EUROPEAN PATENT SPECIFICATION

FLOW CONTROL DEVICE AND INTRODUCER
DURCHFLUSSREGELVORRICHTUNG UND ZUFLÜHRUNGSVORRICHTUNG
DISPOSITIF DE COMMANDE DE FLUX ET INTRODUCTEUR

Designated Contracting States:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

Priority: 02.06.1999 US 324694

Date of publication of application:
20.03.2002 Bulletin 2002/12

Proprietor: Optonol Ltd.
90850 Neve Ilan (IL)

Inventors:
• YARON, Ira
93836 Har Adar (IL)

• YARDEN, Orit
54056 Givat Shmuel (IL)

Representative: Vossius & Partner
Siebertstrasse 4
81675 München (DE)

References cited:
WO-A-99/26567
FR-A- 2 757 068
US-A- 5 800 376

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

FIELD OF THE INVENTION

[0001] The invention relates generally to medical implants used to regulate the flow of fluids within the body. The invention may be applied, for example, to ophthalmic implants for treatment of glaucoma. The invention also relates to delivery devices for implanting such implants, to methods of implanting such implants, and to methods of manufacturing such implants.

BACKGROUND OF THE INVENTION

[0002] Medical implants used to regulate the flow of fluids within the human body are known and used. One application for the use of such implants is in the treatment of glaucoma. Typical ophthalmic implants utilize drainage tubes for the release of aqueous humor from the eye to relieve the intraocular pressure (IOP).

[0003] Several disadvantages have at times been associated with prior implants. For example, implants using valve mechanisms to regulate fluid flow have risked malfunction due to defects in and/or failure of such valve mechanisms. Depending on such factors as the site of implantation, some implants have tended to clog while in use due to tissue covering the inlet end or the outlet end of the drainage tube. In addition, prior implants at times have required insertion operations that are complicated, costly, and time-consuming, for example requiring suturing of the implant once it is in place.

[0004] Some patents describe and illustrate implants directed at overcoming some of the drawbacks associated with prior implants. As described in U.S. Patent No. 5,702,414, both of which are owned by the assignee of this application. In accordance with a method of using the implant, the implant may be placed in the tube passage and withdrawn or advanced by a physician as desired at a later time or times.

[0005] Document US-A-5 217 486 discloses an implantable suture anchor having a cylindrical body with an outwardly extending projection, and a device for delivering the suture anchor comprising a tube with a central bore for accommodating the anchor and an opening in the side of the tube for allowing the retention projection of the anchor to project beyond the outside surface of the tube.

SUMMARY OF THE INVENTION

[0006] One object of the invention is to provide a flow regulating implant and an associated delivery device that enable the implant to be inserted in a relatively simple and efficient procedure. The invention is defined in claims 1 and 6.

[0007] In one embodiment in accordance with the invention, an implant having a tube for permitting fluid flow has an outer flange at the outlet end and one or more retention projections near the inlet end. An introducer or delivery device for implanting the implant has a central bore for accommodating the implant during the implantation procedure. The implant and delivery device are designed so that when the implant is loaded in the delivery device, the retention projection or projections of the implant protrude from the delivery device to act as a hook or hooks during the procedure.

[0008] In accordance with a method of using the implant and delivery device, the implant is loaded in the delivery device with the retention projection protruding from the delivery device. The delivery device and implant then penetrate the tissue through which drainage is desired, for example, the sclera of an eye. Once the retention projection has fully penetrated through the tissue, the delivery device is withdrawn. The retention projection acts as a hook engaging the inside surface of the tissue, causing the implant to stay implanted in the tissue when the delivery device is withdrawn.

[0009] The retention projection may be made, for example, of an elastic material, so that it is able to be flexed inward against the tube of the implant during penetration through the tissue. Alternatively, the retention projection may be designed to lie initially relatively flat against the tube for easier penetration and to prevent tearing of the tissue, with a mechanism for extending the retention projection outwardly when the implant is implanted.

[0010] The implant may be molded out of a suitable material, for example, silicone. To provide the tube passage of the implant, a thin wire may be used during the molding process. The implant alternatively may be constructed out of stainless steel or any other suitable material.

[0011] The implant may have various mechanisms for changing the configuration of the flow path. For example, a flow controlling rod or other obstruction may be placed in the tube passage for changing the dimensions within the tube passage. This rod or obstruction may be temporary. For example, it may be made of absorbable (biodegradable) material that is eroded and absorbed. Alternatively, it may be constructed in such a way that it may be removed from the tube passage or advanced into the tube passage at a period of time after implantation.

[0012] An implant according to the invention has other applications aside from the field of intraocular implants. For example, the implant may be used for drainage of a hydrocele sac, regulating flow between the hydrocele sac and the subcutaneous scrotum. Persons of ordinary skill in the art will appreciate that other applications of an implant in accordance with the invention are possible, as are various modifications of the embodiments described herein, without departing from the scope of the invention as defined in the claims.
BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1A is a side view of a first embodiment of a drainage implant;
Figure 1B is an end view of the drainage implant shown in Figure 1A;
Figures 2A through 2C illustrate a delivery device and insertion of the drainage implant of Figure 1A into desired tissue, with Figure 2A showing the delivery device and implant before insertion, Figure 2B showing the delivery device and implant being placed through the tissue, and Figure 2C showing the inserted implant after the delivery device has been withdrawn;
Figure 3A is a side view of a second embodiment of a drainage implant;
Figure 3B is an end view of the drainage implant shown in Figure 3A;
Figure 3C is a cross-sectional view taken along the plane identified by the line 3C-3C in Figure 3A;
Figure 4A is a side view of a third embodiment of a drainage implant;
Figure 4B is an end view of the drainage implant shown in Figure 4A;
Figure 5 illustrates a second embodiment of a delivery device with an implant inserted in the delivery device and with the procedure at a stage corresponding to that in Figure 2B;
Figure 6 illustrates an intraocular implant according to the invention with a flow controlling plug made of absorbable material in the tube passage;
Figures 7A through 7D illustrate four variations of cross-sections for a flow controlling plug;
Figure 8 illustrates an intraocular implant according to the invention with a flow controlling plug made of absorbable material in the tube passage and with side holes partially occluded by plugs made of absorbable material;
Figure 9 illustrates an intraocular implant according to the invention with flow controlling strands in the tube passage;
Figure 10 illustrates an end view of an intraocular implant with flow controlling strands in the tube passage;
Figure 11 illustrates an intraocular implant according to the invention with a knotted flow controlling strand in the tube passage; and
Figure 12 illustrates an alternative construction of a flow controlling strand.

DETAILED DESCRIPTION OF EMBODIMENTS OF THE INVENTION

Figures 1A and 1B show a side view and end view, respectively, of a first embodiment of a drainage implant 10 in accordance with the invention. The implant 10 has a tube 12 having a tube passage 14 for permitting fluid flow between an inlet end of the implant and an outlet end of the implant. One or more side holes 16 may be provided around the circumference of the tube 12 near the inlet end, allowing access for fluid flow into the tube passage 14.

Figures 2A through 2C illustrate an introducer or delivery device 30 for implanting the implant 10 and the method of implanting the implant 10 with that delivery device 30. The delivery device 30 has handle 32 and a tube 34 having a central bore 36 for accommodating the implant 10 during the implantation procedure. The delivery device 30 has a beveled tip 38 to allow penetration of the tissue 50 into which the implant is to be inserted. In an alternative embodiment, the implant itself penetrates the tissue by its beveled tip at the inlet end.

An opening 40 is provided in the wall of the tube 34 of the delivery device 30. In this illustrated embodiment, the opening 40 allows both the retention projection 20 and the outer flange 18 to protrude beyond the wall of the tube 34 when the implant 10 is loaded in the delivery device 30. Because it projects beyond the wall of the tube 12 near the inlet end, allowing access for fluid flow into the tube passage 14.

The implant 10 has an outer flange 18 at the outlet end and a retention projection 20 near the inlet end. The plane of the outer flange 18 may form an angle with the tube 12, with the angle selected to correspond to the angle between the surface of the tissue into which the implant 10 is to be inserted and the axis of insertion of the tube 12 of the implant 10.

Figures 2A through 2C illustrate an introducer or delivery device 30 for implanting the implant 10 and the method of implanting the implant 10 with that delivery device 30. The delivery device 30 has handle 32 and a tube 34 having a central bore 36 for accommodating the implant 10 during the implantation procedure. The delivery device 30 has a beveled tip 38 to allow penetration of the tissue 50 into which the implant is to be inserted. In an alternative embodiment, the implant itself penetrates the tissue by its beveled tip at the inlet end.

An opening 40 is provided in the wall of the tube 34 of the delivery device 30. In this illustrated embodiment, the opening 40 allows both the retention projection 20 and the outer flange 18 to protrude beyond the wall of the tube 34 when the implant 10 is loaded in the delivery device 30. Because it projects beyond the wall of the tube 34, the retention projection 20 of the implant 10 can act as a hook during the implantation procedure.

As can be seen in Figure 1B, the flange 18 of the implant 10 has notches or grooves 19 on either side. These notches or grooves 19 correspond approximately to the width of the wall of the tube 34 of the delivery device 30 and accommodate the wall of the tube 34 of the delivery device 30 when the implant 10 is loaded in the delivery device 30. The notches or grooves 19 may take
any suitable shape. Alternatively, the flange 18 may have a continuous width, with no notches or grooves, with the width of the flange 18 being slightly narrower than the diameter of the tube 12 of the implant 10. Further variations of the configuration of the flange 18 are possible.

[0019] To use the implant 10 and delivery device 30, the implant 10 is loaded in the delivery device 30 with the retention projection 20 protruding from the delivery device, as shown in Figure 2A. The delivery device 30, with the implant loaded inside, is then pressed through the tissue 50 through which drainage is desired, for example, the sclera of an eye. Figure 2B illustrates the delivery device 30 pressed through the tissue 50.

[0020] To facilitate introduction of the delivery device 30 and/or implant 10 into the tissue 50, the delivery device 30 may be oriented such that the beveled tip 38 forms a sharper angle with the tissue 50. Thus, for example, the delivery device as shown in Figure 2A may be rotated 180 degrees, i.e., with the retention projection 20 facing upward. In the case of an implant 10 being placed into the limbal sclera of an eye, this corresponds to the retention projection 20 being on the opposite side of the tube 12 from the iris. When the delivery device 30 and implant 10 are suitably through the tissue 50, they may be rotated to align the implant 10 properly in the tissue 50, with the flange 18 and retention projection 20 oriented as desired with respect to the tissue 50.

[0021] Once the retention projection 20 has fully penetrated through the tissue 50, the delivery device 30 is withdrawn. The retention projection 20 acts as a hook engaging the inside surface of the tissue 50, causing the implant 10 to stay implanted in the tissue 50 when the delivery device 30 is withdrawn. Figure 2C illustrates the implant 10 implanted in the tissue 50, with the delivery device 30 withdrawn.

[0022] Since the tube 34 of the delivery device 30 is hollow, it may be used to inject fluid or viscoelastic material. Thus, fluid may be injected into the anterior chamber of an eye upon implantation to reduce the risk of hypotony. Similarly, a viscoelastic material may be injected under the conjunctiva to help fill the bleb that exists after implantation.

[0023] The implant 10 may be molded out of a suitable material, for example, silicone. To provide the tube passage 14 of the implant 10, a thin wire may be used during the molding process. More than one wire may be used, in order to have more than one tube passage in the implant. The implant alternatively may be constructed out of stainless steel or another suitable material. It may be coated with a suitable anti-fibrosis material, such as heparin.

[0024] The retention projection 20 may be formed of the same material as the rest of the implant 10. Alternatively, it may be made of a more flexible material to allow it to be flexed inward against the tube 12 of the implant 10 during penetration through the tissue 50. Alternatively, the retention projection 20 may be designed to lie initially relatively flat against the tube 12 for easier penetration and to prevent tearing of the tissue 50, to be extended outwardly by an expansion mechanism, for example a balloon, when the implant 10 is implanted.

[0025] Figures 3A, 3B and 3C show a side view, end view, and cross-section, respectively, of a second embodiment of a drainage implant 60 in accordance with the invention. Like the implant 10 shown in Figures 1A and 1B, the implant 60 in Figures 3A, 3B, and 3C has a tube 62 having a tube passage 64 and side holes 66 opening into the tube passage 64. The implant 60 also has an outer flange 68 at the outlet end and a retention projection 70 near the inlet end. In this case, the outer flange 68 projects beyond the outer surface of the tube 62 in all directions around the circumference of the tube 62.

[0026] Figures 4A and 4B show a side view and end view, respectively, of a third embodiment of a drainage implant 80, similar to the implant 60 shown in Figures 3A, 3B, and 3C. The tip 82 of the implant 80 is conical, in contrast to the blunt tip 72 of the implant 60.

[0027] In an alternative construction, the implant may be made with a closed end with a slit in it. Fluid can only pass through the device when the pressure rises sufficiently to open the slit. Alternatively, a different portion along the length of the tube passage may be provided with such a construction.

[0028] Figure 5 illustrates an alternative embodiment of a delivery device 90 in accordance with the invention. In this embodiment, the opening 92 allows only the retention projection 84 of the implant to protrude beyond the wall of the tube 94 of the delivery device. The outer flange 86 is accommodated within the central bore 96 of the delivery device 90. In this embodiment, the outer flange 86 must be folded or bent to be accommodated within the central bore 96 of the delivery device 90. The outer flange 86 is resilient, so that when the implant is removed from the delivery device, the outer flange 86 extends to a position relatively coplanar with the outer surface of the tissue into which the implant is inserted.

[0029] Similarly, the retention projection 84 may also be constructed to be sufficiently resilient to allow it to be compressed and completely accommodated within the central bore 96 of the delivery device 90. In addition, the delivery device 90 may be constructed with the tube 94 having a continuous outer wall, with no opening 92. To facilitate removal of the implant from the delivery device, a pusher rod or wire may be located within the bore of the delivery device. By advancing the pusher rod or wire within the delivery device against the implant, the physician can force the implant out of the delivery device, thereby allowing the retention projection to expand outwardly to its initial, relaxed position, enabling it to engage the inside surface of the tissue.

[0030] Various mechanisms may be used, if desired, for giving different flow characteristics to the implant. It may be desirable to use implants with different flow characteristics for different patients and/or to have an implant in which the flow characteristics may be changed after
implantation in a particular patient.

[0031] Various mechanisms for assisting in controlling the flow of fluid, e.g. aqueous humor, through an implant are possible, for example, using a flow controlling wire or rod in the tube passage of an implant.

[0032] The effect of the flow controlling rod or wire is to reduce the cross-sectional area through which the fluid flows for a particular length inside the tube passage of the implant. Because the flow is a function of the cross-section and length of the lumen through which it passes, the interposition of the flow controlling rod or wire serves to increase the resistance to flow. In an intraocular implant, for example, this assists in reducing the risk of hypotony.

[0033] The configuration and dimensions of the flow controlling rod or wire may be selected in accordance with the flow characteristics that are desired. It may have one or more internal bores or external grooves, any of which may be helically arranged to increase its length. It may be adjustable, by moving it axially or rotating it, to modify the flow characteristics. Persons skilled in the art will appreciate that numerous other variations are possible for the configuration of the flow controlling rod or wire.

[0034] The flow controlling rod or wire may have its axis aligned parallel with the axis of the tube passage, but other orientations are possible. For example, a flow controlling rod or wire having a diameter slightly smaller than the tube passage may be oriented transverse to the tube passage. The transversely oriented rod or wire will have a short length, corresponding approximately to the diameter of the tube or tube passage. It serves as an obstruction to the flow through the tube passage, altering the flow characteristics. Other obstruction may be placed in the tube passage for achieving similar results.

[0035] Another mechanism for assisting in controlling the flow of fluid through an implant is the use of temporary occlusion. By occluding the flow passage of the implant with an absorbable material or with a material that may be removed after implantation, for example by a tool or laser probe, the resistance to flow can be reduced after implantation.

[0036] The use of temporary occlusion is advantageous in situations in which flow through the implant is desired to be kept low at implantation, and possibly also for a period of time after implantation. For example, when an implant is implanted in the eye, the incision in the conjunctiva and/or possible tearing of the sclera around the implant provide potential fluid passages for aqueous humor. Thus, to reduce the risk of hypotony, it may be desirable to prevent or reduce flow through the implant upon implantation and for a period thereafter. Once the conjunctiva and/or sclera have healed, the flow through the implant can be increased.

[0037] The temporary occlusion need not be limited to any particular part of the flow passage. For example, the side holes and/or the tube passage of the implant may be filled, partially or wholly, with absorbable material. Thus, for example, as shown in Figure 6, a plug 106A of absorbable material may be placed in the tube passage 102 of the implant 100. With an absorbable material that biodegrades by surface erosion, as fluid contacts and flows adjacent to the plug 106A, the material of the plug 106A is absorbed into the fluid, thereby reducing the dimensions of the plug 106A. As the dimensions of the plug 106A are reduced, the resistance to flow through the implant is similarly reduced. Alternatively, an absorbable material that biodegrades by bulk erosion may be used. Absorbable (biodegradable) materials are known and used, and such materials are described, for example, in Middleton & Tipton, “Synthetic Biodegradable Polymers as Medical Devices,” Medical Products and Biomaterials, March 1998.

[0038] Figure 6 shows the plug 106A only partially filling the tube passage 102, but it will be appreciated that the plug 106A may completely fill the tube passage 106A. In that case, fluid flow would initially be completely obstructed. Fluid flow begins only after the plug 106A has been sufficiently absorbed to provide a path for fluid to flow out of the implant.

[0039] An absorbable plug may be used with any suitable configuration of implant, including implants with flow controlling rods or other flow controlling obstructions. Similarly, an absorbable plug may have any suitable configuration and dimensions, selected in accordance with the flow characteristics that are desired. If desired, more than one absorbable plug may be used.

[0040] Some possible cross-sectional shapes for alternative absorbable plugs are shown in Figures 7A through 7D. Absorbable plug 106A has a circular cross-section. Absorbable plug 106B is similar to absorbable plug 106A with the addition of external grooves 106B. Absorbable plug 106C has a flat surface 110C. Absorbable plug 106D has a longitudinal bore 112D. Alternative constructions include combining external grooves and internal bores, changing the number of them, and/or arranging them helically or in any other suitable configuration. The absorbable plug may be in a tapered or other suitable shape. It will be appreciated that the configuration of the absorbable plug will affect the absorption of the absorbable plug, with the areas in contact with the fluid being absorbed first.

[0041] Figure 8 shows the use of an absorbable plug 106A in conjunction with partially occluded side holes 104. Each of the side holes 104 is partially occluded by absorbable plugs 114, each of which has a central bore 116. As with the absorbable plug 106A in the tube passage 102, the absorbable plugs 114 in the side holes 104 may have any suitable configuration, and may be used in conjunction with any configuration of absorbable plug in the tube passage or with no absorbable plug in the tube passage.

[0042] Figures 9 through 11 show alternative mechanisms for partial and/or temporary occlusion of the flow passage. In Figure 9, the intraocular implant 120 has a number of flow controlling strands 126 in the tube passage 122. The flow controlling strands 126 serve to alter
the flow characteristics through the implant, either partially or wholly obstructing flow through the implant. The number and/or size of the strands may be varied as desired, and the strands may be of any suitable material. For example, ordinary sutures, such as polypropylene sutures, may be used.

[0043] At a period of time after implantation, one or more of the flow controlling strands 126 may be withdrawn from the implant (or advanced into the implant). Further strands may be withdrawn (or advanced) at later times. In this manner, the obstruction to flow through the implant can be altered, at once or over a period of time, after the implantation procedure has taken place.

[0044] It will be appreciated that the ability to withdraw or advance one or more strands over time allows the physician to alter the flow characteristics of the implant in accordance with the needs of the patient. For example, at a certain period of time after the implant has been implanted in a patient’s eye, the physician can check the intraocular pressure of the eye and determine whether one or more strands should be withdrawn or advanced to increase or reduce flow through the implant. The patient can be checked periodically, and the strands can be left in place, withdrawn or advanced as appropriate over a period of time.

[0045] The ability to withdraw strands is useful in the event the implant should become clogged. In such a case, the physician can withdraw one or more strands in order to restore proper flow through the implant.

[0046] Figure 10 shows an end view of an implant with a plurality of flow controlling strands 126 in the tube passage 122. It will be appreciated that the strands 126 may be arranged within the tube passage 122 in any suitable manner, and the shape and configuration of the strands 126 are not limited to that shown. For example, the strands may have different cross-sections (e.g., oval, semi-circular, irregular, hollow, etc.) and different sizes. The cross-sectional shapes and dimensions may vary along the length of a single strand. Each of the strands in a single implant may have different configurations, e.g., different cross-sectional shapes and/or dimensions. With different strands in the implant, the physician can selectively withdraw (or advance) the appropriate strand or strands in accordance with the desired flow characteristics. For example, if a small increase in flow is desired, a strand with a small cross-section can be withdrawn, and if a larger increase in flow is desired, a strand with a larger cross-section can be withdrawn.

[0047] Figure 11 shows an implant in which a single flow controlling strand 128 having a knot 130 is placed within the tube passage 122. The knot 130 serves to increase the flow obstruction. Alternatively, a plug or other obstruction may be attached to the strand 128, and more than one strand 128 with a knot, plug or other attached obstruction may be used. Similar to the use of strands of different shapes and/or sizes, strands may be used having knots or plugs of different shapes and/or sizes, allowing selective withdrawal or advancement of the appropriate strand or strands in accordance with the desired flow characteristics.

[0048] Figure 12 shows an alternate construction of a flow controlling strand 132 in which the cross-sectional size of the strand varies along its length. The illustrated strand 132 has three different sections. Section 138 on the end of the strand has the smallest diameter, the adjacent section 136 has a slightly larger diameter, and the remainder 134 of the strand has an even larger diameter. The remainder 134 of the strand may be sized to correspond to the diameter of the tube passage, with the sections 136 and 138 being incrementally smaller. Thus, with a tube passage having a diameter, for example, of 100 microns, the strand may also have a diameter of 100 microns, with incremental steps down to, for example, 20 microns. Of course, other dimensions may be used, and the remainder 134 of the strand need not have the same size as the tube passage. In the initial positioning, the strand 132 is located in the tube passage of the implant with the section 138 near the inlet end and with part of the section 134 located within the tube passage near the outlet end. When it is desired to increase the flow in the implant, the strand 132 may be partially withdrawn such that only section 134 comes out of the tube passage. Thus, the obstruction within the tube passage is decreased, thereby increasing the flow. Later, if desired, the other sections may be successively withdrawn. Alternatively, the strand may be further advanced into the tube passage to further constrict flow.

[0049] Variations of the strand shown in Figure 12 are possible, with the sections being aligned along the strand in any desired pattern. The concept of a single strand which may be partially withdrawn or advanced in successive increments to vary the flow in steps may additionally or alternatively be achieved by using knots or plugs of different shapes and/or sizes along the length of a strand.

[0050] A flow controlling strand in accordance with the invention may be completely separate from the implant and inserted into the implant some period of time after implantation, or the strand may be partially in the implant upon implantation, with the option of advancing it further into the implant at a later time.

[0051] An implant having withdrawable (and/or advanceable) flow controlling strands may be implanted using a delivery device 30 as shown in Figure 2A. In such a case, the strands that extend out of the outlet end of the implant may be accommodated in the central bore 36 of the delivery device 30. Alternatively, with a suitably sized opening 40 in the wall of the tube 34 of the delivery device 30, the strands may pass outside of the delivery device 30.

[0052] When the implant is implanted in an eye, the flow controlling strands can be oriented to extend under the conjunctiva away from the implant. The strands used may be long enough to extend out of the implant beyond the slit made in the conjunctiva for inserting the implant. In this case, after implanting the implant, the physician can tuck the loose ends of the strands under the con-
junction to extend away from the slit. When it is desired to withdraw one or more of the strands, a small slit can be made in the conjunctiva near the ends of the strands, and the strands can be pulled through that slit. Because these ends are remote from the implant and the prior slit made in the conjunctiva, the potential trauma to the eye is reduced.

To fix the strands in place and facilitate later access to them, the loose ends may be sutured to the adjacent tissue, e.g., the sclera. This may be done either with additional sutures or with the strands themselves. In the latter case, suturing needles may be attached to the loose ends of the strands to facilitate suturing of the strands after implantation of the implant.

It will be appreciated that various features of the above-described embodiments may be combined as desired. For example, the flow controlling strands may be made of absorbable material, leaving the option of having a physician physically withdraw the strands or allowing them to be absorbed. Additionally or alternatively, plugs or other obstructions secured to the strands may be made of absorbable material. Different strands, plugs or obstructions may be made from materials with different rates of absorption, and/or they may be made from a combination of materials with different rates of absorption.

As will also be appreciated by persons having ordinary skill in the art, the various embodiments of implants, methods of manufacture, delivery devices, and methods for implantation described hereinabove are given by way of example only. Various changes, modifications and variations may be applied to the described embodiments without departing from the scope of the invention, defined by the appended claims.

Claims

1. An implant (10, 60, 80, 100) in combination with a delivery device (30, 90) for implanting the implant, wherein the implant comprises a tube (12, 62) and an outwardly extending retention projection (20, 70, 84), wherein the delivery device comprises a tube (34, 94) having an outside surface and a central bore (36, 96) for accommodating the implant, and wherein the delivery device has an opening (40, 92) in the side of the tube allowing the retention projection to project beyond the outside surface of the tube of the delivery device.

2. An implant and delivery device according to claim 1, wherein the implant is formed of plastic.

3. An implant and delivery device according to claim 1, wherein the retention projection is located at a distal end of the implant, and wherein the implant further comprises an outer flange (18, 68, 86) located at a proximal end of the implant.

4. An implant and delivery device according to claim 3, wherein the opening in the side of the tube of the delivery device also allows the outer flange of the implant to project beyond the outside surface of the tube of the delivery device.

5. An implant and delivery device according to claim 3, wherein the outer flange of the implant is resilient so that it may be accommodated within the central bore of the tube of the delivery device.

6. An implant (10, 60, 80, 100) in combination with a delivery device (30, 90) for implanting the implant, wherein the implant comprises a tube (12, 62) having a distal end and a proximal end and an outwardly extending retention projection (20, 70, 84), wherein the delivery device comprises a tube (34, 94) having an outside surface, a central bore (36, 96) for accommodating the implant and an opening at one end for allowing the implant to exit the central bore, and wherein the implant is accommodated within the central bore with its distal end closer to the opening than its proximal end so that the distal end of the implant exits the central bore of the delivery device before the proximal end.

7. An implant and delivery device according to claim 6, wherein the implant is formed of plastic.

8. An implant and delivery device according to claim 6, wherein the retention projection is located proximate the distal end of the implant, and wherein the implant further comprises an outer flange (18, 68, 86) located proximate the proximal end of the implant.

9. An implant and delivery device according to claim 8, wherein the outer flange of the implant is resilient so that it may be accommodated within the central bore of the tube of the delivery device.

10. An implant and delivery device according to claim 6, wherein the retention projection of the implant is resilient so that it may be accommodated within the central bore of the tube of the delivery device.

11. An implant and delivery device according to claim 1 or 6, wherein the implant comprises:

a tube passage extending between the proximal end and the distal end of the tube for permitting fluid to flow through the tube passage; and absorbable material located within the tube passage, wherein initially the absorbable material serves to partially or wholly obstruct flow through the tube passage and wherein the absorbable material erodes as it contacts fluid such that the obstruction of flow through the tube passage is reduced over time.
12. An implant and delivery device according to claim 11, wherein initially the absorbable material substantially fills the tube passage so as to prevent flow through the tube passage.

13. An implant and delivery device according to claim 11, wherein initially the absorbable material partially fills the tube passage so as to allow partial flow through the tube passage.

14. An implant and delivery device according to claim 1 or 6, wherein the implant comprises:

- a tube passage extending between the distal end and the proximal end of the tube for permitting fluid to flow through the tube passage; and
- one or more flow controlling strands located within the tube passage, wherein initially the one or more flow controlling strands serve to partially or wholly obstruct flow through the tube passage and

wherein at least one flow controlling strand may be displaced with respect to the tube passage to change the obstruction of flow through the tube passage.

15. An implant and delivery device according to claim 14, wherein initially the one or more flow controlling strands substantially fill the tube passage so as to prevent flow through the tube passage.

16. An implant and delivery device according to claim 14, wherein initially the one or more flow controlling strands partially fill the tube passage so as to allow partial flow through the tube passage.

17. An implant and delivery device according to claim 14 further comprising a plug attached to one or more of said flow controlling strands.

18. An implant and delivery device according to claim 14 wherein one or more of said flow controlling strands has a knot in it.

19. An implant and delivery device according to claim 14, wherein at least one flow controlling strand may be withdrawn from the tube passage to reduce the obstruction of flow through the tube passage.

20. An implant and delivery device according to claim 19, wherein at least one flow controlling strand may be completely withdrawn from the tube passage to reduce the obstruction of flow through the tube passage.

21. An implant and delivery device according to claim 19, wherein at least one flow controlling strand may be partially withdrawn from the tube passage to reduce the obstruction of flow through the tube passage.

22. An implant and delivery device according to claim 14, wherein at least one flow controlling strand may be advanced within the tube passage to increase the obstruction of flow through the tube passage.

23. An implant and delivery device according to claim 14 comprising at least two strands.

24. An implant and delivery device according to claim 23, wherein two of the strands have different cross-sectional dimensions.

25. An implant and delivery device according to claim 23, wherein each of at least two strands has a plug attached to it, with the plugs on the at least two strands having different cross-sectional dimensions.

26. An implant and delivery device according to claim 23, wherein each of at least two strands has a knot in it, with the knots in the at least two strands having different dimensions.

27. An implant and delivery device according to claim 14 wherein at least one flow controlling strand has different areas along its length with different cross-sectional dimensions.

28. An implant and delivery device according to claim 14 wherein at least one flow controlling strand is made of absorbable material.

Patentansprüche

1. Implantat (10, 60, 80, 100) in Kombination mit einer Zuführungsvorrichtung (30, 90) zum Implantieren des Implantats, wobei das Implantat eine Röhre (12, 62) und einen sich nach außen erstreckenden Arretiervorsprung (20, 70, 84) aufweist, wobei die Zuführungsvorrichtung eine Röhre (34, 94) mit einer Außenfläche und einer mittigen Bohrung (36, 96) zur Aufnahme des Implantats aufweist und wobei die Zuführungsvorrichtung eine Öffnung (40, 92) in der Seite der Röhre hat, so daß der Arretiervorsprung über die Außenfläche der Röhre der Zuführungsvorrichtung hinaus vorstehen kann.

2. Implantat und Zuführungsvorrichtung nach Anspruch 1, wobei das Implantat aus Kunststoff ausgebildet ist.

3. Implantat und Zuführungsvorrichtung nach Anspruch 1, wobei der Arretiervorsprung an einem distalen Ende des Implantats angeordnet ist und wobei das Implantat ferner einen äußeren Flansch (18, 68,
86) aufweist, der an einem proximalen Ende des Implantats angeordnet ist.

4.Implantat und Zuführungsvorrichtung nach Anspruch 3, wobei die Öffnung in der Seite der Röhre der Zuführungsvorrichtung auch zulässt, daß der äußere Flansch des Implantats über die Außenfläche der Röhre der Zuführungsvorrichtung hinaus vorsteht.

5.Implantat und Zuführungsvorrichtung nach Anspruch 3, wobei der äußere Flansch des Implantats elastisch ist, so daß er in der mittigen Bohrung der Röhre der Zuführungsvorrichtung aufgenommen werden kann.

6.Implantat (10, 60, 80, 100) in Kombination mit einer Zuführungsvorrichtung (30, 90) zum Implantieren des Implantats, wobei das Implantat eine Röhre (12, 62) mit einem distalen Ende und einem proximalen Ende und einem sich nach außen erstreckenden Arretiervorsprung (20, 70, 84) aufweist, wobei die Zuführungsvorrichtung eine Röhre (34, 94) mit einer Außenfläche, einer mittigen Bohrung (36, 96) zum Aufnehmen des Implantats und einer Öffnung an einem Ende zum Austretenlassen des Implantats aus der mittigen Bohrung aufweist und wobei das Implantat in der mittigen Bohrung mit seinem distalen Ende näher an der Öffnung als mit seinem proximalen Ende aufgenommen ist, so daß das distale Ende des Implantats vor dem proximalen Ende aus der mittigen Bohrung der Zuführungsvorrichtung austritt.

7.Implantat und Zuführungsvorrichtung nach Anspruch 6, wobei das Implantat aus Kunststoff ausgebildet ist.

8.Implantat und Zuführungsvorrichtung nach Anspruch 6, wobei der Arretiervorsprung nahe dem distalen Ende des Implantats angeordnet ist und wobei das Implantat ferner einen äußeren Flansch (18, 68, 86) aufweist, der nahe dem proximalen Ende des Implantats angeordnet ist.

9.Implantat und Zuführungsvorrichtung nach Anspruch 8, wobei der äußere Flansch des Implantats elastisch ist, so daß er in der mittigen Bohrung der Röhre der Zuführungsvorrichtung aufgenommen werden kann.

10.Implantat und Zuführungsvorrichtung nach Anspruch 6, wobei der Arretiervorsprung des Implantats elastisch ist, so daß er in der mittigen Bohrung der Röhre der Zuführungsvorrichtung aufgenommen werden kann.

11.Implantat und Zuführungsvorrichtung nach Anspruch 1 oder 6, wobei das Implantat aufweist:

- einen Röhrendurchgang, der sich zwischen dem proximalen Ende und dem distalen Ende der Röhre erstreckt, zum Durchlassen eines Fluids durch den Röhrendurchgang; und
- absorbierbares Material, das im Röhrendurchgang angeordnet ist, wobei das absorbierbare Material anfänglich dazu dient, den Durchfluß durch den Röhrendurchgang teilweise oder vollständig zu hemmen, und wobei das absorbierbare Material erodiert, wenn es mit einem Fluid in Berührung kommt, so daß die Hemmung des Durchflusses durch den Röhrendurchgang im Laufe der Zeit verringert wird.

12.Implantat und Zuführungsvorrichtung nach Anspruch 11, wobei das absorbierbare Material den Röhrendurchgang anfänglich im wesentlichen ausfüllt, um den Durchfluß durch den Röhrendurchgang zu verhindern.

13.Implantat und Zuführungsvorrichtung nach Anspruch 11, wobei das absorbierbare Material den Röhrendurchgang anfänglich teilweise ausfüllt, um einen partiellen Durchfluß durch den Röhrendurchgang zuzulassen.

14.Implantat und Zuführungsvorrichtung nach Anspruch 1 oder 6, wobei das Implantat aufweist:

- einen Röhrendurchgang, der sich zwischen dem distalen Ende und dem proximalen Ende der Röhre erstreckt, zum Durchlassen eines Fluids durch den Röhrendurchgang; und
- einen oder mehrere Durchflußregelfäden, die im Röhrendurchgang angeordnet sind, wobei einer oder mehrere Durchflußregelfäden anfänglich dazu dienen, den Durchfluß durch den Röhrendurchgang teilweise oder vollständig zu hemmen, und wobei mindestens ein Durchflußregelfaden in bezug auf den Röhrendurchgang verschoben werden kann, um die Hemmung des Durchflusses durch den Röhrendurchgang zu ändern.

15.Implantat und Zuführungsvorrichtung nach Anspruch 14, wobei der eine oder mehrere Durchflußregelfäden den Röhrendurchgang anfänglich im wesentlichen ausfüllen, um den Durchfluß durch den Röhrendurchgang zu verhindern.

16.Implantat und Zuführungsvorrichtung nach Anspruch 14, wobei der eine oder mehrere Durchflußregelfäden den Röhrendurchgang anfänglich teilweise ausfüllen, um einen partiellen Durchfluß durch den Röhrendurchgang zuzulassen.
17. Implantat und Zuführungsanordnung nach Anspruch 14, ferner mit einem Stopfen, der an einem oder mehreren Durchflußregelfäden angebracht ist.

18. Implantat und Zuführungsanordnung nach Anspruch 14, wobei einer oder mehrere Durchflußregelfäden einen Knoten in sich haben.

19. Implantat und Zuführungsanordnung nach Anspruch 14, wobei mindestens ein Durchflußregelfaden aus dem Röhrendurchgang zurückgezogen werden kann, um die Hemmung des Durchflusses durch den Röhrendurchgang zu verringern.

20. Implantat und Zuführungsanordnung nach Anspruch 19, wobei mindestens ein Durchflußregelfaden vollständig aus dem Röhrendurchgang zurückgezogen werden kann, um die Hemmung des Durchflusses durch den Röhrendurchgang zu verringern.

21. Implantat und Zuführungsanordnung nach Anspruch 19, wobei mindestens ein Durchflußregelfaden im Röhrendurchgang vorgeschoben werden kann, um die Hemmung des Durchflusses durch den Röhrendurchgang zu erhöhen.

22. Implantat und Zuführungsanordnung nach Anspruch 14, wobei mindestens ein Durchflußregelfaden aus dem Röhrendurchgang teilweise zurückgezogen werden kann, um die Hemmung des Durchflusses durch den Röhrendurchgang zu verringern.

23. Implantat und Zuführungsanordnung nach Anspruch 14 mit mindestens zwei Fäden.

24. Implantat und Zuführungsanordnung nach Anspruch 23, wobei zwei der Fäden verschiedene Querschnittsabmessungen haben.

25. Implantat und Zuführungsanordnung nach Anspruch 23, wobei an jedem von mindestens zwei Fäden ein Stopfen angebracht ist, wobei die Stopfen an den mindestens zwei Fäden verschiedene Querschnittsabmessungen haben.

27. Implantat und Zuführungsanordnung nach Anspruch 14, wobei mindestens ein Durchflußregelfaden entlang seiner Länge verschiedene Bereiche mit verschiedenen Querschnittsabmessungen hat.

28. Implantat und Zuführungsanordnung nach Anspruch 14, wobei mindestens ein Durchflußregelfaden aus absorbierbarem Material besteht.

Revendications

1. Implantat (10, 60, 80, 100) associé à un dispositif de pose (30, 90) permettant d’implanter l’implant, dans lequel l’implant comprend un tube (12, 62) et une protubérance de rétention s’étendant vers l’extérieur (20, 70, 84), dans lequel le dispositif de pose comprend un tube (34, 94) ayant une surface extérieure et un alésage central (36, 96) destiné à recevoir l’implant et dans lequel le dispositif de pose présente une ouverture (40, 92) dans le côté du tube, qui permet à la protubérance de rétention de faire saillie au-delà de la surface extérieure du tube du dispositif de pose.

2. Implantat et dispositif de pose selon la revendication 1, dans lesquels l’implant est constitué de plastique.

3. Implantat et dispositif de pose selon la revendication 1, dans lesquels la protubérance de rétention est située au niveau d’une extrémité distale de l’implant et dans lesquels l’implant comprend en outre une bride extérieure (18, 68, 86) située au niveau d’une extrémité proximale de l’implant.

5. Implantat et dispositif de pose selon la revendication 3, dans lesquels la bride extérieure de l’implant est résiliente de manière à pouvoir être introduite dans l’alésage central du tube du dispositif de pose.

6. Implantat (10, 60, 80, 100) associé à un dispositif de pose (30, 90) permettant d’implanter l’implant, dans lequel l’implant comprend un tube (12, 62) présentant une extrémité distale et une extrémité proximale et une protubérance de rétention s’étendant vers l’extérieur (20, 70, 84), dans lequel le dispositif de pose comprend un tube (34, 94) comportant une surface extérieure, un alésage central (36, 96) destiné à recevoir l’implant et une ouverture au niveau d’une extrémité, permettant à l’implant de sortir de l’alésage central, et dans lequel l’implant est introduit dans l’alésage central avec son extrémité distale plus proche de l’ouverture que son extrémité proximale, de sorte que l’extrémité distale de l’implant sort de l’alésage central du dispositif de pose avant l’extrémité proximale.

7. Implantat et dispositif de pose selon la revendication 6, dans lesquels l’implant est constitué de plastique.
8. Implant et dispositif de pose selon la revendication 6, dans lesquels la protubérance de rétention est située à proximité de l’extrémité distale de l’implant et dans lesquels l’implant comprend en outre une bride extérieure (18, 68, 86) située à proximité de l’extrémité proximale de l’implant.

9. Implant et dispositif de pose selon la revendication 8, dans lesquels la bride extérieure de l’implant est résiliente de manière à pouvoir être introduite dans l’alésage central du tube du dispositif de pose.

10. Implant et dispositif de pose selon la revendication 6, dans lesquels la protubérance de rétention de l’implant est résiliente de manière à pouvoir être introduite dans l’alésage central du tube du dispositif de pose.

11. Implant et dispositif de pose selon la revendication 1 ou 6, dans lesquels l’implant comprend :

 un passage de tube s’étendant entre l’extrémité proximale et l’extrémité distale du tube afin de permettre aux fluides de s’écouler à travers le passage de tube ; et
 un matériau résorbable situé dans le passage de tube, le matériau résorbable servant initialement à obstruer partiellement ou totalement l’écoulement à travers le passage de tube et le matériau résorbable s’érodant au fur et à mesure qu’il entre en contact avec le fluide, de sorte que l’obstruction de l’écoulement à travers le passage de tube se réduit au cours du temps.

12. Implant et dispositif de pose selon la revendication 11, dans lesquels initialement le matériau résorbable remplit sensiblement le passage de tube de manière à empêcher l’écoulement à travers le passage de tube.

13. Implant et dispositif de pose selon la revendication 11, dans lesquels initialement le matériau résorbable remplit partiellement le passage de tube de manière à permettre un écoulement partiel à travers le passage de tube.

14. Implant et dispositif de pose selon la revendication 1 ou 6, dans lesquels l’implant comprend :

 un passage de tube s’étendant entre l’extrémité distale et l’extrémité proximale du tube afin de permettre aux fluides de s’écouler à travers le passage de tube ; et
 un ou plusieurs brins de régulation de l’écoulement situés dans le passage de tube, les un ou plusieurs brins de régulation de l’écoulement servant initialement à obstruer partiellement ou totalement l’écoulement à travers le passage de tube et au moins un brin de régulation de l’écoulement pouvant être déplacé par rapport au passage de tube pour modifier l’obstruction de l’écoulement à travers le passage de tube.

15. Implant et dispositif de pose selon la revendication 14, dans lesquels initialement les un ou plusieurs brins de régulation de l’écoulement remplissent sensiblement le passage de tube de manière à empêcher l’écoulement à travers le passage de tube.

16. Implant et dispositif de pose selon la revendication 14, dans lesquels initialement les un ou plusieurs brins de régulation de l’écoulement remplissent partiellement le passage de tube de manière à permettre un écoulement partiel à travers le passage de tube.

17. Implant et dispositif de pose selon la revendication 14, comprenant en outre un bouchon fixé à un ou plusieurs desdits brins de régulation de l’écoulement.

18. Implant et dispositif de pose selon la revendication 14, dans lesquels un ou plusieurs desdits brins de régulation de l’écoulement comportent un noeud.

19. Implant et dispositif de pose selon la revendication 14, dans lesquels au moins un brin de régulation de l’écoulement peut être retiré du passage de tube afin de réduire l’obstruction de l’écoulement à travers le passage de tube.

20. Implant et dispositif de pose selon la revendication 19, dans lesquels au moins un brin de régulation de l’écoulement peut être complètement retiré du passage de tube afin de réduire l’obstruction de l’écoulement à travers le passage de tube.

21. Implant et dispositif de pose selon la revendication 19, dans lesquels au moins un brin de régulation de l’écoulement peut être partiellement retiré du passage de tube afin de réduire l’obstruction de l’écoulement à travers le passage de tube.

22. Implant et dispositif de pose selon la revendication 14, dans lesquels au moins un brin de régulation de l’écoulement peut être avancé dans le passage de tube afin d’augmenter l’obstruction de l’écoulement à travers le passage de tube.

23. Implant et dispositif de pose selon la revendication 14, comprenant au moins deux brins.

24. Implant et dispositif de pose selon la revendication 23, dans lesquels deux des brins ont des dimensions en coupe transversale différentes.
25. Implant et dispositif de pose selon la revendication 23, dans lesquels un bouchon est fixé sur chacun d'au moins deux brins, les bouchons sur les au moins deux brins ayant des dimensions en coupe transversale différentes.

26. Implant et dispositif de pose selon la revendication 23, dans lesquels chacun d'au moins deux brins comporte un noeud, les noeuds dans les au moins deux brins ayant des dimensions différentes.

27. Implant et dispositif de pose selon la revendication 14, dans lesquels au moins un brin de régulation de l’écoulement présente des zones différentes le long de sa longueur, ayant des dimensions en coupe transversale différentes.

28. Implant et dispositif de pose selon la revendication 14, dans lesquels au moins un brin de régulation de l’écoulement est constitué d’un matériau résorbable.