
(12) United States Patent
Buxbaum et al.

US009 189529B2

US 9,189,529 B2
Nov. 17, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

(*)

(21)

(22)

(65)

(60)

(51)

(52)

(58)

QUEUE MONITORING AND VISUALIZATION

Applicant: Ab Initio Technology LLC, Lexington,
MA (US)

Inventors: Mark Buxbaum, Acton, MA (US); Tim
Wakeling, Andover, MA (US)

Assignee: Ab Initio Technology LLC, Lexington,
MA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 136 days.

Appl. No.: 13/834,491

Filed: Mar 15, 2013

Prior Publication Data

US 2014/02294.80 A1 Aug. 14, 2014

Related U.S. Application Data
Provisional application No. 61/764,794, filed on Feb.
14, 2013.

Int. C.
G6F I7/00 (2006.01)
G06F 7/30 (2006.01)
U.S. C.
CPC G06F 17/30563 (2013.01)
Field of Classification Search
CPC. G06F 17/30247; G06F 17/3028: G06F 3/14:

G06F 9/546; G06F 15/16: G06F 17/30471;
G06F 2209/548; G06F 17/30; G06F 17/30241:

GO6F 21 F6O2
See application file for complete search history.

DEVELOPMENT
ENVIRONMENT

(56) References Cited

U.S. PATENT DOCUMENTS

5,826,104 A 10, 1998 Rifkin
6,772,202 B2 8/2004 Wright
7.467,383 B2 12/2008 Inchingolo et al.

2003/O120681 A1 6/2003 Baclawski
2011/0055388 A1
2012fO2.75307 A1 11/2012
2014/O105218 A1* 4, 2014

OTHER PUBLICATIONS

3/2011 Yumerefendi et al.
Godbole et al.
Anand et al. 370,412

International Search Report and Written Opinion, in related PCT
application No. PCT/US14/15771, mailed Jun. 27, 2014.

* cited by examiner

Primary Examiner — Truong Vo
(74) Attorney, Agent, or Firm — Fish & Richardson P.C.

(57) ABSTRACT

A method includes receiving information provided by a data
processing application during execution of the data process
ing application. The information is indicative of at least one of
a source of data for the data processing application and a
destination of data from the data processing application. The
method includes dynamically analyzing the information dur
ing execution of the data processing application to identify a
queue in communication with the data processing applica
tion; and dynamically analyzing the information during
execution of the data processing application to identify a
relationship between the data processing application and the
queue, including at least one of identifying that the queue is
the source of data for the data processing application and
identifying that the queue is the destination of data from the
data processing application.

61 Claims, 10 Drawing Sheets

S.

WSUAZAION C
MODUE

150

PRE-PROCESS,
s ODUE

A

EXECUION C)
MODULE REPOSIORY

112
110

in 6 EXECUION ENVIRONMENT 04 A

U.S. Patent Nov. 17, 2015 Sheet 2 of 10 US 9,189,529 B2

204

A- re. (()()
(()()(3)(OHSuite Subscriber 1

FIG. 2

302

Directory: loueue A 300

- (0.00000
D

|SubSCriber. 1231

304

Application 308

mo
Application 310 312

306

FIG. 3

US 9,189,529 B2

-

807

| 3men()

U.S. Patent

US 9,189,529 B2

009

U.S. Patent

US 9,189,529 B2 U.S. Patent

f

US 9,189,529 B2 Sheet 6 of 10 Nov. 17, 2015 U.S. Patent

: O

US 9,189,529 B2 U.S. Patent

US 9,189,529 B2 Sheet 8 of 10 Nov. 17, 2015 U.S. Patent

6

US 9,189,529 B2 U.S. Patent

U.S. Patent Nov. 17, 2015 Sheet 10 of 10 US 9,189,529 B2

Receive information provided by a data
processing application during execution of the

data processing application

Dynamically analyze information to identify a
queue in communication with the data

processing application

Dynamically analyze the information to identify
a relationship between the data processing

application and the Queue

FIG. 11

Receive information indicative of a relationship 60
between a data processing application and a

Cueue

Generate a graphical representation of the 62
data processing application, the queue, and

the relationship

Display the graphical representation on a user
interface

FIG. 12

64

US 9,189,529 B2
1.

QUEUE MONITORING AND VISUALIZATION

CLAIM OF PRIORITY

This application claims priority under 35 USC S 119(e) to 5
U.S. Patent Application Ser. No. 61/764,794, filed on Feb. 14,
2013, the entire contents of which are hereby incorporated by
reference.

BACKGROUND 10

This description relates to queue monitoring and visualiza
tion, for instance in a data processing environment.

Enterprises use complex data processing systems, such as
data warehousing, customer relationship management, and 15
data mining, to manage data. In many data processing sys
tems, data are pulled from many different data sources, such
as database files, operational systems, flat files, the Internet,
etc., into a central repository. Often, data are transformed
before being loaded in the data system. Transformation may 20
include cleansing, integration, and extraction. To keep track
of data, its sources, and the transformations that have hap
pened to the data stored in a data system, metadata can be
used. Metadata (sometimes called “data about data') are data
that describe other data's attributes, format, origins, histories, 25
inter-relationships, etc. Metadata management can play a
central role in complex data processing systems.

Sometimes a database user may want to investigate how
certain data are derived from different data sources. For
example, a database user may want to know how a dataset or 30
data object was generated or from which source a dataset or
data object was imported. Tracing a dataset back to sources
from which it is derived is called data lineage tracing (or
"upstream data lineage tracing'). Sometimes a database user
may want to investigate how certain datasets have been used 35
(called "downstream data lineage tracing or “impact analy
sis'), for example, which application has read a given dataset.
A database user may also be interested in knowing how a
dataset is related to other datasets. For example, a user may
want to know if a dataset is modified, what tables will be 40
affected, etc.

SUMMARY

In a general aspect, a computer-implemented method 45
includes receiving information provided by a data processing
application during execution of the data processing applica
tion. The information is indicative of at least one of a source
of data for the data processing application and a destination of
data from the data processing application. The method 50
includes dynamically analyzing the information during
execution of the data processing application to identify a
queue in communication with the data processing applica
tion. The method includes dynamically analyzing the infor
mation during execution of the data processing application to 55
identify a relationship between the data processing applica
tion and the queue, including at least one of identifying that
the queue is the source of data for the data processing appli
cation and identifying that the queue is the destination of data
from the data processing application. 60

Embodiments may include one or more of the following.
The information indicative of at least one of the source of

data and the destination of data includes an identifier of the
queue.
The method includes dynamically determining a status of 65

the queue during execution of the data processing application.
In some cases, the method includes providing a notification

2
based on the status of the queue. In some cases, the status
includes at least one of number of records in the queue and an
elapsed time associated with the queue.
The method includes determining a status of the data pro

cessing application.
The method includes receiving an input identifying the

queue. In some cases, the method includes identifying the
data processing application based on the processing and
based on the input identifying the queue.
The one or more data processing applications include com

putation graphs.
The method includes generating a visual representation of

the data processing application, the queue, and the relation
ships between the data processing application and the queue.
In some cases, the method includes displaying the visual
representation on a user interface. In some cases, the visual
representation includes a representation of a status of the
queue.

In a general aspect, Software stored on a computer-readable
medium includes instructions for causing a computer system
to receive information provided by a data processing appli
cation during execution of the data processing application.
The information is indicative of at least one of a source of data
for the data processing application and a destination of data
from the data processing application. The Software includes
instructions for causing the computer system to dynamically
analyze the information during execution of the data process
ing application to identify a queue in communication with the
data processing application; and dynamically analyze the
information during execution of the data processing applica
tion to identify a relationship between the data processing
application and the queue, including at least one of identify
ing that the queue is the source of data for the data processing
application and identifying that the queue is the destination of
data from the data processing application.

In a general aspect, a computing system includes an input
port configured to receive information provided by a data
processing application during execution of the data process
ing application. The information is indicative of at least one of
a source of data for the data processing application and a
destination of data from the data processing application. The
system includes at least one processor configured to dynami
cally analyze the information during execution of the data
processing application to identify a queue in communication
with the data processing application; and dynamically ana
lyze the information during execution of the data processing
application to identify a relationship between the data pro
cessing application and the queue, including at least one of
identifying that the queue is the Source of data for the data
processing application and identifying that the queue is the
destination of data from the data processing application.

In a general aspect, a system includes means for receiving
information provided by a data processing application during
execution of the data processing application. The information
is indicative of at least one of a source of data for the data
processing application and a destination of data from the data
processing application. The system includes means for
dynamically analyzing the information during execution of
the data processing application to identify a queue in com
munication with the data processing application; and means
for dynamically analyzing the information during execution
of the data processing application to identify a relationship
between the data processing application and the queue,
including at least one of identifying that the queue is the
Source of data for the data processing application and identi
fying that the queue is the destination of data from the data
processing application.

US 9,189,529 B2
3

In a general aspect, a computer-implemented method
includes receiving, from a data processing application during
execution of the data processing application, information
indicative of a relationship between the data processing appli
cation and a queue. The relationship includes at least one of
the queue being a source of data for the data processing
application and the queue being a destination of data from the
data processing application. The method includes generating
a graphical representation of the data processing application,
the queue, and the relationship between the data processing
application and the queue; and displaying the graphical rep
resentation on a user interface during execution of the data
processing application.

Embodiments may include one or more of the following.
The graphical representation includes a first node to rep

resent the data processing application, a second node to rep
resent the queue, and a connection between the data process
ing application and the queue to represent the relationship. In
Some cases, the method includes displaying information
about the data processing application responsive to user
selection of the first node. In some cases, the method includes
displaying information about the queue responsive to user
selection of the second node.
The method includes dynamically determining a dynamic

status of the queue during execution of the data processing
system. In some cases, the graphical representation includes
a representation of the status of the queue. In some cases, the
method includes providing a notification based on the status
of the queue. In some cases, the status of the queue includes
at least one of a number of records in the first queue and an
elapsed time associated with the first queue.
The method includes dynamically determining a status of

the data processing application during execution of the data
processing application. In some cases, the graphical repre
sentation includes a representation of the status of the data
processing application.

The method includes receiving, from a plurality of data
processing applications, information indicative of a relation
ship between each data processing application and at least
one corresponding. Generating a graphical representation
includes generating a graphical representation of the plurality
of data processing applications, the plurality of queues, and
the relationships.

Receiving information includes receiving information pro
vided by the data processing application during execution of
the data processing application. The information is indicative
of at least one of a source of data for the data processing
application and a destination of data from the data processing
application. Receiving information includes dynamically
analyzing the information during execution of the data pro
cessing application to identify the queue and the relationship.

In a general aspect, Software stored on a computer-readable
medium includes instructions for causing a computing sys
tem to receive, from a data processing application during
execution of the data processing application, information
indicative of a relationship between the data processing appli
cation and a queue. The relationship includes at least one of
the queue being a source of data for the data processing
application and the queue being a destination of data from the
data processing application. The Software includes instruc
tions for causing the computing system to generate a graphi
cal representation of the data processing application, the
queue, and the relationship between the data processing
application and the queue; and display the graphical repre
sentation on a user interface during execution of the data
processing application.

5

10

15

25

30

35

40

45

50

55

60

65

4
In a general aspect, a computing system includes an input

port configured to receive, from a data processing application
during execution of the data processing application, informa
tion indicative of a relationship between the data processing
application and a queue. The relationship includes at least one
of the queue being a source of data for the data processing
application and the queue being a destination of data from the
data processing application. The computing system includes
a processor configured to generate a graphical representation
of the data processing application, the queue, and the rela
tionship between the data processing application and the
queue; and display the graphical representation on a user
interface during execution of the data processing application.

In a general aspect, a computing system includes means for
receiving, from a data processing application during execu
tion of the data processing application, information indicative
of a relationship between the data processing application and
a queue. The relationship includes at least one of the queue
being a source of data for the data processing application and
the queue being a destination of data from the data processing
application. The computing system includes means for gen
erating a graphical representation of the data processing
application, the queue, and the relationship between the data
processing application and the queue; and means for display
ing the graphical representation on a user interface during
execution of the data processing application.

In a general aspect, a computer-implemented method
includes receiving information provided by a data processing
application during execution of the data processing applica
tion. The information is indicative of at least one of a source
of data for the data processing application and a destination of
data from the data processing application. The method
includes dynamically analyzing the information during
execution of the data processing application to identify a
queue in communication with to the data processing applica
tion and hosted on a third computer system. The method
includes dynamically analyzing the information during
execution of the data processing application to identify a
relationship between the data processing application and the
queue, including at least one of identifying that the queue is
the source of data for the data processing application and
identifying that the queue is the destination of data from the
data processing application. The method includes generating
a graphical representation of the data processing application,
the queue, and the relationship between the data processing
application and the queue; and displaying the graphical rep
resentation on a user interface during execution of the data
processing application.

Aspects can have one or more of the following advantages.
The approach to queue monitoring and visualization
described herein presents a visual representation of data pro
cessing occurring on one or more disparate computing sys
tems. The visual representation of relationships between data
processing applications and queues can be easy to understand
and manipulate. If an error occurs during execution of a job,
the status of the data processing applications and queues
involved in processing the job can be visualized so that the
user can understand the nature of the error.

DESCRIPTION OF DRAWINGS

FIG. 1 is a block diagram of a computing system.
FIG. 2 is a diagram of relationships between data process

ing applications and a queue.
FIG. 3 is a diagram of a queue.
FIG. 4 is a block diagram of a visualization system.

US 9,189,529 B2
5

FIGS. 5-10 are example visual representations of a data
processing environment.

FIGS. 11 and 12 are flowcharts.

DESCRIPTION

In a data processing environment, data processing applica
tions perform various processes on input data, e.g., to analyze
or manipulate the data. Data processing applications in a data
processing environment may read input data from a queue
and/or write output data to a queue, which can act as a buffer
to control the flow of data between data processing applica
tions. Relationships between data processing applications
and queues can be automatically and dynamically detected in
real time, i.e., during execution of the data processing appli
cations. A visual representation can be generated that depicts
the data processing applications, the queues, and their rela
tionships in real time, i.e., during execution of the data pro
cessing application. Real time status information indicative
of the performance of the data processing applications and/or
the queues can also be dynamically detected and displayed in
the visual representation.

FIG. 1 shows an example data processing system 100 in
which the monitoring and visualization techniques described
hereincan be used. The system 100 includes a data source 102
that may include one or more sources of data Such as storage
devices or connections to online data streams, each of which
may store or provide data in any of a variety of formats (e.g.,
database tables, spreadsheet files, flat text files, or a native
format used by a mainframe). An execution environment 104
includes a pre-processing module 106 and an execution mod
ule 112. The execution environment 104 may be hosted on a
computer system 130, for example, on one or more general
purpose computers under the control of a suitable operating
system, such as a version of the UNIX operating system. For
example, the execution environment 104 can include a mul
tiple-node parallel computing environment including a con
figuration of computer systems using multiple central pro
cessing units (CPUs) or processor cores, either local (e.g.,
multiprocessor systems such as Symmetric multi-processing
(SMP) computers), or locally distributed (e.g., multiple pro
cessors coupled as clusters or massively parallel processing
(MPP) systems, or remote, or remotely distributed (e.g., mul
tiple processors coupled via a local area network (LAN)
and/or wide-area network (WAN)), or any combination
thereof.

The pre-processing module 106 reads data from the data
source 102. Storage devices providing the data source 102
may be local to the execution environment 104, for example,
being stored on a storage medium connected to a computer
hosting the execution environment 104 (e.g., hard drive 108),
or may be remote to the execution environment 104, for
example, being hosted on a remote system (e.g., mainframe
110) in communication with a computer hosting the execu
tion environment 104, over a remote connection (e.g., pro
vided by a cloud computing infrastructure).
The execution module 112 processes the data read from the

data source by the pre-processing module 106. The execution
module 112 includes one or more data processing applica
tions to execute jobs, i.e., to perform particular processes on
the data. Metadata associated with the data processing appli
cations of the execution module 112 can be stored in a data
repository 152. Such as a database, a data table, or another
type of data structure. The resulting output data 114 from the
execution module 112 may be stored back in the data source
102 or in a data storage system 116 accessible to the execution
environment 104, or otherwise used.

10

15

25

30

35

40

45

50

55

60

65

6
The data processing applications of the execution module

112 may read data from and/or write data to one or more
queues 154. Queues 154 can be considered data structures
that provide a mechanism to manage the exchange of data
between data processing applications. Metadata associated
with a data processing application (e.g., Stored in the reposi
tory 152) identifies the queue(s) from which the data process
ing application reads data (also referred to as “subscribing)
and to which the data processing application writes data (also
referred to as “publishing'). In some examples, metadata
associated with a queue 154 may identify the data processing
applications publishing and/or subscribing to that queue. In
the example shown, the queues 154 are hosted on a computer
system 132 different from the computer system 130 hosting
the execution environment 104. In some examples, the queues
154 may be hosted on the same computer system as the
execution environment 104.
The data storage system 116 may be accessible to a devel

opment environment 118 in which a developer 120 is able to
configure the data processing applications and/or the queues.
The development environment 118 is, in some implementa
tions, a system for developing applications as dataflow graphs
that include Vertices (representing data processing compo
nents or datasets) connected by directed links (representing
flows of work elements, i.e., data) between the vertices. For
example, Such an environment is described in more detail in
U.S. Publication No. 2007/0011668, titled “Managing
Parameters for Graph-Based Applications, incorporated
herein by reference. A system for executing Such graph-based
computations is described in U.S. Pat. No. 5,966,072, titled
EXECUTING COMPUTATIONS EXPRESSED AS
GRAPHS.” incorporated herein by reference. Dataflow
graphs made in accordance with this system provide methods
for getting information into and out of individual processes
represented by graph components, for moving information
between the processes, and for defining a running order for
the processes. This system includes algorithms that choose
interprocess communication methods from any available
methods (for example, communication paths according to the
links of the graph can use TCP/IP or UNIX domain sockets, or
use shared memory to pass data between the processes).
A visualization module 150 generates a visual representa

tion of the data processing applications executed by the
execution module 112 and the associated queues 154 (re
ferred to herein as a "data processing environment') during
execution of the data processing applications. The visual
representation may be a graphical representation, a tabular
representation, or another type of representation. The visual
representation may include, for instance, representations of
data processing applications, queues, relationships between
data processing applications and queues, status information
about data processing applications and/or queues, or other
information. In the example shown, the visualization module
150 is are hosted on a computer system 134 different from the
computer system 130 hosting the execution environment 104
and the computer system 132 hosting the queues 154. In some
examples, the visualization module 150 may be hosted on the
same computer system as the execution environment 104
and/or the same computer system as the queues 154.
To generate a visual representation of a data processing

environment, the metadata associated with the data process
ing applications (e.g., the metadata stored in the data reposi
tory 152) can be accessed to dynamically identify relation
ships between the data processing applications and the
queues during execution of the data processing applications.
For instance, the queues to which one or more of the data
processing applications publish and/or Subscribe can be iden

US 9,189,529 B2
7

tified using the metadata associated with the data processing
applications. In some examples, metadata associated with the
queues can also be accessed. Such as queue metadata stored in
the data repository 152 and/or queue data stored in a queue
interface. Based on the identified relationships, a visual rep
resentation of the data processing environment can be gener
ated for display on a user interface 160. For instance, in a
graphical representation, nodes may be used to represent data
processing applications and queues, and lines connecting
nodes may be used to represent relationships between the data
processing applications and queues. In a tabular representa
tion, rows and columns of data may be used to represent
information related to the data processing applications and
queues.
The visual representation of the data processing environ

ment may also include dynamically updated Status informa
tion about the data processing applications and/or queues. In
Some examples, external input, e.g., from a user, may identify
which data processing applications and/or queues to monitor.
In some examples, some or all of the data processing appli
cations executed by the execution module 112 and their asso
ciated queues may be automatically indicated for monitoring.
In some examples, identifiers of data processing applications
and/or queues to be monitored may be stored in a monitoring
database. Metadata associated with the data processing appli
cations and/or queues identified in the monitoring database
can be accessed to determine status information.

Referring to FIG. 2, in an example of a relationship
between data processing applications and queues, a first data
processing application 200 publishes data to a queue 202.
Two downstream data processing applications 204 and 206
subscribe to the queue 202, for example, to be provided data
from the queue. The relationship between the queue 202 and
the first data processing application 200 (i.e., the first data
processing application 200 publishes to the queue 202) can be
determined by an analysis of metadata associated with the
data processing application 200, the queue 202, both the data
processing application and the queue, etc. For instance, the
data processing application 200 may have associated meta
data that specifies that the data processing application 200
publishes to queue 202. The relationship between the queue
202 and the downstream data processing applications 204.
206 (i.e., the downstream data processing applications 204.
206 subscribe to the queue 202) can likewise be determined
by an analysis of metadata associated with the data process
ing applications 204, 206, the queue 202, both the data pro
cessing application and the queue, etc.

Queues can act as buffers to control the flow of data from an
upstream data processing application to a downstream data
processing application. For instance, if the first data process
ing application 200 publishes data to the queue 202 faster than
the downstream data processing applications 204, 206 can
read data from the queue 202, the data can accumulate in the
queue 202 until the downstream data processing applications
204, 206 are ready to read the data. Queues may also substan
tially maintain the order of incoming and outgoing data
records. For instance, in a first-in-first-out queue, the first data
record published to the queue can be the first record to emerge
when the queue is read. When there are multiple data process
ing applications publishing or Subscribing to a single queue,
the queue can help ensure that data records are properly
collected and distributed. For instance, the queue 202 can
ensures that data published to the queue 202 by the first data
processing application 200 is distributed appropriately to the
downstream data processing applications 204, 206.
A queue may be considered a data structure that may

include a directory or multidirectory in a file system. The data

10

15

25

30

35

40

45

50

55

60

65

8
in the queue, which may be compressed data, resides in the
queue directory on disk. As data is published to the queue, the
data records are landed to disk in the queue directory. For
instance, referring to FIG. 3, a queue 300 is embodied by a
directory /dueue A in a file system. Data records 302
received from a publishing data processing application reside
in the directory /dueue A.

Each queue directory may have one or more Subdirectories
304,306, also referred to as subscribers. Each subscriber 304,
306 links to data records in the directory ?cueue A that are to
be provided to a corresponding data processing application
308,310, respectively, that subscribes to the queue 300. As a
Subscribing data processing application consumes a data
record, a pointer 312, 314, also referred to as a cursor, is
moved in the associated subscriber subdirectory 304, 306,
respectively. The cursor serves as a kind of bookmark that
points to the next data record to be provided to the subscribing
data processing application 308,310 and shows how much of
the queued data the corresponding Subscribing data process
ing application has processed. Each Subscriber directory 304.
306 is assigned its own cursor 312, 314 because each sub
scribing data processing application 308, 310 may consume
data records at its own rate. Thus, for instance, in the illus
trated example, the data processing application 308 corre
sponding to the subscriber subdirectory 304 has processed
through data record5, as indicated by the cursor 312; and the
data processing application 310 corresponding to the Sub
scriber subdirectory 306 has processed through data record 6,
as indicated by the cursor 314. The cursor 312,314 may be
used as a recovery mechanism: if a Subscribing data process
ing application fails, the position of the corresponding cursor
can be used to resume processing from the last checkpoint or
processing phase. After all of the Subscribers to a queue have
processed a particular data record, the data record may be
deleted.

During the commit portion of a write transaction, a pub
lishing data processing application may finish writing a data
file to the queue directory on disk. Each data file may contain
one or more data records. Each data record contains a specific
amount of data in bytes. In some cases, the queue data may be
compressed, in which case the number of bytes contained in
the records may be greater than the number of bytes stored on
disk.
A variety of performance metrics can be used to monitor

the status of queues and/or data processing applications. For
instance, example performance metrics that can be used to
monitor the status of a queue may include, but are not limited
to, one or more of the following:
MAX. DISK SPACE. The number of bytes on disk for the

Subscriber using the most disk space.
MAX FILES. The number of files for the Subscriber hav

ing the most files remaining to process.
MAX RECORDS. The number of records for the Sub

scriber having the most records remaining to process.
MAX RECORDS SPACE. The number of bytes on disk
consumed by the records for the subscriber having the
most records remaining to process. If the queue data is
compressed, this value may be different than the
MAX. DISK SPACE value.

MAX READ ELAPSED. The time (e.g., in seconds)
since data has been read from the queue by the sub
scriber that has waited the longest to read that data.

WRITE ELAPSED. The time (e.g., in seconds) since data
was last written to the queue.

MAX SKEW. The ratio of the largest partition to the
smallest partition for the subscriber with the largest such
ratio, e.g., expressed as a percentage.

US 9,189,529 B2

Example performance metrics that can be used to monitor the
status of a data processing application may include, but are
not limited to, one or more of the following:
DISK SPACE. The number of bytes left on disk for the

Subscriber to process.
FILES. The number of files left on disk for the Subscriber

to process.
RECORDS. The number of records left on disk for the

Subscriber to process.
RECORDS SPACE. The number of uncompressed bytes

in the records left on disk for the subscriberto process. If
the queue data is compressed, this value may be different
than the MAX. DISK SPACE value.

READ ELAPSED. The elapsed time (e.g., in seconds)
since the Subscribing data processing application last
read data from the queue.

SKEW. The ratio of the largest partition to the smallest
partition for the Subscriber, e.g., expressed as a percent
age.

A visual representation of the dynamically detected rela
tionships between data processing applications and queues
(i.e., the data processing environment) can be generated and
presented on a user interface. The visual representation may
be interactive, e.g., provided in a web browser. Such that a user
may browse the data processing applications and queues,
create new and/or alter existing data processing applications,
specify parameters for data processing applications, schedule
jobs, and perform other actions. Form-based browser screens
may be generated for a user to search for and view data
processing applications and queues and information about
data processing applications and queues. Various graphical
elements may be utilized, for example, Relationships may be
represented as graphical lines connecting graphical nodes
that represent metadata objects or groupings of metadata
objects.
The visual representation of a data processing environment

may provide information about the status of queues and/or
data processing applications included in the visual represen
tation. For instance, the visual representation may include
indications about whether a queue has active publishers,
active subscribers, both, neither, etc. The visual representa
tion may include indications about whether a data processing
application is a publisher and/or a Subscriber to one or more
queues. Warnings, errors, and other runtime status indicators
for queues and or data processing applications can be dis
played. Representations of data processing jobs publishing to
a queue, Subscribing to a queue, etc., may also be displayed.
Performance metrics, such as those listed above, may be
displayed graphically or in a table format. In some arrange
ments, performance metric thresholds can be established for
queues and/or data processing applications such that alerts
(e.g., alerts within the visual representation, audio alerts, or
other types of alerts) can be provided if one or more associ
ated performance metrics violates its corresponding thresh
old.

Referring to FIG.4, the visualization module 150 (see also
FIG. 1) generates a visual representation of a data processing
environment that includes, for example, one or more queues
402 and one or more data processing applications 404.
A queue monitoring Submodule 406 queries the interface

of each queue 402 (identified as queues 1-N) in the data
processing environment to determine the status of each queue
402. The queue monitoring submodule 406 may query corre
sponding interfaces of the queues periodically, e.g., every ten
minutes. Status information may include, for instance, one or
more of the performance metrics listed above. The queue

10

15

25

30

35

40

45

50

55

60

65

10
monitoring submodule 406 provides data about the status of
each queue 402 to a reporting submodule 408.

In some examples, data processing applications announce
when they read from or write to a queue, e.g., via metadata
associated with the data processing applications. Data pro
cessing applications 404 (identified as data processing appli
cations 1-N) provide metadata indicative of the identity of the
queues they read from or write to along with status and
tracking metadata to the reporting Submodule 408. In some
examples, the reporting Submodule 408 accesses the meta
data associated with the data processing applications 404 to
identify queues and to determine status and tracking meta
data.
The reporting Submodule 408 aggregates information from

the data processing applications 404 and the queue monitor
ing module 406 and forwards the aggregated information to a
visualization submodule 410. The visualization submodule
410 stores the received data about the queues 402 and the data
processing applications 404 of the data processing environ
ment in a database 412. The visualization submodule 410
correlates information about the queues 402 and information
about the data processing applications 404 to identify rela
tionships between individual queues 402 and individual data
processing applications 404 (e.g., to identify which data pro
cessing applications publish to and Subscribe to which
queues). Based on the correlations between queues 402 and
data processing applications 404, the visualization Submod
ule 410 generates a representation of the data processing
environment. The representation may represent, e.g., the rela
tionships between the queues 402 and the data processing
applications 404, the status of the queues and/or the data
processing applications, and/or other information. The visu
alization submodule 410 typically provides the representa
tion to a display interface, such as a web browser 414, for
rendering as a visual representation, Such as a graphical rep
resentation or a tabular representation.

FIG. 5 shows an example of a graphical representation 500
(also referred to as a queue connections diagram) of a data
processing environment. The queue connections diagram 500
shows schematically the connections between data process
ing applications and queues, which are represented as nodes.
The queue connections diagram 500 depicts a data processing
application 502 (labeled “publish 1.pset') publishing (writ
ing) to a queue 504 (labeled “testdueue'). The queue 504 has
two subscribers 506, 508 (a first labeled “one” and a second
labeled “two'). Each subscriber 506, 508 corresponds to a
data processing application 510 (labeled “subscribe1.pset)
and 512 (labeled “subscribe2.pset'), respectively, that is
reading from (subscribing to) the queue 504 (labeled “test
queue)). The data processing application 510 (labeled
“subscribe1.pset) publishes to a queue 514 (labeled “test
queue2), which has a Subscriber (not shown) corresponding
to a further data processing application 516 (labeled
“subscribe3-pset'). The data processing application 512 (la
beled subscribe2.pset') publishes to a queue 518 (labeled
“testdueue3’), which has a subscriber 519 (labeled “one”
corresponding to a further data processing application 520
(labeled (subscribe4.pset').
A queue connections diagram, Such as the queue connec

tions diagram 500, includes information about the queues and
data processing applications depicted in the queue connec
tions diagram. In some examples, a user may select the infor
mation to be displayed in the queue connections diagram. For
instance, example information included in a queue connec
tions diagram may include Some or all of the following infor
mation:

US 9,189,529 B2
11

The name of each queue depicted in the queue connections
diagram. In some examples, the queue name may be set
by default to be the same as the name of the directory in
which the queue was created.

Publisher and subscriberactivity. Each queue has an input
and an output connected to one or more publishers and
one or more Subscribers, respectively. An indicator, Such
as an icon or a color indicator, may indicate whether
each publisher or Subscriber is running. For instance, if
one or more publishers to a queue are running, the input
side of the queue may appear in green. If one or more
Subscribers to a queue are running, the outputside of the
queue may appear in green.

Queue or data processing application issues. Issues. Such
as errors or alerts, associated with a queue or a data
processing application, may be depicted by indicators,
Such as icons, color indicators, or other types of indica
tors. For instance, an indicator may indicate the number
of issues associated with a queue or a data processing
application, the degree of severity of the most severe
issue, or another indication of an issue.

Performance metrics, such as the performance metrics
listed above. For instance, in the example shown, a num
ber representative of the performance metric
MAX RECORDS is shown. A large number of maxi
mum records may suggest that data records are accumu
lating in the queue, which may indicate that there is a
problem with a subscribing job.

Subscribers. The name of each subscriber to a queue may
be displayed along with the number of records remain
ing for each Subscriber, issues associated with each Sub
scriber, or other information associated with subscrib
ers. The subscriber name may be an active link such that
Selecting (e.g., by clicking, tapping, using a pointing
device Such as a mouse to hover over, etc.) a Subscriber
name may open a subscriber dialog box with further
information about the subscriber, as described below.

Publishing jobs. The name, status, or other information for
each publishing job associated with a queue may be
displayed. The job name may be an active link Such that
Selecting (e.g., by clicking, tapping, using a pointing
device such as a mouse to hover over, etc.) a job name
may open a job dialog box with further information
about the job, as described below.

In the queue connections diagram 500, the status of the two
subscribers 506, 508 of the queue 504 (labeled “testdueue1)
is shown. The subscriber 506 (labeled “one') drained the
queue such that there are no records left in the queue 504
(labeled “testgueuel”) for subscriber 506 (labeled “one”
(depicted as “O recs”). A success icon 510a (e.g., a blue dot, a
green dot, or another icon indicative of success) indicates that
the data processing application 510 (labeled
“subscribe1.pset') corresponding to the subscriber 506 (la
beled “one') ran successfully. The subscriber 508 (labeled
“two') failed to drain the queue 504 (labeled “testdueue1)
and there are 398 records remaining in the queue 504 (labeled
“testdueue1”) for subscriber 508 (labeled “two'; depicted as
“398 recs”). A failure icon 512a (e.g., a red dot, a black dot, or
another icon indicative of failure) indicates that the data pro
cessing application 512 (labeled “subscribe2.pset') corre
sponding to the subscriber 508 (labeled (two') failed to run
correctly. An alert icon 522 indicates that an error occurred
during the execution of the data processing application 512
(labeled “subscribe2.pset').

FIG. 6 shows an example of a tabular representation 600
(also referred to as a queue grid view) of the same data
processing environment depicted in the graphical representa

10

15

25

30

35

40

45

50

55

60

65

12
tion 500 of FIG. 5. The queue grid view may include some or
all of the same information included in the queue connections
view. One row of data corresponds to each monitored queue;
columns provide information for the corresponding queue,
Such as, e.g., its connections to publishers and Subscribers;
status information for the queue, its subscribers, and/or its
publishers; status information for jobs; and other informa
tion. The queue grid view may be useful, e.g., to visualize data
processing environments having many data processing appli
cations and/or many queues. The queue grid view also
enables Sorting, searching, and Scaling operations.
A queue grid view, Such as the queue grid view 600,

includes information about the queues and data processing
applications included in the queue grid view. In some
examples, a user may select the information to be displayed in
the queue grid view. For instance, example information
included in a queue grid view may include some or all of the
following information:
The name of each queue depicted in the queue grid view.
The host with which each queue is associated. For instance,

the name of the filesystem run host with which each
queue is associated may be listed.

Queue or data processing application status. Issues, such as
errors or alerts, associated with a queue or a data pro
cessing application, may be depicted by indicators, such
as icons, color indicators, or other type of indicator. For
instance, an indicator may indicate the number of issues
associated with a queue or a data processing application,
the degree of severity of the most severe issue, or another
indication of an issue.

Performance metrics, such as the performance metrics
listed above.

Last job. The name of the last job to have read data from
each subscriber. The job name may be an active link such
that selecting (e.g., by clicking, tapping, using a pointing
device such as a mouse to hover over, etc.) a job name
may open a job dialog box with further information
about the job.

Job status. The status of the currently connected job, if any
exists; or the status of the last job to have been con
nected, if no job currently exists.

Job issues. Issues associated with the current or last job.
Associated system, such as an associated operating system.
FIG.7 shows a queue dialog box 700 showing details about

a particular queue (also referred to as a queue details view), in
this example the queue 504 (labeled “testdueue1). The dia
log box 700 for a particular queue can be obtained by select
ing on the queue name from the queue connections diagram or
from the queue grid view. The queue details view may provide
Some or all of the information that is displayed in the queue
connections diagram and/or the queue grid view, and may
also provide some or all of the following additional informa
tion about the particular queue:

Directory. The location in the host file system where the
queue was created.

System. The execution environment (e.g., execution envi
ronment 104 in FIG. 1) to which the queue is assigned.

Type of queue. Various types of queues are possible, Such
as, e.g., a standard queue or a recycle queue

Version. Software version of the queue.
Partitions. Number of partitions in the queue multi-direc

tory.
Attributes. A list of the attributes assigned to the queue at

the time of its creation. Attributes may include, e.g.,
whether the queue data is compressed, whether the

US 9,189,529 B2
13

queue includes empty file to mark checkpoints or com
pute points in which no data was received, or other
attributes.

Notification groups. The names of any warning and error
notification groups with which the queue is associated.

FIG. 8 shows a tabular view 800 showing details about a
particular queue, in this example the queue 504. The tabular
view 800 for a particular queue can be obtained by selecting
the “Details' link in the queue details view 700. The tabular
view 800 provides information about the queue, such as some
or all of the information listed above. For example, the tabular
view 800 may include information about publishers and sub
scribers to the queue, metrics for the queue, etc. For instance,
in the depicted example, it can be seen that the data processing
application 512 (labeled “subscribe2.pset') associated with
the subscriber 508 (labeled “two') is in error. In this example,
as was shown in FIG. 5, the data processing application 512
(labeled “subscribe2.pset') failed to run correctly and the
subscriber 508 (labeled “two') failed to drain the queue 504
(labeled “testdueue 1).

FIG. 9 shows a job dialog box 900 showing information
about a job corresponding to a particular Subscriber (referred
to as a job details view). The job dialog box 900 can be
obtained by selecting the name of the Subscriber, e.g., from
the queue connections view 500, the queue grid view 600, or
the tabular view 800. For instance, in the depicted example,
the dialog box 900 shows information about the data process
ing application 513 (labeled “subscribe2.pset') correspond
ing to the subscriber 508 (labeled “two'). The dialog box 900
shows information including, e.g., system details for the data
processing application, status indicators, performance statis
tics, and other types of information for the data processing
application.

FIG. 10 shows a tabular view 10 showing details about
queues associated with a particular data processing applica
tion, in this case the data processing application 512 (labeled
“subscribe2.pset'). The tabular view 10 for a particular data
processing application can be obtained by selecting the
“Details’ link in the data processing application details view
900. For instance, in the depicted example, the tabular view
10 shows that the data processing application 512 (labeled
“subscribe2.pset) reads from the queue 504 (labeled “test
queue1) and writes to the queue 518 (labeled “testdueue3')
S18.

In some cases, a data processing environment may include
queues and/or data processing applications that include
restricted information. This restricted information may not be
displayed in a visual representation of the data processing
environment. For instance, a user may have access to a first
system but not to a second system. If jobs from both the first
system and the second system Subscribe to a particular queue
that is displayed on a visual representation to the user, no
information may be displayed about the jobs from the second
system that Subscribe to the queue.

Referring to FIG. 11, in an example process, information
provided by a data processing application during execution of
the data processing application is received (50). The informa
tion is indicative of at least one of a source of data for the data
processing application and a destination of data for the data
processing application. For instance, the information may
identify a queue.
The information is dynamically analyzed during execution

of the data processing application to identify a queue in com
munication with the data processing application (52). The
information is dynamically analyzed during execution of the
data processing application to identify a relationship between
the data processing application and the queue is identified

10

15

25

30

35

40

45

50

55

60

65

14
(54). For instance, the queue may be the source of data for the
data processing application (i.e., the data processing applica
tion Subscribes to the queue). The queue may be the destina
tion of data from the data processing application (i.e., the data
processing application publishes to the queue).

In some examples, a status of the queue and/or the data
processing application may be determined, e.g., dynamically
determined during execution of the data processing applica
tion.

Referring to FIG. 12, in an example process, information
indicative of a relationship between a data processing appli
cation and a queue is received from a data processing appli
cation during execution of the data processing applicaiton
(60). The relationship includes at least one of the queue being
a source of data for the data processing application and the
queue being a destination of data from the data processing
application. In some cases, information may be received
indicative of relationships among a plurality of data process
ing applications and a plurality of queues.
A graphical representation of the data processing applica

tion, the queue, and the relationship between the data pro
cessing application and the queue is generated (62) and the
graphical representation is displayed on a user interface dur
ing execution of the data processing application (64). In some
cases, the graphical representation may include a first node to
represent the data processing application, a second node to
represent the queue, and a connection between the data pro
cessing application and the queue to represent the relation
ship. In some cases, a status of the queue can be determined
and a representation of the status can be included in the
graphical representation, or a notification can be provided
based on the status.

In one example implementation, the queue monitoring and
visualization techniques described herein can be applied to
the processing of telephone records for billing purposes.
Large numbers of telephone records can be processed by a
billing system to generate telephone bills. The ability to visu
alize the occurrence and location of potential errors during
processing can help to ensure accuracy and efficiency of the
billing process.
The queue monitoring and visualization techniques

described above can be implemented using a computing sys
tem executing suitable software. For example, the software
may include procedures in one or more computer programs
that execute on one or more programmed or programmable
computing system (which may be of various architectures
Such as distributed, client/server, or grid) each including at
least one processor, at least one data storage system (includ
ing volatile and/or non-volatile memory and/or storage ele
ments), at least one user interface (for receiving input using at
least one input device or port, and for providing output using
at least one output device or port). The Software may include
one or more modules of a larger program, for example, that
provides services related to the design, configuration, and
execution of dataflow graphs. The modules of the program
(e.g., elements of a dataflow graph) can be implemented as
data structures or other organized data conforming to a data
model stored in a data repository.
The Software may be provided on a tangible, non-transitory

medium, such as a CD-ROM or other computer-readable
medium (e.g., readable by a general or special purpose com
puting system or device), or delivered (e.g., encoded in a
propagated signal) over a communication medium of a net
work to a tangible, non-transitory medium of a computing
system where it is executed. Some or all of the processing
may be performed on a special purpose computer, or using
special-purpose hardware. Such as coprocessors or field-pro

ing description is intended to illustrate and not to limit the

ing dynamically determining the status of the queue during
execution of the data processing application.

US 9,189,529 B2
15

grammable gate arrays (FPGAs) or dedicated, application
specific integrated circuits (ASICs). The processing may be
implemented in a distributed manner in which different parts
of the computation specified by the software are performed by
different computing elements. Each Such computer program 5
is preferably stored on or downloaded to a computer-readable
storage medium (e.g., Solid state memory or media, or mag
netic or optical media) of a storage device accessible by a
general or special purpose programmable computer, for con
figuring and operating the computer when the storage device 10
medium is read by the computer to perform the processing
described herein. The inventive system may also be consid
ered to be implemented as a tangible, non-transitory medium,
configured with a computer program, where the medium so
configured causes a computer to operate in a specific and 15
predefined manner to perform one or more of the processing
steps described herein.
A number of embodiments of the invention have been

described. Nevertheless, is to be understood that the forego
2O

scope of the invention, which is defined by the scope of the
following claims. Accordingly, other embodiments are also
within the scope of the following claims. For example, vari
ous modifications may be made without departing from the
Scope of the invention. Additionally, Some of the steps 25
described above may be order independent, and thus can be
performed in an order different from that described.
What is claimed is:
1. A computer-implemented method including:
receiving information provided by a data processing appli

cation during execution of the data processing applica
tion, the data processing application configured to pro
cess one or more data records each having one or more
fields, wherein the information is indicative of at least
one of a source of data records to be processed by the
data processing application and a destination of data
records having been processed by the data processing
application;

dynamically analyzing the information during execution of
the data processing application to identify a queue in
communication with the data processing application;

dynamically analyzing the information during execution of
the data processing application to identify a relationship
between the data processing application and the queue,
including at least one of identifying that the queue is the
Source of data records to be processed by the data pro
cessing application and identifying that the queue is the
destination of data records having been processed by the
data processing application; and

providing an output indicative of a status of the queue.
2. The computer-implemented method of claim 1, wherein

30

35

40

45

50

the information indicative of at least one of the source of data
and the destination of data includes an identifier of the queue.

3. The computer-implemented method of claim 1, includ
55

4. The computer-implemented method of claim 1, wherein
providing an output indicative of the status of the queue
includes providing a notification based on the status of the
queue. 60

5. The computer-implemented method of claim 1, wherein
the status of the queue includes at least one of number of data
records in the queue and an elapsed time associated with the
queue.

6. The computer-implemented method of claim 1, includ- 65
ing:

determining a status of the data processing application; and

16
providing an output indicative of the status of the data

processing application.
7. The computer-implemented method of claim 1, includ

ing receiving an input identifying the queue.
8. The computer-implemented method of claim 7, includ

ing identifying the data processing application based on the
processing and based on the input identifying the queue.

9. The computer-implemented method of claim 1, wherein
the one or more data processing applications include compu
tation graphs.

10. The computer-implemented method of claim 1, includ
ing generating a visual representation of the data processing
application, the queue, and the relationships between the data
processing application and the queue.

11. The computer-implemented method of claim 10,
including displaying the visual representation on a user inter
face.

12. The computer-implemented method of claim 10,
wherein the visual representation includes a representation of
the status of the queue.

13. The computer-implemented method of claim 1,
wherein the information provided by the data processing
information is distinct from the data records processed by the
data processing application.

14. A non-transitory computer-readable medium, includ
ing instructions for causing a computer system to:

receive information provided by a data processing appli
cation during execution of the data processing applica
tion, the data processing application configured to pro
cess one or more data records each having one or more
fields, wherein the information is indicative of at least
one of a source of data records to be processed by the
data processing application and a destination of data
records having been processed by the data processing
application;

dynamically analyze the information during execution of
the data processing application to identify a queue in
communication with the data processing application;
and

dynamically analyze the information during execution of
the data processing application to identify a relationship
between the data processing application and the queue,
including at least one of identifying that the queue is the
Source of data records to be processed by the data pro
cessing application and identifying that the queue is the
destination of data records having been processed by the
data processing application; and

providing an output indicative of a status of the queue.
15. The non-transitory computer-readable medium of

claim 14, wherein the information indicative of at least one of
the source of data and the destination of data includes an
identifier of the queue.

16. The non-transitory computer-readable medium of
claim 14, including instructions for causing the computer
system to dynamically determine the status of the queue
during execution of the data processing application.

17. The non-transitory computer-readable medium of
claim 14, wherein providing an output indicative of the status
of the queue includes providing a notification based on the
status of the queue.

18. The non-transitory computer-readable medium of
claim 14, wherein the status of the queue includes at least one
of number of data records in the queue and an elapsed time
associated with the queue.

19. The non-transitory computer-readable medium of
claim 14, including instructions for causing the computing
system to:

US 9,189,529 B2
17

determine a status of the data processing application; and
provide an output indicative of the status of the data pro

cessing application.
20. The non-transitory computer-readable medium of

claim 14, including instructions for causing the computing
system to receive an input identifying the queue.

21. The non-transitory computer-readable medium of
claim 14, including instructions for causing the computing
system to:

generate a visual representation of the data processing
application, the queue, the relationships between the
data processing application and the queue, and the status
of the queue; and

display the visual representation on a user interface.
22. A computing system including:
an input port configured to receive information provided by

a data processing application during execution of the
data processing application, the data processing appli
cation configured to process one or more data records
each having one or more fields, wherein the information
is indicative of at least one of a source of data records to
be processed by the data processing application and a
destination of data records having been processed by the
data processing application; and

at least one processor coupled to a memory, the processor
and memory configured to:
dynamically analyze the information during execution

of the data processing application to identify a queue
in communication with the data processing applica
tion;

dynamically analyze the information during execution
of the data processing application to identify a rela
tionship between the data processing application and
the queue, including at least one of identifying that the
queue is the source of data records to be processed by
the data processing application and identifying that
the queue is the destination of data records having
been processed by the data processing application;
and

providing an output indicative of a status of the queue.
23. The computing system of claim 22, wherein the infor

mation indicative of at least one of the source of data and the
destination of data includes an identifier of the queue.

24. The computing system of claim 22, wherein the pro
cessor and memory are configured to dynamically determine
the status of the queue during execution of the data processing
application.

25. The computing system of claim 22, wherein providing
an output indicative of the status of the queue includes pro
viding a notification based on the status of the queue.

26. The computing system of claim 22, wherein the status
of the queue includes at least one of number of data records in
the queue and an elapsed time associated with the queue.

27. The computing system of claim 22, wherein the pro
cessor and memory are configured to:

determine a status of the data processing application; and
provide an output indicative of the status of the data pro

cessing application.
28. The computing system of claim 22, wherein the pro

cessor and memory are configured to receive an input identi
fying the queue.

29. The computing system of claim 22, wherein the pro
cessor and memory are configured to:

generate a visual representation of the data processing
application, the queue, the relationships between the
data processing application and the queue, and the status
of the queue; and

5

10

15

25

30

35

40

45

50

55

60

65

18
display the visual representation on a user interface.
30. A computing system including:
means for receiving information provided by a data pro

cessing application during execution of the data process
ing application, the data processing application config
ured to process one or more data records each having one
or more fields, wherein the information is indicative of at
least one of a source of data records to be processed by
for the data processing application and a destination of
data records having been processed by the data process
ing application;

means for dynamically analyzing the information during
execution of the data processing application to identify a
queue in communication with the data processing appli
cation;

means for dynamically analyzing the information during
execution of the data processing application to identify a
relationship between the data processing application
and the queue, including at least one of identifying that
the queue is the source of data for the data processing
application and identifying that the queue is the destina
tion of data from the data processing application; and

means for providing an output indicative of a status of the
queue.

31. A computer-implemented method including:
receiving, from a data processing application configured to

process one or more data records each having one or
more fields, during execution of the data processing
application, information indicative of a relationship
between the data processing application and a queue,
wherein the relationship includes at least one of the
queue being a source of data records to be processed by
the data processing application and the queue being a
destination of data records having been processed by the
data processing application;

generating a graphical representation of the data process
ing application, the queue, the relationship between the
data processing application and the queue, and a status
of the queue;

displaying, on a user interface, during execution of the data
processing application, the graphical representation of
the data processing application, the queue, the relation
ship between the data processing application and the
queue, and the status of the queue.

32. The computer-implemented method of claim 31,
wherein the graphical representation includes a first node to
represent the data processing application, a second node to
represent the queue, and a connection between the data pro
cessing application and the queue to represent the relation
ship.

33. The computer-implemented method of claim 32,
including displaying information about the data processing
application responsive to user selection of the first node.

34. The computer-implemented method of claim 32,
including displaying information about the queue responsive
to user selection of the second node.

35. The computer-implemented method of claim 31,
including dynamically determining the status of the queue
during execution of the data processing system.

36. The computer-implemented method of claim 31,
including providing a notification based on the status of the
queue.

37. The computer-implemented method of claim 31,
wherein the status of the queue includes at least one of a
number of data records in the queue and an elapsed time
associated with the queue.

US 9,189,529 B2
19

38. The computer-implemented method of claim 31,
including dynamically determining a status of the data pro
cessing application during execution of the data processing
application.

39. The computer-implemented method of claim 38,
wherein the graphical representation includes a representa
tion of the status of the data processing application.

40. The computer-implemented method of claim 31,
including receiving, from a plurality of data processing appli
cations, information indicative of a relationship between each
data processing application and at least one corresponding
queue; and

wherein generating a graphical representation includes
generating a graphical representation of the plurality of
data processing applications, the corresponding queues,
the relationships, and the status of at least one of the
queues.

41. The computer-implemented method of claim 31,
wherein receiving information includes:

receiving information provided by the data processing
application during execution of the data processing
application, wherein the information is indicative of at
least one of a source of the data records to be processed
by the data processing application and a destination of
data records having been processed by the data process
ing application; and

dynamically analyzing the information during execution of
the data processing application to identify the queue and
the relationship.

42. A non-transitory computer-readable medium, includ
ing instructions for causing a computing System to:

receive, from a data processing application configured to
process one or more data records each having one or
more fields, during execution of the data processing
application, information indicative of a relationship
between the data processing application and a queue,
wherein the relationship includes at least one of the
queue being a source of data records to be processed by
the data processing application and the queue being a
destination of data records having been processed by the
data processing application;

generate a graphical representation of the data processing
application, the queue, the relationship between the data
processing application and the queue, and a status of the
queue; and

display, on a user interface, during execution of the data
processing application, the graphical representation of
the data processing application, the queue, the relation
ship between the data processing application and the
queue, and the status of the queue.

43. The non-transitory computer-readable medium of
claim 42, wherein the graphical representation includes a first
node to represent the data processing application, a second
node to represent the queue, and a connection between the
data processing application and the queue to represent the
relationship.

44. The non-transitory computer-readable medium of
claim 43, including instructions for causing the computing
system to display information about the data processing
application responsive to user selection of the first node.

45. The non-transitory computer-readable medium of
claim 43, including instructions for causing the computing
system to display information about the queue responsive to
user selection of the second node.

46. The non-transitory computer-readable medium of
claim 42, including instructions for causing the computing

5

10

15

25

30

35

40

45

50

55

60

65

20
system to dynamically determine the status of the queue
during execution of the data processing system.

47. The non-transitory computer-readable medium of
claim 42, including instructions for causing the computing
system to provide a notification based on the status of the
queue.

48. The non-transitory computer-readable medium of
claim 42, wherein the status of the queue includes at least one
of a number of data records in the queue and an elapsed time
associated with the queue.

49. The non-transitory computer-readable medium of
claim 42, including instructions for causing the computing
system to dynamically determine a status of the data process
ing application during execution of the data processing appli
cation.

50. The non-transitory computer-readable medium of
claim 49, wherein the graphical representation includes a
representation of the status of the data processing application.

51. A computing system including:
an input port configured to receive, from a data processing

application configured to process one or more data
records each having one or more fields, during execution
of the data processing application, information indica
tive of a relationship between the data processing appli
cation and a queue, wherein the relationship includes at
least one of the queue being a source of data records to be
processed by the data processing application and the
queue being a destination of data records having been
processed by the data processing application; and

a processor coupled to a memory, the processor and
memory configured to:
generate a graphical representation of the data process

ing application, the queue, the relationship between
the data processing application and the queue, and a
status of the queue; and

display, on a user interface, during execution of the data
processing application, the graphical representation
of the data processing application, the queue, the rela
tionship between the data processing application and
the queue, and the status of the queue.

52. The computing system of claim 51, wherein the graphi
cal representation includes a first node to represent the data
processing application, a second node to represent the queue,
and a connection between the data processing application and
the queue to represent the relationship.

53. The computing system of claim 52, wherein the pro
cessor and memory are configured to display information
about the data processing application responsive to user
selection of the first node.

54. The computing system of claim 52, wherein the pro
cessor and memory are configured to display information
about the queue responsive to user selection of the second
node.

55. The computing system of claim 51, wherein the pro
cessor and memory are configured to dynamically determine
the status of the queue during execution of the data processing
system.

56. The computing system of claim 51, wherein the pro
cessor and memory are configured to provide a notification
based on the status of the queue.

57. The computing system of claim 51, wherein the status
of the queue includes at least one of a number of data records
in the queue and an elapsed time associated with the queue.

58. The computing system of claim 51, wherein the pro
cessor and memory are configured to dynamically determine
a status of the data processing application during execution of
the data processing application.

US 9,189,529 B2
21

59. The computing system of claim 58, wherein the graphi
cal representation includes a representation of the status of
the data processing application.

60. A computing system including:
means for receiving, from a data processing application

configured to process one or more data records each
having one or more fields, during execution of the data
processing application, information indicative of a rela
tionship between the data processing application and a
queue, wherein the relationship includes at least one of
the queue being a source of data records to be processed
by the data processing application and the queue being a
destination of data records having been processed by the
data processing application;

means for generating a graphical representation of the data
processing application, the queue, the relationship
between the data processing application and the queue.
and a status of the queue; and

means for displaying, on a user interface, during execution
of the data processing application, the graphical repre
sentation of the data processing application, the queue,
the relationship between the data processing application
and the queue, and the status of the queue.

61. A computer-implemented method including:
receiving information provided by a data processing appli

cation during execution of the data processing applica
tion, the data processing application configured to pro

5

10

15

25

22
cess one or more data records each having one or more
fields, wherein the information is indicative of at least
one of a source of data records to be processed by the
data processing application and a destination of data
records having been processed by the data processing
application;

dynamically analyzing the information during execution of
the data processing application to identify a queue in
communication with to the data processing application;

dynamically analyzing the information during execution of
the data processing application to identify a relationship
between the data processing application and the queue,
including at least one of identifying that the queue is the
Source of data records to be processed by the data pro
cessing application and identifying that the queue is the
destination of data records having been processed by the
data processing application;

generating a graphical representation of the data process
ing application, the queue, the relationship between the
data processing application and the queue, and a status
of the queue; and

displaying, on a user interface, during execution of the data
processing application, the graphical representation of
the data processing application, the queue, the relation
ship between the data processing application and the
queue, and the status of the queue.

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. : 9,189,529 B2 Page 1 of 1
APPLICATIONNO. : 13/834491
DATED : November 17, 2015
INVENTOR(S) : Mark Buxbaum and Tim Wakeling

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the claims

Col. 15, lines 65-66, claim 6, delete “including; and insert -- including: --.
Col. 16, line 39, claim 14, after “application: delete “and”.

Signed and Sealed this
Eighth Day of March, 2016

74.4.4.2% 4
Michelle K. Lee

Director of the United States Patent and Trademark Office

