PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6.

GOG6F 15/16, 15/173 Al

(11) International Publication Number:

(43) International Publication Date:

WO 99/15984

1 April 1999 (01.04.99)

(21) International Application Number: PCT/US98/20095

(22) International Filing Date: 25 September 1998 (25.09.98)

(30) Priority Data:
60/060,655 26 September 1997 (26.09.97) US
(71)(72) Applicants and Inventors: BLADOW, Chad, R.

[US/US]; 16165 Lindbergh Road, Monument, CO 80132
(US). DEVINE, Carol, Y. [US/US]; 395 Palm Springs
Drive, Colorado Springs, CO 80921 (US). SCHWARZ, Ed-
ward [US/US]; 462 Broome Street, New York, NY 10013
(US). SHAMASH, Arieh [US/US]; 85 Somerset Drive,
Great Neck, NY 11021 (US). SHOULBERG, Richard, W,
[US/US]; 306 Clarksley Road, Manitou Springs, CO 80829
(US). WOOD, lJeffrey, A. [US/US]; 2225 Kirby Court,
Colorado Springs, CO 80919 (US).

(74) Agents: GROLZ, Edward, W. et al.; Scully, Scott, Murphy &
Presser, 400 Garden City Plaza, Garden City, NY 11530
(US).

(81) Designated States: AU, BR, CA, JP, MX, SG, European patent
(AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT,
LU, MC, NL, PT, SE).

Published
With international search report.
Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
amendments.

(54) Title: GRAPHICAL USER INTERFACE FOR WEB ENABLED APPLICATIONS

CUSTOMER DMZ

- Real Time Monitor

- Toll Free Network Manager
- Broadband

- Order Entry

- Service Inquiry

) 1
1 1

I 1

1 1

I I

) !

l |

v/ N

1 1

1 1

t 1

1 !

1 1

el . !
Browser : :
IL 1

| 1

1 1

] 1

: !

1

! BE—

' RTM 1

i Web Server]

Browser Enabled 1]
Applications: : :

- Home Page ! H
- Inbox]]
1 I

1 1

I]

1 1

)]

1 1

) I

(57) Abstract

1
1
MCI INTRANET : 40
1
o % 400)
Service Inquiry : CSM/s|
31
1
Inbox Server 1
=
Rpt Manager Server :
= 38 :
Staro_E Server37 : _ 40(5)
_J]
TFNM Server : NetCap
=
Broadban rver
= % | ey e
H S
T View Server | GSE
rafficView po 400
1
StarODS Server 1 Persrective
Event 650: o8t
Monitor 1
1
1
MCI 1 MCI
Mid-range ! Mainframe
Servers ! Systems

An integrated system of user interfaces (20) is provided for communicating with remote services. A backplane architecture controls
and manages the user interfaces by instantiating, launching, overseeing and closing the user interfaces associated with a plurality of

applications residing in a plurality of remote servers (24, 26, 28, 31,

with the backplane via messaging interfaces.

32, 34, 52). Each application communicates with one another and

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
CI
CM
CN
Ccu
Cz
DE
DK
EE

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cote d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
IT
JP
KE
KG
KP

KR
Kz
LC
LI

LK
LR

FOR THE PURPOSES OF INFORMATION ONLY

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Ireland

Israel

Iceland

Ttaly

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
Mw
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
Sz
TD
TG
TJ
™
TR
TT
UA
UG
us
Uz
VN
YU
7w

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

20

25

30

35

WO 99/15984 PCT/US98/20095

GRAPHICAL USER INTERFACE FOR WEB ENABLED APPLICATIONS

The present invention relates in general to
computer software, and more particularly to a user
interface software in a client-server network
architecture.

A client-server software system having a
graphical user interface front-end and one or more
back-end legacy systems are generally known in the
information systems industries. World Wide Web (Web) -
based online systems are also starting to emerge as the
use of the Internet proliferates world wide. These
Web-based online systems usually employ a Web browser
displaying Hypertext Markup Language (HTML) pages as
graphical user interface (GUI), and often include Java
applets and Common Gateway Interface (CGI) programs for
customer interaction. In these systems, however the
retrieval from a given Uniform Resource Locator (URL)
and display on the customer’s screen aré often
performed on a page by page basis. That is, each page
retrieved and displayed is independent of any previous
or subseqguent pages. Because each page 1is displayed
and run independently of one another, components
existing on a page are limited in their ability to
communicate with other components existing on other
pages. Moreover, there is no backbone architecture for
managing and overseeing GUI when screen displays are
presented as independent HTML pages. Additionally, the
HTML pages and Java applets are usually confined to a
Web browser within which they are running. Therefore,
it is highly desirable to provide a Web-base GUI system
which includes a backbone architecture for managing and
enabling communications and interoperability among
various processes or components comprising the GUI
system, and at the same time provide some independence

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/15984 PCT/US98/20095

from the Web browser within which the GUI is running.

In conventional systems, a connection is made
with a large legacy system via a dial-up connection
from a customer owned personal computer oOr workstation.
This connection frequently, although not always,
emulates a terminal addressable by the legacy systems.
The dial-up access requires custom software on the
customer workstation to provide dial-up services,
communication services, emulation and/or translation
services and generally some resident custom form of the
legacy application to interface with the midrange or
mainframe computer running the legacy system.

There are several problems associated with
the approach. First, the aforementioned software is
very hardware dependent, requiring multiple versions of
software compatible with each of a wide range of
workstations customers generally have. Therefore,
extensive inventory for distribution becomes necessary.
If the customer hardware platform changes through an
upgrade, the software licensing issues must be
renegotiated. Moreover, installing the software
generally requires an intensive effort on the customer
and the software support team before any reliable and
secure sessions are possible.

Secondly, dial-up, modem, and communications
software interact with each other in many ways which
are not always predictable to a custom application,
requiring extensive trouble shooting and problem
solving for an enterprise wishing to make the legacy
system available to the customer, particularly where
various telephone exchanges, dialing standards or

signal standards are involved.

SUBSTITUTE SHEET (RULE 26)

10

15.

20

25

30

WO 99/15984 PCT/US98/20095

Thirdly, although more businesses are turning
to the Internet to improve customer service and lower
costs by providing Web-based support systems, when an
enterprise wishes to make more than one system
available to the customer, the custom application for
one legacy system is not able to connect to a different
legacy system, and the customer must generally logoff
and logon to switch from one to the other. The
delivery technology used by the two legacy systems may
be different, requiring different interface standards,
and different machine level languages may be used by
the two system, as for example, the 96 character EBCDIC
language used by IBM, and 127 ASCII character language
used by contemporary personal computers. Therefore, an
integrated and unified Web-based system for providing
an access to a number of different legacy systems in
one session is desired.

Finally, the security and entitlement
features of the various legacy systems may be
completely different, and vary from system to system
and platform to platform. It is therefore, desired to
provide connectivity to enterprise legacy systems over
the public Internet, as the Internet provides access
connectivity world wide via the TCP/IP protocol,
without need to navigate various telephone exchanges,
dialing standards or signal standards.

The popularity of the public Internet
provides a measure of platform independence for the
customer, as the customer can run their own Internet
Web browser and utilize their own platform connection
to the Internet to enable services. This resolves many

of the platform hardware and connectivity issues in the

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/15984 PCT/US98/20095

customers favor, and leaves the choice of platform and
operating system to the customer. Web-based programs
can minimize the need for training and support since
they utilize existing client software which the user
has already installed and already knows how to use.
Further, if the customer later changes that platform,
then, as soon as the new platform is Internet enabled,
service is restored to the customer. The connectivity
and communications software burden is thus resolved in
favor of standard and readily available hardware and
the browser and software used by the public Internet
connection.

An Internet delivered paradigm obviates many
of the installation and configuration problems involved
with initial setup and configuration of a customer
workstation, since the custom application required to
interface with the legacy system can be delivered via
the pubic Internet and run within a standard Web-
browser, reducing application compatibility issues to
browser compatibility issues.

For the enterprise, the use of off-the-shelf
Web browsers by the customer significantly simplifies
the enterprise burden by limiting the client
development side to screen layout designs and data
presentation tools that use a common interface enabled
by the Web browser. Software development and support
resources are thus available for the delivery of the
enterprise legacy services and are not consumed by a
need for customer support at the workstation level.

The present invention is directed to an
integrated graphical user interface system for enabling

a user to interact with one or more application

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/15984 PCT/US98/20095

services provided by remote servers. The present

invention utilizes the Web paradigm to allow easy and

convenient access from the user’s perspective. 1In

order to provide cross-platform software that is not
dependent on specific hardware or operating system, the
present invention is implemented using programming
languages, such as Java™ which only requires a Java™
enabled Web browser.

The system of the present invention includes
an application backplane unit for controlling and
managing the overall user interface system to a number
of Web enabled application services. By invoking the
backplane unit a user may receive a number of disparate
services available from the remote servers.

Each remote service includes its own user
interface unit, referred heretofore as a client
application, independently implemented of one another
and the backplane. Although the client applications
are independently developed as separate modules, the
system of the present invention provides a capability
of integrating the client applications into one unified
system, allowing users to access the individual client
applications via the backplane unit.

As a novel feature, the present invention
provides interoperability between each of the client
applications and the backplane, as well as among each
of the client applications. Accordingly, it is the
object of the present invention to provide an
integrated customer interface system to a number of
disparate services available from remote servers,
wherein separate client applications may communicate

with one another and with the backplane unit.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30 -

WO 99/15984 PCT/US98/20095

The present invention includes a centralized
user authentication feature to insure that the user has
valid access to the system. The authentication
procedure generally includes a logon object which
prompts for and accepts the user’s name and password.
The logon object then communicates the logon
transaction to a remote server responsible for
screening those users attempting to access remote
services. Once a user has been authenticated by the
system of the present invention, the user need not be
validated again each time the user accesses another
remote server via the respective server’s user
interface program. In addition, each application may
supplement the provided authentication procedure, with
its own method of authentication by communicating with
its respective servers independently. Accordingly, it
is another object of this invention to provide a
unified authentication process for all remote services
to insure that only those users with valid access code
may access the remote services.

Once a validated user is logged onto the
system, the user is presented with a set of remote
services which the user may obtain. The set of remote
services available for each user is unique and depends
on each user’s subscriptions to the services. The set
of service subscription, then forms the user’s
entitlements for the services. Thus, for example, if a
user subscribes to a toll free network service, the
user is entitled to access information regarding the
service. On the other hand, if the user does not
subscribe to the toll free network service, that option

is not available for the user to select.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25 .

30

WO 99/15984 PCT/US98/20095

The present invention includes a user object
to represent a current user logged onto the system.
This user object, inter alia, is responsible for
obtaining from a remote server the current user’s
information including the user’s entitlements to
various remote services. The backplane uses the
entitlement information to provide only those services
available to the user. As explained previously, the
backplane would deactivate the services to which the
user did not have the entitlements, effectually
blocking the user from accessing those services.

In addition, the user information is
maintained for the duration of a logon session,
allowing both the backplane and the client applications
to access the information as needed throughout the
duration of the session. The backplane and the client
applications use the information to selectively provide
remote services to users. Accordingly, it is yet
another object of the present invention to provide a
mechanism for retrieving and maintaining user
information and entitlements such that they are
available to processes and threads running on the
client platform without having to communicate with a
remote server every time the information is needed.

The system of the present invention presents
the remote services for the user to select in a form of
an application toolbar on a screen. The toolbar runs
in an independent frame and allows the users to access
different remote services from any screen during the
life of a session.

The system of the present invention

implements a “keep alive message” passed between a

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/15984 PCT/US98/20095

client and a server, also called a “heartbeat”. For
example, a keep alive message is sent every predefined
period, e.g., 1 minute from a client application to the
server. When the client application fails to heartbeat
consecutively for a predetermined period of time, for
example, one hour, the server treats this client
application as having exited by closing the application
and performing cleanup routines associlated with the
application. This mechanism effectively prevents
unwanted sessions from remaining open in the event of
client application failures. Accordingly, it is
further object of the present invention to provide a
mechanism for detecting communication failures among
the “stateless” processes running the present
invention.

The present invention also includes object
oriented base classes and interfaces for the backplane
and the client applications to use. The client
applications typically extend and implement them in
order to achieve tight integration with the backplane
unit. By use of the base classes and interfaces, the
client applications may be implemented in more than one
way.

For example, the client application may be
derived directly from the java object class, or
alternatively, from the java applet class. Depending
on the implementation mechanism, the backplane may
launch the client applications either directly or by
retrieving another Web page which launches the client
application. Accordingly, it is further object of the
present invention to provide a flexible and modular

approach to implementing each of the client

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/15984 PCT/US98/20095

applications as need arises, and yet at the same time
provide tightly controlled runtime environment for the
disparate client applications.

_ Preferred embodiments of the present
invention will now be described, by way of example
only, with reference to the accompanying drawings in
which:

Figure 1 illustrates the software
architecture component comprising a three-tiered
structure;

Figure 2 is a diagrammatic overview of the
software architecture of the networkMCI Interact
system;

Figure 3 is an illustrative example of a
backplane architecture schematic as invoked from a home
page of the present system;

Figure 4 illustrates an example client GUI
presented to the client/customer as a browser Web page;

Figure 5 is a diagram depicting the physical
network architecture in the system of the present
invention;

Figure 6 is an example illustrating a logon
Web page of the present invention;

Figure 7 is a context diagram illustrating
interactions with a user, a client platform, OE system
and other application systems such as the inbox, report
requestor, and network manager;

Figure 8 is a data flow diagram illustrating
the present invention’s process flow during logon,
entitlement request/response, heartbeat transmissions
and logoff procedures;

Figure 9 is a data flow diagram for various

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/15984 PCT/US98/20095

-10-

transactions communicated in the system of the present
invention;

Figure 10 is a flow diagram illustrating a
logon process to the system of the present invention;

Figure 11 is a flow diagram illustrating the
backplane logic process when a user selects a service;
and

Figure 12 is a diagram illustrating a
security module design having clean separation from the

browser specific implementations.

An overview of the Web-enabled integrated system

The present invention is one component of an
integrated suite of customer network management and
report applications using a Web browser paradigm.
Known as the networkMCI Interact system (“nMCI
Interact”) such an integrated suite of Web-based
applications provides an invaluable tool for enabling
customers to manage their telecommunication assets,
quickly and securely, from anywhere in the world.

The nMCI Interact system architecture is
basically organized as a set of common components
comprising the following:

1) an object-oriented software architecture
detailing the client and server based aspect of nMCI
Interact;

2) a network architecture defining the
physical network needed to satisfy the security and
data volume reqguirements of the networkMCI System;

3) a data architecture detailing the
application, back-end or legacy data sources available
for networkMCI Interact; and

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30°

WO 99/15984 PCT/US98/20095

-11-

4) an infrastructure covering security, order
entry, fulfillment, billing, self-monitoring, metrics
and support.

) Each of these common component areas will be
generally discussed hereinbelow.

Figure 1 is a diagrammatic illustration of
the software architecture component in which the
present invention functions. A first or client tier 10
of software services are resident on a customer
workstation 10 and provides customer access to the
enterprise system, having one or more downloadable
application objects directed to front-end business
logic, one or more backplane service objects for
managing sessions, one or more presentation services
objects for the presentation of customer options and
customer requested data in a browser recognizable
format and a customer supplied browser for presentation
of customer options and data to the customer and for
Internet communications over the public Internet.
Additional applications are directed to front-end
services such as the presentation of data in the form
of tables and charts, and data processing functions
such as sorting and summarizing in a manner such that
multiple programs are combined in a unified application
suite.

A second or middle tier 16, is provided
having secure web servers and back-end services to
provide applications that establish user sessions,
govern user authentication and their entitlements, and
communicate with adaptor programs to simplify the
interchange of data across the network.

A third or back-end tier 18 having

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/15984 PCT/US98/20095

-12_

applications directed to legacy back-end services
including database storage and retrieval systems and
one or more database servers for accessing system
resources from one or more legacy hosts.

Generally, as will be explained below, the
customer workstation includes client software capable
of providing a platform-independent, browser-based,
consistent user interface implementing objects
programmed to provide a reusable and common GUI
abstraction and problem-domain abstractions. More
specifically, the client-tier software is created and
distributed as a set of Java classes including the
applet classes to provide an industrial strength,
object-oriented environment over the Internet.
Application-specific classes are designed to support
the functionality and server interfaces for each
application with the functionality delivered through
the system being of two-types: 1) cross-product, for
example, inbox and reporting functions, and 2) product
specific, for example, toll free network management or
call management functions. The system is capable of
delivering to customers the functionality appropriate
to their product mix.

Figure 2 is a diagrammatic overview of the
software architecture of the networkMCI Interact system
including: the Customer Browser (a.k.a. the Client) 20;
the Demilitarized Zone (DMZ) 17 comprising a Web
Servers cluster 24; the MCI Intranet Dispatcher Server
26; and the MCI Intranet Application servers 30, and
the data warehouses, legacy systems, etc. 40.

The Customer Browser 20, is browser enabled

and includes client applications responsible for

SUBSTITUTE SHEET (RULE 26)

10

15

20

25 .

30

WO 99/15984 PCT/US98/20095

-13-

presentation and front-end services. Its functions
include providing a user interface to various MCI
services and supporting communications with MCI's
Intranet web server cluster 24. As illustrated in
Figure 3, and more specifically described below, the
client tier software is responsible for presentation
services to the customer and generally includes a web
browser 14 and additional object-oriented programs
residing in the client workstation platform 20. The
client software is generally organized into a component
architecture with each component generally comprising a
specific application, providing an area of
functionality. The applications generally are
integrated using a “backplane” services layer 12 which
provides a set of services to the application objects
that provide the front-end business logic. The
backplane services layer 12 also manages the launching
of the application objects. The networkMCI Interact
common set of objects provide a set of services to each
of the applications. The set of services include: 1)
session management; 2) application launch; 3) inter-
application communications; 4) window navigation among
applications; 5) log management; and 6) version
management.

The primary common object services include:
graphical user interface (GUI); communications;
printing; user identity, authentication, and
entitlements; data import and export; logging and
statistics; error handling; and messaging services.

Figure 3 is a diagrammatic example of a
backplane architecture scheme illustrating the

relationship among the common objects. In this

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/15984 PCT/US98/20095

-14-

example, the backplane services layer 12 is programmed
as a Java applet which may be loaded and launched by
the web browser 14. With reference to Figure 3, a
typical user session starts with a web browser 14
creating a backplane 12, after a successful logon. The
backplane 12, inter alia, presents a user with an
interface for networkMCI Interact application
management. A typical user display provided by the
backplane 12 may show a number of applications the user
is entitled to run, each application represented by
buttons depicted in Figure 3 as buttons 58a,b,c
selectable by the user. As illustrated in Figure 3,
upon selection of an application, the backplane 12
launches that specific application, for example,
Service Ingquiry 54a or Event Monitor 54b, by creating
the application object. 1In processing its functions,
each application in turn, may utilize common object
services provided by the backplane 12. Figure 3 shows
graphical user interface objects 56a,b created and used
by a respective application 54a,b for its own
presentation purposes.

Figure 4 illustrates an example client GUI
presented to the client/customer as a browser web page
250 providing, for example, a suite 252 of network
management reporting applications including: MCI
Traffic Monitor 252c; Call Manager 252f; and Network
Manager 252e. Access to network functionality is also
provided through Report Requester 252b, which provides
a variety of detailed reports for the client/customer
and a Message Center 252a for providing enhancements
and functionality to traditional e-mail communications.

As shown in Figure 2, the client browser

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/15984 PCT/US98/20095

-15-

objects communicates the data by establishing a secure
TCP messaging session with one of the DMZ networkMCI
Interact Web servers 24 via an Internet secure
communications path 22 established, preferably, with a
secure sockets SSL version of HTTPS. The DMZ
networkMCI Interact Web servers 24 function to decrypt
the client message, preferably via the SSL
implementation, and unwrap the session key and verify
the users session. After establishing that the request
has come from a valid user and mapping the request to
its associated session, the DMZ Web servers 24 re-
encrypt the request using symmetric encryption and
forward it over a second socket connection 23 to the
dispatch server 26 inside the enterprise Intranet.

A networkMCI Interact session is designated
by a logon, successful authentication, followed by use
of server resources, and logoff. However, the world-
wide web communications protocol uses HTTP, a stateless
protocol, each HTTP request and reply is a separate
TCP/IP connection, completely independent of all
previous or future connections between the same server
and client. The nMCI Interact system is implemented
with a secure version of HTTP such as S-HTTP or HTTPS,
and preferably utilizes the SSL implementation of
HTTPS. The preferred embodiment uses SSL which
provides a cipher spec message which provides server
authentication during a session. The preferred
embodiment further associates a given HTTPS request
with a logical session which is initiated and tracked
by a “cookie jar server” 28 to generate a “cookie”
which is a unique server-generated key that is sent to
the client along with each reply to a HTTPS request.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/15984 PCT/US98/20095

-16-

The client holds the cookie and returns it to the
server as part of each subsequent HTTPS request. As
desired, either the Web servers 24, the cookie jar
server 28 or the Dispatch Server 26, may maintain the
“cookie jar” to map these keys to the associated
session. A separate cookie jar server 28, as
illustrated in Figure 2 has been found desirable to
minimize the load on the dispatch server 26. This form
of session management also functions as an
authentication of each HTTPS request, adding an
additional level of security to the overall process.

As illustrated in Figure 2, after one of the
DMZ Web servers 24 decrypts and verifies the user
session, it forwards the message through a firewall 25b
over a TCP/IP connection 23 to the dispatch server 26
on a new TCP socket while the original socket 22 from
the browser is blocking, waiting for a response. The
dispatch server 26 unwraps an outer protocol layer of
the message from the DMZ services cluster 24, and re-
encrypts the message with symmetric encryption and
forwards the message to an appropriate application
proxy via a third TCP/IP socket 27. While waiting for
the proxy response all three of the sockets 22, 23, 27
block on a receive. Specifically, once the message is
decrypted, the wrappers are examined to reveal the user
and the target middle-tier (Intranet application)
service for the request. A first-level validation is
performed, making sure that the user is entitled to
communicate with the desired service. The user’s
entitlements in this regard are fetched by the dispatch
server 26 from the StarOE server 49, the server

component of the present invention, at logon time and

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/15984 PCT/US98/20095

-17-

cached.

If the requestor is authorized to communicate
with the target service, the message is forwarded to
the desired service’s proxy. Each application proxy is
an application specific daemon which resides on a
specific Intranet server, shown in Figure 2 as a suite
of mid-range servers 30. Each Intranet application
server of suite 30 is generally responsible for
providing a specific back-end service requested by the
client, and, is additionally capable of requesting
services from other Intranet application servers by
communicating to the specific proxy associated with
that other application server. Thus, an application
server not only can offer its browser a client to
server interface through the proxy, but also may offer
all its services from its proxy to other application
servers. In effect, the application servers requesting
services are acting as clients to the application
servers providing the services. Such mechanism
increases the security of the overall system as well as
reducing the number of interfaces.

The network architecture of Figure 2 may also
include a variety of application specific proxies
having associated Intranet application servers
including: a StarOE proxy for the StarOE application
server 39 for handling authentication order
entry/billing; an Inbox proxy for the Inbox application
server 31, which functions as a container for completed
reports, call detail data and marketing news messages;
a Report Manager proxy capable of communicating with a

system-specific Report Manager server 32 for

SUBSTITUTE SHEET (RULE 26)

10

15

20

25°

30

WO 99/15984 PCT/US98/20095

-18-

generation, management and receipt notification of
customized reports; a Report Scheduler proxy for
performing the scheduling and requests of the
customized reports. The customized reports include,
for example: call usage analysis information provided
from the StarODS server 33; network traffic
analysis/monitor information provided from the Traffic
view server 34; virtual data network alarms and
performance reports provided by Broadband server 35;
trouble tickets for switching, transmission and traffic
faults provided by Service Inquiry server 36; and toll
free routing information provided by Toll Free Network
Manager server 37.

As partially shown in Figure 2, it is
understood that each Intranet server of suite 30
communicates with one or several consolidated network
databases which include each customer’s network
management information and data. For example, the
services Inquiry server 36 includes communication with
MCI's Customer Service Management legacy platform
40(a). Such network management and customer network
data is additionally accessible by authorized MCI
management personnel. As shown in Figure 2, other
legacy platforms 40(b), 40(c) and 40(d) may also
communicate individually with the Intranet servers for
servicing specific transactions initiated at the client
browser. The illustrated legacy platforms 40(a)-(d)
are illustrative only and it is understood other legacy
platforms may be interpreted into the network
architecture illustrated in Figure 2 through an
intermediate midrange server 30.

Each of the individual proxies may be

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/15984 PCT/US98/20095

-19-

maintained on the dispatch server 26, the related
application server, or a separate DIroOXy server situated
hetween the dispatch server 26 and the midrange server
30. The relevant proxy waits for requests from an
application client running on the customer’s
workstation 10 and then services the request, either by
handling them internally or forwarding them to its
associated Intranet application server 30. The proxies
additionally receive appropriate responses back from an
Intranet application server 30. Any data returned from
the Intranet application server 30 is translated back
to client format, and returned over the Internet to the
client workstation 10 via the Dispatch Server 26 and at
one of the web servers in the DMZ Services cluster 24
and a secure sockets connection. When the resultant
response header and trailing application specific data
are sent back to the client browser from the proxy, the
messages will cascade all the way back to the browser
14 in real time, limited only by the transmission
latency speed of the network.

The networkMCI Interact middle tier software
includes a communications component offering three (3)
types of data transport mechanisms: 1) Synchronous; 2)
Asynchronous; and 3) Bulk transfer. Synchronous
transaction is used for situations in which data will
be returned by the application server 40 quickly.
Thus, a single TCP connection will be made and kept
open until the full response has been retrieved.

Asynchronous transaction is supported
generally for situations in which there may be a long
delay in application server 40 response. Specifically,

a proxy will accept a request from a customer OIr client

SUBSTITUTE SHEET (RULE 26)

10

15 -

20

25

30

WO 99/15984 PCT/US98/20095

-20-

10 via an SSL connection and then respond to the client
10 with a unique identifier and close the socket
connection. The client 10 may then poll repeatedly on
a periodic basis until the response 1s ready. Each
poll will occur on a new socket connection to the
proxy, and the proxy will either respond with the
resultant data or, respond that the request is still in
progress. This will reduce the number of resource
consuming TCP connections open at any time and permit a
user to close their browser or disconnect a modem and
return later to check for results.

Bulk transfer is generally intended for large
data transfers and are unlimited in size. Bulk
transfer permits cancellation during a transfer and
allows the programmer to code resumption of a transfer
at a later point in time.

Figure 5 is a diagram depicting the physical
networkMCI Interact system architecture 10. As shown
in Figure 5, the system is divided into three major
architectural divisions including: 1) the customer
workstation 20 which include those mechanisms enabling
customer connection to the Secure web servers 24; 2) a
secure network area 17, known as the DeMilitarized Zone
"DMZ" set aside on MCI premises double firewalled
between the both the public Internet 25 and the MCI
Intranet to prevent potentially hostile customer
attacks: and, 3) the MCI Intranet Midrange Servers 30
and Legacy Mainframe Systems 40 which comprise the
back-end business logic applications.

As illustrated in Figure 5, the present

invention includes a double or complex firewall system

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/15984 PCT/US98/20095

-21_

that creates a “demilitarized zone” (DMZ) between two
firewalls 25a, 25b. 1In the preferred embodiment, one
of the firewalls 29 includes port specific filtering
routers, which may only connect with a designated port
on a dispatch server within the DMZ. The dispatch
server connects with an authentication server, and
through a proxy firewall to the application servers.
This ensures that even if a remote user ID and password
are hijacked, the only access granted is to one of the
web servers 24 or to intermediate data and privileges
authorized for that user. Further, the hijacker may
not directly connect to any enterprise server in the
enterprise intranet, thus ensuring internal company
system security and integrity. Even with a stolen
password, the hijacker may not connect to other ports,
root directories or applications within the enterprise
system.

The DMZ acts as a double firewall for the
enterprise intranet because the web servers located in
the DMZ never store or compute actual customer
sensitive data. The web servers only put the data into
a form suitable for display by the customer’s web
browser. Since the DMZ web servers do not store
customer data, there is a much smaller chance of any
customer information being jeopardized in case of a
security breach.

As previously described, the customer access
mechanism is a client workstation 20 employing a Web
browser 14 for providing the access to the networkMCI
Interact system via the public Internet 15. When a

subscriber connects to the networkMCI Interact Web site

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 99/15984 PCT/US98/20095

-22-

by entering the appropriate URL, a secure TCP/IP
communications link 22 is established to one of several
Web servers 24 located inside a first firewall 25a in
the DMZ 17. Preferably at least two web servers are
provided for redundancy and failover capability. In
the preferred embodiment of the invention, the system
employs SSL encryption so that communications in both
directions between the subscriber and the networkMCI
Interact system are secure.

In the preferred embodiment, all DMZ Secure
Web servers 24 are preferably DEC 4100 systems having
Unix or NT-based operating systems for running services
such as HTTPS, FTP, and Telnet over TCP/IP. The web
servers may be interconnected by a fast Ethernet LAN
running at 100 Mbit/sec or greater, preferably with the
deployment of switches within the Ethernet LANs for
improved bandwidth utilization. One such switching
unit included as part of the network architecture is a
HydraWEB™ unit 45, manufactured by HydraWEB
Technologies, Inc., which provides the DMZ with a
virtual IP address so that subscriber HTTPS requests
received over the Internet will always be received.
The HydraWEB™ unit 45 implements a load balancing
algorithm enabling intelligent packet routing and
providing optimal reliability and performance by
guaranteeing accessibility to the "most available"
server. It particularly monitors all aspects of web
server health from CPU usage, to memory utilization, to

available swap space so that Internet/Intranet networks

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 99/15984 PCT/US98/20095

~23-

can increase their hit rate and reduce Web server
management costs. In this manner, resource utilization
is maximized and bandwidth (throughput) is improved.
It-should be understood that a redundant HydraWEB™ unit
may be implemented in a Hot/Standby configuration with
heartbeat messaging between the two units (not shown).
Moreover, the networkMCI Interact system architecture
affords web server scaling, both in vertical and
horizontal directions. Additionally, the architecture
is such that new secure web servers 24 may be easily
added as customer requirements and usage increases.

The use of the HydraWEB™ enables better load
distribution when needed to match performance
regquirements.

As shown in Figure 5, the most available Web
server 24 receives subscriber HTTPS requests, for
example, from the HydraWEB™ 45 over a connection 44a
and generates the appropriate encrypted messages for
routing the request to the appropriate MCI Intranet
midrange web server over connection 44b, router 55 and
connection 23. Via the HydraWEB™ unit 45, a TCP/IP
connection 38 links the Secure Web server 24 with the
MCI Intranet Dispatcher server 26.

Further as shown in the DMZ 17 is a second
RTM server 52 having its own connection to the public
Internet via a TCP/IP connection 48. This RTM server
provides real-time session management for subsecribers
of the networkMCI Interact Real Time Monitoring system.

An additional TCP/IP connection 48 links the RTM Web

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/15984 PCT/US98/20095

-24 -

server 52 with the MCI Intranet Dispatcher server 26.

With more particularity, as further shown in
Figure 5, the networkMCI Interact physical architecture
ineludes three routers: a first router 49 for routing
encrypted messages from the Public Internet 15 to the
HydraWEB™ 45 over a socket connection 44; a second
router 55 for routing encrypted subscriber messages
from a Secure Web server 24 to the Dispatcher server 26
located inside the second firewall 25b; and, a third
router 65 for routing encrypted subscriber messages
from the RTM Web server 52 to the Dispatcher server 26
inside the second firewall. Although not shown, each
of the routers 55, 65 may additionally route signals
through a series of other routers before eventually
being routed to the nMCI Interact Dispatcher server 26.
In operation, each of the Secure servers 24 function to
decrypt the client message, preferably via the SSL
implementation, and unwrap the session key and verify
the users session from the COUser object authenticated
at Logon.

After establishing that the request has come
from a valid user and mapping the request to its
associated session, the Secure Web servers 24 will re-
encrypt the request using symmetric RSA encryption and
forward it over a second secure socket connection 23 to
the dispatch server 26 inside the enterprise Intranet.

As described herein, the data architecture
component of networkMCI Interact reporting system is
focused on the presentation of real time (un-priced)

call detail data, such as provided by MCI's TrafificView

SUBSTITUTE SHEET (RULE 26)

10

15

20

25 .

30

WO 99/15984 PCT/US98/20095

-25-

Server 34, and priced call detail data and reports,
such as provided by MCI’s StarODS Server 33 in a
variety of user selected formats.

All reporting is provided through a Report
Requestor GUI application interface which support
spreadsheet, a variety of graph and chart type, or both
simultaneously. For example, the spreadsheet
presentation allows for sorting by any arbitrary set of
columns. The report viewer may also be launched from
the inbox when a report is selected.

A common database may be maintained to hold
the common configuration data which may be used by the
GUI applications and by the mid-range servers. Such
common data includes but are not limited to: customer
security profiles, billing hierarchies for each
customer, general reference data (states, NPA's,
Country codes), and customer specific pick lists: e.g.,
ANI’'s, calling cards, etc.. An MCI Internet StarOE
server manages the data base for the common
configuraticn of data.

Report management related data is also
generated which includes 1) report profiles defining
the types of reports that are available, fields for the
reports, default sort options and customizations
allowed; and 2) report requests defining customer
specific report reqguests including report type, report
name, scheduling criteria, and subtotal fields. This
type of data is typically resident in a Report Manager
server database and managed by the Report Manager.

The Infrastructure component of the nMCI
Reporting system includes mechanisms for providing

secure communications regardless of the data content

SUBSTITUTE SHEET (RULE 26)

10

15

20 -

25

30

WO 99/15984 PCT/US98/20095

-26 -

being communicated. The nMCI Interact system security
infrastructure includes: 1) authentication, including
the use of passwords and digital certificates; 2)
public key encryption, such as employed by a secure
sockets layer (SSL) encryption protocol; 3) firewalls,
such as described above with reference to the network
architecture component; and 4) non-repudiation
techniques to guarantee that a message originating from
a source is the actual identified sender. One
technique employed to combat repudiation includes use
of an audit trail with electronically signed one-way
message digests included with each transaction.

Another component of the nMCI Interact
infrastructure includes order entry, which is supported
by the present invention, the Order Entry (“StarQE")
service. The general categories of features to be
ordered include: 1) Priced Reporting; 2) Real-time
reporting; 3) Priced Call Detail; 4) Real Time call
Detail; 5) Broadband SNMP Alarming; 6) Broadband
Reports; 7) Inbound RTM; 8) Outbound RTM; 9) Toll Free
Network Manager; and 10) Call Manager. The order entry
functionality is extended to additionally support 11)
Event Monitor; 12) Service Inquiry; 13) Outbound
Network Manager; and, 14) Online invoicing.

The self-monitoring infrastructure component
for nMCI Interact is the employment of mid-range
servers that support SNMP alerts at the hardware level.
In addition, all software processes must generate
alerts based on process health, connectivity, and
availability of resources (e.g., disk usage, CPU
utilization, database availability).

The Metrics infrastructure component for nMCI

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/15984 PCT/US98/20095

-27-

Interact is the employment of mechanisms to monitor
throughput and volumes at the Web servers, dispatcher
server, application proxies and mid-range servers.
Metrics monitoring helps in the determination of
hardware and network growth.

To provide the areas of functionality
described above, the client tier 10 is organized into a
component architecture, with each component providing
one of the areas of functionality. The client-tier
software is organized into a “component” architecture
supporting such applications as inbox fetch and inbox
management, report viewer and report requestor, TFNM,
Event Monitor, Broadband, Real-Time Monitor, and system
administration applications. Further functionality
integrated into the software architecture includes
applications such as Outbound Network Manager, Call

Manager, Service Inquiry and Online invoicing.

Client browser application

The present invention is directed to the
client-tier software component of the overall system
described above. The system of the present invention
provides an integrated and unified interface to a
number of Web enabled application services, i.e., the
fulfilling systems, available to a user. As shown in
Figure 3, the system of the present invention
implements an “application backplane” 52, a single
object which keeps track of all the client
applications, and which has capabilities to start,
stop, and provide references to any one of the client
applications. The application backplane 52 is
typically implemented as a Java applet and is launched

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/15984 PCT/US98/20095

-28-

when a Web page is retrieved via URL pointing to the
enterprise’s Web site. The client applications
typically comprise of graphical user interface programs
which enable a user to interact with one or more Web
enabled remote services.

The backplane 52 and the client applications
use a browser 50 such as the Microsoft Explorer
versions 4.0.1 or higher for an access and distribution
mechanism. Although the backplane is initiated with a
browser 40, the client applications are generally
isolated from the browser in that they typically
present their user interfaces in a separate frame,
rather than sitting inside a Web page.

The backplane architecture is implemented
with several primary classes. These classes include
COBackPlane, COApp, COAppImpl, COParm. and COAppFrame
classes. COBackPlane 52 is an application backplane
which launches the applications 54a, 54b, typically
implemented as COApp. COBackPlane 52 1s generally
implemented as a Java applet and ig launched by the Web
browser 50. This backplane applet is responsible for
launching and closing the COApps.

When the backplane is implemented as an
applet, it overrides standard Applet methods init (),
start (), stop() and run(). In the init() method, the
backplane applet obtains a COUser user context object.
The COUser object holds information such as user
profile, applications and their entitlements. The
user’s configuration and application entitlements
provided in the COUser context are used to construct
the application toolbar and Inbox applications. When
an application toolbar icon is clicked, a particular

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/15984 PCT/US98/20095

-29-

COApp is launched by launchApp () method. The launched
application then may use the backplane for inter-
application communications, including retrieving Inbox
data.

The COBackPlane 52 includes methods for
providing a reference to a particular COApD, for
interoperation. For example, the COBackPlane class
provides a getApp() method which returns references to
application objects by name. Once retrieved in this
manner, the application object’s public interface may
be used directly.

COApp is the base interface for the
applications. The applications, e.g., TFNM 54a or Call
Manager 54b, generally have their startup code and
inter-application interface in a class which implements
COApp. Generally, two classes are available for the
applications, COAppImpl or COApplet. Alternatively,
they may provide their own implementation of the
interface. In the preferred embodiment, applications
typically extend COAppImpl.

COAppImpl is an “applet-like” class, but it
does not derive from java.applet.Applet nor from
java.awt.Panel. By not deriving from Applet, the
applications may be launched at any time without
browser having to be pointed to specific page, and
frees the applications from running within the browser
frame. Classes derived from COAppImpl are created,
launched, stopped, and destroyed by the COBackPlane 52.
This provides a tight and controlled integration by the
system of the present invention.

The COApplet class, on the other hand,
extends the Applet class and is intended to be launched

SUBSTITUTE SHEET (RULE 26)

10

15

20

25 -

30

WO 99/15984 PCT/US98/20095

-30-

by the browser from an HTML <Applet> tag. Extension
from Applet is provided for applications needing more
isolation from the present integrated system, or
requiring a separate browser-based display space. The
CoApplet class implements most of the COApp interface
by forwarding it to a contained COAppImpl object.

COAppFrame 56a, 56b is a desktop window
created and used by a COApp to contain its user
interface. The COAppFrame 56a. 56b is a separate
window from the Web browser 50. Generally, the
COAppFrame 56a, 56b has a menu, toolbar, and status
bar. The COAppFrame’s attachToViewArea() method may
be used to paste a COView object 60a, 60b, 60c into a
COAppFrame 56a, 56b. The COView class is an extension
of java.awt.Panel. It provides a general purpose
display space and container for an application’s visual
representation. Application classes typically extend
the COView class to implement their presentation logic.
COApp may use none, one, or many COAppFrames 56a, 56b.

COParm is a generic data class used to pass
parameters between applications. COApp interface
provides a public method for passing COParm message
objects, for example, public void processMessage
(COParm message), which may be used to pass messages
between applications. The COParm class contains a set
of name-value pairs which are used to present
information or requests.

Figure 6 is an illustrative example of a
logon Web page of the present invention. The logon
page 230 typically includes name 232 and password 234
fields for user to enter. The logon page 230, in
addition, may include hyper links 236 to other services

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/15984 PCT/US98/20095

-31_

such as product and service center, programs and
promotions, and questions and answers concerning the
system of the present invention. After the user is
properly authenticated via the logon page 230, a home
page is retrieved.

Figure 4, as described previously, shows an
example of a home page, typically a new Web page having
the backplane object. The home page 250 is downloaded
after the authentication via the logon page. The home
page 250 comprises icons 252a-h for each application
services as well as an application tool bar 254 for
invoking the services. The application tool bar 254 is
different from the icons 252a-h in that the application
tool bar 254 remains on a screen, even when the home
page 250 is no longer displayed. The home page also
typically comprises HTML links to other services 256a-
c. These services may be new information center,
features benefits, or support center for the system of
the present invention.

Figure 7 is a context diagram illustrating
interactions with a customer, a client platform, the
StarOE, the Order Entry System, and other Intranet
application services such as the inbox, report
requestor, and network manager for communicating
various transaction requests and responses. Typically,
all customer interactions take place via a user
interface program residing in the client platform 1356.
The client platform 1356, in turn, communicates with
appropriate Intranet application services, for example
the inbox 1358, report requestor 1360, and network
manager 1362, to process the customer’s requests. The
transactions communicated between the client platform

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/15984 PCT/US98/20095

_32-

1356 and the customer 1340 include HTML page and cab
file downloads 1402 according to customer directed URL,
userid and password 1404 and mouse and keyboard
requests 1408 acknowledgment of product disclaimers
1406 as entered by the customer at the client terminal.
In order to complete and process the
transactions in response to a customer request, the
client platform 1356 communicates with the desired
application services for information. For example,
with the StarOE, the client platform requests
validation of sessions by communicating the customer’s
userid and password for authentication 1412. The
StarOE validates the user by checking the
userid/password pair stored in the customer profile and
if valid, generates a message transaction response
including the customer’s enterprise id and entitlement.
The StarOE then transmits the validated session
response 1414 with the customer enterprise id and
entitlements 1416. If the userid/password is not
valid, the StarOE notifies the client platform, in
which case the client platform may request second
validation with a newly entered userid/password pair to
the StarOF by transmitting a re-validate session
request 1418. The client platform may also reguest
from the StarOE various entitlement information
associated with the customer, including application
access entitlements or privileges the customer has in
regard to the integrated suite of network applications.
Figure 7 also shows transactions between the
client platform 1356 and various Intranet application
services including the network manager 1362, report
requestor 1360, and the inbox 1358. These transactions

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/15984 PCT/US98/20095

_33-

are specific to the functionality for a given
application service. For example, the client platform
1356 may send toll free network management requests
1420 such as “add/delete TFNM corp ids” message which
will add or delete corp ids from the list of toll free
network manager participant and enterprise level corp
ids. The toll free network management responds by
sending a response message 1422 such as a “add/delete
TFNM corp ids” response indicating that the request
message was received and will be processed. Similarly,
from the report requestor 1360, the platform 13536 may
send a check message center request 1424, and message
center communication response for checking types of
reports available at the message center. The report
requestor 1360 also may send message center
communication request 1428 to the platform 1356.
Likewise, with inbox 1358, a message center related
transactions such as meta-data requests 1430 and
responses 1432 may be communicated.

As described above, StarOE is an
authentication and entitlement system handling the
"networkMCI Interact” logon authentication and user
entitlements for customer sessions. At the initiation
of the customer sessions and also throughout the
duration the sessions, all the application services
communicate with the StarOE for customer authentication
and entitlements. The communication is performed
typically by messaging interface, i.e., by transmitting
data wrapped with appropriate message headers and
trailers. Figure 8 is a data flow diagram illustrating
data flow among the processing modules of the “network

MCI Interact” during logon, entitlement

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/15984 PCT/US98/20095

-34-

request/response, heartbeat transmissions and logoff
procedures. As shown in Figure 8, the client platform
includes the networkMCI Interact user 1340 representing
a customer, a logon Web page having a logon object for
logon processing 1342, a home page having the backplane
object. The Web server 1344, the dispatcher 1346,
cookiejar server 1352, and StarOE server 1348 are
typically located at the enterprise site.

A session may be initiated when a customer
1340 retrieves a logon Web page by pointing a Web
browser to the “networkMCI Interact” Uniform Resource
Locator (URL). Typically, cab files, class files and
disclaimer requests are downloaded with the logon Web
page as shown at 1440. At the logon Web page, the
customer 1340 then enters a userid and password for
user authentication as illustrated at 1440. The
customer also enters disclaimer acknowledgment 1440 on
the logon page 1342. If the entered userid and
password are not valid or if there were too many
unsuccessful logon transactions, the logon object 1342
communicates the appropriate message to the customer
1340 as shown at 1440. A logon object 1342, typically
an applet launched in the logon Web page connects to
the Web server 1344, for communicating a logon request
to the system as shown at 1442. The logon data, having
an encrypted userid and password, is sent to the
dispatcher 1346 when the connection is established as
shown at 1444. The dispatcher 1346 then decrypts the
logon data and sends the data to the StarOE 1348 after
establishing a connection as shown at 1446. The StarOE
1348 validates the userid and password and sends the

results back to the dispatcher 1346 as illustrated at

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/15984 PCT/US98/20095

.35-

1446 together with the user application entitlements.
The dispatcher 1346 passes the data results obtained
from the StarOE 1348 to the Web server 1344 as shown at
1444, which passes the data back to the logon object
1342 as shown at 1442. The customer 1340 is then
notified of the logon results as shown as 1440.

When the customer 1340 is validated properly,
the customer is presented with another Web page,
referred to as the home page 1350, from which the
backplane is launched typically. After the user
validation, the backplane generally manages the entire
user session until the user logs off the “networkMCI
Interact”. As shown at 1448, the backplane initiates a
session heartbeat which is used to detect and keep the
communications alive between the client platform and
the enterprise Intranet site. The backplane also
instantiates a COUser object for housekeeping of all
client information as received from the StarOE 1348.
For example, to determine which applications a current
customer is entitled to access and to activate only
those application options on the home page for enabling
the customer to select, the backplane sends a “get
application list” message via the Web server 1344 and
the dispatcher 1346 to the StarOE 1348 as shown at
1448, 1444, and 1446. The entitlement list for the
customer is then sent from the StarOE 1348 back to the
dispatcher 1346, to the Web server 1344 and to the
backplane at the home page 1350 via the path shown at
1446, 1444, and 1448. The application entitlements for
the customer are kept in the COUser object for
appropriate use by the backplane and for subsequent

retrieval by the client applications.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/15984 PCT/US98/20095

-36-

Additionally, the entitlement information is
also stored in the cookiejar 1352. When the Web server
receives the entitlement requests from the backplane at
the home page 1350 or from any other client
applications, the Web server 1344 makes a connection to
the cookiejar 1352 and checks if the requested
information is included in the cookiejar 1352 as shown
at 1450. The cookiejar 1352 is a repository for
various customer sessions and each session details are
included in a cookie including the entitlement
information from the OE server 1348. During the logon
process described above, the OE server 1348 may include
in its response, the entitlements for the validated
customer. The dispatcher 1346 transfers the
entitlement data to the Web server 1344, which
translates it into a binary format. The Web server
1344 then transmits the binary entitlement data to the
cookiejar 1352 for storage and retrieval for the
duration of a session. Accordingly, if the requested
information can be located in the cookiejar 1352, no
further request to the StarOE 1348 may be made. This
mechanism cuts down on the response time in processing
the request. Although the same information, for
example, customer application entitlements or
entitlements for corp ids, may be stored in the COUser
object and maintained at the client platform as
described above, a second check is usually made with
the cookiejar 1352 via the Web server 1344 in order to
insure against a corrupted or tampered COUser object’s
information. Thus, entitlements are typically checked
in two places: the client platform 1350 via COUser
object and the Web server 1344 via the cookiejar 1352.

SUBSTITUTE SHEET (RULE 26)

10

15

20 .

25

30

WO 99/15984 PCT/US98/20095

-37-

When a connection is established with the
cookiejar 1352, the Web server 1344 makes a request for
the entitlements for a given session as shown at 1450.
The cookiejar 1352 goes through its stored list of
cookies, identifies the cookie for the session and
returns the cookie to the Web server 1344 also shown at
1450. The Web server 1344 typically converts the
entitlements which are received in binary format, to
string representation of entitlements, and sends the
entitlement string back to the backplane running on the
client platform 1350.

Furthermore, the cookiejar 1352 1s used to
manage heartbeat transactions. Heartbeat transactions,
as described above, are used to determine session
continuity and to identify those processes which have
died abnormally as a result of a process failure,
system crash or a communications failure, for example.
During a customer session initialization, the cookiejar
1352 generates a session id and sets up “heartbeat”
transactions for the customer’s session. Subseguently,
a heartbeat request is typically sent from a process
running on a client platform to the Web server 1344,
when a connection is established, as shown at 1448.

The Web server 1344 connects to the cookiejar 1352 and
requests heartbeat update for a given session. The
cookiejar 1352 searches its stored list of cookies,
identifies the cookie for the session and updates the
heartbeat time. The cookiejar 1352 then sends the Web
server 1344 the updated status heartbeat as shown at
1450. The Web server 1344 then sends the status back
to the client platform process, also as shown at 1450.

When a customer wants to logoff, a logoff

SUBSTITUTE SHEET (RULE 26)

10

15°

20

25

30

WO 99/15984 PCT/US98/20095

-38-

request transaction may be sent to the Web server 1344.
The Web server 1344 then connects to the cookiejar 1352
and requests logoff for the session as shown at 1450.
The cookiejar 1352 identifies the cookie for the
session and deletes the cookie. After deleting the
cookie, the cookiejar 1352 sends a logoff status to the
Web server 1344, which returns the status to the client
platform.

Other transaction requests are also sent via
the Web server 1344 and the cookiejar 1352 as shown in
Figure 9. Figure 9 is a data flow diagram for wvarious
transactions communicated in the system of the present
invention. Typically, when a customer enters a mouse
click on an application link as shown at 1460, an
appropriate transaction request stream is sent to the
Web server as shown at 1462. The Web server 1344
typically decrypts the transaction stream and connects
to the cookiejar 1352 to check if a given session is
still valid as shown at 1464. The cookiejar 1352
identifies the cookie for the session and sends it back
to the Web server 1344 as shown at 1464. The Web
server 1344 on receipt of valid session connects to the
dispatcher 1346 and sends the transaction request as
shown at 1466. When the dispatcher 1346 obtains the
request, it may also connect to the cookiejar 1352 to
validate the session as shown at 1468. The cookiejar
1352 identifies the cookie for the session and sends it
back to the dispatcher 1346 as shown at 1468. The
dispatcher 1346, upon receiving the valid session
connects to a targeted application server oOr DProxy 354,
which may include StarOE, and sends the request

transaction to the target as shown at 1470. The server

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/15984 PCT/US98/20095

-30-

or proxy 354 processes the request and sends back the
response as stream of data which is piped back to the
dispatcher 1346 as shown at 1470. The dispatcher 1346
pipes the data back to the Web server 1344 as shown at
1466, which encrypts and pipes the data to the client
platform as shown at 1462, referred to as the home page
1350 in Figure 9.

User Logon

Figure 10 is a flow diagram illustrating a
logon process to the system of the present invention.
Typically, a user starts a browser in step 280 and
accesses a Web page having a logon applet by entering
the URL in step 282 of the server servicing the system
of the present invention. The HTML file associated
with the Web page is downloaded with software tools and
common objects in steps 284, 286. The user is then
prompted to enter name and password on the Web page.
If the system of the present invention determines that
the software files including classes for initiating a
session, have been already downloaded, for example,
from a previous session, the steps 282, 284, 286 are
skipped.

The logon applet checks for the name/password
entry and instantiates a session object in step 292,
communicating the name/password pair. The session
object sends a message containing the name/password to
a remote server for user validation in step 294. When
the user is properly authenticated by the server in
step 296, another Web page having backplane object is
downloaded in steps 298, 300, 304. This page is
referred to as a home page. At the same time, all the

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/15984 PCT/US98/20095

-40 -

application software objects are downloaded in step
302. If the system of the present invention determines
that the backplane and application files have been
already downloaded, the steps 300, 302, 304 are not
performed. The backplane object is then instantiated
in step 306.

The backplane communicates with a remote
server to retrieve the user’s entitlements in step 308.
The entitlements represent specific services the user
has subscribed and has privilege to access. It also
describes what entitlements the user may have within
any single service. For example, from the COUser
context, the backplane can obtain the list of
applications that the user is entitled to access. 1In
addition, each COApp holds set of entitlements within
that application in COAppEntitlements object.

Using the information from the COUser context, the
backplane knows which COApps to provide, e.g., which
buttons to install in its toolbar. The backplane
stores the user specific entitlements in memory for
other processes to access. After determining the
entitlements, the backplane initiates a new thread and
starts an application toolbar in step 310. The
application toolbar includes the remote services to
which the user has subscribed and may select to run.
From the application toolbar, a user is able to select
a service to run. Upon user selection, the selection
is communicated from the application toolbar to the
backplane in steps 312, 314, which then launches the
graphical user interface program associated with the
selected service. The application toolbar remains on

the user display, even after a particular service has

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/15984 PCT/US98/20095

-417-

been initiated. This is useful when a user desires to
start up another remote service directly from having
run a previous service because the user then need not
retrieve the home page again.

If it is determined that the user entered
password is not valid in step 290 or step 296, an
attempted logon count is incremented in step 316. If
the user’'s attempted logon count is greater than a
predefined allowed number of tries as indicated in step
318, a message is conveyed to the user in step 320 and
the user must restart the browser. If the user’s
attempted logon count is not greater than the
predefined allowed number of tries, a “failed login”
message is conveyed to the user in step 322, and the
user is prompted to reenter name/password in step 288.
If it is determined that the user password has expired,
the user is prompted to change the password in step
324. For example, the user may be required to change
the password every 30 days fof security reasons.
Whenever the user changes the password, the new
password is transmitted in real time to a server
responsible for updating and keeping the password entry
for the user. The user than enters the new password in
step 324 and continues with the processing described

above in step 290.

Backplane Logic
Figure 11 is a flow diagram illustrating the
backplane logic process when a user selects a service
from a home page or the application toolbar. The user
initially selects an application in step 330. If the
selected application is derived from COAppImpl, the

SUBSTITUTE SHEET (RULE 26)

10

15

20

25 -

30

WO 99/15984 PCT/US98/20095

-42-

COBackPlane object 52 instantiates the desired
application object by name. The COBackPlane 52 also
creates a COAppStartThread object to manage the startup
of the COAppImpl in step 336. Each COAppImpl is
started in it’s own thread. COAppStartThread calls the
COAppImpl’s init() method. Here the COAppImpl
typically creates the application-specific classes it
needs, including a COAppFrame (or a derived class
thereof) if desired. COAppStartThread calls the
COApp‘s start () method. Once the start() method has
completed, the COAppStartThread ends.

If the desired application is derived from
java.applet.Applet, a new browser window is created,
and directed to the HTML page from which the applet to
be loaded 338. This will cause the browser to load the
applet, and call its init() and start() method. 1In its
init () method, the applet obtains a reference to the
backplane by calling the static method of the
COBackPlane class getBackPlane(). Also in its init()
method, the applet notifies the backplane that it has
been launched by calling the backplane’s registerApp ()
method. Alternatively, if the desired application is
an application requiring a direct URL launch from the
home page, for example RTM as shown at step 332, the
desired application is invoked by retrieving a Web page
having the application’s URL as shown at step 338.

Each application gets a session identifier in
step 340 upon its startup. The session login and
management will be described in more detail in
reference to communications classes. Should the
applications wish to perform some further
authentication, they are free to retrieve the COUser

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/15984 PCT/US98/20095

-43-

object, and perform whatever special authentication
they need, without troubling the user to re-enter
his/her username and password. During the processing
of .functions specific to each application, the
applications are able to communicate with one another
as well as with the backplane by getting a reference to
the applications or the backplane and invoking the
public interfaces or methods with the reference.

After a user is finished with interacting
with COApp, the user requests the selected COApp to
exit via a menu selection, clicking on a close box
button on a window frame, or a keyboard command, for
example. The COApp then requests exit from the
coBackPlane. If the selected application is derived
from COAppImpl, the COBackPlane creates a
COoAppStopThread to manage the exit of the COApp. As
with startup, each COApp is stopped in its own thread.
COAppStopThread calls COApp’s stop() method. Typically
a COApp would not override this method. It is called
for consistency with the applet interface of the COApp
class. An applet’s stop() method is called by the Web
browser when the Web browser leaves the page from which
the applet was loaded, in order to allow the applet to,
for instance, stop an animation. For consisteﬂéy with
this model, COApps may use this method to stop long-
running threads. COAppStartThread calls COApp’s
destroy () method. Here the COApp typically performs
resource cleanup routines, including stopping any
threads, and calling the dispose() method for any
COAppFrame objects.

If the selected application is derived from
java.applet.Applet, the Web browser window containing

SUBSTITUTE SHEET (RULE 26)

10

15.

20

25

30

WO 99/15984 PCT/US98/20095

-44-

the page from which the applet was launched is closed.
This will cause the applet’s stop() method to be called
by Web browser. In its stop() method, the applet
notifies the backplane that it has been stopped by
calling the backplane’s deregisterApp () method.

Then a user typically requests logoff via
menu, close box, etc. When such a request is received
the backplane sends Logoff transaction to the Web
Server. The backplane closes toolbar and directs the
Web browser to logon URL. Then the backplane exits.

Figure 11 also includes links to other Web
pages. For example, if help hypertext is selected in
step 342 from the application toolbar, a help URL is
launched in a new browser window in step 344.
Similarly, if customer support hypertext is selected in
step 346, a customer support URL is launched in a new
browser window in step 348. If a user selects a
marketing promotion hypertext in step 350, URL for new
product information will be launched in a new browser
window in step 352. If a product overview hypertext is
selected in step 354, a URL pertaining to the product’s
features will be launched in a new browser window in
step 356. If a user selects home in step 358, the home
page will be redisplayed in step 360.

User
The present invention includes a user unit
for representing a user of a current session. The user
unit is generally implemented as a COUser class
extending java.lang.Object. The COUser class object
typically holds information including a user profile,

applications and their entitlements. In order to

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/15984 PCT/US98/20095

-45-

minimize network traffic, the amount of data carried by
the COUser is minimal initially, and get populated as
requests are processed. The requests are generally
processed by retrieving information from the Order
Entry service. The profile information is then stored
and populated in the COUser object should such
information be requested again.

A COUser object is created when the user logs
in, and holds the username and password of the user as
an object in the COClientSession object. The session
object is contained within the backplane, which manages
the session throughout its lifetime. The code below
illustrates how this occurs:

// Within the backplane

COClientSession session = new COClientSession();

try {

Session.logon (“username”, “password”);

} catch (COClientLogonException e) {...};

// Should the User object be required

COUser user = session.getUser();
The logon method of the COClientSession object
communicates with the Order Entry server, a back-end
authentication mechanism, for authenticating the user.

The COUser that may be obtained from the
COClientSession immediately after the login process is
very sparse. It includes a limited set of information
such as username, a list of applications that user is
entitled to, for example. The details of each
entitlement information are retrieved at the time of

actual processing with those information.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/15984 PCT/US98/20095

-46 -

Communications

The present invention includes a client
communications unit for providing a single interface
from which the backplane and the applications may send
messages and requests to back-end services. The client
communications unit includes a client session unit and
a transactions unit. The client session unit and the
transactions unit comprise classes used by client
applications to create objects that handle
communications to the various application proxies and
or servers. Generally, the entire communications
processes start with the creation of a client session
after a login process. This is started through the
login process. The user logs into user’'s Web page with
a username and password. During a login process, a
client session object of class COClientSession is
created, and the COClientSession object passes the
username and password information pair obtained from
the login process to a remote system administrative
service which validates the pair. The following code
instructions are implemented, for example, to start up
a session using the COClientSession class.
cOClientSession ss = new COClientSession();

try {

ss.setURL (urlString) ;
ss.logon (“jsmith”, “myPassword”);

} catch (COClientLogonExeception e) {...

} catch (MalformedURLException e) {...};

In addition, the COClientSession object contains a
reference to a valid COUser object associated with the
user of the current COClientSession object.

The client session object also provides a

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30 -

WO 99/15984 PCT/US98/20095

-47 -

session, where a customer logs on to the system at the
start of the session, and if successfully
authenticated, is authorized to use the system until
the session ends. The client session object at the
same time provides a capability to maintain session-
specific information for the life/duration of the
session. Generally, communications to and from the
client takes place over HTTPS which uses the HTTP
protocols over an SSL encrypted channel. Each HTTP
request/reply is a separate TCP/IP connection,
completely independent of all previous or future
connections between the same server and client. Because
HTTP is stateless, meaning that each connection
consists of a single request from the client which is
answered by a single reply by a server, a novel method
is provided to associate a given HTTP request with the
logical session to which it belongs.

When a user is authenticated at login via the
system administrative server, the client session object
is given a “cookie”, a unique server-generated key
which identifies a session. The session key is
typically encapsulated in a class COWebCookie, “public
COWebCookie (int value).”, where value represents a
given cookie’s value. The client session object holds
this key and returns it to the server as part of the
subsequent HTTP request. The Web server maintains a
“cookie jar” which is resident on the dispatch server
and which maps these keys to the associated session.
This form of session management also functions as an
authentication of each HTTP request, adding security to
the overall process. In the preferred embodiment, a

single cookie typically suffices for the entire

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/15984

PCT/US98/20095

-48-

session. Alternatively, a new cookie may be generated
on each transaction for added security. Moreover, the
cookie jar may be shared between the multiple physical
servers in case of a failure of one server. This
mechanism prevents sessions being dropped on a server
failure.

In addition, to enable a server software to
detect client sessions which have “died”, e.g., the
client session has been disconnected from the server
without notice because of a client-side crash or
network problem, the client application using the
client session object “heartbeats” every predefined
period, e.g., 1 minutes to the Web server to “renew”
the session key (or record). The Web server in turn
makes a heartbeat transaction request to the cookiejar.
Upon receipt of the request, the cookiejar service
»marks” the session record with a timestamp indicating
the most recent time the client communicated to the
server using the heartbeat. The cookiejar service also
alarms itself, on a configurable period, to read
through the cookiejar records (session keys) and check
the timestamp (indicating the time at which the client
was last heard) against the current time. If a session
record’s delta is greater than a predetermined amount
of time, the cookiejar service clears the session
record, effectively making a session key dead. Any
subsequent transactions received with a dead session
key, i.e., nonexistent in the cookiejar, are forbidden
access to the Firewall.

The heartbeat messages are typically enabled
by invoking the COClientSession object’s method “public
synchronized void enableSessionHeartbeat (boolean

SUBSTITUTE SHEET (RULE 26)

10

15

20 -

25

30

WO 99/15984 PCT/US98/20095

-49-

enableHeartbeat)”, where enableHeartbeat i1s a flag to
enable or disable heartbeat for a session. The
heartbeat messages are typically transmitted
periodically by first invoking the COClientSession
object’s method “public synchronized void
setHeartbeatInterval (long millsecsInterval)”, where
the heartbeat interval is set in milliseconds, and by
the COClientSession object’s method “protected int
startHeartbeat ()7, where the heartbeat process starts
as soon as the heartbeat interval is reached. Failure
to “heartbeat” for consecutive predefined period, e.g.,
one hour, would result in the expiration of the session
key.

As described previously, a typical
communication with remote services are initiated by
instantiating a COClientSession object. A
CcoClientSession instance may then be used to connect to
a given URL by invoking its methods setURL() and
logon(). There are no limitations on how many
simultaneous connections are allowed. During the logon
process, the given URL would point to the home page
containing the backplane applet.

A second component of the communications unit
provided and used in the present invention is a
transactions class. The main purpose of a transaction
is to send a message to a back-end service and return
the corresponding response from that service. This
response may also be in a form of a message. Any
message may be sent with any transaction. Transactions
need not be aware of any service content type
information. Instead, this information is encapsulated

in the messages sent to and from the back-end service.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/15984 PCT/US98/20095

-50-

The transaction classes provide a single transaction
feel to the user of a transaction although the
transaction instances may conduct multiple HTTP/HTTPs
transactions to back-end services, thus hiding
complexity from the user of a transaction.

Transaction classes include two main
behaviors: blocking and non-blocking. Non-blocking
transactions optionally have blocking type behavior.
The present invention provides a synchronous blocking
type transaction and asynchronous and bulk non-blocking
type transactions.

The top most abstract base class of all of
the transaction classes is the COTransaction class.
Derived instances of this class gain their blocking
behavior from it. Non-blocking behavior is inherited
from the abstract class CONonblockingTransaction. Since
this class inherits from COTransaction, all derived
instances of CONonblockingTransaction have both
blocking and non-blocking behavior. The synchronous
type transaction class 1s COSynchTransaction while the
asynchronous and bulk transaction classes are
coasynchTransaction and COBulkTransaction respectively.
Being a blocking only type transaction,
cosynchTransaction extends COTransaction.
CoAasynchTransaction and COBulkTransaction give both
blocking and non-blocking behavior and therefore extend
CONonblockingTransaction.

In order to send a message, two pieces of
information need to be provided to the transaction: the
first is the message to send to a back-end service and
second is the target back-end service of interest,

generally represented by a COService object.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/15984 PCT/US98/20095

-51-

Once a request has been executed or sent, a
synchronous transaction will block until a response is
received. Because there are occasions when the network
may fail and the response lost, the maximum time to
wait for a response may be set through the
setMaxTime2Wait () function. A synchronous transaction
object is an instance of COSynchTransaction.

The non-blocking type transactions provided
by the present invention extend the
CONonblockingTransaction base class. For sending a
message in a non-blocking mode, the sendRequest ()
method is invoked. This method returns a boolean which
indicates whether the request was successfully
registered to be sent to the desired back-end service.
After the response arrives, a pre-registered callback
is sent to a co-registered object. Because the
sendRequest () method is non-blocking, the control is
returned to the caller of the method as the request is
being sent. Since this mechanism is implemented using
threads, the resulting callback method is invoked in a
thread that is different from the thread which invoked
the sendRequest () method.

An asynchronous transaction is either direct
or derived instances of COAsynchTransaction. When used
in the blocking mode (sendMessage()), it appears like a
synchronous transaction. The difference between a
blocking asynchronous transaction and a synchronous
transaction is that a blocking asynchronous transaction
sends the initial request and then polls for the
response. This kind of transaction allows the for
sending a message to a service which cannot immediately

satisfy the request. Instead this kind of service would

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/15984 PCT/US98/20095

.52-

register the request and inform (when polled) the
client when the response was ready. However, this
continual polling is transparent.

The present invention provides a bulk
transaction type. Although this transaction action may
be used to send any message, its use typically is for
large data transfers. Large data sets are difficult to
handle successfully in bulk thus they are often split
into smaller data blocks. As the other transactions,
the bulk transaction object handles the complexity
behind the scenes. Like the asynchronous transaction
object, a bulk transaction object used in a blocking
mode looks like a synchronous transaction. Unlike the
asynchronous and synchronous transactions it informs
the calling process as intermittent data comes in. This
granularity of data that is known as the block size is
determined by the caller of the transaction. Both the
bulk blocking and non-blocking modes are capable of
notifying the caller when each block of data arrives at
the client side from the back-end service.

Instances of COBulkTransaction are capable of
executing bulk transactions. Like the asynchronous
transaction class (COAsynchTransaction),
COBulkTransaction blocking mode is invoked with the
sendMessage () java message and its non-blocking mode 1is
invoked with the sendRequest () Java message in the
CONonblockingTransaction class. In addition to sending
a callback Java message to a registered object when the
transaction is finished, COBulkTransaction instances
send another callback message when each data block
arrives. This second callback is sent in both blocking
and non-blocking modes and is used to send large data

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/15984 PCT/US98/20095

-53-

sets synchronously. CORulkTransaction instances are
capable of transferring only a portion of data from a
pback-end service. This portion can also start at any
offset within the complete data set. This functionality
will mainly be used by messages which understand how to

transfer data to files.

Input/Output Services

In order to centralize and unify all
input/output transactions performed by the backplane
and the client applications, the present invention
includes a set of common input/output services objects
for use by the backplane and the applications. These
include a framework for printing, data export and
import, logging, configuration file management and
statistics.

The common input/output services objects
provide simplified and standardized export/import
interface. Containers, which need to be exported,
implement the “Exportable” interface. Here,
“containers” is used in the broadest possible sense,
spanning everything from a complete application to the
smallest data container, e.g., trees, queues. This
architecture defines exactly how a container will be
converted from an object in active memory, to a data
array in static memory. The Exportable interface
suggests three possibly exportable data formats: a
string, byte arrays, and character arrays.

The class “Export” contains a number of
convenience methods for writing strings, byte arrays,
or character arrays to a specified file. In the code

example, the container “tree” implements the

SUBSTITUTE SHEET (RULE 26)

10

15

20

25 -

30

WO 99/15984 PCT/US98/20095

-54_

“Exportable” interface.

// First, get a reference to a file to export to
File file = new File(“/MyDirectory/treeExport”) ;
// Then use the Export class to export...
Try {

Export.exportData (file,
tree.getExportableByteArray ());
} catch (IOException ioe) {...}

Containers, which need to import data,
implement the "Importable" interface. An application's
import and export mechanisms need not be symmetrical.
The interface mechanism defines exactly how import will
occur, that is, how a given body of static data will be
integrated into the running application. The interface
expects to import data in one of three forms: strings,
byte arrays, or character arrays.

The class "Import" provides convenience
methods for reading strings, byte arrays, or character
arrays from a specified file. The following code
fragment represents use of data import. Here, "tree"
is a data container, which implements the "Importable"
interface.

// First, get a reference to a file from which to
// import...

File file = new File("/MyDirectory/treeImport");
// Then use the Import class to import...

byte[] data = Import.importByteData(file);
tree.importByteArray (data) ;

The input/output services objects also

include a centralized logging utility. The purpose of

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/15984 PCT/US98/20095

-55-

logging is twofold: it allows developers to get a good
handle on what functions customers are using, helping
marketing, while also giving a way to checkpoint the
series of actions, which led to a failure of the
application.

The global logfile has global parameters, and
also serves as a container for each of the application
logfile objects. Each active application has a
reference back to the application logfile in the global
object. The following represents a code example of
logfile use. In the following code, "myself" is the
COUser object.

// In the application object....

COApplLog applLog = COAppLog.getAppLog(this);

applog.addEntry (COAppLog.INFO, "Key Event",
"User pushed OK");

The input/output services objects also
include configuration file object. A configuration
file represents either a user's choice of desirable
application characteristics or a set of default
characteristics. The preferred structure for the
configuration file is a hierarchy, which places the
application at the highest level, then the version,
followed by the section and then by a parameter name-
value pair: application.version.section.name.

The general architecture of the configuration
file object is just like that of the logfile object.
The following represents an example of the codé that
would be generated by use of application configuration
file object.

// In the application object....

SUBSTITUTE SHEET (RULE 26)

10

15.

20

25

30

WO 99/15984 PCT/US98/20095

-56-

COAppConfiguration appConf =
COoAppConfiguration.getAppConfiguration(this);
String CDRomDriver = appConf.getEntry("Drivers",
"CDROM") ;

The input/output services objects also
include statistics objects for holding a number of
counters and other numerical data, which allow the
backplane and the applications to keep a numerical log.
The type of object that a statistic object might hold
are the number of times that a user exported data, or
the number of times that an application communicated
back to a specific back-end server. The architecture
ig identical to that of logging and configuration
files. The following represents code example for use
of statistics.

// In the application object....
COAppStat appStat = COAppStat.getAppStat (this);
appStat.incrementValue ("Communications2Server") ;

Security

The present invention allows the backplane
and the client applications to utilize browser built-in
security functions without having to be tied to a
specific code. The present invention provides an
additional module which wraps the security
functionality of specific browsers available off-the-
shelf.

Figure 12 is a diagram which illustrates a
security module design having clean separation from the
browser specific implementations. The security module

comprises the main COSecurity class 402, and the

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/15984 PCT/US98/20095

-57-

interface COBrowserSecurityInterface 404. The

COSecurity object checks browser type upon

4instantiation. It does so by requesting the

“java.vendor” system property. If the browser is
Netscape, for example, the class then instantiates by
name the concrete implementation of the Netscape
security interface,
nmco.security.securityimpls.CONetscaped4_0OSecurityImpl
406. Otherwise, it instantiates
nmco.security.securityimpls.CODefaultSecurityImpl 408.
COSecurity 402 includes a number of methods for
accessing local resources, e.g., printing, importing
and exporting data, and getting/setting local system
properties.

The COBrowserSecurityInterface 404 mirrors
the methods provided by COSecurity 402. Concrete
implementations such as CONetscape4_OSecurityImpl 406
for Netscape Communicator and CODefaultSecurityImpl 408
as a default are also provided. Adding a new
implementation 410 is as easy as implementing the
COBrowserSecurityInterface, and adding in a new hook in
COSecurity.

After using “java.vendor” to discover what
browser is being used, COSecurity 402 instantiates by
name the appropriate concrete implementation. This is
done by class loading first, then using
Class.newInstance() to create a new instance. The
newInstance () method returns a generic object; in order
to use it, it must be cast to the appropriate class.
COSecurity 402 casts the instantiated object to
COBrowserSecruityInterface 404, rather than to the

concrete implementation. COSecurity 402 then makes

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/15984 PCT/US98/20095

-58-

calls to the COBrowserSecurityInterface “object,” which
is actually a concrete implementation “in disguise.”
This is an example of the use of object oriented
polymorphism. This design cleanly separates the
specific implementations which are browser-specific
from the browser-independent COSecurity object.

Each COApp object may either create their own
COSecurity object using the public constructors, or
retrieve the COSecurity object used by the backplane
via COBackPlane.getSecurity (). In general, the
developer of the applications to be run will use the
COSecurity object whenever the COApp needs privileged
access to any local resource, i.e., access to the local
disk, printing, local system properties, and starting
external processes. The following represents an
example of the code generated when using the security

object.

// Instantiating COSecurity objectCOSecurity
security = new COSecurity();
// Now access a privileged resource
try {
String s =
security.getSystemProperty (“user.home”) ;
System.out.println(s);
}
catch (COSecuritvExXxception cose)

{

// take care in case of security exception

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/15984 PCT/US98/20095

-50-

Help
In order for the backplane and the client
application to integrate help functionality of a
underlying browser, the present invention provides a
help framework. There are two semi-independent parts
to providing help. The first part is the help itself
which is handled through the COHelp object. The second
part is the help “infrastructure” which is provided by
the COHelplListener interface. They are semi-
independent because one may be safely used without the
other although they are meant to complement each other.
The COHelp object provides a calling
interface with which the underlying browser can bring
up the help information. To bring up help using this
object, all that is necessary is to pass a URL pointing
to the relevant help page and a reference to the COApp.
For example:
if (action == HELP) {
try f
// creating the help URL
URL helpURL = new URL(“index.html”);
// calling help
COHelp.showHelp(thisCOApp, helpURL);
} catch (MalformedURLException e)
{ /* do something */ }

The COHelplListener interface provides a set
of convenient functions for implementing help in
COApps. This interface provides functions to define a
default help URL:

void setHelpURL{(URL help);

SUBSTITUTE SHEET (RULE 26)

10

15

20

25 .

30

WO 99/15984 PCT/US98/20095

-60-

URL getHelpURL() ;

. The COHelpListener interface also provides
the initial foundation for handling F1l help calls. It
extends the KeyListener interface which is needed to

detect F1 keystrokes.

Handling Large Datasets - Cache Management

For management of large data sets by the
backplane and the client applications, the present
invention provides a two-tier (disk/memory) caching
mechanism. The caching mechanism may be useful, for
example, when given the constraints placed upon the
size of the runtime code in the browser context. The
caching module is composed of two different caches to
address differing needs: a byte-based cache, i.e.,
COByteBasedDataCache, and a line-based cache, i.e.,
COLineBasedDataCache. The line-based cache is useful
for cases where the data is naturally divided into
rows, e.g., database tables. The byte-based cache is
more free-form for specialized uses. Both caches have
the same underlying behavior.

The cache has several properties, such as how
much data to keep in active memory: either the number
of byte-based pages or the number of rows. It is also
given a reference to a remote data source and a local
file. Finally, the size of a each page is variable:
either the number of bytes per page or the number of
rows per page.)

Upon instantiation, the cache immediately
begins downloading information from the remote data
source and writing it to the local file, while

SUBSTITUTE SHEET (RULE 26)

10

15

20 -

25

30

WO 99/15984 PCT/US98/20095

-61-

simultaneously calculating page boundaries for the
local file, maintaining the vector of page boundaries
in active memory. A page boundary is the file location
in bytes of the beginning of a new page.

When a request is made to the cache for a
page (or a row), the result (along with a variable
number of pages [or rows] preceding and following the
requested page) is cached in active memory.
Specifically, when a request is made to the cache, if
the page can be returned immediately from active
memory, it does so. Otherwise, the cache attempts to
retrieve the page from the disk (along with pages
following and preceding), storing the results in the
cache’s active memory. Finally, if the requested page
has not yet been downloaded from the remote data
source, the method blocks.

The cache is useful in cases where the size
of a downloaded dataset may stretch or exceed the
capabilities of the Java runtime; the runtime in
browsers is especially limited. It is also useful in
cases where high-speed access to large datasets is
necessary. Here, the assumption is that accessing the
disk where the dataset is stored will be much faster
than a network transaction. An example situation is
the downloading and caching of thousands of rows from a
database located on the public Internet behind
firewalls and proxies.

Error handling
For catching errors occurring during the
backplane and the client application processing, the

present invention provides a single centralized base

SUBSTITUTE SHEET (RULE 26)

10

15

WO 99/15984 PCT/US98/20095

-62-

exception, COException. All the exceptions specific to
the COApps are derived from this base exception.

As previously described, the system of the
present invention utilizes a set of common objects for
implementing the various functions provided by the
system of the present invention. Appendix A provides
descriptions for the common objects which includes
various classes and interfaces with their properties
and methods.

While the invention has been particularly
shown and described with respect to preferred
embodiments thereof, it will be understood by those
skilled in the art that the foregoing and other changes
in form and details may be made therein without

departing from the spirit and scope of the invention.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 99/15984

PCT/US98/20095

-63-

Appendix A

Description of classes implementing the system of

the present invention will now be explained below.

COBackPlane is a public class extending Applet
class and implement Runnable interface. Backplane
applet overrides standard Applet methods: init();
start(); stop(); and run(). Via the init() method,
Backplane applet obtains a COUser user context object.
The user’s configuration and application entitlements
provided in the COUser context are used to construct
the application tool bar and Inbox applications. When
an application tool bar icon is clicked, a particular
COApp is launched by launchApp () method. The launched
application then may use the Backplane for inter
application communications, including retrieving Inbox

data.

The following lists the COBackPlane class

properties and methods.
public class COBackPlane
extends Applet

implements Runnable

public static final int ALL_WINDOWS_MINIMIZED
public static final int ALL_WINDOWS_MAXIMIZED

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 99/15984

-64 -

public static final int WINDOWS_TILED_HORIZONTALLY
public static final int WINDOWS_CASCADED

. protected static COBackPlane theBackPlane

this is used to allow a static method to locate
the backplane, e.g. by COApplets
protected Vector availableApps
Vector of available apps (by name, vector of
strings)
protected COStat globStats
Global statistics object
protected COAppEntitlement globEnts
Global entitlements object
protected COLog globLog
Global log object
protected COConfiguration globConfig

Global configuration object

public COBackPlane ()

Default constructor

public static COBackPlane getBackPlane ()
this method is used by COApps which are not
launched by the backplane (e.g. applets launched from
an HTML page to find the backplane.
Returns:

the COBackPlane

public void init ()

Initializes the backplane, by initializing

SUBSTITUTE SHEET (RULE 26)

PCT/US98/20095

10

15

20

25

WO 99/15984 PCT/US98/20095

-65-

container objects, establishing a session, getting user
context object, as well as starting the ToolBar and
Inbox applications.

Overrides:

init in class Applet.

public void start()

Starts the backplane--probably background threads
for backend communications.

Overrides:

start in class Applet.

public void stop()

Stops the backplane and kills any background
threads used by the BackPlane.

Overrides:

stop in class Applet.

public void destroy ()

Destroys the backplane and kills all running
applications, and any threads that COBackPlane may have
called into existence. It will try to wait for all
running COApps to be closed.

Overrides:

destroy in class Applet

public void run()

Run method for the backplane main thread.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 99/15984 PCT/US98/20095

-66 -

public synchronized void notifyOfExit (COApp app)
Called by a COApp when it is exiting.

public boolean isAppRunning (String appName)
Returns true if the named COApp is currently
running.
Parameters:
appName - String denoting the COApp
Returns:

true if the named COApp is currently running

public COApp getApp (String appName)

Provides a reference to the named COApp. If the
COApp is not currently running, the COBackPlane will
attempt to launch it.

Parameters:

appName - String denoting the COApp
Returns:
the named COApp, or null if it cannot be

launched

public COApp getApp (COAppDescription appDesc)

Alternate method to retrieve an application. This
version can launch the applet from a URL in the
appDescription (if available) otherwise it will launch
via the usual method. Note that applets launched via
the URL will not return a COApp so this function will
return null.

Parameters:

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 99/15984 PCT/US98/20095

-67-

appDesc - application description for this

COApp

public String(] getAppNames ()

Returns a list of the names of the available
coapps. Name comprises of not only the class name, but
also its full package name. The COBackPlane keeps
track of applications by their full package names,
since with the full package name, it can load and
launch the applications dynamically as needed.

Returns:

a list of the names of the available COApps

public Locale getLocale()

Returns the Locale set for the backplane. Null, if
not set.

Overrides:

getLocale in class Applet

public void setLocale(Locale locale)

Set the locale for the backplane.

Overrides:

setLocale in class Component

public void setSecurity(COSecurity security)

Sets the security object for the backplane

public COSecurity getSecurity()

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 99/15984 PCT/US98/20095

-68-

Gets the security object from the backplane

-public long getIdleTime()

Returns the time in milliseconds the user has not
interacted with any COApp during the current session,
i.e., the minimum of the responses to getIdleTime()
called on each running.

Returns:

-1 is there are no currently active apps

public long getIdleTime (COApp app)
Returns the time in milliseconds that the user has
not interacted with a particular COApp during the

current session.

public void notifyAllApps (COParm message) throws
COException

Sends all COApps a message. Calls
"processMessage ()" on all running applications.

Parameters:

message - a COParm encapsulating the message

to be passed

Throws: COException

if all apps fail to receive message

public void launchNativeApp (String command) throws
COException
Launches the specified native application

Parameters:

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 99/15984 PCT/US98/20095

-69 -

command - String denoting the command used to
launch a native application
Throws: COExXception

if the native application cannot be launched

public synchronized void addAvailableApp (String
appName) throws COException
Adds the specified COApp to the BackPlane by name;
updates AppBar
Parameters:
app - the name of the COApp to be added to
the BackPlane
Throws: COException
if COApp cannot be added

public synchronized void removeAvailableApp (String
appName) throws COException
Removes the specified COApp from the BackPlane by

name, closing it, if necessary, and updates AppBar

Parameters:
app - the name of the COApp to be removed
from the BackPlane
Throws: COException

if COApp cannot be removed
public synchronized void closeApp (COAPpP app) -throws

COException
Closes the specified, locally running COApPp;

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 99/15984 PCT/US98/20095

-70-

deletes app from runningApps
Parameters:
app - a reference to the COApp to be closed
Throws: COException

if the COApp cannot be closed

public void closeAllApps () throws COException
Closes all locally running COApps; clears
runningApps
Throws: COException

if all COApps cannot be closed

public void setWindowState (COApp app. int state)
gets the window state for the specified COApp
Parameters:
app - a reference to the COApp whose window
state is to be set
state - the integer value representing the
window state constant, e.g., WINDOW_MINIMIZED,
WINDOW_MAXIMIZED, WINDOW_TILED_VERTICALLY.

public void setAllWindowStates (int state)
Sets the window state for all COApps
Parameters:
state - the integer value representing the
window state constant
Throws: COException

if all the window states cannot be set

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 99/15984 PCT/US98/20095

-77-

protected COApp findApp (String appName)
finds the requested app by name in runningApps
Returns:
a reference to the COApp if it is running, or

null if it is not

protected COApp launchApp(String appName)
Launches the specified COApp, 1f not already
running; adds app to runningApps
Parameters:
app - a reference to the COApp to be launched
Throws: COException

if the COApp cannot be launched

public boolean registerApp (COApp theApp)

allows COApps which are not launched by the
backplane (e.g., applets launched from an HTML page) to
register with the backplane.

Returns:

true if the app was successfully registered

protected synchronized void killApp (COApp app)

protected synchronized void addRunningApp (COApp a)
add a COApp to runningApps

protected synchronized void removeRunningApp (COApp a)

remove a COApp from runningApps

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 99/15984 PCT/US98/20095

-72-

public COStat getGlobalStats()

The method checks for the existence of a global
statistics object. If it does not exist, then it
constructs one.

Returns:

the global statistics object for this
backplane.

public COAppEntitlement getGlobalEntitlements ()

The method checks for the existence of a global
entitlements object. If it does not exist, then it
constructs one.

Returns:

the global entitlements object for this
backplane

public COLog getGloballLog ()

The method checks for the existence of a global
log. If it does not exist, then it constructs one
using the COLog constructor.

Returns:

the global log object for this backplane

public COConfiguration getGlobalConfiguration ()

The method checks for the existence of a global
configuration object. If it does not exist, then it
constructs one.

Returns:

SUBSTITUTE SHEET (RULE 26)

10

15

20

25 -

WO 99/15984 PCT/US98/20095

-73-

the global configuration object for this

backplane.

The COApp class is intended to mimic an
Applet-like interface but be managed by the BackPlane.
A COApp may use the standard COAppFrame as a container
for coview(s), which are notified of updates to the
business objects (COModels) instantiated by this COApp
(e.g., appHyperScope). The COModels within a COApp
implement undo/redo of COCommands (refer to the
"Controller" portion of MVC). It also has a list of
COParm objects, which contain the message headers from
asynchronous transactions (other than those forwarded
to the COApp by the Inbox, for which a separate list
object has been provided). Synchronous responses from

backend services are processed as they are received.

Example code for use of COApp will be illustrated.
When an application icon on the AppBar is clicked, a
specific COApp will be launched by the BackPlane. The
BackPlane will then call the COApp's applet-like
startup routines,

appHyperScope.init(); and

appHyperScope.start () ;
One COApp may communicate with another (including the
Inbox) via the BackPlane by instantiating a message
object of the COParm class,

COParm message = new COParm(...); and

invoking the processMessage method,

SUBSTITUTE SHEET (RULE 26)

10

15 .

20

25

WO 99/15984 PCT/US98/20095

-74 -

appHyperScope.processMessage(message);
A COApp can execute both synchronous and asynchronous
‘transactions. Synchronous transactions involve direct
service requests. New Threads may be spawned in which
to execute the transactions in parallel. Such threaded
transactions are synchronized if multiple threads
modify common business objects:

cosynchTransaction st = new

cosynchTransaction(clientSession) ;

st.execute(specificService, byteArrayOfData);
Asynchronous transactions involve requests for services
which will require extended processing, such as report
requests from the Inbox:

COAsynchTransaction ast = new

coAsynchTransaction(clientSession) ;

ast.execute (specificService, byteArrayOfData);

Each application must define the methods,
minimizeApp (), maximizeApp(), tileApp(), placeipp(),
appRequestFocus (), appToFront (), appToBack () in order
for BackPlane-induced windowing reguests toO work
properly. Window count must also be set for each
application accurately using setWindowCount(), as the
BackPlane depends upon an accurate window count using

getWindowCount () .

The following lists the COApp class properties and
methods.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 99/15984

-75-

public interface COApp

- public abstract String getAppName ()
Returns the name of the COApp instance
Returns:
the name of the COApp instance, null if not

set.

public abstract COAppDescription getAppDescription ()
Returns the application description object. The
information in the application description is used by

the standard app frame.

public abstract COBackPlane getBackPlane ()
Returns the COBackPlane pertaining to the COApp

instance

Returns:
the COBackPlane pertaining to the COApp

instance, null if not set.

public abstract COUser getUser()

Returns the user and is identical to the
BackPlane's COUser instance

Returns:

the user context object, null if not set.

public abstract void minimizeApp ()

Minimizes the frames associated with this

SUBSTITUTE SHEET (RULE 26)

PCT/US98/20095

10

15

20

25

WO 99/15984 PCT/US98/20095

-76.

application. An application should override this
method, dealing with (possibly) multiple frames and

open dialogs.

public abstract void maximizeApp ()
Maximize the frame(s) associated with this
application. An application should override this
method, dealing with possibly multiple frames and open

dialogs.

public abstract boolean tileApp (Rectangle r(])
Backplane feeds the application rectangles,
indicating the location and size that the application
may take up of screen real estate for tiling purposes.
The individual application must override for the case

that there are multiple application frames, dialogs,
and for the further case that an application is not to
be tiled, e.g., COToolBar. This method always returns
false.

Parameters:

r - a rectangle indicating the amount of
screen real estate the backplane is assigning to this
application

Returns:

true if successful, false otherwise. Also, an
application like COToolBar which is a pseudoapp, for
which tiling will not occur should override this method

to return simple false.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 99/15984 PCT/US98/20095

-77-

public abstract void placeApp (Point positions|[])

The BackPlane feeds the application positions. The
application must then move each of its application
windows to one of the given positions.

Parameters:

positions - An array of points going from
left to right, top to bottom.

public abstract int getInsetHeight ()

Retrieves the height of the application windows'
titlebars. This is easily accomplished by a call to
Container.getInsets().top; however, each application
developer must override this method appropriately. The
current method returns a default value of 5. Required

for proper cascading.

public abstract void appRequestFocus ()

Requests that a given application have the focus.
Each application needs to define how this works in the
case that an application has multiple windows or open

dialogs.

public abstract void appToFront ()
Requests that a given application be brought to
the fore. Each application need to define how this

works, as above.

public abstract void appToBack ()

Request that a given application be sent to the

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 99/15984 PCT/US98/20095

-78-

back. Each application needs to define how this works,

as above.

public abstract void setBackPlane (COBackPlane plane)
This method is called by the BackPlane immediately
after launching this COApp Sets the COBackPlane
pertaining to the COApp instance

public abstract void setUser (COUser user)
This method is called by the BackPlane
immediately. Sets the user context object and is

identical to the BackPlane's COUser instance

public abstract void processMessage (COParm message)

throws COException

Implement to enable application-specific
processing of messages sent from other COApps. Each
application must define this method for itself.

Parameters:

message - a COParm encapsulating the message
to be passed

Throws: COException

if app fails to process message

public abstract int getWindowCount ()
Returns the number of application windows- that are
currently open for this application. This

information is necessary for proper tiling and

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 99/15984 PCT/US98/20095

-79-

cascading behavior. Default behavior for this method is

to return zero. For example, applications such as the

.main toolbar which need not be tiled or minimized

inmplements this method to return zero. COBackPlane may
call getWindowCount () to get correct window count for

each application.

public abstract long getIdleTime()
Returns the time in milliseconds that the user has
not interacted with this COApp during the current

session.

public abstract void exit() throws COException

Exit the application, called e.g. from the close
box in the main frame, if any.

Throws: COException

if an Application cannot be closed.

public abstract void addChild (Window wnd)
Adds a child window to this hierachy.

public abstract void removeChild(Window wnd)

Removes a child window to this hierachy.
public abstract Vector getChildren()
Retrieves all the child windows associated with

this COApp.

public abstract void setEnabled(boolean state)

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 99/15984 PCT/US98/20095

-80-

Enable or disable the application and associated

child windows.

public abstract void init()

This method is a part of the Applet-like interface
and if called by the COBackPlane to inform this applet
that it has been loaded into the system. It is always
called before the first time that the start method is
called. A subclass of COApp overrides this method if it
has initialization to perform. The implementation of

this method provided by the COApp class does nothing.

public abstract void start()

This method is a part of the Applet-like interface
and is called by the COBackPlane to inform this COApp
that it should start its execution. It is called after
the init () method. A subclass of COApp overrides this
method if it has any operation that it wants to perform
at the start of execution. This method is typically
less important for COApps than for Applets, since
COApps typically run continuously. The implementation
of this method provided by the COApp class does

nothing.

public abstract void stop()

This method is a part of the Applet-like interface
and is called by the COBackPlane inform this COApp that
it should stop its execution. It is called, for

example, just before the applet is to be destroyed.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 99/15984 PCT/US98/20095

-81-

Like the start() method, this method is typically less
important for COApps than for Applets, since COApps
typically run continuously. The implementation of this

method provided by the COApp class does nothing.

public abstract void destroy ()
part of the Applet-like interface Called by the

COBackPlane to inform this applet that it is being
reclaimed and that it should destroy any resources that
it has allocated. The stop method will always be called
before destroy. A subclass of COApp overrides this
method if it has any operation that it wants to perform
before it is destroyed. For example, a COApp with
threads would use the init() method to create the
threads and the destroy method to kill them. The
implementation of this method provided by the COApp

class does nothing.

The COAppImpl class is intended to implement the
COApp interface in a non-applet class, but with an
applet-like interface. The COAppImpl class has all the
functionality of an applet, except that it does
not derive from Panel and thus does not have its own
browser-based display space. A COAppImpl may use the
standard COAppFrame or COStandardAppFrame as a

container for display components, e.g. COView(s).

The COAppImpl class provides intelligent default

implementations for all the COApp interface functions,

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 99/15984 PCT/US98/20095

-82-

as well as the "applet-like" interface functions such

as getImage() and getAppletContext().

The following lists the COAppImpl class properties

and methods.

public class COAppImpl extends Object implements
COApp, WindowListener

protected COBackPlane backPlane
This is the COBackPlane which created the COApp.
It is provided by the COApp using the setBackPlane()
method.

protected String sAppName
Name of COApp.

protected COAppEntitlement appEnts
Application entitlement object for COAppD.

protected COAppDescription appDescription
Application description object for COApp which

holds meta data such as default help URL.

protected COAppStat appsStats
Statistics object for COApp.

protected COAppConfiguration appConf
Configuration object for COApp.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 99/15984 PCT/US98/20095

_83-

protected COAppLog appLog
Log object for COApp.

protected COUser user

User context object, to be set by the BackPlane.

protected int windowCount
Integer type holding the number of main windows

currently open for the application, excluding dialogs.

protected Vector children

Vector holding all the child windows.

public COAppImpl ()

single constructor, like Applet class.

public String getAppName ()
Returns the name of the COApp instance
Returns:
the name of the COApp instance, null if not

set.

public COBackPlane getBackPlane()
Returns the COBackPlane pertaining to the COApD
instance.
Returns:
the COBackPlane pertaining to the COApp

instance, null if not set.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 99/15984 PCT/US98/20095

-84-

public COUser getUser ()

Returns the user and is identical to the
BackPlane's COUser instance.

Returns:

the user context object, null if not set.

public COAppDescription getAppDescription()
Returns the application description object
containing meta-data about this application.
Returns:
the application description object, null if

not set.

public Vector getInboxItemVector ()
Returns the vector of inbox item headers.
Returns:

inbox item headers, null if not set.

public Vector getAsynchResponseVector ()
Returns the vector of AsyncResponse objects for
AsynchTransactions.
Returns:
vector of AsyncResponse objects for

AsynchTransactions, null if not set.

public void minimizeApp ()
Minimizes the frames associated with this-
application. An application should override this

method, dealing with (possibly) multiple frames and

SUBSTITUTE SHEET (RULE 26)

10

15

20

25°

WO 99/15984

PCT/US98/20095

-85-

open dialogs.

-public void maximizeApp ()

Maximize the frame(s) associated with this
application. An application should override this
method, dealing with possibly multiple frames and open

dialogs.

public boolean tileApp (Rectangle r[])

Backplane feeds the application rectangles,
indicating the location and size that the application
may take up of screen real estate for tiling purposes.
The individual application must override for the case
that there are multiple application frames, dialogs,
and for the further case that an application is not to
be tiled, e.g., COToolBar. This method always returns
false.

Parameters:

r - a rectangle indicating the amount of
screen real estate the backplane is assigning to this
application.

Returns:

true if successful, false otherwise. Also, an
application like COToolBar which is a pseudoapp, for
which tiling will not occur should override this method

to return simple false.

public void placeApp (Point positions[])

The BackPlane feeds the application positions. The

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 99/15984 PCT/US98/20095

-86 -

application must then move each of its application
windows to one of the given positions.
Parameters:
positions - An array of points going from

left to right, top to bottom.

public int getInsetHeight ()

Retrieves the height of the application windows'
titlebars. This is easily accomplished by a call to
Container.getInsets () .top; however, each application
developer must override this method appropriately. The
current method returns a default value of 5. It is

required for proper cascading.

public void appRequestFocus ()

Requests that a given application have the focus.
Each application needs to define how this works in the
case that an application has multiple windows or open

dialogs.

public void appToFront ()
Requests that a given application be brought to
the fore. Each application need to define how this

works, as above.

public void appToBack ()
Request that a given application be sent-to the
back. Each application needs to define how this works,

as above.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 99/15984 PCT/US98/20095

-87-

public void setAppName (String name)

Sets the name of the COApp instance.

public void setBackPlane(COBackPlane plane)

This method is called by the BackPlane immediately
after launching this COApp Sets the COBRackPlane
pertaining to the COApp instance.

public COAppLog getAppLog ()
Returns the application-specific log.
Returns:

null if no log is defined.

public COAppsStat getAppStats ()
Returns the application-specific statistics
object.
Returns:
null if no application specific statistics

object is defined.

public COAppConfiguration getAppConfiguration ()
Returns the application-specific configuration
object.
Returns:
null if no application specific configuration

object is defined.

public void setAppStats (COAppStat appStats)

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 99/15984 PCT/US98/20095

-88-

This method sets the application-specific

statistics log pertaining to the COApp instance

public void setAppLog(COAppLog log)
This method sets the application-specific log

pertaining to the COApp instance.

public void setAppDescription (COAppDescription
appDesc)
This methods sets the application description

object.

public void setAppConfiguration (COAppConfiguration
configqg)
This method sets the application-specific

configuration pertaining to the COApp instance.

public void setUser (COUser user)
This method is called by the BackPlane which
immediately sets the user context object. It is

identical to the BackPlane's COUser instance.

public void processMessage (COParm message) throws
COException

This method is implement to enable
application-specific processing of messages sent from
other COApps. Each application must define this method
for itself.

Parameters:

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 99/15984

-89 -

message - a COParm encapsulating the message
to be passed.
Throws: COException

if app fails to process message.

public void processInboxItem(COParm itemID) throws

COException

This method is implemented to enable
application-specific processing of a particular Inbox
item. It processes the data from the Inbox using the
Inbox item ID. This method is provided so that Inbox
processing could be separated from more generic
inter-application communication using
processMessage (). Each application must define this
method for itself.

Parameters:

itemID - a COParm encapsulating the ID for
the Inbox item.

Throws: COException

if the item cannot be retrieved.

public long getIdleTime ()
Returns the time in milliseconds that the user has
not interacted with this COApp during the current

session.

protected void resetIdleTime ()

Resets the idle-time metric--It is necessary to

SUBSTITUTE SHEET (RULE 26)

PCT/US98/20095

10

15

20

25

WO 99/15984 PCT/US98/20095

-90-

use this in order to return a sensible "idle-time."
Typically, this method would be called whenever an user
event is received, but is not necessarily restricted

thereto.

public int getWindowCount ()

Returns the number of application windows that are
currently open for this application. This
information is necessary for proper tiling and
cascading behavior. Default behavior for this method is

to return zero.

public void setWindowCount (int count)

Sets the window count to the specified value.

public void init()

This method is a part of the Applet-like interface
and is called by the COBackPlane to inform this applet
that it has been loaded into the system. It is always
called before the first time that the start method is
called. A subclass of COApp should override this
method if it has initialization to perform. The
implementation of this method provided by the COApPp

class does nothing.

public void start ()
This method is a part of the Applet-like -interface
and is called by the COBackPlane to inform this COApp

that it should start its execution. It is called after

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 99/15984 PCT/US98/20095

-91-

the init{) method. A subclass of COApp overrides

this method if it has any operation that it wants to

perform at the start of execution. This method is

typically less important for COApps than for Applets,
since COApps typically run continuously. The
implementation of this method provided by the COApp

class does nothing.

public void stop()

This method is a part of the Applet-like interface
and is called by the COBackPlane to inform this COApp
that it should stop its execution. It is called, for
example, just before the applet is to be destroyed.
Like the start() method, this method is typically less
important for COApps than for Applets, since COApps
typically run continuously. The implementation of this

method provided by the COApp class does nothing.

public void destroy()

This method is a part of the Applet-like interface
and is called by the COBackPlane to inform this applet
that it is being reclaimed and that it should destroy
any resources that it has allocated. The stop method
will always be called before destroy. A subclass of
CoApp should override this method if it has any
operation that it wants to perform before it is
destroyed. For example, a COApp with threads would use
the init() method to create the threads and the destroy
method to kill them. The implementation of this method

SUBSTITUTE SHEET (RULE 26)

10

15

20 .

25

WO 99/15984 PCT/US98/20095

-92-

provided by the COApp class does nothing except that
it will call disposeAllChildren to get rid of all

registered windows.

public void exit() throws COException

This method is used to exit the application,
called e.g. from the close box in the main frame, if
any.

Throws: COException

if an Application can not be closed.

public void addChild(Window wnd)
Adds a child window to this hierarchy.

public void removeChild(Window wnd)

Removes a child window to this hierarchy.

public Vector getChildren({)
Retrieves all the child windows associated with

this COAppImp.

public void setEnabled(boolean state)
Enable or disable the application and associated

child windows.
public void disposeAllChildren ()

Iterate through all the children registered with

this coapp and call their dispose method.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 99/15984 PCT/US98/20095

-93_

public void windowActivated(WindowEvent e)

Empty

public void windowOpened (WindowEvent e)

Empty

public void windowClosing (WindowEvent e)

Called when window is closing

public void windowClosed (WindowEvent e)

Empty

public void windowDeactivated (WindowEvent e)

Empty

public void windowIconified(WindowEvent e)

Empty.

public void windowDeiconified(WindowEvent e)

Empty

public boolean isActive()
This method is a part of the Applet-like
interface. This implementation always returns true.

Subclasses of COApp overrides this method.

public URL getCodeBase()
part of the Applet-like interface.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 99/15984 PCT/US98/20095

-94-

public URL getDocumentBase ()
part of the Applet-like interface.

public String getParameter (String name)
This method is a part of the Applet-like

interface.
public AppletContext getAppletContext ()

This method is a part of the Applet-like

interface.

public Image getImage(URL url)
This method is a part of the Applet-like

interface.

public Image getImage(URL url, String name)
This method is a part of the Applet-like

interface.
public AudioClip getAudioClip (URL url)
This method is a part of the Applet-like
interface.
public AudioClip getAudioClip (URL url, String name)
This method is a part of the Applet-like

interface.

public Locale getLocale()

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 99/15984

-95-

Retrieves locale from the BackPlane.
Returns:

null, if not set.

public void play(URL url)
This method is a part of the Applet-like

interface.

public void play(URL url, String name)
part of the Applet-like interface.

COapplet class extends java.applet.Applet,, and
implements the COApp interface by forwarding the

various calls to a contained COAppImpl object.

public class COApplet extends Applet implements COApp

protected COAppImpl coApplImpl
This is the COAppImpl object to which the COApp

interface will be forwarded.

public COApplet ()

single constructor, like Applet class.

public String getAppName ()

This methed is a part of the COApp interface and
is forwarded to contained object.

Returns:

the name of the COApp instance, null if not

SUBSTITUTE SHEET (RULE 26)

PCT/US98/20095

10

15

20

25

WO 99/15984

-96 -

set.

PCT/US98/20095

-public COAppDescription getAppDescription ()

This method is a part of the COApp

is forwarded to contained object.

Returns:

interface and

the application description object, null if

not set.

public COBackPlane getBackPlane()
This method is a part of the COApp
is forwarded to contained object.
Returns:
the COBackPlane pertaining to

instance, null if not set.

public COUser getUser ()
This method is a part of the COApp
is forwarded to contained object.
Returns:

the user context object, null
public void minimizeApp ()
This method is a part of the COApp

is forwarded to contained object.

public void maximizeApp ()

This method is a part of the COApp

SUBSTITUTE SHEET (RULE 26)

interface and

the COApp

interface and

if not set.

interface and

interface and

10

15

20

25

WO 99/15984

-97-

is forwarded to contained object.

-public boolean tileApp (Rectangle r(])
This method is a part of the COApp

is forwarded to contained object.

public void placeApp(Point positions({])

This method is a part of the COApp

is forwarded to contained object.

public int getInsetHeight ()
This method is a part of the COApp

is forwarded to contained object.

public void appRequestFocus ()
This method is a part of the COApp

is forwarded to contained object.

public void appToFront ()
This method is a part of the COApp

is forwarded to contained object.

public void appToBack()
This method is a part of the COApp

is forwarded to contained object.
public void setAppName (String name)

This method is a part of the COApp

is forwarded to contained object.

SUBSTITUTE SHEET (RULE 26)

PCT/US98/20095

interface

interface

interface

interface

interface

interface

interface

and

and

and

and

and

and

and

10

15

20

25

WO 99/15984 PCT/US98/20095

-98-

public void setBackPlane (COBackPlane plane)
This method is apart of the COApp interface -

forwarded to contained object.

public void setUser (COUser user)
This method is a part of the COApp interface and

is forwarded to contained object.

public void processMessage (COParm message) throws
COException

This method is a part of the COApp interface and
is forwarded to contained object.

Throws: COException

if app fails to process message.

public long getIdleTime ()
This method is a part of the COApp interface and

is forwarded to contained object.
public int getWindowCount ()
This method is a part of the COApp interface and

is forwarded to contained object.

public void setWindowCount (int count)

Sets the window count to the specified value.

public void addChild(Window wnd)
This method is a part of the COApp interface and

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 99/15984

-99 -

is forwarded to contained object.

-public void removeChild(Window wnd)
This method is a part of the COApp

is forwarded to contained object.

public Vector getChildren()
This method is a part of the COApp

is forwarded to contained object.

public void setEnabled(boolean D)
This method is a part of the COApp
is forwarded to contained object.

Overrides:

setEnabled in class Component.

public void init()
This method is a part of the COApp
is forwarded to contained object.
Overrides:

init in class Applet.

public void start()
This method is a part of the COApp
is forwarded to contained object.
Overrides:

start in class Applet.

public void stop ()

SUBSTITUTE SHEET (RULE 26)

PCT/US98/20095

interface and

interface and

interface and

interface and

interface and

10

15

20

25

WO 99/15984 PCT/US98/20095

-100-

This method is a part of the COApp interface and
is forwarded to contained object.
Overrides:

stop in class Applet.

public void destroy ()

This method is a part of the COApp interface and
is forwarded to contained object.

Overrides:

destroy in class Applet.

public void exit() throws COException

This method is a part of COApp interface and is
forwarded to contained object.

Throws: COException

if an Application cannot be closed.

The COAppFrame class represents a generic base
frame class, in which COApps reside. It has a set
layout, consisting of a menubar and possibly a tool
bar, with a main viewing window. The main viewing area
is returned as a panel, on which the COApps may put
what views they wish. A code example for creating a

frame is “COAppFrame aFrame = new COAppFrame () ;”.

public class COAppFrame extends COFrame implements

WindowListener

public static final int WINDOW_MINIMIZED

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 99/15984

public
public

public
public
public

static

static

static
static

static

final

final

final
final

final

-101-

int

int

int
int

int

protected COApp owner

coapp that controls

WINDOW_MAXIMIZED
WINDOW_TILED

WINDOW_HAS_FOCUS

WINDOW_IN_FRONT
WINDOW_IN_BACK

this frame.

protected Panel viewPanel

Main panel of the frame.

protected Panel toolbar

protected MenuBar menubar

public COAppFrame ()

Default constructor.

public COAppFrame (COApp o)

Default constructor.

public void setMenuBar (boolean visible)

Set menubar,

public void setPreferredSize(int w, int h)

if a menubar is desired.

PCT/US98/20095

Sets the preferred size for the COAppFrame.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 99/15984 PCT/US98/20095

-102-

public void setPreferredSize(Dimension d)

Sets the preferred size for the COAppFrame.

public void setPreferredWidth (int w)
Sets the preferred width for the COAppFrame.

public void setPreferredHeight (int h)
Sets the preferred height for the COAppFrame.

public void minimizeFrame ()

Minimizes the size of this frame (not iconify).

public void maximizeFrame ()
Maximizes the size of this frame. Attempts to set

it to the size of the screen.

public void setSize(Rectangle r)
Sets the size of this frame to the given

rectangle.

public void setEnabledAll (boolean state)
Enables/disables this frame and all it's

associated siblings.

public COApp getOwner ()
Returns the COApp that owns this COAppFrame.
Returns:

null if the owner was not set.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 99/15984 PCT/US98/20095

-103-

public void setOwner (COApp owner)

Sets the COApp that owns this COAppFrame.

public void addMenus (Menu menus [])

Add all menus to menubar at once.

public void addMenulItems (Menu menu,
MenuItem menuitems[])

Add all menuitems to a menu at once.

public void addMenu (Menu menu)

Add a single menu to the menubar.

public void addMenuItem(Menu menu,
Menultem menuitem)

Add a menuitem to a menu.

public void addMenuToMenu (Menu addto,
Menu menu)
Adds a menu to a menu.
Parameters:
addto - the menu to which another menu is to
be added.

menu - the menu to be added.

public void addHelpMenu (Menu help)

Adds a help menu to the menubar.

public void setToolbarVisible(boolean visible)

SUBSTITUTE SHEET (RULE 26)

10

15

20 -

25

WO 99/15984

-104-

Set a toolbar to be visible or invisible.

- public void setToolbarBackground(Color color)

Set the toolbar background color.

public void addTools (Component tools(])

Adds a collection of tools to the toolbar in the
order tools[0] to tools[n-1] for an array of n image
buttons.

Parameters:

tools - an array of ImageButtons.

public void addTool (Component tool)
Add a tool to the toolbar.
Parameters:

tool - an ImageButton.
public Panel getViewArea()
Returns the main viewing area, on which the
developers should add whatever views they wish.
public void attachToViewArea (Component theComponent)
makes the provided component take up the entire

viewArea.

protected void setupPanels ()

sets up layout of standard frame.

protected COApp getCOApp ()

SUBSTITUTE SHEET (RULE 26)

PCT/US98/20095

10

15 .

20

25

WO 99/15984 PCT/US98/20095

-105-

Returns the COApp which owns this AppFrame.

-public void windowActivated (WindowEvent e)

Overrides:

windowActivated in class COFrame.

public void windowOpened (WindowEvent e)
Overrides:

windowOpened in class COFrame.

public void windowClosing (WindowEvent e)
Called when window is closing.
Overrides:

windowClosing in class COFrame.

public void windowClosed(WindowEvent e)
Overrides:

windowClosed in class COFrame.

public void windowDeactivated (WindowEvent e)
Overrides:

windowDeactivated in class COFrame.
public void windowIconified(WindowEvent e)
Overrides:

windowIconified in class COFrame.

public void windowDeiconified (WindowEvent e)

Overrides:

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 99/15984 PCT/US98/20095

-106-

windowDeiconified in class COFrame.

-protected void finalize() throws Throwable
Disposes of frame, if it hasn't been disposed for
some reason.
-~ Throws: Throwable
if there was a problem during finalization.
Overrides:

finalize in class Object.

The COParm class represents a wrapper class for
the data that is fed into each COApp upon startup and
interapplication communications, in general. The
coParm holds a hashtable of parameters, where each
parameter is a name-value pair. Data can be retrieved
by name, using methods contained herein; further, it
can also be retrieved through an enumeration, using

methods of the Hashtable class.

public class COParm extends Hashtable

public COParm()

Default constructor.

public coParm (COPair pairs([]) throws COException
Special constructor.
Parameters:

pairs - An array of Pair objects.

Throws: COException

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/15984

-107-

if the name one of the given name-value pairs

is not a String.

public void addParm(COPair pair) throws COException
Adds a pair object.
Throws: COExXception

if the name of the given name-value pair is

not a String.

public void addParm(String name, Object data)
Constructs a pair object from the name and data,

adds it.

public Object getData(String name)

Returns the data associated with name.

The following paragraph describes the
COClientSession main methods.
CoClientSession ()
is the default constructor for this

class

boolean logon (String username,
String password) throws

coClientLogonException

executes a logon into the system with
a required user name and password

transaction objects can then use the

session instance to connect into a given

service

SUBSTITUTE SHEET (RULE 26)

PCT/US98/20095

WO 99/15984 PCT/US98/20095

-108-

boolean logon (String username,
String password,
URL resource) throws
CoClientLogonException

executes a logon into the system with

a required user name, password and URL

void setURL (String stringRep) throws
MalformedURLException

sets the instances internal URL

COConnection connect () throws IOException

returns a connection into a held URL.
This method is used in order to
establish a connection after a
successful logon has occurred.
COConnection connect (COTransaction trans)

throws IOException

returns a connection into a held URL.

This method is used by transactions to
establish a connection to a backend
service after a successful logon has
occurred. When a transaction
(COTransaction) instance sends this java
message, this method starts to monitor
the transaction in addition to
connecting the transaction.

void disconnect (COTransaction trans) throws

IOException)

disconnects a transaction from a

backend service. When this java message

SUBSTITUTE SHEET (RULE 26)

10

15

20

257

WO 99/15984

PCT/US98/20095

-109-

is sent the session stops monitoring the
transaction instance.
synchronized void uselInputTimers (boolean
flag)

allows the session instance to use

input timers which time the dead time
for all read actions on input streams
associated with this session instance.
All input streams (InputStream derived
instances) retrieved from a COConnection
instance which was accessed through one
of the above COClientSession.connect ()
methods are associated with the
corresponding session instance.
Therefore these input streams are those
that are affected by the
useInputTimers () method.

synchronized void setMaxDeadTime (long

waitSeconds)

sets the maximum allowed dead time for
all input streams associated with this

session. See uselInputTimers () above.

synchronized long getMaxDeadTime ()

returns the maximum dead time. See

setMaxDeadTime () above.
void setSessionInfo (COTransactMessage toSet)

sets information from the session into
a protocol header type object. This
method is also used by transactions and

SUBSTITUTE SHEET (RULE 26)

WO 99/15984 PCT/US98/20095

-110-

not meant to be used outside of this

context.

boolean logoff ()

logs the session off the system. After
5 this method has been invoked the session
instance can no longer be used for
transaction until another logon is
attempted.

boolean isLoggedOn ()

10 : tests the instance to see whether it

is currently logged on

15 The COUser class is used to create a user object
which encapsulates the user's name, password, and

numeric user id. The following lists the COUser class

methods.
public class COUser extends Object
20 public COUser (String username, String password)

Creates a COUser with the given username and

password
Parameters:
username - the user name
25 password - the password

SUBSTITUTE SHEET (RULE 26)

WO 99/15984 PCT/US98/20095

-111-

public COUser (String username,
String password,
String enterpriseID)

Creates a COUser with the given username and

5 password
Parameters:
username - the user name
password - the password
enterpriseID - the enterpriselD
10

public COUser (String username,
String password,
String enterpriselD,
String timeZone)

15 Creates a COUser with the given username and

password
Parameters:
username - the user name
password - the password
20 enterpriseID - the enterpriselID

timeZone - the timeZone

SUBSTITUTE SHEET (RULE 26)

10

15

20

WO 99/15984 PCT/US98/20095

-112-

public COUser (int uid,
String username,
String password)

Creates a COUser with the . given username and

password

Parameters:
uid - the numeric user id
username - the user name

password - the password

public int getUID()

Returns the user ID number.

Returns:

the user ID number

public String getUserName ()
Returns the user name

Returns:

the user name

SUBSTITUTE SHEET (RULE 26)

WO 99/15984 PCT/US98/20095

-113-

public String getPassword()
Returns the user password.
Returns:

the user password

public String getEnterpriseID()
Returns the enterpriselD.
Returns:
the enterpriseID
10
public String getTimeZone ()
Returns the timeZone.
Returns:
the timeZone
15
public Vector getEntitlements()
Returns the application entitlements
Returns:
a collection of application entitlements
20 -

public Vector getUserProfile()

SUBSTITUTE SHEET (RULE 26)

10

15

20

WO 99/15984 PCT/US98/20095

-114-

Returns the user profile.
Returns:

the user profile

public void setPassword(String password)
Sets the user password

Parameters:

password - the user password

public void setEnterpriseID(String enterpriselD)
Sets the enterpriselD

Parameters:

enterpriseID - the enterpriselD

public void setTimeZone (String timeZone)
Sets the timeZone

Parameters:

timeZone - the timeZone
public void setEntitlements (Vector entitlements)
gets the entitlements for this user

Parameters:

SUBSTITUTE SHEET (RULE 26)

WO 99/15984 PCT/US98/20095

-115-

entitlements - the entitlements
public void setUserProfile(Vector userProfile)
Sets the user profile

Parameters:

userProfile - the user profile

SUBSTITUTE SHEET (RULE 26)

> W N

w

10
11
12

13

14

15
16
17

18 .

19

WO 99/15984 PCT/US98/20095

-116-

CLAIMS

Having thus described our invention, what we claim as

new, and desire to secure by Letters Patent is:

1. A system for integrating and managing
one or more client application programs which enable a
user to interact with one or more web enabled services

subscribed by the user, comprising:

a web browser, resident on a client platform,
the web browser capable of receiving one or more web

pages from a remote server;

a backplane object downloaded with, and
launched by the web page, the backplane object capable
of launching the client application programs upon
initiation by the user, the backplane object further
enabling inter-application communications among the
client application programs and also with the backplane

object,

whereby the backplane object and the client
application programs interoperate with one another to
provide an integrated customer interface to a plurality
of communications network management services

subscribed by the user.

2. The system as claimed in claim 1, wherein

the system further comprises:

SUBSTITUTE SHEET (RULE 26)

oo 3 o U W

A s W N

WO 99/15984 PCT/US98/20095

-117-

a logon object downloaded with and launched
by the web page, the logon object capable of accepting

logon transactions from the user; and

a session object created by the logon object,
the session object communicating with the remote server
to provide user authentication,

whereby upon successful user validation from
the remote server, the logon object sends a command to
the remote server to download the client application

programs and the web page having the backplane object.

3. The system as claimed in claim 2,
wherein the system further comprises a user object for
representing a current user, the user object further
communicating with the remote server to determine the
user’s entitlements to the web enabled services,
whereby the backplane uses the entitlements to present
to the user only those web enabled services to which

the user has privilege.

4. The system as claimed in claim 3,
wherein the client application program is run directly
by the backplane when the user selects the service
associated with the client application program, whereby
the client application program runs in a frame

independent from the web browser’s window.

5. The system as claimed in claim 3,

SUBSTITUTE SHEET (RULE 26)

O U W N

0 3 o ok W N

10
11

12~

WO 99/15984 PCT/US98/20095

-118-

wherein the client application program is a program

launched from a new browser window created by the

backplane.

6. The system as claimed in claim 3,
wherein the backplane object maintains session
information received from the remote server in static
memory for the duration of a session, and enables the
client application programs to access the static

memory,

whereby a need for each of the client
application programs to communicate with remote servers

for once obtained information is eliminated.

7. The system as claimed in claim 3, wherein
the client application program includes an application
toolbar for presenting the web enabled services to the
user, the application toolbar having a capability to
launch, upon the user’s initiation, the client
application programs associated with the web enabled
services, the application toolbar further having a

capability to remain static on the screen foreground,

whereby the user may select second web
enabled service after having run first web enabled
service without having to re-retrieve the web page

having the backplane object.

SUBSTITUTE SHEET (RULE 26)

=W N A U1 W N (62 BT~ U N S N

R R

u W N

WO 99/15984 PCT/US98/20095

-119-

8. The system as claimed in claim 3, wherein
the system further comprises a graphical user interface
unit for enabling the client applicaticn programs and
the backplane to provide a common look-and-feel desktop

window management features.

9. The system as claimed in claim 3, wherein
the system further comprises a communication
transaction unit for enabling the backplane and the
client application programs to communicate with the
server, whereby the communication transaction unit may

track messages communicated.

10. The system as claimed in claim 3, wherein
the system further comprises a security unit for
providing a browser-independent interface for accessing

browser-specific security implementations.

11. The system as claimed in claim 3,
wherein the system further comprises an error handling
unit for managing exceptions occurring in the client
application programs and the backplane.

12. The system as claimed in claim 3,
wherein the system further comprises an input/gutput
services unit for providing input/output services
including printing, logging, data exporting and
importing, managing default configuration files and

SUBSTITUTE SHEET (RULE 26)

A Ul W N

0w ~1 O 1> W

11
12
13

O Ul W N

WO 99/15984 PCT/US98/20095

-120-

statistics,

whereby the backplane and the client
application programs use the input/output services unit
for their input/output needs thereby containing all
input/output functions in the input/output services

unit.

13. The system as claimed in claim 3,
wherein the system further comprises a cache unit for
establishing a two-tier disk-memory caching mechanism
whereby upon instantiation of a cache object, the cache
object retrieves a requested page from a local disk
along with pages following and preceding it into the
cache object’s active memory if the requested page is
available in the local disk and, if the requested page
is not available in the local disk, the cache object
downloads information including pages following and
preceding it from a remote data source and writes the
information to the local disk, storing the information

into the cache ocbject’s active memory.

14. The system as claimed in claim 3,
wherein the system further comprises a web help unit
for enabling the backplane and the client applications
to command the web browser to bring up help information
by passing a URL pointing to a help page and a
reference to the client application or the badkplane.

SUBSTITUTE SHEET (RULE 26)

s W N e

B W N

(62 BN VSR O

N

10

WO 99/15984 PCT/US98/20095

-121-

15. The system as claimed in claim 3,
wherein the system further comprises a heartbeat
message unit for enabling the client applications to

notify the server periodically of their status,

whereby when the server does not receive
notification for a predefined period, the client
application is denoted as having exited.

16. The system as claimed in claim 3,
wherein the web pages further comprise hyper links to

other web pages and services.

17. The system as claimed in claim 3,
wherein the user object stores in its memory the user’s
entitlements after retrieving them from the remote

server.

18. A method for integrating and managing
one or more client application programs for enabling a
user to interact with one or more web enabled services
to which the user has subscribed, the method

comprising:

receiving a web page having a backplane

object from a remote server;

downloading a client application program

associated with the web enabled services;

launching the backplane object;

e = em o

SUBSTITUTE SHEET (RULE 26)

I

11
12

WO 99/15984

PCT/US98/20095

-122-

presenting to the user the client application
programs associated with the web enabled services to
which the user has subscribed and which the user may

select; and

creating the client application program upon

the user’s request,

whereby the backplane object and the client
application programs interoperate with one another and
communicate with the remote server to provide an
integrated customer interface to a plurality of
communications network management services subscribed

by the user.

19. The method according to claim 18,

wherein the method further comprises:

accepting user logon transaction from the

user; and

authenticating the user logon transaction by

communicating with the remote server,

before the step of receiving a web page
having a backplane object from a remote server.

20. The method according to claim 19,

wherein the step of presenting further comprises:

determining entitlements for services to

which the user has privilege; and

enabling only those services which the user

SUBSTITUTE SHEET (RULE 26)

TR S

Bow N

=W N e

=W N e

WO 99/15984 PCT/US98/20095

-123-

is entitled.

) 21. The method according to claim 20,
wherein the step of creating comprises launching the
client application program directly from the backplane

object.

22. The method according to claim 20,
wherein the step of creating comprises:
downloading a new browser window; and launching the

client application program from the new browser window.

23. The method according to claim 20,
wherein the method further comprises:
maintaining information data in a static memory

throughout a session.

24. The method according to claim 20,

wherein the method further comprises:

launching an application toolbar for presenting

the web enabled services to the user;

displaying the application toolbar on the

screen foreground.

25. The method according to claim 20,
wherein the method further comprises sending a
heartbeat message to the server periodically for

keeping communications alive with the server.

SUBSTITUTE SHEET (RULE 26)

= W N

> W N

ul

= W N

WO 99/15984 PCT/US98/20095

-124-

26. The method according to claim 20,
wherein the method further comprises generating one or
more session key for identifying a session when

communicating with the web enabled services.

27. The method according to claim 20,
wherein the method further comprises passing a URL
pointing to a help page and a reference to the client

application or the backplane,

whereby the web browser brings up help

information.

28. The method according to claim 20,
wherein the method further comprises hyperlinking to

other web pages and services.

29. A system for creating an integrated
client applications for enabling a user to interact
with one or more web enabled services to which the user

has subscribed, the system comprising:

an application backplane class for managing a

plurality of client application programs;

an application interface class for
implementing the client application program associated
with the web enabled service, the application interface

class further including a messaging device for enabling

SUBSTITUTE SHEET (RULE 26)

(8]

W o 3 O

11
12
13

oW N

@ 3 o0 Ww;

10
11

12

13
14

WO 99/15984 PCT/US98/20095

-125-

communications among the plurality of client

application programs;

GUI class extensions for enabling the client
application programs to provide a common look-and-feel

desktop window management features; and

a client communications interface for
providing a single interface from which the client
application programs may send messages and requests to

one or more back-end services,

whereby a shared library of common objects is
provided as a framework in which a family of Internet
applications can be created and managed from an

integrated system.

30. In an integrated web-enabled application
system, a session management system for maintaining a
user session over the Internet, the session management

system comprising:

a web browser located at a client platform
for downloading one or more web pages and application
codes, and for initiating the integrated web-enabled

application system;

a server device for housing and maintaining
the one or more web pages and application codes for
downloading to the client platform, and for receiving

communication transactions from the client platform;

a logon device for validating a user into the

integrated web-enabled application system, and creating

SUBSTITUTE SHEET (RULE 26)

(6]

W W 2 O

11
12
13

w

oo ~1 o Ul b

10
11

WO 99/15984 PCT/US98/20095

-126-

the user session associated with the user upon a proper

validation;

the server device further including a
repository device for maintaining session information

associated with the user session; and

the session information including a session
timestamp representing a time of receipt of a previous
communication transaction associated with the user

session;

wherein the repository device, upon receiving
a current communication transaction from the client
platform, updates the session timestamp with a current

time.

31. The system as claimed in claim 30,
wherein the repository device further includes a device

for monitoring the session timestamp, and

wherein if a time difference between a
current monitoring time and the session timestamp
exceeds a predefined value, the device for monitoring
clears the session information from the repository

device,

whereby the user is required to be re-
validated by the logon device before accessing the

integrated web-enabled application system.

32. In an integrated web-enabled application

system, a method for maintaining a user session over

SUBSTITUTE SHEET (RULE 26)

10
11

12
13
14
15

16 .

17

18
19

WO 99/15984 PCT/US98/20095

-127-

the Internet, the method comprising:

providing a web interface at a client
platform to the integrated web-enabled application

system;

validating a user at the client platform for
accessing the integrated web-enabled application

system;

creating the user session associated with the

user upon a proper user authentication;

maintaining session information associated

with the user session;

including a timestamp in the session
information for representing a time of receiving of a
previous communication transaction associated with the

user session;

receiving a current communication transaction

from the client platform;

updating the timestamp with a time of receipt

of the current communication transaction.

33. The method according to claim 32,

wherein the method further comprises:
monitoring the timestamp;

comparing current monitoring time with the

timestamp;

clearing the session information having the

SUBSTITUTE SHEET (RULE 26)

WO 99/15984 PCT/US98/20095

-128-

timestamp, if a time difference between the current

monitoring time and the timestamp exceeds a predefined

value.

SUBSTITUTE SHEET (RULE 26)

WO 99/15984
112
10 " Front-End Front-End Front-End
\ Business Logic | Business Logic | Business Logic
Backplane Services, Presentation Services...
12
S~
Front-End Services Framework
Session Services, Communication Services
16
\ Back-End Services Framework
Request Handlers
Back-End Business Logic
T Adapter Adapter Adapter
.8 Framework Framework Framework
Back-End System|Back-End System|Back-End System
Resource Resource Resource

PCT/US98/20095

20

Tier 1

Tier 2

Tier 3

FIG. 1

SUBSTITUTE SHEET (RULE 26)

PCT/US98/20095

WO 99/15984

2/12

swajsAs) slames ¢ —Wv_n_
aweyuIep . abuel-piIN i
ION 1 IOW l
I i
I I
I J0HUOW I
150 | 059/11u"3 "
anloadsiad | lanag SAOEIS |
1 1
(P)ov E® |
359 | JoAIeg MaIAOIel L i
A I 19AI8S G3M
QS_HEM_ _ %HDE ! N1H
" JaAI8g pueqgpeoig " =
A — EL
- | ==
deniaN i 1an8g INNL | cs
A= =
(@or 1 J¢ (IESTINELYETY)
! 18aA98 JOIBIS laneg ! =
Y HIN er | — BB Gemenin
6¢ = apooyn = L
" laneg lebeuepy 1dy “ \w_mamm =
T 7 e 7 o BB
1 ze /2 |yoyedsiq [E€ ! / H
I 1aA18g xoqu| : i = \
_ " mm 62
! FM\DHH_I mw\ ! T
ISINSO | Kinbuj soinies __/
I
@%Ellh_llmmgmll.l (@2 O
) 03 _ Zi
0% " "
" 1IANVHINI ION | ZNd
I I

Anbu| aoineg -

Anu3 1epIQ -

puegpeosg -

labeue }IOMIBN @al14 |01 -
JoJjuo Bult] |edy -

xoqu -

abed awWoH -

:suonesyddy
pejqeus Josmolg

S N

1asmoug

H3Ino.Lsno

SUBSTITUTE SHEET (RULE 26)

WO 99/15984

PCT/US98/20095
3/M12
. Java Applet !
'''' “ 12
N /
COBackPlane 14
/58(a) isa(b) _58(c) /
\ Web Browser
COApp N
Launching from
Backpiane
54(a) 54(b)
COApp
COApp (Event Monitor)
(e.g. Service Inquiry)
has
COAppFrame
COAppFrame Application Using
Common Object 56(b)
Services
Graphical User @
Interface @
Object 56(a)
COAppFrame
has a Number
of COViews
FIG. 3

SUBSTITUTE SHEET (RULE 26)

WO 99/15984 PCT/US98/20095

412

250

01 networkMCI interact Home
| Eile Edit View Go Favorites Help

& = ® 0 @ @ O

Back Forward Stop Refresh Home Search Favorites

0 https://cosweb02.mcit.com/home.html
| it bt ekttt e

I Address

C
fnetworkMCl interact networkMCI
252a
Message Center
252b
. Report Requestor
m P d What's 2564
Traffic Monitor
. 252d
AM| Alarm Monitor
255 256b] Features
Network Manager Benefits
252f
Call Manager —256¢
252g
User Options
250h networkMClI Interact
[2 [Help Support
Copyright 1997, 1998, MCI Telecommunications Cormporation, All Rights Reserved.
The names, logos, taglines and icons identifying MCI's products and services are proprietary
marks of MC| Communications Corporations.
plL¥ta Application Toolbar (o] £
| RR HTM “ AMHNM”CM“UON ? .

FIG. 4

SUBSTITUTE SHEET (RULE 26)

PCT/US98/20095

WO 99/15984

5/12

MIIA JUBID

(8)oz/ 1B
38D
Qowu H__l/\/

dvO.l3N

(qoz/Il® H__l/\/ PN /\V/EI/\/

1SOH aAloadsiad

(ploz _ﬂ-_

SNI

[« 1~/

1SoH Aoebon
or

1abeuep 18D

pueqpeoig

xoqul|

o L IET/S

Le
labeuep poday

A LY

1aAI8G MBIA Jljjel |

€7 WNdL

SR/

£€’sQ0 Jeis

RN

£€ 10§Uo JUang

N HINVay
Ay HIN Ay

Anbp| @o11BS

9¢/ 40/Eig

abueipin
o¢

18uBHUY|

ION

S "Old

Jayoredsiq

/E\ Bueijuj
8¢’ 9¢

99

IOW

JEINELS

gsm W1d

HE
wau

Router

S19A18S GO

PaN\

[31 1000000 I00]

(qQ)sz

I
_
!
_
I
A
|
|
|
_
_
|
[
|

180T ITTTIRE-T)

1asmoug

1aul8)u}
onand
vl

SUBSTITUTE SHEET (RULE 26)

WO 99/15984 PCT/US98/20095

6/12

[netwo era 0Q |]
File Edit View Go Favorites Help

¢ = ® 0 @ @ O

Back: Forward Stop Refresh Home Search Favorites

| o e Sy]
Address | https://cosweb02.mcit.com/

MClI
[networkMCT Interact network

232
Usemame [| Products &
~— 236

Services

Promotions
236

230 -

Questions &
Answers
Copyright 1997, 1998, MCI Telecommunications Corporation, All Rights Reserved.

The names, fogos, taglines and icons identifying MCl's products and services are proprietary
marks of MC! Communications Corporations.

] [&3] Internet Zone 4

FIG. 6

SUBSTITUTE SHEET (RULE 26)

PCT/US98/20095

WO 99/15984

7/12

coel \

labeuepy
JIOMIDN

30 iEls

8rel /

L Ol

asuodsay 008NN
¢— 1senbay 008NN

plomssed pue giesn

sjuswejnul pue

Q) esudiajug pajeisusy

uoISSag PalepleA

L ——— UOISSaS dlepilEA-8Y

weisbeiq sisAjeuy xajuod

09¢€!l \
Jojsenbay
] podey | |
r 8sel \
asuodssy 1senbay
uoBIILNWIWOY 2jediunwwo) ___ejeQ esuodsay
19)uan) abessaiy 1as) abessapy layan abessay layua)
ssa7-eleqels ebessap
1senbay 18jus) 1senbay —>

abessa 3o2uD 191ua7) obessay

walsAs
ﬁ%ﬁwr__n__ uob0o e01n8g 022€ —P
IONDHOMIBU ueOL YUM TNLH |

0.2¢ pajeisusd

L 1sanbay A8y} / 8sNO 19s

piomssed pue g| J8sn

198uuopuado

swiesiqg |1DNHOMIBU ——— P

peojumo(qed % eieQq ‘|WiH —P>

orel \

1osn
o8|
1OWpHIoMIBU

SUBSTITUTE SHEET (RULE 26)

PCT/US98/20095

WO 99/15984

8/12

. 0s7t snjeig yjobo1 1efepiood

8 "9OId jjobo sefenfoo)
snjejS JeaqUesH suel| 800D
jeaqueaH suel] 8pood
INI1efeiyo0) jeaques + Q|uUOISSag
catl auesn + uswaul + giesudiaiug
_.l 1senbay uswapiiul goM
INI'GeM
leled juswia|iug 300
LOI}0BUUOD 1B[8I00D Jeferjo0) :
neleg jreied
INI"dsia — cozom_m:oo qlesudiaiug g uoBo paiepliEA uoljoauUoD GaM
Jayoedsid piomssed pue guasn uobo
snjels JO/els pue juswisijuy
; 9ppl yuswapnug uobon 4 -
| esuodsey uswaul Jasn
/ 30 Jelis :omo.~_ M”MMm_o ysanbay juswapyul sanbay
S H
grel 4— 0607 yoredsiq sniels 1eequesH uobo] goM
uoneniyj
1eaquesH sjoeix3 qe)
] _ elaq wuno)
INI'pesAs—dsiq | |—uondosuuo) asuodsay uoBo} pepe8saxy
pvsAs uobo
grvl poraxoRIg snjelg lawieasig ||_
aibuy
Joweosiqg
188 crvi . mwwwc_ \
ooiay |- ons Aoyt / 8snoi sesn 19SIOBIBY| PIOMSSEd 1 wiomian | 0FE !
IO IOMIBN abed awoH IDNDHUOMISN aresn
: sjoelx3 qed PIEA
Bojelq

juswisul B

JeaguesH ‘yobo ‘uobo 10) weibeig mold4 eed

piomssedmanN

saw| Auep 00j
uo pabbo gliasn pleAy|

SUBSTITUTE SHEET (RULE 26)

PCT/US98/20095

WO 99/15984

9/12

1eje rejeg .
INt LONoOUIOD —— INIAx01d uoeLUOD eleQ sse T eleqeia 6 "Old
‘peshgdsig pysAs Axoid Jsenbey
18yuan) abessas\ loisanbay
yGel > poday
INI i'eled omvwmmzuwm
ARG — U0j}oaUUoD
wu~p0g”dsi 008NN N uonoesuel | eleqg 18jU8) |
puag 1ayoledsiq asuodsay abessaly Jsenbay
INI By | ajeaIUNWILLIC)
Judi—dsig 1senbay abessay _ 1BUd)n
ireed uonoesuel | Jo1s8nba abessop
uo\odaUUOYH aAl@0ay ! oda d
INI Jo)senbay Jeydjedsig uolssas 1esn o %mco QMm
xoqu|~dsiq poday aleplieA d 1senbay
_ Axo1d 18jU8))
|reled uoISSag 18sM asuodsay abessapy
uoKosUL0D uolssag pajepiieA uoyedIUNWWOYH %09yD
xoqui l8s(alepiien Axoid 1sanbay %Ewo
19ydledsig Jayojedsig 10)sanbay abessap
poday
uolssas Jas elor000
palepiieA Jetel
itelaQ ‘_mﬂoﬂmﬁm_o SECDﬂPCOO
N b | oosues
1ayojedsiq UOPBUU0D ' d
_ asuodsay uoIssag Jasn PAN ! 1efajoo)
uoHoBSUELL parepliepA g8m]
INI'dsia 99r1L aAlI809Y GaM INT
LOISSBS 195(] vori Jefapjoo
1senbay aleplleA gsm 1914000
uonoesuel |
puss qom 0sel
weallg asuodsay peojumo(
jrelea uonoesues j 6 ejeq J8S)
_ncozom:coo gamM abed awoH 1oBI8U|
weaig 1senbay aww:_umm ptellie] IDWHOMIBN
a5 uonoesuel | 4 -asnopy Jesn ~ |
INFGoM e/ NE_S Naons 09r1 Norel

suonoesuel| o} welbeiq mol4 eied

SUBSTITUTE SHEET (RULE 26)

PCT/US98/20095

WO 99/15984

10/12

VY . 01 ™OId @
[yoredsiq T
cwww_wm%\,wm_mz (uoissag uobo auj
S o | 300 |_|weno pereys
W uoan Bsy puas [| 0D) uoissaes
z1e’ 1801001 | pez/ S1es10
oiE /| ddv 1onnsuod Nmm\
30 woyy
J sjuswainul
80¢ oAsHIdY p1omMssed/aweN
+ /| swowaesn
(suejdyoeg urep auejdyoeg 88c
r——- o9 Mmmww_omm 4 peojumoq
| gog/ \,oe spalqo
1 + / uowiwoy) pue
PR ooy sddy peojumog 9827 |slool pEolumod
m * cog *
L _ _ _ | wiHebed
TW1H peojumoq
awoH vMo_Esoc \ 006 - *
abed swoH
dn
Bojeiq 86c ¥ ssoug 1asn
piomssed MaN c8e
vct / 4
- 1asmoig
andx sue|s J1as
P 3 962 08c / s

$590014 uobo syonqiels a

7

2 suobo pajred
10} xogBsiy

cce

suobo Jo
| # papaadxy
_ 10} xogbs
/
umumo__cgoo oce
Apealy
|
|
|
|
__
.A‘

SUBSTITUTE SHEET (RULE 26)

PCT/US98/20095

WO 99/15984

11/12

09€ abe
\ BawoH >m_m2nmm
Y
mmm/ BWOH
s10918S 19sN
mmm./ 19smolg MaN Yyim
HN JSsususg
sainjead, youne
GE .
v MBIAIBAQ JoNpoId
s10819S 19sN
2s¢ lasmolg MaN
N yum qHn MoN
S,Jeym, younes]
0se \] owoid Bunaxien
s109}9S 19sn
8re lasmoig MaN yum
4N SYO YyouneT
A
mvm/ poddng 1swosn)
S108}9S 19sN
vre

1asmolg MaN Yim
74N diay youne

®

cre A
4&.@1 $108|8S 189S _ @

L "OId

peiyioadg ddy

auejdyoeg wol}
(uoissag WwalD

paieys 09)
—- =1 uoIssa

sjer) ddy

org / ’

ddy seyoune
auejdyoeqg

/
9ce +

(ddv 00)
ddy ssjesi)d
aue|dyoeg

/
.

lasmolg

NIyl N
INLY youne

SO

8ee /

cee

ddy
s)09|ag 19s

om.m\

abedawoiH syonquels

sieq|oo} ddy @

SUoljd8|eg
198N

SUBSTITUTE SHEET (RULE 26)

PCT/US98/20095

WO 99/15984

12/12

o0L¥
\

[dwAunoas¢ i 00

uonejuswalduwy
Jayjouy
Aq pajpueH siied

A% E

(0]74
80V

[dwifunosgine}ledod

¥

uonejuawaldwyj jinejed
Aq PaIpUEH SIleD

aoepajulAjuNoagIasmMoIgOD

]

144 /

LN
ol sjjied

g0t
\

jdwfiunoaso yedeosiaNOO

sasse|)

Aninoag adeosioN
Aq pajpueH sjed

Aunoes0o

cov

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT International application No.
PCT/US98/20095

A. CLASSIFICATION OF SUBJECT MATTER
IPC(6) : GO6F 15/16, 15/173
US CL : 395/200.33, 200.36, 200.47, 200.49, 200.57, 200.59
According to Intemational Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

US. : 395/200.33, 200.36, 200.47, 200.49, 200.57, 200.59

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the intemational search (name of data base and, where practicable, search terms used)
APS, Internet

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

Y | US 5,671,354 A (ITO et al) 23 September 1997, col. 2 line 27 et| 1-33
seq and col. 4 line 34 et seq.

Y, P US 5,734,831 A (SANDERS) 31 March 1998, col. 2 lines 3-24, col. | 1-33
3 line 5 et seq and col. 10 line 17 et seq.

Y,P | USS5,778,178 A (ARUNACHALAM) 07 July 1998, col. 2 line 1 et| 1-33
seq, col. 5 line 47 et seq, and columns 7-9.

Y,P | USS5,796,393 A (MACNAUGHTON et al) 18 August 1998, col. 20| 1-33
line 54 et seq.

Y Stac Unveils Windows NT 4.0 and Web Browser Support in New | 1-33
ReachOut 7. The whole article.

Further documents are listed in the continuation of Box C. D See patent family annex.

Special categories of cited documents: o later document published after the international filing date or priority
date and not in conflict with the application but cited to understand

"A" d'oocb:mefnt daﬁnﬁrg th'e genoral state of the art which is not considered the principle or theory underlying the invention
of particular relevance
. X document of particular relevance; the claimed invention cannot be
"B caslier document published on or after the international filing date considered novel or cannot be considered to involve an inventive step
‘L document which may throw doubts on priority claim(s) or which is when the document is taken alono
cited to establish the publication date of another citation or other) o
spocial reason (as specified) Y document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
"o* document referring to an oral disclosure, use, exhibition or other combined with one or more other such d ts, such combinati
means being obvious to a person skilled in the art
p document published prior to the international filing date but later than »g v document member of the same patent family

the priority date claimed

Date of the actual completion of the intemnational search Date of mailing of the international search report
28 JANUARY 1999 08 MAR 1999
Name and mailing address of the ISA/US Authorized officer

Commissioner of Patents and Trademarks

Box PCT ‘ ” .
Washington, D.C. 20231 MEHMET GECKIL ‘ , . '“ Jﬂ
X 6@

Facsimile No. (703) 305-3230 Telephone No. (703) 305

Form PCT/ISA/210 (second sheet)(July 1992)«

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US98/20095
C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT
Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y N | X11R6.3 (Broadway) Overview. The whole overview. 1-33

Form PCT/ISA/210 (continuation of second sheet)(July 1992)»

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

