

1 568 984

(21) Application No. 44638/76 (22) Filed 27 Oct. 1976 (19)
 (31) Convention Application No. 50/129 583 (32) Filed 28 Oct. 1975 in
 (33) Japan (JP)
 (44) Complete Specification published 11 June 1980
 (51) INT. CL.³ G04C 23/12 G04G 13/02
 (52) Index at acceptance

G3T 605 608 609 610 611 S1

(54) A MULTI-ALARM ELECTRONIC TIMEPIECE

(71) We, KABUSHIKI KAISHA DAINI SEIKOSHA, a Japanese Company of 31-1 6-chome, Kameido, Koto-ku, Tokyo, Japan, do hereby declare the invention for which we pray that a patent may be granted to us, and the method by which it is to be performed, to be particularly described in and by the following statement:—

This invention relates to multi-alarm electronic timepieces, e.g. a watch.

In conventional multi-alarm electronic watches an alarm is produced when an actual time of day indication coincides with each of a number of set alarm times. Such watches are convenient to use when an alarm is required at the same specified time each day, but when an alarm is required only once, they have the disadvantage that the alarm time must be cleared by means of a manually operable switch.

According to the present invention there is provided a multi-alarm electronic timepiece comprising: timekeeping means for producing an actual time of day indication; a plurality of memory circuits each arranged to memorise a respective alarm time and each having reset means; and a coincidence circuit for producing a coincidence signal when each alarm time coincides with the actual time of day indication, the output of the coincidence circuit being connected to the reset means of at least one of the memory circuit to reset the same when the alarm time memorised therein coincides with the time indication.

The reset means of each memory circuit may be connected to switch means to permit the resetting thereof.

The timepiece may include gate means for sequentially passing the contents of the memory circuits to the coincidence circuit for comparison therein with the actual time of day indication. The gate means may comprise a logic switch circuit connected to be controlled by a sampling signal.

The timepiece in the preferred embodiment, includes an AND gate connected to receive coincidence signal and to reset at least one of the memory circuits when the alarm time memorised therein coincides with the actual time of day indication.

The invention is illustrated, merely by way of example, in the accompanying drawings, in which:—

Figure 1 is a block diagram of an embodiment of a multi-alarm electronic timepiece according to the present invention; and

Figure 2 illustrates to the wave-forms of various signals occurring in the timepiece of Figure 1.

Referring to the drawings, there is illustrated an embodiment of a multi-alarm electronic timepiece, e.g. a watch, according to the present invention. The timepiece has a time-keeping circuit (not shown) a seconds counter 6, an hours and minutes counter 1, a repeat alarm memory 2, a repeat alarm setting memory 20, a single alarm memory 3, a single alarm setting memory 21, a detecting coincidence circuit 12, a switch circuit 4, a coincidence circuit 5 and an alarm driver 23.

The above timepiece operates as follows. An oscillating output signal produced by a quartz oscillator (not shown) forming part of the timekeeping circuit is frequency divided by a frequency divider (not shown) to produce a standard time signal *a* which has a frequency of 1Hz and which is fed to the counter 6. The output signal from the counter 6 is a pulse signal *b* having a frequency of 1/60Hz. The pulse signal *d* is shaped into a single pulse signal *c* having a 500 milli-second pulse width by a latch circuit 7 and the pulse signal *c* is fed to the counter 1. The memory 2 and the memory 3 may consist of counters similar to the counter 1 so that any desired alarm time can be set therein by means of clock signals applied to terminals IN-1 and IN2. The clock signals applied to the terminals IN-1 and IN-2 are also fed to set terminals of the memory 20 and the memory 21 respectively. Therefore, the memories 20, 21 memorise the presence of an alarm time set in the memories 2, 3 respectively.

A signal *e* is a sampling pulse signal having a frequency of 2Hz and produced by the frequency divider. The signal *e* alternately passes the contents of the memory 2, 3 to the switch circuit 4. The switch circuit 4 consists

55

60

65

70

75

80

85

90

95

100

of NAND circuits or transmission gates and produces output signal S which are fed to the coincidence circuit 5, together with the output signal of the counter 1. The coincidence circuit 5 consists of exclusive OR circuits, NOR circuits and a NAND circuit. The output of the coincidence circuit 5 is at a relatively low level only when coincidence between the contents of the counter 1 and the content 10 occurs, and at other times is at a relatively high level.

For example, if an alarm time set in the memory 3 coincides with the contents of the counter 1 at times T_0 , the output of the coincidence circuit 5 changes from relatively high level to relatively low level and produces a pulse coincidence signal f . The signal c is inverted by an inverter 10 whose output is a signal d . The signals d and f are fed to a NOR circuit 11 whose output is a single pulse signal 15 g : The pulse signal g is transmitted to the alarm driver 23 to cause the latter to produce an alarm which may be either audible or visible. The pulse signal g is also fed to one 20 input of the detecting coincidence circuit 12 for detecting when the coincidence signal f is produced by the coincidence circuit 5. The other input of the detecting coincidence circuit 12 which is an AND circuit, is the signal e inverted by an inverter 40. The detecting coincidence circuit 12 produces a single pulse signal h only when coincidence 25 between the contents of the counter 1 and the memory 3 occurs. On the other hand, when 30 coincidence between the contents of the memory 2 and the counter 1 occurs, the detecting coincidence circuit 12 does not produce any output signal. The signal h resets the memory 21. Since the output of a NOR circuit 30 is connected to a reset terminal of the memory 3, the contents of the memory 3 are cleared to 0 hours 00 minutes. On the other hand, the output of a NOR circuit 31 is maintained at a relatively low level being 35 inverted from a relatively high level, therefore, the output of a reset-detecting circuit 13, forming part of the switch circuit 4, is always at a relatively high level when the contents of the counter 1 and the contents of the memory 40 3 coincide. The output of the circuit 13 is at a relatively low level, being inverted by a NAND circuit 14, so that the signal f from the coincidence circuit 5, comes to a relatively high level and thereafter does not cause the 45 alarm to be produced. If the counter 1 comes to 0 hours 00 minutes, no alarm is produced because the signal is not produced by the NOR circuit 11. However, to set a new 50 desired alarm time in the memory 3 a clock signal is applied to the input terminal IN-2 of the memory 3. The memory 21 maintains a condition such that an alarm is produced when the new alarm time is reached. To clear 55 the memory 2 a single pulse signal is applied 60

reset terminal R-1 of the memory 20 by means of a manually operable switch (not shown). Similarly, the memory 2 can be reset by applying a single pulse signal to a reset terminal R-2 by means of a manually operable switch (not shown).

The time piece described above has the advantage that although there are a number of alarm channels only one coincidence circuit is used and thus the circuitry is simplified. By using one AND circuit for detecting synchronisation between the signal e and signal g it can be determined relatively easily whether the coincidence circuit 5 has detected coincidence between the contents of the counter 1 and the memory 2 or the memory 3.

We direct attention to our Application Nos. 42173/76 (Serial No. 1523948); 42343/76 (Serial No. 1524086) and 44635/76 (Serial No. 1568983).

WHAT WE CLAIM IS:—

1. A multi-alarm electronic timepiece comprising: timekeeping means for producing an actual time of day indication; a plurality of memory circuits each arranged to memorise a respective alarm time and each having reset means; and a coincidence circuit for producing a coincidence signal when each alarm time coincides with the actual time of day indication, the output of the coincidence circuit being connected to the reset means of at least one of the memory circuits to reset the same when the alarm time memorised therein coincides with the time indication.
2. A timepiece as claimed in claim 1 in which the reset means of each memory circuit is connected to switch means to permit the resetting thereof.
3. A timepiece as claimed in claim 1 or 2 including gate means for sequentially passing the contents of the memory circuits to the coincidence circuit for comparison therein with the actual time of day indication.
4. A timepiece as claimed in claim 3 in which the gate means comprises a logic switch circuit connected to be controlled by a sampling signal.
5. A timepiece as claimed in claim 4 including an AND gate connected to receive coincidence signal and to reset at least one of the memory circuits when the alarm time memorised therein coincides with the actual time of day indication.
6. A multi-alarm electronic timepiece as claimed in claim 1 substantially as herein described with reference to and as shown in the accompanying drawings.

J. MILLER & CO.,
Chartered Patent Agents,
Agents for the Applicants.
Lincoln House,
296/302 High Holborn
London WC1V 7JH.

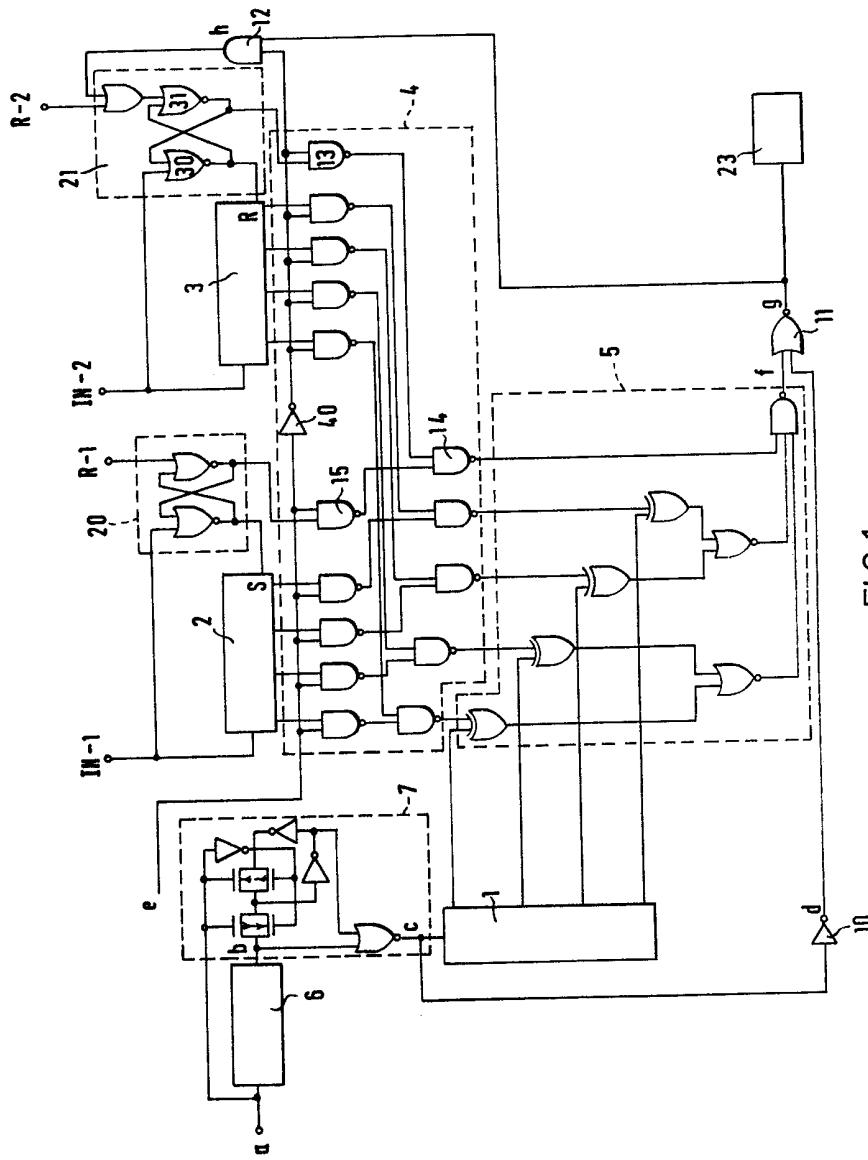


FIG.1.

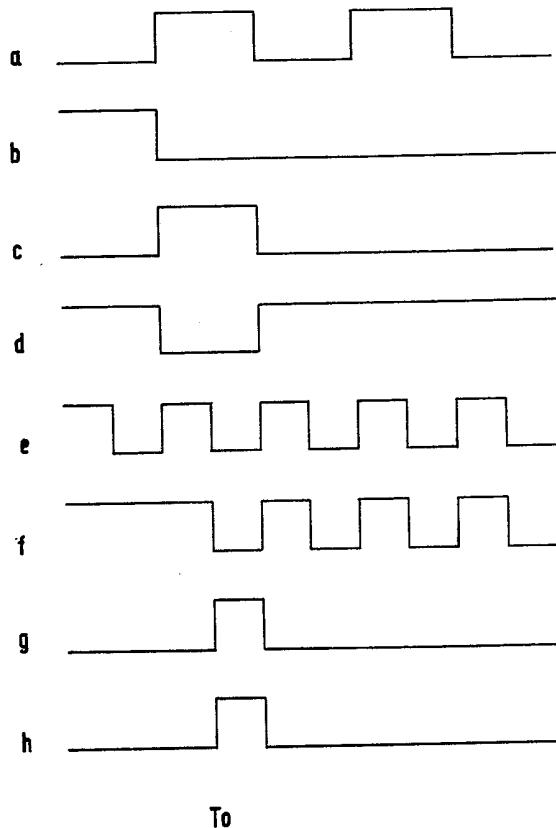


FIG. 2.