23 (m, 3H), 4.98 (d, J = 8.0, 2H), 5.08 (s, 1H), 6.59 (t, J = 8.0, 1H), 6.68 (d, J = 8.0, 1H), 7.04~7.56 (m, 4H)

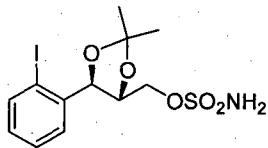
Example 25 : ((4R,5R)-5-(2-fluorophenyl)-2-phenyl-1,3-dioxolan-4-yl)methyl sulfamate


10

The substantially same method as described in Example 1 was conducted, except that ((4R,5R)-5-(2-fluorophenyl)-2-phenyl-1,3-dioxolane-4-yl)methanol(Preparation example 100) was used instead of ((4R,5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound (1.0g, 50~80%).

15 ¹H NMR(400MHz, DMSO) δ 4.25(dt, J=5.7, J=3.3, 1H), 4.59(d, J=5.7, 1H), 4.75(d, J=3.3, 2H), 5.59(m, 1H), 6.72~7.75(m, 2H), 6.92~7.33(m, 5H), 7.25 (m, 1H), 7.76(m, 1H)

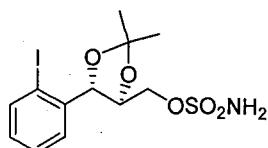
20


Example 26 : ((4S,5S)- 5-(2-fluorophenyl)-2-phenyl-1,3-dioxolan-4-yl)methyl sulfamate

The substantially same method as described in Example 1 was conducted, except that ((4S,5S)-5-(2-fluorophenyl)-2-phenyl-1,3-dioxolane-4-yl)methanol(Preparation example 102) was used instead of ((4R,5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound (0.8g, 5 50~80%).

¹H NMR (400MHz, DMSO) δ 1.51~1.67 (m, 10H), 4.11~4.23 (m, 3H), 4.98(d, J = 8.0, 2H), 5.08 (s, 1H), 6.59 (t, J = 8.0, 1H), 6.68 (d, J = 8.0, 1H), 7.04~7.56 (m, 4H)

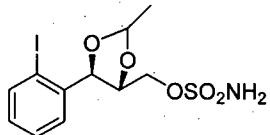
Example 27 : ((4R,5R)-5-(2-iodophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methyl sulfamate



The substantially same method as described in Example 1 was conducted, except that ((4R,5R)-5-(2-iodophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 21) was used instead of ((4R,5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(3.23g, 15 50~80%).

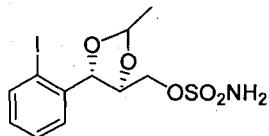
¹H NMR (400MHz, DMSO) δ 1.55 (s, 3H), 1.47 (s, 3H) 4.21~4.11 (m , 3H),), 5.10(d, J = 7.6, 1H),7.56~7.13(m, 3H) 7.60 (s, 2H), 7.91 (d, J = 8.0, 1H)

20


Example 28 : ((4S,5S)-5-(2-iodophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methyl sulfamate

The substantially same method as described in Example 1 was conducted, except that ((4S,5S)-5-(2-iodophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 23) was used instead of ((4R,5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(1.0g, 50~80%).

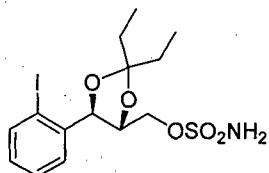
¹H NMR (400MHz, DMSO) δ 1.53 (s, 3H), 1.47 (s, 3H), 4.21~4.11 (m, 3H), 5.04 (d, J = 7.6, 1H), 7.56~7.13 (m, 3H), 7.59 (s, 2H), 7.91 (d, J = 8.0, 1H)


10 **Example 29 : ((4R,5R)-5-(2-iodophenyl)-2-methyl-1,3-dioxolan-4-yl)methyl sulfamate**

The substantially same method as described in Example 1 was conducted, except that ((4R,5R)-5-(2-iodophenyl)-2-methyl-1,3-dioxolan-4-yl)methanol(Preparation example 107) was used instead of ((4R,5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(1.7g, 50~80%).

20 ¹H NMR (400 MHz, DMSO) δ 1.40 (d, J = 6.4, 3H), 4.7 (d, J = 3.2, 2H), 5.46 (m, J = 6.4, 1H), 4.22 (dt, J = 3.3, J = 7.0, 1H), 5.10 (d, J = 7.0, 1H), 7.26-7.40 (m, 3H), 7.49 (s, 2H), 7.61 (dd, J = 1.2, J = 7.6, 1H).

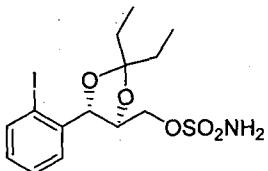
Example 30 : ((4S, 5S)-5-(2-iodophenyl)-2-methyl-1,3-dioxolan-4-yl)methyl sulfamate



The substantially same method as described in Example 1 was conducted, except that ((4S,5S)-5-(2-iodophenyl)-2-methyl-1,3-dioxolan-4-yl)methanol(Preparation example 109) was used instead of ((4R,5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(1.8g, 50~80%).

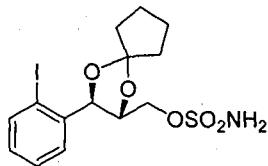
¹H NMR (400 MHz, DMSO) δ 1.40 (d, J = 6.4, 3H), 4.7 (d, J = 3.2, 2H), 5.46 (m, J = 6.4, 1H), 4.22 (dt, J = 3.3, J = 7.0, 1H), 5.08 (d, J = 7.0, 1H), 7.30-7.40 (m, 3H), 7.61 (s, 2H), 7.65 (dd, J = 1.2, J = 7.6, 1H).

10


Example 31 : ((4R,5R)-5-(2-iodophenyl)-2,2-diethyl-1,3-dioxolan-4-yl)methyl sulfamate

The substantially same method as described in Example 1 was conducted, except that ((4R,5R)-5-(2-iodophenyl)-2,2-methyl-1,3-dioxolan-4-yl)methanol(Preparation example 111) was used instead of ((4R,5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(1.6g, 50~80%).

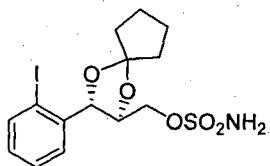
¹H NMR(400MHz, CDCl₃) δ 0.90(t, J = 8.0, 6H), 1.59(q, J = 8.0, 4H), 3.96-4.21(m, 2H), 4.42(q, J = 7.0, 1H), 4.88(s, 2H), 5.17(d, J = 7.0, 1H), 7.13~7.56(m, 4H)


Example 32 : ((4S,5S)-5-(2-iodophenyl)-2,2-diethyl-1,3-dioxolan-4-yl)methyl sulfamate

The substantially same method as described in Example 1 was conducted, except that ((4S,5S)-5-(2-iodophenyl)-2,2-methyl-1,3-dioxolan-4-yl)methanol(Preparation example 113) was used instead of ((4R,5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(1.3g, 50~80%).

¹H NMR(400MHz, CDCl₃) δ 0.90(t, *J* = 8.0, 6H), 1.59(q, *J* = 8.0, 4H), 3.96~4.21(m, 2H), 4.42(q, *J* = 7.0, 1H), 4.88(s, 2H), 5.17(d, *J* = 7.0, 1H), 7.12~7.57(m, 4H)

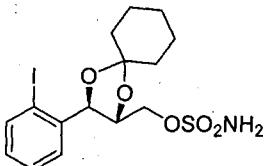
10 **Example 33 : ((2R, 3R)-3-(2-iodophenyl)-1,4-dioxaspiro[4,4]nonan-2-yl)methyl sulfamate**



The substantially same method as described in Example 1 was conducted, except that ((4R,5R)-5-(2-iodophenyl)-1,4-dioxaspiro[4,4]nonane-2-yl)methanol(Preparation example 115) was used instead of ((4R,5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(1.6g, 50~80%).

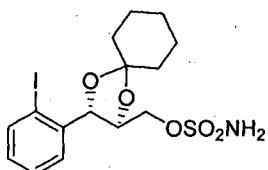
¹H NMR(400MHz, DMSO) δ 1.46~1.90(m, 8H), 3.96~4.21(m, 2H), 4.42(q, *J* = 7.0, 1H), 4.88(s, 2H), 5.17(d, *J* = 7.0, 1H), 7.13~7.56(m, 4H)

20


Example 34 : ((2S, 3S)-3-(2-iodophenyl)-1,4-dioxaspiro[4,4]nonan-2-yl)methyl sulfamate

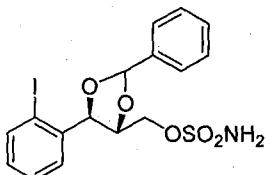
The substantially same method as described in Example 1 was conducted, except that ((4S,5S)-5-(2-iodophenyl)-1,4-dioxapiro[4,4]nonane-2-yl)methanol(Preparation example 117) was used instead of ((4R,5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(1.2g, 50~80%).

¹H NMR(400MHz, DMSO) δ 1.46~1.92(m, 8H), 3.96-4.21(m, 2H), 4.42(q, *J* = 7.0 ,1H), 4.88(s, 2H), 5.22(d, *J* = 7.0 ,1H), 7.13~7.59(m, 4H)


10 **Example 35 : ((2R, 3R)-3-(2-iodophenyl)-1,4-dioxaspiro[4,5]decan-2-yl)methyl sulfamate**

The substantially same method as described in Example 1 was conducted, except that ((4R,5R)-5-(2-iodophenyl)-1,4-dioxapiro[4,5]decan-2-yl)methanol(Preparation example 119) was used instead of ((4R,5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(0.9g, 50~80%).

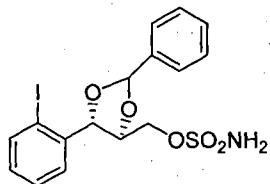
¹H NMR(400MHz, DMSO) δ 1.33~1.72(m, 10H), 4.02-4.31(m, 2H), 4.51(q, *J* = 7.0 ,1H), 4.97(s, 2H), 5.25(d, *J* = 7.0 ,1H), 7.19~7.65(m, 4H)


Example 36 : ((2S, 3S)-3-(2-iodophenyl)-1,4-dioxaspiro[4,5]decan-2-yl)methyl sulfamate

The substantially same method as described in Example 1 was conducted, except that ((4S,5S)-5-(2-iodophenyl)-1,4-dioxapiro[4,5]decane-2-yl)methanol(Preparation example 121) was used instead of ((4R,5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(0.9g, 50~80%).

¹H NMR(400MHz, DMSO) δ 1.33~1.72(m, 10H), 4.02-4.31(m, 2H), 4.51(q, *J* = 7.0 ,1H), 4.97(s, 2H), 5.25(d, *J* = 7.0 ,1H), 7.19~7.6m, 4H)

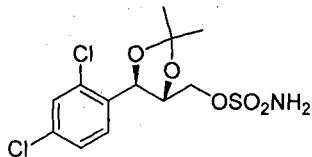
10 **Example 37 : ((4R,5R)-5-(2-iodophenyl)-2-phenyl-1,3-dioxolan-4-yl)methyl sulfamate**



The substantially same method as described in Example 1 was conducted, except that ((4R,5R)-5-(2-iodophenyl)-2-phenyl-1,3-dioxolan-4-yl)methanol(Preparation example 123) was used instead of ((4R,5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(1.1g, 50~80%).

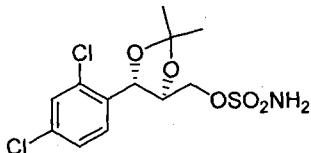
¹H NMR(400MHz, DMSO) δ 3.96-4.21(m, 2H), 4.42(q, *J* = 7.0 ,1H), 4.92(s, 2H), 5.20(d, *J* = 7.0 ,1H), 5.97(s, 1H), 7.14~7.38(m, 9H)

20


Example 38 : ((4S,5S)-5-(2-iodophenyl)-2-phenyl-1,3-dioxolan-4-yl)methyl sulfamate

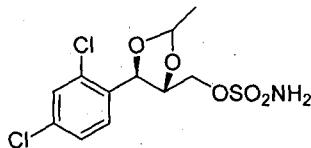
The substantially same method as described in Example 1 was conducted, except that ((4S,5S)-5-(2-iodophenyl)-2-phenyl-1,3-dioxolane-4-yl)methanol(Preparation example 125) was used instead of ((4R,5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(0.9g, 50~80%).

¹H NMR(400MHz, DMSO) δ 3.96-4.21(m, 2H), 4.42(q, *J* = 7.0 ,1H), 4.92(s, 2H), 5.20(d, *J* = 7.0 ,1H), 5.97(s, 1H), 7.14~7.38(m, 9H)


10 **Example 39 : ((4R,5R)-5-(2,4-dichlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methyl sulfamate**

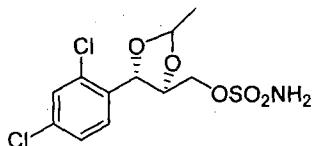
The substantially same method as described in Example 1 was conducted, except that ((4R,5R)-5-(2,4-dichlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 38) was used instead of ((4R,5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(2.8g, 50~80%).

¹H NMR(400MHz, CDCl₃) δ 1.27(s, 6H), 3.90-4.15(m, 2H), 4.37(q, *J* = 7.0 ,1H), 4.79(s, 2H), 5.12(d, *J* = 7.0 ,1H), 7.29~7.42 (m, 2H), 7.79(s, 1H).


Example 40 : ((4S,5S)-5-(2,4-dichlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methyl sulfamate

The substantially same method as described in Example 1 was conducted, except that ((4S,5S)-5-(2,4-dichlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 31) was used instead of ((4R,5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(2.5g, 50~80%).

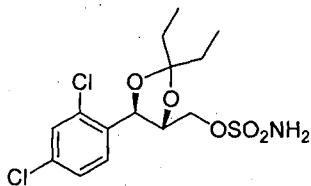
¹H NMR(400MHz, CDCl₃) δ 1.27(s, 6H), 3.90-4.15(m, 2H), 4.37(q, *J* = 7.0 ,1H), 4.79(s, 2H), 5.12(d, *J* = 7.0 ,1H), 7.29~7.42 (m, 2H), 7.79(s, 1H).


10 **Example 41 : ((4R,5R)-5-(2,4-dichlorophenyl)-2-methyl-1,3-dioxolan-4-yl)methyl sulfamate**

The substantially same method as described in Example 1 was conducted, except that ((4R,5R)-5-(2,4-dichlorophenyl)-2-methyl-1,3-dioxolan-4-yl)methanol(Preparation example 127) was used instead of ((4R,5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(1.5g, 50~80%).

¹H NMR(400MHz, CDCl₃) δ 1.40(s, 3H), 3.81-4.08(m, 2H), 4.25(q, *J* = 7.0 ,1H), 4.81(s, 2H), 5.03(q, *J* = 6.8 , 1H), 5.12(d, *J* = 7.0 ,1H), 7.21~7.27(m, 2H), 7.70(s, 1H).

20 **Example 42 : ((4S, 5S)-5-(2,4-dichlorophenyl)-2-methyl-1,3-dioxolan-4-yl)methyl sulfamate**

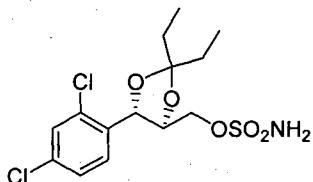


The substantially same method as described in Example 1 was conducted, except that ((4S,5S)-5-(2,4-dichlorophenyl)-2-methyl-1,3-dioxolan-4-yl)methanol(Preparation example 129) was used instead of ((4R,5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(1.1g, 50~80%).

¹H NMR(400MHz, CDCl₃) δ 1.40(s, 3H), 3.81-4.08(m, 2H), 4.25(q, *J* = 7.0 ,1H), 4.81(s, 2H), 5.03(q, *J* = 6.8 , 1H), 5.12(d, *J* = 7.0 ,1H), 7.21~7.27(m, 2H), 7.70(s, 1H).

10

Example 43 : ((4R,5R)-5-(2,4-dichlorophenyl)-2,2-diethyl-1,3-dioxolan-4-yl)methyl sulfamate



The substantially same method as described in Example 1 was conducted, except that ((4R,5R)-5-(2,4-dichlorophenyl)-2,2-diethyl-1,3-dioxolan-4-yl)methanol(Preparation example 131) was used instead of ((4R,5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(0.9g, 50~80%).

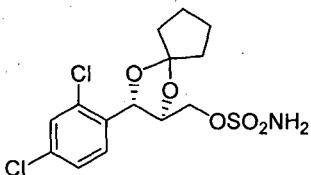
¹H NMR(400MHz, CDCl₃) δ 0.90(t, *J* = 8.0 ,6H), 1.59(q, *J* = 8.0 ,4H), 3.96-4.21(m, 2H), 4.42(q, *J* = 7.0 ,1H), 4.88(s, 2H), 5.17(d, *J* = 7.0 ,1H), 7.24~7.30(m, 2H), 7.73(s, 1H).

Example 44 : ((4S,5S)-5-(2,4-dichlorophenyl)-2,2-diethyl-1,3-dioxolan-4-

4-((2,4-dichlorophenyl)-2,2-diethyl-1,3-dioxolan-4-yl)methyl sulfamate

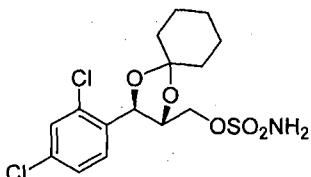
The substantially same method as described in Example 1 was conducted, except that ((4S,5S)-5-(2,4-dichlorophenyl)-2,2-diethyl-1,3-dioxolan-4-yl)methanol(Preparation example 133) was used instead of ((4R,5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(0.8g, 50~80%).

¹H NMR(400MHz, CDCl₃) δ 0.90(t, *J* = 8.0 ,6H), 1.59(q, *J* = 8.0 ,4H), 3.96-4.21(m, 2H), 4.42(q, *J* = 7.0 ,1H), 4.88(s, 2H), 5.17(d, *J* = 7.0 ,1H), 7.24~7.30(m, 2H), 10 7.73(s, 1H).


Example 45 : ((2R, 3R)-3-(2,4-dichlorophenyl)-1,4-dioxaspiro[4,4]nonane-2-yl)methyl sulfamate

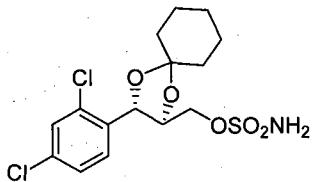
15 The substantially same method as described in Example 1 was conducted, except that ((4R,5R)-5-(2,4-dichlorophenyl)-1,4-dioxaspiro[4,4]nonane-2-yl)methanol(Preparation example 135) was used instead of ((4R,5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(0.8g, 50~80%).

20 ¹H NMR(400MHz, DMSO) δ 1.46~1.90(m, 8H), 3.79~4.05(m, 2H), 4.25(q, *J* = 7.0 ,1H), 4.80(s, 2H), 5.11(d, *J* = 7.0 ,1H), 7.28~7.34(m, 2H), 7.76(s, 1H).


Example 46 : ((2S, 3S)-3-(2,4-dichlorophenyl)-1,4-dioxaspiro[4,4]nonan-2-yl)methyl sulfamate

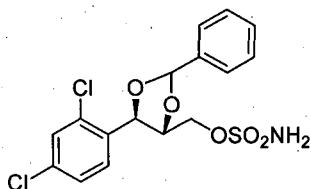
The substantially same method as described in Example 1 was conducted, except
 5 that ((4S,5S)-5-(2,4-dichlorophenyl)-1,4-dioxaspiro[4,4]nonane-2-yl)methanol(Preparation example 137) was used instead of ((4R,5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(0.8g, 50~80%).

10 ^1H NMR(400MHz, DMSO) δ 1.46~1.90(m, 8H), 3.79~4.05(m, 2H), 4.25(q, J = 7.0 ,1H), 4.80(s, 2H), 5.11(d, J = 7.0 ,1H), 7.28~7.34(m, 2H), 7.76(s, 1H).


Example 47 : ((2R, 3R)-3-(2,4-dichlorophenyl)-1,4-dioxaspiro[4,5]decan-2-yl)methyl sulfamate

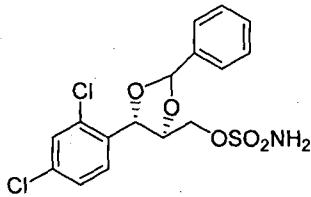
15 The substantially same method as described in Example 1 was conducted, except that ((4R,5R)-5-(2,4-dichlorophenyl)-1,4-dioxaspiro[4,5]decan-2-yl)methanol(Preparation example 139) was used instead of ((4R,5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(0.7g, 50~80%).

20 ^1H NMR(400MHz, DMSO) δ 1.33~1.72(m, 10H), 3.78~4.03(m, 2H), 4.22(q, J = 7.0 ,1H), 4.78(s, 2H), 5.07(d, J = 7.0 ,1H), 7.26~7.32(m, 2H), 7.77(s, 1H).


Example 48 : ((2S, 3S)-3-(2,4-dichlorophenyl)-1,4-dioxaspiro[4,5]decan-2-yl)methyl sulfamate

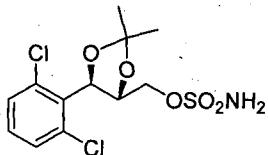
The substantially same method as described in Example 1 was conducted, except
 5 that ((4S,5S)-5-(2,4-dichlorophenyl)-1,4-dioxaspiro[4,5]decan-2-yl)methanol(Preparation example 141) was used instead of ((4R,5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(0.7g, 50~80%).

10 ^1H NMR(400MHz, DMSO) δ 1.33~1.72(m, 10H), 3.78~4.03(m, 2H), 4.22(q, $J = 7.0$,1H), 4.78(s, 2H), 5.07(d, $J = 7.0$,1H), 7.26~7.32(m, 2H), 7.77(s, 1H).


Example 49 : ((4R, 5R)-5-(2,4-dichlorophenyl)-2-phenyl-1,3-dioxolan-4-yl)methyl sulfamate

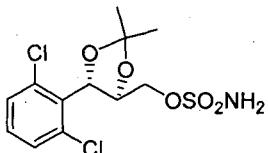
15 The substantially same method as described in Example 1 was conducted, except that ((4R,5R)-5-(2,4-dichlorophenyl)-2-phenyl-1,3-dioxolane-4-yl)methanol(Preparation example 143) was used instead of ((4R,5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(1.1g, 50~80%).

20 ^1H NMR(400MHz, DMSO) δ 3.96~4.21(m, 2H), 4.42(q, $J = 7.0$,1H), 4.88(s, 2H), 5.17(d, $J = 7.0$,1H), 5.97(s, 1H), 7.14~7.386(m, 8H)


Example 50 : ((4S,5S)- 5-(2,4-dichlorophenyl)-2-phenyl-1,3-dioxolan-4-yl)methyl sulfamate

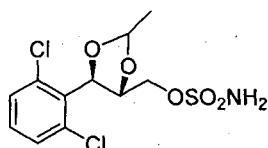
The substantially same method as described in Example 1 was conducted, except
 5 that ((4S,5S)-5-(2,4-dichlorophenyl)-2-phenyl-1,3-dioxolane-4-yl)methanol(Preparation example 145) was used instead of ((4R,5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(0.6g, 50~80%).

10 ^1H NMR(400MHz, DMSO) δ 3.96-4.21(m, 2H), 4.42(q, $J = 7.0$,1H), 4.88(s, 2H), 5.17(d, $J = 7.0$,1H), 5.97(s, 1H), 7.14~7.386(m, 8H)


Example 51 ((4R, 5R)-5-(2,6-dichlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methyl sulfamate

15 The substantially same method as described in Example 1 was conducted, except that ((4R,5R)-5-(2,6-dichlorophenyl)-2,2-dimethyl-1,3-dioxolane-4-yl)methanol(Preparation example 41) was used instead of ((4R,5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(2.5g, 50~80%).

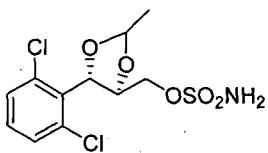
20 ^1H NMR(400MHz, CDCl_3) δ 1.27(s, 6H), 3.96-4.21(m, 2H), 4.42(q, $J = 7.0$,1H), 4.88(s, 2H), 5.17(d, $J = 7.0$,1H), 7.45~7.58(m, 3H).


Example 52 : ((4S, 5S)-5-(2,6-dichlorophenyl)-2,2-dimethyl-1,3-dioxolan-

4-yl)methyl sulfamate

The substantially same method as described in Example 1 was conducted, except that ((4S,5S)-5-(2,6-dichlorophenyl)-2,2-dimethyl-1,3-dioxolane-4-yl)methanol(Preparation example 35) was used instead of ((4R,5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(2.2g, 50~80%).

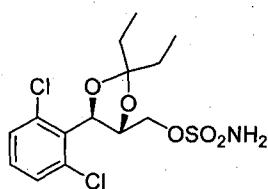
¹H NMR(400MHz, CDCl₃) δ 1.27(s, 6H), 3.96-4.21(m, 2H), 4.42(q, *J* = 7.0 ,1H), 4.88(s, 2H), 5.17(d, *J* = 7.0 ,1H), 7.45~7.58(m, 3H).


10

Example 53 : ((4R, 5R)-5-(2,6-dichlorophenyl)-2-methyl-1,3-dioxolan-4-yl)methyl sulfamate

The substantially same method as described in Example 1 was conducted, except that ((4R,5R)-5-(2,6-dichlorophenyl)-2-methyl-1,3-dioxolan-4-yl)methanol(Preparation example 147) was used instead of ((4R,5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(0.7g, 50~80%).

¹H NMR(400MHz, DMSO) δ 1.40(s, 3H), 3.88~4.13(m, 2H), 4.42(q, *J* = 7.0 ,1H), 4.88(s, 2H), 5.07(q, *J* = 6.8 , 1H), 5.21(d, *J* = 7.0 ,1H), 5.97(s, 1H), 7.45~7.58(m, 3H).


Example 54 : ((4S, 5S)-5-(2,6-dichlorophenyl)-2-methyl-1,3-dioxolan-4-

yl)methyl sulfamate

The substantially same method as described in Example 1 was conducted, except
 5 that ((4S,5S)-5-(2,6-dichlorophenyl)-2-methyl-1,3-dioxolane-4-yl)methanol(Preparation example 149) was used instead of ((4R,5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(0.9g, 50~80%).

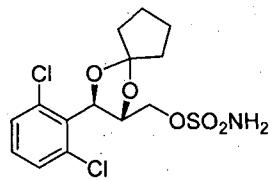
10 ^1H NMR(400MHz, DMSO) δ 1.40(s, 3H), 3.88~4.13(m, 2H), 4.42(q, $J=7.0$,1H), 4.88(s, 2H), 5.07(q, $J=6.8$, 1H), 5.21(d, $J=7.0$,1H), 5.97(s, 1H), 7.45~7.58(m, 3H).


Example 55 : ((4R, 5R)-5-(2,6-dichlorophenyl)-2,2-diethyl-1,3-dioxolan-4-yl)methyl sulfamate

15 The substantially same method as described in Example 1 was conducted, except that ((4R,5R)-5-(2,6-dichlorophenyl)-2,2-diethyl-1,3-dioxolane-4-yl)methanol(Preparation example 151) was used instead of ((4R,5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(0.7g, 50~80%).

20 ^1H NMR(400MHz, CDCl_3) δ 0.90(t, $J=8.0$,6H), 1.59(q, $J=8.0$,4H), 3.86~4.11(m, 2H), 4.49(q, $J=7.0$,1H), 4.88(s, 2H), 5.15(d, $J=7.0$,1H), 7.45~7.58(m, 3H).

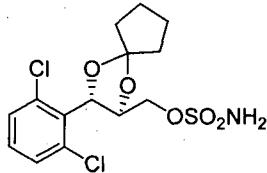
Example 56 : ((4S, 5S)-5-(2,6-dichlorophenyl)-2,2-diethyl-1,3-dioxolan-4-


yl)methyl sulfamate

The substantially same method as described in Example 1 was conducted, except that ((4S,5S)-5-(2,6-dichlorophenyl)-2,2-diethyl-1,3-dioxolane-4-yl)methanol(Preparation example 153) was used instead of ((4R,5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(1.5g, 50~80%).

¹H NMR(400MHz, CDCl₃) δ 0.90(t, J=8.0, 6H), 1.59(q, J=8.0, 4H), 3.86~4.11(m, 2H), 4.49(q, J=7.0, 1H), 4.88(s, 2H), 5.15(d, J=7.0, 1H), 7.45~7.58(m, 3H).

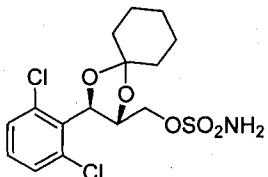
10


Example 57 : ((2R, 3R)-3-(2,6-dichlorophenyl)-1,4-dioxaspiro[4,4]nonane-2-yl)methyl sulfamate

The substantially same method as described in Example 1 was conducted, except that ((4R,5R)-5-(2,6-dichlorophenyl)-1,4-dioxaspiro[4,4]nonane-2-yl)methanol(Preparation example 155) was used instead of ((4R,5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(1.2g, 50~80%).

¹H NMR(400MHz, DMSO) δ 1.46~1.90(m, 8H), 3.98~4.24(m, 2H), 4.45(q, J=7.0, 1H), 4.88(s, 2H), 5.20(d, J=7.0, 1H), 7.45~7.58(m, 3H).

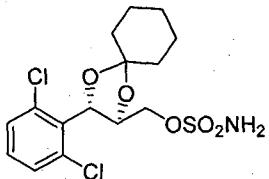
Example 58 : ((2S, 3S)-3-(2,6-dichlorophenyl)-1,4-dioxaspiro[4,4]nonane-2-yl)methyl sulfamate


2-yl)methyl sulfamate

The substantially same method as described in Example 1 was conducted, except that ((4S,5S)-5-(2,6-dichlorophenyl)-1,4-dioxaspiro[4,4]nonane-2-yl)methanol(Preparation example 157) was used instead of ((4R,5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(1.4g, 50~80%).

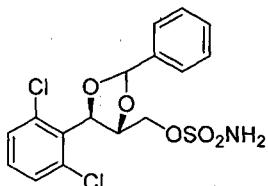
¹H NMR(400MHz, DMSO) δ 1.46~1.90(m, 8H), 3.98~4.24(m, 2H), 4.45(q, J=7.0 ,1H), 4.88(s, 2H), 5.20(d, J=7.0 ,1H), 7.45~7.58(m, 3H).

10


Example 59 : ((2R, 3R)-3-(2,6-dichlorophenyl)-1,4-dioxaspiro[4,5]decan-2-yl)methyl sulfamate

The substantially same method as described in Example 1 was conducted, except that ((4R,5R)-5-(2,6-dichlorophenyl)-1,4-dioxaspiro[4,4]decan-2-yl)methanol(Preparation example 159) was used instead of ((4R,5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(1.1g, 50~80%).

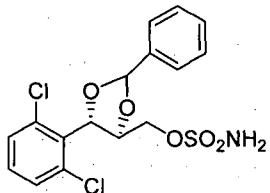
¹H NMR(400MHz, DMSO) δ 1.33~1.72(m, 10H), 3.96~4.21(m, 2H), 4.42(q, J = 7.0 ,1H), 4.88(s, 2H), 5.17(d, J = 7.0 ,1H), 7.45~7.58(m, 3H).


Example 60 : ((2S, 3S)-3-(2,6-dichlorophenyl)-1,4-dioxaspiro[4,5]decan-

2-yl)methyl sulfamate

The substantially same method as described in Example 1 was conducted, except that ((4S,5S)-5-(2,6-dichlorophenyl)-1,4-dioxaspiro[4,4]decane-2-yl)methanol(Preparation example 161) was used instead of ((4R,5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(1.1g, 50~80%).

¹H NMR(400MHz, DMSO) δ 1.33~1.72(m, 10H), 3.96~4.21(m, 2H), 4.42(q, *J* = 7.0 ,1H), 4.88(s, 2H), 5.17(d, *J* = 7.0 ,1H), 7.45~7.58(m, 3H).

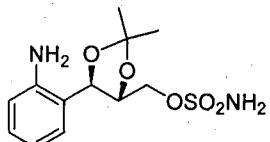

10

Example 61 : ((4R, 5R)-5-(2,6-dichlorophenyl)-2-phenyl-1,3-dioxolan-4-yl)methyl sulfamate

The substantially same method as described in Example 1 was conducted, except that ((4R,5R)-5-(2,6-dichlorophenyl)-1,4-dioxaspiro[4,4]decane-2-yl)methanol(Preparation example 163) was used instead of ((4R,5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(1.3g, 50~80%).

¹H NMR(400MHz, DMSO) δ 2.0(s, 2H), 3.96~4.21(m, 2H), 4.42(dd, *J* = 7.0, *J* = 7.0, 1H), 5.17(d, *J* = 7.0, 1H), 5.79(s, 1H), 7.36~7.38(m, 5H), 7.57~7.58(m, 3H).

Example 62 : ((4S,5 S)- 5-(2,6-dichlorophenyl)-2-phenyl-1,3-dioxolan-4-

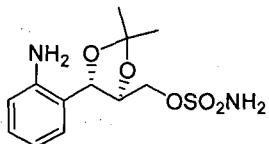

yl)methyl sulfamate

The substantially same method as described in Example 1 was conducted, except that ((4S,5S)-5-(2,6-dichlorophenyl)-1,4-dioxaspiro[4,4]decane-2-yl)methanol(Preparation example 165) was used instead of ((4R,5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(1.0g, 50~80%).

¹H NMR(400MHz, DMSO) δ 2.0(s, 2H), 3.96~4.21(m, 2H), 4.42(dd, *J* = 7.0, *J* = 7.0, 1H), 5.17(d, *J* = 7.0, 1H), 5.79(s, 1H), 7.36~7.38(m, 5H), 7.57~7.58(m, 3H).

10

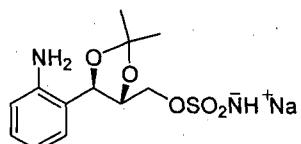
Example 63 : ((4R, 5R)-5-(2-aminophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methyl sulfamate


15

The substantially same method as described in Example 1 was conducted, except that ((4R,5R)-5-(2-aminophenyl)-2,2-dimethyl-1,3-dioxolane-4-yl)methanol(Preparation example 47) was used instead of ((4R,5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(5.3g, 50~80%).

20

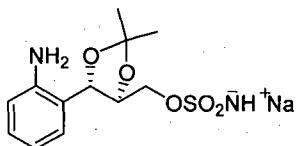
¹H NMR(400MHz, DMSO) δ 1.27(s, 6H), 2.0(s, 2H), 3.96~4.21(m, 2H), 4.42(dt, *J* = 7.02, *J* = 3.27, 1H), 5.17(d, *J* = 7.0, 1H), 6.27(s, 2H), 6.73~7.13(m, 4H).


Example 64 : ((4S, 5S)-5-(2-aminophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methyl sulfamate

The substantially same method as described in Example 1 was conducted, except that ((4S,5S)-5-(2-aminophenyl)-2,2-dimethyl-1,3-dioxolane-4-yl)methanol(Preparation example 51) was used instead of ((4R,5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(8.2g, 50~80%).

¹H NMR(400MHz, DMSO) δ 1.27(s, 6H), 2.0(s, 2H), 3.96~4.21(m, 2H), 4.42(dt, *J* = 7.02, *J* = 3.27, 1H), 5.17(d, *J* = 7.0, 1H), 6.27(s, 2H), 6.73~7.13(m, 4H).

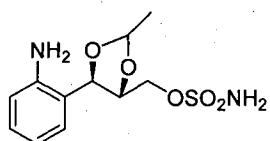
10 **Example 65 : ((4R, 5R)-5-(2-aminophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methyl sulfamate Sodium salt**



To stirred solution of ((4R,5R)-5-(2-aminophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methyl sulfamate(Example 63, 5.5g) in distilled water(55ml) was added 1N NaOH(23ml) then heated. After 30min, the resulting mixture cooled to room temperature and concentrated under reduced pressure. The crude product in EA(ethyl acetate, 16.5ml) was slowly added to Ether(200ml) at low temperature. The precipitate was filtered off, washed with Hexane, and dried under vacuum to obtain the title compound(4.7g, 65~85%)

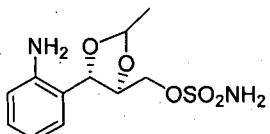
20 ¹H NMR(400MHz, DMSO) δ 1.42(s, 3H), 1.46(s, 3H), 3.79~3.81(m, 2H), 3.99~4.00(m, 1H), 4.94(d, *J*=8.4, 1H), 6.59~7.16(m, 4H).

Example 66 : ((4S, 5S)-5-(2-aminophenyl)-2,2-dimethyl-1,3-dioxolan-4-


yl)methyl sulfamate Sodium salt

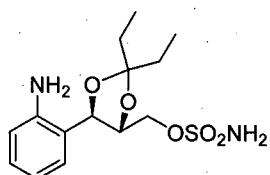
The substantially same method as described in Example 65 was conducted, except
 5 that ((4R,5R)-5-(2-aminophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methyl sulfamate(Example 64) was used instead of ((4R,5R)-5-(2-aminophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methyl sulfamate(Example 63), to obtain the title compound(4.23g, 65~85%).

10 ^1H NMR(400MHz, DMSO) δ 1.42(s, 3H), 1.46(s, 3H), 3.79~3.81(m, 2H), 3.99~4.00(m, 1H), 4.94(d, $J=8.4$, 1H), 6.59~7.16(m, 4H).


Example 67 : ((4R, 5R)-5-(2-aminophenyl)-2-methyl-1,3-dioxolan-4-yl)methyl sulfamate

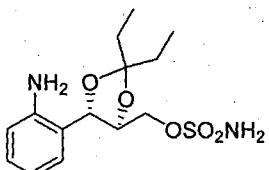
15 The substantially same method as described in Example 1 was conducted, except that ((4R,5R)-5-(2-aminophenyl)-2,2-dimethyl-1,3-dioxolane-4-yl)methanol(Preparation example 206) was used instead of ((4R,5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(1.2g, 50~80%).

20 ^1H NMR (400 MHz, DMSO): δ 1.40(d, $J = 6.8$, 3H), 2.0(s, 2H), 3.96~4.21(m, 2H), 4.42(q, $J = 7.0$, 1H), 5.07(q, $J = 7.0$, 1H), 5.17(d, $J = 7.0$, 1H), 6.27(s, 2H), 6.73~7.13(m, 4H).


Example 68 : ((4S, 5S)-5-(2-aminophenyl)-2-methyl-1,3-dioxolan-4-yl)methyl sulfamate

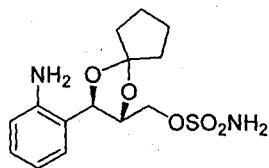
The substantially same method as described in Example 1 was conducted, except that ((4S,5S)-5-(2-aminophenyl)-2,2-dimethyl-1,3-dioxolane-4-yl)methanol(Preparation example 207) was used instead of ((4R,5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(0.7g, 50~80%).

¹H NMR (400 MHz, DMSO): δ 1.40(d, J = 6.8, 3H), 2.0(s, 2H), 3.96~4.21(m, 2H), 4.42(q, J = 7.0, 1H), 5.07(q, J = 7.0, 1H), 5.17(d, J = 7.0, 1H), 6.27(s, 2H), 6.73~7.13(m, 4H).


Example 69 : ((4R, 5R)-5-(2-aminophenyl)-2,2-diethyl-1,3-dioxolan-4-yl)methyl sulfamate

The substantially same method as described in Example 1 was conducted, except that ((4R,5R)-5-(2-aminophenyl)-2,2-diethyl-1,3-dioxolane-4-yl)methanol(Preparation example 208) was used instead of ((4R,5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(1.1g, 50~80%).

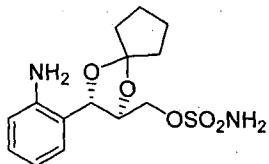
¹H NMR(400MHz, CDCl₃) δ 0.90(t, J = 8.0, 6H), 1.59(q, J = 8.0, 4H), 2.0(s, 2H), 3.96~4.21(m, 2H), 4.42(dt, J = 7.02, J = 3.27, 1H), 5.17(d, J = 7.0, 1H), 6.27(s, 2H), 6.71~7.14(m, 4H).


Example 70 : ((4S, 5S)-5-(2-aminophenyl)-2,2-diethyl-1,3-dioxolan-4-yl)methyl sulfamate

5 The substantially same method as described in Example 1 was conducted, except that ((4S,5S)-5-(2-aminophenyl)-2,2-diethyl-1,3-dioxolane-4-yl)methanol(Preparation example 209)was used instead of ((4R,5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(1.1g, 50~80%).

10 ^1H NMR(400MHz, CDCl_3) δ 0.90(t, $J = 8.0$, 6H), 1.59(q, $J = 8.0$, 4H), 2.0(s, 2H), 3.96~4.21(m, 2H), 4.42(dt, $J = 7.02$, $J = 3.27$, 1H), 5.17(d, $J = 7.0$, 1H), 6.27(s, 2H), 6.71~7.14(m, 4H).

Example 71 : ((2R, 3R)-3-(2-aminophenyl)-1,4-dioxaspiro[4,4]nonan-2-yl)methyl sulfamate

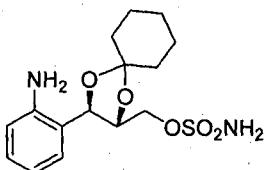


15 The substantially same method as described in Example 1 was conducted, except that ((4R,5R)-5-(2-aminophenyl)-1,4-dioxaspiro[4,4]nonane-2-yl)methanol(Preparation example 210)was used instead of ((4R,5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(1.2g, 50~80%).

20 ^1H NMR(400MHz, DMSO) δ 1.46~1.56(m, 6H), 1.65~1.90(m, 2H), 2.0(s, 2H), 3.96~4.21(m, 2H), 4.42(dt, $J = 7.02$, $J = 3.27$, 1H), 5.17(d, $J = 7.0$, 1H), 6.27(s, 2H),

6.70~7.11(m, 4H).

Example 72 : ((2S, 3S)-3-(2-aminophenyl)-1,4-dioxaspiro[4,4]nonan-2-yl)methyl sulfamate

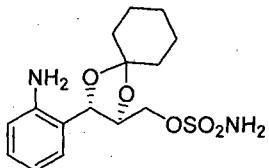

5

The substantially same method as described in Example 1 was conducted, except that ((4S,5S)-5-(2-aminophenyl)-1,4-dioxaspiro[4,4]nonane-2-yl)methanol(Preparation example 211) was used instead of ((4R,5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(1.0g, 50~80%).

¹H NMR(400MHz, DMSO) δ 1.46~1.56(m, 6H), 1.65~1.90(m, 2H), 2.0(s, 2H), 3.96~4.21(m, 2H), 4.42(dt, *J* = 7.02, *J* = 3.27, 1H), 5.17(d, *J* = 7.0, 1H), 6.27(s, 2H), 6.70~7.11(m, 4H).

15

Example 73 : ((2R, 3R)-3-(2-aminophenyl)-1,4-dioxaspiro[4,5]decan-2-yl)methyl sulfamate

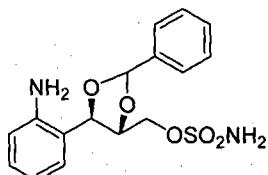

20

The substantially same method as described in Example 1 was conducted, except that ((4R,5R)-5-(2-aminophenyl)-1,4-dioxaspiro[4,5]dacane-2-yl)methanol(Preparation example 212) was used instead of ((4R,5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(0.6g, 50~80%).

¹H NMR(400MHz, DMSO) δ 1.33~1.72(m, 10H), 2.0(s, 2H), 3.96~4.21(m, 2H),

4.43(dt, $J = 7.02, J = 3.27, 1\text{H}$), 5.17(d, $J = 7.0, 1\text{H}$), 6.25(s, 2H), 6.71~7.12(m, 4H).

Example 74 : ((2S, 3S)-3-(2-aminophenyl)-1,4-dioxaspiro[4,5]decan-2-yl)methyl sulfamate

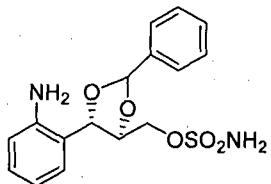


5

The substantially same method as described in Example 1 was conducted, except that ((4S,5S)-5-(2-aminophenyl)-1,4-dioxaspiro[4,5]dacetane-2-yl)methanol(Preparation example 213) was used instead of ((4R,5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(0.6g, 50~80%).

^1H NMR(400MHz, DMSO) δ 1.33~1.72(m, 10H), 2.0(s, 2H), 3.96~4.21(m, 2H), 4.43(dt, $J = 7.02, J = 3.27, 1\text{H}$), 5.17(d, $J = 7.0, 1\text{H}$), 6.25(s, 2H), 6.71~7.12(m, 4H).

Example 75 : ((4R, 5R)-5-(2-aminophenyl)-2-phenyl-1,3-dioxolan-4-yl)methyl sulfamate

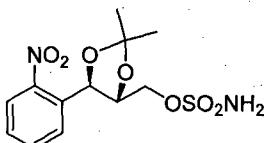

15

The substantially same method as described in Example 1 was conducted, except that ((4R, 5R)-5-(2-aminophenyl)-2-phenyl-1,3-dioxolan-4-yl)methanol(Preparation example 214) was used instead of ((4R,5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(0.7g, 50~80%).

^1H NMR(400MHz, DMSO) δ 2.0(s, 2H), 3.96~4.21(m, 2H), 4.42(dt, $J = 7.02, J = 3.27,$

1H), 5.17(d, $J = 7.0$, 1H), 5.79(s, 1H), 6.27(s, 2H), 6.73~6.74(m, 2H), 7.11~7.13(m, 2H), 7.36~7.38(m, 5H).

Example 76 : ((4S, 5S)- 5-(2-aminophenyl)-2-phenyl-1,3-dioxolan-4-yl)methyl sulfamate

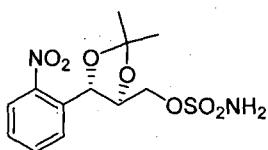


The substantially same method as described in Example 1 was conducted, except that ((4S, 5S)-5-(2-aminophenyl)-2-phenyl-1,3-dioxalane-4-yl)methanol(Preparation example 215)was used instead of ((4R,5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(0.7g, 50~80%).

¹H NMR(400MHz, DMSO) δ 2.0(s, 2H), 3.96~4.21(m, 2H), 4.42(dt, $J = 7.02$, $J = 3.27$, 1H), 5.17(d, $J = 7.0$, 1H), 5.79(s, 1H), 6.27(s, 2H), 6.73~6.74(m, 2H), 7.11~7.13(m, 2H), 7.36~7.38(m, 5H).

15

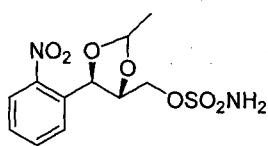
Example 77 : ((4R, 5R)-5-(2-nitrophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methyl sulfamate


20 The substantially same method as described in Example 1 was conducted, except that ((4R,5R)-5-(2-nitrophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 46) was used instead of ((4R,5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(1.3g,

50~80%).

¹H NMR(400MHz, DMSO) δ 1.27(s, 6H), 1.40(s, 3H), 2.0(s, 2H), 3.96~4.21(m, 2H), 4.42(dt, *J* = 7.02, *J* = 3.27, 1H), 5.17(d, *J* = 7.0, 1H), 7.62~7.64(m, 2H), 7.77~7.90(m, 2H).

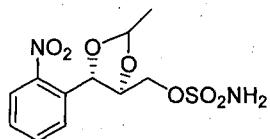
5


Example 78 : ((4S, 5S)-5-(2-nitrophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methyl sulfamate

10 The substantially same method as described in Example 1 was conducted, except that ((4S, 5S)-5-(2-nitrophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 50) was used instead of ((4R,5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(3.2g, 50~80%).

15 ¹H NMR(400MHz, DMSO) δ 1.27(s, 6H), 1.40(s, 3H), 2.0(s, 2H), 3.96~4.21(m, 2H), 4.42(dt, *J* = 7.02, *J* = 3.27, 1H), 5.17(d, *J* = 7.0, 1H), 7.62~7.64(m, 2H), 7.77~7.90(m, 2H).

Example 79 : ((4R, 5R)-5-(2-nitrophenyl)-2-methyl-1,3-dioxolan-4-yl)methyl sulfamate

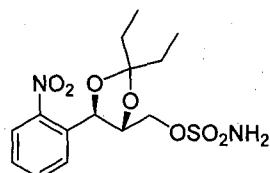


20 The substantially same method as described in Example 1 was conducted, except that ((4R,5R)-5-(2-nitrophenyl)-2-methyl-1,3-dioxolan-4-yl)methanol(Preparation

example 167) was used instead of ((4R,5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(1.2g, 50~80%)

5 ¹H NMR (400 MHz, DMSO): δ 1.40(d, J = 6.8, 3H), 2.0(s, 2H), 3.96~4.21(m, 2H),
4.42(q, J = 7.0, 1H), 5.07(q, J = 7.0, 1H), 5.17(d, J = 7.0, 1H), 7.62~7.64(m, 2H),
7.77~7.90(m, 2H).

Example 80 : ((4S, 5S)-5-(2-nitrophenyl)-2-methyl-1,3-dioxolan-4-yl)methyl sulfamate

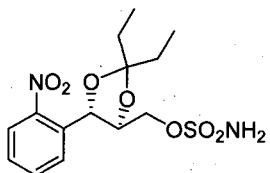

10

The substantially same method as described in Example 1 was conducted, except that ((4S, 5S)-5-(2-nitrophenyl)-2-methyl-1,3-dioxolan-4-yl)methanol(Preparation example 169) was used instead of ((4R, 5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(1.1g, 50~80%)

15 ¹H NMR (400 MHz, DMSO): δ 1.40(d, J = 6.8, 3H), 2.0(s, 2H), 3.96~4.21(m, 2H),
4.42(q, J = 7.0, 1H), 5.07(q, J = 7.0, 1H), 5.17(d, J = 7.0, 1H), 7.62~7.64(m, 2H),
7.77~7.90(m, 2H).

20

Example 81 : ((4R,5R)-5-(2-nitrophenyl)-2,2-diethyl-1,3-dioxolan-4-yl)methyl sulfamate

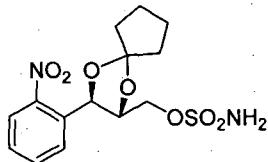


The substantially same method as described in Example 1 was conducted, except

that ((4R, 5R)-5-(2-nitrophenyl)-2,2-diethyl-1,3-dioxolan-4-yl)methanol(Preparation example 171) was used instead of ((4R, 5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(1.4g, 50~80%)

5 ¹H NMR(400MHz, CDCl₃) δ 0.90(t, *J* = 8.0, 6H), 1.59(q, *J* = 8.0, 4H), 2.0(s, 2H), 3.96~4.21(m, 2H), 4.42(dt, *J* = 7.02, *J* = 3.27, 1H), 5.17(d, *J* = 7.0, 1H), 7.62~7.64(m, 2H), 7.77~7.90(m, 2H).

10 **Example 82 : ((4S,5S)-5-(2-nitrophenyl)-2,2-diethyl-1,3-dioxolan-4-yl)methyl sulfamate**

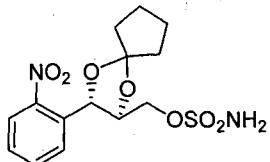


The substantially same method as described in Example 1 was conducted, except that ((4S, 5S)-5-(2-nitrophenyl)-2,2-diethyl-1,3-dioxolan-4-yl)methanol(Preparation example 173) was used instead of ((4R, 5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(1.4g, 50~80%)

15 ¹H NMR(400MHz, CDCl₃) δ 0.90(t, *J* = 8.0, 6H), 1.59(q, *J* = 8.0, 4H), 2.0(s, 2H), 3.96~4.21(m, 2H), 4.42(dt, *J* = 7.02, *J* = 3.27, 1H), 5.17(d, *J* = 7.0, 1H), 7.62~7.64(m, 2H), 7.77~7.90(m, 2H).

20

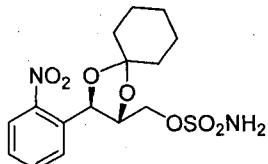
Example 83 : ((2R, 3R)-3-(2-nitrophenyl)-1,4-dioxaspiro[4,4]nonane-2-yl)methyl sulfamate



The substantially same method as described in Example 1 was conducted, except that ((4R, 5R)-5-(2-nitrophenyl)-1,4-dioxapiro[4,4]nonane-2-yl)methanol(Preparation example 175) was used instead of ((4R, 5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(1.6g, 50~80%)

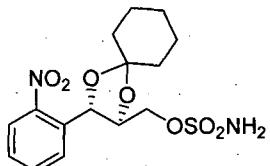
¹H NMR(400MHz, DMSO) δ 1.46~1.56(m, 6H), 1.65~1.90(m, 2H), 2.0(s, 2H), 3.96~4.21(m, 2H), 4.42(dt, *J* = 7.02, *J* = 3.27, 1H), 5.17(d, *J* = 7.0, 1H), 7.62~7.64(m, 2H), 7.77~7.90(m, 2H).

10


Example 84 : ((2S, 3S)-3-(2-nitrophenyl)-1,4-dioxaspiro[4,4]nonan-2-yl)methyl sulfamate

The substantially same method as described in Example 1 was conducted, except that ((4S, 5S)-5-(2-nitrophenyl)-1,4-dioxapiro[4,4]nonane-2-yl)methanol(Preparation example 177) was used instead of ((4R, 5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(1.5g, 50~80%)

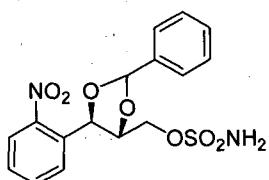
¹H NMR(400MHz, DMSO) δ 1.46~1.56(m, 6H), 1.65~1.90(m, 2H), 2.0(s, 2H), 3.96~4.21(m, 2H), 4.42(dt, *J* = 7.02, *J* = 3.27, 1H), 5.17(d, *J* = 7.0, 1H), 7.62~7.64(m, 2H), 7.77~7.90(m, 2H).


Example 85 : ((2R, 3R)-3-(2-nitrophenyl)-1,4-dioxaspiro[4,5]decan-2-

yl)methyl sulfamate

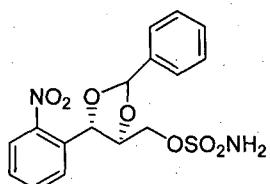
The substantially same method as described in Example 1 was conducted, except that ((4R, 5R)-5-(2-nitrophenyl)-1,4-dioxaspiro[4,5]decane-2-yl)methanol(Preparation example 179) was used instead of ((4R, 5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(1.0g, 50~80%).

10 ^1H NMR(400MHz, DMSO) δ 1.33~1.72(m, 10H), 2.0(s, 2H), 3.96~4.21(m, 2H), 4.42(dt, J = 7.02, J = 3.27, 1H), 5.17(d, J = 7.0, 1H), 7.62~7.64(m, 2H), 7.77~7.90(m, 2H).


Example 86 : ((2S, 3S)-3-(2-nitrophenyl)-1,4-dioxaspiro[4,5]decane-2-yl)methyl sulfamate

15 The substantially same method as described in Example 1 was conducted, except that ((4S, 5S)-5-(2-nitrophenyl)-1,4-dioxaspiro[4,5]decane-2-yl)methanol(Preparation example 181) was used instead of ((4R, 5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(0.8g, 50~80%).

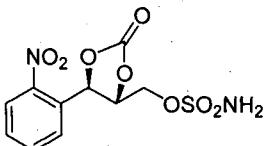
20 ^1H NMR(400MHz, DMSO) δ 1.33~1.72(m, 10H), 2.0(s, 2H), 3.96~4.21(m, 2H), 4.42(dt, J = 7.02, J = 3.27, 1H), 5.17(d, J = 7.0, 1H), 7.62~7.64(m, 2H), 7.77~7.90(m, 2H).


Example 87 : ((4R, 5R)-5-(2-nitrophenyl)-2-phenyl-1,3-dioxolan-4-yl)methyl sulfamate

5. The substantially same method as described in Example 1 was conducted, except that ((4R, 5R)-5-(2-nitrophenyl)-2-phenyl-1,3-dioxolane-4-yl)methanol(Preparation example 183) was used instead of ((4R, 5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(0.9g, 50~80%)

10. ^1H NMR(400MHz, DMSO) δ 2.0(s, 2H), 3.96~4.21(m, 2H), 4.42(dt, J = 7.02, J = 3.27, 1H), 5.17(d, J = 7.0, 1H), 5.79(s, 1H), 6.73~6.74(m, 2H), 7.11~7.13(m, 2H), 7.36~7.38(m, 5H).

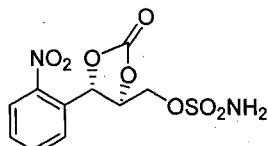
15. **Example 88 : ((4S, 5S)- 5-(2-nitrophenyl)-2-phenyl-1,3-dioxolan-4-yl)methyl sulfamate**


The substantially same method as described in Example 1 was conducted, except that ((4S, 5S)-5-(2-nitrophenyl)-2-phenyl-1,3-dioxolane-4-yl)methanol(Preparation example 185) was used instead of ((4R, 5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(0.7g, 50~80%)

^1H NMR(400MHz, DMSO) δ 2.0(s, 2H), 3.96~4.21(m, 2H), 4.42(dt, J = 7.02, J = 3.27,

1H), 5.17(d, $J = 7.0$, 1H), 5.79(s, 1H), 6.73~6.74(m, 2H), 7.11~7.13(m, 2H), 7.36~7.38(m, 5H).

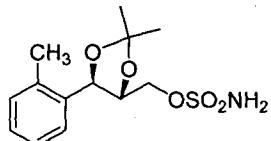
Example 89 : ((4R, 5R)-5-(2-nitrophenyl)-2-oxo-1,3-dioxolan-4-yl)methyl sulfamate


5

To a stirred solution of ((4R, 5R)-5-(2-nitrophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methyl sulfamate(Example 77, 5.2g, 16mmol) in EtOAc (50mL) was added 3N HCl (24.6mL, 80.0mmol) at room temperature. The mixture was stirred for 5h. The resulting mixture was diluted with EtOAc, washed with sat. NaHCO₃, dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude product stirred in THF (35mL) was added CDI (2.91g, 17.9mmol) at room temperature. The mixture was stirred for 1h. The resulting mixture was diluted with EtOAc, washed with water, dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude product was purified by SiO₂ gel column chromatography to produce the title compound(2.6g, 60~80%)

¹H NMR(400MHz, CDCl₃) δ 2.0(s, 2H), 4.08~4.33(m, 2H), 4.72(dt, $J = 7.02$, $J = 3.27$, 1H), 5.47(d, $J = 7.0$, 1H), 7.62~7.64(m, 2H), 7.77~7.90(m, 2H).

20 Example 90 : ((4S, 5S)-5-(2-nitrophenyl)-2-oxo-1,3-dioxolan-4-yl)methyl sulfamate

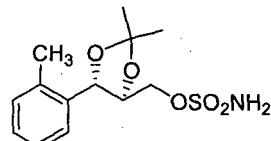


The substantially same method as described in Example 89 was conducted, except

that ((4S, 5S)-5-(2-nitrophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methyl sulfamate(Example 78) was used instead of ((4R, 5R)-5-(2-nitrophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methyl sulfamate(Example 77), to obtain the title compound(0.9g, 50~80%)

5 ^1H NMR(400MHz, CDCl_3) δ 2.0(s, 2H), 4.08~4.33(m, 2H), 4.72(dt, $J = 7.02, J = 3.27$, 1H), 5.47(d, $J = 7.0$, 1H), 7.62~7.64(m, 2H), 7.77~7.90(m, 2H).

Example 91 : ((4R, 5R)-5-(2-methylphenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methyl sulfamate

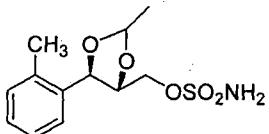


10

The substantially same method as described in Example 1 was conducted, except that ((4R, 5R)-5-(2-methylphenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 56) was used instead of ((4R, 5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(0.8g, 50~80%).

15 ^1H NMR(400MHz, CDCl_3) δ 1.38(s, 3H), 1.40(s, 3H), 2.24(s, 3H), 4.29(d, $J=3.3$, 2H), 4.74(dt, $J=7.0, J=3.3$, 1H), 5.06 (d, $J=7.0$, 1H), 5.52(s, 2H), 7.13~7.29(m, 4H)

Example 92 : ((4S, 5S)-5-(2-methylphenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methyl sulfamate


20

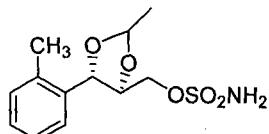
The substantially same method as described in Example 1 was conducted, except

that ((4S, 5S)-5-(2-methylphenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 59) was used instead of ((4R, 5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(0.8g, 50~80%)

5 ^1H NMR(400MHz, CDCl_3) δ 1.38(s, 3H), 1.40(s, 3H), 2.24(s, 3H), 4.29(d, J =3.3, 2H), 4.74(dt, J =7.0, J =3.3, 1H), 5.06 (d, J =7.0, 1H), 5.52(s, 2H), 7.13~7.29(m, 4H)

Example 93 : ((4R, 5R)-5-(2-methylphenyl)-2-methyl-1,3-dioxolan-4-yl)methyl sulfamate

10

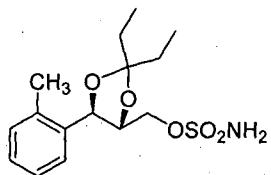

The substantially same method as described in Example 1 was conducted, except that ((4R, 5R)-5-(2-methylphenyl)-2-methyl-1,3-dioxolan-4-yl)methanol(Preparation example 187) was used instead of ((4R, 5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(1.4g, 50~80%)

15

1 ^1H NMR(400MHz, CDCl_3) δ 1.40(d, J =6.4, 3H), 2.24(s, 3H), 4.27(dt, J =7.0, J =3.3, 1H), 4.70(d, J =3.3, 2H), 5.13(d, J =7.0, 1H), 5.40(q, J =6.4, 1H), 5.52(s, 2H), 7.13~7.29(m, 4H)

20

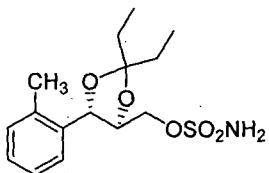
Example 94 : ((4S, 5S)-5-(2-methylphenyl)-2-methyl-1,3-dioxolan-4-yl)methyl sulfamate



The substantially same method as described in Example 1 was conducted, except

that ((4S, 5S)-5-(2-methylphenyl)-2-methyl-1,3-dioxolan-4-yl)methanol(Preparation example 189) was used instead of ((4R, 5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(1.2g, 50~80%)

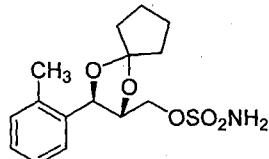
5 ^1H NMR(400MHz, CDCl_3) δ 1.40(d, $J=6.4$, 3H), 2.24(s, 3H), 4.27(dt, $J=7.0$, $J=3.3$, 1H), 4.70(d, $J=3.3$, 2H), 5.13(d, $J=7.0$, 1H), 5.40(q, $J=6.4$, 1H), 5.52(s, 2H), 7.13~7.29(m, 4H)


10 **Example 95 : ((4R, 5R)-5-(2-methylphenyl)-2,2-diethyl-1,3-dioxolan-4-yl)methyl sulfamate**

15 The substantially same method as described in Example 1 was conducted, except that ((4R, 5R)-5-(2-methylphenyl)-2,2-diethyl-1,3-dioxolan-4-yl)methanol(Preparation example 191) was used instead of ((4R, 5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(1.3g, 50~80%)

20 ^1H NMR(400MHz, CDCl_3) δ 1.05(t, $J=6.8$, 3H), 1.15(t, $J=6.8$, 3H), 1.77~1.85(m, 4H), 2.24(s, 3H), 4.35(d, $J=3.3$, 2H), 4.75(dt, $J=7.0$, $J=3.3$, 1H), 5.10(d, $J=7.0$, 1H), 5.52(s, 2H), 7.18~7.30(m, 4H)

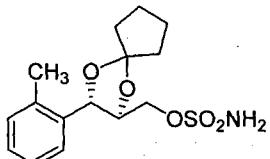
Example 96 : ((4S, 5S)-5-(2-methylphenyl)-2,2-diethyl-1,3-dioxolan-4-yl)methyl sulfamate



The substantially same method as described in Example 1 was conducted, except that ((4S, 5S)-5-(2-methylphenyl)-2,2-diethyl-1,3-dioxolan-4-yl)methanol(Preparation example 193) was used instead of ((4R, 5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(1.4g, 50~80%)

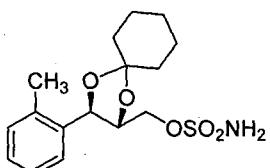
¹H NMR(400MHz, CDCl₃) δ1.05(t, *J*=6.8, 3H), 1.15(t, *J*=6.8, 3H), 1.77~1.85(m, 4H), 2.24(s, 3H), 4.35(d, *J*=3.3, 2H), 4.75(dt, *J*=7.0, *J*=3.3, 1H), 5.10(d, *J*=7.0, 1H), 5.52(s, 2H), 7.18~7.30(m, 4H)

10


Example 97 : ((2R, 3R)-3-(2-methylphenyl)-1,4-dioxaspiro[4,4]nonane-2-yl)methyl sulfamate

The substantially same method as described in Example 1 was conducted, except that ((4R, 5R)-5-(2-methylphenyl)-1,4-dioxaspiro[4,4]nonane-2-yl)methanol(Preparation example 195) was used instead of ((4R, 5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(1.1g, 50~80%)

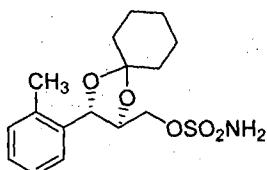
¹H NMR(400MHz, CDCl₃) δ1.60~1.70(m, 4H), 1.74~1.99(m, 4H), 2.24(s, 3H), 4.75(d, *J*=3.267, 2H), 4.36(dt, *J*=7.1, *J*=3.3, 1H), 5.13(d, *J*=7.0, 1H), 5.52(s, 2H), 7.13~7.30(m, 4H)


Example 98 : ((2S, 3S)-3-(2-methylphenyl)-1,4-dioxaspiro[4,4]nonane-2-

yl)methyl sulfamate

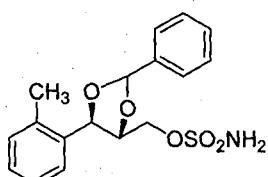
The substantially same method as described in Example 1 was conducted, except that ((4S, 5S)-5-(2-methylphenyl)-1,4-dioxaspiro[4,4]nonane-2-yl)methanol(Preparation example 197) was used instead of ((4R, 5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(1.4g, 50~80%)

10 ^1H NMR(400MHz, CDCl_3) δ 1.60~1.70(m, 4H), 1.74~1.99(m, 4H), 2.24(s, 3H), 4.75(d, J =3.267, 2H), 4.36(dt, J =7.1, J =3.3, 1H), 5.13(d, J =7.0, 1H), 5.52(s, 2H), 7.13~7.30(m, 4H)


Example 99 : ((2R, 3R)-3-(2-methylphenyl)-1,4-dioxaspiro[4,5]decan-2-yl)methyl sulfamate

15 The substantially same method as described in Example 1 was conducted, except that ((4R, 5R)-5-(2-methylphenyl)-1,4-dioxaspiro[4,5]decan-2-yl)methanol(Preparation example 199) was used instead of ((4R, 5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(1.0g, 50~80%)

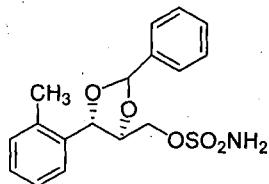
20 ^1H NMR(400MHz, CDCl_3) δ 1.40~1.49(m, 2H), 1.53~1.60(m, 4H), 1.61~2.09(m, 4H), 2.24(s, 3H), 4.23(d, J =3.3, 2H), 4.75(dt, J =7.0, J =3.3, 1H), 5.10(d, J =7.0, 1H), 5.62(s, 2H), 7.13~7.30(m, 4H)


Example 100 : ((2S, 3S)-3-(2-methylphenyl)-1,4-dioxaspiro[4,5]decan-2-yl)methyl sulfamate

The substantially same method as described in Example 1 was conducted, except that ((4S, 5S)-5-(2-methylphenyl)-1,4-dioxaspiro[4,5]decan-2-yl)methanol(Preparation example 201) was used instead of ((4R, 5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(1.3g, 50~80%)

10 ^1H NMR(400MHz, CDCl_3) δ 1.40~1.49(m, 2H), 1.53~1.60(m, 4H), 1.61~2.09(m, 4H),
 2.24(s, 3H), 4.23(d, J =3.3, 2H), 4.75(dt, J =7.0, J =3.3, 1H), 5.10(d, J =7.0, 1H),
 5.62(s, 2H), 7.13~7.30(m, 4H)

Example 101 : ((4R, 5R)-5-(2-methylphenyl)-2-phenyl-1,3-dioxolan-4-yl)methyl sulfamate

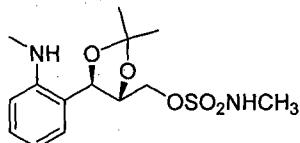


15 The substantially same method as described in Example 1 was conducted, except that ((4R, 5R)-5-(2-methylphenyl)-2-phenyl-1,3-dioxolane-4-yl)methanol(Preparation example 203) was used instead of ((4R, 5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(1.1g, 50~80%)

20 ^1H NMR(400MHz, CDCl_3) δ 2.24(s, 3H), 4.35(d, J =3.3, 2H), 4.64(d, J =5.7, 1H),
 4.75(dt, J =5.7, J =3.3, 1H), 5.59(m, 1H), 5.78(s, 2H), 7.13~7.29(m, 4H), 7.33(ddt,

$J=7.7, J=7.5, J=1.5, 1H), 7.40\sim7.75(m, 4H)$

Example 102 : ((4S, 5S)- 5-(2-methylphenyl)-2-phenyl-1,3-dioxolan-4-yl)methyl sulfamate

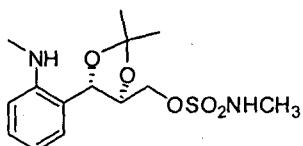

5

The substantially same method as described in Example 1 was conducted, except that ((4S, 5S)-5-(2-methylphenyl)-2-phenyl-1,3-dioxolane-4-yl)methanol(Preparation example 205) was used instead of ((4R, 5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(0.6g, 50~80%)

¹H NMR(400MHz, CDCl₃) δ 2.24(s, 3H), 4.35(d, $J=3.3$, 2H), 4.64(d, $J=5.7$, 1H), 4.75(dt, $J=5.7, J=3.3$, 1H), 5.59(m, 1H), 5.78(s, 2H), 7.13~7.29(m, 4H), 7.33(ddt, $J=7.7, J=7.5, J=1.5$, 1H), 7.40~7.75(m, 4H)

15

Example 103 : ((4R, 5R)-5-(2-methylaminophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methyl methylsulfamate

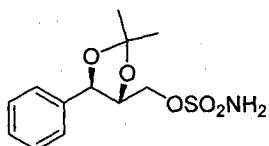

20

To a stirred solution of ((4R, 5R)-5-(2-aminophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methyl sulfamate(Example 63, 0.68g, 2.25mmol) and benzotriazole (0.27g, 2.25mmol) in EtOH (10mL) was slowly added formaldehyde (10wt% in H₂O, 0.62mL, 2.25mmol) and NaBH₄ (0.085g, 2.25mmol) at 0°C. The resulting mixture was diluted with EtOAc, washed with water, dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude product was purified by SiO₂ gel column

chromatography to obtain the title compound(0.3g, 30~50%)

^1H NMR(400MHz, CDCl_3) δ 1.40(s, 6H), 2.62(s, 3H), 2.96(s, 3H), 4.25(dt, J =7.0, J =3.3, 1H), 4.75(d, J =3.3, 2H), 4.84(d, J =7.0, 1H), 6.99~7.20(m, 4H)

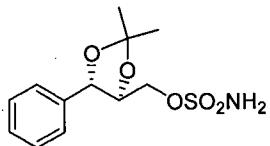
5 **Example 104 : ((4S, 5S)-5-(2-methylaminophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methyl methyl sulfamate**



The substantially same method as described in Example 103 was conducted, except that ((4S, 5S)-5-(2-aminophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methyl sulfamate(Example 64) was used instead of ((4R, 5R)-5-(2-aminophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methyl sulfamate(Example 63), to obtain the title compound(0.5g, 50~80%)

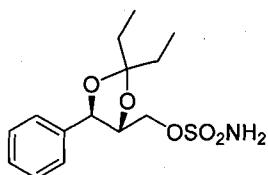
^1H NMR(400MHz, CDCl_3) δ 1.40(s, 6H), 2.62(s, 3H), 2.96(s, 3H), 4.25(dt, J =7.0, J =3.3, 1H), 4.75(d, J =3.3, 2H), 4.84(d, J =7.0, 1H), 6.99~7.20(m, 4H)

15


Example 105 : ((4R, 5R)-5-phenyl-2,2-dimethyl-1,3-dioxolan-4-yl)methyl sulfamate

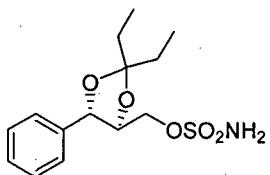
The substantially same method as described in Example 1 was conducted, except that ((4R, 5R)-5-phenyl-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 219) was used instead of ((4R, 5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(3.5g, 50~80%)

¹H NMR(400MHz, DMSO) δ 1.27(s, 6H), 1.40(s, 3H), 2.0(s, 2H), 3.96~4.21(m, 2H), 4.42(dt, *J* = 7.02, *J* = 3.27, 1H), 5.17(d, *J* = 7.0, 1H), 7.62~7.64(m, 2H), 7.77~7.90(m, 2H).


5 **Example 106 : ((4S, 5S)-5-phenyl-2,2-dimethyl-1,3-dioxolan-4-yl)methyl sulfamate**

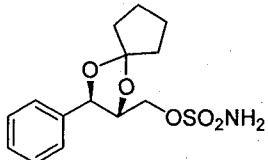
The substantially same method as described in Example 1 was conducted, except that ((4S, 5S)-5-phenyl-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 222) was used instead of ((4R, 5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(4.7g, 50~80%)

10 ¹H NMR(400MHz, DMSO) δ 1.27(s, 6H), 1.40(s, 3H), 2.0(s, 2H), 3.96~4.21(m, 2H), 4.42(dt, *J* = 7.02, *J* = 3.27, 1H), 5.17(d, *J* = 7.0, 1H), 7.62~7.64(m, 2H), 15 7.77~7.90(m, 2H).


20 **Example 107 : ((4R, 5R)-5-phenyl-2,2-diethyl-1,3-dioxolan-4-yl)methyl sulfamate**

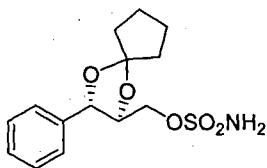
The substantially same method as described in Example 1 was conducted, except that ((4R, 5R)-5-phenyl-2,2-diethyl-1,3-dioxolan-4-yl)methanol(Preparation example 224) was used instead of ((4R, 5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(0.8g, 50~80%)

¹H NMR(400MHz, CDCl₃) δ 0.90(t, *J* = 8.0, 6H), 1.59(q, *J* = 8.0, 4H), 2.0(s, 2H), 3.96~4.21(m, 2H), 4.42(dt, *J* = 7.02, *J* = 3.27, 1H), 5.17(d, *J* = 7.0, 1H), 7.62~7.64(m, 2H), 7.77~7.90(m, 2H).


5 **Example 108 : ((4S, 5S)-5-phenyl-2,2-diethyl-1,3-dioxolan-4-yl)methyl sulfamate**

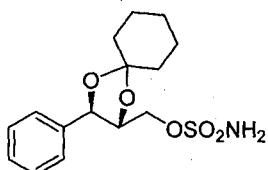
The substantially same method as described in Example 1 was conducted, except that ((4S, 5S)-5-phenyl-2,2-diethyl-1,3-dioxolan-4-yl)methanol(Preparation example 10 226) was used instead of ((4R, 5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(4.3g, 50~80%)
¹H NMR(400MHz, CDCl₃) δ 0.90(t, *J* = 8.0, 6H), 1.59(q, *J* = 8.0, 4H), 2.0(s, 2H), 3.96~4.21(m, 2H), 4.42(dt, *J* = 7.02, *J* = 3.27, 1H), 5.17(d, *J* = 7.0, 1H), 7.62~7.64(m, 2H), 7.77~7.90(m, 2H).

15


Example 109 : ((2R 3R)-3-phenyl-1,4-dioxaspiro[4,4]nonan-2-yl)methyl sulfamate

The substantially same method as described in Example 1 was conducted, except 20 that ((4R, 5R)-5-phenyl-1,4-dioxaspiro[4,4]nonane-2-yl)methanol(Preparation example 228) was used instead of ((4R, 5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(0.4g, 50~80%)

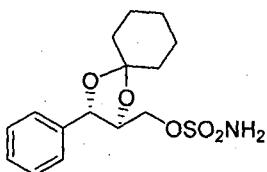
¹H NMR(400MHz, DMSO) δ 1.46~1.56(m, 6H), 1.65~1.90(m, 2H), 2.0(s, 2H), 3.96~4.21(m, 2H), 4.42(dt, *J* = 7.02, *J* = 3.27, 1H), 5.17(d, *J* = 7.0, 1H), 7.62~7.64(m, 2H), 7.77~7.90(m, 2H).


5 **Example 110 : ((2S, 3S)-3-phenyl-1,4-dioxaspiro[4,4]nonan-2-yl)methyl sulfamate**

The substantially same method as described in Example 1 was conducted, except that ((4S, 5S)-5-phenyl-1,4-dioxaspiro[4,4]nonane-2-yl)methanol(Preparation example 230) was used instead of ((4R, 5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(0.2g, 50~80%)

10 ¹H NMR(400MHz, DMSO) δ 1.46~1.56(m, 6H), 1.65~1.90(m, 2H), 2.0(s, 2H), 3.96~4.21(m, 2H), 4.42(dt, *J* = 7.02, *J* = 3.27, 1H), 5.17(d, *J* = 7.0, 1H), 15 7.62~7.64(m, 2H), 7.77~7.90(m, 2H).

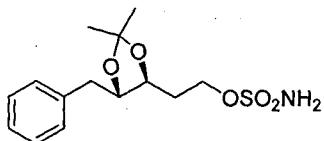
Example 111 : ((2R, 3R)-3-phenyl-1,4-dioxaspiro[4,5]decan-2-yl)methyl sulfamate


20 The substantially same method as described in Example 1 was conducted, except that ((4R, 5R)-5-phenyl-1,4-dioxaspiro[4,5]decan-2-yl)methanol(Preparation example 232) was used instead of ((4R, 5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(0.6g,

50~80%)

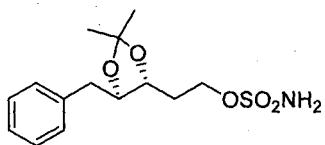
¹H NMR(400MHz, DMSO) δ 1.33~1.72(m, 10H), 2.0(s, 2H), 3.96~4.21(m, 2H), 4.42(dt, *J* = 7.02, *J* = 3.27, 1H), 5.17(d, *J* = 7.0, 1H), 7.62~7.64(m, 2H), 7.77~7.90(m, 2H).

5


Example 112 : ((2*S*, 3*S*)-3-phenyl-1,4-dioxaspiro[4,5]decan-2-yl)methyl sulfamate

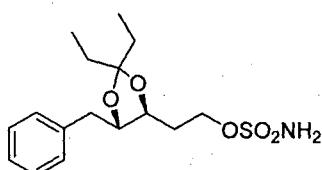
The substantially same method as described in Example 1 was conducted, except
10 that ((4*S*, 5*S*)-5-phenyl-1,4-dioxaspiro[4,5]decan-2-yl)methanol(Preparation example 234) was used instead of ((4*R*, 5*R*)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(0.3g, 50~80%)

¹H NMR(400MHz, DMSO) δ 1.33~1.72(m, 10H), 2.0(s, 2H), 3.96~4.21(m, 2H), 4.42(dt, *J* = 7.02, *J* = 3.27, 1H), 5.17(d, *J* = 7.0, 1H), 7.62~7.64(m, 2H), 15 7.77~7.90(m, 2H).


Example 113 : 2-((4*S*, 5*S*)-5-benzyl-2,2-dimethyl-1,3-dioxolan-4-yl)ethyl sulfamate

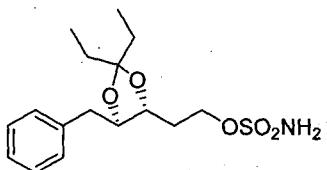
20 The substantially same method as described in Example 1 was conducted, except that ((4*S*, 5*S*)-5-benzyl-2,2-dimethyl-1,3-dioxolan-4-yl)ethanol(Preparation example 241) was used instead of ((4*R*, 5*R*)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(4.2g, 50~80%)

¹H NMR(400MHz, DMSO) δ 1.27(s, 6H), 1.40(s, 3H), 2.0(s, 2H), 3.96~4.21(m, 2H), 4.42(dt, *J* = 7.02, *J* = 3.27, 1H), 5.17(d, *J* = 7.0, 1H), 7.62~7.64(m, 2H), 7.77~7.90(m, 2H).

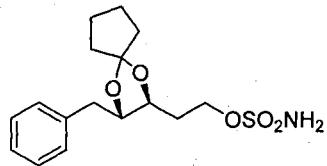

5 **Example 114 : 2-((4R, 5R)-5-benzyl-2,2-dimethyl-1,3-dioxolan-4-yl)ethyl sulfamate**

The substantially same method as described in Example 1 was conducted, except that ((4R, 5R)-5-benzyl-2,2-dimethyl-1,3-dioxolan-4-yl)ethanol(Preparation example 10 244) was used instead of ((4R, 5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(4.2g, 50~80%)
¹H NMR(400MHz, DMSO) δ 1.27(s, 6H), 1.40(s, 3H), 2.0(s, 2H), 3.96~4.21(m, 2H), 4.42(dt, *J* = 7.02, *J* = 3.27, 1H), 5.17(d, *J* = 7.0, 1H), 7.62~7.64(m, 2H), 7.77~7.90(m, 2H).

15

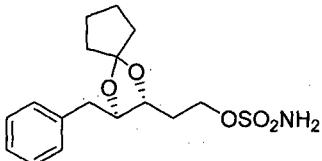

Example 115 : 2-((4R, 5S)-5-benzyl-2,2-diethyl-1,3-dioxolan-4-yl)ethyl sulfamate

The substantially same method as described in Example 1 was conducted, except that ((4S, 5S)-5-benzyl-2,2-diethyl-1,3-dioxolan-4-yl)ethanol(Preparation example 20 247) was used instead of ((4R, 5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(0.3g, 50~80%)
¹H NMR(400MHz, CDCl₃) δ 0.90(t, *J* = 8.0, 6H), 1.59(q, *J* = 8.0, 4H), 2.0(s, 2H),


3.96~4.21(m, 2H), 4.42(dt, $J = 7.02, J = 3.27$, 1H), 5.17(d, $J = 7.0, 1H$), 7.62~7.64(m, 2H), 7.77~7.90(m, 2H).

Example 116 : 2-((4R, 5R)-5-benzyl-2,2-diethyl-1,3-dioxolan-4-yl)ethyl sulfamate

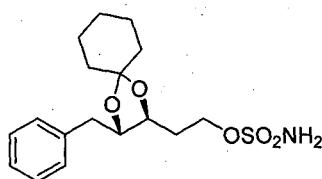
The substantially same method as described in Example 1 was conducted, except that ((4R, 5R)-5-benzyl-2,2-diethyl-1,3-dioxolan-4-yl)ethanol(Preparation example 250) was used instead of ((4R, 5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(0.5g, 50~80%)
 ^1H NMR(400MHz, CDCl_3) δ 0.90(t, $J = 8.0, 6\text{H}$), 1.59(q, $J = 8.0, 4\text{H}$), 2.0(s, 2H), 3.96~4.21(m, 2H), 4.42(dt, $J = 7.02, J = 3.27$, 1H), 5.17(d, $J = 7.0, 1H$), 7.62~7.64(m, 2H), 7.77~7.90(m, 2H).


Example 117 : 2-((2S, 3S)-5-benzyl-1,4-dioxaspiro[4,4]nonan-2-yl)ethyl sulfamate

The substantially same method as described in Example 1 was conducted, except that ((2S, 3S)-3-benzyl-1,4-dioxaspiro[4,4]nonane-2-yl)ethanol(Preparation example 252) was used instead of ((4R, 5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(0.5g, 50~80%)
 ^1H NMR(400MHz, DMSO) δ 1.46~1.56(m, 6H), 1.65~1.90(m, 2H), 2.0(s, 2H), 3.96~4.21(m, 2H), 4.42(dt, $J = 7.02, J = 3.27$, 1H), 5.17(d, $J = 7.0, 1H$),

7.62~7.64(m, 2H), 7.77~7.90(m, 2H).

Example 118 : 2-((2R, 3R)-3-benzyl-1,4-dioxaspiro[4,4]nonan-2-yl)ethyl sulfamate

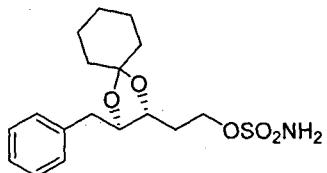


5

The substantially same method as described in Example 1 was conducted, except that ((2R, 3R)-5-benzyl-1,4-dioxaspiro[4,4]nonane-2-yl)ethanol(Preparation example 254) was used instead of ((4R, 5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(0.6g, 50~80%)

10 ^1H NMR(400MHz, DMSO) δ 1.46~1.56(m, 6H), 1.65~1.90(m, 2H), 2.0(s, 2H), 3.96~4.21(m, 2H), 4.42(dt, J = 7.02, J = 3.27, 1H), 5.17(d, J = 7.0, 1H), 7.62~7.64(m, 2H), 7.77~7.90(m, 2H).

Example 119: 2-((2S, 3S)-3-benzyl-1,4-dioxaspiro[4,5]decane-2-yl)ethyl sulfamate

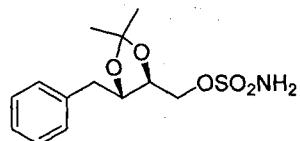


15

The substantially same method as described in Example 1 was conducted, except that ((2S, 3S)-3-benzyl-1,4-dioxaspiro[4,5]decane-2-yl)ethanol(Preparation example 256) was used instead of ((4R, 5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(0.5g, 50~80%)

20 ^1H NMR(400MHz, DMSO) δ 1.33~1.72(m, 10H), 2.0(s, 2H), 3.96~4.21(m, 2H), 4.42(dt, J = 7.02, J = 3.27, 1H), 5.17(d, J = 7.0, 1H), 7.62~7.64(m, 2H), 7.77~7.90(m, 2H).

Example 120 : 2-((2R, 3R)-3-benzyl-1,4-dioxaspiro[4,5]decan-2-yl)ethyl sulfamate

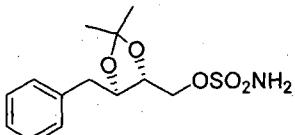


5

The substantially same method as described in Example 1 was conducted, except that ((2R, 3R)-3-benzyl-1,4-dioxaspiro[4,5]decan-2-yl)ethanol(Preparation example 258) was used instead of ((4R, 5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(1.2g, 50~80%)

10 ^1H NMR(400MHz, DMSO) δ 1.33~1.72(m, 10H), 2.0(s, 2H), 3.96~4.21(m, 2H), 4.42(dt, J = 7.02, J = 3.27, 1H), 5.17(d, J = 7.0, 1H), 7.62~7.64(m, 2H), 7.77~7.90(m, 2H).

Example 121 : 2-((4S, 5S)-5-benzyl-2,2-dimethyl-1,3-dioxolan-4-yl)methyl sulfamate



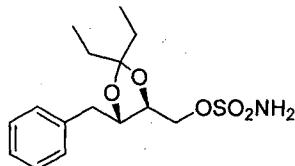
15 The substantially same method as described in Example 1 was conducted, except that ((4S, 5S)-5-benzyl-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 262) was used instead of ((4R,5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(1.5g, 50~80%)

20 ^1H NMR(400MHz, DMSO) δ 1.27(s, 6H), 1.40(s, 3H), 2.0(s, 2H), 3.96~4.21(m, 2H), 4.42(dt, J = 7.02, J = 3.27, 1H), 5.17(d, J = 7.0, 1H), 7.62~7.64(m, 2H),

7.77~7.90(m, 2H).

Example 122 : 2-((4R, 5R)-5-benzyl-2,2-dimethyl-1,3-dioxolan-4-yl)methyl sulfamate

5

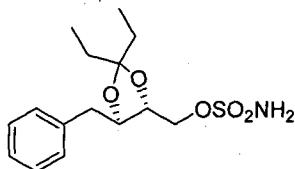

The substantially same method as described in Example 1 was conducted, except that ((4R, 5R)-5-benzyl-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 271) was used instead of ((4R,5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(2.0g, 50~80%)

10

¹H NMR(400MHz, DMSO) δ 1.27(s, 6H), 1.40(s, 3H), 2.0(s, 2H), 3.96~4.21(m, 2H), 4.42(dt, *J* = 7.02, *J* = 3.27, 1H), 5.17(d, *J* = 7.0, 1H), 7.62~7.64(m, 2H), 7.77~7.90(m, 2H).

15

Example 123 : 2-((4S, 5S)-5-benzyl-2,2-diethyl-1,3-dioxolan-4-yl)methyl sulfamate

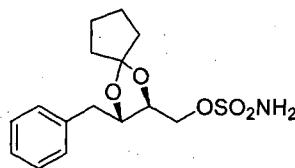


20

The substantially same method as described in Example 1 was conducted, except that ((4S, 5S)-5-benzyl-2,2-diethyl-1,3-dioxolan-4-yl)methanol(Preparation example 264) was used instead of ((4R,5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(0.3g, 50~80%) ¹H NMR(400MHz, CDCl₃) δ 0.90(t, *J* = 8.0, 6H), 1.59(q, *J* = 8.0, 4H), 2.0(s, 2H), 3.96~4.21(m, 2H), 4.42(dt, *J* = 7.02, *J* = 3.27, 1H), 5.17(d, *J* = 7.0, 1H),

7.62~7.64(m, 2H), 7.77~7.90(m, 2H).

Example 124 : 2-((4R, 5R)-5-benzyl-2,2-diethyl-1,3-dioxolan-4-yl)methyl sulfamate

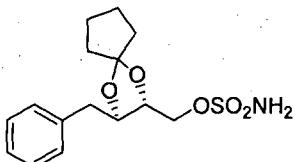


5

The substantially same method as described in Example 1 was conducted, except that ((4R, 5R)-5-benzyl-2,2-diethyl-1,3-dioxolan-4-yl)methanol(Preparation example 273) was used instead of ((4R,5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(0.5g, 50~80%)

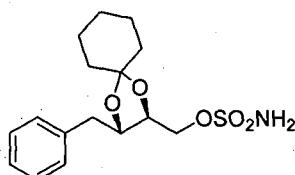
10 ^1H NMR(400MHz, CDCl_3) δ 0.90(t, J = 8.0, 6H), 1.59(q, J = 8.0, 4H), 2.0(s, 2H), 3.96~4.21(m, 2H), 4.42(dt, J = 7.02, J = 3.27, 1H), 5.17(d, J = 7.0, 1H), 7.62~7.64(m, 2H), 7.77~7.90(m, 2H).

Example 125 : 2-((2S, 3S)-3-benzyl-1,4-dioxaspiro[4,4]nonan-2-yl)methyl sulfamate

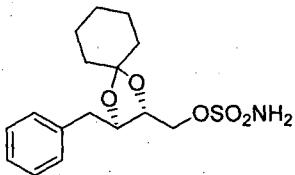


15

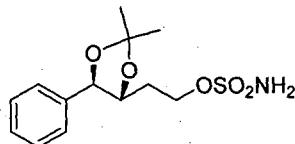
The substantially same method as described in Example 1 was conducted, except that ((2S, 3S)-3-benzyl-1,4-dioxaspiro[4,4]nonan-2-yl)methanol(Preparation example 266) was used instead of ((4R, 5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(0.6g, 50~80%)


20 ^1H NMR(400MHz, DMSO) δ 1.46~1.56(m, 6H), 1.65~1.90(m, 2H), 2.0(s, 2H), 3.96~4.21(m, 2H), 4.42(dt, J = 7.02, J = 3.27, 1H), 5.17(d, J = 7.0, 1H), 7.62~7.64(m, 2H), 7.77~7.90(m, 2H).

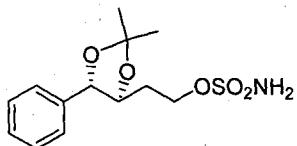
Example 126 : 2-((2R, 3R)-3-benzyl-1,4-dioxaspiro[4,4]nonan-2-yl)methyl sulfamate


5 The substantially same method as described in Example 1 was conducted, except that ((2R, 3R)-3-benzyl-1,4-dioxaspiro[4,4]nonan-2-yl)methanol(Preparation example 266) was used instead of ((4R, 5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(0.9g, 50~80%)
 10 ^1H NMR(400MHz, DMSO) δ 1.46~1.56(m, 6H), 1.65~1.90(m, 2H), 2.0(s, 2H), 3.96~4.21(m, 2H), 4.42(dt, J = 7.02, J = 3.27, 1H), 5.17(d, J = 7.0, 1H), 7.62~7.64(m, 2H), 7.77~7.90(m, 2H).

Example 127: 2-((2S, 3S)-3-benzyl-1,4-dioxaspiro[4,5]decan-2-yl)methyl sulfamate

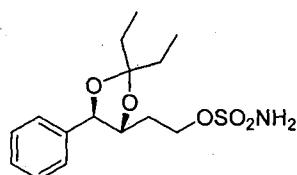

15 The substantially same method as described in Example 1 was conducted, except that ((2S, 3S)-3-benzyl-1,4-dioxaspiro[4,5]decan-2-yl)methanol(Preparation example 268) was used instead of ((4R, 5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(0.7g, 50~80%)
 20 ^1H NMR(400MHz, DMSO) δ 1.33~1.72(m, 10H), 2.0(s, 2H), 3.96~4.21(m, 2H), 4.42(dt, J = 7.02, J = 3.27, 1H), 5.17(d, J = 7.0, 1H), 7.62~7.64(m, 2H), 7.77~7.90(m, 2H).

Example 128 : 2-((2R, 3R)-3-benzyl-1,4-dioxaspiro[4,5]decan-2-yl)methyl sulfamate

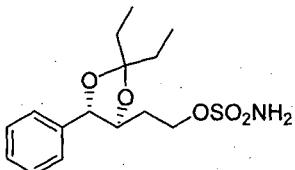

The substantially same method as described in Example 1 was conducted, except
 5 that ((2R, 3R)-3-benzyl-1,4-dioxaspiro[4,5]decan-2-yl)methanol(Preparation example
 268) was used instead of ((4R, 5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-
 yl)methanol(Preparation example 6), to obtain the title compound(1.2g, 50~80%)
 10 ^1H NMR(400MHz, DMSO) δ 1.33~1.72(m, 10H), 2.0(s, 2H), 3.96~4.21(m, 2H),
 4.42(dt, J = 7.02, J = 3.27, 1H), 5.17(d, J = 7.0, 1H), 7.62~7.64(m, 2H),
 7.77~7.90(m, 2H).

Example 129 : ((4S, 5S)-5-phenyl-2,2-dimethyl-1,3-dioxolan-4-yl)ethyl sulfamate

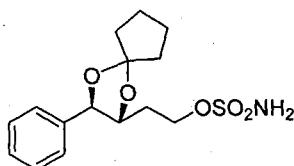
The substantially same method as described in Example 1 was conducted, except
 15 that 2-((4S, 5S)-5-phenyl-2,2-dimethyl-1,3-dioxolan-4-yl)ethanol(Preparation
 example 285) was used instead of ((4R, 5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-
 dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(1.2g,
 50~80%)
 20 ^1H NMR(400MHz, DMSO) δ 1.27(s, 6H), 1.40(s, 3H), 2.0(s, 2H), 3.96~4.21(m, 2H),
 4.42(dt, J = 7.02, J = 3.27, 1H), 5.17(d, J = 7.0, 1H), 7.62~7.64(m, 2H),
 7.77~7.90(m, 2H).


Example 130 : ((4S, 5S)-5-phenyl-2,2-dimethyl-1,3-dioxolan-4-yl)ethyl sulfamate

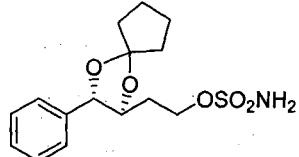
The substantially same method as described in Example 1 was conducted, except
 5 that 2-((4S, 5S)-5-phenyl-2,2-dimethyl-1,3-dioxolan-4-yl)ethanol(Preparation example 289) was used instead of ((4R, 5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(0.3g, 50~80%)


10 ^1H NMR(400MHz, DMSO) δ 1.27(s, 6H), 1.40(s, 3H), 2.0(s, 2H), 3.96~4.21(m, 2H),
 7.77~7.90(m, 2H).

Example 131 : ((4R, 5R)-5-phenyl-2,2-diethyl-1,3-dioxolan-4-yl)methyl sulfamate

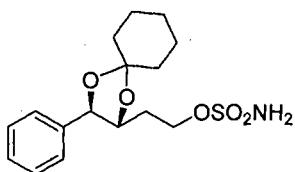

15 The substantially same method as described in Example 1 was conducted, except that 2-((4R, 5R)-5-phenyl-2,2-diethyl-1,3-dioxolan-4-yl)ethanol(Preparation example 291) was used instead of ((4R, 5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(0.7g, 50~80%)
 20 ^1H NMR(400MHz, CDCl_3) δ 0.90(t, J = 8.0, 6H), 1.59(q, J = 8.0, 4H), 2.0(s, 2H), 3.96~4.21(m, 2H), 4.42(dt, J = 7.02, J = 3.27, 1H), 5.17(d, J = 7.0, 1H), 7.62~7.64(m, 2H), 7.77~7.90(m, 2H).

Example 132 : ((4S, 5S)-5-phenyl-2,2-diethyl-1,3-dioxolan-4-yl)ethyl sulfamate


The substantially same method as described in Example 1 was conducted, except
 5 that 2-((4S, 5S)-5-phenyl-2,2-diethyl-1,3-dioxolan-4-yl)ethanol(Preparation example
 297) was used instead of ((4R, 5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-
 yl)methanol(Preparation example 6), to obtain the title compound(0.6g, 50~80%)
¹H NMR(400MHz, CDCl₃) δ 0.90(t, J = 8.0, 6H), 1.59(q, J = 8.0, 4H), 2.0(s, 2H),
 3.96~4.21(m, 2H), 4.42(dt, J = 7.02, J = 3.27, 1H), 5.17(d, J = 7.0, 1H),
 10 7.62~7.64(m, 2H), 7.77~7.90(m, 2H).

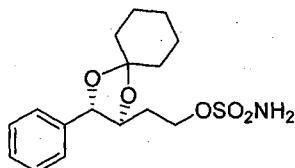
Example 133 : ((2R, 3R)-3-phenyl-1,4-dioxaspiro[4,4]nonan-2-yl)ethyl sulfamate

15 The substantially same method as described in Example 1 was conducted, except
 that 2-((2R, 3R)-3-phenyl-1,4-dioxaspiro[4,4]nonan-2-yl)ethanol(Preparation example
 293) was used instead of ((4R, 5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-
 dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(0.5g,
 50~80%)
¹H NMR(400MHz, DMSO) δ 1.46~1.56(m, 6H), 1.65~1.90(m, 2H), 2.0(s, 2H),
 3.96~4.21(m, 2H), 4.42(dt, J = 7.02, J = 3.27, 1H), 5.17(d, J = 7.0, 1H),
 7.62~7.64(m, 2H), 7.77~7.90(m, 2H).

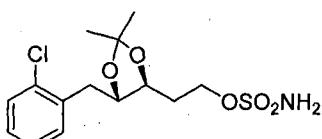

Example 134 : ((2S, 3S)-3-phenyl-1,4-dioxaspiro[4,4]nonan-2-yl)ethyl sulfamate

The substantially same method as described in Example 1 was conducted, except
 5 that 2-((2S, 3S)-3-phenyl-1,4-dioxaspiro[4,4]nonan-2-yl)methanol(Preparation example 299) was used instead of ((4R, 5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(0.5g, 50~80%)

¹H NMR(400MHz, DMSO) δ 1.46~1.56(m, 6H), 1.65~1.90(m, 2H), 2.0(s, 2H),
 10 3.96~4.21(m, 2H), 4.42(dt, J = 7.02, J = 3.27, 1H), 5.17(d, J = 7.0, 1H),
 7.62~7.64(m, 2H), 7.77~7.90(m, 2H).

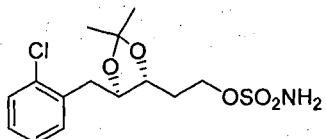

Example 135 : (2R, 3R)-3-phenyl-1,4-dioxaspiro[4,5]decan-2-yl)ethyl sulfamate

The substantially same method as described in Example 1 was conducted, except
 15 that 2-((2R, 3R)-3-phenyl-1,4-dioxaspiro[4,5]decan-2-yl)ethanol(Preparation example 293) was used instead of ((4R, 5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(0.6g, 50~80%)


¹H NMR(400MHz, DMSO) δ 1.33~1.72(m, 10H), 2.0(s, 2H), 3.96~4.21(m, 2H),
 4.42(dt, J = 7.02, J = 3.27, 1H), 5.17(d, J = 7.0, 1H), 7.62~7.64(m, 2H),
 7.77~7.90(m, 2H).

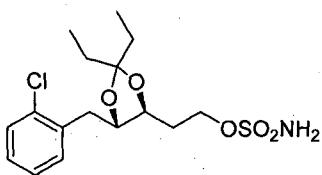
Example 136 : ((2S, 3S)-3-phenyl-1,4-dioxaspiro[4,5]decan-2-yl)ethyl sulfamate

5 The substantially same method as described in Example 1 was conducted, except that 2-((4S, 5S)-3-phenyl-1,4-dioxaspiro[4,5]decan-2-yl)ethanol(Preparation example 301) was used instead of ((4R, 5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(0.7g, 50~80%)
10 ^1H NMR(400MHz, DMSO) δ 1.33~1.72(m, 10H), 2.0(s, 2H), 3.96~4.21(m, 2H), 4.42(dt, J = 7.02, J = 3.27, 1H), 5.17(d, J = 7.0, 1H), 7.62~7.64(m, 2H), 7.77~7.90(m, 2H).


Example 137 : 2-((4S, 5S)-5-(2-chlorobenzyl)-2,2-dimethyl-1,3-dioxolan-4-yl)ethyl sulfamate

15 The substantially same method as described in Example 1 was conducted, except that 2-((4S, 5S)-5-(2-chlorobenzyl)-2,2-dimethyl-1,3-dioxolan-4-yl)ethanol(Preparation example 308) was used instead of ((4R, 5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(2.7g, 50~80%)
20

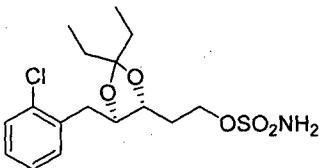
^1H NMR(400MHz, DMSO) δ 1.27(s, 6H), 1.40(s, 3H), 2.0(s, 2H), 3.96~4.21(m, 2H), 4.42(dt, J = 7.02, J = 3.27, 1H), 5.17(d, J = 7.0, 1H), 7.62~7.64(m, 2H), 7.77~7.90(m, 2H).


Example 138 : 2-((4R, 5R)-5-(2-chlorobenzyl)-2,2-dimethyl-1,3-dioxolan-4-yl)ethyl sulfamate

5 The substantially same method as described in Example 1 was conducted, except that 2-((4R, 5R)-5-(2-chlorobenzyl)-2,2-dimethyl-1,3-dioxolan-4-yl)ethanol(Preparation example 311) was used instead of ((4R, 5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(2.4g, 50~80%)

10 ^1H NMR(400MHz, DMSO) δ 1.27(s, 6H), 1.40(s, 3H), 2.0(s, 2H), 3.96~4.21(m, 2H), 4.42(dt, J = 7.02, J = 3.27, 1H), 5.17(d, J = 7.0, 1H), 7.62~7.64(m, 2H), 7.77~7.90(m, 2H).

15 **Example 139 : 2-((4S, 5S)-5-(2-chlorobenzyl)-2,2-diethyl-1,3-dioxolan-4-yl)ethyl sulfamate**

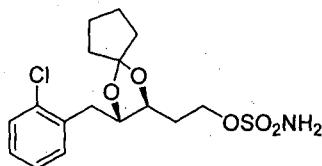


The substantially same method as described in Example 1 was conducted, except that 2-((4S, 5S)-5-(2-chlorobenzyl)-2,2-diethyl-1,3-dioxolan-4-yl)ethanol(Preparation example 314) was used instead of ((4R, 5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(0.7g, 50~80%)

^1H NMR(400MHz, CDCl_3) δ 0.90(t, J = 8.0, 6H), 1.59(q, J = 8.0, 4H), 2.0(s, 2H), 3.96~4.21(m, 2H), 4.42(dt, J = 7.02, J = 3.27, 1H), 5.17(d, J = 7.0, 1H),

7.62~7.64(m, 2H), 7.77~7.90(m, 2H).

Example 140 : 2-((4R, 5R)-5-(2-chlorobenzyl)-2,2-diethyl-1,3-dioxolan-4-yl)ethyl sulfamate


5

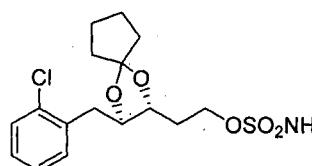
The substantially same method as described in Example 1 was conducted, except that 2-((4R, 5R)-5-(2-chlorobenzyl)-2,2-diethyl-1,3-dioxolan-4-yl)ethanol(Preparation example 317) was used instead of ((4R, 5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(0.5g, 10 50~80%)

¹H NMR(400MHz, CDCl₃) δ 0.90(t, J = 8.0, 6H), 1.59(q, J = 8.0, 4H), 2.0(s, 2H), 3.96~4.21(m, 2H), 4.42(dt, J = 7.02, J = 3.27, 1H), 5.17(d, J = 7.0, 1H), 7.62~7.64(m, 2H), 7.77~7.90(m, 2H).

15

Example 141 : 2-((2S, 3S)-3-(2-chlorobenzyl)-1,4-dioxaspiro[4,4]nonan-2-yl)ethyl sulfamate

20

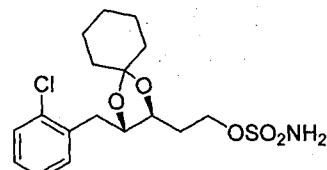

The substantially same method as described in Example 1 was conducted, except that 2-((2S, 3S)-3-(2-chlorobenzyl)-1,4-dioxaspiro[4,4]nonan-2-yl)ethanol(Preparation example 319) was used instead of ((4R, 5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(0.5g, 50~80%)

¹H NMR(400MHz, DMSO) δ 1.46~1.56(m, 6H), 1.65~1.90(m, 2H), 2.0(s, 2H),

3.96~4.21(m, 2H), 4.42(dt, $J = 7.02, J = 3.27$, 1H), 5.17(d, $J = 7.0$, 1H), 7.62~7.64(m, 2H), 7.77~7.90(m, 2H).

Example 142 : 2-((2R, 3R)-3-(2-chlorobenzyl)-1,4-dioxaspiro[4,4]nonan-2-yl)ethyl sulfamate

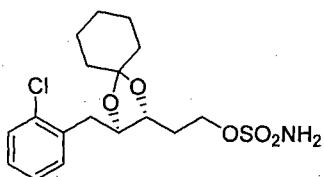
5



The substantially same method as described in Example 1 was conducted, except that 2-((2R, 3R)-3-(2-chlorobenzyl)-1,4-dioxaspiro[4,4]nonan-2-yl)ethanol(Preparation example 321) was used instead of ((4R, 5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(0.6g, 50~80%)

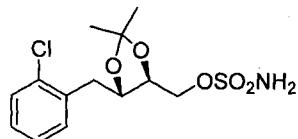
^1H NMR(400MHz, DMSO) δ 1.46~1.56(m, 6H), 1.65~1.90(m, 2H), 2.0(s, 2H), 3.96~4.21(m, 2H), 4.42(dt, $J = 7.02, J = 3.27$, 1H), 5.17(d, $J = 7.0$, 1H), 7.62~7.64(m, 2H), 7.77~7.90(m, 2H).

15


Example 143: 2-((2S, 3S)-3-(2-chlorobenzyl)-1,4-dioxaspiro[4,5]decan-2-yl)ethyl sulfamate

The substantially same method as described in Example 1 was conducted, except that 2-((2S, 3S)-3-(2-chlorobenzyl)-1,4-dioxaspiro[4,5]decan-2-yl)ethanol(Preparation example 323) was used instead of ((4R, 5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(0.3g, 50~80%)

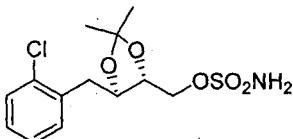
¹H NMR(400MHz, DMSO) δ 1.33~1.72(m, 10H), 2.0(s, 2H), 3.96~4.21(m, 2H), 4.42(dt, *J* = 7.02, *J* = 3.27, 1H), 5.17(d, *J* = 7.0, 1H), 7.62~7.64(m, 2H), 7.77~7.90(m, 2H).


5 **Example 144 : 2-((2R, 3R)-3-(2-chlorobenzyl)-1,4-dioxaspiro[4,5]decan-2-yl)ethyl sulfamate**

The substantially same method as described in Example 1 was conducted, except that 2-((2R, 3R)-3-(2-chlorobenzyl)-1,4-dioxaspiro[4,5]decan-2-yl)ethanol(Preparation example 325) was used instead of ((4R, 5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(0.6g, 50~80%)

¹H NMR(400MHz, DMSO) δ 1.33~1.72(m, 10H), 2.0(s, 2H), 3.96~4.21(m, 2H), 4.42(dt, *J* = 7.02, *J* = 3.27, 1H), 5.17(d, *J* = 7.0, 1H), 7.62~7.64(m, 2H), 15 7.77~7.90(m, 2H).

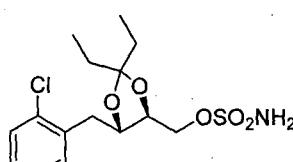
Example 145 : 2-((4S, 5S)-5-(2-chlorobenzyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methyl sulfamate


20 The substantially same method as described in Example 1 was conducted, except that 2-((4S, 5S)-5-(2-chlorobenzyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 329) was used instead of ((4R, 5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to

obtain the title compound(0.4g, 50~80%)

¹H NMR(400MHz, DMSO) δ 1.27(s, 6H), 1.40(s, 3H), 2.0(s, 2H), 3.96~4.21(m, 2H), 4.42(dt, *J* = 7.02, *J* = 3.27, 1H), 5.17(d, *J* = 7.0, 1H), 7.62~7.64(m, 2H), 7.77~7.90(m, 2H).

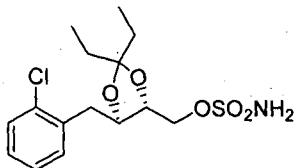
5


Example 146 : 2-((4R, 5R)-5-(2-chlorobenzyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methyl sulfamate

The substantially same method as described in Example 1 was conducted, except
10 that 2-((4R, 5R)-5-(2-chlorobenzyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 338) was used instead of ((4R, 5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(1.4g, 50~80%)

¹H NMR(400MHz, DMSO) δ 1.27(s, 6H), 1.40(s, 3H), 2.0(s, 2H), 3.96~4.21(m, 2H), 4.42(dt, *J* = 7.02, *J* = 3.27, 1H), 5.17(d, *J* = 7.0, 1H), 7.62~7.64(m, 2H), 7.77~7.90(m, 2H).

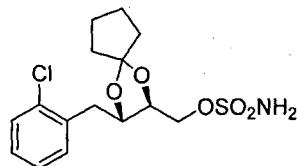
Example 147 : 2-((4S, 5S)-5-(2-chlorobenzyl)-2,2-diethyl-1,3-dioxolan-4-yl)methyl sulfamate


20

The substantially same method as described in Example 1 was conducted, except that 2-((4S, 5S)-5-(2-chlorobenzyl)-2,2-diethyl-1,3-dioxolan-4-yl)methanol(Preparation example 331) was used instead of ((4R, 5R)-5-(2-

chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(0.2g, 50~80%)

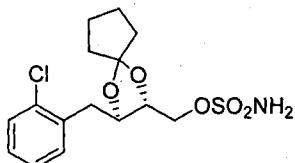
¹H NMR(400MHz, CDCl₃) δ 0.90(t, *J* = 8.0, 6H), 1.59(q, *J* = 8.0, 4H), 2.0(s, 2H), 3.96~4.21(m, 2H), 4.42(dt, *J* = 7.02, *J* = 3.27, 1H), 5.17(d, *J* = 7.0, 1H), 5 7.62~7.64(m, 2H), 7.77~7.90(m, 2H).


Example 148 : 2-((4R, 5R)-5-(2-chlorobenzyl)-2,2-diethyl-1,3-dioxolan-4-yl)methyl sulfamate

10 The substantially same method as described in Example 1 was conducted, except that 2-((4R, 5R)-5-(2-chlorobenzyl)-2,2-diethyl-1,3-dioxolan-4-yl)methanol(Preparation example 340) was used instead of ((4R, 5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(0.3g, 50~80%)

15 ¹H NMR(400MHz, CDCl₃) δ 0.90(t, *J* = 8.0, 6H), 1.59(q, *J* = 8.0, 4H), 2.0(s, 2H), 3.96~4.21(m, 2H), 4.42(dt, *J* = 7.02, *J* = 3.27, 1H), 5.17(d, *J* = 7.0, 1H), 7.62~7.64(m, 2H), 7.77~7.90(m, 2H).

Example 149 : 2-((2S, 3S)-3-(2-chlorobenzyl)-1,4-dioxaspiro[4,4]nonan-2-yl)methyl sulfamate

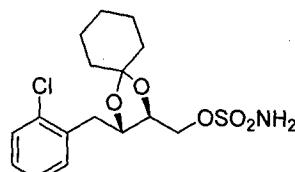

The substantially same method as described in Example 1 was conducted, except that 2-((2S, 3S)-3-(2-chlorobenzyl)-1,4-dioxaspiro[4,4]nonan-2-

yl)methanol(Preparation example 333) was used instead of ((4R, 5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(0.3g, 50~80%)

¹H NMR(400MHz, DMSO) δ 1.46~1.56(m, 6H), 1.65~1.90(m, 2H), 2.0(s, 2H),

5 3.96~4.21(m, 2H), 4.42(dt, *J* = 7.02, *J* = 3.27, 1H), 5.17(d, *J* = 7.0, 1H), 7.62~7.64(m, 2H), 7.77~7.90(m, 2H).

Example 150 : 2-((2R, 3R)-3-(2-chlorobenzyl)-1,4-dioxaspiro[4,4]nonan-2-yl)methyl sulfamate

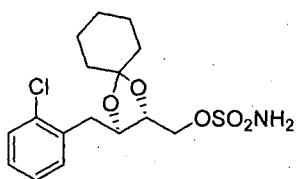

10

The substantially same method as described in Example 1 was conducted, except that 2-((2R, 3R)-3-(2-chlorobenzyl)-1,4-dioxaspiro[4,4]nonan-2-yl)methanol(Preparation example 342) was used instead of ((4R, 5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(0.3g, 50~80%)

¹H NMR(400MHz, DMSO) δ 1.46~1.56(m, 6H), 1.65~1.90(m, 2H), 2.0(s, 2H), 3.96~4.21(m, 2H), 4.42(dt, *J* = 7.02, *J* = 3.27, 1H), 5.17(d, *J* = 7.0, 1H), 7.62~7.64(m, 2H), 7.77~7.90(m, 2H).

20

Example 151: 2-((2S, 3S)-3-(2-chlorobenzyl)-1,4-dioxaspiro[4,5]decan-2-yl)methyl sulfamate

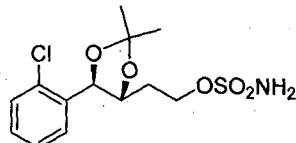


The substantially same method as described in Example 1 was conducted, except

that 2-((2S, 3S)-3-(2-chlorobenzyl)-1,4-dioxaspiro[4,5]decan-2-yl)methanol(Preparation example 335) was used instead of ((4R, 5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(0.4g, 50~80%)

5 ^1H NMR(400MHz, DMSO) δ 1.33~1.72(m, 10H), 2.0(s, 2H), 3.96~4.21(m, 2H), 4.42(dt, J = 7.02, J = 3.27, 1H), 5.17(d, J = 7.0, 1H), 7.62~7.64(m, 2H), 7.77~7.90(m, 2H).

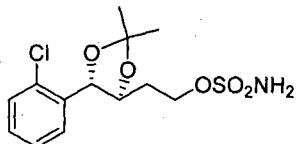
Example 152 : 2-((2R, 3R)-3-(2-chlorobenzyl)-1,4-dioxaspiro[4,5]decan-2-yl)methyl sulfamate



The substantially same method as described in Example 1 was conducted, except that 2-((2R, 3R)-3-(2-chlorobenzyl)-1,4-dioxaspiro[4,5]decan-2-yl)methanol(Preparation example 344) was used instead of ((4R, 5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(0.4g, 50~80%)

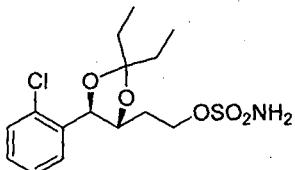
15 ^1H NMR(400MHz, DMSO) δ 1.33~1.72(m, 10H), 2.0(s, 2H), 3.96~4.21(m, 2H), 4.42(dt, J = 7.02, J = 3.27, 1H), 5.17(d, J = 7.0, 1H), 7.62~7.64(m, 2H), 7.77~7.90(m, 2H).

20


Example 153 : ((4R, 5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)ethyl sulfamate

The substantially same method as described in Example 1 was conducted, except that 2-((4R, 5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)ethanol(Preparation example 352) was used instead of ((4R, 5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(0.3g, 50~80%)

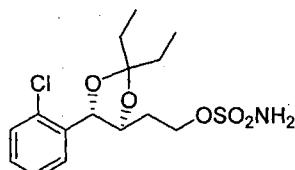
¹H NMR(400MHz, DMSO) δ 1.27(s, 6H), 1.40(s, 3H), 2.0(s, 2H), 3.96~4.21(m, 2H), 4.42(dt, *J* = 7.02, *J* = 3.27, 1H), 5.17(d, *J* = 7.0, 1H), 7.62~7.64(m, 2H), 7.77~7.90(m, 2H).


10 **Example 154 : ((4S, 5S)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)ethyl sulfamate**

The substantially same method as described in Example 1 was conducted, except that 2-((4S, 5S)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)ethanol(Preparation example 356) was used instead of ((4R, 5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(0.2g, 50~80%)

15 ¹H NMR(400MHz, DMSO) δ 1.27(s, 6H), 1.40(s, 3H), 2.0(s, 2H), 3.96~4.21(m, 2H), 4.42(dt, *J* = 7.02, *J* = 3.27, 1H), 5.17(d, *J* = 7.0, 1H), 7.62~7.64(m, 2H), 20 7.77~7.90(m, 2H).

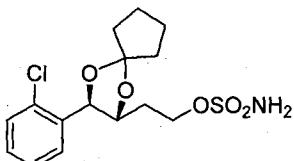
Example 155 : ((4R, 5R)-5-(2-chlorophenyl)-2,2-diethyl-1,3-dioxolan-4-yl)methyl sulfamate



The substantially same method as described in Example 1 was conducted, except that 2-((4R, 5R)-5-(2-chlorophenyl)-2,2-diethyl-1,3-dioxolan-4-yl)methanol(Preparation example 358) was used instead of ((4R, 5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(0.5g, 50~80%)

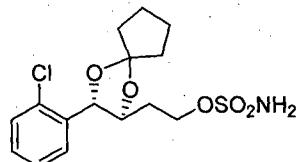
¹H NMR(400MHz, CDCl₃) δ 0.90(t, *J* = 8.0, 6H), 1.59(q, *J* = 8.0, 4H), 2.0(s, 2H), 3.96~4.21(m, 2H), 4.42(dt, *J* = 7.02, *J* = 3.27, 1H), 5.17(d, *J* = 7.0, 1H), 7.62~7.64(m, 2H), 7.77~7.90(m, 2H).

10


Example 156 : ((4S, 5S)-5-(2-chlorophenyl)-2,2-diethyl-1,3-dioxolan-4-yl)ethyl sulfamate

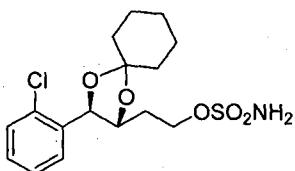
The substantially same method as described in Example 1 was conducted, except that 2-((4S, 5S)-5-(2-chlorophenyl)-2,2-diethyl-1,3-dioxolan-4-yl)ethanol(Preparation example 364) was used instead of ((4R, 5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(0.5g, 50~80%)

¹H NMR(400MHz, CDCl₃) δ 0.90(t, *J* = 8.0, 6H), 1.59(q, *J* = 8.0, 4H), 2.0(s, 2H), 3.96~4.21(m, 2H), 4.42(dt, *J* = 7.02, *J* = 3.27, 1H), 5.17(d, *J* = 7.0, 1H), 7.62~7.64(m, 2H), 7.77~7.90(m, 2H).


Example 157 : ((2R, 3R)-3-(2-chlorophenyl)-1,4-dioxaspiro[4,4]nonan-2-yl)ethyl sulfamate

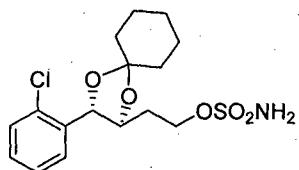
The substantially same method as described in Example 1 was conducted, except
 5 that 2-((2R, 3R)-3-(2-chlorophenyl)-2,2-diethyl-1,3-dioxolan-4-yl)ethanol(Preparation
 example 360) was used instead of ((4R, 5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-
 dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(0.4g,
 50~80%)

10 ^1H NMR(400MHz, DMSO) δ 1.46~1.56(m, 6H), 1.65~1.90(m, 2H), 2.0(s, 2H),
 7.62~7.64(m, 2H), 7.77~7.90(m, 2H).


Example 158 : ((2S, 3S)-3-(2-chlorophenyl)-1,4-dioxaspiro[4,4]nonan-2-yl)ethyl sulfamate

15 The substantially same method as described in Example 1 was conducted, except
 that 2-((2R, 3R)-3-(2-chlorophenyl)-2,2-diethyl-1,3-dioxolan-4-yl)ethanol(Preparation
 example 366) was used instead of ((4R, 5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-
 dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(0.3g,
 50~80%)

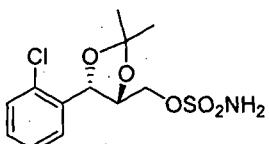
20 ^1H NMR(400MHz, DMSO) δ 1.46~1.56(m, 6H), 1.65~1.90(m, 2H), 2.0(s, 2H),
 3.96~4.21(m, 2H), 4.42(dt, J = 7.02, J = 3.27, 1H), 5.17(d, J = 7.0, 1H),
 7.62~7.64(m, 2H), 7.77~7.90(m, 2H).


Example 159 : ((2R, 3R)-3-(2-chlorophenyl)-1,4-dioxaspiro[4,5]decan-2-yl)ethyl sulfamate

5 The substantially same method as described in Example 1 was conducted, except that 2-((2R, 3R)-3-(2-chlorophenyl)-2,2-diethyl-1,3-dioxolan-4-yl)ethanol(Preparation example 360) was used instead of ((4R, 5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(0.3g, 50~80%)

10 ^1H NMR(400MHz, DMSO) δ 1.33~1.72(m, 10H), 2.0(s, 2H), 3.96~4.21(m, 2H), 4.42(dt, J = 7.02, J = 3.27, 1H), 5.17(d, J = 7.0, 1H), 7.62~7.64(m, 2H), 7.77~7.90(m, 2H).

15 **Example 160 : ((2S, 3S)-3-(2-chlorophenyl)-1,4-dioxaspiro[4,5]decan-2-yl)ethyl sulfamate**



20 The substantially same method as described in Example 1 was conducted, except that 2-((2S, 3S)-3-(2-chlorophenyl)-2,2-diethyl-1,3-dioxolan-4-yl)ethanol(Preparation example 368) was used instead of ((4R, 5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol(Preparation example 6), to obtain the title compound(0.4g, 50~80%)

^1H NMR(400MHz, DMSO) δ 1.33~1.72(m, 10H), 2.0(s, 2H), 3.96~4.21(m, 2H),

4.42(dt, $J = 7.02, 3.27$, 1H), 5.17(d, $J = 7.0$, 1H), 7.62~7.64(m, 2H), 7.77~7.90(m, 2H).

5 **Example 161 : ((4S, 5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methyl sulfamate**

The substantially same method as described in Example 1 was conducted, except that ((4S, 5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol (Preparation example 377) was used instead of ((4R, 5R)-5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol (Preparation example 6), to obtain the title compound (0.58 g, 50~80%).

15 ^1H NMR (400 MHz, CDCl_3) δ 1.53 (s, 3H), 1.66 (s, 3H), 3.14-3.06 (m, 2H), 4.26 (d, $J = 12$, 2H), 4.83-4.78 (m, 1H), 5.63 (d, $J = 6.8$ Hz, 1H), 7.35-7.16 (m, 8H), 7.61 (dd, $J = 7.4, 1.6$, 1H).

15

Animal Testing Examples

For testing, male mice (ICR) were purchased from ORIENT BIO INC. (Korea), divided into several groups with 6 mice in each group, and were adapted for 4-5 days. The mice having the weight ranging from 19g to 26g were employed for the test. The pharmacological effect of the test compounds on muscle relaxation was evaluated by Rotarod test, grip strength test, and muscular force (wire hang) test. All mice were adapted to the test environment at one hour before starting the tests. The pharmacological effects of all the test compounds were evaluated by administration through peritoneal cavity of the mice (10 $\mu\text{l/g}$, bw).

25

Experimental Example 1: Measurement of muscle relaxation activity by grip strength

A grip strength test using the test animals' forelimbs was performed using 5 an instrument equipped with triangle ring and designed so as to easily grip with the forelimbs of experimental animals, manufactured from Ugo Basile Inc.(Ugo Basile, Model47106, Italy). The test was conducted before and after administration of the compounds to evaluate the effects thereof. All the test compounds were intraperitoneally administered (10 ul/g, bw) at 15 minutes, 30 minutes, 1 hour, and 10 2 hours before test, and the median effective concentration (ED50) was determined at the time(generally 15 min, 30min or 60min) that the compounds exhibits therir maximum pharmacological effect. The mouse was made to grip the rod with its forelimbs, and its tail was pulled, where the force at which the mouse detached from the rod was recorded. The instrument indicated the force in grams. All of the 15 mice were given 3 opportunities for test, and the 3 highest values among the test opportunities were selected and the mean value was used as the test result. The obtained results are shown in Table 3. This experimentation was conducted according to the method described in the reference, 'Nevins et al. (1993) Quantitative grip strength assessment as a means of evaluating muscle relaxation in 20 mice. Psychopharmacol. 110: 92-96'.

Experimental Example 2: Measurement of muscle relaxation activity by wire hang

This experimentation was conducted using a metal wire of 30cm in length, 25 which was suspended between two pillars at a height of about 40cm from the bottom covered with a soft pad. All the test compounds were administered to the mice through peritoneal cavity (10 ul/g, bw) at 15 minutes, 30 minutes, 1 hour, and

2 hours prior to the testing, and the median effective concentration (ED50) was determined at the time that the compound exhibits the maximum pharmacological effect. Each mouse was made to grip the wire using two forelimbs, and the elapse time before the mouse fell off from the wire to the pad on the bottom was recorded 5 in seconds. Each mouse was given 5 opportunities for this test at an interval of 2 minutes period. The highest 3 records among the test opportunities were selected and the mean value was used as the test result. The obtained results are shown in Table 3. This experimentation was was conducted according to the method described in the reference, 'Jacqueline N. Crawley (1999) Behavioral phenotyping of 10 transgenic and knockout mice: experimental design and evaluation of general health, sensory functions, motor abilities, and specific behavioral tests. Brain Res. 835: 18-26'.

15 Experimental Example 3: Measurement of muscle relaxation activity by residence time on a rotarod rotating at a fixed speed

All the mice to be tested were preliminarily trained for 5 minutes on a rod rotating at the rate of 15 revolutions per a minute. The mice that could not remain on the rod without falling off therefrom for a minimum of 2 minutes were excluded 20 from this testing. After the training, all the mice were allowed to rest for 45-60 minutes. Before the administration of the test compounds, the mice were subjected to a further training for one minute on the rod rotating under the same condition, where the mice falling off from the rod were excluded from this experimentation. All the test compounds were intraperitoneally administered (10 ul/g, bw) to the mice 25 at 15 minutes, 30 minutes, 1 hour, and 2 hours prior to the testing, and the median effective concentration (ED50) was determined at the time(generally 15 min, 30min or 60min) that the comounds exhibit their maximum pharmacological effect. In case a mouse stays on the rod until the test is finished, the time was recorded as 10

minutes. As test time for evaluation, a maximum of 10 minutes was applied. The obtained results were shown in following Table 3. This experimentation was conducted according to the method described in the reference, 'Yasuda et al. (2005) Antipyretic, analgesic and muscle relaxant activities of Pueraria isoflavonoids and 5 their metabolites from Pueraria lobata Ohwi – a traditional Chinese drug. Biol. Pharm. Bull. 28: 1224-1228'.

[Statistical Analysis]

The obtained results are shown as mean \pm sem. The difference between the 10 groups was statistically analyzed by ANOVA, and then, further examined by Dunnett's test or Bonferroni test. If p is less than 0.05, it was determined that the difference between the groups had statistical significance.

[Results]

15 The results of muscle relaxation activity of the phenyl sulfamate compounds measured in above Experimental Examples 1 to 3 are shown in following Table 2. In the Table 2, the ED50 was represented by the concentration where the compound shows the 50% of muscle relaxation activity compared to the vehicle only (100%).

20 [Table 2] Results of the measurements of muscle relaxation activity of the phenylalkyl sulfamate compounds

No	Grip strength	Wire suspension	Fixed rotarod
1	211.9 (0.5h)	96.7 (0.5h)	108.2 (0.5h)
2	211.4 (0.5h)	81.4 (0.5h)	73.6 (0.5h)
3	205.0 (0.25h)	116.2 (1h)	99.2 (0.5h)
4	200 (56.5%)	100 (41.3%)	100 (76.6%)
6	200 (44.8%)	100 (70.0%)	100 (50.4%)
8	200 (59.6%)		
10	200 (91.2%)		

12	200 (57.7%)		
15			140(22.7%)
16	161.1 (0.5h)	99.1(0.5h)	
27	377.8 (0.5h)		
28	261.1 (0.5h)	100(66.8%)	102.4(0.5h)
40	200 (79.3%)		
52	200 (28.2%)		
66	200 (69.5%)		
70	200 (78.6%)		
72	200 (87.0%)		
74	200 (88.1%)		
76	200 (78.5%)		
90	200 (43.8%)		
92	200 (46.2%)		
104	200 (71.3%)		
106	200 (62.8%)		
108	200 (66.8%)		
110	200 (62.9%)		
112	200 (33.2%)		
114	200 (75.4%)		
116	200 (81.6%)		
118	200 (83.7%)		
120	200 (80.5%)		
122	200 (61.6%)		
124	200 (81.0%)		
126	200 (76.7%)		
128	200 (81.4%)		
130	200 (91.4%)		
132	200 (25.7%)		
134	200 (90.1%)		
136	200 (80.8%)		
138	200 (70.1%)		
140	200 (73.4%)		
142	200 (66.8%)		
144	200 (62.0%)		
146	200 (79.2%)		
148	200 (70.2%)		
150	200 (89.8%)		
152	200 (77.2%)		

154	200 (70.4%)		
156	200 (73.2%)		
158	200 (74.2%)		
160	200 (86.8%)		

%= the percentage of grip strength, wire suspension, and residence time on a rotating rotarod compared to the vehicle only (100%), respectively.

What is claimed is:

1. A compound represented by the following formula 1 or pharmaceutically acceptable salt thereof:

(1)

5 wherein R₁ and R₂ are each independently selected from the group consisting of hydrogen, C₁-C₅ alkyl group and C₆-C₁₀ aryl group or R₁ and R₂ together with the carbon atom to which they attach form C₅-C₆ cycloalkyl group; R₃, R₄, R₅, R₆ and R₇ are each independently selected from the group consisting of hydrogen, halogen, C₁-C₅ alkyl group, nitro group and unsubstituted or C₁-C₃ alkyl-substituted amine group; R₈ and R₉ are each independently hydrogen or C₁-C₃ alkyl group; n and m are each independently integer of 0-2.

10 2. The compound or pharmaceutically acceptable salt thereof according to claim 1, wherein R₁ and R₂ are each independently selected from the group consisting of hydrogen, C₁-C₃ alkyl group and phenyl group or R₁ and R₂ together with the carbon atom to which they attach form C₅-C₆ cycloalkyl group, and wherein R₁ and R₂ are not hydrogen at the same time.

15 3. The compound or pharmaceutically acceptable salt thereof according to claim 1, wherein R₃, R₄, R₅, R₆ and R₇ are each independently selected from the group consisting of hydrogen, chlorine, fluorine, iodine, C₁-C₃ alkyl group, nitro group and unsubstituted or methyl-substituted amine group.

20 4. The compound or pharmaceutically acceptable salt thereof according to claim 1, wherein R₈ and R₉ are hydrogen.

5. The compound or pharmaceutically acceptable salt thereof according to claim 1, wherein n and m are each independently integer of 0-1.
5. The compound or pharmaceutically acceptable salt thereof according to claim 1, wherein the compound is selected from the group consisting of:
 - (1) (5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methylsulfamate;
 - (2) (5-(2-chlorophenyl)-2-methyl-1,3-dioxolan-4-yl) methyl sulfamate;
 - (3) (5-(2-chlorophenyl)-2,2-diethyl-1,3-dioxolan-4-yl)methyl sulfamate;
 - 10 (4) (3-(2-chlorophenyl)-1,4-dioxaspiro[4,4]nonan-2-yl)methyl sulfamate;
 - (5) (3-(2-chlorophenyl)-1,4-dioxaspiro[4,5]decan-2-yl)methyl sulfamate;
 - (6) (5-(2-chlorophenyl)-2-phenyl-1,3-dioxolan-4-yl)methyl sulfamate;
 - (7) (5-(2-fluorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methyl sulfamate;
 - (8) (5-(2-fluorophenyl)-2-methyl-1,3-dioxolan-4-yl) methyl sulfamate;
 - 15 (9) (5-(2-fluorophenyl)-2,2-diethyl-1,3-dioxolan-4-yl)methyl sulfamate;
 - (10) (3-(2-fluorophenyl)-1,4-dioxaspiro[4,4]nonan-2-yl)methyl sulfamate;
 - (11) (3-(2-fluorophenyl)-1,4-dioxaspiro[4,5]decan-2-yl)methyl sulfamate;
 - (12) (5-(2-fluorophenyl)-2-phenyl-1,3-dioxolan-4-yl)methyl sulfamate;
 - (13) (5-(2-iodophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methyl sulfamate;
 - 20 (14) (5-(2-iodophenyl)-2-methyl-1,3-dioxolan-4-yl) methyl sulfamate;
 - (15) (5-(2-iodophenyl)-2,2-diethyl-1,3-dioxolan-4-yl) methyl sulfamate;
 - (16) (3-(2-iodophenyl)-1,4-dioxaspiro[4,4]nonan-2-yl) methyl sulfamate;
 - (17) (3-(2-iodophenyl)-1,4-dioxaspiro[4,5]decan-2-yl)methyl sulfamate;
 - (18) (5-(2-iodophenyl)-2-phenyl-1,3-dioxolan-4-yl)methyl sulfamate;
 - 25 (19) (5-(2,4-dichlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methyl sulfamate;
 - (20) (5-(2,4-dichlorophenyl)-2-methyl-1,3-dioxolan-4-yl)methyl sulfamate;
 - (21) (5-(2,4-dichlorophenyl)-2,2-diethyl-1,3-dioxolan-4-yl)methyl sulfamate;
 - (22) (3-(2,4-dichlorophenyl)-1,4-dioxaspiro[4,4]nonan-2-yl)methyl sulfamate;

- (23) (3-(2,4-dichlorophenyl)-1,4-dioxaspiro[4,5]decan-2-yl)methyl sulfamate;
- (24) (5-(2,4-dichlorophenyl)-2-phenyl-1,3-dioxolan-4-yl)methyl sulfamate;
- (25) (5-(2,6-dichlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methylsulfamate;
- (26) (5-(2,6-dichlorophenyl)-2-methyl-1,3-dioxolan-4-yl)methyl sulfamate;
- 5 (27) (5-(2,6-dichlorophenyl)-2,2-diethyl-1,3-dioxolan-4-yl)methyl sulfamate;
- (28) (3-(2,6-dichlorophenyl)-1,4-dioxaspiro[4,4]nonan-2-yl)methyl sulfamate;
- (29) (3-(2,6-dichlorophenyl)-1,4-dioxaspiro[4,5]decan-2-yl)methyl sulfamate;
- (30) (5-(2,6-dichlorophenyl)-2-phenyl-1,3-dioxolan-4-yl)methyl sulfamate;
- (31) (5-(2-aminophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methyl sulfamate;
- 10 (32) (5-(2-aminophenyl)-2-methyl-1,3-dioxolan-4-yl)methyl sulfamate;
- (33) (5-(2-aminophenyl)-2,2-diethyl-1,3-dioxolan-4-yl)methyl sulfamate;
- (34) (3-(2-aminophenyl)-1,4-dioxaspiro[4,4]nonan-2-yl)methyl sulfamate;
- (35) (3-(2-aminophenyl)-1,4-dioxaspiro[4,5]decan-2-yl)methyl sulfamate;
- (36) (5-(2-aminophenyl)-2-phenyl-1,3-dioxolan-4-yl)methyl sulfamate;
- 15 (37) (5-(2-nitrophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methyl sulfamate;
- (38) (5-(2-nitrophenyl)-2-methyl-1,3-dioxolan-4-yl) methyl sulfamate;
- (39) (5-(2-nitrophenyl)-2,2-diethyl-1,3-dioxolan-4-yl)methyl sulfamate;
- (40) (3-(2-nitrophenyl)-1,4-dioxaspiro[4,4]nonan-2-yl)methyl sulfamate;
- (41) (3-(2-nitrophenyl)-1,4-dioxaspiro[4,5]decan-2-yl)methyl sulfamate;
- 20 (42) (5-(2-nitrophenyl)-2-phenyl-1,3-dioxolan-4-yl)methyl sulfamate;
- (43) (5-(2-nitrophenyl)-2-oxo-1,3-dioxolan-4-yl)methyl sulfamate;
- (44) (5-(2-methylphenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methyl sulfamate;
- (45) (5-(2-methylphenyl)-2-methyl-1,3-dioxolan-4-yl)methyl sulfamate;
- (46) (5-(2-methylphenyl)-2,2-diethyl-1,3-dioxolan-4-yl)methyl sulfamate;
- 25 (47) (3-(2-methylphenyl)-1,4-dioxaspiro[4,4]nonan-2-yl)methyl sulfamate;
- (48) (3-(2-methylphenyl)-1,4-dioxaspiro[4,5]decan-2-yl)methyl sulfamate;
- (49) (5-(2-methylphenyl)-2-phenyl-1,3-dioxolan-4-yl)methyl sulfamate;
- (50) (5-(2-methylaminophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methyl methyl sulfamate;

sulfamate;

- (51) (5-phenyl-2,2-dimethyl-1,3-dioxolan-4-yl)methyl sulfamate;
- (52) (5-phenyl-2,2-diethyl-1,3-dioxolan-4-yl)methyl sulfamate;
- (53) (3-phenyl-1,4-dioxaspiro[4,4]nonan-2-yl)methyl sulfamate;
- 5 (54) (3-phenyl-1,4-dioxaspiro[4,5]decan-2-yl)methyl sulfamate;
- (55) 2-(5-benzyl-2,2-dimethyl-1,3-dioxolan-4-yl)ethyl sulfamate;
- (56) 2-(5-benzyl-2,2-diethyl-1,3-dioxolan-4-yl)ethyl sulfamate;
- (57) 2-(5-benzyl-1,4-dioxaspiro[4,4]nonan-2-yl)ethyl sulfamate;
- (58) 2-(3-benzyl-1,4-dioxaspiro[4,5]decan-2-yl)ethyl sulfamate;
- 10 (59) 2-(5-benzyl-2,2-dimethyl-1,3-dioxolan-4-yl)methyl sulfamate;
- (60) 2-(5-benzyl-2,2-diethyl-1,3-dioxolan-4-yl)methyl sulfamate;
- (61) 2-(3-benzyl-1,4-dioxaspiro[4,4]nonan-2-yl)methyl sulfamate;
- (62) 2-(3-benzyl-1,4-dioxaspiro[4,5]decan-2-yl)methyl sulfamate;
- (63) (5-phenyl-2,2-dimethyl-1,3-dioxolan-4-yl)ethyl sulfamate;
- 15 (64) (5-phenyl-2,2-diethyl-1,3-dioxolan-4-yl)ethyl sulfamate;
- (65) (3-phenyl-1,4-dioxaspiro[4,4]nonan-2-yl)ethyl sulfamate;
- (66) (3-phenyl-1,4-dioxaspiro[4,5]decan-2-yl)ethyl sulfamate;
- (67) 2-(5-(2-chlorobenzyl)-2,2-dimethyl-1,3-dioxolan-4-yl)ethyl sulfamate;
- (68) 2-(5-(2-chlorobenzyl)-2,2-diethyl-1,3-dioxolan-4-yl)ethyl sulfamate;
- 20 (69) 2-(3-(2-chlorobenzyl)-1,4-dioxaspiro[4,4]nonan-2-yl)ethyl sulfamate;
- (70) 2-(3-(2-chlorobenzyl)-1,4-dioxaspiro[4,5]decan-2-yl)ethyl sulfamate;
- (71) 2-(5-(2-chlorobenzyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methyl sulfamate;
- (72) 2-(5-(2-chlorobenzyl)-2,2-diethyl-1,3-dioxolan-4-yl)methyl sulfamate;
- (73) 2-(3-(2-chlorobenzyl)-1,4-dioxaspiro[4,4]nonan-2-yl)methyl sulfamate;
- 25 (74) 2-(3-(2-chlorobenzyl)-1,4-dioxaspiro[4,5]decan-2-yl)methyl sulfamate;
- (75) (5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)ethyl sulfamate;
- (76) (5-(2-chlorophenyl)-2,2-diethyl-1,3-dioxolan-4-yl)ethyl sulfamate;

(77) (3-(2-chlorophenyl)-1,4-dioxaspiro[4,4]nonan-2-yl)ethyl sulfamate; and

(78) (3-(2-chlorophenyl)-1,4-dioxaspiro[4,5]decan-2-yl)ethyl sulfamate.

7. The compound or pharmaceutically acceptable salt thereof according to claim 6,

5 wherein the compound is selected from the group consisting of:

(1) (5-(2-chlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methylsulfamate;

(2) (5-(2-chlorophenyl)-2-methyl-1,3-dioxolan-4-yl) methyl sulfamate;

(3) (5-(2-chlorophenyl)-2,2-diethyl-1,3-dioxolan-4-yl)methyl sulfamate;

(5) (3-(2-chlorophenyl)-1,4-dioxaspiro[4,5]decan-2-yl)methyl sulfamate;

10 (25) (5-(2,6-dichlorophenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methylsulfamate;

(43) (5-(2-nitrophenyl)-2-oxo-1,3-dioxolan-4-yl)methyl sulfamate;

(44) (5-(2-methylphenyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methyl sulfamate;

(54) (3-phenyl-1,4-dioxaspiro[4,5]decan-2-yl)methyl sulfamate; and

(64) (5-phenyl-2,2-diethyl-1,3-dioxolan-4-yl)ethyl sulfamate.

15

8. The compound or pharmaceutically acceptable salt thereof according to anyone of claims 1-7, wherein the compound is in the form of racemate, enantiomer, diastereomer, a mixture of enantiomer or a mixture of diastereomer.

20

9. The compound or pharmaceutically acceptable salt thereof according to anyone of claims 1-7, wherein the pharmaceutically acceptable salt is produced by reacting the compound with an inorganic acid, an organic acid, an amino acid, sulfonic acid, an alkali metal or ammonium ion.

25

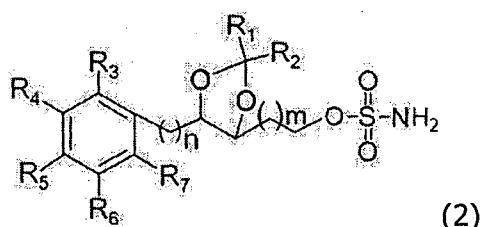
10. A method for muscle relaxation comprising administering pharmaceutically effective amount of the compound or pharmaceutically acceptable salt thereof according to anyone of claims 1-6 to a subject in need thereof.

11. A method for preventing or treating a disease associated with muscle spasm comprising administering pharmaceutically effective amount of the compound or pharmaceutically acceptable salt thereof according to anyone of claims 1-7 to a subject in need thereof.

5

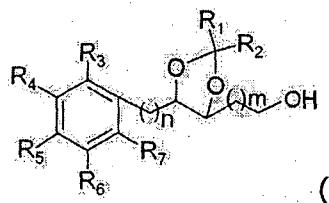
12. The method according to claim 11, wherein the disease associated with muscle spasm is selected from the group consisting of herniation of intervertebral disk, vascular disorders of the spinal cord, spastic spinal paralysis, cervical spondylosis, cerebral palsy, sequelae of spinal cord injuries, sequelae of head injuries and spinocerebellar degeneration.

10

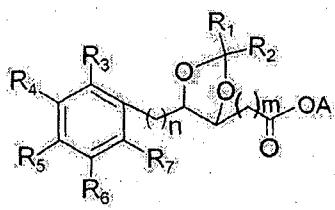

13. A composition for preventing or treating a disease associated with muscle spasm, comprising the compound or pharmaceutically acceptable salt thereof according to anyone of claims 1-7 as an active ingredient.

15

14. The composition according to claim 13, wherein the disease associated with muscle spasm is selected from the group consisting of herniation of intervertebral disk, vascular disorders of the spinal cord, spastic spinal paralysis, cervical spondylosis, cerebral palsy, sequelae of spinal cord injuries, sequelae of head injuries and spinocerebellar degeneration.

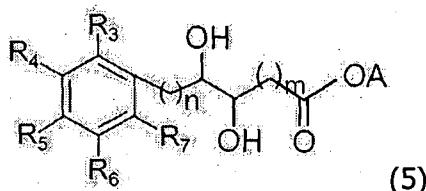

20

15. A method for preparing a compound represented by the following formula 2:

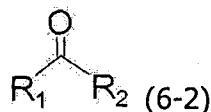
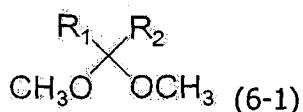

comprising:

25 (a) performing sulfamation of a compound represented by the following formula 3:

wherein R₁ to R₇, n and m are same as defined in claim 1.


16. The method according to claim 15, wherein the method further comprises
5 reacting a compound represented by the following formula 4:

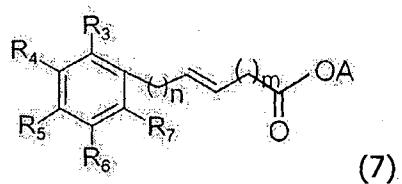
with a reducing agent to form the compound of formula 3 prior to the step (a),
wherein R₁ to R₇, n and m are same as defined in claim 1, and, wherein A is C₁-C₃
alkoxy C₁-C₃ alkyl.



10

17. The method according to claim 16, wherein the method further comprises
reacting a compound represented by the following formula 5:

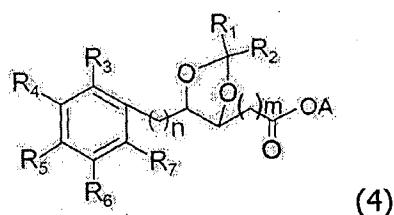
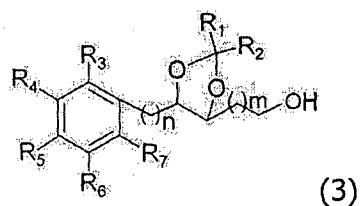
15

with an acid and a compound represented by the following formula 6-1 or formula
6-2 to form the compound of formula 4:



wherein R₁ to R₇, n, m and A are same as defined in claim 16.

20



18. The method according to claim 17, wherein the method further comprises
performing dihydroxylation of a compound represented by the following formula 7:

300

with an oxidant to form the compound of formula 5, wherein R₃ to R₇, n, m and A are same as defined in claim 16.

5 19. A compound represented by the following formula 3 or 4:

wherein R₁ to R₇, n, m and A are same as defined in claim 16.

10

INTERNATIONAL SEARCH REPORT

International application No.
PCT/KR2013/005279

A. CLASSIFICATION OF SUBJECT MATTER

C07D 317/18(2006.01)i, A61K 31/357(2006.01)i, A61P 21/00(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

C07D 317/18; A61K 31/335; A61K 31/415; C07C 143/68; C07D 317/00; A61K 31/255; A61K 31/357; A61P 21/00

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility modelsElectronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS(KIPO internal) & Keywords: phenylalkyl sulfamate , muscle relaxant

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 04591601 A (MARYANOFF, B. E. et al.) 27 May 1986 See abstract and claim 1.	1-9, 13-19
A	US 05025031 A (LO, Y. S. et al.) 18 June 1991 See claim 1.	1-9, 13-19
A	US 04792569 A (MARYANOFF, B. E. et al.) 20 December 1988 See formula (I).	1-9, 13-19

 Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"A" document defining the general state of the art which is not considered to be of particular relevance	"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"E" earlier application or patent but published on or after the international filing date	"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of citation or other special reason (as specified)	"&" document member of the same patent family
"O" document referring to an oral disclosure, use, exhibition or other means	
"P" document published prior to the international filing date but later than the priority date claimed	

Date of the actual completion of the international search 29 October 2013 (29.10.2013)	Date of mailing of the international search report 30 October 2013 (30.10.2013)
Name and mailing address of the ISA/KR Korean Intellectual Property Office 189 Cheongsa-ro, Seo-gu, Daejeon Metropolitan City, 302-701, Republic of Korea Facsimile No. +82-42-472-7140	Authorized officer JEONG, Hyun Ah Telephone No. +82-42-481-8739

INTERNATIONAL SEARCH REPORTInternational application No.
PCT/KR2013/005279**Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)**

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: 10-12
because they relate to subject matter not required to be searched by this Authority, namely:
Claims 10-12 pertain to methods for diagnosing human diseases or treating the human body by therapy thus relate to a subject matter which this International Searching Authority is not required to search under the PCT Article 17(2)(a)(i) and Rule 39.1(iv).
2. Claims Nos.:
because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3. Claims Nos.:
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

- The additional search fees were accompanied by the applicant's protest and, where applicable, the payment of a protest fee.
- The additional search fees were accompanied by the applicant's protest but the applicable protest fee was not paid within the time limit specified in the invitation.
- No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.

PCT/KR2013/005279

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
US 04591601 A	27/05/1986	EP 0198686 A3 JP 61-263973A	21/10/1987 21/11/1986
US 05025031 A	18/06/1991	None	
US 04792569 A	20/12/1988	None	