

CONFÉDÉRATION SUISSE

OFFICE FÉDÉRAL DE LA PROPRIÉTÉ INTELLECTUELLE

CH 668 985

A5

(51) Int. Cl.4: C 25 C

3/16

Brevet d'invention délivré pour la Suisse et le Liechtenstein

Traité sur les brevets, du 22 décembre 1978, entre la Suisse et le Liechtenstein

12 FASCICULE DU BREVET A5

(21) Numéro de la demande: 2264/86

(73) Titulaire(s): Aluminium Péchiney, Paris 8e (FR)

22 Date de dépôt:

04.06.1986

(30) Priorité(s):

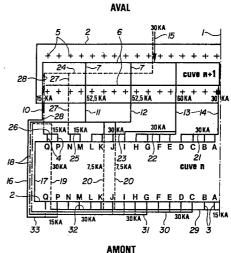
05.06.1985 FR 85 08923

(72) Inventeur(s): Chaffy, Joseph, St-Jean-de-Maurienne (FR) Langon, Bernard, St-Jean-de-Maurienne (FR)

(24) Brevet délivré le:

15.02.1989

(45) Fascicule du brevet publié le:


15.02.1989

(74) Mandataire: William Blanc & Cie conseils en propriété industrielle S.A., Genève

(54) Circuit de connexion électrique de séries de cuves d'électrolyse pour la production d'aluminium sous très haute intensité.

(57) L'invention concerne un circuit de connexion électrique entre les cuves d'une série destinée à la production d'aluminium par électrolyse, selon le procédé Hall-Héroult. Elle s'applique à des séries de cuves disposées en travers par rapport à l'axe de la série fonctionnant sous une intensité supérieure à 250 000 ampères, pouvant atteindre 300 à 600 kA.

Selon l'invention, le cadre anodique (6) de la cuve de rang (n+1) dans chaque file est alimenté en courant simultanément par une pluralité de montées amont, telles que (11) (12) (13) sensiblement équidistantes et symétriques par rapport au plan vertical contenant le petit axe (Î) de la cuve, et par au moins deux montées aval (15) (15S) sensiblement symétriques par rapport à ce même plan vertical, ces montées aval (15) (15S) étant alimentées par des conducteurs reliés aux sorties cathodiques aval (4) de la cuve de rang n, au moins une portion (24) de ces conducteurs de liaison passant sous la cuve de rang (n+1) selon un trajet sensiblement parallèle au grand axe de cette cuve, la direction du courant dans ces portions (24) de conducteurs allant des têtes (17) vers le petit axe (1).

AMONT

REVENDICATIONS

- 1. Circuit de connexion électrique entre deux cuves successives d'une série pouvant comporter une ou plusieurs files destinées à la production d'aluminium par électrolyse d'alumine dissoute dans la cryolithe fondue, selon le procédé Hall-Héroult, sous une intensité supérieure à 250 000 ampères, chaque cuve étant constituée par un caisson métallique parallélépipédique calorifuge, dont le grand axe est perpendiculaire à l'axe de la série et le petit axe parallèle à l'axe de la série, les deux extrémités du caisson par où passe le grand axe étant appelées «têtes», ce caisson supportant une cathode formée par la juxtaposition de blocs carbonés dans lesquels sont scellées des barres métalliques dont les extrémités sortent du caisson, sur ses deux grands côtés amont et aval, par rapport au sens du courant dans la file, chaque cuve comportant en outre un système anodique formé par au moins une poutre rigide horizontale supportant au moins une barre horizontale conductrice, dite «cadre anodique», sur laquelle sont assujetties les tiges de suspension des anodes, le circuit de connexion entre deux cuves successives étant constitué par des collecteurs cathodiques, reliés d'une part aux sorties cathodiques de la cuve de rang n et d'autre part à des conducteurs de liaison qui rejoignent par des montées le cadre anodique de la cuve de rang n+1 dans la file, caractérisé en ce que le cadre anodique (6) de la cuve de rang (n+1) dans chaque file est alimenté en courant simultanément par une pluralité de montées amont (11, 12, 13) sensiblement équidistantes et symétriques par rapport au plan vertical contenant le petit axe (1) de la cuve, et par au moins deux montées aval (15, 15S) sensiblement symétriques par rapport à ce même plan vertical, ces montées aval (15, 15S) étant alimentées par des conducteurs reliés aux sorties cathodiques aval (4) de la cuve de rang n, au 30 moins une portion (24) de ces conducteurs de liaison passant sous la cuve de rang n+1 selon un trajet sensiblement parallèle au grand axe de cette cuve, la direction du courant dans ces portions (24) de conducteurs allant des têtes (17) au petit axe (1) de la cuve.
- Circuit de connexion selon la revendication 1, caractérisé en ce qu'il comporte au moins 5 montées amont et au moins deux montées aval.
- 3. Circuit de connexion selon la revendication 1, caractérisé en ce qu'il comporte 9 montées amont et 2 montées aval, alimentées, à partir des sorties cathodiques de la cuve précédente, de la façon suivante:
- les montées de tête sont reliées aux collecteurs cathodiques amont (3) par un conducteur (16, 16S) passant à l'extérieur de chaque tête (17) de la cuve;
- les montées intermédiaires (11, 11S, 12, 12S) sont alimentées au moins partiellement à partir des collecteurs cathodiques amont (29, 29S; 30, 30S; 31, 31S; 32, 32S) par un conducteur (18, 18S) contournant chaque tête (17) de la cuve, par au moins un conducteur (19, 19S) passant sous chaque tête (17), et par au moins un conducteur (20, 20S) passant sous le caisson métallique (2);
- les montées centrales (13, 13S, 14, 14S) sont reliées respectivement aux collecteurs cathodiques centraux aval (21, 22, 23) et (21S, 22S, 23S):
- les montées aval (15, 15S) sont reliées respectivement aux collecteurs cathodiques aval (25, 26) et (25S, 26S), situés du côté des têtes (17), par des conducteurs de liaison (27, 28, 27S, 28S) passant sous la tête de la cuve n+1, et rejoignant un conducteur (24, 24S) disposé sous le caisson, sensiblement à l'aplomb du grand axe de la cuve.
- 4. Circuit de connexion selon la revendication 3, caractérisé en ce que, sur chaque cuve, les collecteurs cathodiques sont reliés aux sorties cathodiques (3, 4) de la façon suivante:
- un premier groupe de sorties cathodiques amont (3A, 3B), à partir du centre de la cuve, est relié au collecteur (29), lui-même connecté aux barres (20) passant sous la cuve;
- un second groupe de sorties cathodiques amont (3C, 3D, 3E, 3F) est relié au collecteur (30), lui-même connecté à l'une des barres (18) qui contournent la tête (17) de la cuve;

- un troisième groupe de sorties cathodiques amont (3G, 3H, 3I, 3J) est relié au collecteur (31), connecté à la deuxième barre (18) qui contourne la tête (17) de la cuve;
- un quatrième groupe de sorties cathodiques amont (3K, 3L, 3M, 3N) est relié au collecteur (32), connecté à la barre (19) qui passe sous la tête (17) de la cuve;
 - les deux dernières sorties cathodiques amont (3P, 3Q) sont reliées au collecteur (33), connecté lui-même à la barre (16) qui contourne la tête (17) de la cuve;
 - un premier groupe de sorties cathodiques aval (4A, 4B, 4C, 4D), à partir du centre de la cuve, est relié au collecteur (21) qui alimente la demi-montée axiale (14);
 - un second groupe de sorties cathodiques aval (4E, 4F, 4G,
 4H) est relié au collecteur (22) qui alimente la montée (13);
 - un troisième groupe de sorties cathodiques aval (4I, 4J, 4K, 4L) est relié au collecteur (22) qui alimente également la montée (13);
 - les deux sorties cathodiques aval suivantes (4M, 4N) sont reliées au collecteur (25) qui, par la barre (27), rejoint le conducteur longitudinal (24) disposé sous la cuve n+1 et qui alimente la montée aval (15);
 - les deux dernières sorties cathodiques aval (4P, 4Q) sont reliées au collecteur (26) qui, par la barre (28), rejoint également le conducteur (24) et la montée aval (15).
- 5. Circuit de connexion électrique selon la revendication 2, ca-25 ractérisé en ce que, dans le cas d'une cuve fonctionnant sous une intensité de 300 à 400 kA, le courant total J traversant la cuve est réparti de la façon suivante:

— dans chaque montée intermédiaire (11, 11S):	12 à 22% de J
— dans chaque montée centrale (13, 13S):	12 à 22% de J
0 — dans chaque demi-montée axiale (14, 14S):	6 à 12% de J
— dans chaque montée aval (15, 15S):	6 à 12% de J

6. Circuit de connexion électrique selon la revendication 3, caractérisé en ce que, dans le cas d'une cuve fonctionnant sous une intensité supérieure à 400 kA, le courant d'électrolyse total J traversant la cuve est réparti de la façon suivante:

dans chaque montée de tête (10, 10S):

dans chaque montée intermédiaire (11, 11S,
12, 12S):

dans chaque montée centrale (13, 13S, 14, 14S):
dans chaque montée aval (15, 15S):
3 à 9% de J

7. Circuit de connexion électrique selon la revendication 3, caractérisé en ce que la fraction de courant traversant les conducteurs de liaison est fixée de la façon suivante:

dans les conducteurs (16, 16S, 18, 18S)
contournant les têtes:
10 à 20% de J
dans chacun des conducteurs (19, 19S)
passant sous les têtes:
3 à 10% de J
dans chacun des conducteurs (20, 20S)
passant sous le caisson:
0,5 à 6,5% de J
dans chaque conducteur longitudinal (24, 24S)
3 à 9% de J

- 8. Circuit de connexion selon l'une des revendications 1 à 3, caractérisé en ce que les collecteurs cathodiques amont et/ou les collecteurs cathodiques aval et/ou les conducteurs de liaison passant sous la cuve sont dissymétriques par rapport à l'axe de la série de façon à compenser le champ magnétique induit par une ou plusieurs files de cuves disposées parallèlement à la première et à courte distance.
- 9. Circuit de connexion selon la revendication 8, caractérisé en ce que la dissymétrie est obtenue en reliant au moins un collecteur cathodique situé sur un côté de la cuve à un nombre de barres cathodiques différent du nombre de barres auxquelles est relié le collecteur correspondant situé sur l'autre côté de la cuve.

DESCRIPTION

L'invention concerne un circuit de connexion électrique entre deux cuves successives d'une série pouvant comporter une ou plu3 668 985

sieurs files destinées à la production d'aluminium par électrolyse d'alumine dissoute dans la cryolithe fondue, selon le procédé Hall-Héroult, sous une intensité supérieure à 250 000 ampères, chaque cuve étant constituée par un caisson métallique parallélépipédique calorifuge, dont le grand axe est perpendiculaire à l'axe de la série et 5 le petit axe parallèle à l'axe de série, les deux extrémités du caisson par où passe le grand axe étant appelées «têtes», ce caisson supportant une cathode formée par la juxtaposition de blocs carbonés dans lesquels sont scellées des barres métalliques dont les extrémités sortent du caisson, sur ses deux grands côtés amont et aval, par rapport au sens du courant dans la file, chaque cuve comportant en outre un système anodique formé par au moins une poutre rigide horizontale supportant au moins une barre horizontale conductrice, dite «cadre anodique», sur laquelle sont assujetties les tiges de suspension des anodes, le circuit de connexion entre deux cuves successives étant constitué par des collecteurs cathodiques, reliés d'une part aux sorties cathodiques de la cuve de rang n et d'autre part à des conducteurs de liaison qui rejoignent par des montées le cadre anodique de la cuve de rang n+1 dans la file.

Conformément à l'art antérieur, les cuves sont rangées en séries selon une ou plusieurs files, et elles sont disposées en long ou le plus souvent, à l'heure actuelle, en travers, suivant que leur grand côté ou leur petit côté est parallèle à l'axe de la file. Les cuves sont branchées électriquement en série, les extrémités de la série étant reliées aux sorties positive et négative d'une sous-station électrique de redressement et de régulation. Dans chaque série de cuves, le nombre de files est, de préférence, pair afin de minimiser les longueurs de conducteurs.

Le courant électrique qui parcourt les différents éléments conducteurs (anode, électrolyte, métal liquide, cathodes, conducteurs de 30 montées à l'amont de la cuve, et en les plaçant à des distances sensiliaison) crée des champs magnétiques importants. Ces champs induisent, dans le bain d'électrolyse et dans le métal liquide contenu dans le creuset, des forces dites «de Laplace» qui, par déformation de la surface supérieure du métal fondu et les mouvements qu'elles engendrent, sont nuisibles à la bonne marche de la cuve. Le dessin de la cuve et de ses conducteurs de liaison est étudié pour que les effets des champs magnétiques créés par les différentes parties de la cuve et les conducteurs de liaison se compensent.

De telles cuves, prévues pour une intensité de 280 kA, sont décrites, entre autres, dans notre demande de brevet FR-A-2505368.

On sait que, pour réduire les investissements et diminuer les coûts d'exploitation, la tendance est d'augmenter la taille des unités de production, ce qui entraîne un accroissement de l'intensité traversant chaque cuve. La gamme d'intensités des nouvelles générations de cuves, qui se situait récemment au-dessous de 300 000 A, tend maintenant à évoluer dans les projets au-delà de 300 000 A.

A ces intensités, les effets magnétiques prennent une telle amplitude que, si l'on ne prenait pas de dispositions particulières pour en atténuer les effets, le rendement des cellules d'électrolyse s'en trouverait fortement diminué et, à la limite, tout fonctionnement normal pourrait devenir impossible.

Ces perturbations se manifestent par plusieurs effets:

- déformation de la nappe d'aluminium liquide qui se forme sur la cathode carbonée — relativement peu mouillable —, d'où des mouvements aléatoires de cette nappe avec, d'une part, une dénivellation globable pouvant atteindre, dans certains cas, une valeur supérieure à la distance anode-métal, et, d'autre part, une déformation en dôme symétrique;
- existence de mouvements permanents du bain de cryolithe fondue et de l'aluminium liquide, dont la configuration peut être plus ou moins favorable au bon déroulement de l'électrolyse;
- existence de mouvements périodiques de l'interface bain/ métal, néfastes au rendement de l'électrolyse (instabilité), et pouvant aller, dans certains cas, jusqu'à l'expulsion de métal liquide hors de la cuve.

En outre, la dissymétrie éventuelle, par rapport au grand axe de la cuve, des circulations du métal présente les inconvénients suivants:

l'érosion mécanique par l'aluminium liquide du talus de cryolithe figée étant directement reliée à la vitesse de circulation du métal, une dissymétrie de ces vitesses de circulation entraînerait une érosion différente des talus sur les deux côtés de la cuve;

- les échanges thermiques entre le métal et le talus de cryolithe figée sont directement reliés aux vitesses de circulation du métal: une dissymétrie de ces vitesses de circulation entraînerait des échanges thermiques différents avec les deux grands côtés de la cuve et aurait pour conséquence une différence de forme des talus d'un grand côté à l'autre, ce qui est gênant pour l'exploitation des cuves.

Pour supprimer les perturbations magnétiques, on peut agir soit sur les courants horizontaux, qui circulent dans la nappe d'aluminium liquide, soit sur le champ magnétique. Dans le cas présent, on va faire appel à cette deuxième possibilité.

Du fait de l'augmentation des dimensions de la cuve d'électrolyse qui accompagne l'augmentation de l'intensité traversant chaque cuve, il devient de plus en plus difficile d'obtenir des valeurs de champs magnétiques permettant le maintien durable de la nappe de métal à une position stable.

Pour obtenir cette stabilité, les composantes verticales Bz du champ magnétique devraient rester, en moyenne quadratique, inférieures à 10^{-3} teslas. De plus, pour stabiliser les circulations de bain, et pour réduire les vitesses du métal, la composante horizontale Bx doit être antisymétrique par rapport à l'axe transversal de la cuve (petit axe) et By doit être, en moyenne, antisymétrique par rapport à l'axe longitudinal de la cuve (grand axe).

Par l'utilisation de schémas de conducteurs inspirés des cuves d'intensité plus faible, on peut arriver à réduire les champs verticaux à des valeurs acceptables. Cela se fait en multipliant le nombre de blement constantes, mais en dissymétrisant les composantes horizontales By.

A titre de comparaison, alors que sur les cuves d'intensité proche de 180 kA 50 à 75% seulement du courant passe par les montées 35 amont, pour des cuves proches de 400 kA, plus longues, la totalité du courant doit obligatoirement emprunter ces conducteurs, ce qui crée des champs horizontaux fortement dissymétrisés.

Il y a un seuil d'intensité au-delà duquel cette dissymétrie grève fortement les résultats techniques en créant des circulations intenses 40 de bain et d'aluminium liquide déstabilisant l'électrolyse.

Pour resymétriser les champs, on peut songer à placer une montée à l'aval de la cuve. Mais pour éviter de distordre les composantes verticales des champs, le branchement de cette montée doit être fait par un trajet bien choisi, utilisant le dessous du caisson et 45 sensiblement parallèle à l'axe longitudinal du caisson, allant de la tête au centre de la cuve au moins sur une partie du trajet.

L'invention a précisément pour but de fournir un circuit de connexion électrique entre deux cuves successives, ce circuit présentant une configuration de conducteurs, applicable à des cuves à anodes 50 précuites disposées en travers, d'intensité supérieure à 250 kA et pouvant atteindre 300 à 600 kA, sans que ces valeurs constituent une limite du champ d'application de l'invention, permettant d'obtenir des valeurs de champs magnétiques dont la composante verticale est partout inférieure à 10⁻³ teslas et dont les composantes horizontales 55 se rapprochent des conditions d'antisymétrie fixées précédemment.

A cet effet, le circuit de connexion selon l'invention est tel que spécifié dans la revendication 1.

On va maintenant donner des exemples, non limitatifs, de mise en œuvre de l'invention, en se référant au dessin annexé, dans lequel:

La figure 1 schématise, pour deux demi-cuves successives (symétriques par rapport au petit axe (1) de la cuve, qui coïncide avec l'axe de la file), la disposition des conducteurs de liaison. Cette figure est une vue de dessus réduite aux éléments essentiels. Elle concerne des cuves d'une intensité de l'ordre de 480 kA.

La figure 2 est analogue à la figure 1, mais pour des cuves d'intensité proche de 360 kA.

La figure 3 représente la répartition du courant dans les conducteurs pour une cuve de 480 kA selon l'invention.

668 985

Pour la clarté des figures, les sorties cathodiques, sur la figure 1, ont été représentées par des traits épaissis, et, sur les figures 1 à 3, les différents conducteurs de liaison ont été représentés par de simples traits, les tracés en pointillé indiquant que les conducteurs passent au-dessous du niveau du fond du caisson (2).

Le contour du caisson est indiqué par (2), les sorties cathodiques amont dans leur ensemble sont désignées par (3), les sorties cathodiques aval dans leur ensemble par (4), la position des tiges-supports des anodes par (5), les deux éléments du cadre anodique par (6) et les conducteurs équipotentiels qui les relient par (7).

Dans la description qui suit, on conviendra de désigner chaque conducteur par un repère numérique, et son symétrique, par rapport à l'axe (1) commun de la file et de la cuve, par le même repère numérique suivi de la lettre S (pour indiquer la symétrie).

On conviendra également de désigner par:

- «montée de tête» les deux montées qui alimentent le cadre anodique à ses deux extrémités, sur les petits côtés de la cuve, habituellement appelés «têtes» de la cuve;
- «montée axiale» la montée située sensiblement selon le petit axe (1) de la cuve, qui est également l'axe de la file. Elle peut être constituée de deux demi-montées juxtaposées ou confondues en un conducteur unique:
- «montées centrales» les deux montées situées de part et d'autre de la montée axiale, lorsqu'elle existe, ou sinon, de part et d'autre (et en règle générale symétriquement) du petit axe (1);
- «montées intermédiaires» la ou les montées disposées entre les montées de tête et les montées centrales.

Selon l'intensité du courant total d'électrolyse alimentant la série, le nombre de montées amont sera par exemple de 5 pour des cuves de 360 kA, de 7 pour des cuves de 420 kA, de 9 pour des cuves 30 de 480 kA, le nombre de montées aval étant, dans ces divers cas, égal à 2, étant bien entendu qu'il ne s'agit là que d'exemples illustratifs, qui n'impliquent pas des limitations strictes de l'invention aux valeurs citées (en particulier, le nombre de montées amont peut être pair ou impair).

Il importe également de préciser que, compte tenu des exigences mécaniques de construction de cuves de cette dimension, l'expression «équidistante» ne doit pas être interprétée au sens géométrique strict, mais elle veut signifier que les montées sont disposées à intervalles réguliers dans l'espace libre entre les ensembles formés par les 40 anodes et leurs systèmes de suspension et de verrouillage sur le cadre anodique, de façon à ne pas gêner les opérations d'enlèvement des anodes usées et leur remplacement par des anodes neuves. Il en est de même pour la notion de «symétrie», qui doit être interprétée avec les mêmes réserves.

Pour la mise en œuvre de l'invention dans le cas d'une cuve à 480 kA, représentée sur les figures 1 et 3, on prévoit 9 montées amont qui se répartissent en une montée de tête (10) - et sa symétrique 10S sur l'autre moitié de la cuve —, deux montées intermédiaires (11, 12) et leurs symétriques (11S, 12S) sur l'autre moitié de la cuve, et une montée centrale (13) et sa symétrique (13S) sur l'autre moitié de la cuve, et une montée axiale (14, 14S) constituée de deux demi-montées juxtaposées, ou même confondues, disposées selon l'axe (1) commun de la cuve et de la série.

Les deux montées aval sont la montée (15) et sa symétrique (15S) 55 sur l'autre moitié de la cuve.

Les montées de tête (10) et (10S) sont alimentées à partir des collecteurs cathodiques amont par un conducteur (16, 16S) passant à l'extérieur de la tête (17) de la cuve, c'est-à-dire de l'extrémité du caisson métallique (2). Les montées intermédiaires (11, 12; 11S, 12S) 60 sont alimentées à partir des collecteurs cathodiques amont, à la fois par un conducteur (18, 18S) contournant également la tête (17) de la cuve et par un conducteur ou un groupe de conducteurs (19, 19S) passant sous la tête (17) de la cuve, et par un conducteur ou un groupe de conducteurs (20, 20S) passant sous le caisson métallique (2). Les montées centrales (13, 13S) et la montée axiale (14, 14S) sont alimentées uniquement à partir des collecteurs cathodiques centraux aval, tels que (21, 22) et (23; 21S, 22S, 23S). Enfin, les montées

aval (15) et (15S) sont alimentées par un conducteur longitudinal (24) passant sous le grand axe de la cuve n+1, à partir des collecteurs cathodiques aval (25, 26; 25S, 26S) situées du côté de la tête, par l'intermédiaire de conducteurs de liaison (27, 28; 27S, 28S) passant sous la tête de la cuve n+1 pour rejoindre le conducteur longitudinal (24, 24S).

Les raccordements des collecteurs cathodiques sur les différentes sorties cathodiques (16 sorties amont 3A à 3P, et 16 sorties aval 4A à 4P) sont effectués de la façon suivante:

- Les sorties cathodiques 3A et 3B sont reliées au collecteur (29), lui-même connecté aux barres (20) passant sous la cuve;
- les sorties cathodiques 3C, 3D, 3E, 3F sont reliées au collec-15 teur (30), lui-même connecté à l'une des barres (18) qui contournent la tête (17) de la cuve;
 - les sorties cathodiques 3G, 3H, 3I et 3J sont reliées au collecteur (31), connecté à la deuxième barre (18) qui contourne la tête (17) de la cuve;
- les sorties cathodiques 3K, 3L, 3M, 3N sont reliées au collecteur (32), connecté à la barre (19) qui passe sous la tête (17) de la cuve;
- les sorties cathodiques 3P et 3Q sont reliées au collecteur (33), connecté à la barre (16) qui contourne la tête (17) de la cuve.

A l'aval

25

- Les sorties cathodiques 4A, 4B, 4C, 4D sont reliées au collecteur (21) qui alimente la demi-montée axiale (14);
- les sorties cathodiques 4E, 4F, 4G, 4H sont reliées au collecteur (22) qui alimente la montée centrale (13);
- les sorties cathodiques 4I, 4J, 4K, 4L sont reliées au collecteur (23) qui alimente également la montée centrale (13);
- les sorties cathodiques 4M, 4N sont reliées au collecteur (25) 35 qui, par la barre (27), rejoint le conducteur longitudinal (24) disposé sous la cuve n+1 et qui alimente la montée aval (15);
 - les sorties cathodiques 4P, 4Q sont reliées au collecteur (26) qui, par la barre (28), rejoint également le conducteur (24) et la montée aval (15).

Pour obtenir une répartition et une valeur des composantes du champ magnétique conforme au but que l'on s'est fixé, la répartition du courant dans ces différents conducteurs doit être comprise dans les limites suivantes, exprimées en pourcentage du courant total J traversant chaque cuve, pour des valeurs de J supérieures à environ 45 400 kA:

- dans chaque montée de tête (10) et (10S): 1 à 6% de J;
- dans chaque montée intermédiaire (11, 12;

11S, 12S): 8 à 15% de J;

- dans chaque montée centrale et axiale (13; 14+14S)
- et (13S): 9 à 16% de J:
- dans chaque montée aval (15, 15S): 3 à 9% de J.

En ce qui concerne les conducteurs de liaison:

- dans les conducteurs (16+18) et (16S+18S)
 - contournant chaque tête: 10 à 20% de J;
- dans chacun des conducteurs (19) et (19S)
 - sous les têtes: 3 à 10% de J;
- dans chacun des conducteurs (20) et (20S)
 - 0,5 à 6,5% de J; passant sous le caisson:
- dans chacun des conducteurs longitudinaux (24, 24S): 3 à 9% de J.

Dans le cas d'une cuve à 360 kA, représentée sur la figure 2, les mêmes principes et les mêmes caractéristiques constructives sont mis en œuvre, avec quelques simplifications liées à la plus faible inten-65 sité. Il y a maintenant 5 montées amont qui se répartissent en une montée intermédiaire à 60 kA (11) et sa symétrique (11S), non figurée, une montée centrale à 60 kA (13) et sa symétrique (13S), non figurée, et une montée axiale constituée par deux demi-montées

de 30 kA, juxtaposées ou même confondues (14) et sa symétrique (14S), non figurée. Par rapport à une cuve à 480 kA, on a donc supprimé les deux montées de tête et deux montées intermédiaires.

On retrouve une montée aval (15) de 30 kA et sa symétrique (15S), non figurée. Sur chaque demi-cuve:

- la montée intermédiaire (11) est alimentée à partir des collecteurs cathodiques amont (34, 35) de la cuve précédente, de rang n, par un conducteur (36) contournant la tête de la cuve;
- la montée centrale (13) est alimentée à partir des collecteurs cathodiques aval (37, 38);
- la demi-montée axiale (14) est alimentée à partir du collecteur cathodique aval (39);
- enfin la montée aval (15) est alimentée à partir du collecteur cathodique amont (40) par un conducteur (41) qui passe sous la tête de la cuve n, puis sous l'angle amont de la cuve n+1, et rejoint un conducteur longitudinal (24) disposé sous le caisson et dont une partie est sensiblement parallèle au grand axe de la cuve.

Pour obtenir une répartition et une valeur des composantes du champ magnétique conformes au but que l'on s'est fixé, la répartition du courant dans ces différents conducteurs doit être comprise dans les limites suivantes, exprimées en pourcentage du courant total J traversant chaque cuve; pour des valeurs de J comprises entre 300 et 400 kA, et pour 5 montées amont + 2 montées aval:

12 à 22% de J;
12 à 22% de J; ²⁵
6 à 12% de J;
6 à 12% de J.

La répartition des sorties cathodiques entre les différents collecteurs cathodiques (34, 35, 40) à l'amont, (37, 38, 39) à l'aval, et leurs symétriques, apparaît clairement sur la figure 2 et n'appelle pas de commentaire particulier.

Il faut également noter que le conducteur longitudinal (24) qui alimente la montée aval (15) peut former avec l'axe longitudinal de la cuve un angle α (tracé 24A, en pointillé fin) sans répercussion importante sur la composante verticale Bz du champ magnétique au niveau de l'interface bain-métal; on peut estimer l'écart à moins de $1\cdot 10^{-4}$ tesla pour $\alpha=30^\circ$. Il en est de même pour le trajet «en escalier» (24B en trait mixte), ce qui laisse une certaine marge de manœuvre au montage, en fonction de l'encombrement de l'espace sous le caisson de la cuve.

COMPENSATION DE LA FILE VOISINE

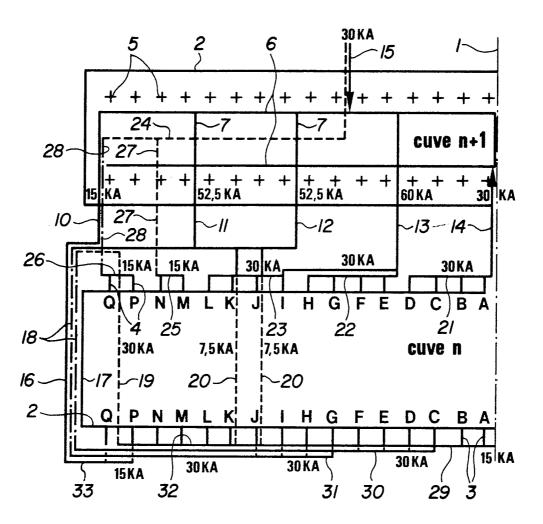
Lorsque les séries de cuves d'électrolyse sont disposées en deux ou plusieurs files parallèles, il est généralement indispensable, pour obtenir le maximum de stabilité et de rendement Faraday, de compenser le champ magnétique parasite induit, sur chaque file, par le courant circulant dans la file voisine. Cette compensation peut être effectuée en combinaison avec la présente invention par l'un des procédés décrits dans les brevets antérieurs accordés à la titulaire et, en particulier, dans le brevet français FR 2 333 060 (= US 4 072 597) selon lequel on crée une dissymétrie, par rapport à l'axe de la série, dans la disposition des collecteurs cathodiques, dans le brevet français FR 2343826 (US 4090930) selon lequel on crée, sur la tête de la cuve la plus proche de la file voisine, un champ magnétique antagoniste, sensiblement égal et de signe opposé au champ induit par la file voisine, en formant une boucle par un conducteur de dérivation passant sous la tête de la cuve, ou dans le brevet français FR 2425482 (= US 4169034) selon lequel on dispose, le long de chaque file et sur un seul côté — ou sur les deux —, un conducteur

parcouru par un courant d'intensité et de sens choisis de façon à compenser le champ parasite induit par la ou les files voisines. Dans le cas présent, la compensation peut être obtenue en disposant les collecteurs cathodiques amont et/ou les collecteurs cathodiques aval et/ou les conducteurs de liaison passant sous la cuve de façon dissymétrique par rapport à l'axe de la série, ou encore en reliant au moins un collecteur cathodique situé sur un côté de la cuve à un nombre de barres cathodiques différent du nombre de barres auxquelles est relié le collecteur correspondant situé sur l'autre côté de la cuve, de façon à compenser le champ magnétique induit par une ou plusieurs files de cuves disposées parallèlement à la file considérée, et à courte distance.

EXEMPLE DE MISE EN ŒUVRE

L'invention a été appliquée à une petite série expérimentale de cuves fonctionnant sous 480 kA, chaque cuve étant équipée de deux lignes de 32 anodes précuites, et munie, sur chaque grand côté (amont et aval), de 32 sorties cathodiques extrayant 7,5 kA chacune. Les répartitions de courant ont été les suivantes, pour l'ensemble de 20 la cuve:

Conducteur	Nbre	Intensité kA	% J	Intensité totale kA
Montées de tête (10, 10S)	2	15	3,1	30
Montées intermédiaires (11, 12; 11S, 12S) Montées centrales	4	52,5	10,9	210
(13, 14+14S, 13S)	3	60	12,5	180
Montées aval (15, 15S)	2	30	6,25	60
TOTAL			100	480
Conducteurs de tête (16+18; 16S+18S)	2	75	15,6	150
Conducteurs sous tête (19, 19S)	2	30	6,25	60
Conducteurs sous caisson (20, 20S)	2	15	3,1	30
Conducteur longitudinal (24, 24S)	2	30	6,25	60°
N.B. La différence, soit 180 kA, passe par les 2 montées centrales (13, 14).				300


(Ces valeurs ont été reportées sur la figure 1, sous chacun des conducteurs concernés.)

On a mesuré les valeurs suivantes du champ magnétique, sur 50 chaque cuve, au niveau de la nappe de métal:

Bz – valeur maximale trouvée: $2 \cdot 10^{-3}$ teslas
Bz quadratique – moyen: $5 \cdot 10^{-4}$ teslas
By moyen sur l'axe longitudinal: $5,3 \cdot 10^{-4}$ teslas
By maximun: $140 \cdot 10^{-4}$ teslas

Ces cuves ont montré, en exploitation expérimentale, une stabilité remarquable, et ont produit de l'aluminium avec un rendement Faraday compris entre 94 et 95%. Ce rendement n'aurait pu être ni obtenu ni même approché de loin par les conceptions de circuits en 60 usage à ce jour.

AVAL

AMONT

FIG. 1

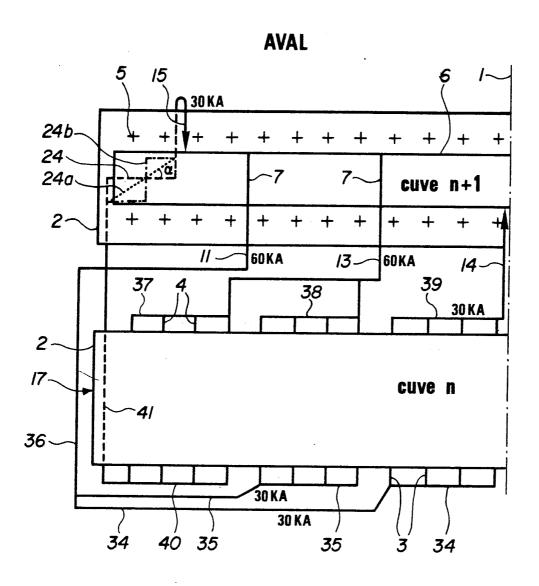
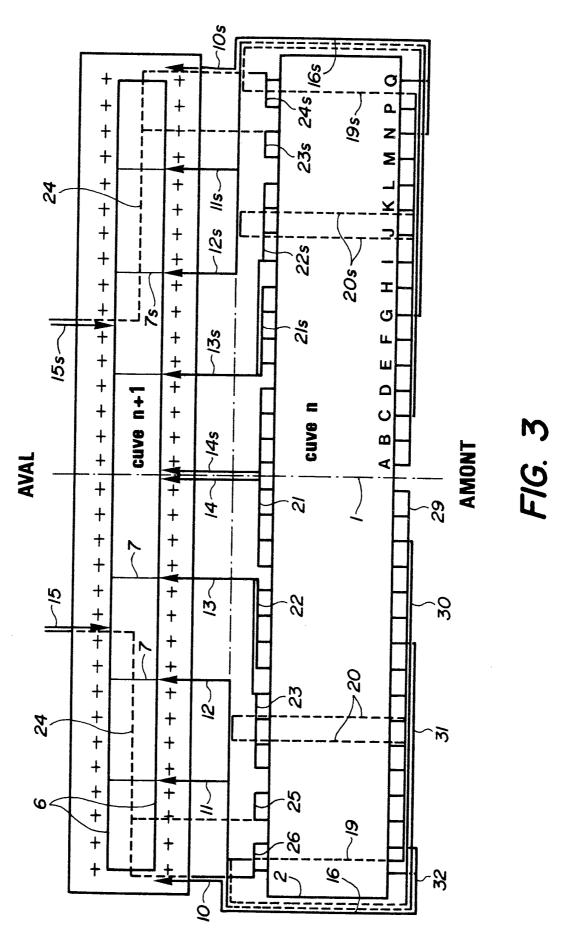



FIG. 2

AMONT

